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Summary

The financial crisis of 2007-2008 is considered as one of the worst economic disasters
since the Great Depression of the 1930ties. Triggered by the US housing bubble, the
crisis became global and threatened large well-known financial institutions. National
governments needed to bail out some institutions to prevent their collapse.

This crisis has changed the financial modeling and risk management significantly.
In particular, the requirements of understanding and managing so-called counterparty
credit risk, has been emphasized by the banking regulators.

Regarding financial transactions, we distinguish exchange-traded and so-called over-
the-counter (OTC) transactions. Exchange-traded deals are regulated and as such se-
cured by, for example, a clearing house (which may compensate losses when a counter-
party of a transaction would default). This is not the case for OTC transactions, that take
place directly between two parties. When in this situation the counterparty of a transac-
tion defaults, losses are not compensated and can be huge.

Counterparty credit risk (CCR) is the risk that a party, in an OTC financial derivatives
contract, may fail to respect its obligations, causing significant losses to the other party.
A bank is required by the financial regulator to set a certain amount of capital aside to
buffer for the default risk of all counterparties in its portfolio. The framework on how
banks must calculate the required capital is established by the Basel Accords-Basel I,
Basel II and Basel III-issued by the Basel Committee on Banking Supervision (BCBS).

In the Basel II framework, financial institutions are required to hold capital against
the variability in the market value of their portfolio. Credit exposure to a counterparty at
a future time is the positive mark-to-market value of the portfolio of derivatives with this
counterparty. The amount of exposure is uncertain due to the volatility in the market.
There are several measures of CCR, such as the potential future exposure (PFE), expected
exposure (EE), and so on. A key step of calculating these statistics is to build the future
distributions of exposure based on a simulation of the market variables under the his-
torical probability measure. The exposure on the scenarios, instead, has to be computed
under the risk-neutral probability measure as it is related to the market price of finan-
cial derivatives. The computational complexity arises due to the change of probability
measure. Since the calculation may require sub simulations, the number of real-world
scenarios generated, limited by the computational capability, can be unreasonably low.
Efficient algorithms for computing the exposure profiles are really needed in practice.

In response to the revealed deficiencies in banking regulations during the financial
crisis, BCBS published Basel III to work alongside with Basel II. In Basel III, a new risk
capital charge against the variability in credit valuation adjustment (CVA) , namely the
CVA risk capital charge, is introduced.

CVA is an adjustment to the risk-free value of OTC deals to take into account the
risk of counterparty default. CVA is commonly regarded as the market value of CCR. It
was found that the majority of the losses related to CCR during the financial crisis came
from the fair value adjustments on derivatives. The Basel III CVA risk capital charge is
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6 SUMMARY

set against the mark-to-market losses associated to the CVA volatility.

CVA can be quite complex and difficult for valuation. Modeling CVA requires at least
three components: the exposure profile, the default probability of the counterparty and
the loss given default. Thus, compared to the risk statistics of exposure in Basel II, CVA
does not only depend on the exposure but also on the credit quality of the counterparty.
The dependence between exposure and the counterparty’s default probability can also
make a significant contribution to CVA. So-called wrong-way risk (WWR) occurs when
the exposure profile and the credit quality of the counterparty are adversely correlated.

From the perspective of risk management, the measurements of CVA risk in Basel III
are CVA Value-at-Risk (VaR) and CVA Expected Shortfall (ES). CVA VaR and CVA ES may
require even sub-sub-simulations, which makes the calculation of the CVA measures
even more complicated.

This thesis deals with these computational problems in the pricing and measure-
ment aspects of CCR. We employ and develop further the Stochastic Grid Bundling Method
(SGBM), which is based on simulation, bundling and regression, to avoid the sub-simulation
in the calculation of exposure profiles. We also attempt to build models for WWR to study
the impact of dependence between the counterparty default and exposure to a counter-
party on CVA. To provide a benchmark, we develop further the COS method, based on
Fourier-cosine expansions and Fast-Fourier transformation (FFT), for the calculation of
the exposure profiles. The financial derivatives we consider are option contracts, the
underlyings of which are equities or also interest rate swaps. We pay special attention to
options with early-exercise features, like in particular, the Bermudan-style option. The
default likelihood is modeled by an intensity model, which is also called the reduced-
form model. We will set the intensity as constant in the first few chapters and later model
it as a stochastic variable to incorporate WWR.

As the introductory chapter, Chapter 1 presents an overview of the risk measures
for CCR and CVA in mathematical formulation, and explains the risk-neutral valuation
problem on simulated scenarios in detail. We describe the basic technique of the Stochas-
tic Grid Bundling Method (SGBM). Using a simple numerical example, we demonstrate
the convergence and error analysis for SGBM. The results show that SGBM converges as
the number of bundles goes to infinity and the number of paths within each bundle goes
to infinity too. The SGBM approach will be developed towards an efficient algorithm for
computing exposure profiles avoiding sub-simulation in the chapters to follow.

Chapter 1 also describes the connection between the discounted characteristic func-
tion and the associated discounted density function, and between the discounted char-
acteristic function and the corresponding moments. Using the former property, we can
employ the Fourier-transform technique to obtain the discounted density. Using the
latter relations, we are able to find analytic formulas for the corresponding moments
needed in the Stochastic Grid Bundling Method.

Chapter 2 demonstrates three numerical approaches, SGBM, the COS method and
the Finite Difference method, for computing the future exposure distributions of a Bermu-
dan option contract under the risk-neutral probability measure for CVA under the Hes-
ton’s stochastic volatility model. We study the impact of the stochastic volatility on the
right-tail of the risk-neutral exposure distributions.

In Chapter 3, the SGBM algorithm is further developed for computing the risk-neutral
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exposure of Bermudan options with stochastic interest rate and stochastic volatility un-
der so-called hybrid asset models. SGBM’s bundling techniques in case of two- or three-
dimensional variables are discussed in detail. The sensitivities of expected exposure can
be computed in SGBM as a by-product. The tail behavior of the exposure distributions
under different hybrid models are compared.

In the following Chapter 4, models for WWR are proposed. The intensity model rep-
resenting the credit quality of a counterparty is modeled as a stochastic process under
the risk-neutral probability measure. We provide an alternative way of computing CVA of
an option contract in the case of WWR by taking the difference between the default-free
and the default-adjusted values of the contract. By varying the occurring correlation co-
efficients between the asset price and the firm’s default probability, we study the impact
of WWR on CVA. An additional contribution in this chapter is the study of the impact of
CCR and WWR on the optimal early-exercise boundary of Bermudan options.

In Chapter 5, we consider the practical issue of computing the risk statistics of fu-
ture exposure distributions. In back-testing and stress testing, the historical probability
measure induced by the calibrated asset model may be not equivalent to the risk-neutral
probability measure dynamics. The exposure distribution at some future time has to be
valued on asset paths under the induced historical probability measure, whereas the val-
uation of exposure values should be performed under the risk-neutral probability mea-
sure. SGBM enables the risk-neutral valuation of exposure values at the real-world simu-
lations, based on only one set of risk-neutral scenarios without any sub-simulation, and
hence can significantly enhance the efficiency.

This thesis demonstrates that SGBM is a robust, accurate and efficient method for
computing exposure distributions under the real-world probability measure for risk mea-
surement of CCR and under the risk-neutral probability measure for pricing CCR (CVA).
It is highly adaptive to hybrid models and efficient with the basic techniques of bundling
and local regression. We show its accuracy by comparing to the COS method via numer-
ical examples.





Samenvatting

De financiële crisis in 2007-2008 wordt gezien als één van de grootste economische ram-
pen sinds de crisis van de jaren dertig. De kredietcrisis ontstond in de Verenigde Staten
door het knappen van de huizenbubbel, waarna het een wereldwijde crisis werd die het
voortbestaan van grote bekende financiële instellingen bedreigde. Nationale overheden
moesten financiële steun verlenen aan een aantal van deze instellingen om ze overeind
te houden.

Deze crisis heeft de financiële modellen en het risicobeheer aanzienlijk veranderd.
In het bijzonder wordt er door de toezichthouders nadruk gelegd op het beoordelen en
het beheren van het kredietrisico ten aanzien van de tegenpartij.
Financiële transacties kunnen op de beurs en onderhands plaats vinden. Deze laat-
ste groep transacties wordt over-the-counter (OTC) transacties genoemd. De beurs-
transacties worden gereguleerd en daarmee ook verzekerd door bijvoorbeeld een cen-
trale tegenpartij. Deze partij compenseert wanneer er sprake is van wanbetaling. OTC-
transacties vinden direct plaats tussen twee partijen, waardoor er geen centrale partij is
die garant staat. Doordat eventuele wanbetaling niet gecompenseerd wordt, is er risico
op grote verliezen.

Counterparty credit risk (CCR) is het risico dat een partij in een OTC-transactie zijn
verplichtingen niet nakomt, waardoor de andere partij mogelijk veel geld verliest. Van-
wege dit risico stelt de toezichthouder een bank verplicht om voor elke tegenpartij in
zijn portfolio een bepaald bedrag te reserveren. In de Baselze Akkoorden-Basel I, Basel II
en Basel III-uitgegeven door het Basel-Comité is vastgelegd hoe banken de grootte van
deze verplichte buffer moeten berekenen.

In Basel II is vastgelegd dat financiële instellingen kapitaal moeten vasthouden om
de variabiliteit van de marktwaarde van hun portfolio op te vangen. Toekomstige bloot-
stelling aan kredietrisico van een tegenpartij is de positieve mark-to-market waarde van
het portfolio van derivaten met deze tegenpartij. De grootte van de blootstelling is on-
zeker door de volatiliteit van de markt. Er zijn verschillende maten om de CCR te meten,
zoals bijvoorbeeld de potential future exposure (PFE) en de expected eposure (EE). Een
belangrijke stap in het berekenen van deze statistische waarden is het bepalen de kans-
verdeling van de toekomstige risico’s met behulp van simulaties van marktvariabelen on-
der de historische kansmaat. De risicoblootstelling in de simulaties moet daarentegen
onder de risico-neutrale maat bepaald worden, omdat het samenhangt met de markt-
waarde van financiële derivaten. Deze verschillende kansmaten maakt de berekeningen
complex. Omdat er mogelijk sub-simulatie nodig is in de berekeningen, kunnen er rela-
tief weinig realistische simulaties uitgevoerd worden. Om de benodigde rekencapaciteit
laag te houden zijn er voor praktische doeleinden efficiënte methoden nodig.

Tijdens de kredietcrisis zijn verscheidene tekortkomingen in de toezichthouding op
banken waargenomen. Hierop is naast Basel II, ook Basel III uitgegeven. Hierin is opge-
nomen dat de financiële instellingen ook het risico in de variabiliteit in credit valuation
adjustment (CVA) moeten indekken.
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10 SAMENVATTING

CVA is een aanpassing aan de risico-neutrale waarde van OTC-transacties waarbij
rekening wordt gehouden met het risico op wanbetaling van de tegenpartij. CVA wordt
ook wel gezien als de marktwaarde van CCR. Tijdens de crisis werd de meerderheid van
de verliezen met betrekking tot CCR veroorzaakt door deze aanpassing aan de waarde
van derivaten. De CVA buffer moet de mark-to-market verliezen die voortkomen uit de
volatiliteit van de CVA opvangen.

CVA is complex en kan het waarderen bemoeilijken. Het modelleren van CVA bestaat
uit minstens drie componenten: de risicoblootstelling, de kans op wanbetaling door de
tegenpartij en het verlies bij wanbetaling. Vergeleken met Basel II wordt er dus niet al-
leen naar risicoblootstelling, maar ook naar de kredietwaardigheid van de tegenpartij
gekeken. De afhankelijkheid tussen de risicoblootstelling en de kans op wanbetaling
draagt ook zeker bij aan CVA. Wrong-way risk (WWR) treedt op als de risicoblootstelling
en de kredietwaardigheid van de tegenpartij negatief gecorreleerd zijn.

In risicobeheer wordt het CVA-risico in Basel III gegeven door de Value-at-Risk (VaR)
en Expected Shortfall (ES) van CVA. Het waarderen van deze maten vereist sub-sub-
simulatie, wat het berekenen van CVA nog moeilijker maakt.

Dit proefschrift behandelt deze berekeningsproblemen in het prijzen en meten van
aspecten van de CCR. We (door)ontwikkelen de Stochastic Grid Bundling Method (SGBM).
Deze methode voorkomt sub-simulatie door in de simulaties gebruik te maken van bundel-
en regressietechnieken in de berekening van de risicoblootstelling. We proberen ook
WWR-modellen te construeren, om zo de gevolgen van de afhankelijkheid tussen wan-
betaling van en de risicoblootselling aan een tegenpartij op CVA te bepalen. Om referen-
tiewaarden te vinden gebruiken we de COS methode. Deze methode gebruikt Fourier
cosinustransformaties en Fast Fouriertransformaties. De financiële derivaten die we be-
schouwen zijn optiecontracten, maar ook rente-swaps, en als onderliggende gebruiken
we aandelen. In het bijzonder letten we op opties met vervroegde uitoefeningsmoge-
lijkheden, zoals Bermuda-achtige opties. De waarschijnlijkheid op wanbetaling wordt
gemodelleerd met een intensiteitsmodel. De intensiteit wordt in de eerste hoofdstukken
constant genomen en later als een stochastische variabele beschouwd om zo ook WWR
mee te nemen.

De inleidende hoofdstuk, Hoofdstuk 1, geeft een wiskundig overzicht van risicoma-
ten voor CCR en CVA. Ook wordt in dit hoofdstuk in detail uitgelegd wat de uitdagingen
zijn bij risico-neutrale waardebepalingen van gesimuleerde scenario’s. We beschrijven
de basistechnieken van de SGBM. Met behulp van een eenvoudig voorbeeld demonstre-
ren we de convergentie en foutenanalyse voor SGBM. De resultaten tonen aan dat SGBM
convergeert als zowel het aantal bundels als het aantal paden per bundel naar oneindig
gaat. In de verdere hoofdstukken wordt deze methode verder ontwikkeld naar een effi-
ciënt algoritme dat zonder sub-simulatie de risicoblootstelling berekend.

Ook beschrijft Hoofdstuk 1 de relatie tussen de verdisconteerde karakteristieke func-
tie, de bijbehorende verdisconteerde dichtheidsfunctie en de daarbij horende momen-
ten. Hieruit volgt dat we Fouriertransformaties kunnen toepassen om de verdiscon-
teerde kansdichtheid te bepalen. Dankzij deze relaties zijn we ook in staat om analy-
tische formules te bepalen voor de momenten die we nodig hebben in de SGBM.

In Hoofdstuk 2 worden er drie numerieke methoden gedemonstreerd, namelijk de
SGBM, de COS methode en de eindige-differentiemethode. In deze demonstratie be-
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rekenen we de kansdichtheid van de toekomstige risicoblootstelling van een Bermuda
optie onder de risico-neutrale maat voor CVA onder de stochastische volatiliteitsmo-
del van Heston. We bestuderen het effect van de stochastische volatiliteit op de rechter
staart van de risico-neutrale risicoblootstellingsverdeling.

De SGBM wordt verder ontwikkeld in Hoofdstuk 3 om de risico-neutrale risicobloot-
stelling te berekenen van Bermuda opties met stochastische rente en stochastische vola-
tiliteit onder hybride aandeelmodellen. De bundeltechnieken van de SGBM in het geval
van twee- of driedimensionale variabelen worden bediscussieerd. Daarnaast kan met
de SGBM ook een gevoeligheidsanalyse op de verwachte blootstelling aan kredietrisico
uitgevoerd worden. De eigenschappen in de staart van de blootstellingsverdeling onder
verschillende hybride modellen worden vergeleken.

Verschillende modellen voor WWR worden voorgelegd in Hoofdstuk 4. Het intensi-
teits model modelleert de kredietkwaliteit van een tegenpartij als een stochastisch pro-
ces onder de risico-neutrale maat. We verstrekken een alternatieve manier om de CVA
van een optie in het geval van WWR te berekenen. Hierbij nemen we het verschil tussen
de waarde waarbij geen rekening wordt gehouden met wanbetaling en de waarde waar-
bij de kans op wanbetaling wel is meegenomen. Door te variëren in de voorkomende
correlatiecoëfficiënt tussen de aandeelprijs en de kans op wanbetaling door de tegen-
partij, kunnen we de gevolgen van WWR op CVA bestuderen. Daarnaast bestuderen we
in dit hoofdstuk ook het effect van CCR en WWR op de optimale uitoefeningsgrens van
Bermuda opties.

In Hoofdstuk 5 beschouwen we het praktische probleem van het berekenen van de
risicostatistieken van toekomstige risicoblootstellingverdelingen. Door achteraf te tes-
ten en met stresstesten kan het zijn dat de historische kansmaat gevonden met het ge-
kalibreerde aandeelmodel niet gelijk is aan de risico-neutrale kansmaat. De blootsel-
lingsverdeling op een toekomstig moment moet gewaardeerd worden op aandeelpaden
onder de gevonden historische kansmaat, terwijl de waardering van de risicoblootstel-
ling onder de risico-neutrale maat moet worden bepaald. Met SGBM is het mogelijk om
de risico-neutrale waarde van risicoblootstellingen in realistische simulaties te bepalen,
waarbij we slechts één verzameling risico-neutrale scenario’s en géén sub-simulatie ge-
bruiken. Hierdoor kan een hoge efficiëntie bereikt worden.

Dit proefschrift toont aan dat SGBM een robuuste, nauwkeurige en efficiënte me-
thode is voor het berekenen van risicoblootstellingsverdelingen onder de marktmaat
voor risicobeheer van CCR en onder de risico-neutrale maat voor het waarderen van
CCR (CVA). De methode is goed aan te passen voor hybride modellen en efficiënt dank-
zij de bundel- en lokale regressietechnieken. In numerieke voorbeelden wordt de nauw-
keurigheid van SGBM aangetoond door de resultaten te vergelijken met die van de COS
methode.
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CHAPTER 1

Introduction

Counterparty credit risk (CCR) is the risk arising from the possibility that a counterparty
may default prior to the expiration of a financial contract and fails to fulfill the obliga-
tions. Following the CCR capital requirements in the Basel II and Basel III regulatory
accords, banks have to hold a certain regulatory amount of capital to buffer the future
losses due to CCR. These capital requirements are set to ensure that banks are able to
cover the risk of counterparty default by setting capital aside. Pricing and measuring
CCR is computationally intensive, since Monte Carlo simulation is typically used to build
a large number of scenarios, and valuation on each scenario at each simulated path is
needed.

We are going to deal with this computational challenge by developing an algorithm
for efficient calculation of exposure profiles based on the so-called Stochastic Grid Bundling
Method (SGBM). SGBM is based on simulation, bundling and regression techniques [50].
In this introductory chapter, we will introduce SGBM via simple examples, and present
its characteristics regarding convergence and error analysis.

In this thesis, we will focus on the CCR arising from OTC (over-the-counter) deriva-
tives. A derivative is a contract that derives its value from the performance of an un-
derlying asset [47]. The most common underlying assets are stocks, bonds, currency ex-
change rates and market indexes. Some derivatives are traded on an exchange, and some
are traded OTC. Exchange traded deals are regulated and as such secured by, for exam-
ple, a clearing house (which may compensate losses when a counterparty of a transac-
tion would default). This is not the case for OTC transactions, that take place directly
between two parties. When in this situation the counterparty of a transaction defaults,
losses are not compensated and can be huge.

A significant amount of derivatives are traded OTC. The future value of an OTC deriva-
tives contract varies with the level of the underlying(s) and possibly also with decisions
made by the parties in the contract.

We will start with an overview of valuation of CCR in mathematical formulation, and
present the general framework of SGBM, which will be further developed under various
models for different financial contracts in subsequent chapters.

1.1. QUANTIFYING CCR
Credit exposure (simply known as exposure) defines the potential loss in the event of
a counterparty default. For many financial instruments, notably derivatives, the credi-
tor is not at risk for the full principle amount of the trade but only for the replacement
costs [38]. Consequently, the exposure to the counterparty is equal to the maximum of
the contract value and zero.

1
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Exposure is uncertain since the mark-to-market value of a contract varies with the
movement of the market. We can use some statistics of the exposure distribution, such
as the mean or a high quantile, as the measures of CCR for capital requirements. The
exposure distribution is built on a Monte Carlo path simulation that can reflect the evo-
lution of the market variables, i.e. the simulation must be done under the so-called real-
world probability measure. The key point in determining these risk statistics for CCR is
to perform the risk-neutral valuation of the portfolio on the real-world scenarios.

Credit valuation adjustment (CVA) measures the CCR from a pricing point of view.
CVA is the difference between the risk-free portfolio value and the true value that takes
CCR into account. In short, CVA is the market value of CCR [7]. CVA is determined by the
value of the underlying contract, the default probabilty of counterparty, as well as the
loss given default (LGD) given as a percentage [38]. We will study the so-called unilateral
CVA in this thesis. ’Unilateral’ means that a party considers only the CCR of the other
party in the contract, and not its own risk of default. The complexity in computing CVA
arises from the computation of the exposure profiles, modeling of the default probability,
and the correlation between these two components.

We will build the mathematical framework of quantifying counterparty credit risk
and give the mathematical formulation of the exposure measures in this section .

1.1.1. EE AND PFE
Given a complete probability space (Ω,F ,P) on a finite time horizon [0,T ], where Ω is
the sample space, F is the sigma algebra of all events at time T , and P : F → [0,1] is a
probability measure. Define a stochastic process {Xt : t ∈ [0,T ]} on the probability space
(Ω,F ,P), where for each t ∈ [0,T ], Xt : Ω→ Rn is a random variable on Ω. Let {Ft , t ∈
[0,T ]} denote the filtration generated by {Xt , t ∈ [0,T ]}, i.e. Ft =σ (Xs , s ∈ [0, t ]) [68].

In an arbitrage-free economy, there exists an equivalent risk-neutral measure de-
noted by Q : F → [0,1], such that a price associated to any attainable claim is computed
as the expectation of a discounted value under this probability measure. We choose the

risk-neutral measureQwith numéraire Bt = exp
(∫ t

0 rs d s
)
, where {rs , s ∈ [0, t ]} is the risk-

neutral short rate. The numéraire Bt represents the bank savings account with B0 = 1.
When the short rate rt = r is a constant, the associated bank account becomes a deter-
ministic function w.r.t. time and we will denote it by B(t ) = exp(r t ) [68].

Assume that {Xt , t ∈ [0,T ]} is a Markov process hence we have EQ [·|Ft ] = EQ [·|Xt ]. Let
T be the maturity time for a position, and the associated discounted and added random
cash flows at time t ≤ T be denoted byΠ(t ,T ). The exposure at time t for this position is
given by

Et :=
(
EQ

[
Π(t ,T )

∣∣Xt
])+

, (1.1)

which Et :Ω→R+∪{0} is a random variable on the sample spaceΩ and the operator (·)+
returns the greater value of zero and the value inside the brackets.

The Basel II accords give specific definitions for the exposure measures regarding the
future credit risk [4], including potential future exposure (PFE), expected exposure (EE).

PFE measures the exposure estimated to occur at a future date at a high confidence
level, like 97% or 99% [4]. It is defined as a high quantile of the exposure distribution
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under the real-world probability measure P. At a fixed time t ∈ [0,T ], the value of PFE is
defined by

PFEα(t ) = inf
{

y
∣∣∣P(

{w : Et (w) < y}
)≥α}

, (1.2)

where Et (w) = (
EQ

[
Π(t ,T )

∣∣Xt (w)
])+

with w ∈Ω and α is the confidence level.
The maximum PFE (MPFE) is used to measure the peak value of the PFE over the

time horizon [0,T ] [4], given by

MPFEα = max
t∈[0,T ]

PFEα(t ). (1.3)

EE is the probability-weighted average exposure at a future date. At a fixed time t ∈
[0,T ], EE(t ) is given by

EE(t ) = EP [Et ] = EP
[(
EQ

[
Π(t ,T )

∣∣Xt
])+]

=
∫
Ω

Et (w)dP(w), (1.4)

with w ∈Ω.
Expected positive exposure (EPE) is the time-weighted average of EE estimated on a

given forecasting horizon (e.g. one year) [4]. Over a future horizon [t1, t2], the value of
EPE is given by:

EPE(t1, t2) = 1

t2 − t1

∫ t2

t1

EE(s)d s. (1.5)

1.1.2. MODELING THE DEFAULT PROBABILITY
A key component in quantifying the counterparty risk is to estimate the default proba-
bilities for counterparties that a bank is exposed to. The default probability of a coun-
terparty is associated with its survival probability. The survival probability PS(t ) gives
the probability of no default prior to a certain time t , and the value PD(t ) represents
the cumulative default probability prior to a certain time t . There are multiple ways of
estimating the default probabilities and here we present a brief review.

The historical default probabilities are obtained via historical data of default events.
A firm’s credit rating reflects the evaluation of the credit risk of this firm. Agencies such as
Moody’s Investors Service and Standard & Poor’s Corporation publish cumulative default
probabilities by rating grades (Triple A, Double A, Single A, Triple B and so on) based on
years of data. The historical default probability measures the likeliness of default under
the real-world probability measure [38].

The so-called equity-based approach, also called the firm’s value approach or the
structural approach, estimates the default probability based on stock market informa-
tion. This approach of assessing credit risk involves the Merton’s model [67]. It is as-
sumed that the value of a firm (asset value) is stochastic and that default is related to
the firm’s asset development. The original Merton model assumes that a firm has issued
zero-coupon bonds and default occurs when the firm value is less than this liability when
the issued zero-coupon bond matures. Merton’s model does not allow for a premature
default, in the sense that the default may only occur at the maturity of the claim. Black
and Cox [9] assume a barrier representing safety covenants for the firm and default is
triggered by the firm value hitting this barrier from above.
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The market-implied default probabilities are obtained via the credit default swap
(CDS) market or via its risky bonds, modeled by an intensity model, or known as the
reduced-form model. In this approach, the default probability is defined by means of
the intensity (or the hazard rate) of a default. The intensity model was used for pricing
credit risky securities (or corporate bonds), see work done by Jarrow and Turnbull [52],
by Madan and Unal [66], and by Lando [59]. Duffie and Singleton [27] present an ap-
proach to modeling the term structure of credit risky bonds and other claims. Bielecki
and Rutkowski [8] give a detailed discussion of the filtration in the intensity modeling.

We choose to use the intensity model for describing the default probability in this
thesis because of its properties. First of all, modeling the credit quality by the inten-
sity allows for dependence between market risk factors and credit factors. For instance,
Brigo et al. [12] present a framework with a correlation between the default probability
and the interest rate. Second, it is known that the CDS premium contains information
about the term structure with tenors, and Duffie and Singleton [27] present a way of
modeling it using intensity. Third, the intensity can be retrieved from the market price
of risky bonds or CDS contracts, so we can estimate the relevant parameters under the
risk-neutral probability measure. This will be of a great help when pricing CCR.

The intensity may be deterministic or stochastic, and the latter case may capture the
uncertainty in the credit quality of the associated counterparty. Here, we consider the
case that the intensity is constant over time. The relation between a constant intensity
(h̄) and the survival probability is given by

PS(t ) = exp
(−h̄t

)
, PD(t ) := 1−PS(t ). (1.6)

where these probabilities are measured under the risk-neutral probability measure Q as
they are obtained via risk-neutral pricing formulas.

When assuming the intensity constant and the CDS curve is flat, there is an approxi-
mate relation between the default probability between zero to time T and the CDS pre-
mium for maturity T [38]:

PD(T ) = 1−exp

(
−X C DS

T

LGD
T

)
, (1.7)

where X C DS
T is the CDS premium with the maturity T , and LGD is the loss given default.

1.1.3. LOSS GIVEN DEFAULT
Loss given default (LGD) is usually defined as the percentage of exposure the bank might
loose if a counterparty defaults [38]. When the counterparty defaults, the bank will usu-
ally be able to recover some percentage of the outstanding amount. The recovered per-
centage is termed the recovery rate. The two quantities are related via

LGD = 1− recovery rate. (1.8)

which tells that a low recovery rate implies a high LGD.
Recovery values tend to show significant variation over time and recoveries also tend

to be negatively correlated with the default likeliness [38], which means that a high de-
fault rate may often give rise to lower recovery rate.
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In this thesis, we assume that the LGD is constant and focus on the computation of
exposure and the modeling of default probabilities instead.

1.1.4. CVA, WRONG-WAY RISK, CVA VAR AND CVA ES
CVA is an adjustment to the fair value of a derivatives contract to account for CCR. In
short, CVA is the price of CCR [7]. The complexity of computing CVA arises from the
movements in the counterparty credit spreads as well as in the market factors of the
underlying asset. The BCBS (Basel Committee on Banking Supervision) introduced the
CVA variability charge in Basel III, to capitalize the risk of future changes in CVA [7].

Since it is the market price of counterparty default risk, CVA must be computed under
the risk-neutral measure. Denoting the time of a counterparty default by τ, unilateral
CVA is the risk-neutral expectation of the discounted loss, written as [87]:

CVA(0) = LGD ·EQ
[
1(τ< T )

Eτ
Bτ

]
= LGD

∫ T

0
EQ

[
Et

Bt

∣∣∣∣τ= t

]
dPD(t ), (1.9)

where the loss given default (LGD) is the fraction of the asset that is lost when the coun-
terparty defaults, and PD(t ) is the risk-neutral probability of counterparty default be-
tween time zero and time t .

The expectation behind the second equality sign in (1.9) is conditional on the fact
the counterparty default occurs at time τ = t [87]. This conditioning will give a non-
negligible contribution to the computed CVA value when there exists dependence be-
tween the exposure and the counterparty credit quality. The dependence is known as
the right/wrong-way risk.

