RULES FOR CONSTRUCTING HYPERPERFECT NUMBERS

H. J. J. te RIELE

Mathematical Centre, Kruislaan 413, 1098 SJ, Amsterdam, The Netherlands (Submitted June 1982)

1. INTRODUCTION

As usual, let $\sigma(n)$ denote the sum of all the divisors of n [with $\sigma(1)$ $=1$] and let $\omega(n)$ denote the number of different prime factors of n [with $\omega(1):=0]$. The set of prime numbers will be denoted by \mathscr{P}. The set of hyperperfect numbers (HP's) is the set $M:=\bigcup_{n=1}^{\infty} M_{n}$, where

$$
\begin{equation*}
M_{n}:=\{m \in \mathbf{N} \mid m=1+n[\sigma(m)-m-1]\} \tag{1}
\end{equation*}
$$

We also define the sets

$$
\begin{equation*}
k M_{n}:=\left\{m \in M_{n} \mid \omega(m)=k\right\}, k, n \in \mathbf{N} \tag{2}
\end{equation*}
$$

and $k M:=\bigcup_{n=1}^{\infty} k M_{n} ;$ clearly, we have $M_{n}=\bigcup_{k=1}^{\infty}{ }_{k} M_{n}$. We will also use the related set $M^{*}:=\bigcup_{n=1}^{\infty} M_{n}^{*}$, where

$$
\begin{equation*}
M_{n}^{*}:=\{m \in \mathbf{N} \mid m=1+n[\sigma(m)-m]\}, \tag{3}
\end{equation*}
$$

and the sets

$$
\begin{equation*}
k^{M_{n}^{*}}:=\left\{m \in M_{n}^{*} \mid \omega(m)=k\right\}, k \in \mathbf{N} \cup\{0\}, n \in \mathbb{N} \tag{4}
\end{equation*}
$$

and $k M^{*}:=\bigcup_{n=1}^{\infty} k M_{n}^{*}$, so that also $M_{n}^{*}=\bigcup_{k=0}^{\infty} k M_{n}^{*}$.
It is not difficult to verify that ${ }_{I} M_{n}=\emptyset, \forall n \in \mathbf{N}$, and that

$$
\begin{cases}0^{M_{n}^{*}}=\{1\}, \forall n \in \mathbf{N} \text { and } \tag{5}\\ { }_{1} M_{n}^{*}= \begin{cases}\left\{(n+1)^{\alpha}, \alpha \in \mathbf{N}\right\}, & \text { if } n+1 \in \mathscr{P} \\ \emptyset, & \text { if } n+1 \notin \mathscr{P}\end{cases} \end{cases}
$$

M_{1} is the set of perfect numbers [for which $\sigma(m)=2 m$]. The n-hyperperfect numbers M_{n}, introduced by Minoli and Bear [l], are a meaningful generalization of the even perfect numbers because of the following rule.

RULE 0 (from [2]): If $p \in \mathscr{P}, \alpha \in \mathbf{N}$, and if $q:=p^{\alpha+1}-p+1 \in \mathscr{P}$, then $p^{\alpha} q \in M_{p-1}$.

There are 71 hyperperfect numbers below 10^{7} (see [2], [3], [4], [5]). Only one of them belongs to ${ }_{3} M$, all others are in ${ }_{2} M$. In [6] and [7] the present author has constructively computed several elements of ${ }_{3} M$ and two of 4^{M}.