The so-called wrong-way risk (WWR) occurs when the exposure is adversely corre-
lated with the credit quality, i.e. the exposure tends to increase when the counterparty
credit quality becomes worse. Basel III classifies two types of WWR: general and specific
WWR [5]. The former appears due to positive correlations of exposure and market fac-
tors, whereas the latter is due to a wrong structure of an investment when a connection
exists between the counterparty and the underlying.

Equation (1.9) is greatly simplified by assuming independence between exposure
and counterparty’s credit quality. We define a quantity called the risk-neutral discounted
expected exposure (EE∗) by:

EE∗(t ) := EQ
[

Et

Bt

]
=

∫
Ω

Et (w)

Bt (w)
dQ(w), (1.10)

which is independent of the counterparty default.
Assuming independence between exposure and counterparty’s credit quality, equa-

tion (1.9) simplifies to:

CVA(0) = LGD
∫ T

0
EE∗(t )dPD(t ) ≈ LGD

M−1∑
j=0

EE∗(t j )
(
PD(t j+1)−PD(t j )

)
, (1.11)

where {0 = t0 < t1 < . . . < tM = T } is a fixed monitoring time grid, and a commonly used
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way of approximating the default probability in the time interval [t j , t j+1] is:

PD(t j+1)−PD(t j ) = exp

(
−

X CDS
t j

LGD
t j

)
−exp

(
−

X CDS
t j+1

LGD
t j+1

)
. (1.12)

CVA VaR (Value-at-Risk) is defined in the same way as the VaR measure. It is the per-
centile of the loss due to the change in CVA given a confidence level. CVA ES (Expected
Shortfall) is the average value beyond a certain percentile of the loss in CVA. Notice that
these two measures are obtained via simulations under the real-world measure, while
the market value of CCR (i.e. CVA) is computed under the risk-neutral probability mea-
sure. We will present details of these two quantities in Chapter 4.

1.1.5. MONTE CARLO SIMULATION AND COMPUTATIONAL COMPLEXITY
Computation of the exposure measures in section 1.1.1 requires the future real-world ex-
posure distribution, and computing CVA in section 1.1.4 needs the risk-neutral exposure
distribution. The exposure profiles are typically computed by Monte Carlo simulation,
as follows [87]:

• Generate scenarios: these scenarios are generated under the real-world probabil-
ity measure for risk statistics (EE, PFE and so on). For the purpose of calculating
CVA, this simulation should be done under the risk-neutral probability measure;

• Perform valuation of exposure at each monitoring date for each scenario;

• Compute the required exposure measures.

For some financial contracts, a risk-neutral simulation may be required for risk-neutral
valuation of the contract. In this case, in order to have the exposure profile, sub-simulation
needs to be performed, initiated at each monitoring date on each scenario. Figure 1.1 il-
lustrates sub-simulations on five real-world scenarios at a single future time. The num-
ber of scenarios may become unreasonably low, limited by the computational capability.

Figure 1.1: Sub-simulations.



1.2. RISK NEUTRAL VALUATION OF OPTION CONTRACTS

1

7

This issue becomes more serious when dealing with the measures of the CVA risk. In
order to compute the CVA VaR or CVA ES, one has to value the CVA on a set of paths that
reflect the real-world market evolution. Sub-sub simulations may even be required for
some financial contracts.

Another issue regarding CVA computation is how to take WWR into account. The
Basel regulations have made it clear that banks must monitor, test and manage WWR
in their portfolios. Different from the exposure risk statistics, CVA includes the default
probability in the price of CCR. When WWR is present, the combined effects of uncer-
tainties in the correlated exposure profiles and default probability may make significant
contribution to CVA. The contribution of WWR is highly model-dependent.

We are concerned with these two problems in this thesis.

1.2. RISK NEUTRAL VALUATION OF OPTION CONTRACTS
An option is an agreement between two parties about trading an underlying asset at a
certain future time. The writer of the option sells the option contract, and the party
which purchases the option is the holder. The option holder has the right that the option
contract grants until maturity time T . At the maturity time T , the option contract expires
and the option becomes worthless for time later than T [76].

There are two basic types of options: The call option in which the holder has the right
to buy the underlying for the strike K ; The put option gives the holder the right to sell the
underlying for the strike K .

The holder of the option can choose to exercise the option by buying or selling the
underlying when t ≤ T , or can choose to let the option expire when t ≥ T [76]. For
European options, exercise is only permitted at expiry date T . American options can be
exercised at any time until the expiration date. Bermudan options can be exercised at a
set of dates up to expiration.

The price of a derivative is equal to the discounted risk-neutral expectation of future
payoff in a complete market [47]. In this section, we present the pricing formulas of
European and Bermudan options with an underlying stock from two perspectives.

1.2.1. FEYNMAN-KAC FORMULA

The Feynman-Kac Formula [68] implies that the expectation can be computed by par-
tial differential equations (PDEs). In other words, the solution of an option pricing PDE
can be represented as a risk-neutral discounted expectation of the final condition (the
payoff).

Let stochastic process {Xt , t ∈ [0,T ]} defined on probability space (Ω,F ,Q) be an Itô
diffusion governed by a stochastic differential equation of the following form

dXt = µ̃(Xt )d t + σ̃(Xt )dWQ
t , (1.13)

where Wt is a standard Brownian motion in Rn under the risk-neutral probability mea-
sure Q; µ̃ : Rn → Rn and σ̃ : Rn → Rn×n satisfy the usual Lipschitz continuity condi-
tions [68].

Let g ∈C 2
0 (Rn) and q ∈C (Rn). Assume that q is bounded. A function V : [0,T ]×Rn →
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R is defined as [68]

V (t ,x) = EQ
[

exp

(
−

∫ T

t
q (Xs )d s

)
g (XT )

∣∣Xt = x
]

, (1.14)

where x = [x1, x2, . . . , xn]T ∈Rn . Then the Feynman-Kack formula tells that V satisfies the
following PDE,

∂V
∂t +A V −qV = 0; t ∈ [0,T ],x ∈Rn ,

V (T,x) = g (x); x ∈Rn , (1.15)

where A is the generator of an Itô diffusion Xt given by

A V =
n∑

j=1
µ̃ j (x)

∂V

∂x j
+ 1

2

n∑
k=1

n∑
j=1

(
σ̃σ̃T )

k, j (x)
∂V 2

∂xk∂x j
, (1.16)

with σ̃T denotes the transpose matrix of σ̃ and
(
σ̃σ̃T

)
k, j is the (k, j )-th element of the

matrix.
The Feynman-Kac Formula thus implies that a function in the space C 1,2 (R×Rn)

which solves (1.15) must be the function defined by (1.14).

1.2.2. EUROPEAN OPTION
We use the notation St to represent the asset price at time t and X t = log(St ) (the log-
asset price) is one of the elements in the vector Xt . The value of a European option at
time t which expires at maturity T is given by [47]

V (t ,x) = EQ
[

Bt

BT
g (XT )

∣∣∣∣Xt = x
]

, (1.17)

where Bt = exp
(∫ t

0 rs d s
)

represents the bank savings account with the risk-free short rate
rs , s ∈ [0, t ]; g :Rn →R+∪ {0} is the payoff function given by

g (XT ) =
{

max(ST −K ,0) , for a call,

max(K −ST ,0) , for a put.
(1.18)

By the Feynman-Kac formula,the PDE describing the value of the European option
is given by

∂V

∂t
+A V − rt V = 0; t ∈ [0,T )

V (T,x) = g (x). (1.19)

where rt is the risk-free short rate at time t and the generator A is given by (1.16).

1.2.3. BERMUDAN OPTION
The holder of a Bermudan option has the right to exercise the option on any of the dates
TB = {0 < T1 < T2 < . . . < TN = T }. For completeness we define T0 = 0. When exercised at
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time T j , the immediate payoff of the option is given by g
(
XT j

)
. A Bermudan option con-

tract is an option to choose the exercise date T j from different j = 1, . . . , N to maximize
the option value.

Suppose that at any early-exercise date, the payoff function is given by g (x) ≥ 0. Find
a stopping time ξ∗ for the stochastic process {Xt , t ∈ [0,T ]}, with X0 = x, such that the
corresponding optimal expected payoff is given by [68]

V (0,x) = EQ
[

g
(
Xξ∗

)
Bξ∗

∣∣∣∣X0 = x
]
= sup
ξ∈TB

EQ
[

g
(
Xξ

)
Bξ

∣∣∣∣X0 = x
]

, (1.20)

where the optimal early-exercise time is path-dependent, i.e. ξ∗ = ξ∗(w).
The Bermudan option pricing formula reads

V (T j ,XT j ) =


g (XT j ), j = N ,

max
(
c(T j ,XT j ), g (XT j )

)
, j = N −1, . . . ,1,

c(0,X0), j = 0.

(1.21)

with the continuation function defined by

c(T j ,x) = EQ
[

BT j

BT j+1

V (T j+1,XT j+1 )
∣∣∣XT j = x

]
, j = 0, . . . , N −1. (1.22)

Using the Feynman-Kac formula, the PDE of the price of the Bermudan option is
given by

∂V

∂t
+A V − rt V = 0, t ∈ [T j ,T j+1),

V (T j ,x) = max
(
V (T +

j ,x), g (x)
)

, j = 1,2, . . . , N −1,

V (TN ,x) = g (x), TN = T, (1.23)

where T +
j is the time point just before the early-exercise decision.

1.3. PROPERTIES OF DISCOUNTED CHARACTERISTIC FUNCTION
For option valuation, as well as for exposure computation, we deal with probability den-
sity function, that are often not known in closed form. Instead, we may reply on the char-
acteristic function, which is the Fourier transform of the density function (often available
in closed form).

In this section, we present two important properties of so-called discounted charac-
teristic functions. The first property is the basis form for employing the Fourier-transformation
technique to obtain the discounted density function, and the second property is useful
within the Stochastic Grid Bundling method. Using the discounted characteristic func-
tion, we are able to perform the pricing directly under the risk-neutral probability mea-
sure without shifting to a forward-measure when dealing with a stochastic interest rate.
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1.3.1. CHARACTERISTIC FUNCTION AND DENSITY FUNCTION

Given a Markov process {X t ∈Rn , t ∈ [0,T ]} and consider a random variable Xt2 with Xt1 =
x, 0 ≤ t1 < t2 ≤ T . We define the discounted characteristic function (ChF), discounted at
rate q , defined as:

ϕ(u; t1, t2,x) = EQ
[

exp

(
−

∫ t2

t1

q(Xs )d s

)
exp

(
i uT Xt2

)∣∣∣Xt1 = x
]

, 0 ≤ t1 < t2 ≤ T, (1.24)

where the vectors u = [u1,u2, . . . ,un]T ∈ Rn and x = [x1, x2, . . . , xn]T ∈ Rn , i is the imagi-
nary unit and the discount rate q :Rn →R is a function.

When the short rate is a stochastic process, the discount factor is a random variable
which should therefore be placed under the expectation operator when computing the
expectation of a discounted cash flow. In order to compute the discounted expectation
of future option values, we will work with the discounted density function.

Define a random variable z = ∫ t2
t1

q(Xs )d s, 0 ≤ t1 < t2 ≤ T . Let fXt2 ,z|Xt1
(y, z;x) be the

joint density of Xt2 and z given Xt1 = x, and the associated discounted density is defined
as its marginal probability function derived by integrating the joint density over z ∈R,

f̂Xt2 |Xt1
(y;x) :=

∫
R

e−z fXt2 ,z|Xt1
(y, z;x)d z. (1.25)

Using (1.24) and (1.25), we have

ϕ(u; t1, t2,x) = EQ
[

exp

(
−

∫ t2

t1

q(Xs )d s

)
exp

(
i uT Xt2

)∣∣∣Xt1 = x
]

=
∫
Rn

exp
(
i uT y

)∫
R

e−z fXt2 ,z|Xt1
(y, z;x)d zdy

=
∫
Rn

exp
(
i uT y

)
f̂Xt2 |Xt1

(y;x)dy. (1.26)

So, the discounted ChF is the Fourier transform of the discounted density function.
We can use Fourier transformation techniques to recover the discounted density func-
tion from the corresponding discounted ChF.

1.3.2. CHARACTERISTIC FUNCTION AND MOMENTS

We use the multi-index notation k = (k1,k2, . . . ,kn) to represent the index when Xt =[
X (1)

t , X (2)
t , . . . , X (n)

t

]T
, where k1, k2, . . ., kn are non-negative integers. Let the sum of the

components be denoted by |k| := k1 +k2 + . . .+kn .
The power of (Xt )k is thus defined by

(Xt )k :=
(

X (1)
t

)k1
(

X (2)
t

)k2 · · ·
(

X (n)
t

)kn
, (1.27)

with k1,k2, . . .kn ∈N.
The expression in (1.27) is a monomial with polynomial order |k|. It is easy to see that

the total number of monomials with polynomial order |k| ≤ d for Xt ∈Rn is (d+n−1)!
(n−1)!d ! .
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Over a time period [t1, t2], t1 < t2, we define the k-th discounted moment by the ex-
pectation of random variable (Xt2 )k given information Xt1 = x, as:

ψk (x, t1, t2) := EQ
[

exp

(
−

∫ t2

t1

q(Xs )d s

)(
Xt2

)k
∣∣∣Xt1 = x

]
, (1.28)

which can be derived by the associated discounted ChF by the following equation

ψk (x, t1, t2) = 1

(i )|k|
∂k1ϕ

∂uk1
1

∂k2ϕ

∂uk2
2

. . .
∂knϕ

∂ukn
n

(u; t1, t2,x)

∣∣∣∣
u=0

, (1.29)

where i represents again the imaginary unit and u ∈Rn .
This relation is of great help when we employ the SGBM for deriving analytic formu-

las of discounted moments, in the regression phase.

1.3.3. CHF OF AFFINE-DIFFUSION PROCESSES
For the SDE given in (1.13), the affinity condition is satisfied when the coefficients in
(1.13) are defined by:

µ̃(Xt ) = K0 +K1Xt , K0 ∈Rn ,K1 ∈Rn×n ,

(σ̃(Xt )σ̃T (Xt ))k, j = (H0)k, j + (H1)k, j Xt , H0 ∈Rn×n , H1 ∈Rn×n×n ,

q(Xt ) = q0 +q1Xt , q0 ∈R, q1 ∈Rn , (1.30)

where (·)k, j represents the (k, j ) element in the corresponding matrix.
Duffie and Singleton [26] show that the ChF defined in (1.24) can thus be expressed

as
ϕ(u; t1, t2,x) = exp

(
Ã(t2 − t1)+xT B̃(t2 − t1)

)
, (1.31)

where Xt = x and the coefficients satisfy the following ODEs:

dB̃

d s
(s) = −q1 +K T

1 B̃(s)+ 1

2
B̃T (s)H1B̃(s),

d Ã

d s
(s) = −q0 +K T

0 B̃(s)+ 1

2
B̃T (s)H0B̃(s), (1.32)

with initial conditions B̃(0) = i u and Ã(0) = 0.
In Chapter 4, we will present the expression of the discounted ChF for the class of the

affine-jump-diffusion models.

1.4. INTRODUCTION TO STOCHASTIC GRID BUNDLING METHOD
The Stochastic Grid Bundling Method (SGBM) is a Monte Carlo method based on simu-
lation, regression, and bundling. It is originally developed by Jain and Oosterlee for pric-
ing Bermudan options and their greeks [49, 50]. SGBM is also employed for real option
valuation of modular nuclear power plants in finite time decision horizon [51]. Based
on SGBM, Cong and Oosterlee proposed an algorithm for solving constrained dynamic
mean-variance portfolio management problems [21]. A GPU acceleration of SGBM is
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also presented in [63] for high-dimensional problems. Shen, Anderluh, and Van der
Weide demonstrated the application of the SGBM algorithm for efficient computation
of exposure profiles of multi-asset options under Lévy processes [78]. We generalize it to
an efficient algorithm for computing exposure profiles [24, 30, 32].

In this section, we will present the components of SGBM, as well as a literature review
of simulation-based methods, to understand the characteristic features of SGBM.

1.4.1. AN EXAMPLE OF SGBM
As an example, here we present SGBM for computing the price of a Bermudan option
[50]. Consider a Bermudan option as in (1.20) in Section 1.2.3, which expires at time
T and can be exercised at dates TB = {0 < T1 < T2 < . . . < TN = T }. Given a set of risk-
neutral scenarios, we wish to find the optimal exercise time at each path. This can be
performed by the backward pricing dynamics (1.21). The key is to estimate the contin-
uation function defined in (1.22), for which SGBM makes use of bundles and moments.
We summarize the procedure of the SGBM algorithm as follows:

• Generate H risk-neutral paths {x̂1,h , x̂2,h , . . . , x̂N ,h}H
h=1, for all dates TB .

• Initialization: Set the option values v̂N ,h = g (x̂N ,h) at the terminal time TN = T ,
h = 1, . . . , H .

• Backward induction: At Tm , m = N − 1, N − 2, . . ., 1, compute the continuation
values (1.22) at each path as follows:

– Step I: Given {x̂m,h}H
h=1, divide all paths at tm into J bundles, and denote the

collection of paths in the j -th bundle by Bm, j , j = 1, . . . , J .

– Step II: Within each bundle at tm , given {(v̂m+1,h , x̂m+1,h),h ∈Bm, j }, approx-
imate the option values at Tm+1 as

V (Tm+1,XTm+1 ) ≈
d∑

|k|=0
β̂

m, j
k

(
XTm+1

)k , (1.33)

where
(
XTm+1

)k is the k-th monomial defined in (1.27); the coefficient β̂m, j
k

is for the k-th monomials at time Tm within the j -th bundle, obtained by
regression, as follows

{
β̂

m, j
k , |k| = 0, . . . ,d

}
= argmin

bk∈R

∑
h∈Bm, j

(
v̂m+1,h −

d∑
|k|=0

bk
(
x̂m+1,h

)k

)2

, (1.34)

where v̂m+1,h represents the option value at time Tm+1 at the h-th path, h =
1, . . . H .

– Step III: Approximate the continuation values in (1.22) on each path within
the same bundle Bm, j by the linear combination of discounted moments,
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where the associated linear coefficients are the same set of coefficients ob-
tained in Step II, i.e.

ĉm,h = c(Tm , x̂m,h) ≈
d∑

|k|=0
β̂

m, j
k EQ

[
BTm

BTm+1

(
XTm+1

)k ∣∣XTm = x̂m,h

]

=
d∑

|k|=0
β̂

m, j
k ψk (x̂m,h ,Tm ,Tm+1), (1.35)

where the path h ∈Bm, j , and analytic formulas of the discounted moments
ψk , |k| = 0, . . . ,d , can be derived by (1.29).

– Step IV: Determine the exercise time on each path by comparing the immedi-
ate payoff value g (x̂m,h) and the computed continuation value ĉm,h , and con-
sequently determine the option value by v̂m,h = max

(
ĉm,h , g (x̂m,h)

)
at time

Tm .

– Proceed to Tm−1 and perform the procedure in Steps I, II, III, IV.

• At time T0 = 0, compute the option value at time T=0 by regression in the same
way as in Steps II and III given {x̂1,h}H

h=1.

1.4.2. LITERATURE REVIEW AND FEATURES OF SGBM
The technique of using simulation and regression for pricing American options has been
previously used by Carriere [18], Tsitsiklis and Van Roy [84], and Longstaff and Schwartz
(LSM) [64]. In these three methods, the required conditional expectations are approx-
imated by a linear combination of polynomial basis functions using the least-squares
method. The method of Longstaff and Schwartz [64] is different from the other two
because LSM uses only ’in-the-money’ paths for regression. Another feature is that the
approximated conditional expectations are only used for determining the optimal early-
exercise time in LSM. In addition, the value of the option is computed by taking the av-
erage of the discounted payoffs.

LSM [64] gained most popularity among practitioners. Stentoft [82] compares LSM
to the algorithm of Tsitsiklis and Van Roy [84] in a realistic numerical setting for Ameri-
can options. Clément et al. [19] proved the almost sure convergence of the algorithm of
Longstaff and Schwartz, and determined the convergence rate in the Monte-Carlo pro-
cedure to show its normalized error is asymptotically Gaussian. Glasserman and Yu [36]
analyzed the convergence of LSM when the number of basis functions and the number
of simulated paths increase, and got explicit results about the growth of the number of
paths with the number of basis functions to ensure convergence, when the basis func-
tions are polynomials and the underlying process is a Brownian or geometric Brownian
motion. The paper by Broadie and Cao [15] proposed to use a local simulation to im-
prove the early-exercise policy and introduced variance reduction techniques.

Another method of pricing American options in literature is the so-called weighted
Monte Carlo method, see the work done by Broadie and Glasserman [16], and Broadie,
Glasserman and Ha [17]. The weighted Monte Carlo method is different from regression-
simulation methods, because in it the conditional expectations at a time step are com-
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puted by weighted average option values at the later time step. Ways of determining the
weights can be found in the book by Glasserman [34].

Connected to the work of the weighted Monte Carlo method, Glasserman and Yu [35]
investigated the problem: which basis functions to use, in other words, regression now or
regression later. LSM is a ’regression now’ method, because the regression is performed
based on information at the same time step as the conditional expectation to be ap-
proximated. Glasserman and Yu showed that the weighted Monte Carlo method has a
regression interpretation, and is a ’regression later’ method [35]. They concluded that in
a single-period problem, the ’regression later’ yields a better fit with smaller variance in
the coefficients than the ’regression now’ approach [35].

From the examples we demonstrate in Section 1.4.1, we can see that SGBM distin-
guishes itself from these methods by the following properties.

First, other simulation-regression methods are often ’regression-now’ approaches,
whereas SGBM is ’regression-later’. This can significantly enhance the accuracy in ap-
proximating the conditional expectations: In the multi-period estimation, the ’regression-
now’ procedure in LSM needs the discounted cash flows instead of the ’now’ option val-
ues for regression, whereas the ’regression-later’ procedure in SGBM can directly use the
’later’ option values for regression.

Important components of SGBM are the techniques of bundling and local regres-
sion. In this way, SGBM can use information over all paths, whereas in LSM only ’in-the-
money’ paths are used to regression.

The approximated conditional expectations in LSM are only used for determining
the optimal early-exercise time, and the option value is computed by average discounted
payoffs. In SGBM, the approximated conditional expectations are directly used for com-
puting option values. The resulting option value obtained via regression in SGBM is
called the direct estimator. A path estimator can be generated in SGBM by taking the
average of the discounted cash flows. It can help us determining the convergence of the
algorithm.

Compared to the other ’regression later’ method, i.e. the weighted Monte Carlo method,
SGBM employs essentially different techniques. The paper [35] also presents a regres-
sion interpretation of the weighted Monte Carlo method. In this ’regression-later’ method,
there are imposed conditions, just like the basis functions are martingales. In SGBM, the
basis functions are just monomials of the underlying market variables.

In the following sections, we will present the mathematical theoretical basis for SGBM
based on the least-squares theory, demonstrate its convergence and convergence rate
for a model test case, and present an error analysis when the underlying process is a
Brownian motion.

1.5. CONVERGENCE ANALYSIS OVER A SINGLE PERIOD
In this section, we will analyze the convergence of SGBM over a single period by the the-
ory of least-squares estimation. Instead of computing conditional expectations at a set
of future dates, we will compute the expectation of the payoff at time T given informa-
tion at a single time point t . We will analyze the approximation of the expectation from
a theoretical perspective and from a Monte-Carlo based perspective, respectively.

We consider the most simple case, where {X t ∈ R, t ∈ [0,T )} is a one-dimensional
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Markov process. We use the notation FXT |X t (y ; x) to represent the conditional distribu-
tion of the random variable XT given X t = x ∈ R, and the notation fXT |X t (y ; x) as the
associated conditional density function, the simplified notation for the corresponding
expectation is Ex

t := EQ [·|X t = x].
From Lemma 2.1.2 in [68][pp 9], given a Borel measurable function V : Rn → R, the

value V (XT ) is an FT - random variable. We define the L2-norm induced by the condi-
tional density fXT |X t (y ; x), given by [58]:

‖V (XT )‖L2
t ,x

:= (
Ex

t

[|V (XT )|2]) 1
2 =

(∫
R
|V (y)|2 fXT |X t (y ; x)d y

) 1
2 <∞. (1.36)

With this norm the corresponding space is a Hilbert space, with inner product [68]

<V1(XT ),V2(XT ) >L2
t ,x

:= Ex
t [V1(XT )V2(XT )], (1.37)

where ‖V1(XT )‖L2
t ,x

<∞ and ‖V2(XT )‖L2
t ,x

<∞.

The purpose is to find out the best approximation of c(t , x) := Ex
t [V (XT )] via a least-

squares method.

1.5.1. THEORETICAL LEAST-SQUARES ESTIMATOR
We define monomials up to order d by

φ0 := 1, φk := (XT )k , k = 1, . . . ,d . (1.38)

For convenience, we define the vectorφφφ= [φ0,φ1, . . . ,φd ]T .
The span of these monomials can be defined as the set of all linear combinations of

these polynomial terms. The linear span is the space of polynomials, denoted by:

Pd =
{

d∑
k=0

bkφk ,bk ∈R
}

, (1.39)

which is a subset of the L2-space.
Define the matrix

QQQ X X := Ex
t

[
φφφφφφT ]=


1 Ex

t [φ0φ1] . . . Ex
t [φ0φd ]

Ex
t [φ1φ0] Ex

t [φ1φ1] . . . Ex
t [φ1φd ]

...
...

...
...

Ex
t [φdφ0] Ex

t [φdφ1] . . . Ex
t [φdφd ]

 , (1.40)

and the vector

QQQV X = Ex
t

[
V (XT )φφφ

]=

Ex

t

[
V (XT )φ0

]
Ex

t

[
V (XT )φ1

]
...

Ex
t

[
V (XT )φd

]

 . (1.41)

For derivation, we require the following condition [42][Section 2.18]:
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Assumption 1.5.1. We assume

1. ‖V (XT )‖2
L2

t ,x
<∞.

2. Ex
t

[
d∑

k=0
φ2

k

]
<∞.

3. QQQ X X is positive definite, or equivalently, QQQ X X is invertible.

With these assumptions, the expectations Ex
t

[
V (XT )φφφ

]
exist and are finite. We look

for the solutionβββ= [β0,β1, . . . ,βd ]T , which satisfies

βββ= argmin
bbb∈Rd+1

∥∥V (XT )−φφφT bbb
∥∥2

L2
t ,x

= argmin
{bk∈R,k=0,...,d}

Ex
t

[(
V (XT )−

d∑
k=0

bkφk

)2]
. (1.42)

This problem is equivalent to finding the orthogonal projection of V (XT ) onto the
polynomial space Pd [42, 61, 65]. The expectation of the squared error is the square
of the distance from V (XT ) to

∑d
k=0 bkφk in the space Pd measured by the norm L2

t ,x .
Hence the solution is given by the coefficients in the orthogonal projection of V (XT )
onto the space Pd with form

∑d
k=0βkφk . The projection error V (XT ) −∑d

k=0βkφk is
orthogonal to any vector in Pd , i.e.

<V (XT )−
d∑

k=0
βkφk ,φ j >L2

t ,x
= 0, j = 0,1, . . . ,d , (1.43)

or equivalently,

<
d∑

k=0
βkφk ,φ j >L2

t ,x
=<V (XT ),φ j >L2

t ,x
, j = 0,1, . . . ,d , (1.44)

With these (d +1) equations in (1.44), we find

QQQ X X ·βββ=QQQV X . (1.45)

When the function V is explicitly known, and all expectations in QQQ X X and QQQV X can
be computed, we obtain an analytic solution for βββ. With Assumption 1.5.1, QQQ X X is in-
vertible, the unique solution of the least-squares estimator is given by:

βββ=QQQ−1
X X ·QQQV X . (1.46)

In addition, because we have included the constant φ0 = 1, we have

c(t , x) = Ex
t [V (XT )] = Ex

t

[
d∑

k=0
βkφk

]
=

d∑
k=0

βkE
x
t

[
φk

]= d∑
k=0

βkψk (x, t ,T ), (1.47)

where ψk (x, t ,T ) := Ex
t

[
φk

]
is the k-th moment conditional on X t = x.

We can simplify the notations using matrix representation, so the best linear approx-
imation of the expectation can be expressed by

c(t , x) =ψψψTβββ=ψψψT (QQQ X X )−1 ·QQQV X , (1.48)
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where the vectorψψψ := [ψ0,ψ1, . . . ,ψd ]T .
When we choose the monomial basis, the constant term must be included to have

(1.48).
We present some properties of the projection. The projection error is given by

ε=V (XT )−φφφTβββ=V (XT )−
d∑

k=0
βkφk , (1.49)

which has the properties:

‖ε‖2
L2

t ,x
= Ex

t

[
ε2]= ‖V (XT )‖2

L2
t ,x

−
∥∥∥∥∥ d∑

k=0
βkφk

∥∥∥∥∥
2

L2
t ,x

,

< ε,φl >= Ex
t

[
εφl

]= 0, Ex
t

[
εφl

]= Ex
t [ε] ·Ex

t

[
φl

]= 0, l = 0,1, . . . ,d . (1.50)

from which we see that ε and φl are uncorrelated for l = 0, . . . ,d .
We write the projection used in SGBM as follows

V (XT ) =
d∑

k=0
βk (XT )k +ε, (1.51)

where the projection error satisfies (1.50).
Comments: We may have the problem of ’over-fitting’ if the order of the monomial

basis is chosen to be higher than the ’order’ of function V . For instance, if we wish to
approximate the expectation of X 2

T , then the coefficients for monomials higher than 2
will be zero.

1.5.2. MONTE CARLO LEAST-SQUARES ESTIMATOR
Suppose that we do not know the explicit expression for the function V , and we will
approximate the best linear coefficients βββ in the setting of random sampling by Monte
Carlo method, denoted by β̂ββ. In this section we will show the consistency and asymptotic
normality of the Monte Carlo least-squares estimator β̂ββ using the asymptotic theory of
least-squares estimation [42].

Samples {x̂ j }H
j=1 are drawn from the conditional distribution function FXT |X t and we

know the associated values of function v̂ j = V (x̂ j ). We will perform least-squares esti-
mation based on H samples (x̂ j , v̂ j ), j = 1, . . . , H . The j -th sample of the monomial basis
vectorφkφkφk is [1, x̂ j , x̂2

j , . . . , x̂d
j ]T , j = 1, . . . , H .

To derive the results in this section, the following condition must hold [42][Section
6.1]

Assumption 1.5.2. We assume

1. The observations (x j , v j ), j = 1, . . . , H, are i.i.d;

2. ‖V (XT )‖2
L2

t ,x
<∞;

3. Ex
t

[
d∑

k=0
φ2

k

]
<∞;
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4. QQQ X X is positive definite, or equivalently, QQQ X X is invertible;

5. For some results, we also need bounded fourth moments, i.e. Ex
t

[
(V (XT ))4

]<∞ and
Ex

t

[∑d
k=0φ

4
k

]<∞.

Define the sample matrix and vector

X̂ :=


1 x̂1 x̂2

1 . . . x̂d
1

1 x̂2 x̂2
2 . . . x̂d

2
...

...
...

...
...

1 x̂H x̂2
H . . . x̂d

H


H×(d+1)

, V̂ :=


v̂1

v̂2
...

v̂H


H×(d+1)

, (1.52)

where H > d and the rank of X̂ equals (1+d).

By the models in (1.51), we have the matrix expression of the H observations

V̂ = X̂βββ+εεε, (1.53)

where εεε= [ε1,ε2, . . . ,εH ]T .

CONSISTENCY OF THE MONTE CARLO ESTIMATOR

The Monte Carlo estimator of the coefficientβββ based on the H samples, is given by

β̂ββ= (
X̂ T X̂

)−1
X̂ T V̂ . (1.54)

If we replace matrix V̂ in (1.54) by the expression (1.53), the Monte Carlo least-squares
estimator β̂ can be expressed by

β̂=β+ (
X̂ T X̂

)−1
X̂ Tεεε. (1.55)

The error of the Monte Carlo estimator can thus be written as

β̂−β=
(

1

H
X̂ T X̂

)−1 (
1

H
X̂ Tεεε

)
. (1.56)
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By the law of large numbers [58], we can establish

1

H
X̂ T X̂ =



1 1
H

H∑
j=1

x̂ j
1
H

∑H
j=1 x̂2

j . . . 1
H

H∑
j=1

x̂d
j

1
H

H∑
j=1

x̂ j
1
H

H∑
j=1

x̂2
j

1
H

H∑
j=1

x̂3
j . . . 1

H

H∑
j=1

x̂d+1
j

...
... . . .

...

1
H

H∑
j=1

x̂d
j

1
H

H∑
j=1

x̂d+1
j

1
H

H∑
j=1

x̂d+2
j . . . 1

H

H∑
j=1

x̂d+d
j


(d+1)×(d+1)

−→
p


Ex

t

[
φ0φ0

]
Ex

t

[
φ0φ1

]
Ex

t

[
φ0φ2

]
. . . Ex

t

[
φ0φd

]
Ex

t

[
φ1φ0

]
Ex

t

[
φ1φ1

]
Ex

t

[
φ1φ2

]
. . . Ex

t

[
φ1φd

]
...

... . . .
...

Ex
t

[
φdφ0

]
Ex

t

[
φdφ1

]
Ex

t

[
φdφ2

]
. . . Ex

t

[
φdφd

]

=QQQ X X ,

1

H
X̂ Tεεε =



1
H

H∑
j=1

ε j

1
H

H∑
j=1

ε j x̂ j

...

1
H

H∑
j=1

ε j x̂d
j


(d+1)×1

−→
p


Ex

t

[
εφ0

]
Ex

t

[
εφ1

]
...

Ex
t

[
εφd

]

= 0(d+1)×1, (1.57)

where −→
p

denotes the convergence with probability 1.

In short, matrix 1
H X̂ T X̂ will converge to QQQ X X with probability 1 as H goes to infinity.

By Slutsky’s theorem [37] and the continuous mapping theorem [71], we get

β̂̂β̂β−βββ=
(

1

H
X̂ T X̂

)−1 (
1

H
X̂ T ε

)
−→

p
QQQ−1

X X ·0d×1 = 0. (1.58)

So the Monte Carlo estimator β̂̂β̂β converges in probability to the true solution βββ as H
increases.

ASYMPTOTIC NORMALITY OF THE MONTE CARLO ESTIMATOR

The Monte Carlo estimator β̂̂β̂β converges in probability to the true solutionβββ. Next we will
show the asymptotic normal distribution of the estimator.

Writing

p
H

(
β̂−β)= (

1

H
X̂ T X̂

)−1 (
1p
H

X̂ Tεεε

)
, (1.59)

the inverse of the sample moment matrix 1
H X̂ T X̂ converges toQQQ−1

X X , and the term
(

1p
H

X̂ Tεεε
)
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has mean zero. Because {x̂ j }H
j=1 are i.i.d., we have

(
1p
H

X̂ Tεεε

)(
1p
H

X̂ Tεεε

)T

= 1

H



H∑
j=1

ε2
j

H∑
j=1

ε2
j x j

H∑
j=1

ε2
j x2

j , . . .
H∑

j=1
ε2

j xd
j

H∑
j=1

ε2
j x j

H∑
j=1

ε2
j x2

j

H∑
j=1

ε2
j xd

j , . . . ,
H∑

j=1
ε2

j xd+1
j

...
...

...
...

H∑
j=1

ε2
j xd

j

H∑
j=1

ε2
j xd+1

j

H∑
j=1

ε2
j xd+2

j . . .
H∑

j=1
ε2

j xd+d
j



−→
p

QQQ X ε =


Ex

t [ε2φ0φ0] Ex
t [ε2φ0φ1] Ex

t [ε2φ0φ2] . . . Ex
t [ε2φ0φd ]

Ex
t [ε2φ1φ0] Ex

t [ε2φ1φ1] Ex
t [ε2φ1φ2] . . . Ex

t [ε2φ1φd ]
...

...
...

...
...

Ex
t [ε2φdφ0] Ex

t [ε2φdφ1] Ex
t [ε2φdφ2] . . . Ex

t [ε2φdφd ]


(d+1)×(d+1)

(1.60)

The elements in the matrix QQQ X ε are finite by Assumptions 1.5.2. By Jensen’s inequal-
ity and the Cauchy-Schwartz inequality, we find that any (k, l )-th element in QQQ X ε is fi-
nite [42][Section 6.3], given by∣∣Ex

t [ε2φkφl ]
∣∣ ≤ Ex

t

[∣∣ε2φkφl
∣∣]= Ex

t

[
ε2|φk | |φl |

]
≤ (

Ex
t

[
ε4]) 1

2
(
Ex

t

[
φ2

kφ
2
l

]) 1
2

≤ (
Ex

t

[
ε4]) 1

2
(
Ex

t

[
φ4

k

]) 1
4

(
Ex

t

[
φ4

l

]) 1
4 <∞, (1.61)

where k, l = 1, . . . ,d .
With a finite covariance matrix, we can apply the central limit theorem. The central

limit theorem [34, 58] asserts that as the number of replications H increases, the stan-
dardized estimator X̂εεε/(

√
HQX ε) converges in distribution to the standard normal, i.e.

X̂εεε√
HQQQ X ε

−→
p

N (0,1), (1.62)

or equivalently,

1p
H

X̂εεε−→
p

N (0,QQQ X ε) . (1.63)

Applying Slutsky’s theorem, we have
p

H(β̂−β) −→
p

N
(
0,QQQ−1

X XQQQ X εQQQ
−1
X X

)
, (1.64)

so that
p

H(β̂−β) is asymptotically normal with an asymptotic variance QQQ−1
X XQQQ X εQQQ−1

X X .
We write the expectation approximated by the Monte Carlo least-squares estimator

as

ĉ(t , x) :=
d∑

k=0
β̂kψk (x, t ,T ) =ψψψT β̂̂β̂β. (1.65)
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Hence

p
H (ĉ(t , x)− c(t , x)) =

p
H

(
ψψψT (

β̂−β))−→
p

N
(
0,ψψψTQQQ−1

X XQQQ X εQQQ
−1
X Xψψψ

)
, (1.66)

as H goes to infinity.
So, given the number of replications H , the error in ĉ(t , x) will be approximately nor-

mally distributed with mean zero and variance O(1/H).

THE VARIANCE TERM IN MONTE CARLO APPROXIMATION

The variance of ĉ converges toψψψTQQQ−1
X XQQQ X εQQQ−1

X Xψψψ/H as H goes to infinity with probabil-
ity 1. In this section, we will analyze the constant termψψψTQQQ−1

X XQQQ X εQQQ−1
X Xψψψ.

Using the Gram–Schmidt process, we can orthonormalize the polynomial basis set
{φ0, . . . ,φd }, and generate a normalized orthogonal set {φ̃0, . . . , φ̃d }, such that

φ̃φφ= L̃φφφ, such that < φ̃φφ,φ̃φφ>Lt ,x= Ex
t

[
φ̃φφφ̃φφ

T
]
= I , (1.67)

where φ̃φφ = [φ̃0, . . . , φ̃d ]T , I is an identity matrix and the lower triangular matrix L̃ with
strictly positive diagonal entries is invertible.

It is easy to show that

QQQ−1
X X = L̃T L̃, QQQ X ε = L̃−1Ex

t

[
ε2φ̃φφφ̃φφ

T
](

L̃−1)T
, ψψψ= L̃−1Ex

t

[
φ̃φφ

]
. (1.68)

Hence we have

ψψψTQQQ−1
X XQQQ X εQQQ

−1
X Xψψψ = (

Ex
t

[
φ̃φφ

])T
Ex

t

[
ε2φ̃φφφ̃φφ

T
]
Ex

t

[
φ̃φφ

]
=

d∑
k=0

d∑
l=0

Ex
t

[
φ̃k

]
Ex

t

[
φ̃l

]
Ex

t

[
ε2φ̃k φ̃l

]
≤

d∑
k=0

d∑
l=0

Ex
t

[|φ̃k |
]
Ex

t

[|φ̃l |
]
Ex

t

[
ε2|φ̃k | |φ̃l |

]
. (1.69)

Now, we use the properties of the normalized orthogonal basis

Ex
t

[
φ̃k

]≤ Ex
t

[|φ̃k |
]≤ (

Ex
t

[
(φ̃k )2]) 1

2 = 1, k = 0, . . . ,d . (1.70)

So,

d∑
k=0

d∑
l=0

Ex
t

[
ε2|φ̃k | |φ̃l |

] ≤
d∑

k=0

d∑
l=0

(
Ex

t

[
ε4]) 1

2
(
Ex

t

[
φ̃4

k

]) 1
4

(
Ex

t

[
φ̃4

l

]) 1
4

= (
Ex

t

[
ε4]) 1

2

(
d∑

k=0

(
Ex

t

[
φ̃4

k

]) 1
4

)2

, (1.71)

where the inequality is from the result in (1.61).
Here we can see that the variance is bounded by the fourth moment of the projection

error. The projection error is determined by function V , the chosen monomial order d
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and the norm L2
t ,x . Typically, we expect that the variance in approximation of the condi-

tional expectation gets smaller when we increase the polynomial order d except for the
’over-fitting’ case.

Further, we can see that, no matter what kind of polynomial basis functions are cho-
sen for regression, the variance in the Monte Carlo approximation stays the same, de-
termined by the projection error and the normalized orthogonal basis. We can simply
choose monomials as the basis functions for regression.

1.5.3. TEST OF CONVERGENCE RATE
The purpose of this section is to test the conclusion presented by (1.66). We choose a
function V and a dynamic for X t , such that the analytic solution for the expectation
c(t , x) = Ex

t [V (XT )] is available. Perform independent Monte Carlo simulations and for
each simulation employ SGBM to obtain the associate value for the Monte Carlo estima-
tor ĉ(t , x), then we can see if ĉ converges to c and how fast it converges w.r.t. the number
of paths.

The root-mean-square error (RMSE) is chosen to be the measure of difference be-
tween c and ĉ. If the result in (1.66) is true that ĉ is unbiased estimator of c , RMSE
should approaches zero as the number of paths goes to infinity, and also RMSE can rep-
resent the sample standard deviation of ĉ. Hence we expect the RMSE goes to zero with
rate 1/

p
H .

An example is as follows. Assume that the underlying variable follows the dynamics,
given by,

d X t =−1

2
σ2d t +σdW Q

t , (1.72)

where volatility σ is a constant.
We choose a function V (XT ) = exp(XT ), and wish to compute c(0, x) = Ex

0

[
exp(XT )

]
.

Because exp(XT ) follows a log-normal distribution, it is easy to get that Ex
0

[
exp(XT )

] =
exp(x).

In addition, the analytic solution for {βk }d
k=0 can also be obtained, because one can

derive analytic formulas of any expectation as required in (1.45), since

Ex
t

[
X k

T exp(XT )
]
= 1

i k

∂

∂uk
Ex

t

[
exp(i uXT )

]∣∣∣
u=−i

,

Ex
t

[
X k

T

]
= 1

i k

∂

∂uk
Ex

t

[
exp(i uXT )

]∣∣∣
u=0

, (1.73)

where k = 0,1, . . . ,d , with the characteristic function

Ex
t

[
exp(i uXT )

]= exp

(
− i

2
σ2u(T − t )− 1

2
σ2u2(T − t )+ i ux

)
. (1.74)

So we can build the (1+d) equations defined in (1.45), and get the analyic solution
of the least-squares estimator {βk }d

k=0 using (1.46).
We choose two sets of parameters. Test 1: X0 = 0, σ = 0.2, T = 0.5. Test 2: X0 = 0,

σ = 1, T = 1. The parameters in Test 2 are chosen to give XT a large variance. So the
value to be computed is c(0,0) = Ex=0

0

[
exp(XT )

]
.
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Implement SGBM to have the Monte Carlo estimator. Generate H independent sam-
ples of XT , and H = 10n is increased by n = 1, . . . ,6. The order of the polynomial basis is
chosen as d = 1,2,3,4. We perform 10 independent tests for a fixed H and a fixed d to
compute the absolute error of the Monte Carlo approximated expectation and compare
the analytic solution.

Figure 1.2 presents the convergence rate of the root-mean-square error (RMSE) of
the Monte Carlo approximation against the number of samples for this test. It shows
that the convergence rate of RMSE is O(1/

p
H) as expected. In addition, we can see that

increasing the order d can significantly reduce the scale of the variance.

H : Number of paths

100 102 104 106

R
M
S
E

10-10

10-8

10-6

10-4

10-2

100

1/
√

H

d=1

d=2

d=3

d=4

(a) Test 1

H : Number of paths
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R
M
S
E

10-4

10-3
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10-1
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1/
√

H

d=1

d=2

d=3

d=4

(b) Test 2

Figure 1.2: The root-mean-square error (RMSE) of approximating the conditional expectation, i.e.√
E
[
(c − ĉ)2

]
. The results are based on 10 independent tests.

We present the mean and standard deviation (Std) of Monte Carlo estimators of co-
efficients (β0,β1) against the number of samples in Table 1.1 with d = 1. We can observe
the relation between the number of samples and the standard deviation of the Monte
Carlo estimators. Compared to the analytic solution presented in the caption of Table
1.1, the results also show that the Monte Carlo estimators converge to the correct values.

If we use this way of estimating the future expectations directly, simulation has to
been performed for any X t = x, and thus sub-simulation cannot be avoided for computing
conditional expectations at future time on each path. So, in section 1.7, we will show a way
and give the error of approximation.

1.6. SENSITIVITY WITH RESPECT TO THE INITIAL VALUE

In this section, we will show that the sensitivities of the expectation with respect to
the initial value can be approximated directly using the linear coefficients obtained via
Monte Carlo simulation, when the underlying variable follows a normal distribution.



1

24 1. INTRODUCTION

Test 1 Test 2

H β̂0 (s.d.) β̂1 (s.d.) β̂0 (s.d.) β̂1 (s.d.)

10 1.0070(0.0037) 1.0115(0.0796) 1.4548(0.5848) 1.1001(0.9030)
102 1.0091(0.0017) 1.0018(0.0264) 1.5089(0.1959) 0.9916(0.2130)
103 1.0101(0.0004) 1.0020(0.0064) 1.4932(0.0542) 0.9957(0.0585)
104 1.0100(0.0001) 1.0000(0.0018) 1.5019(0.0165) 1.0020(0.0215)
105 1.0100(0.0000) 1.0000(0.0004) 1.4992(0.0049) 0.9989(0.0057)
106 1.0100(0.0000) 1.0000(0.0002) 1.5011(0.0025) 1.0009(0.0031)

Table 1.1: The Monte Carlo estimator {β̂0, β̂1} of the coefficient {β0,β1} when the polynomial basis is
{
1, XT

}
.

The solution in Test 1: β0 = 1.0100, β1 = 1.0000; the solution in Test 2: β0 = 1.5000, β1 = 1.0000;

1.6.1. SENSITIVITY WITH RESPECT TO THE INITIAL VALUE

We derive the j -th derivative of a normal density fN (y ;µy ,σ2
y ) with respect to its mean

µy and variance σ2
y , respectively. It is easier to work with the log value of the function,

given by

log fN (y ;µy ,σ2
y ) =−1

2
log(2π)− 1

2
log(σ2

y )− 1

2σ2
y

(y −µy )2, (1.75)

from which we have

∂ fN
∂µy

= fN · ∂ log fN
∂µy

. (1.76)

By iteration, we find the j -th derivative w.r.t. the mean

∂ j fN

∂µ
j
y

= fN ·
((
∂ log fN
∂µy

) j

+ ∂ j log fN

∂µ
j
y

)
, (1.77)

with

∂ log fN
∂µy

=−µy − y

σ2
y

,
∂2 log fN
∂µ2

y
=− 1

σ2
y

,
∂ j log fN

∂µ
j
y

= 0, j ≥ 3. (1.78)

Hence we have

∂ j fN

∂µ
j
y

(y ;µy ,σ2
y ) = fN (y ;µy ,σ2

y ) ·p j (y), (1.79)

where p j (y) represents a polynomial function w.r.t. y with polynomial degree j . One
can derive the analytic formula for this polynomial function using (1.77) and (1.78), but
here only the polynomial order of the function matters.

When the stochastic process X t follows a Brownian Motion with drift process given
in (1.72), the mean of the random variable XT given X t = x is given by

µXT = x − 1

2
σ2(T − t ),

∂µXT

∂x
= 1. (1.80)
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Using (1.79), the j -th derivative of the conditional density w.r.t. initial value x is given
by

∂ j fXT |X t

∂x j
(y ; x) = fXT |X t (y ; x) ·p j (y). (1.81)

By the property given in (1.43), as long as j ≤ d , we have

<V (XT ), p j (XT ) >Lt ,x=<
d∑

k=0
βkφk , p j (XT ) >Lt ,x . (1.82)

Consequently, with the least-squares estimatorβ obtained by monomials up to order
d ≥ j , we exchange the order of integration and differentiation and have

∂ j c

∂x j
(t , x) =

∫
R

V (y)
∂ j fXT |X t

∂x j
(y ; x)d y =

∫
R

V (y)p j (y) fXT |X t (y ; x)d y

= <V (XT ), p j (XT ) >Lt ,x=<
d∑

k=0
βkφk , p j (XT ) >Lt ,x

=
d∑

k=0
βk

∫
R

yk p j (y) fXT |X t (y ; x)d y

=
d∑

k=0
βk

∫
R

yk ∂
j fXT |X t

∂x j
(y ; x)d y

=
d∑

k=0
βk

∂ j

∂x j

∫
R

yk fXT |X t (y ; x)d y =
d∑

k=0
βk

∂ jψk

∂x j
(x, t ,T ). (1.83)

Notice that when d = 1 we cannot compute the second derivative ∂2c
∂x2 , since the equa-

tion in (1.82) is up to order d = 1. In order to compute the second derivative, we must
have d ≥ 2. Using a monomial basis up to order d and the associated coefficients, one
can directly compute the 1-th to the d-th derivatives of function c(t , x) w.r.t. x.

This result is also true when the random variables follows a log-normal distribution.

1.6.2. TAYLOR EXPANSION OF THE DENSITY W.R.T. THE PARAMETERS
In this section, we will develop some useful results, that will be used for the error analysis
in Section 1.7.

TAYLOR SERIES OF fXT |X t AT x
The normal distribution function is infinitely differentiable at X t = x. We use Taylor’s
theorem to write the Taylor series of function fXT |X t at X t = x as follows [69]

fXT |X t (y ; x∗) =
d∑

j=0

1

j !

∂ j fXT |X t

∂x j
(y ; x) · (∆x) j +Rd ,

with Rd = 1

(d +1)!

∂d+1 fXT |X t

∂xd+1
(y ; xc )(∆x)d+1, x < xc < x∗. (1.84)
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Using the result in (1.81) to replace the derivatives of fXT |X t in (1.84), we have

fXT |X t (y ; x∗) = fXT |X t (y ; x)
d∑

j=0

1

j !
p j (y) · (∆x) j +Rd ,

with Rd = 1

(d +1)!
fXT |X t (y ; xc )pd+1(y)(∆x)d+1, x < xc < x∗. (1.85)

TAYLOR SERIES fXT |X t AT t
Function fXT |X t is also a function w.r.t. time t , and in this section we will present its
Taylor series at time t . For this purpose, we start by deriving the Taylor series of a normal
density function with its variance σ2

y .
Similar to (1.77), by iteration, we can derive the j -th derivative of the normal density

function fN (y ;µy ,σ2
y ) w.r.t. the variance (σ2

y ) as follows

∂ j fN
∂(σ2

y ) j
= fN ·

((
∂ log fN
∂(σ2

y )

) j

+ ∂ j log fN
∂(σ2

y ) j

)
, (1.86)

with

∂ log fN
∂(σ2

y )
=− 1

2σ2
y
+ 1

2σ4
y

(y −µy )2,
∂2 log fN
∂(σ2

y )2
= 1

σ3
y
− 2

σ5
y

(y −µy )2. (1.87)

The j -th derivative w.r.t. the variance of the normal density fN (y ;µy ,σy ) can be ex-
pressed as

∂ j fN
∂(σ2

y ) j
(y ;µy ,σ2

y ) = fN (y ;µy ,σ2
y )p2 j (y), (1.88)

where p2 j (y) is a polynomial function of y with polynomial degree 2 j .
We wish to write the Taylor series of the density in a way such that the order of the ap-

pearing Taylor polynomial 2 j ≤ d , i.e. j ≤ d/2. For this purpose, we define the operator
b·c, which returns the nearest integer less than or equal to the value inside the symbol.

We will also replace the derivatives by (1.88) in the Taylor series. Then the Taylor
series of the density fN (y ;µy ,σ2

y ) at σ2
y can be expressed as follows [69]:

fN (y ;µy ,σ2
y +∆σ2

y ) = fN (y ;µy ,σ2
y )

bd/2c∑
k=0

1

j !
p2 j (y)(∆σ2

y ) j +Rbd/2c,

with Rbd/2c =
1

(bd/2c+1)!
fN (y ;µy ,σ2

c )pd+1(y)(∆σ2
y )bd/2c+1(∆σ2

y )bd/2c+1,(1.89)

with σ2
y <σ2

c <σ2
y +∆σ2

y .

Function fXT |X t (y ; x) is a normal density function with mean µy = x− 1
2σ

2(T − t ) and
variance σ2

y = σ2(T − t ). It is easy to see that ∆µy = ∆x + 1
2σ

2∆t and ∆σ2
y = −σ2∆t . We

choose ∆x =− 1
2σ

2∆t such that ∆µy = 0, and thus the Taylor series of fXT |X t at time t are
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written by

fXT |X t∗ (y ; x − 1

2
σ2∆t ) = fXT |X t (y ; x − 1

2
σ2∆t )

bd/2c∑
k=0

1

j !
p2 j (y)(∆t ) j +Rbd/2c,

with Rbd/2c =
1

(bd/2c+1)!
fXT |X tc

(y ; x − 1

2
σ2∆t )p2bd/2c+2(y)(∆t )bd/2c+1, (1.90)

where t < tc < t∗.

1.7. ERROR ANALYSIS FOR SGBM WITHOUT BUNDLES
Varying the initial value X0 from −0.5 to 0.5 in Test 1 of Section 1.5.3, we can plot the
theoretical coefficients β0 and β1 against the corresponding values for X0 in Figure 1.3.
Both coefficients are continuous functions w.r.t. X0, which implies that, up to some tol-
erance, within a small interval [−∆x + x,∆x + x], the difference in the coefficients can
be ignored. This implies in turn that we may use the coefficients obtained at X0 = x to
approximate the expectations conditional on values in this interval.

X0

-0.5 0 0.5

co
ef

fic
ie

nt

0.6

0.8

1

1.2

1.4

1.6

1.8
β0

β1

Figure 1.3: β0 and β1 w.r.t. X0 in Test 1 of Section 1.5.3.

In SGBM without bundles, at a future time tm , samples {x̂m+1,h}H
h=1 are drawn from

FX tm+1 |X t0
, and we use these samples to approximate the conditional expectation defined

by the distribution FX tm+1 |X tm=x̂m,h
, h = 1, . . . , H . The error will directly arise from the

difference among these two functions. In this section, we will approximate the error of
this approximation.

1.7.1. THEORETICAL APPROXIMATION ERROR

We adapt our notation using
{
βt ,x

k ,k = 0, . . . ,d
}

to represent the least-squares estimator
of the coefficients given X t = x. So,

c(t , x) = Ex
t [V (XT )] = Ex

t

[
d∑

k=0
βt ,x

k φk

]
=

d∑
k=0

βt ,x
k ψk (x, t ,T ). (1.91)
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We approximate the conditional expectation given X t∗ = x∗ as follows

c(t∗, x∗) = Ex∗
t∗ [V (XT )] ≈

d∑
k=0

βt ,x
k ψ(x∗, t∗,T ) := c1(t∗, x∗), (1.92)

with ∆x = x∗−x and ∆t = t∗− t .
The error in c1 is given by

c(t∗, x∗)− c1(t∗, x∗) = EQ
[

V (XT )
∣∣∣X t∗ = x∗

]
−EQ

[
d∑

k=0
βt ,x

k φk

∣∣∣X t∗ = x∗
]

=
∫
R

(
V (y)−

d∑
k=0

βt ,x
k yk

)
fXT |X t∗ (y ; x∗)d y. (1.93)

By the inner product of the projection presented in (1.82), we have∫
R

(
V (y)−

d∑
k=0

βt ,x
k yk

)
p j (y) fXT |X t (y ; x)d y = 0, j = 0,1, . . . ,d . (1.94)

Use the Taylor series given in (1.85) and (1.90) to replace fXT |X t∗ (y ; x∗) respectively
in (1.93) and use the result in (1.94), we have

• When ∆t = 0:

c(t∗, x∗)− c1(t∗, x∗) =
∫
R

(
V (y)−

d∑
k=0

βt ,x
k yk

)
Rd d y ∼O(∆xd+1), (1.95)

with ∆x = x∗−x.

• When ∆x + 1
2σ

2∆t = 0:

c(t∗, x∗)− c1(t∗, x∗) =
∫
R

(
V (y)−

d∑
k=0

βt ,x
k yk

)
Rbd/2cd y ∼O(∆t bd/2c+1), (1.96)

with ∆t = t∗− t .

1.7.2. MONTE CARLO APPROXIMATION ERROR
By H samples drawn from the distribution function FXT |X t=x , we get the Monte Carlo
least-squares estimator {β̂t ,x

k ,k = 0, . . . ,d}. The approximation for the expectation condi-
tional on X t∗ = x∗ can be expressed by the Monte Carlo least-squares linear coefficients,
given by

c2(t∗, x∗) :=
d∑

k=0
β̂t ,x

k ψk (x∗, t∗,T ) ≈ c(t∗, x∗), (1.97)

where c2 is the Monte Carlo estimator of c1. When the number of samples H goes to
infinity, the Monte Carlo approximation converges, i.e. E [c1 − c2] −→

p
0.
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The mean squared error of approximating c by c2 can be subdivided into two parts
as

E
[
(c − c2)2] = E

[
(c − c1 + c1 − c2)2]

= (c − c1)2 +2(c − c1)E [(c1 − c2)]+E[
(c1 − c2)2]

= Bias(c,c1)+Var(c2) , (1.98)

where the bias can estimated as in (1.95) and (1.96) and the variance decays at rate 1
H .

Comment: The mean squared error of SGBM without using bundles can be inter-
preted as the sum of a bias term and a variance term. In SGBM without bundles, using
the coefficients obtained via samples with initial values X0 = x, we approximate the ex-
pectation conditional on X t = x∗, and thus the bias term is related to ∆t = t − t0 = t and
∆x = x∗−x. The variance arises from the Monte Carlo simulation, and decays at the rate
1
H . Both the bias and the variance can be be reduced by increasing the polynomial order.

1.7.3. TEST OF THE BIAS TERM
We have tested the convergence rate in Section 1.5.3, and in this section we will focus on
checking whether the bias term decays as expected in (1.95) and (1.96) for a basic test
case.

Assume the stochastic process {X t , t ∈ [0,T ]} evolves with SDE (1.72) in Section 1.5.3.
The parameters we choose are T = 0.2, σ= 0.6, and X0 = x = 0. Generate H independent
paths {x̂m,1, x̂m,2, . . . , x̂m,H }10

m=1 on a collection of dates T = {tm = 0.02m,m = 0, . . .10}.
The samples {x̂m,h}H

h=1 can be viewed as drawn from FX tm |X0=0. In order to access the
bias term, we choose a large sample size H = 106 to reduce the error arising from the
variance.

In the first test, we wish to compute c(tm , x∗) = Ex∗
tm

[
exp

(
X tm+1

)]
, where x∗ =− 1

2σ
2tm .