In Section 2 of this paper, we shall give rules by which one may find (with enough computer time) an element of $(k+2)^{M_{n}}$ and of $(k+1)^{M_{n}}$ from an element of $k_{k} M_{n}^{*}(k \geqslant 0)$, and an element of $k_{k}^{M_{n}^{*}}$ from an element of $(k-2)^{M_{n}^{*}}$ $(k \geqslant 2)$. Because of (5), this suggests the possibility to construct HP's with k different prime factors for any positive integer $k \geqslant 2$. By actually applying the rules, we have found many elements of ${ }_{3} M$, seven elements of ${ }_{4} M$, and one element of ${ }_{5} M .{ }^{1}$

In Section 3, necessary and sufficient conditions are given for numbers of the form $p^{\alpha} q, \alpha \in \mathbf{N}$, to be hyperperfect. For example, for $\alpha \geqslant 3$, these conditions imply that there are no other HP's of the form $p^{\alpha} q$ than those characterized by Rule 0 . The results of this section enable us to compute very cheaply all HP's of the form $p^{\alpha} q$ below a given bound. Unfortunately, we have not been able to extend these results to more complicated HP's like those of the form $p^{\alpha} q^{\beta}, \alpha \geqslant 2$ and $\beta \geqslant 2$, or $p^{\alpha} q^{\beta} r^{\gamma}$ with $\alpha \geqslant 1, \beta \geqslant 1$ and $\gamma \geqslant 1$, etc. (However, these numbers are extremely scarce compared to HP's of the form $p^{\alpha} q$, and no HP's of the form $p^{\alpha} q^{\beta}$ and $p^{\alpha} q^{\beta} p^{\gamma}$ with $\alpha \geqslant 2$ and $\beta \geqslant 2$ have been found to date.)

Because of the importance of the set M^{*} for the construction of hyperperfect numbers, we given in Section 4 the results of an exhaustive search for all $m \in M^{*}$ with $m \leqslant 10^{8}$ and $\omega(m) \geqslant 2$. It turned out that elements of ${ }_{3} M^{*}$ are very rare compared with ${ }_{2} M^{*}$, in analogy with the sets ${ }_{3} M$ and ${ }_{2} M$. This search also gave all elements $\leqslant 10^{8}$ of M, at very low cost, because of the similarity of the equations defining M^{*} and M. See note 1 below.

The paper concludes with a few remarks, in Section 5, on a possible generalization of hyperfect numbers to so-called hypercycles, special cases of which are the ordinary perfect numbers and the amicable number pairs.
${ }^{1}$ Lists of these numbers may be obtained from the author on request.

RULES FOR CONSTRUCTING HYPERPERFECT NUMBERS

Remark: After completing this paper, the author computed, with the rules given in Section 2, 860 HP 's below the bound 10^{10}. See note 1 above.

2. RULES FOR CONSTRUCTING HYPERPERFECT NUMBERS

We have found the following rules [we write \bar{a} for $\sigma(\alpha)$]:

RULE 1: Let $k \in \mathbf{N}, n \in \mathbf{N}, a \in{ }_{k} M_{n}^{*}$, and $p:=n \bar{a}+1-n$; if $p \in \mathscr{P}$, then $a p \in(k+1)^{M_{n}}$.

RULE 2: Let $k \in \mathbf{N} \cup\{0\}, n \in \mathbf{N}, a \in_{k} M_{n}^{*}$, and $p:=n \bar{a}+A, q:=n \bar{a}+B$, where $A B=1-n+n \bar{a}+n^{2} \bar{a}^{2}$; if $p \in \mathscr{P}$ and $q \in \mathscr{P}$, then $a p q \in(k+2)_{n}$.

RULE 3: Let $k \in \mathbf{N} \cup\{0\}, n \in \mathbf{N}, a \in{ }_{k} M_{n}^{*}$, and $p:=n \bar{\alpha}+A, q:=n \bar{a}+B$, where $A B=1+n \bar{a}+n^{2} \bar{a}^{2}$; if $p \in \mathscr{P}$ and $q \in \mathscr{P}$, then $a p q \in{ }_{(k+2)} M_{n}^{*}$.

The proofs of these rules don't require much more than the application of the definitions, and are therefore left to the reader. In fact, the proof of Rule 2 was already given in [7], although the rule itself was formulated there less explicitly.

Rule 1 can be applied for $k \geqslant 1$, but not for $k=0$, since ${ }_{0} M_{n}^{*}=\{1\}$ and $a=1$ gives $p=1 \notin \mathscr{P}$. For $k=n=1$, Rule 1 reads:

$$
\text { If } p:=2^{\alpha+1}-1 \in \mathscr{P}, \text { then } 2^{\alpha} p \in{ }_{2} M_{1}
$$

which is Euclid's rule for finding even perfect numbers. For $k=1$, Rule is equivalent to Rule 0, given in Section 1.

Rules 2 and 3 can both be applied for $k \geqslant 0$. For instance, for $k=0$, le 2 reads:

Let $n \in \mathbf{N}$ be given; if $p:=n+A \in \mathscr{P}$ and $q:=n+B \in \mathscr{P}$,
where $A B=1+n^{2}$, then $p q \in{ }_{2} M_{n}$.
For $n=1,2$, and 6, this yields the hyperperfect numbers $2 \times 3,3 \times 7$, and 7×43, respectively. Rule 3 reads, for $k=0$:

Let $n \in \mathbf{N}$ be given; if $p:=n+A \in \mathscr{P}$ and $q:=n+B \in \mathscr{P}$, where $A B=1+n+n^{2}$, then $p q \in{ }_{2} M_{n}^{*}$.
For $n=4$ and $n=10$, we find that $7 \times 11 \in{ }_{2} M_{4}^{*}$ and $13 \times 47 \in{ }_{2} M_{10}^{*}$, respectively.

RULES FOR CONSTRUCTING HYPERPERFECT NUMBERS

Rule 3 shows a rather curious "side-effect" for $k \geqslant 1$: if both the numbers p and q in this rule are prime, then not only $\alpha p q \in(k+2)^{M_{n}^{*}}$, but also the number $b:=p q$ is an element of ${ }_{2} M_{n \bar{a}}^{k}$. Indeed, we have

$$
\begin{aligned}
\frac{b-1}{\sigma(b)-b}=\frac{p q-1}{p+q+1} & =\frac{n^{2} \bar{a}^{2}+n \bar{a}(A+B)+A B-1}{2 n \bar{a}+A+B+1} \\
& =\frac{n^{2} \bar{a}^{2}+n \bar{a}(A+B)+n \bar{a}+n^{2} \bar{a}^{2}}{2 n \bar{a}+A+B+1}=n \bar{a} \in \mathbf{N}
\end{aligned}
$$

For example, we know that $7 \times 11 \in{ }_{2} M_{4}^{*}$. From Rule 3 with $k=2, n=4$, and $a=7 \times 11$, we find that $7 \times 11 \times 547 \times 1291 \in{ }_{4} M_{4}^{*}$; the side-effect is that

$$
547 \times 1291 \in{ }_{2} M_{(4 \times 8 \times 12)}^{*}={ }_{2} M_{384}^{*}
$$

In [6] we gave the following additional rule.
RULE 4: Let $t \in \mathbf{N}$ and $p:=6 t-1, q:=12 t+1$; if $p \in \mathscr{P}$ and $q \in \mathscr{P}$, then $p^{2} q \in{ }_{2} M_{(4 t-1)}$.

For example, $t=1$ and $t=3$ give $5^{2} 13 \in{ }_{2} M_{3}$ and $17^{2} 37 \in_{2} M_{11}$, respectively. In Section 3 we will prove that with Rules 1,2 , and 4 it is possible to find all HP 's of the form $p^{\alpha} q, \alpha \in \mathbf{N}$, below a given bound. We leave it to interested readers to discover why there is no rule (at least for $k \geqslant 1$), analogous to Rule 1 , for finding an element of $(k+1) M_{n}^{*}$ from an element of ${ }_{k} M_{n}^{\star}$.