The approximation is performed by using the linear coefficients obtained via samples
{x̂m+1,h}H

h=1, and thus the setting is ∆x + 1
2σ

2tm = 0 and ∆t = tm − t0. The rate of bias
w.r.t. ∆t is given in (1.90).

Figure 1.4 (a) presents the RMSE of approximating c(tm , x∗) against ∆t = tm − t0. As
expected in (1.96), the error goes to zero at rate O(∆t ) in the case of d = 1. In the case of
d = 2 and d = 3, the error decays at the same rate O(∆t 2), since b2/2c+1 = b3/2c+1 = 2.
When d = 4, the error curve follows the rate O(∆t 3).

In the second test, we wish to compute c(0, x∗) = Ex∗
0

[
exp(X0.1)

]
, with x∗ = 1/2 j , j =

1,2, . . . ,5. The conditional expectations are approximated using linear coefficients based
on samples {x̂10,h}H

h=1. So, the setting is ∆x = x∗− x = 1/2 j . Figure 1.4 (b) illustrates the

RMSE of the approximation w.r.t. the size of∆x. It goes as expected at the rate O(∆x(d+1))
in (1.95).

We are also interested in the error of approximation over all paths. At a fixed time
t , ∆t is equal for all paths, and we can focus on the impact of ∆x. Figure 1.5 gives the
scatter plots of the approximated conditional expectations against ∆x on cross-section
samples at time tm = 0.1. It shows that, with a fixed∆t , when d = 1 the error is a quadratic
function of ∆x, and when d = 2, the error is a cubic polynomial function of ∆x, and so
on. Most important, at the two tails of the distribution, the errors are the largest, and
using a higher order d can significantly reduce the error.
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Figure 1.4: (a) The root mean-square error (RMSE) of approximating the expectation E
[

Xtm+1 |Xtm

]
condi-

tional on Xtm = 0 − 1
2σ

2tm , in which the linear coefficients are obtained based on simulations generated

with X0 = 0; (b) The root mean-square error (RMSE) of approximating the expectation E
[

X0.1|X0 = 1
2 j

]
with

j = 1,2, . . . ,5. The linear coefficients for approximation is obtained based on simulations generated with X0 = 0.
Results are based on 5 independent tests.

Figure 1.5: Scatter plots of error (c − c3) against ∆x = x̂5,h − x, h = 1, . . . , H at t = 0.1, where {x̂5,h }H
h=1 are the

cross-section samples at time t = 0.1.

1.8. ERROR ANALYSIS FOR SGBM USING BUNDLES
We have presented using bundles and local regression in SGBM in Section 1.4.1. In this
section, we will present the benefits of using bundles of SGBM.

1.8.1. THEORETICAL APPROXIMATION ERROR: THE BIAS TERM

We generate H independent paths {x̂1,h , x̂2,h , . . . , x̂M ,h}H
h=1 at a fixed time grid {0 < t1 <

t2 < . . . < tM = T }. At each tm , given {x̂m,h}H
h=1, we employ some bundling technique

to divide all paths into J bundles Bm, j , such that the realized values of the underlying
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factor within each bundle form some disjoint domains. We denote these domains by

Dm,1 =
[

min
h∈B1

(x̂m,h), max
h∈B1

(x̂m,h)
)
, Dm, j =

[
max

h∈B j−1

(x̂m,h), max
h∈B j

(x̂m,h)
)
, j = 2,3, . . . , J . (1.99)

We use the notations Xm := X tm and Xm+1 := X tm+1 for simplification. The condi-
tional probability of Xm+1 given Xm ∈D j at time tm reads [70]

FDm, j (y) =Q
(

Xm+1 ≤ y
∣∣∣Xm ∈Dm, j

)
= Q

(
Xm+1 ≤ y, Xm ∈Dm, j

)
Q

(
Xm ∈Dm, j

) . (1.100)

Next, based on the definition of the conditional probability density function, we de-
fine a function as follows

fDm, j (y) =
d FDm, j

d y
(y) =

∫
Dm, j

fXm+1,Xm (x, y)d x∫
Dm, j

fXm (x)d x

=
∫
Dm, j

fXm+1|Xm (y ; x) fXm (x)d x∫
Dm, j

fXm (x)d x
, (1.101)

where fXm+1,Xm is the joint density function of (Xm+1, Xm) and
∫
Dm, j

fXm (x)d x > 0.

The function fDm, j satisfies that
∫ ∞
−∞ fDm, j (y)d y = 1 and fDm, j (y) ≥ 0 for any y ∈ R. It

can be viewed as a weight function. We define a new norm with this weight function in
the same way as we defined the norm with the density function:

‖V (Xm+1)‖L2
Dm, j

=
(∫
R

(
V (y)

)2 fDm, j (y)d y

) 1
2 <∞ (1.102)

With this norm, we get the linear coefficients of the projection of V (XT ) on the sub-

space Pd , denoted by βm, j
k , k = 0, . . . ,d , that are obtained as follows

{βm, j
k ,k = 0, . . . ,d} = argmin

{bk∈R,k=0,...,d}

∥∥∥∥∥V (Xm+1)−
d∑

k=0
bk (Xm+1)k

∥∥∥∥∥
2

L2
Dm, j

= argmin
{bk∈R,k=0,...,d}

∫
R

(
V (y)−

d∑
k=0

bk yk

)2

fDm, j (y)d y. (1.103)

For x ∈Dm, j , we approximate the conditional expectation given X tm = x∗ by

c3(tm , x∗) =
d∑

k=0
β

m, j
k ψk (x∗, tm , tm+1) ≈ Ex∗

tm
[V (Xm+1)] := c(tm , x∗). (1.104)

The error in the approximation, i.e. (c3 − c) is determined by the difference between
the function fD j (y) and the function fXm+1|Xm (y ; x∗). Hence, the size of the domain D j

and the distribution of Xm on the domain D j both have some impact on the value of the
error.
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If the domain Dm, j can be expressed by (x∗−∆x, x∗+∆x), the error in approximating
the conditional expectation approaches zero as ∆x goes to zero. The size of the domain
Dm, j becomes zero as it shrinks into a single point set. Typically, the size of the sub-
domains can be reduced by increasing the number of bundles. Hence the bias arising in
approximation can be significantly reduced by using bundles. It also implies that, when
making bundles, we should ensure that the size of any of these disjoint domains gets
smaller when more bundles are used.

The bias can be also reduced by increasing the order of the monomial basis, which
we will demonstrate with numerical results.

1.8.2. MONTE CARLO APPROXIMATION ERROR
We employ the least-squares method based on the Monte Carlo paths. The realized val-
ues at the paths at time tm and tm+1, i.e. {(x̂m,h , x̂m+1,h)}, can be regarded as i.i.d. samples
drawn from the joint distribution FXm+1,Xm . Then, for each bundle Bm, j , samples can be
viewed as drawn from the conditional probability FDm, j , j = 1, . . . , J . Denote the number
of samples of the j -th bundle by H j .

The Monte Carlo least-squares estimator of the coefficients
{
β

m, j
k ,k = 0, . . . ,d

}
can

be obtained using least-squares based on the H j samples, i.e.

{β̂m, j
k ,k = 0, . . . ,d} = argmin

{bk∈R,k=0,...,d}

∑
h∈Bm, j

(
V (x̂m+1,h)−

d∑
k=0

bk (x̂m+1)k

)2

. (1.105)

Let the SGBM approximation be denoted by

c4(tm , x∗) =
d∑

k=0
β̂

m, j
k ψk (x∗, tm , tm+1) ≈ Ex∗

tm
[V (Xm+1)] := c(tm , x∗). (1.106)

As we have presented, the mean squared error can be expressed as the sum of the
bias and variance terms, i.e.

E
[
(c − c4)2]= Bias(c3,c4)+Var(c4), (1.107)

where the bias term approaches zero as the number of bundles goes to infinity and the
variance term decays at rate 1/H j .

Comments:

• We can see that the result of SGBM converges as the number of bundles goes to
infinity and the number of paths within each bundle goes to infinity.

• As presented, increasing the polynomial order d may help with the reduction of
the bias and the variance terms when the number of paths and the number of
bundles are fixed.

• A benefit of using bundles is to reduce the bias term significantly. Though the bias
can also be reduced by a higher d , we prefer to use a lower polynomial monomial
basis because of the curse of dimensionality.
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• When the total number of paths is fixed, increasing the number of paths will cause
fewer paths in each bundle, and causes a higher variance. One needs to strike a
balance between the bias and the variance terms.

1.8.3. TEST OF BUNDLES
Next, we present some numerical results to see the benefits of bundles.

Using the same numerical test as in Section 1.7.3, we wish to compute the condi-
tional expectation E

[
exp(X0.2) |X0.1

]
. We will divide all paths into J bundles based on

the realized values of X0.1, such that the number of paths within each bundle is equal,
i.e. H j = H/J , j = 1, . . . , J .

Figure 1.6 demonstrates the benefits of using bundles with a low polynomial order
d = 1. We see in Figure 1.6 (a) that the errors get smaller as the number of bundles is
increased, in particular at the left and right parts of the interval. Figure 1.6 (b) compares
the analytic solution to the obtained scatter plots for the expectation. When the number
of bundles is just 1, i.e. bundling technique is not used, the approximated expectation
is a straight line w.r.t. the value of X0.1. When the number of bundles is increased, the
approximated expectation gradually ’bends’ to the analytic solution.
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Figure 1.6: (a): Scatter plots of errors (c − c4) in approximating the expectations of E[exp(X0.2)|X0.1] against
the realized values of X0.1; (b) Scatter plots of the SGBM approximation and the analytic solution of
E[exp(X0.2)|X0.1] against the realized values of X0.1. The polynomial order in SGBM is chosen to be d = 1.
H = 106.

Figure 1.7 illustrates the impact of the number of paths on the accuracy of SGBM. In
order to estimate the error over all paths, we use the L2 norm of the errors over all paths
to measure the average error at a single time point tm , i.e.√√√√ 1

H

H∑
h=1

(
V (x̂m,h)−VSGBM(x̂m,h)

)2.

A convergence test for SGBM is to increase the number of bundles for a fixed sample
number H , and compute the corresponding error (measured by L2 norm).We choose the
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number of paths H = 106 in Figure 1.7 (a) and a smaller one H = 103 in Figure 1.7 (b). As
expected, the error can be reduced by increasing the number of bundles, but when H is
small, i.e. H = 103, the convergence stops at J = 8. This is because when the number of
paths is relatively small, increasing the number of bundles will significantly reduce the
number of paths within each bundle, and then the error is limited by the variance term.
So, with a fixed total number of paths, the error over all paths can be improved only to
some extent.

Figure 1.7 also demonstrates that using higher order monomials basis can further
improve the accuracy with a fixed number of paths and a fixed number of bundles.
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Figure 1.7: L2 norm of errors over all paths against the number of bundles when d = 1,2,3,4. (a)H = 106; (b):
H = 103. The value we wish to compute is E

[
exp(X0.2) |X0.1

]
.

1.9. THESIS ORGANIZATION
In this chapter, we have introduced the concepts of EE, PFE ad CVA, and the computa-
tional and modeling issues in this field of risk management. Using a simple example,
we presented a discussion about the convergence and error analysis for the SGBM al-
gorithm. One purpose of this thesis is to further develop the SGBM algorithm for the
computational issues in quantifying CCR under hybrid stochastic asset models. Another
goal is to develop models for WWR in a CVA calculation.

The structure of the thesis is outlined as follows.
Chapter 2 and Chapter 3 are concerned with the computation of the exposure pro-

files under the risk-neutral probability measure needed for CVA calculation. Chapter 2
provides a general framework for computing exposure profiles based on Monte Carlo
paths. We present three numerical schemes, the Finite Difference method, the COS
method and the SGBM approach for the valuation of contract values on the generated
paths under the Heston stochastic volatility model. We show the exposure distributions
for the Bermudan option along the risk horizon. The benchmark is the COS method,
which is based on Fourier-cosine expansions and FFT, developed by Fang and Ooster-
lee [29]. This chapter basically contains the contents of paper [24].
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Chapter 3 studies the impact of stochastic volatility and stochastic interest rate on
the exposure profiles. The SGBM scheme is further developed for the two- to three-
dimensional hybrid models, such as the Heston model and Heston Hull-White model.
We present the sensitivities of EE w.r.t. the initial values on the risk horizon. Besides
Bermudan options, we also study the exposure profile of barrier options. The benchmark
for the two-dimensional model is based on the 2D COS method developed by Ruijter and
Oosterlee [72], and for the three-dimensional model is based on the 3D COS method de-
veloped by Lech and Oosterlee [39]. The contents of this chapter can be found in the
paper [32].

Chapter 4 studies the WWR. The default probability is modeled by an intensity model.
In this chapter, the intensity is considered as a random variable, and we propose three
models to describe the dependency structure between intensity and other market fac-
tors. Different from the previous chapters, in this chapter we compute CVA as the dif-
ference between the default-free and default-adjusted values of the option contracts. In
this setting and along with the SGBM algorithm, we present the computation of CVA
VaR and CVA ES without sub-simulations. We show the impact of WWR to the value of
CVA for a European option contract by varying the correlation coefficients. Besides, for
Bermudan options, we study the impact of CCR and WWR on the early-exercise regions
assuming that option holders will have different exercise decisions. This chapter essen-
tially contains the contents of paper [31].

The EE and PFE reflecting the real-world risk are studied in Chapter 5. In this chapter,
we clarify the importance of using real-world simulations for computing risk-statistics
measures of CCR, and show how to make SGBM into an efficient algorithm for com-
puting the real-world exposure profiles without any sub-simulation. In this chapter, the
SGBM is developed for pricing Bermudan swaptions under the Hull-White and the G2++
models. The COS method is also further developed to pricing Bermudan swaptions to
provide a benchmark. The contents of this paper are based on the paper [30].

Chapter 6 presents conclusions and an outlook for future research.





CHAPTER 2

Efficient computation of exposure profiles for
counterparty credit risk

This chapter presents three computational techniques for approximation of exposure
under the risk-neutral probability measure for pricing CCR of a financial contract. The
three techniques all involve a Monte Carlo path discretization and simulation of the un-
derlying entities. Along the generated paths, the corresponding values and distributions
are computed during the entire lifetime of the option. Option values are computed by ei-
ther the finite difference method for the corresponding partial differential equations, or
the simulation based Stochastic Grid Bundling Method (SGBM), or by the COS method,
based on Fourier-cosine expansions. In this research, the studied financial contracts are
option contracts with early-exercise opportunities. The underlying asset dynamics are
given by either the Black-Scholes or the Heston stochastic volatility model. We study the
impact of the stochastic volatility on the exposure distributions.

2.1. INTRODUCTION
We investigate the future exposure distributions of Bermudan options during the life
of the option contracts with stochastic volatility under the Heston’s model. We present
three numerical methods for computation of exposure values. All methods presented
contain essentially two elements, a forward sweep for generating future scenarios and
a backward sweep to calculate exposures along the generated asset paths. The forward
Monte Carlo method generates the asset paths from initial time up to maturity. Along
the paths, option values are determined at each exercise time.

Because of the complexity of this problem, efficient computation of the option prices
is required. The COS Fourier option pricing method may seem a suitable candidate be-
cause of its speed and accuracy particularly for Lévy processes, see [29]. Also the fi-
nite difference method, approximating solutions to partial differential equations, may
be suitable as it typically results in approximate option prices for a grid of underlying val-
ues. This feature may be exploited in the EE context, as all grid points can then be used
to generate option densities. The recent development of the Stochastic Grid Bundling
Method (SGBM), which is a Monte Carlo based method particularly suitable for high-
dimensional early-exercise options, in [50], is another candidate because it also rapidly
converges and is accurate.

The set-up of this chapter is as follows. In Section 2.2 brief descriptions of the Heston

This chapter is based on the article ’Efficient computation of exposure profiles for counterparty credit risk’,
published in International Journal of Theoretical and Applied Finance, 17(04):1450024, 2014 [24], and it also
appeared in CSL de Graaf’s PhD thesis [23].
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model and the exposure of Bermudan options are presented. The underlying asset dy-
namics and the Monte Carlo discretization technique applied are also discussed. In Sec-
tion 2.3 we describe the computation of the exposure measures by the finite difference
method, SGBM and the COS method, respectively. In Section 2.4 the methods are vali-
dated and compared and we present an assessment of the impact of stochastic volatility
on the exposures. Finally, conclusions are presented in Section 2.5.

2.2. EXPOSURE OF BERMUDAN OPTIONS UNDER HESTON’S MODEL
We will present methods for the computation of the exposure of Bermudan options un-
der the Heston stochastic volatility asset dynamics, given by

dSt = r St d t +p
vt St

(√
1−ρ2dW 1

t +ρdW 2
t

)
,

d vt = κ(v̄ − vt )d t +γpvt dW 2
t , (2.1)

where W 1
t and W 2

t are independent Wiener processes under the risk-neutral measureQ,
κ is the speed of mean reversion parameter in the CIR process for the variance, v̄ repre-
sents the level of mean reversion, and γ is the so-called volatility of volatility parameter;
r is the constant risk-free interest rate.

The market factors evolve as in (2.1) over the risky horizon [0,T ]. We will monitor the
exposure at future time at a set of equally-spaced monitoring dates, denoted by

T = {t1, t2, . . . , tM }, (2.2)

where M denotes the number of monitoring dates, and the time step size is ∆t .

2.2.1. BERMUDAN OPTIONS

A Bermudan option is defined as an option where the buyer has the right to exercise at
a set of (discretely spaced) time points. We assume that the early-exercise dates coincides
with the monitoring dates, i.e. the collection of early-exercise dates is the same as the
collection of exposure monitoring dates T .

The state of the process at time tm is denoted by the pair (Sm , vm) with Sm the price
of the underlying and vm the variance at time tm . At the initial time t0 exercise is not
common. At each exercise time in T , the exercise value, given by the payoff function,
and the continuation value of the option are compared.

The immediate payoff of exercising the option at time tm is given by,

g (Sm) =
{

(Sm −K )+ , for a call,

(K −Sm)+ , for a put,
(2.3)

where we refer to the function g as the exercise function.
It is assumed that the holder of the option will exercise when the payoff value is

higher than, or equal to, the continuation value, and then the contract terminates. At
maturity tM , the option value is equal to the payoff value. The following recursive scheme
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can be set-up to price a Bermudan option:

V (tm ,Sm , vm) =


g (SM ), for m = M ,

max
(
c(tm ,Sm , vm), g (Sm)

)
, for m = M −1, . . . ,2,1,

c(t0,S0, v0), for m = 0,

(2.4)

where the continuation function c at time tm is defined by

c(tm ,Sm , vm) = e−r∆tEQ
[

V (tm+1,Sm+1, vm+1)
∣∣∣(Sm , vm)

]
, (2.5)

with V (tm+1,Sm+1, vm+1) the option value at time tm+1.

2.2.2. EXPOSURE AND CVA
By definition the exposure of an option equals zero once the option is exercised; oth-
erwise, the exposure is equal to the continuation value of the option. The Bermudan
option exposure at a future time tm can thus be formulated as:

Em =
{

0, if exercised,

c(tm ,Sm , vm), if not exercised,
m = 1,2, · · · , M −1. (2.6)

In addition, E0 = c(t0,S0, v0) and EM = 0.
The exposure value needs to be calculated via backward induction. The Bermudan

option is computed via (2.4) from time tM to time t0. As we update the optimal early
exercise time, the exposure values are being updated. Loosely speaking, the exposure
values are zero in the early-exercise region and the optimal early-exercise boundary, and
in the continuation region the exposure values are equal to the continuation values. Us-
ing the dynamics of the market factors (Sm , vm) in (2.6), we can obtain the distribution
of the exposure at each monitoring time tm under the risk-neutral measure Q.

The key point of computing CVA is to calculate the exposure distribution under the
risk-neutral measure. Assuming independence between exposure and the counterparty’s
default probability, we can formulate the expression for credit valuation adjustment (CVA)
as follows [38]:

CVA ≈ LGD
M−1∑
m=0

EEQ(tm)

B(tm)
(PD(tm+1)−PD(tm)) , (2.7)

where B(tm) = exp(r tm) and the default probability given by PD(t ) = 1−exp
(−h̄t

)
with

here a constant intensity h̄, and EE at time t is given by

EEQ(tm) := EQ [Em] . (2.8)

In this setting, the expression EEQ in (2.8) represents the average of future risk-neutral
exposure. In order to capture the tail behavior of the exposure distribution at future
times, we also look into the 97.5% percentile of the risk-neutral exposure, defined in the
following way

PFEQα(tm) = inf
{

x :Q(Em ≤ x) ≥α}
, (2.9)
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where α= 97.5%.
Here we use ’EE’ and ’PFE’ defined in (2.8) and (2.9) to show the statistical properties

of the risk-neutral exposure. These two statistics of exposure distribution are not used
to determine the reserved capital under the Basel regulations. Instead, we employ these
two statistics to study the impact of the stochastic volatility on the risk-neutral exposure
distribution.

2.3. NUMERICAL METHODS TO COMPUTE EXPOSURE PROFILES
In this section, three methods are presented to compute the expected exposure for Bermu-
dan options under the Heston dynamics. All three methods can also be used to simply
calculate the value of a Bermudan option at time t0. In combination with Monte Carlo
forward path simulation, and based on the same common technique, they can be ex-
tended to value the exposure of Bermudan options.

2.3.1. GENERAL PRICING APPROACH
The market state depends on two random variables, (Sm , vm), at time point tm and there-
fore the exposure Em is also a stochastic variable. An option value distribution at future
time points can be computed by generating risk-neutral scenarios, and for that purpose
a Monte Carlo simulation is employed.

For the Monte Carlo simulation the highly accurate Quadratic Exponential (QE) scheme
[2] is used to generate the Heston stochastic volatility asset paths. Starting from simu-
lated underlying values and variances, the exposures can be calculated by a backward
valuation procedure. At each path, for each exercise time, the continuation value is
calculated and compared to the exercise value on the path. When the exercise value
is higher than, or equal to, the continuation value, the option is exercised at this path
and the exposure for later time points is set to zero. At every time point the resulting
exposure values for all paths generate a distribution.

The essential technique of modeling the exposure of Bermudan options can be pre-
sented as follows:

• Generate scenarios by Monte Carlo simulation under the risk-neutral probability
measure;

• Calculate continuation/option values and the exercise values to decide whether to
exercise or not;

• Set the exposure at each path as the continuation value if the option is not exer-
cised; otherwise the exposure equals 0;

• Compute the empirical distribution of the exposure at each monitoring time;

• Calculate the mean and the 97.5% quantile of the obtained empirical exposure
distribution.

In the remainder of this section, we will describe three methods to calculate the required
continuation/option values at the simulated paths.
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2.3.2. THE FINITE DIFFERENCE MONTE CARLO METHOD
An often used option pricing technique is the finite difference method [83]. The method
calculates option prices based on the option pricing partial differential equation, for an
entire grid of underlying values and can therefore also easily be used to compute the
sensitivities (for example, the derivatives of the option prices w.r.t. the asset prices). In
the scope of this research, the resulting grid of option values facilitates to determine dis-
tributions of option values at different time points. The method developed by C. S. L.
de Graaf is called the Finite Difference Monte Carlo (FDMC) method. Solving the Hes-
ton PDE to price European or American options is extensively studied, see, for example,
[33],[40] and [41].

In the case of the Heston’s model, a generalized Black-Scholes operator is defined by

L V = ∂V

∂t
− 1

2
γ2v

∂2V

∂v2 −ργvS
∂2V

∂S∂v
− 1

2
vS2 ∂

2V

∂S2 −κ(v̄ − v)
∂V

∂v
− r S

∂V

∂S
+ r V. (2.10)

The linear complementarity problem for the price of the American put option can be
derived as follows

L V ≥ 0, (2.11a)

V ≥ g , (2.11b)

(V − g )(L V ) = 0, (2.11c)

in the domain {(S, v, t )|S ≥ 0, v ≥ 0, t ∈ [0,T ]} with the initial condition V (T,S, v) = g (S).
The boundary conditions are stated in Table 2.1.

Table 2.1: Heston model boundary conditions for a put option.

Boundary Value

S →∞ V = 0
S = 0 V = K

v →∞ ∂2V
∂v2 = 0

v = 0 ∂V
∂t − r S ∂V

∂S −κv̄ ∂V
∂v + r V = 0

Note that in (2.11) the option can be exercised for each t ∈ [0,T ]. A discrete version
easily results in the pricing of a Bermudan-style option. In this research the Brennan-
Schwartz [11] algorithm is used, which is a well-known technique from literature. At each
exercise time, this method first solves L V = 0, after which the option value is taken to
be the maximum of this value and the exercise value. The schemes used for discretizing
(2.10) in asset and variance directions are second-order accurate central schemes or one-
sided second-order schemes where needed at boundaries.

The option price is computed backwards in time, from maturity T back to time t0.
The equations that need to be solved as a result of the finite difference discretization
are linear systems of equations. Such a system of equations can be represented as a
matrix-vector problem where the operators are represented by matrices and the (inter-
mediate) solutions by vectors. For the time integration scheme a particular Alternating
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Direction Implicit (ADI) scheme, namely the Hundsdorfer-Verwer scheme is employed,
which exhibits second-order convergence in time. Next to that, due to the splitting of
matrices, it involves the inversion of tridiagonal matrices while in general for (fully) im-
plicit schemes, the matrices are not tridiagonal and may have several non-zero diago-
nals. For more details we refer to [33].

To ensure that all forward paths are contained in the computational domain of the
finite difference technique, the boundaries Smax and vmax are prescribed such that all
Monte Carlo path values at all time points are contained.

The paths attain values that are, most likely, not grid points of the finite difference
grid. From this grid, specific option values are then determined by interpolation. Be-
cause this interpolation introduces errors at every point, second-order accurate spline
interpolation is used.

In general, only a small part of the discretized grid is a region of interest, therefore
one can concentrate grid points in that region. This is done by stretching the grid so that
a non-uniform grid results, applied in the variance as well as in the asset dimension [40].
As here we need option values at each exercise time for many combinations of spot and
variance values, non-uniformity is even more important when we compute exposure.

Because tests show that the impact of the spot dimension on the error is highest, the
non-uniform grid in [40] is slightly adjusted. The grid employed is a combination of a
uniform and a non-uniform grid. An interval [Sleft,Sright] containing K is introduced in
which the mesh is uniform. We choose:

Sleft =λK and Sright = K , (2.12)

where λ ∈ [0.3,0.7] can be chosen depending on the quantity that needs to be computed
(PFE or EE). An accurate computation of EE requires accurate pricing around the mean,
which implies a high value of λ, whereas for accurate computation of quantiles, also an
accurate computation of extreme values is needed for which a smaller value of λ should
be chosen. So, when we compute the PFE, the dense region is shifted towards the outer
regions of the domain.

Outside the interval [Sleft,Sright] the grid follows a hyperbolic sine function with:

ξmin = sinh−1
(−Sleft

d1

)
, ξint =

Sright −Sleft

d1
, ξmax = ξint + sinh−1

(
Smax −Sright

d1

)
,

where d1 is a scaling parameter, Smax is the chosen maximum value of the S grid (the
interval [Sleft,Sright] ⊂ [0,Smax]), and ξmin < 0 < ξint < ξmax. A uniform grid of m1+1 points

between ξmin and ξmax can be built by: ξ0 = ξmin, ξ j = ξ0 + j∆ξ, ∆ξ = ξmax−ξmin
m1

, j =
1, . . . ,m1.

Now, a non-uniform grid for S, 0 = s0 < s1 < . . . < sm1 = Smax, can be constructed via
the uniform grid ξ0 < ξ1 < . . . < ξm1 as follows

s j =


Sleft +d1 sinh(ξ j ), if ξmin ≤ ξ j < 0,
Sleft +d1ξ j , if 0 ≤ ξ j ≤ ξint,
Sright +d1 sinh(ξ j −ξint), if ξint < ξ j ≤ ξmax.

Smaller values of d1 result in a smaller number of grid points in [Sleft,Sright], whereas
higher values of d1 will result in a higher density of grid points in this interval.
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For the v direction many points at the boundary v = 0 are desired and for larger
values of v the mesh can be less dense. Let m2 be the number of points to be considered
and d2 another scaling parameter. Now the grid, 0 = v0 < v1 < . . . < vm2 = vmax, is defined

by: v j = d2 sinh
(

j
m2

sinh−1 (vmax/d2)
)
, j = 0, . . . ,m2.

These grids are smooth in the sense that there are real-valued constants C0,C1 and C2

such that:

C0∆ξ≤∆s j ≤C1∆ξ and |∆s j+1 −∆s j | ≤C2(∆ξ)2.

When the finite difference method is used to price a single option, only a single grid
point at initial time is used. The FDMC method however uses a large portion of the grid
points for option pricing at all exercise times which makes this method computationally
attractive.

2.3.3. THE STOCHASTIC GRID BUNDLING METHOD
Here, we extend the SGBM method from [50] towards the Heston model, and exposure
distributions along the time horizon are naturally obtained. The SGBM method gener-
ates a direct estimator, a lower bound for the option value, as well as an optimal early-
exercise policy.

We will use one-dimensional monomials as the basis functions and provide a bundling
method for this two-dimensional model. We choose the monomials of the log-stock vari-
able up to order d to be the basis functions for the regression of the option values at time
tm+1, denoted by

φk = (
log(Sm+1)

)k ,k = 0,1, . . . ,d , (2.13)

where when k = 0, the basis function is the constant.
We choose only the monomials of the log-stock variable log(Sm+1) for this 2D model,

because the variance is just a factor in the evolution of the stock process. The variable
Sm+1 also contains information about the evolution of the variance factor. The risk-
neutral expectations of the basis functions in (2.13) are functions w.r.t. (Sm , vm), defined
by

ψk (Sm , vm ,∆t ) = EQ
[(

log(Sm+1)
)k

∣∣∣(Sm , vm)
]

, (2.14)

with k = 0,1, . . . ,d .
These moments can be derived from the ChF of the Heston model with respect to the

variable log(Sm), defined by

ϕ(u; tm , tm+1, log(Sm), vm) = EQ
[
exp

(
i u log(Sm+1)

)∣∣ (Xm , vm)
]

= exp
(

Ã(∆t )+ B̃1(∆t ) log(Sm)+ B̃2(∆t )vm
)

, (2.15)

where the coefficients

B̃1(∆t ) = i u, B̃2(∆t ) = 1

γ2

(
κ− i uγρ+D1

)− 2D1

γ2
(
1−D2 exp(−D1∆t )

) ,

Ã(∆t ) = κv̄

γ2

[(
κ− i uγρ−D1

)
∆t −2log

(
1−D2 exp(−D1∆t )

1−D2

)]
+r (i u1 −1)∆t , (2.16)
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with

D2 = κ− i uγρ−D1

κ− i uγρ+D1
, D1 =

√
(κ− i uγρ)2 +γ2u(u + i ). (2.17)

The moments can be derived by the relations (1.28). As an example, we present the
analytic formula of the first moment

ψ1(Sm , vm , tm , tm+1) = log(Sm)+
(
γ− 1

2
v̄

)
∆t + 1

2κ

(
1−exp(−κ∆t )

)
(v̄ − v0) . (2.18)

In this chapter, we propose a bundling technique based on the recursive bifurcation
bundling method introduced in [50]. In the Heston model, the asset variable and the
variance variable are correlated. If we directly apply the recursive bifurcation bundling
method in the case of a correlation, we may find that there are few paths within some
bundles, and this problem can be hardly improved by increasing the total number of
paths. As an improvement, we propose that we first perform a ’rotation’ procedure on
the cross-section data (Sm , vm), such that

S̃m = cos(θ)Sm + sin(θ)vm , ṽm =−sin(θ)Sm +cos(θ)vm , (2.19)

where

cos(θ) =
√

1

1+ l 2 sign(l ), sin(θ) =
√

l 2

1+ l 2 , l = Cov(Sm , vm)

√
Var(Sm)

Var(vm)
. (2.20)

Then we employ the recursive bifurcation bundling method on the rotated data (S̃m , ṽm)
to determine the bundles. Figure 2.1 demonstrates the bundles obtained without rota-
tion (a) and with rotation (b) based on the recursive bifurcation method. In Figure 2.1,
each colored block represents the realized values within one bundle. After rotation, the
paths can be subdivided into bundles in a more ’average’ sense w.r.t. the number of
paths.

Suppose we deal with a Bermudan option with tenor T and M exercise dates. First a
stochastic grid is generated, i.e. we generate H paths of the underlying under the Heston
model. It is easy to see that the option value at time tM = T is equal to the correspond-
ing payoff value, which gives us the initial setting for the SGBM method at each path,
expressed by

V (tM ,SM , vM ) = g (SM ). (2.21)

At times tm , m = M −1, . . . ,1, these paths are clustered into J bundles, based on their
stock and variance values. The bundle set at time tm is denoted by {Bm, j }J

j=1. Paths

within the same bundle are assumed to share some common realized values of the mar-
ket factor.

The essential idea in SGBM is that, for paths in the j -th bundle Bm, j at time tm , the
option value at time tm+1 can be approximated by

V (tm+1,Sm+1, vm+1) ≈
d∑

k=0
β

m, j
k

(
log(Sm+1)

)k , (2.22)



2.3. NUMERICAL METHODS TO COMPUTE EXPOSURE PROFILES

2

45

Figure 2.1: Comparison of the bundles obtained via the recursive bifurcation method without rotation (a) and
with rotation(b).

where the coefficients
{
β

m, j
k

}d

k=0
are obtained by minimizing the sum of residuals based

on the paths in the bundle Bm, j .
When the option values V (tm+1,Sm+1, vm+1) at the stochastic paths are determined,

the coefficient set
{
β

m, j
k

}d

k=0
can be obtained by regression. Equation (2.22) can be sub-

stituted into (2.5) which gives us:

c(tm ,Sm , vm) = e−r∆tEQ
[

V (tm+1,Sm+1, vm+1)
∣∣∣(Sm , vm)

]
≈ e−r∆tEQ

[
d∑

k=0
β

m, j
k (Xm+1)k

∣∣∣(Sm , vm)

]

= e−r∆t
d∑

k=0
β

m, j
k ψk (Sm , vm , tm , tm+1). (2.23)

Since we know the explicit formula of the moments
{
ψk

}d
k=0, the continuation values

at time tm can be computed, and, subsequently, the option values at time tm can be
obtained with the scheme in (2.4).

At time t0, we deal with one bundle, as all paths originate from (S0, v0), and the op-
tion value at time t0 is equal to the continuation value c(t0,S0, v0). In this way, option
values are calculated backward in time from tM to t0. By (2.6), the exposure at each path
along the time horizon is calculated as a by-product. We are thus able to determine the
empirical exposure distribution at each time point for the calculation of EE and PFE.

We call the approximation obtained by regression the direct estimator. An alternative
way of computing the average of the exposure, is to calculate EE as the average of the
discounted cash flow over all paths, as in the Least-Squares method (LSM) for Bermu-
dan options in [64]. In short, the optimal exercise strategy is determined by comparing
the immediate exercise value and the approximated continuation value, and then the
exercise decision is made when the immediate exercise value is highest. We update the
strategy and save the corresponding realized cash flows at each path during the back-
ward procedure. Once the option at a path is determined to be exercised at time tm , the
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exposure on this path at tm and later than tm is updated to zero. The EE and option val-
ues at time 0 approximated by the average of discounted cash flows represent the path
estimator.

For pricing Bermudan options, the direct estimator is considered as the upper bound
of the true value while the path estimator is often the lower bound [50]. Hence we can
analyzed the converge of SGBM by comparing these two estimators.

2.3.4. THE COS MONTE CARLO METHOD
In the third computational method, we combine the generated stochastic MC grid with
the COS method, introduced in [29]. Based on the same stochastic grid as, for example,
in Section 2.3.3, the COS method is used for the calculation of the continuation values at
each path along the time horizon. We call this combined method the COS Monte Carlo
(CMC) method.

As in [29], we work in the log-domain, denoted by (X ,ς) := (log(S), log(v)). Suppose
that the path values (Xm ,ςm) at time tm are known. We can write the joint density func-
tion at tm+1, conditional on values at tm , as

fx,ς (Xm+1,ςm+1|Xm ,ςm) = fx|ς(Xm+1|Xm ,ςm+1,ςm) · fς(ςm+1|ςm), (2.24)

where fx|ς is the density of log-stock Xm+1 given ςm+1 and (Xm ,ςm), and fς the condi-
tional log-variance density for ςm+1 given ςm . Notice that here we have fς(ςm+1|xm ,ςm) =
fς(ςm+1|ςm).

One can choose a proper integration range [a,b]× [av ,bv ] in the log-stock and log-
variance domains, so that the integral can accurately be approximated. We refer to [29]
for details on the definition of this range based on initial state (x0,ς0) and maturity T .
The integration of the expectation in (2.5) can now be written as follows:

c(tm ,e Xm ,eςm ) ≈ e−r∆t
∫ bv

av

fς(y2|ςm)
∫ b

a
V (tm+1,e y1 ,e y2 ) ·

fx|ς(y1|Xm ,ςm+1 = y2,ςm)d y1d y2, (2.25)

with Xm = log(Sm) and ςm = log(vm).
An analytic formula for the log-variance density fς is available in [29]. The density

fx|ς can be recovered from its characteristic function by applying the COS expansion.
Here we directly use the results in [29]. On the truncated range [a,b], the density fx|ς of
Xm+1 can be recovered as

fx|ς(y1
∣∣Xm ,ςm+1,ςm) ≈ 2

b −a

N−1∑′
j=0

Re

{
ϕ̃

(
jπ

b −a
;ςm+1,ςm

)
·

exp

(
i jπ

Xm −a

b −a

)}
cos

(
jπ

y1 −a

b −a

)
, (2.26)

where
∑′

indicates that the first term is multiplied by 1
2 ; Re(·) returns the real part of the

argument; the characteristic function ϕ̃ is defined by

ϕ̃(u;ςm+1,ςm) = EQ [
exp(i uXm+1)

∣∣Xm = 0,ςm+1,ςm
]

, (2.27)
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the analytic formula of which can also be found in [29].
We will show the way of approximating the exposure profile by backward iteration

using 2D interpolation. We choose the Gaussian-quadrature rule to set the fixed log-
variance grid, denoted by {

av = ς0 < ς1 < . . . < ςN2 = bv
}

.

Next, we set the grid along the log-stock dimension as

{a = x0 < x1 < . . . < xQ = b}.

At each early-exercise time tm < T , we compute continuation values at time tm on the
grid (xq1 ,ςq2 ), q1 = 1, . . . ,Q, q2 = 1, . . . , N2. In this way, we can save the values of fς(ςm+1 =
ςk |ςm = ςq2 ) and ϕ̃(·,ςm+1 = ςk ,ςm = ςq2 ) on an (N2 ×N2) grid in the initialization and
use them for the calculation over time. We simply use a 2D interpolation method (spline
method) for approximating the continuation values on all paths.

We wish to compute the continuation value given values of (Sm , vm) at time tm .
The integral in (2.25) along the log-variance dimension will be approximated by the
Gaussian-quadrature rule . Replacing the density in (2.25) by (2.26), the continuation
value given Sm = exq1 , vm = eςq2 becomes

c(tm ,exq1 ,eςq2 ) ≈ e−r∆t
N2∑

k=1
wk fς(ςk |ςm = ςq2 )

N−1∑′
j=0

V j ,k (tm+1) ·

Re

{
ϕ̃

(
jπ

b −a
;ςm+1 = ςk ,ςm = ςq2

)
exp

(
i jπ

xq1 −a

b −a

)}
,(2.28)

where {wk }N2
k=1 are the weights in the Gaussian-quadrature rule, and the coefficients V

with index ( j ,k) by

V j ,k (tm+1) = 2

b −a

∫ b

a
V

(
e y1 ,eςk , tm+1

)
cos

(
jπ

y1 −a

b −a

)
d y1, (2.29)

These coefficients V j ,k (tm) can be obtained by backward iteration, m = M −1, . . . ,1.
At time tM , the option value is equal to the immediate payoff, i.e.

V j ,k (tM ) = 2

b −a

∫ b

a
g

(
e y1

)
cos

(
jπ

y1 −a

b −a

)
d y1

=


2

b−a

b∫
log(K )

(e y1 −K )cos
(

jπ y1−a
b−a

)
d y1, for a call,

2
b−a

log(K )∫
a

(K −e y1 )cos
(

jπ y1−a
b−a

)
d y1, for a put.

(2.30)

where the analytic solution of the integrals can be derived.
At each exposure monitoring date tm < T , we can also have the coefficients V j ,k (tm):
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• For a call option:

V j ,k (tm) = 2

b −a

( x∗
m,k∫

a

c
(
tm ,e y1 ,eςk

)
cos

(
jπ

y1 −a

b −a

)
d y1

+
b∫

x∗
m,k

(
e y1 −K

)
cos

(
jπ

y1 −a

b −a

)
d y1

)
, (2.31)

• For a put option:

V j ,k (tm) = 2

b −a

( x∗
m,k∫

a

(
K −e y1

)
cos

(
jπ

y1 −a

b −a

)
d y1

+
b∫

x∗
m,k

c
(
tm ,e y1 ,eςk

)
cos

(
jπ

y1 −a

b −a

)
d y1

)
, (2.32)

where the optimal early-exercise value of log-stock x∗
m,k at the log-variance grid ςk is the

solution of the following:

g (ex∗
m,k ) = c

(
tm ,ex∗

m,k ,eςk
)

. (2.33)

Compared to the COS method for pricing option values, the CMC method is signifi-
cantly slower when the number of MC paths is high. One reason is that, at each exercise
time, calculation of the continuation value is performed, for which interpolation is re-
quired for each path.

At the same time, the CMC method maintains the very high accuracy of the COS
method. The errors due to the integration ranges, the quadrature and the propagation
error have been discussed in [29]. The error of the spline interpolation on the variance
grid is small when Q is sufficiently large. Because of the high accuracy, we will use the
results of the CMC method as reference values in the discussion of the numerical results.

2.4. NUMERICAL RESULTS
In this section we start with an assessment of the impact of stochastic volatility on ex-
posure profiles by comparing EE and PFE. Next, we consider a detailed analysis of the
convergence and accuracy of the methods by means of numerical experiments.

As there are no exact values available for the exposure of Bermudan put options un-
der the Heston stochastic volatility model, we will use the converged results of the COS
method as the reference values. The convergence of the COS method has been discussed
in [29], and we will set the number of Fourier terms as N = 29 and the number of the
points on the log-variance grid as N2 = 29. As mentioned, the COS method is a highly
accurate method for pricing Bermudan options. When valuing the exposure, the high
accuracy is maintained as long as the integration range is chosen properly (see Section
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2.3.4). We reduce the impact of Monte Carlo noise in the comparative analysis by using
H = 105 paths.

To investigate the proposed three methods, three different sets of parameters are
tested, see Table 2.2. These test cases were used recently in [29], [41] and [86] and refer-
ence values are thus available for individual option prices. Moreover, in these test cases
we stress the parameters of the stochastic volatility process by considering different lev-
els for the initial variance, the mean-reversion parameters, vol-of-vol and correlation
parameters. These parameters are chosen such that in Tests A and C the well-known
Feller condition is satisfied, while in Test B it is not. The purpose of Test B is to test the
performance of the algorithms when Feller condition is not satisfied, since it is known
that when the Feller condition is not satisfied, the variance process can become zero and
numerical methods may suffer from this issue. Apart from the different settings for the
model parameters, we consider different maturities, interest rates and moneyness levels.

Table 2.2: Parameter sets for Test A, B and C.

Test A Test B Test C

Spot (S) 10 100 9
Strike (K ) 10 100 10
Interest (r ) 0.04 0.04 0.10
Exercise Times 50 50 50
Initial Vol (

p
v0) 0.5745 0.1865 0.2500

Tenor (T ) 0.25 0.25 1.00
Mean Reversion (κ) 0.80 1.15 5.00
Mean Var (η) 0.3300 0.0348 0.1600
Vol of Var (σ) 0.700 0.459 0.900
Correlation (ρ) 0.10 -0.64 0.10

2.4.1. IMPACT OF STOCHASTIC VOLATILITY ON EXPOSURE
Here it is shown that stochastic volatility clearly has an impact on exposure profiles. It is
most significant for the PFE97.5% quantile in the tests considered. We restrict the analy-
sis to Tests A and B because in Test C the mean reversion level is not equal to the initial
variance and thus it is not clear which level to use for the variance in the Black-Scholes
model. In Figure 2.2, the results are plotted for the parameters from Tests A and B. In
general, independent of the underlying dynamics, the plots show that the EE starts at
the initial option value, after that, the level drops because of the early exercise possi-
bility. The PFEs also start at the initial option value, because at this stage there is no
uncertainty, i.e. the minimum value for which the probability is higher than a specific
benchmark equals this initial value. Starting from t = 0 PFE2.5% drops to zero soon while
PFE97.5% is always higher than the EE. Due to the early exercise possibility, paths will
"terminate" i.e. exercise will take place so that more than 2.5% of the values are equal to
zero soon. With the same argument the minimum value for which 97.5% of the prices
are lower is much higher and only drops at a later stage as options at more and more
paths are being exercised.
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Figure 2.2: EE and PFE profiles under the Black Scholes and Heston model, differences are significant for 97.5%
PFE.
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Figure 2.3: Distribution of option values under Heston and Black-Scholes dynamics for Test B at exercise time
17 of 50. The PFE97.5% is shaded in red (BS) or blue (Heston) respectively, in the right plot the axes are changed
to make the boundary more clear.

When the results for the Black-Scholes dynamics are compared to the Heston dy-
namics, one can conclude that the most significant difference is for PFE97.5%, in both
cases. The difference in PFE97.5% is a factor 10 times larger than the difference for EE
and PFE2.5%. Intuitively this makes sense, due to the fact that the mean reversion level
is equal to the constant variance level in the Black-Scholes model, the EE is not heav-
ily affected. However, since the volatility is stochastic, extreme cases may occur more
frequently (with the parameters chosen), resulting in fatter tails of the distribution that
have a significant impact on PFE.

The early exercise value also depends on the volatility so that for any path, there is a
different exercise value. From Figure 2.3 it can be seen that the distribution computed
under the Black-Scholes dynamics is chopped off at a specific maximum option value,
whereas the distribution under the Heston dynamics has a smoothly varying tail. The
mass that is originally in the cut of tail in the Black-Scholes case is here located at the
left-side boundary.

For the analysis of the accuracy and convergence of the three proposed methods, we
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Figure 2.4: EE, PFE2.5% and PFE97.5%, for H = 105 paths and 50 exercise times.

concentrate on Tests B and C. The results for EE and PFE97.5% obtained for the different
methods are shown in Figure 2.4 and Table 2.3 (the results for PFE2.5% are not shown in
the table). The methods are tested on a set of H = 105 generated Monte Carlo paths. In

Table 2.3: Relative L2 difference between three methods for 105 paths. The error in approximating EE of FD is

measured by ‖EEFD −EECOS‖L2 := ∑M
m=0

(
EEFD(tm )−EESGBM(tm )

)2 /∑M
m=0

(
EECOS(tm )

)2, and by replacing
EEFD by EESGBM we define the error in approximating EE of SGBM. The measurement of error for the PFE
function for these two algorithms is also defined in this way.

Error Method Test B Test C

EE
FD 5.8864e-03 1.8966e-03

SGBM 8.0645e-03 1.4943e-03

PFE97.5%
FD 1.4133e-02 2.7113e-03

SGBM 4.5856e-03 3.9364e-03

the following subsections, the convergence and error behavior of the FDMC method and
SGBM is discussed.

2.4.2. ERROR FDMC
The error for pricing options with the finite difference method for the Heston PDE is ex-
tensively studied, see, for example, [33]. The error is mainly introduced near the bound-
aries, but can be controlled by a combination of a large number of grid points and the use
of a non-uniform grid. In all finite difference computations the grids are non-uniform,
as discussed in Section 2.3.2. The free parameter λ in (2.12) to determine the region
[λK ,K ] in the spot direction is determined depending on the quantity that is being mea-
sured: For PFE a smaller value is desired, whereas for EE the value is larger, in any case
λ ∈ [0.3,0.7]. The variance grid is very dense around the v = 0 boundary, independent of
the measured quantity. The number of grid points in spot (S) and variance (v) directions
are denoted by m1 and m2, respectively. By experimenting, we know that the numeri-
cal error is dominated by the error in spot direction, and therefore the number of grid
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points in the S direction is chosen as m1 = 2m2. With this fixed ratio, the decay in error is
measured by decreasing a generic measure∆s. If we decrease∆s by increasing the num-

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

∆s

E
r
r
o
r

(a) Test B

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

∆s

E
r
r
o
r

(b) Test C

Figure 2.5: Convergence plots by increasing the number of grid points in space for a single Bermudan option.
The relative L2 norm is used to measure the difference with the reference COS value.

ber of grid points, the numerical convergence is second-order when we price a single
Bermudan option in Test C, whereas it is almost second-order for Test B, see Figure 2.5.
The grid is chosen to be very dense in the region of the initial market parameters (S0, v0),
and the price is extracted from the grid by accurate spline interpolation.

When EE and PFE97.5% are computed, multiple prices at each exercise time are needed.
In this case, interpolation is needed for each path and exercise time which is expected to
have an impact on the error. To investigate the scale of this error the same convergence
tests are done as in the single option case. In this case the finite difference solution is
compared to the semi-analytic CMC method described in Section 2.3.4. The same ran-
dom scenarios are used for computing the EE for the CMC and the FDMC methods. As
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Figure 2.6: Convergence plots by increasing the number of grid points in space for computing EE and PFE. The
relative L2 norm is used to measure the difference with the reference value obtained by the CMC method.

shown in Figure 2.6, in both Tests B and C the convergence of the error is similar for EE
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as it is for pricing a single option. The decrease of the error is of second-order in the
number of grid points in Test C and almost second-order in Test B.

For PFE, in Test B the convergence from the start is only first-order. In this test the
Feller condition not satisfied. The mesh used in this case has a dense region around
the strike, whereas for a PFE computation the strike region is generally not of highest
relevance. To enhance the accuracy of the PFE, the non-uniform grid in S direction can
be adjusted. Because PFE and EE are mostly computed independently, a conclusion is
that measuring PFE or EE would imply using two different grids.

The convergence with respect to ∆t is not presented in this research because tests
show that the error is dominated by the spatial error.

2.4.3. ERROR SGBM
Here we focus on the convergence of SGBM regarding the option value, the EE and PFE.
We use five basis functions (including the constant) for local regression defined in Equa-
tion (2.13). In the recursive bifurcation bundling method, an essential property is that
the number of bundles must be of the form 4 j , j = 0,1,2 . . . , for details we refer to [50].
The bundling scheme is slightly adapted to deal with the two-dimensional Heston dy-
namics.

In the tests, a large number of paths H = 105 and bundles J are chosen.
In Section 2.3.3, we have explained two ways of calculating the option value at time

t0. One way is to estimate the coefficient set over all paths at time t1 and to apply regres-
sion at time t0 (the so-called direct estimator); the other is to store the optimal strategy
and take the mean of the discounted cash flow (the so-called path estimator):

• The results calculated directly from the set of Monte Carlo paths are called direct
estimator results;

• The results calculated by the second set of paths, but with the coefficients from the
first set of paths are called the path estimator results.

The numerical results for the path estimator should be similar to the results for the direct
estimator. Table 2.4 presents the difference between the direct estimator and the path
estimator for EE and PFE. Again the error is measured in the relative L2 norm. We see
that the difference between the two results is only of order 10−3.

Table 2.4: The difference between the direct estimator and path estimator for EE and PFE. The number of
bundles equals 44 and the number of paths is 105.

EE PFE

Test B 2.8541e-03 6.3035e-03
Test C 1.9462e-03 5.9252e-03

The option value is the maximum value obtained among all possible stopping rules,
indicating that the option value calculated by the "optimal" strategy will be less than
or equal to the true option value. This provides a criterion for convergence. The result
calculated by the optimal strategy will be the lower bound of the Bermudan option value.
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We examine the convergence of the Bermudan option value w.r.t the number of bun-
dles for SGBM. The tests are done for ten simulations, and the results are presented in
Figure 2.7. We take the regression results of the direct estimator and the results of the
optimal strategy of the path estimator for comparison. As we can see, in both Tests B
and C, the results of the path and the direct estimators resemble each other better when
the number of bundles increases. The two results are very close to the COS reference
value for β= 44, see Table 2.5.
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Figure 2.7: Convergence with respect to the number of bundles J = {
1,4,42,43}

, for the Bermudan option
value; the total number of paths H = 105; the reference value in Test B equals 3.2066 and in Test C 1.4990.
The red dashed line is the direct estimator, blue is the COS reference value, and the black dashed line the path
estimator.

Table 2.5: The difference between the direct and the path estimator for a Bermudan option value when the
number of bundles equals 44. The results are computed via ten simulations (s.e. is standard deviation).

COS(reference) Direct estimator(s.d.) Path estimator(s.d.)

Test B 3.2066 3.2091(2.8613e-03) 3.1924(1.3768e-02)
Test C 1.4990 1.4964(7.2086e-04) 1.4926(3.0376e-03)

In addition to the convergence of the Bermudan option value, we examine the con-
vergence of EE and PFE in Figure 2.8. The results of the CMC method are used as the
reference values. With the same set of 105 generated paths, we increase the number of
bundles from 1 to 44 for the calculation by the SGBM method. It shows that the error
decreases when increasing the number of bundles.

The convergence of the EE and PFE, w.r.t the number of paths, is examined in Figure
2.9. We choose the number of bundles equal to 43, and increase the average number
of paths in each bundle. The differences of EE and PFE between direct estimator and
path estimator are compared. The average number of paths in each bundle is increased
from 25 to 2000. It shows that the difference between the path and the direct estimator
decreases when the average number of paths in each bundle (i.e. the total number of
paths) increases.
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Figure 2.8: Convergence with respect to the number of bundles J = {
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; the total number of paths
equals H = 105.
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Figure 2.9: Convergence with respect to the number of paths within each bundle HJ = H/J ; the number of
bundles is fixed J = 43. We increase the total number of path from 50J to 2000J , i.e. the average number of
paths HJ within each bundles is increased from 50 to 2000. The grey line indicates an asymptotic convergence
with 1/

√
HJ .

These results support the fact that SGBM converges (to the reference values) for
Bermudan options, EE and PFE97.5%.

2.5. CONCLUSIONS
In this chapter, three different approaches for computing exposure profiles within the
context of counterparty credit risk are presented. The underlying asset exposure is driven
by the Heston stochastic volatility model and Bermudan put options are priced. In all
three methods scenarios are generated by a Monte Carlo scheme and exposure values
are computed at each path at each exercise time. The pricing procedure is done by ei-
ther the FDMC method, SGBM or the CMC method.
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The CMC method is a combination of the Monte-Carlo method and the COS method
which can be used for computing exposures. We adapt the COS method to make it
more general and thereby applicable to a wide range of possible states (Sm , vm), while
maintaining its high accuracy. This comes at the cost of computational speed (under
the Heston dynamics, particularly when the Feller condition is not satisfied). However,
considering its high accuracy, this method is used as a benchmark value to analyze the
accuracy and convergence of EE and PFE computed by FDMC and SGBM. By using this
benchmark, it is shown that the FDMC, SGBM and CMC methods agree for multiple
tests.

As a first result, it is shown that the impact of stochastic volatility on exposure profiles
is more significant for its right-tail than for its mean. Whereas the distribution computed
under the Black-Scholes dynamics suffers from the tail being chopped off at a certain
maximum option value boundary, under the Heston dynamics this feature is not present.

Because any finite difference solution generates option values for an entire grid of
underlying values, the FDMC method is promising. The computation time in this method
is dominated by the computation of the solution on the grids at each exercise time. When
these are stored, the EE computation boils down to a interpolation procedure for all
paths at each exercise time. By using the COS method as a benchmark, it is shown that
the error introduced by the interpolation is negligible. Compared to the CMC method,
the error is within the range of 10−3.

SGBM has been extended to the Heston model for computing exposures. We test the
convergence of SGBM w.r.t the number of paths and the number of bundles in several
ways. For the considered tests, the computation of EE and PFE shows to be highly ac-
curate with an error compared to CMC in the order of 10−3. SGBM is an efficient Monte
Carlo method when valuing exposure distributions along a time horizon.



CHAPTER 3

Pricing CCR of options under Heston Hull-White model

Inclusion of various market factors in the asset dynamics, such as stochastic asset volatil-
ity and stochastic interest rates, increases the computational complexity for computing
exposure profiles. In this chapter, we will extend the Black-Scholes model by adding
the stochastic interest rate and the stochastic volatility. First of all, we explain the back-
ward dynamics framework for assessing the exposure profiles of European, Bermudan
and barrier options under the Heston and Heston Hull-White asset dynamics. Then, we
demonstrate the potential of SGBM for exposure computation. In addition, the sensi-
tivity of the EE profile can be easily obtained in the SGBM algorithm. Assuming inde-
pendence between the default event and exposure profiles, we give here examples of
calculating exposure, CVA and sensitivities for Bermudan and barrier options.

3.1. INTRODUCTION
In Chapter 2, we have presented SGBM under the Heston’s model using monomials of
log-stock dynamics. In this chapter, we will further improve the accuracy of SGBM by
using multi-variable monomials. We will provide a more general framework for SGBM
under multi-dimensional models.

We will show the impact of adding stochastic volatility and stochastic interest rates
on the metrics of future losses (i.e. CVA, EE, PFE). A stochastic volatility may explain
the implied volatility surface observed in the derivatives market (such as the volatility
smile) [43], and uncertainty in the interest rate may give a significant contribution to
the price, especially of long-term financial derivatives [62]. The hybrid model chosen to
model these stochastic quantities here is the Heston Hull-White model [39].

The flexibility of SGBM is demonstrated by placing the computation of exposure pro-
files, for different option types under different asset dynamics, in a general unifying
framework based on backward recursion. The options considered include European,
Bermudan and barrier options.

The reminder of the chapter is structured as follows: Section 3.2 provides affine dif-
fusion models and approximations for the underlying dynamics. Section 3.3 describes
the backward dynamics for calculation of the exposure of options, and their exposure
sensitivities. In Section 3.4, we present the SGBM algorithm for this purpose. The choice
of basis functions and the derivation of the discounted moments is presented there, as
well as a simple bundling technique that ensures the accuracy of the local, bundle-wise,

This chapter is based on the article ’Calculation of exposure profiles and sensitivities of options under the Hes-
ton and the Heston Hull-White models’, published in Recent Progress and Modern Challenges in Applied Math-
ematics, Modeling and Computational Science, Fields Institute Communications series, volume 79, 2017 [32].
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regression in SGBM. In Section 3.5, numerical results are presented to show the conver-
gence and efficiency of the method, and the impact of the stochastic interest rate and
stochastic volatility on the exposure metrics is studied.

3.2. MODELS
We will present the models with stochastic volatility and stochastic interest rate for the
underlying asset in this section.