From Rules $1-3$, it follows that elements of ${ }_{k} M_{n}$ for some given $k \in \mathbf{N}$ may be found from $(k-1) M_{n}^{*}$ (with Rule 1) and from $(k-2)_{n}^{*}$ (with Rule 2) provided that sufficiently many elements of $(k-1) M_{n}^{*}$ resp. $(k-2)^{M_{n}^{*}}$ are available; these can be found with Rule 3 and the "starting" sets ${ }_{0} M_{n}^{*}$ and ${ }_{1} M_{n}^{*}$ given in (5). We have carried out this "program" for the constructive computation of HP's with three, four, and five different prime factors.
(i) Construction of elements of ${ }_{3} M_{n}$. With Rule 1 , we found 34 HP's of the form pqr, from numbers $p q \in{ }_{2} M_{n}^{*}$:
the smallest is $61 \times 229 \times 684433 \in{ }_{3} M_{48}$;
the largest one is $9739 \times 13541383 \times 1283583456107389 \in{ }_{3} M_{9732}$.
The elements of ${ }_{2} M_{n}^{*}$ were "generated" with Rule 3 from ${ }_{0} M_{n}^{*}=\{1\}$. Using Rule 2 we found, from prime powers $p^{\alpha} \in{ }_{1} M_{n}^{*}, 67 \mathrm{HP}$'s of the form pqr:

RULES FOR CONSTRUCTING HYPERPERFECT NUMBERS

five of the smallest are given in [6],
the largest is $8929 \times 79727051 \times 577854714897923 \in{ }_{3} M_{8928} ;$
48 HP 's of the form $p^{2} q r$,
the smallest five are given in [6],
the largest is $7459^{2} 414994003583 \times 34444004601637408163219 \in{ }_{3} M_{7458}$; 9 of the form $p^{3} q r$,
the smallest is given in [6],
the largest is $811^{3} 432596915921 \times 89927962885420066391 \in{ }_{3} M_{810}$; 4 of the form $p^{4} q$,
the smallest is $7^{4} 30893 \times 36857 \in{ }_{3} M_{6}$,
the largest is $223^{4} 553821371657 \times 130059326113901 \in{ }_{3} M_{222}$;
and, furthermore,
$7^{6} 1340243 \times 2136143 \dot{\epsilon}_{3} M_{6}$,
$13^{7} 815787979 \times 11621986347871 \in{ }_{3} M_{12}$,
and
$19^{8} 322687706723 \times 11640844402910006759 \in{ }_{3} M_{18}$.
(ii) Construction of elements of $4_{4} M_{n}$. In order to construct elements f ${ }_{4} M_{n}$ with Rule l, sufficiently many elements of ${ }_{3} M_{n}^{*}$ had to be available. ais was realized with Rule 3 , starting with elements $p^{\alpha} \in{ }_{1} M_{(p+1)}, p \in \mathscr{P}$. ne following four HP's with four different prime factors were found:
$3049 \times 9297649 \times 69203101249 \times 5981547458963067824996953 \in{ }_{4} M_{3048}$,
$4201 \times 17692621 \times 7061044981 \times 2204786370880711054109401 \in{ }_{4} M_{4200}$,
$181^{2} 5991031 \times 579616291 \times 20591020685907725650381 \in{ }_{4} M_{180}$,
$181^{3} 1108889497 \times 33425259193 \times 39781151786825440683346549261 \in{ }_{4} M_{180}$. By means of Rules 2 and 3, the following three additional elements of ${ }_{4} M_{n}$ were found:
$1327 \times 6793 \times 10020547039 \times 17769709449589 \in{ }_{4} M_{1110}$ (is in [6]),
$1873 \times 24517 \times 79947392729 \times 80855915754575789 \in{ }_{4} M_{1740}($ is in [7]),
$5791 \times 10357 \times 222816095543 \times 482764219012881017 \in{ }_{4} M_{3714}$.
(iii) Construction of an element of ${ }_{5} M_{n}$. We have also constructively computed one element of ${ }_{5} M_{n}$ with Rule 1 . The elements of ${ }_{4} M_{n}^{*}$ needed for this purpose were computed from ${ }_{0} M_{n}^{*}$ by twice applying Rule 3 (first yielding elements of ${ }_{2} M_{n}^{*}$, then elements of ${ }_{4} M_{n}^{*}$). The HP found is the largest 54
one we know of (apart from the ordinary perfect numbers). It is the $87-$ digit number:

$$
\begin{aligned}
& 209549717187078140588332885132193432897405407437906414 \\
& 236764925538317339020708786590793 \\
& =4783 \times 83563 \times 1808560287211 \times 297705496733220305347 \\
& \times 973762019320700650093520128480575320050761301 \in_{5} M_{4524^{\circ}} \\
& 3 . \text { CHARACTERIZATION OF ALL HP'S OF THE FORM } p^{\alpha} q
\end{aligned}
$$

The hyperperfect numbers of the form $p^{\alpha} q$ are characterized by the following theorem.

Theorem: Let $m:=p^{\alpha} q(\alpha \in \mathbf{N}, p \in \mathscr{P}, q \in \mathscr{P})$ be a hyperperfect number, then
(i) $\alpha=1 \Rightarrow\left(\exists n \in \mathbf{N}\right.$ with $m \in{ }_{2} M_{n}$ such that $p=n+A, q=n+B$, with $\left.A B=1+n^{2}\right) ;$
(ii) $\alpha=2 \Rightarrow\left(\exists t \in \mathbf{N}\right.$ with $m \in{ }_{2}^{M_{(4 t-1)}}$ and $p=6 t-1$ and $\left.q=12 t+1\right)$ $v\left(m \in{ }_{2} M_{(p-1)}\right.$ with $\left.q=p^{3}-p+1\right)$;
(iii) $\alpha>2 \Rightarrow\left(m \in{ }_{2} M_{(p-1)}\right.$ with $\left.q=p^{\alpha+1}-p+1\right)$.

Proof: (i) This case follows immediately from Rule 2 (with $k=0$). (ii) If $p^{2} q$ is hyperperfect, then the number $\left(p^{2} q-1\right) /((p+1)(p+q))$ must be a positive integer. Consider the function

$$
f(x, y):=\frac{x^{2} y-1}{(x+1)(x+y)}, x, y \in \mathbf{N} .
$$

To characterize all pairs x, y for which $f(x, y) \in \mathbf{N}$, we can safely take $x \geqslant 2$ and $y \geqslant 2$. Let $x \geqslant 2$ be fixed, then we have for all $y \geqslant 2$,

$$
f(x, y)<\frac{x^{2} y}{(x+1)(x+y)}<\frac{x^{2}}{x+1}=x-1+\frac{1}{x+1} .
$$

Hence, the largest integral value which could possibly be assumed by f is $x-1$, and one easily checks that this value is actually assumed for $y=$ $x^{3}-x+1$. So we have found

$$
\begin{equation*}
f\left(x, x^{3}-x+1\right)=x-1, x \in \mathbf{N}, x \geqslant 2 . \tag{6}
\end{equation*}
$$

One also easily checks that f is monotonically increasing in y (x fixed), so that

$$
\begin{equation*}
2 \leqslant y \leqslant x^{3}-x+1 \tag{7}
\end{equation*}
$$

RULES FOR CONSTRUCTING HYPERPERFECT NUMBERS

Now, in order to have $f \in \mathbf{N}$, it is necessary that $x+1$ divides $x^{2} y-1$, or, equivalently, that $x+1$ divides $y-1$, since

$$
\frac{x^{2} y-1}{x+1}=y(x-1)+\frac{y-1}{x+1} .
$$

Therefore, we have $y=k(x+1)+1$, with $k \in \mathbf{N}$ and $1 \leqslant k \leqslant x(x-1)$ by (7). Substitution of this into f yields

$$
f(x, y)=\frac{k x^{2}+x-1}{(k+1)(x+1)}=x-1-\frac{x^{2}-x-k}{(k+1)(x+1)}=: x-1-g(x, k) .
$$