3.2.1. BLACK-SCHOLES HULL-WHITE MODEL AND HESTON MODEL
The famous Black-Scholes option pricing partial differential equation (PDE) [9] is based
on the assumptions that the asset price follows a geometric Brownian motion with con-
stant volatility and constant interest rate. We first relax the assumption of constant inter-
est rate by a stochastic instantaneous short-rate rt . In practice, interest rates vary over
time and by tenor T , as observed in the zero coupon bond curves in the market [13]. The
instantaneous forward rate at time t for a maturity T > t is defined by:

f M (t ,T ) :=−∂ logP (t ,T )

∂T
, (3.1)

where P (t ,T ) is the price of the zero-coupon-bond (ZCB).
The characterization of the term structure of interest rates is well-known from Va-

sicek [85], Cox, Ingersoll, and Ross [22], and Hull and White [44].
In this chapter, we will also employ the Black-Scholes Hull-White hybrid (BSHW)

model. Under risk-neutral measureQ, the dynamics of the model Xt = [X t ,rt ]T are given
by the following SDEs [13]:

d X t =
(
r − 1

2
σ2

)
d t +σdW X

t ,

drt = λ(θ(t )− rt )d t +ηdW r
t , (3.2)

where X t = log(St ) represents the log-asset variable; the two correlated Wiener processes

(W X
t ,W r

t ) are defined by W X
t = W̃ (1)

t and W r
t = ρx,r W̃ (1)

t +
√

1−ρ2
x,r W̃ (2)

t , where W̃ (1)
t and

W̃ (2)
t are two independent standard Wiener processes under measure Q and |ρx,r | < 1

is the instantaneous correlation parameter between the asset price and the short rate
process; positive parameters σ and η denote the volatility of equity and interest rate, re-
spectively; the drift term θ(t ) is a deterministic function chosen to fit the term structure
observed in the market, which must satisfy:

θ(t ) = f M (0, t )+ 1

λ

∂

∂t
f M (0, t )+ η2

2λ2 (1−exp(−2λt )). (3.3)

Another way of extending the Black-Scholes model is to define the variance as a dif-
fusion process, like in the stochastic volatility model developed by Heston [43]. With
state variable Xt = [X t , vt ]T , the Heston model is given by:

d X t =
(
r − 1

2
vt

)
d t +p

vt dW X
t ,

d vt = κ(v̄ − vt )d t +γpvt dW v
t , (3.4)



3.2. MODELS

3

59

where r is a constant interest rate; the two correlated Wiener processes (W X
t ,W v

t ) are

defined by W X
t = W̃ (1)

t and W v
t = ρx,v W̃ (1)

t +
√

1−ρ2
x,v W̃ (3)

t , where W̃ (1)
t and W̃ (3)

t are two
independent standard Wiener processes under measure Q and |ρx,v | < 1 is the instan-
taneous correlation parameter between the asset price and the variance process; the
constant positive parameters κ, v̄ , γ determine the reverting speed, the reverting level
and vol-of-vol parameters, respectively. The associated PDE can be found in [43, p.329].

3.2.2. HESTON HULL-WHITE MODEL AND H1HW MODEL

Consider a state vector including all these stochastic quantities, i.e. Xt = [X t , vt ,rt ]T .
The corresponding model can be defined by adding a HW interest rate process to the
Heston stochastic volatility dynamics, as presented in [39]. The hybrid model of the eq-
uity, stochastic Heston asset volatility and stochastic interest rate is represented by the
following SDEs:

d X t =
(
rt − 1

2
vt

)
d t +p

vt dW X
t ,

d vt = κ(v̄ − vt )d t +γpvt dW v
t ,

drt = λ(θ(t )− rt )d t +ηdW r
t , (3.5)

where the correlated Wiener processes (W X
t ,W v

t ,W r
t ) are defined by W X

t = W̃ (1)
t , W v

t =
ρx,v W̃ (1)

t +
√

1−ρ2
x,v W̃ (2)

t , W r
t = ρx,r W̃ (1)

t − ρx,vρx,r√
1−ρ2

x,v

W̃ (2)
t +

√
1−ρ2

x,v−ρ2
x,r

1−ρ2
x,v

W̃ (3)
t , in which W̃ (1)

t ,

W̃ (2)
t and W̃ (3)

t are three independent standard Wiener processes under the risk-neutral
measure Q, and ρx,v and ρx,r are correlation parameters that satisfy ρ2

x,v +ρ2
x,r < 1; the

parameters λ, θ(t ), η are as in (3.2), and κ, v̄ and γ are as in (3.4); the initial values satisfy
r0 > 0 and v0 > 0.

The Heston Hull-White (HHW) SDE system in (3.5) is not affine. Conditional on in-
formation at time t , the symmetric covariance matrix at time s > t is given by:

σ̃ (Xs ) σ̃T (Xs ) =
vs ρx,v vs

p
vsηρx,r

∗ γ2vs 0
∗ ∗ η2

 , (3.6)

where the term
p

vs is not linear. Grzelak and Oosterlee in [39] approximated the covari-
ance matrix in (3.6) by

σ̃ (Xs ) σ̃T (Xs ) ≈
vs ρx,v vs E

[p
vs

∣∣vt
]
ηρx,r

∗ γ2vs 0
∗ ∗ η2

 , (3.7)

where the term
p

v s is approximated by its conditional expectation E
[p

vs
∣∣vt

]
, for which

an analytic formula is given by:

E
[p

vs
∣∣vt

]=√
2c̄(s − t )exp

(
− λ̄(s − t , vt )

2

) ∞∑
k=0

1

k !

(
λ̄(s − t , vt )

2

)k Γ
(

1
2 + 2κv̄

γ2 +k
)

Γ
(

2κv̄
γ2 +k

) , (3.8)
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where Γ is the Gamma function, and the coefficients c̄ and λ̄ are given by

c̄(s − t ) = γ2

4κ
(1−exp(−κ(s − t ))),

λ̄(s − t , vt ) = 4κvt

γ2 · exp(−κ(s − t ))

(1−exp(−κ(s − t ))
. (3.9)

This affine approximation of the HHW model with covariance (3.7) is called the H1HW
model, and details can be found in [39].

3.3. EXPOSURE PROFILE OF OPTIONS
We will study the CVA, EE and PFE of several types of options to show the flexibility of
SGBM. We present the backward valuation dynamics framework for European, Bermu-
dan and barrier options in this section. Let the collection of equally-spaced discrete
exposure monitoring dates be:

T = {0 = t0 < t1 < ·· · < tM = T,∆t = tm+1 − tm},

with T the expiration of the option.
The options will be valued at so-called monitoring dates to determine the exposure

profiles over the life of the contract. The payoff of an option contract is the amount re-
ceived from exercise of the option. In this chapter, we study the stock option, i.e. the
underlying asset refers to the shares of some company. The received payoff from imme-
diate exercise of the option at time tm is given by

g (Xm) =
{

max
(
exp(Xm)−K ,0

)
, for a call;

max
(
K −exp(Xm) ,0

)
, for a put,

(3.10)

where K is the strike value and Xm represents the log-asset variable at time tm .
The continuation value of the option at time tm can be expressed by the conditional

expectation of the discounted option value at time tm+1, i.e.

c(tm ,Xm) := EQ
[

Bm

Bm+1
V (tm+1,Xm+1)

∣∣∣Xm

]
, (3.11)

where Xm is the state variable at time tm , and V (tm+1,Xm+1) is the option value at time
tm+1.

3.3.1. BERMUDAN OPTIONS
Bermudan options can be exercised at a series of time points before expiry date T . De-
note the set of early-exercise dates by

TB = {T1 < T2 < . . . < TN }.

In this chapter, those early exercise dates are included in the collection of the mon-
itoring dates, i.e. TB ⊂ T , and we will further study the value of the option between
two early-exercise dates. The exposure of the option between two early exercise dates
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does not have any impact on the option value at time zero, but these values can make
significant contributions to CVA.

Assume that the option holder is not influenced by the credit quality of the option
writer when making the exercise decision. The option value at time t = 0 is equal to
the expected payoff when exercising the option optimally. The essential idea of pricing
Bermudan options by simulation is to determine the optimal exercise strategy. At each
exercise date, the option holder compares the received payoff from immediate exercise
with the expected payoff from continuation of the option to determine the optimal exer-
cise strategy. The dynamics of pricing Bermudan options in backward induction derived
by the Snell envelope [29, 64] can be expressed by:

V Berm(tm ,Xm) =


g (XM ) for tM = T,

max
(
c(tm ,Xm), g (Xm)

)
, for tm ∈TB ,

c(tm ,Xm), for tm ∈T −TB .

(3.12)

3.3.2. EUROPEAN OPTIONS
Similar to pricing Bermudan options, the exposure profile of a European option can be
determined based on simulation. The European option value at time T equals the re-
ceived payoff V Euro(tM ,XM ) = g (XM ); at time points tm < T , the value of the European
option is equal to the discounted conditional expected payoff, i.e.,

V Euro(tm ,Xm) := EQ
[

Bm

BM
g (XM )

∣∣Xm

]
, (3.13)

where g (XM ) is the received payoff at time tM = T . By the tower property of expectations,
it can be calculated in a backward iteration as:

V Euro(tm ,Xm) = EQ
[

Bm

Bm+1
EQ

[
Bm+1

BM
g (XM )

∣∣Xm+1

]∣∣∣Xm

]
= EQ

[
Bm

Bm+1
V Euro(tm+1,Xm+1)

∣∣∣Xm

]
= c(tm ,Xm), (3.14)

with m = M −1, . . . ,0.

3.3.3. BARRIER OPTIONS
Barrier options become active/knocked out when the underlying asset reaches a pre-
determined level, i.e. the barrier level. There are four main types of barrier options:
up-and-out, down-and-out, up-and-in, down-and-in options. Here we focus on the
down-and-out barrier options. A down-and-out barrier option is active initially and gets
knocked out (looses its value except for some rebate value) when the underlying hits
the barrier; otherwise if the option is not knocked out during its lifetime, the holder will
receive the payoff value at the expiry date T . The backward pricing dynamics of the
down-and-out barrier options are thus given by [29],

V barr(tm ,Xm) =
{

g (Sm) ·1({Sm > Lb})+ rb ·1(Sm ≤ Lb), for tM = T,

c(tm ,Xm) ·1(Sm > Lb)+ rb ·1(Sm ≤ Lb), for tm < T,
(3.15)
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where 1 (·) is the indicator function, Lb is the barrier level and rb is the rebate value.
In short, in order to compute the exposure profiles in these option contracts, we must

be able to compute the continuation value at each monitoring date, which is defined via
the risk-neutral expectation. We have already presented the SGBM algorithm in Chap-
ter 1, and in the following section, we will present the computation of exposure on the
simulated scenarios.

3.3.4. EXPOSURE OF OPTIONS BASED ON MONTE CARLO
Monte Carlo simulation plays a primary role in computing CVA. We present the general
procedure of determining the exposure profiles on the simulated paths.

• Generate H independent scenarios under the given risk-neutral dynamics for each
monitoring date in T with the same initial value, and denote the scenarios by{

x̂1,h , x̂2,h , . . . , x̂M ,h
}H

h=1;

• Valuation of exposure profile, and denote the exposure value on the h-th path at
time tm by Em,h , h = 1, . . . , H . The exposure is computed by

Em,h =
{

0, if the option is exercised or knocked out,

c(tm , x̂m,h), if the option is continued.
(3.16)

• Compute the average and the 97.5% quantile of the exposure distribution at each
time tm ∈T .

Assuming independence of exposures and defaults, CVA can be computed by the follow-
ing discrete formula:

CVA ≈ LGD
M−1∑
m=0

1

H

H∑
h=1

(
exp

(
−

m−1∑
k=0

rk,h∆t

)
Em,h

)
(PD(tm+1)−PD(tm)), (3.17)

with rk,h the simulated risk-neutral short rate at time tk on the h-th scenario.
Similarly, the value at time tm of the EE and PFE functions can be approximated by:

EEQ(tm) ≈ 1

H

H∑
h=1

Em,h ,

PFEQ(tm) ≈ quantile(Em,h ,97.5%). (3.18)

The key problem is to calculate the continuation values on each path in the backward
algorithm at each monitoring time tm < T , m = 0,1, ..., M−1. SGBM combines regression
and bundling techniques to compute these expected values.

3.4. THE STOCHASTIC GRID BUNDLING METHOD
In this section, we extend SGBM for computation to multi-dimensional cases. We present
the choice of basis functions based on multi-variables. In addition, since the interest
rate may be stochastic in this chapter, discounted moments are required for comput-
ing conditional expectations. We present a bundling method that is proper for multi-
dimensional models. The convergence of SGBM for this problem is also discussed.
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3.4.1. CHOICE OF BASIS FUNCTIONS
In Chapter 2, we chose to use the monomials of the log-asset variables as the basis func-
tions. In this chapter, we will improve the accuracy of the approximation by using mono-
mials of the underlying multi-variables under the given dynamics.

For the polynomial space, it is natural to take monomials as the basis, as all mono-
mials with order lower or equal to any degree d ∈N can form a closure. The discounted
moments are defined as the discounted expectations of monomials up to order d , ex-
pressed by

ψk (Xm , tm , tm+1) = EQ
[

exp

(
−

∫ tm+1

tm

rs d s

)
(Xm+1)k

∣∣∣Xm

]
, Xm+1 ∈Rn , (3.19)

with the multi-index notation k = (k1,k2, . . . ,kn), and the sum of components 0 ≤ |k| ≤ d .
These discounted moments of affine-diffusion processes of any order can be ex-

pressed in closed form, as we have presented in (1.29) of Chapter 1. We let the discount
rate in (1.29) be the risk-free short rate, i.e. q(Xt ) = rt . The discounted ChFs of the three
models considered are presented in the appendix in this chapter. For the HHW process,
we base them on the H1HW approximate model.

Table 3.1 presents the monomial basis set for the hybrid models discussed with de-
gree d = {1,2,3}.

Table 3.1: The monomial basis for the hybrid models.

order d Heston BSHW HHW →H1HW

1 {1, X t , vt } {1, X t ,rt } {1, X t , vt ,rt }
2 {1, X t , vt , X 2

t , X t vt , v2
t } {1, X t ,rt , X 2

t ,X t rt ,r 2
t } {1, X t , vt ,rt , X 2

t , X t vt ,
v2

t , X t rt ,r 2
t , vt rt }

3 {1, X t , vt , X 2
t , X t vt , v2

t ,
X 3

t , X 2
t vt , X t v2

t , v3
t }

{1, X t ,rt , X 2
t , X t rt ,r 2

t ,
X 3

t , X 2
t rt , X t r 2

t ,r 3
t }

The monomial basis grows rapidly with the dimension of the state variable n and the
polynomial order d . In the algorithm of SGBM, bundling will enhance the accuracy and
thus a lower degree d can be employed to achieve a certain accuracy level, as we will see
in the numerical section 3.5.

3.4.2. A BUNDLING METHOD
We introduce a technique for making bundles in SGBM such that there is an equal num-
ber of paths within each bundle. It is called the equal-number bundling technique. The
same technique of clustering paths is found in [20, 63]. The advantages of this bundling
technique are that the number of paths within each bundle will grow in proportion to
the number of paths, and that there will be a sufficient number of paths for regression
when the total number of paths is large.

We use the Heston model to present the bundling technique, where the 2D state vec-
tor is denoted by Xt = [X t , vt ]T . First, all paths are sorted w.r.t. their log-asset values, and
clustered into J1 bundles with respect to their ranking, ensuring that within each bun-
dle, the number of paths is equal to N

J1
; subsequently, within each bundle we perform
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a second sorting stage w.r.t. the variance values and cluster the paths into J2 bundles.
After these two iterations, the total number of bundles will be J = J1 · J2.

The two steps are visualized in Fig. 3.1, where scatter plots demonstrate the 2D do-
main for the Heston model, at some time instant tm . In plot (a), the paths are first clus-
tered into 8 bundles w.r.t. the values of the log-asset, while in plot (b), the paths within
each bundle are again clustered into 2 bundles w.r.t. the value of the variance. The total
number of bundles is thus 16.
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(a) First iteration, J1
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nc

e

(b) Second iteration, J2

Figure 3.1: Equal-number bundling. Each colored block represents a disjoint subdomain Im, j .

In a similar way, paths simulated under the HHW model can be clustered by the real-
ized values of the log-asset (X t ), variance (vt ) and interest rate (rt ) values, in this order.
We denote the number of bundles in these three dimension by J1, J2 and J3, and the total
number of bundles J = J1 · J2 · J3.

There are other bundling approaches such as the recursive-bifurcation-method and
the k-means clustering method, used in [50]. For our specific multi-dimensional prob-
lems, however, using the recursive-bifurcation-method will give rise to too few paths
within some bundles when the correlation parameter ρ is close to 1 or −1, no matter
how large the total number of paths is. This problem will not occur if we use the equal-
number bundling technique. In addition, it is easy to implement and fast for computa-
tion compared to the k-means clustering method.

3.4.3. CALCULATION OF THE CONTINUATION VALUES

At time tm < T , the generated paths are clustered into some non-overlapping bundles

using a bundling method. The indices of the paths in the j -th bundle are in a set B
j
m ,

j = 1,2, ..., J , where J is the number of bundles. The realizations x̂m,h of the state vector

Xm within the j -th bundle form a bounded domain D
j
m ⊂ Rn , when m = 1,2, . . . , M −1,

given by

D
j
m =

n∏
l=1

[
max

h∈B
j−1
m

(
x̂(l )

m,h

)
, max

h∈B
j
m

(
x̂(l )

m,h

)]
, (3.20)
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where x̂(l )
m,h represents the l -th dimension of the realization x̂m,h , and j = 2,3, ..., J . When

j = 1 we define the domain D1
m =

n∏
l=1

[
min

h∈B1
m

(
x̂(l )

m,h

)
, max

h∈B1
m

(
x̂(l )

m,h

)]
.

We assume that the option function V (tm+1, ·) is an element of the L2 space, i.e. it
is square-integrable with some measure. Suppose that we have the values of this option
function on all paths, denoted by v̂m+1,h , n = 1,2, ..., N . With the chosen set of basis
functions

{
(Xm+1)k , |k| = 0,1, . . . ,d

}
in L2, the option function can be approximated by a

linear combination of the basis functions in least squares sense:

V (tm+1,Xm+1) ≈
d∑

|k|=0
β

m, j
k (Xm+1)k , (3.21)

where βm, j
k are the coefficients at time tm for the basis (Xm+1)k within the j -th bundle

B
j
m , which is the solution of minimizing the sum of squared residuals, given by

{
β

m, j
k , |k| = 0,1, . . . ,d

}
= argmin

bk∈R

∑
h∈B

j
m

(
v̂m+1,h −

d∑
|k|=0

bk (Xm+1)k

)2

. (3.22)

Hence the continuation function on the bounded domain D
j
m can be approximated

by a linear combination of the conditional expected discounted basis functions defined
by:

c2(tm ,Xm) := EQ

[
Bm

Bm+1

d∑
|k|=0

β
m, j
k (Xm+1)k

∣∣∣Xm

]

=
d∑

|k|=0
β

m, j
k ψk (Xm , tm , tm+1), (3.23)

whereψk is the k-th moment discounted at the interest rate r over the period [tm , tm+1].
We will approximate the ’true’ continuation function c(tm , ·) given in equation (3.11)

by the function c2(tm , ·) defined in equation (3.23) on the bounded domain D
j
m . Since

we have analytic formulas of {ψk }d
|k|=0 defined in (3.19), the continuation value on the

h-th path within the j -th bundle can be easily computed by:

c(tm , x̂m,h) ≈ c2(tm , x̂m,h) =
d∑

|k|=0
β

m, j
k ψk (x̂m,h , tm , tm+1). (3.24)

In addition, we will show that the error of approximation of the continuation func-
tion at time tm is bounded by the error of approximation of the option function at time
tm+1 in section 3.4.5.

3.4.4. APPROXIMATING THE SENSITIVITIES OF EE
The sensitivities Delta (∆EE) and Gamma (ΓEE) of EE w.r.t. the change of the underlying
asset price S0 = exp(X0) can be computed in the same backward algorithm for the com-
putation of the exposure profile. At time tM = T , we simply assign value zero to these
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derivatives of the EE function. At time tm < T , the sensitivities can be computed by:

∆EE(tm) := ∂EE

∂S0
(tm) ≈ 1

H

H∑
h=1

∂E

∂xm

(
tm , x̂m,h

) · 1

S0
,

ΓEE(tm) := ∂2EE

∂S2
0

(tm) ≈ 1

H

H∑
h=1

(
∂2E

∂X 2
m

(
tm , x̂m,h

)− ∂E

∂Xm

(
tm , x̂m,h

)) · 1

S2
0

, (3.25)

where Xm = log(Sm) represents the log-asset value at time tm . The formulas of the
derivatives in (3.25) are detailed here. At time tm , the first derivative of the EE function
can be computed by

∂EE

∂S0
(tm) ≈ 1

H

H∑
h=1

∂E

∂S0
(tm , x̂m,h), (3.26)

by the chain rule,
∂E

∂S0
(tm , x̂m,h) = ∂E

∂Xm
· ∂Xm

∂Sm
· ∂Sm

∂S0
(tm , x̂m,h), (3.27)

where Xm := log(Sm), and
∂Xm

∂Sm
= 1

Sm
,

∂Sm

∂S0
= Sm

S0
. (3.28)

The second equation in (3.28) can be derived as follows. We take as an example, that the
asset value log(St ) follows an Ito process as follows:

d logSt =µt d t +σt dWt . (3.29)

By integrating both sides, we obtain

St = S0 exp

(∫ t

0

(
µs d s +σs dWs

))
, (3.30)

hence the derivative of St w.r.t. S0 can be expressed by

∂St

∂S0
= exp

(∫ t

0

(
µs d s +σs dWs

))= St

S0
. (3.31)

So, the first derivative of the EE function can be expressed as

∂EE

∂S0
(tm) ≈ 1

H

H∑
h=1

∂E

∂Xm
(tm , x̂m,h)

1

S0
. (3.32)

From (3.32), the second derivative can be derived by

∂2EE

∂S2
0

(tm) ≈ 1

H

H∑
h=1

(
∂2E

∂X 2
m

(tm , x̂m,h)− ∂E

∂Xm
(tm , x̂m,h)

)
1

S2
0

. (3.33)

For those paths on which the option is alive at time tm , the first and the second
derivatives of the exposure function are given by

∂E

∂Xm
:= ∂c

∂Xm
≈

d∑
|k|=0

β
m, j
k

∂ψk

∂Xm
,

∂2E

∂X 2
m

:= ∂2c

∂X 2
m

≈
d∑

|k|=0
β

m, j
k

∂2ψk

∂X 2
m

, (3.34)
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with the same coefficient set
{
β

m, j
k

}d

|k|=0
as in (3.23), j ∈Bm, j ;

For those paths at which the option has been exercised or knocked out at time tm ,
the derivatives of EE are given value zero, as the exposure values on these paths are zero.

3.4.5. CONVERGENCE RESULTS
The so-called direct estimator is obtained in the backward algorithm by regression [50].
With convexity of the ’max’ function, it can be proven by induction that the direct esti-
mator is often higher than the true value with some bias, and that the direct estimator
converges to the option value as the number of bundle and the number of paths within
each bundle go to infinity. See Theorem 2 and Theorem 4 in [50].

In addition, an estimator can be made based on the average cash flow of a second
set of paths, referred to as the path estimator. Using the coefficients obtained by regres-
sion based on one set of paths, an approximation of the optimal early exercise strategy
of another set of paths can be made by comparing values of continuation and values of
immediate exercise. The path estimator is often a lower bound of the option value, con-
verging almost sure as the number of paths goes to infinity [50], since the option value
computed by the optimal early exercise strategy is the supremum of the option value at
time t = 0 by definition. Details of the proof can be found in [50, 64].

For European and barrier options, one can take the discounted average of the MC
paths as the reference. For Bermudan options, the direct and path estimators provide a
conservative confidence interval for the true option value [50]:[

V path
0 −1.96

ŝpathp
Ns −1

,V direct
0 +1.96

ŝdirectp
Ns −1

]
, (3.35)

where ŝpath and ŝdirect are the sample standard deviations for the path and direct esti-

mator, respectively, and V path
0 and V direct

0 are the sample means of the path and direct
estimators, respectively; these sample means and sample standard deviations are based
on Ns independent trials.

The approximation of the option function converges as the number of paths, the
number of basis functions and the number of bundles go to infinity, as we have pre-
sented in Chapter 1 for a model case. The option function can be approximated well by a
piece-wise function, even with a low order d = 1. This advantage of the SGBM approach
will reduce the computational effort when the dimensionality increases. It ensures the
accuracy of the computed continuation values by SGBM on each path, which is impor-
tant for computing exposure profiles.

3.5. NUMERICAL TESTS
In this section, we will analyze the convergence and accuracy of SGBM for the Heston
and the HHW models, respectively w.r.t. the following quantities:

• the value of the option at time t = 0;

• the EE and PFE quantities over time [0,T ];

• the sensitivities w.r.t. S0 of the EE function over time [0,T ].
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The convergence of SGBM for the computation of Bermudan options can be checked
by comparing the direct and path estimators. The reference values for European and
barrier options can be computed by averaging discounted cash flows for a very large
number of paths.

In addition, the COS method can be connected to the MC method [79] for reference
values. Under the Heston model, the COS method in [29] can be used to calculate option
values and corresponding Greeks at time t = 0 for Bermudan and barrier options. By the
MC COS method exposure profiles, quantities and sensitivities of the EE function can be
computed at monitoring date tm . We use quantities computed by the COS method as
the reference values for EE, PFE and sensitivity functions under the Heston model1.

The Quadratic Exponential (QE) scheme is employed for accurate simulation of the
Heston volatility model [2]. CVA is computed here via formula (3.17) with LGD= 1. The
survival probability function is assumed to be independent of exposure with a constant
intensity , expressed by PD(t ) = 1−exp(−0.03t ) over the period [0,T ].

3.5.1. THE HESTON MODEL
The parameters for the Heston model in (3.4) are chosen as

Test A: S0 = 100, r = 0.04, K = 100, T = 1; κ = 1.15, γ = 0.39, v̄ = 0.0348, v0 = 0.0348,
ρx,v =−0.64, where the Feller condition is not satisfied.

We choose a large number of MC paths, N = 2 ·106 and a relatively small time step
size ∆t = 0.05. The paths will be clustered into J1 = 2 j , J2 = 2 j , j = 1,2,3,4 bundles. The
monomial basis in SGBM is of order d = {1,2,3}. The number of paths is chosen large
as we wish to compare the convergence and accuracy using the same set of simulated
scenarios for different choices of the number of bundles J and degree p. The number
of paths can be greatly reduced in real-life CVA computations because SGBM typically
exhibits low variances compared to LSM.

We consider a Bermudan put option under the Heston model with parameter Test A,
with 10 equally-spaced exercise dates till T = 1.

Figure 3.2(a) shows that the direct and path estimators converge to the option value
when increasing the number of bundles (J ) and the order of the monomial basis (d), as
expected. Monomial basis d = 3 enhances the convergence speed compared to d = 2 or
d = 1. Figure 3.2(b) confirms this by showing the difference in the computed EE of the
direct and path estimators, where the difference is measured in the relative L2 norm2.

In Fig. 3.3, we present the accuracy of SGBM for the exposure quantities, EE, PFE
and sensitivities of EE, by comparing to reference values by the MC COS method based
on the same set of MC paths. Increasing the number of bundles J and/or the order of
the monomial basis d enhances the accuracy of the results, as expected. In particular, a
basis of order d = 2 achieves the same level of accuracy as order d = 3 with twice more

1In the MC COS method, we use 400 Fourier terms, and 400 grid points in volatility direction; the COS param-
eter for the integration domain size is set to L = 12 for calculating the reference values.

2 The relative L2 norm is defined by:

‖EEdi r ect −EEpath‖L2

‖EEdi r ect ‖L2
=

√∑M
m=0

(
EEdi r ect (tm )−EEpath (tm )

)2

√∑M
m=0

(
EEdi r ect (tm )

)2
. (3.36)
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bundles. By increasing the number of bundles, we can thus employ a monomial basis of
lower order, which is an important insight.

Table 3.2 presents option values as well as CVA and sensitivities computed by SGBM
plus the corresponding reference values. We see that the direct estimators have smaller
variances compared to the path estimators.
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(b) Error in EE

Figure 3.2: Convergence of the Bermudan option value and the EE w.r.t. J - the number of bundles and d - the
order of the basis functions, by comparing the direct and path estimators. Strike K = 100, expiry date T = 1
and exercise times 10. The total number of paths N = 2 ·106.

Table 3.2: Results of a Bermudan put option under the Heston model. Strike K = 100, expiry date T = 1 and
exercise times 10. The total number of paths H = 2 ·106, and the order d = 2 and the bundle number J = 28.

Bermudan option under the Heston model

quantities direct estimator(std.) path estimator(std.) COS

V (0) 5.486 (0.000) 5.488 (0.005) 5.486
∆EE(0) -0.329 (0.000) - -0.328
ΓEE(0) 0.022 (0.000) - 0.025

CVA 0.093 (0.000) 0.093 (0.000) 0.093 (0.000)

In addition, Fig. 3.4 presents the convergence of SGBM based on basis functions of
lower order, d = 1, where we increase the number of bundles to 46. The conclusion in
Chapter 1, that when the size of a bundle approaches zero, the bias caused by approx-
imating a continuous function by a simple linear function goes to zero, is confirmed.
This is one advantage of SGBM compared to LSM. We need fewer basis functions by us-
ing bundles.

We also consider a down-and-out put barrier option with strike K = 100. The option
is knocked out when the asset value reaches barrier level Lb = 0.9K before the maturity
T = 1. After being knocked out, an investor receives a rebate value, rb = 10; otherwise
the investor receives the payoff at time T = 1. We present these quantities computed by
SGBM and the corresponding reference values in Table 3.3.
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Figure 3.3: Convergence of the EE, PFE and sensitivities, w.r.t. J - the number of bundles and p - the order of
basis functions for a Bermudan put option; the reference is generated by the MC COS method. Strike K = 100,
expiry date T = 1 and exercise times 10. The total number of paths N = 2 ·106.