It follows that $x+1$ must divide $x^{2}-x-k$, or, equivalently, that $x+1$ must divide $k-2$. Hence, $k=j(x+1)+2$, with $j \in \mathbf{N} \cup\{0\}$ and $0 \leqslant j \leqslant$ $x-2$. Substitution of this into g yields

$$
g(x, j(x+1)+2)=\frac{x-2-j}{j(x+1)+3} .
$$

This function is decreasing in j, and for $j=0,1, \ldots, x-2$ it assumes the values:

$$
\begin{aligned}
g(x, 2) & =(x-2) / 3 \\
g(x, x+3) & =\frac{x-3}{x-4}<1, \\
& \vdots \\
g(x, x(x-1)) & =0 .
\end{aligned}
$$

follows that there is precisely one more possibility [in addition to .u)] for f to be a positive integer, viz., when $j=0, k=2, y=2 x+3$, and $x(\bmod 3)=2$. So we have found

$$
\begin{equation*}
f(3 t-1,6 t+1)=2 t-1, t \in \mathbf{N} . \tag{8}
\end{equation*}
$$

The statement in the Theorem now easily follows from (6) and (8).
(iii) As in the proof of (ii), we now have to find out for which values of $x, y \in \mathbf{N}, x \geqslant 2$, and $y \geqslant 2$, the function $f(x, y) \in \mathbf{N}$, where

$$
f(x, y):=\frac{x^{\alpha} y-1}{\left(x^{\alpha-1}+\cdots+1\right)(x+y)}, \alpha>2 .
$$

For fixed $x \geqslant 2$, we have

$$
f(x, y)<\frac{x^{\alpha}}{x^{\alpha-1}+\cdots+1}=x-1+\frac{1}{x^{\alpha-1}+\cdots+1} .
$$

[Feb.

RULES FOR CONSTRUCTING HYPERPERFECT NUMBERS

As in the proof of (ii) we find that $f(x, y)=x-1$ for $y=x^{\alpha+1}-x+1$ and that $2 \leqslant y \leqslant x^{\alpha+1}-x+1$. Furthermore, $x^{\alpha-1}+\cdots+1$ must divide $x^{\alpha} y-1$, so that $y=k\left(x^{\alpha-1}+\cdots+1\right)+1$, with $1 \leqslant k \leqslant x(x-1)$. Substitution of this into f yields a certain function g, in the same way as in the proof of (ii), but in this case g can only assume integral values for $k=x(x-1)$. This implies the statement in the Theorem, case (iii). Q.E.D.

It is easy to see that the characterizations given in this Theorem are equivalent to Rule $2(k=0)$ when $\alpha=1$, to Rule 4 or Rule $1(k=1)$ when $\alpha=2$, and to Rule $1(k=1)$ when $\alpha>2$.

This Theorem enables us to find very cheaply all HP's of the form $p^{\alpha} q$, $\alpha \in \mathbf{N}$, below a given bound. For example, to find all HP's in M_{n} of the form $p q$ below 10^{8}, we only have to check whether

$$
p:=n+A \in \mathscr{P} \quad \text { and } \quad q:=n+B \in \mathscr{P}
$$

for all possible factorizations of $A B=1+n^{2}$, for $1 \leqslant n \leqslant 4999$. This range of n follows from the fact that if $p q \in M_{n}$ then $p q>4 n^{2}$. The following additional restrictions can be imposed on n :
(i) n should be 1 or even since, if n is odd and $n \geqslant 3$, then $n^{2}+1 \equiv 2$ (mod 4), so that one of A or B is odd and one of p or q is even and $\geqslant 4$.
(ii) If $n \geqslant 3$, then $n \equiv 0(\bmod 3)$, since if $n \equiv 1$ or $2(\bmod 3)$, then $n^{2}+1 \equiv 2(\bmod 3)$, so that one of A or B is $\equiv 1(\bmod 3)$ and the other is $\equiv 2(\bmod 3)$; consequently, one of p or q is $\equiv 0(\bmod 3)$ and >3.

Hence, the only values of n to be checked are $n=1, n=2$, and $n=6 t$, $1 \leqslant t \leqslant 833$. It took about 6 seconds CPU-time on a CDC CYBER 175 computer to check these values of n, and to generate in this way all HP's of the form $p q$ below 10^{8}.

4. EXHAUSTIVE COMPUTER SEARCHES

From the rules given in Section 2, it follows that it is of importance to know elements of M^{*} when one wants to find elements of M. Therefore,

RULES FOR CONSTRUCTING HYPERPERFECT NUMBERS

we have carried out an exhaustive computer search for all elements of M^{*} below the bound 10^{8}. Because of (5) the search was restricted to elements with at least two different prime factors. A check was done to determine whether $(m-1) /(\sigma(m)-m) \in \mathbf{N}$, for all $m \leqslant 10^{8}$ with $\omega(m) \geqslant 2$. Since the most time-consuming part is the computation of $\sigma(m)$, a second check was done to determine whether $(m-1) /(\sigma(m)-m-1) \in \mathbf{N}$ [in the case where $(m-1) /(\sigma(m)-m) \notin \mathbf{N}]$. If so, m was an HP; thus, our program also produced, almost for free, all HP's below 10^{8}. (The search took about 100 hours of "idle" computer time on a CDC CYBER 175.) The results are as follows.

Apart from the ordinary perfect numbers, there are 146 HP 's below 10^{8}. Only two of them have the form par:

$$
13 \times 269 \times 449 \in_{3} M_{12} \quad \text { and } \quad 7^{2} 383 \times 3203 \in{ }_{3} M_{6} ;
$$

these were also found in the searches described in Section 2. All others have the form characterized in Section 3, and could have been found with a search based on that characterization (using the fact that if $p^{\alpha} q \in{ }_{2} M_{n}$, then $p>n$ and $q>n$). A question that naturally arises is the following: Are there any HP's that cannot be constructed with one of Rules 1,2 , or $4 ?^{2}$

There are 312 numbers $m \leqslant 10^{8}$ which belong to M^{*} and which have $\omega(m)$
2. Of these, 306 have the form $p q$ and could have been (and, as a check, stually were) found very cheaply with Rule 3 of Section 2. The others are:

$$
\begin{aligned}
& 7 \times 61 \times 229 \in{ }_{3} M_{6}^{*}, 113 \times 127 \times 2269 \in_{3} M_{58}^{*} \\
& 149 \times 463 \times 659 \in_{3} M_{96}^{*}, 19 \times 373 \times 10357 \in_{3} M_{18}^{*} \\
& 151 \times 373 \times 1487 \in_{3} M_{100}^{*}, 7 \times 11 \times 547 \times 1291 \in_{4} M_{4}^{*} ;
\end{aligned}
$$

the second, third, and fifth numbers could not have been found using Rule 3.

[^0]
RULES FOR CONSTRUCTING HYPERPERFECT NUMBERS

5. HYPERCYCLES

A possible generalization of hyperperfect numbers can be obtained as follows. Let $n \in \mathbf{N}$ be given, and define the function $f_{n}: \mathbf{N} \backslash\{1\} \Rightarrow \mathbf{N}$ as

$$
\begin{equation*}
f_{n}(m):=1+n[\sigma(m)-m-1], m \in \mathbf{N} \backslash\{1\} . \tag{9}
\end{equation*}
$$