Table 3.3: Results of a down-and-out barrier put option under the Heston model. Strike K = 100, expiry date
T = 1, barrier level Lb = 0.9K , rb = 10. The total number of paths H = 2·106, and the order d = 2 and the bundle
number J = 28.

barrier option under the Heston model

values t = 0 SGBM (std.) Monte Carlo (std.) COS

V (0) 4.013 (0.000) 4.016 (0.003) 4.015
∆EE(0) -0.2631 (0.000) - -0.263
ΓEE(0) 0.0232 (0.000) - 0.0224

CVA 0.0493 (0.000) 0.0493 (0.000) 0.0493 (0.000)

3.5.2. THE HHW MODEL

SGBM for the Heston Hull-White model is based on forward simulation under the true
HHW dynamics while the backward computation employs the discounted moments of
the H1HW dynamics.There are basically two issues regarding the SGBM computation of
exposure under the HHW model. We will focus on the impact of a long expiry date (say
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Figure 3.4: Convergence of the EE, PFE and sensitivity ∆ w.r.t. J - the number of bundles for a Bermudan put
option when the number of paths within each bundle is 200, the order of the basis functions d = 1, and the
total number of paths is 200J ; the reference is generated by the MC COS method.

T = 10), and we will examine the accuracy of the approximation of the HHW model by
the affine H1HW model.

We use the following parameters for the HHW and H1HW models (3.4):
Test B: S0 = 100, v0 = 0.05, r0 = 0.02; κ = 0.3, γ = 0.6, v̄ = 0.05, λ = 0.01, η = 0.01,

θ = 0.02, ρx,v =−0.3 and ρx,r = 0.6. T = 10.
Simulation is done with N = 106 MC paths and ∆t = 0.1. The details of the SGBM

algorithm are as follows: the number of bundles varies as J1 = 22+ j , J2 = 2 j , J3 = 2 j ,
j = 1,2,3 and the orders of the monomial basis are d = {1,2}.

The accuracy of SGBM is first studied by computing a European put option with T =
10. The implied volatility (in %) is used to demonstrate the accuracy of the computed
option values, as the implied volatility is typically sensitive to the accuracy of option
values [39]. The implied volatility is computed by means of the BS formula for strike
values K = {40,80,100,120,180}. The reference values are computed by the average cash
flows on the generated MC paths. The results are presented in Table 3.4. The SGBM
results have smaller variances compared to results of a plain Monte Carlo simulation,
and maintain a high accuracy when comparing the absolute errors.

Table 3.4: Implied volatility (%) obtained for a European put option with expiry date T = 10 under the HHW
model, based on 5 simulations.

Implied volatility (%)

K /S0 SGBM (std.) Monte Carlo (std.) Abs. error (%)

40% 26.481 (0.003) 26.479 (0.03) 0.0014
80% 20.699 (0.003) 20.719 (0.02) 0.0202

100% 19.200 (0.003) 19.242 (0.01) 0.0413
120% 18.369 (0.003) 18.427 (0.01) 0.0585
180% 18.220 (0.003) 18.291 (0.02) 0.0706
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We then consider a Bermudan put option with 50 exercise dates equally distributed
in the period [0,T ]. Figure 3.5 shows the SGBM convergence rate by comparing the direct
and path estimators. Results of this Bermudan put are presented in Table 3.5. Table 3.6
presents results of SGBM for computing a down-and-out barrier put option. It shows
that SGBM converges well also for a non-continuous payoff function.
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Figure 3.5: Convergence w.r.t. J - the number of bundles and p - the order of the monomial basis by comparing
the path and the direct estimator under the HHW model. Strike K = 100, T = 10 and 50 exercise times. The
total number of paths H = 106.

Table 3.5: Results for a Bermudan put option under the HHW model. Strike K = 100, T = 10 and 50 exercise
times. The total number of paths is H = 106, and the order d = 2 and bundle number J = 2048.

Bermudan option under the HHW model

T = 10

values t = 0 direct estimator(std.) path estimator(std.)

V (0) 16.056 (0.002) 16.009 ( 0.018)
∆EE(0) -0.268 (0.000) -
ΓEE(0) 0.815 (0.001) -

CVA 2.968 (0.003) -

Table 3.6: Results for a down-and-out barrier put option under the HHW model. Strike K = 100, T = 10, barrier
level Lb = 0.9K , rb = 0. The total number of paths is H = 106, and the order d = 2 and J = 2048 bundles.

Barrier option under the HHW model

values t = 0 direct estimator(std.) Monte Carlo(std.)

V (0) 0.0478 (0.000) 0.0477 (0.001)
∆EE(0) 0.0017 (0.000) -
ΓEE(0) -0.0001 (0.000) -

CVA 0.0123 (0.000) -
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3.5.3. SPEED

One benefit of the SGBM algorithm is that one can calculate different financial deriva-
tives on the same underlying in one backward iteration using the same set of simulated
paths, as the monomial basis and the discounted moments are the same. Table 3.7 com-
pares the calculation time of a single Bermudan option and of a portfolio, which consists
of a Bermudan option, a European option and two barrier options with the same under-
lying stock. The algorithm is implemented in MATLAB, and runs on an Intel(R) Core(TM)
i7-2600 CPU @ 3.40GHz.

Table 3.7: Calculation time in seconds for computing exposure profiles of a Bermudan option and for that of a
whole portfolio with expiry date T = 10 under the HHW model; SGBM with polynomial order d = 2, number of
paths H = 106 and time step size ∆t = 0.1.

Calculation time direct estimator path estimator for Bermudan

A single (Bermudan) option 151.5 (sec.) 130.2 (sec.)

Portfolio 306.3(sec.) 131.5 (sec.)

By using parallelization of the SGBM algorithm, the speed can be further enhanced
drastically, see a study in [63].

3.5.4. IMPACT OF STOCHASTIC VOLATILITY AND STOCHASTIC INTEREST RATES

We here check the impact of stochastic volatility and stochastic interest rates on expo-
sure profiles and CVA. Next to the already discussed Heston and HHW models, we also
consider the Black-Scholes (BS) and the Black-Scholes Hull-White (BSHW) models in
this section. The parameter set chosen is the same as in Test B. For comparison, we use
the parameters of the other models such that we can ensure that the values of a Euro-
pean put option with a fixed expiry date T has the same price under all models3.

We define a so-called CVA percentage as
(
100 · CVA

V (0)

)
%. Table 3.8 presents the per-

centage CVA for European put options with two maturity times, T = {1,5}, for the strike
values K = {80,100,120}. It can be seen that the CVA percentage does not change with
strike; furthermore, European options with maturity T = 5 exhibit a higher CVA percent-
age than those with maturity T = 1. Based on the chosen parameters, we see only a small
impact of stochastic volatility and stochastic interest rate on the CVA percentage.

Table 3.9 presents the percentage CVA for Bermudan put options with maturity times
T = {1,5} for strike values K = {80,100,120}. We see that the ’in-the-money’ options have
the smallest CVA percentage. This is understandable as the optimal exercise strategy, in
this chapter, does not take into account the risk of a counterparty default. A put option
is likely to be exercised before maturity when the strike value is higher than the current
stock value, and thus one can expect relatively little exposure.

3For example, under the Black-Scholes model, we use the implied interest rate, i.e. rT =− log(p(0,T ))
T , and com-

pute the implied volatility by the analytic BS formula. Under the Heston model, the parameters of the Heston
process are the same as those in Test B, and the corresponding interest rate is computed by the bisection al-
gorithm. Under the BSHW model, the parameters of the Hull White process are the same as those in Test B,
and the corresponding volatility is determined.
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Table 3.8: CVA(%) of European options with T = 5 and strike values K = {80,100,120}.

European option, CVA (%)

K /S0 BS Heston BSHW HHW

T = 1
80% 2.951 (0.010) 2.959 (0.003) 2.953 (0.005) 2.949 (0.005)

100% 2.956 (0.011) 2.958 (0.003) 2.952 (0.002) 2.952 (0.002)
120% 2.955 (0.002) 2.959 (0.001) 2.953 (0.001) 2.952 (0.001)

T = 5
80% 13.925 (0.036) 13.941 (0.021) 13.882 (0.016) 13.929 (0.027)

100% 13.951 (0.039) 13.960 (0.010) 13.901 (0.003) 13.940 (0.018)
120% 13.919 (0.010) 13.953 (0.007) 13.901 (0.005) 13.936 (0.010)

Table 3.9: CVA(%) of Bermudan options with T = 5 and strike values K = {80,100,120}.

Bermudan option, CVA (%)

K /S0 BS Heston BSHW HHW

T = 1
80% 2.534 (0.007) 2.460 (0.002) 2.643 (0.003) 2.504 (0.003)

100% 2.005 (0.003) 1.939 (0.002) 2.165 (0.001) 2.016 (0.001)
120% 0.906 (0.002) 1.031 (0.001) 0.986 (0.001) 1.068 (0.001)

T = 5
80% 10.110 (0.032) 9.876 (0.030) 12.612 (0.014) 10.890 (0.029)

100% 7.784 (0.011) 8.120 (0.012) 10.965 (0.008) 9.649 (0.019)
120% 4.453 (0.008) 4.416 (0.020) 6.923 (0.005) 6.259 (0.013)

Figure 3.6 presents the EE and PFE function values w.r.t. time for a Bermudan put
option which is at-the-money.

• In Fig. 3.6(b), it can be seen that the PFE values for the HHW model are relatively
close to those of the Heston model, and the PFE values for the BSHW model are
very similar to those of the BS model. With a short time to maturity (T = 1), un-
der our model assumptions and parameters, the stochastic volatility has a more
significant contribution to the PFE values compared to the stochastic interest rate.
Compared to Figure 3.6(a), we can see that the EE values for the Heston and the BS
models are very close. Adding stochastic volatility has more impact on the right-
side tails of the exposure profiles than on the EE values.

• In Fig. 3.6(d), in the period t = [0,1], we see similarities of PFE values between the
HHW and the Heston models, and between the BS and the BSHW models; in the
period t = [1,5], the PFE values for the BSHW model tend to be higher than those
of the BS model, and the PFE values for the HHW model are also higher than those
of the Heston model. Clearly, interest rates have more impact on the exposure
profiles in the longer term (say T = 5).

• Figures 3.6(a) and (c) show that the stochastic interest rate increases the future EE
values of Bermudan options, while the stochastic volatility has the opposite effect.



3.5. NUMERICAL TESTS

3

75

time
0 0.2 0.4 0.6 0.8 1

E
E

0

1

2

3

4

5

6

7
BS
Heston
BSHW
HHW

(a) T=1, EE

time
0 0.2 0.4 0.6 0.8 1

E
E

0

5

10

15

20

25

30

35
BS
Heston
BSHW
HHW

(b) T=1, PFE

time
0 1 2 3 4 5

E
E

0

2

4

6

8

10

12
BS
Heston
BSHW
HHW

(c) T=5, EE

time
0 1 2 3 4 5

P
F

E

0

10

20

30

40

50

60

70

BS
Heston
BSHW
HHW

(d) T=5, PFE

Figure 3.6: Impact of stochastic volatility and interest rate on EE and PFE with different tenors and different
asset dynamics, at the money K = 100.

• The PFE curve for the BSHW model in Fig. 3.6(d) looks differently from the other
curves because of the positive correlation parameter (ρx,r = 0.6) and the long ex-
piry (T = 5). The PFE curve represents events with large option values and for a put
option, this means that the associated stock values are low. In the case of a positive
correlation parameter ρx,r , the interest rate is low as well. The investor likely holds
on to the option. If we set the correlation value to zero in the BSHW model and
perform the same computation, the PFE curves under the BSHW model becomes
’spiky’ as well.

The stochastic interest rate plays a significant role in the case of a longer maturity
derivatives, and results in increasing PFE profiles; stochastic asset volatility appears to
have an effect on PFE values at the early stage of a contract. Under the parameters cho-
sen here, at an early stage of the contract (say t < 1), the PFE profiles under the HHW
model are very similar to those under the Heston model, but at later contract times the
PFE profiles under the HHW model increase. It seems that the stochastic volatility has
more effect on the right-side tail compared to the expectation of the exposure profile,
while adding the stochastic interest rate increases the whole exposure profile, especially
in the case of a longer maturity.
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3.6. CONCLUSION
In this chapter we generalized the Stochastic Grid Bundling Method (SGBM) towards the
computation of exposure profiles and sensitivities for asset dynamics with stochastic
asset volatility and stochastic interest rate for European, Bermudan as well as barrier
options. The algorithmic structure as well as the essential method components are very
similar for CVA as for the computation of early-exercise options, which makes SGBM a
flexible CVA valuation framework.

We presented arguments for the choice of the basis functions for the local regression,
presented a bundling technique, and showed SGBM convergence of the direct and path
estimators with respect to an increasing number of bundles. Numerical experiments
demonstrate SGBM’s convergence and accuracy.

Using higher-order polynomials as the basis functions is especially important when
accurate sensitivities values are needed; otherwise, a polynomial order d = 1 is sufficient
for option prices and exposure quantities with a sufficiently large number of bundles
and paths. The computational efficiency is connected to the number of bundles used in
SGBM. A parallel algorithm will be important for a drastic reduction of the computation
times, see the studies in [63].

APPENDIX

DISCOUNTED CHF OF THE HESTON MODEL

The joint dChF of the Heston model in Chapter 3 is given by:

ϕHeston(u1,u2, t ,T ; X t , vt ) = EQ
[
exp(−r (T − t )+ i u1X t + i u2vt )

]
= exp

(
Ã(T − t )+ B̃1(T − t )X t + B̃2(T − t )vt

)
, (3.37)

where the coefficients of the ChF are obtained via the following ODEs:

dB̃1

d s
(s) = 0,

dB̃2

d s
(s) = 1

2
B̃1(s)(B̃1(s)−1)+ (

γρx,v B̃1(s)−κ)
B̃2(s)+ 1

2
γ2B̃ 2

2 (s),

d Ã

d s
(s) = κv̄ B̃2(s)+ r (B̃1(s)−1), (3.38)

with initial condition B̄(0) = i u1, B̃2(0) = i u2 and Ã(0) = 0. The solution is given by:

B̃1(T − t ) = i u1,

B̃2(T − t ) = 1

γ2

(
κ−γρx,v i u1 +D1

)− 2D1

γ2
(
1−D2 exp(−D1(T − t ))

) ,

Ã(T − t ) = r (i u1 −1)(T − t )+ κv̄

γ2

(
κ−γρx,v i u1 −D1

)
−2κv̄

γ2 log

(
1−D2 exp(−D1(T − t ))

1−D2

)
, (3.39)
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with

D1 =
√(

κ−γρx,v i u1
)2 +γ2u1(u1 + i ),

D2 = i u2γ
2 − (

κ−γρx,v i u1 −D1
)

i u2γ2 − (
κ−γρx,v i u1 +D1

) . (3.40)

DISCOUNTED CHF OF THE BLACK-SCHOLES HULL-WHITE MODEL
The joint dChF for the BSHW model is given by:

ϕBSHW(u1,u2, t ,T ; X t ,rt ) = EQ
[

exp

(
−

∫ T

t
rs d s + i u1X t + i u2rt

)]
= exp

(
Ã(t ,T )+ B̃1(T − t )X t + B̃2(T − t )rt

)
, (3.41)

where the coefficients of the ChF are obtained via the following ODEs:

dB̃1

d s
(s) = 0,

dB̃2

d s
(s) = −1+ B̃1(s)−λB̃2(s),

d Ã

d s
(s) = 1

σ2 B̃1(s)
(
B̃1(s)−1

)+λ ·θ(T − s) · B̃2(s)+ 1

2
η2B̃2(s)

+ρx,rσηB̃1(s)B̃2(s), (3.42)

with initial condition B̃1(0) = i u1, B̃2(0) = i u2, and Ã(0) = 0. The solution is now given
by:

B̃1(T − t ) = i u1,

B̃2(T − t ) = i u1 −1

λ

(
1−exp(−λ(T − t ))

)+ i u2 exp(−λ(T − t )) ,

Ã(t ,T ) = 1

2
σ2i u1(i u1 −1)(T − t )+

∫ T−t

0
θ(T − s) · B̃2(s)d s

+ η2

2λ2

( 2

λ
(u1 + i )

(
exp(−λ(T − t ))−1

)
(λu2 −u1 − i )

+ 1

2λ

(
exp(−2λ(T − t ))−1

)
(λu2 −u1 − i )2 − (u1 + i )2(T − t )

)
+ηθσρx,r

λ

(
− i u1 +u2

1

λ

(
λ(T − t )+exp(−λ(T − t ))−1

)
+u1u2

(
exp(−λ(T − t ))−1

))
. (3.43)

When θ(t ) ≡ θ̄ is a constant,∫ T−t

0
θ(T −s)B̃2(s)d s = θ̄(i u1−1)(T −t )+θ̄

(
(i u1 −1)

λ
− i u2

)(
exp(−λ(T − t ))−1

)
. (3.44)
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DISCOUNTED CHF OF THE H1HW MODEL
The joint dChF of the H1HW model is given by:

ϕH1HW(u1,u2,u3, t ,T ; X t , vt ,rt )

= exp
(

Ã(t ,T )+ B̃1(T − t )X t + B̃2(T − t )vt + B̃3(T − t )rt
)

, (3.45)

where the coefficients of the ChF are here obtained via the following ODEs:

dB̃1

d s
(s) = 0,

dB̃2

d s
(s) = 1

2
B̃1(s)(B̃1(s)−1)+ (

γρx,v B̃1(s)−κ)
B̃2(s)+ 1

2
γ2B̃ 2

2 (s),

dB̃3

d s
(s) = −1+ B̃1(s)−λB̃3(s),

d Ã

d s
(s) = λ ·θ(T − s) · B̃3(s)+κv̄ B̃2(s)+ η2

2
B̃ 2

3 (s)

+ηρx,vE
[p

vT
∣∣vt

]
B̃1(s)B̃3(s), (3.46)

with initial conditions B̃1(0) = i u1, B̃2(0) = i u2, B̃3(0) = i u3 and Ã(0) = 0. The solution is
given by:

B̃1(T − t ) = i u1,

B̃2(T − t ) = 1

γ2

(
κ−γρx,v i u1 +D1

)− 2D1

γ2
(
1−D2 exp(−D1(T − t ))

) ,

B̃3(T − t ) = i u1 −1

λ

(
1−exp(−λ(T − t ))

)+ i u3 exp(−λ(T − t )),

Ã(t ,T ) =
∫ T−t

0
θ(T − s) · B̃3(s)d s + (T − t )

κv̄

γ2

(
κ−γρx,v i u1 −D1

)
−2κv̄

γ2 log

(
1−D2 exp(−D1(T − t ))

1−D2

)
+η

2

λ3 (u1 + i )
(
exp(−λ(T − t ))−1

)
(λu3 −u1 − i )

− η2

2γ2 (u1 + i )2(T − t )+ η2

4λ3

(
exp(−2λ(T − t ))−1

)
(λu3 −u1 − i )2

−ηρx,r

λ
(i u1 +u2

1)
∫ T−t

0
E
[p

vT−s
∣∣vt

](
1−exp(−λs)

)
d s

−ηρx,r u1u3

∫ T−t

0
E
[p

vT−s
∣∣vt

]
exp(−λs)d s (3.47)

where expressions D2, D1 and δ± are the same as in (3.40), and when θ(t ) ≡ θ̄ is a con-
stant,∫ T−t

0
θ(T−s)·B̃3(s)d s = θ̄(i u1−1)(T−t )+θ̄

(
(i u1 −1)

λ
− i u3

)(
exp(−λ(T − t ))−1

)
. (3.48)
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It is computationally expensive to calculate the integrals in I4, which is a function
w.r.t. vt . We use an approximation where, for a fixed vt , values of the conditional expec-
tation E

[p
vt+s

∣∣vt
]

over a short time period can be approximated by a linear function
w.r.t. time.

We will use the approximation that

E
[p

vt+s
∣∣vt

]≈ a(vt )+b(vt ,∆t )s, s ≤∆t , (3.49)

where a(vt ) =p
vt , b(vt ,∆t ) = v(t+∆t )−vt

∆t ,∆t = 0.05. Various experiments have shown that
this approximation is sufficiently accurate in the present context.





CHAPTER 4

Wrong way risk modeling and credit valuation adjustment

In previous chapters, we computed CVA by the expression in (1.11). In this practical for-
mula, the unilateral CVA is given by an integration of the product of the discounted ex-
pected exposure, the counterparty’s default probability and the percentage of loss given
default (LGD) [38]. The calculation is based on the assumption that the probability of
the counterparty’s default is independent of the exposure to this counterparty.

However, there may be dependency between this default probability and the mar-
ket risk factors that determine the value of a financial derivative, and this may impact
the CVA value. So-called wrong way risk (WWR) occurs when the credit quality of the
counterparty and the exposure to this counterparty are adversely correlated. Banks are
required to monitor and manage WWR by stress testing and scenario analysis [5].

This chapter studies the impact of WWR on credit valuation adjustment (CVA) for
European and Bermudan options, based on an intensity model. We model WWR by a
dependency between the underlying asset and the intensity of the counterparty’s de-
fault. We consider three different models.

In addition, we take the difference between the default-free and the default-adjusted
exposure values for the purpose of the CVA calculations. Two numerical algorithms, the
COS method and the Stochastic Grid Bundling Method (SGBM) are generalized and em-
ployed for the computations. We will perform a CVA stress test for European options,
show differences in the optimal exercise boundaries and in corresponding Bermudan
option values. CVA VaR and CVA Expected Shortfall (ES) are two important risk mea-
sures of CVA risk. We will also compute these quantities in Appendix 3 of this chapter,
where we already make use of the computational techniques for historical measure sim-
ulated paths and risk neutral computations, without using sub-simulation, as proposed
in Chapter 5 of this thesis.

4.1. INTRODUCTION
We consider the impact of WWR on CVA for European and American put options. Basel
III classifies two types of WWR: so called general and specific WWR [5]. The former ap-
pears due to positive correlations of exposure and market factors, while the latter is due
to a wrong structure of an investment when a connection exists between the counter-
party and the underlying. In this chapter, we consider specific WWR. We will employ
an intensity model for the default of the counterparty under the risk-neutral probabil-
ity measure. WWR can be included by correlation between the default probability and

This chapter is based on the article ’Wrong Way Risk Modeling and Computation in Credit Valuation Adjust-
ment for European and Bermudan Options’, submitted for publication, 2016 [31].
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the market risk factors of the portfolio. Intensity models have been used for default-
able corporate bonds, for example, by Jarrow and Turnbull (1995) [52] or Madan and
Unal (1998) [66]. Based on affine models for defaultable bonds, Duffie and Singleton
(1999) [27] presented a valuation framework for derivatives (where the underlying can
be a defaultable corporate bond). The default-adjusted value of some contingent claim
was modeled by discounting at a default-adjusted short rate. Bielecki and Rutkowski
(2002) [8] explained the use of an enlarged filtration for valuation when dealing with
both default and market information.

Ruiz [74, 75], using market data, presented a relation between the underlying and
the (one-year) intensity of the associated counterparties by scatter-plots of historical
data. Research on modeling WWR by a dependency structure between the intensity
and underlying market factors has also been performed, for example, by Hull and White
(2012) [46]. They connect the underlying to an intensity model by a deterministic rela-
tion. Based on this model, Shen (2014) discussed the impact of WWR on CVA and ex-
posure profiles for Bermudan options under the GBM asset dynamics [77]. Brigo et.al.
(2014) [12] modeled the intensity by a CIR jump diffusion model, where the diffusion
term is correlated with the short rate, and presented case studies for portfolios of swaps.
A similar model was presented by Duffie and Singleton (1999) [27] for credit spread op-
tions.

An early paper on the pricing of European and American options under default risk
is Johnson and Stulz (1987) [53]. Optimal exercise decisions for American options can be
impacted by CCR. Hull and White (1995) [45] showed that the impact of CCR for Amer-
ican options is significantly lower than for European options as the exercise policy can
be adjusted (see also Klein and Yang (2010) [57]). The impact of different early-exercise
policies is related to the way banks split their handling of credit and market risk. The
system may not to be optimal in the case of Bermudan options, where early-exercise de-
cisions and corresponding hedges should not only take the product’s market price, but
also the release of CVA into account. This is important for options bought by a bank. We
will analyze the difference in optimal exercise boundaries for Bermudan options with
and without WWR model.

The dependency between the underlying stock and the intensity rate is modeled here
in three ways, i.e., the intensity is either a deterministic function of the log-stock value,
or by a model with correlation in the diffusion of the stochastic intensity and the log-
asset processes, or by means of jumps with correlated jump sizes in the processes. The
stochastic models are based on the class of affine jump-diffusion processes, see Duffie
et.al. (2000) [26].

The reminder of this chapter is as follows. Section 4.2 presents CVA, WWR, the in-
tensity model and the pricing dynamics for default-free and default-adjusted options.
Section 4.3 discusses the three models to describe the dependency structure between
the underlying and the intensity, in the affine jump diffusion (AJD) class. The algo-
rithms that we employ for the computations of option values with default risk are the
COS method, based on Fourier-cosine expansions and the FFT, by Fang and Oosterlee
(2009) [28], extended to higher dimensions by Ruijter and Oosterlee (2012) [72], and the
Stochastic Grid Bundling Method (SGBM), developed by Jain and Oosterlee (2015) [50].
We present these two algorithms in section 4.4. Numerical results in Section 4.5 are used



4.2. VALUATION FRAMEWORK

4

83

to study the effect of WWR, the impact of the dependency structure on CVA and on CVA
Shortfall.

4.2. VALUATION FRAMEWORK
In this section, we will present the intensity model, and show that CVA values for options
can be computed as the difference of the default-free and the default-adjusted option
values.

4.2.1. INTENSITY MODEL

Intensity models have been studied for several years. We start with the general setting,
assuming that a probability space (Ω,F ,Q) is given over the time horizon [0,T ]. The
sample space Ω is the set of all possible outcomes w , the sigma algebra F is the collec-
tion of all events, and probability measure Q is a function Q : F → [0,1]. In this chapter
we consider derivatives valuation, and it is thus convenient to chooseQ as a risk-neutral
measure. Under this risk-neutral measure, all securities can be priced as discounted
values. We assume the risk-free short rate r constant, and denote the risk-free savings
account by Bt = exp(r t ).

Let a Markov-process {Xt , t ∈ [0,T ]} on some n-dimensional space D ⊂ Rn represent
all information of the underlying market factors, such as the underlying equity, interest
rate, credit spread of the counterparty, and so on. The filtration is generated by Xt and is
denoted by Ft =σ(Xs , s ∈ [0, t ]).

Nonnegative function h̃ : Rn → R is the Ft -measurable intensity of a jump process
Nt . We take the first jump-to-default time τ of the process Nt as the default time of the
counterparty, τ := inf

{
t :

∫ t
0 h̃(Xs )d s ≥ E1

}
, where E1 is an exponential random variable

with mean 1, independent of Ft . Define the jump process as Nt = 1(τ ≤ t ). h̃(X) is the
state-dependent (pre-default) intensity of the jump time τ.

G denotes the survival probability w.r.t. the filtration F , given by

Gt = EQ
[
1(τ> t )

∣∣∣Ft

]
= exp

(
−

∫ t

0
h̃(Xs )d s

)
, (4.1)

where h̃(Xt ) depends on the state variables.
We construct an enlarged filtration Gt = Ft ∨H t , where H t = σ(Ns , s ∈ [0, t ]). The

enlarged filtration Gt contains information of market factors and default events [60]. A
useful result in [8] can be used to switch filtrations: Given a GT -measurable random
variable W , one can show that [8][pp 145, Corollary 5.1.1]:

EQ
[
1(τ> T )W

∣∣∣Gt

]
=1 (τ> t )

EQ
[

W1(τ> T )
∣∣∣Ft

]
EQ

[
1(τ> t )

∣∣∣Ft

] =1(τ> t )EQ
[

GT

Gt
W

∣∣∣Ft

]
. (4.2)

With W in (4.2) the discounted cash flow if default did not happen prior to time T ,
one can show that the price of the defaultable claim is the risk-neutral expectation of the
payoff discounted at the default-adjusted rate, R(Xs ) := r + h̃(Xs ).
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For a European option, with g (XT ) the promised payment at time T , discounted by
the short rate at time t , i.e.,

EQ
[

Bt

BT
g (XT )1(τ> T )

∣∣∣Gt

]
= 1 (τ> t )EQ

[
GT

Gt

Bt

BT
g (XT )

∣∣∣Ft

]
= 1 (τ> t )EQ

[
D t

DT
g (XT )

∣∣∣Ft

]
. (4.3)

Here, we defined,

D t := exp

(∫ t

0
R(Xs )d s

)
= Bt

Gt
, (4.4)

which includes the counterparty credit quality.
Assume that for the issued T -period defaultable bonds, the counterparty pays 1 at

expiration time T in the event of no default, otherwise zero. We can read the price of the
defaultable bonds directly from the market. It is well-known that corporate bonds offer
a higher yield because of the extra risk (default risk). The difference between the yield on
a corporate bond and a government bond is called the credit spread. The t = 0 value of a
T -period defaultable zero-coupon-bond (ZCB) is given by

P̃ (0,T ) = EQ
[

1

DT

]
, (4.5)

where the intensity can be considered as the credit spread associated to the counter-
party.

Suppose that the market credit spread is flat over different tenors, denoted by h, then
the market price of this defaultable ZCB is given by

P̃market(0,T ) = exp
(
−(r +h)T

)
, (4.6)

which gives market information of the credit quality of the counterparty.
One can hence retrieve information of the counterparty credit quality directly from

defaultable bonds issued by the counterparty, or from the credit-default-swap (CDS)
market. The calibration of a default model can be done by comparing Formula (4.5)
to the market price of the defaultable bonds (4.6) .

4.2.2. CVA FOR DEFAULTABLE EUROPEAN-STYLE CLAIMS
We first focus on European-style claims, where an investor receives the payoff at expira-
tion time t = T in the case of no default, and there is zero recovery when a default event
happens prior to expiration.