Starting with some $m_{0} \in \mathbf{N} \backslash\{1\}$, one might investigate the sequence

$$
\begin{equation*}
m_{0}, f_{n}\left(m_{0}\right), f_{n}\left(f_{n}\left(m_{0}\right)\right), \ldots \tag{10}
\end{equation*}
$$

For $n=1$, this is the well-known aliquot sequence of m_{0}, which can have cycles of length 1 (perfect numbers), length 2 (amicable pairs), and others. In order to get some impression of the cyclic behavior for $n>1$, we have computed, for $2 \leqslant n \leqslant 20$, five terms of all sequences (10) with starting term $m_{0} \leqslant 10^{6}$, and we have registered the cycles with length $\geqslant 2$ and $\leqslant 5$ in the following table.

TABLE 1
HYPERCYCLES*

n	k	$m_{0}, m_{1}, \cdots, m_{k-1}$
5	2	$19461=3 \times 13 \times 499,42691=11 \times 3881$
7	3	$925=5^{2} 37,1765=5 \times 353,2507=23 \times 109$
8	2	$28145=5 \times 13 \times 433,66481=19 \times 3499$
	3	$238705=5 \times 47741,381969=337 \times 43 \times 47,2350961=79 \times 29759$
4	$94225=5^{2} 3769,181153=7^{2} 3697,237057=3 \times 31 \times 2549$,	
	$714737=61 \times 11717$	
9	$3452337=3^{2} 7 \times 54799,17974897=53 \times 229 \times 1481$	
9	2	$469=7 \times 67,667=23 \times 29$
	2	$1315=5 \times 263,2413=19 \times 127$
	2	$1477=7 \times 211,1963=13 \times 151$
10	2	$2737=7 \times 17 \times 23,6463=23 \times 281$
12	$1981=7 \times 283,2901=3 \times 967,9701=89 \times 109$	
	2	$697=17 \times 41,2041=13 \times 157$
	2	$3913=7 \times 13 \times 43,12169=43 \times 283$
14	2	$54265=5 \times 10853,130297=29 \times 4493$
	$1261=13 \times 97,1541=23 \times 67$	
	$508453=11 \times 17 \times 2719,1106925=3 \times 5^{2} 14759$,	
	$10126397=281 \times 36037$	

[^1]TABLE 1 (continued)

n	k	$m_{0}, m_{1}, \ldots, m_{k-1}$
19	2	$9197=17 \times 541,10603=23 \times 461$
	4	$184491=3^{3} 6833,1688493=3 \times 562831,10693847=709 \times 15083$,
	$300049=31 \times 9679$	
	$5151775=5^{2} 251 \times 821,24124073=89 \times 271057$	

REFERENCES

1. D. Minoli \& R. Bear. "Hyperperfect Numbers." Pi Mu EpsiZon (Fall 1975), pp. 153-57.
2. D. Minoli. "Issues in Nonlinear Hyperperfect Numbers." Math. Comp. 34 (1980): 639-45.
3. D. Minoli. Abstracts of the AMS 1, No. 6 (1980):561.
4. D. Minoli. Private communication dated August 15, 1980.
5. D. Minoli. "Structural Issues for Hyperperfect Numbers." The Fibonacci Quarterly 19 (1981):6-14.
6. H. J. J. te Riele. 'Hyperperfect Numbers with Three Different Prime Factors." Math. Comp. 36 (1981):297-98.
7. H. J. J. te Riele. "Hyperperfect Numbers with More then Two Different Prime Factors." Report NW 87/80. Amsterdam: Mathematical Centre, August 1980.
[Feb.

[^0]: ${ }^{2}$ The referee has answered this question in the affirmative by giving the example $12161963773=191 \times 373 \times 170711 \in M_{126}$.

[^1]: ${ }^{\text {Different }}$ numbers $m_{0}, m_{1}, \ldots, m_{k-1}$ such that $m_{k}=m_{0}$, where
 $m_{i+1}:=f_{n}\left(m_{i}\right), f_{n}$ defined in (9).