With log-stock X t = log(St ) one of the market factors, the promised payoff at t = T in
the event of no default is g (XT ), given by

g (XT ) =
{

max
(
exp(XT )−K ,0

)
, for a call,

max
(
K −exp(XT ) ,0

)
, for a put,

(4.7)

where K is the strike price.
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The default-free price of the claim at time t ∈ [0,T ] is given by:

V (t ,Xt ) = EQ
[

Bt

BT
g (XT )

∣∣∣Xt

]
, (4.8)

where V is an L2 bounded function.
We define the default-adjusted value prior to a default event, i.e. the market value

of a European option taking account the price of CCR at time t as the expected payoff
discounted at the intensity-adjusted rate:

U (t ,Xt ) = EQ
[

D t

DT
g (XT )

∣∣∣Xt

]
, (4.9)

where U is an L2 bounded function, the expression of which is derived by (4.2). Duffie
and Singleton (1999) [27] have given a general formula for pricing the default-adjusted
value.

In this chapter, we avoid the discussion about recovery by setting the recovery equal
to zero. There are at least two ways of defining recovery, see [27].

At a future time t , with the counterparty default time τ < t , there is no need for dis-
cussion under the zero recovery assumption; otherwise, the time-t price of the corre-
sponding CVA to the option writer, conditional on τ> t , is given by

CVA(t ,Xt ) = EQ
[
1(t < τ< T )

Bt

Bτ
Eτ

∣∣∣τ> t ,Xt

]
= Bt

Gt
EQ

[∫ T

t

Es

Bs
d(−Gs )

∣∣∣Xt

]
, (4.10)

where Et = max(0,V (t ,Xt )) is the exposure to the counterparty when default occurs at
time τ= t before expiration T . The second part of the equation is found by Proposition
5.1.1 in [8][pp 147].

When exposure and default probability in Equation (4.10) are independent, we ob-
tain the well-known CVA formula from [38][pp 197, Appendix 7B], which is often used
in practice. This formula requires the computation of the exposure profile over the time
horizon. Here, however, we use a different formulation for the computation of CVA. CVA
is, by definition, the difference between the default-free and the market contract value,
in which the latter has accounted for counterparty default. The computation of CVA
can thus be performed by taking the difference between the default-free and default-
adjusted contract values.

When τ> t , the formula for CVA is thus by definition:

CVA(t ,Xt ) =V (t ,Xt )−U (t ,Xt ). (4.11)

Equations (4.10) and (4.11) are equivalent when the exposure is defined as the re-
placement costs of the European options, since the default-free option value V (t ,Xt ),
depending on the state variable and time t , is non-negative. Hence for options, we can
write the exposure as

Et =V (t ,Xt ), (4.12)
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With the definition of exposure in (4.12), one can use the tower property to show that

V (t ,Xt )−U (t ,Xt ) = Bt

Gt
EQ

[
(Gt −GT )

g (XT )

BT

∣∣∣Xt

]
= Bt

Gt
EQ

[∫ T

t

1

Bs
·BsE

Q

[
g (XT )

BT

∣∣∣Xs

]
︸ ︷︷ ︸

V (s,Xs )

d(−Gs )
∣∣∣Xt

]

= Bt

Gt
EQ

[∫ T

t

Es

Bs
d(−Gs )

∣∣∣Xt

]
= CVA(t ,Xt ). (4.13)

Comment: Computation of CVA using (4.10) is typically done by generating a large num-
ber of Monte Carlo scenarios over a set of discrete future dates and by computation of the
exposure for each scenario at each discrete time. Expression (4.11) requires the default-
free and default-adjusted values, respectively. The use of (4.11) instead of (4.10) may
enhance the computational efficiency for CVA calculations, particularly for computing
the CVA shortfall over a time horizon. However, (4.10) forms a general methodology for
computing CVA, when netting and collateral agreements are considered.

4.2.3. VALUATION OF DEFAULTABLE BERMUDAN OPTIONS
We also consider the impact of CCR and WWR on CVA for Bermudan options. A Bermu-
dan option can be exercised at a set of dates T = {t1, . . . , tM }, where t1 > 0 is the first and
tM the last exercise date. The payoff of immediate exercise t is given by g (X t ), with g as
in (4.7) and X t represents for the log-asset variable. Of course, g (X t ) ≥ 0 for all X t ∈R.

When the claim is defaultable and CCR is present, a specific exercise strategy can be
applied. For example, it is may be optimal to exercise the Bermudan option earlier when
a default is likely in the near future compared to the default-free case. An exercise policy
is to optimize the default-adjusted value, taking explicitly into account the change in
credit quality of a counterparty. When the probability of counterparty default is low, it
may be fine to exercise the option by optimizing the default-free value.

Policy I: Optimize the default-free value. We look for a stopping time ξI = ξI(X0, w) ∈
T , with w ∈Ω, such that

EQ

[
g (XξI )

BξI

∣∣∣X0

]
= sup
ξ∈T

EQ
[

g (Xξ)

Bξ

∣∣∣X0

]
, (4.14)

and the corresponding optimal default-free expected value obtained with ξI reads,

V I(X0,0) = EQ
[

g (XξI )

BξI

∣∣∣X0

]
. (4.15)

The corresponding default-adjusted expected value at initial time t = 0, with stop-
ping time ξI, is then given by:

U I(X0,0) = EQ
[

g (XξI )

DξI

∣∣∣X0

]
. (4.16)
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Policy II: Optimize the default-adjusted value. We look for the stopping time ξII =
ξII(X0, w) ∈T , with w ∈Ω, such that

EQ

[
g (XξII )

DξII

∣∣∣X0

]
= sup
ξ∈T

EQ
[

g (Xξ)

Dξ

∣∣∣X0

]
. (4.17)

We define the corresponding optimal default-adjusted expected value by

U II(0,X0) = EQ
[

g (XξII )

DξII

∣∣∣X0

]
. (4.18)

Using the same strategy, the corresponding default-free expected value is given by

V II(0,X0) = EQ
[

g (XξII )

BξII

∣∣∣X0

]
. (4.19)

The t = 0 CVA values for the Bermudan option using Policy j , where j ∈ {I , I I }, are
defined by:

CVA j (0,X0) =V j (0,X0)−U j (0,X0). (4.20)

Equation (4.20) is equivalent to the CVA formula in (4.10), when the exposure to the
counterparty at a future time t prior to the default event on w ∈Ω is defined as the re-
placement costs, given by

E j
t (w) =

{
V j (t ,Xt (w)), t < ξ j (w),

0, t ≥ ξ j (w),

where E j (w, t ) is the exposure under Policy j at time t on path w ; the optimal stopping
time ξ j (w) is determined by (4.14) or (4.17), and V j is the expected value of continuing
the option at time t using Policy j , i.e.,

V j (t ,Xt (w)) = EQ
[

Bt

Bξ j
g (Xξ j )

∣∣∣Xt (w)

]
. (4.21)

For Bermudan options, Equation (4.10) is equivalent to Equation (4.11) for comput-
ing CVA:

V j (0,X0)−U j (0,X0) = EQ

[
g (Xξ j )

Bξ j

(
1−G(ξ j )

)∣∣∣X0

]

= EQ
[∫ ξ j

0

1

Bs
·BsE

Q

[
g (Xξ j )

Bξ j

∣∣∣Xs

]
︸ ︷︷ ︸

V j (t ,Xt )

d(−Gs )
∣∣∣X0

]

= EQ

[∫ T

0

E j
s

Bs
d(−Gs )

∣∣∣X0

]
= CVA j (0,X0). (4.22)



4

88 4. WRONG WAY RISK MODELING AND CREDIT VALUATION ADJUSTMENT

4.2.4. RECURSION FOR BERMUDAN OPTIONS
The optimal stopping problem for the default-free value in (4.14) is well-known. As in [3],
one can define the Snell envelope for the discounted (at the short rate) exercise values,
and the corresponding Hamilton-Jacobi-Bellman equation can be solved by backward
recursion. In our setting, we also need to compute the expectation defined in (4.16) un-
der the same exercise policy, which is easy when we know the exercise and continuation
regions.

In a similar way, the optimal stopping problem for the default-adjusted value in
(4.17) can be solved by constructing sequences of random variables to define the Snell
envelope for the exercise values discounted at the intensity-adjusted rate. The difference
in the backward recursion procedures for these two problems results in different exercise
and continuation regions.

Let j ∈ {Policy I, II} be the index of the chosen policy. To reduce notation, from now
on we write state variable Xtm = Xm , with tm the m-th exercise opportunity.

First of all, the default-free and default-adjusted values at expiration date tM = T are
given by the payoff function, i.e.

U j (tM ,XM ) =V j (tM ,XM ) = g (XM ), (4.23)

where XM is the corresponding log-asset value in the state vector XM .
At an exercise date tm < T , assuming τ > tm , the expected default-free and default-

adjusted payoff of continuing, i.e., holding the option at time tm , are given respectively
by

c j
r (tm ,Xm) = EQ

[
Bm

Bm+1
V j (tm+1,Xm+1)

∣∣∣Xm

]
,

c j
R (tm ,Xm) = EQ

[
Dm

Dm+1
U j (tm+1,Xm+1)

∣∣∣Xm

]
, (4.24)

where c j
r represents the default-free and c j

R the default-adjusted continuation function
under the policy j , and both are L2 bounded.

The optimal exercise boundary x j
m using Policy j at tm is determined by solving the

equation:

Policy I: g (xI
m)− cI

r (tm ,xI
m) = 0,

Policy II: g (xI
m)− cII

R (tm ,xII
m) = 0, (4.25)

where the log-asset value x j
m is the log-asset value in the vector x j

m .
The optimal exercise boundary determines the continuation region C j and the ex-

ercise region G j , by policy j , at tm :

C j (tm) =
{

{x|g (x) < c j
r (tm ,x)}, j = Policy I,

{x|g (x) < c j
R (tm ,x)}, j = Policy II,

G j (tm) =
{

{x|g (x) ≥ c j
r (tm ,x)}, j = Policy I,

{x|g (x) ≥ c j
R (tm ,x)}, j = Policy II,

(4.26)
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with x is the log-asset value in x.
By Policy II, the continuation value accounts for the default risk, being discounted at

the default-adjusted value, and one compares this default-adjusted continuation value
with the immediate exercise value.

Based on this, the values of the option at time tm , conditional on Xm , using Policy I
are given by:

V I(tm ,Xm) = max
(
g (Xm),cI

r (tm ,Xm)
)

,

U I(tm ,Xm) =
{

g (Xm), Xm ∈G I(tm),

cI
R (tm ,Xm), Xm ∈C I(tm).

In a similar way, the values of the option at time tm conditional on Xm using Policy II are
given by:

U II(tm ,Xm) = max
(
g (Xm),cII

R (tm ,Xm)
)

,

V II(tm ,Xm) =
{

g (Xm), Xm ∈G II(tm),

cII
r (tm ,Xm), Xm ∈C II(tm).

We employ Bellman’s principle by backward recursion computation until time zero,
where the option value is equal to the corresponding continuation value.

4.3. MODELING WWR BY AJD MODELS
We use the affine-jump-diffusion (AJD) class to describe the dependency structure be-
tween the underlying asset and the intensity. Affine dynamics can describe the depen-
dency structure between the intensity and the underlying market factors. The AJD class
is defined by the following SDE system [26]:

dXt = µ̃(Xt )d t + σ̃(Xt )dWt +dJt , (4.27)

where Wt is a standard Brownian motion in Rn ; µ̃ : D →Rn , σ̃ : D →Rd×d and Jt ∈Rn is a
pure jump process independent of Wt , whose jump sizes are governed by a probability
distribution ν on Rn . More specifically, the jump times of Jt are the jump times of a Pois-
son process with jump-arrival rate λ̄, and the Jt jump sizes are governed by probability ν.
For complex-valued numbers c ∈Cd , we defineΘ(c) = ∫

Rn exp(c ·z)dν(z), where the inte-
gral should be well-defined. This jump transform function Θ determines the jump-size
distribution [26]. We can choose jump distribution ν so that the corresponding jump
transformΘ is known explicitly.

Given a fixed affine discount rate q : D →R, the affinity property is satisfied when the
coefficients are defined by:

µ̃(Xt ) = K0 +K1Xt , K0 ∈Rn ,K1 ∈Rd×d ,

(σ̃(Xt )σ̃T (Xt ))i , j = (H0)+ (H1)i , j Xt , H0 ∈Rd×d , H1 ∈Rd×d×d ,

q(Xt ) = q0 +q1Xt , r0 ∈R,r1 ∈Rn . (4.28)

The discounted (at rate q) characteristic function (ChF) is then defined by:

ϕq (u, t ,T ;Xt ) = EQ
[

exp

(
−

∫ T

t
q(Xs )d s

)
exp(i uXT )

∣∣∣Xt

]
. (4.29)



4

90 4. WRONG WAY RISK MODELING AND CREDIT VALUATION ADJUSTMENT

With the short rate, i.e. q(x) = r , we denote the discounted ChF by ϕr ; when dis-
counted at the intensity-adjusted rate, q(x) = R(x), we denote the intensity-adjusted
discounted ChF by ϕR . Duffie and Singleton [26] showed that the discounted ChF for
process Xt is given by the following formula:

ϕq (u, t ,T ;Xt ) = exp
(

Ã(T − t )+Xt B̃(T − t )
)

, (4.30)

where the coefficients Ã and B̃ satisfy the following ODEs:

dB̃

d s
(s) = −q1 +K T

1 B̃(s)+ 1

2
B̃T (s)H1B̃(s),

d A

d s
(s) = −q0 +K0B̃(s)+ 1

2
B̃T (s)H0B̃(s)+ λ̄[

Θ(B̃(s))−1
]

, (4.31)

with initial conditions B̃(0) = i u and Ã(0) = 0.
The discounted ChF will be used in the COS method and SGBM in Section 4.4.
We will compare three ways to describe the dependency structure of the log-asset

price and the intensity. It is not trivial to ensure that the intensity is non-negative under
the affine structure. However, we use specific parameter settings to keep the intensity
positive at a high probability over a certain time horizon.

4.3.1. A DETERMINISTIC FUNCTION

The point of departure in our study here are asset dynamics based on geometric Brow-
nian motion (GBM) and jump diffusion, which we correlate with an intensity process1.
These are some chosen reference models, not necessarily used in practice, with the pur-
pose of analyzing the impact of WWR under different model assumptions.

With X t = log(St ) the one-dimensional log-asset process, as a first attempt, we model
the dynamics of the underlying and the intensity before a default event by:

d X t = (r − 1

2
σ2

x )d t +σx dWt ,

h̃(X t ) = a(t )+bX t , (4.32)

with σx > 0 the volatility of the log-asset process, Wt a standard Brownian motion, coef-
ficient b ∈R is constant, and a(t ) is a deterministic function that satisfies a(0) = h−bX0,
where h is the credit spread as in (4.6). We call this model the DF model. Coefficient b
denotes the strength of the dependence between the log-asset and the intensity. When
holding put options, WWR occurs when b is negative, otherwise we deal with right way
risk (RWR).

Comparing to the market price of the ZCB in (4.6), with coefficient b fixed, the for-
mula for a(t ) is given by:

a(t ) = h −bX0 −
(
r − 1

2
σ2

x

)
bt + 1

2
b2σ2

x t 2. (4.33)

1Stochastic asset volatility is not considered here.
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The log-asset and the intensity processes can be represented by the following formu-
las:

X t = X0 +
(
r − 1

2
σ2

x

)
t +σxWt ,

h̃t = h + 1

2
σ2

x t 2b2 +bσxWt . (4.34)

From (4.34) it follows that coefficient b does not affect X t . The variance of the inten-
sity is given by b2σ2

x t . The expectation of the intensity at time t is given by h + 1
2σ

2
x t 2b2.

The intensity is governed by the process that also controls the log-asset price. It is
positive over the time horizon [0,T ] with probability (1−2ζ), when the value of coeffi-
cient b lies in the interval, (

∆+(Φ−1(1−ζ),T ),∆−(Φ−1(ζ),T )
)

, (4.35)

where Φ is the cumulative distribution function (CDF) of the standard normal distribu-
tion, and ∆± is given by:

∆±(Z , t ) =σx t−
3
2

(
−Z ±

√
Z 2 −2th

)
, (4.36)

The derivation of the boundaries (4.35) for the coefficient b is presented in Appendix
1 in this chapter. With this result, we can set limits for coefficient b with certain tolerance
regarding negative values of the intensity.

Comment: Compared to the model given by Hull and White [46], and the models
proposed by Ruiz [74], the DF model has the drawback that the intensity may become
negative. The affine structure of the DF model has, of course, advantages for computa-
tion, like the availability of an analytic formula of the defaultable ZCB price. The deter-
ministic function a(t ) enables fitting the term-structure of bonds with different tenors.
The financial meaning of the coefficients seems clear. The stock value of the company
impacts the credit spread.

4.3.2. CIR MODEL WITH JUMPS
As a second model, we use the CIR model with upward jumps to ensure that the intensity
stays non-negative, which we call the CIR-jump (CIRJ) model. Assume that (X t ,Yt ) is
governed by

d X t =
(
r − 1

2
σ2

x − λ̄µ̄
)

d t +σx dW 1
t +d J 1

t ,

dYt = γ(θ−Yt )d t +σy

√
Yt dW 2

t +d J 2
t ,

h̃(Yt ) = ζCIR(t )+Yt , (4.37)

where γ, θ and σy are positive constants, representing the speed of mean reversion, the
reverting level and the intensity volatility, respectively. Here, the diffusion terms are not
correlated but we assume that J 1

t and J 2
t jump simultaneously, and their intensities 2 are

correlated. The resulting model is an affine model.

2Notice that λ̄ is the intensity of jumps in the process (Xt ,Yt ), not related to the default time τ.
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The marginal distribution of the jumps in Yt is exponential with mean µJ
y ; condi-

tional on a realization of the jump size in Yt , say zy , the jump size in X t is normally

distributed with mean µJ
x +ρ J zy and variance σJ

x . The jump transform function Θ is
given by [26]:

Θ(c1,c2) =
exp

(
µJ

x c1 + 1
2

(
σJ

x

)2
c2

1

)
1−µJ

y c2 −ρ Jµ
J
y c1

, (4.38)

with the risk-neutral jump size µ̄=Θ(1,0), see (4.37); the initial values of the process are
(X0,Y0), and the function satisfies h̃(0) = h.

CIR process Yt is non-negative, and hence the intensity is non-negative as long as
ζCIR is positive along the time horizon. Function ζCIR is given by

ζCIR(t ) = h − 2λ̄µJ
y (ed1t −1)

ḡ +2µJ
y (ed1t −1)

− 2γθ

ḡ
(ed1t −1)− 4Y0d 2

1

ḡ 2 ed1t , (4.39)

where

d1 =
√
γ2 +2σ2

y , ḡ = γed1t −γ+d1 +d1ed1t . (4.40)

Jumps thus occur at the same time in these two processes. The financial meaning
is that due to unexpected events, the stock and the credit quality are simultaneously
affected. By this model, we assume that the stock increases/decreases sharply, while the
credit of the option writer improves/deteriorates at the same time. With a put option,
WWR incurs to option holders when ρ J is negative, as the exposure to the counterparty
increases.

The mean and variance of the log-asset model are given by

mean(X t ) = X0 +
(
r − 1

2
σ2

x

)
t + λ̄t (µJ

x − µ̄+ρ Jµ
J
y ),

var(X t ) = tσx + t λ̄
{

(σJ
x )2 + (µJ

x )2 +2(µJ
yρ J )2 −2µJ

yµ
J
xρ J

}
,

var(Yt )
t→∞

=
σ2

yθ

2γ
+ λ̄(µJ

y )2

γ
, (4.41)

where the variances can be obtained by the first and second moments using the non-
discounted ChF, and the long-term variance of Yt can be obtained by taking the limit.

From (4.41), we see that the parameters µy and λ̄ control the default risk, and also
have an impact on the stock value. Jump size correlation ρ J is the key correlation be-
tween these two processes, and it influences the impact of the jump term in the stock
process. By varying three parameters (µy , λ̄, ρ J ) in the jump terms the default-adjusted
and default-free values are influenced, since the underlying process will change.

Comment: We have not seen previous WWR studies based on simultaneous jumps
in the intensity process and the underlying asset process. The use of a jump-diffusion
process for the intensity can be found in [12, 25]. The CIRJ model considers the corre-
lation between the two factors when there is some sudden change in the market. Even
when the jump size correlation coefficient ρ J = 0, there may still be correlation between
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variables X t and Yt , as the jumps in these two processes happen simultaneously with
intensity λ̄. One can show that when ρ J = 0,

E [X t Yt ]−E [X ]E [Y ] =
λ̄µJ

yµ
J
x

γ
(1−e−γt ), (4.42)

which implies that X t and Yt are independent, when at least one of the parameters
(λ̄,µJ

y ,µJ
x ) equals zero.

4.3.3. HULL-WHITE MODEL WITH JUMPS

We also model the default intensity by a Hull-White model with jumps, and the joint
behavior of the intensity and the underlying asset by correlated Brownian motions and
simultaneous jumps. We refer to this model as the Hull-White-Jump (HWJ) model. The
underlying asset and the intensity process follow the SDE system, given by:

d X t = (r − 1

2
σ2

x − λ̄µ̄)d t +σx dW 1
t +d J 1

t ,

dYt = γ(θ−Yt )d t +σy (ρ̄dW 1
t +

√
1− ρ̄2dW 2

t )+d J 2
t ,

h̃(Yt ) = ζHW(t )+Yt , (4.43)

with initial values (X0,Y0). We use the same notation, σx ,γ,θ,σy as in the CIRJ model,
as the parameters have the same meaning; the jump terms (J1, J2) are defined in the
same way as in (4.37) with parameters (µx ,σJ

x ,µJ
y , λ̄,ρ J ), as is the risk-neutral jump size

µ̄=Θ(1,0); correlation ρ̄ in the diffusion terms defines an additional dependency; deter-
ministic function ζHW is used to fit the term-structure of defaultable zero-coupon bonds
and satisfies ζHW(0) = h −Y0.

With these coefficients, function ζHW can be determined by calibration to the market
prices of defaultable ZCBs, given by (4.6):

ζHW(t ) = = h − λ̄−θ+ (θ+Y0)e−γt +
σ2

y

2γ2

(
1−e−γt )2 + γλ̄

γ+µJ
y (1−e−γt )

.

Processes X t and Yt are correlated via the diffusion terms and the simultaneous
jumps with correlated jump sizes. The jumps in the Yt process are all positive, to reduce
the possibility of a negative intensity (although the intensity may still go negative). As we
have discussed, we accept negative values of the intensity with a very small probability.

The diffusion correlation coefficient ρ̄ and the jump size correlation ρ J play a promi-
nent role in the dependency structure. As the dependency in the jump terms (J1, J2) is as
defined in the CIRJ model, we will focus on the impact of the diffusion correlation ρ̄ in
the numerical experiments to follow.

The ChFs discounted at the short rate r and at the default-adjusted rate R under the
proposed three models are presented in Appendix 2 in this chapter. The derivation is
based on the result in (4.30).
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4.4. NUMERICAL ALGORITHMS
We will employ the COS method and the SGBM algorithm for approximating the default-
free and default-adjusted values in this section.

4.4.1. THE COS METHOD
The discounted density is the Fourier transform of the discounted ChF. Hence it can be
recovered by a Fourier cosine expansion on a specific interval as in [28, 72]. We denote
the density of Xm+1 discounted at the rate q and conditional on Xm by f̂ q

Xm+1|Xm
. Ac-

cording to [72], in a two-dimensional setting, the discounted density can be written by a
Fourier cosine expansion as follows

f̂ q
Xm+1|Xm

(y;x) ≈ 2

b1 −a1

2

b2 −a2

N1−1∑′
k1=0

N2−1∑′
k2=0

P
q
k1,k2

(x)cos

(
k1π

y1 −a1

b1 −a1

)
cos

(
k2π

y2 −a2

b2 −a2

)
,(4.44)

where the symbol
∑′

indicates that the first term of the summation is weighted by 1
2 ;

y = [y1, y2]T , x = [x1, x2]T , and the coefficients P
q
k1,k2

are given by

P
q
k1,k2

(x) = 1

2
Re

{
ϕq

(
k1π

b1 −a1
,

k2π

b2 −a2
; tm , tm+1,x

)
exp

(
− i k1a1π

b1 −a1
− i k2a2π

b2 −a2

)}
+1

2
Re

{
ϕq

(
k1π

b1 −a1
,− k2π

b2 −a2
; tm , tm+1,x

)
exp

(
− i k1a1π

b1 −a1
+ i k2a2π

b2 −a2

)}
, (4.45)

where k1 = 0, . . . , N1−1, k2 = 0, . . . , N2−1, and Re represents the real part of the argument;
the truncated interval [a1,b1]× [a2,b2] is given by

a1 = EQ[XT ]−L1

√
var(XT ), b1 = EQ[XT ]+L1

√
var(XT ),

a2 = EQ[YT ]−L2

√
var(YT ), b2 = EQ[YT ]+L2

√
var(YT ), (4.46)

where L1 and L2 are constants that define the length of the interval.
Notice that we require two discounted ChFs, one discounted by the short rate, an-

other by the intensity-adjusted rate. We use the notation P r
k1,k2

for the coefficients of the

PDF discounted at the short rate and P R
k1,k2

when discounting at the intensity-adjusted
rate.

We present the backward recursion steps when pricing default-adjusted and default-
free Bermudan puts, by either using Policy I or II. The difference is in the way optimal
exercise boundaries are determined. We use index j = {Policy I, II} to refer to the corre-
sponding values under these two policies.

At an exercise time tm < T , the expected default-adjusted value of continuing the
option is given, respectively, by

c j
r (tm ,x) ≈

N1−1∑′
k1=0

N2−1∑′
k2=0

P r
k1,k2

(x)V j
k1,k2

(tm+1),

c j
R (tm ,x) ≈

N1−1∑′
k1=0

N2−1∑′
k2=0

P R
k1,k2

(x)U j
k1,k2

(tm+1), (4.47)
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where the coefficients read

V
j

k1,k2
(tm+1) ≈

b1∫
a1

b2∫
a2

V j (y, tm+1)cos

(
k1π

y1 −a1

b1 −a1

)
cos

(
k2π

y2 −a2

b2 −a2

)
d y2d y1,

U
j

k1,k2
(tm+1) ≈

b1∫
a1

b2∫
a2

U j (y, tm+1)cos

(
k1π

y1 −a1

b1 −a1

)
cos

(
k2π

y2 −a2

b2 −a2

)
d y2d y1.(4.48)

At time tM = T , V j = U j = g (·); for a put option, the immediate exercise payoff is
larger than zero when the stock price at time T is lower than strike K . We have

V
j

k1,k2
(tM ) = U

j
k1,k2

(tM )

=
log(K )∫
a1

g (y1)cos

(
k1π

y1 −a1

b1 −a1

)
d y1

b2∫
a2

cos

(
k2π

y2 −a2

b2 −a2

)
d y2. (4.49)

The optimal exercise boundary at each exercise date is represented by a two-dimensional
surface. We define a grid along the intensity direction, denoted by {a2 = w0 < w2 < . . . <
wQ = b2}, with Q grid points. On each interval [wl−1, wl ], l = 1, . . . ,Q, we approximate

the optimal exercise log-stock values by a constant x j
m,l , using the following expression:

Policy I: g (xI
m,l )− cI

r

(
tm , [xI

m,l , w̄l ]T
)
= 0,

Policy II: g (xII
m,l )− cII

R

(
tm , [xII

m,l , w̄l ]T
)
= 0, (4.50)

where w̄l = 1
2 (wl−1 +wl ).

For a put, the exercise region [a1, x j
m,l ]×[wl−1, wl ], and the continuation region [x j

m,l ,b1]×
[wl−1, wl ], for each l = 1, . . . ,Q. Hence the coefficients at time tm are given by

V
j

k1,k2
(tm) =

Q∑
l=1

( wl∫
wl−1

b1∫
x

j
m,l

c j
r (y, tm)cos

(
k1π

y1 −a1

b1 −a1

)
cos

(
k2π

y2 −a2

b2 −a2

)
d y1d y2

+
x

j
m,l∫

a1

g (y1)cos

(
k1π

y1 −a1

b1 −a1

)
d y1

wl∫
wl−1

cos

(
k2π

y2 −a2

b2 −a2

)
d y2

)
,

U
j

k1,k2
(tm) =

Q∑
l=1

( wl∫
wl−1

b1∫
x

j
m,l

c j
R (y, tm)cos

(
k1π

y1 −a1

b1 −a1

)
cos

(
k2π

y2 −a2

b2 −a2

)
d y1d y2

+
x

j
m,l∫

a1

g (y1)cos

(
k1π

y1 −a1

b1 −a1

)
d y1

wl∫
wl−1

cos

(
k2π

y2 −a2

b2 −a2

)
d y2

)
, (4.51)
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where c j
r and c j

R is given by (4.47).

The computation of summation in (4.51) can be enhanced by using Fast-Fourier-
Transform (FFT) techniques, see [28, 72].

The COS method can also be employed when the ChF function can be approximated.
Borovykh et. al. [10] provides a pricing method for Bermudan options based on an an-
alytic approximation of the ChF using the COS method under local Lévy models with
default.

4.4.2. STOCHASTIC GRID BUNDLING METHOD

SGBM can be generalized to pricing default-adjusted Bermudan options in a straightfor-
ward way. We give details of SGBM in the 2D case, for the CIRJ and the HWJ models.

The default-free option values are dependent only on the underlying log-stock X =
log(S) and the path-dependent early-exercise policy, whereas the default-adjusted val-
ues are also impacted by the intensity factor Y . Within the regression step of SGBM, we
choose different basis functions for computing default-free and default-adjusted values.
For example, we use the polynomial basis {1, X , X 2} for the default-free case, and the
polynomial basis {1, X ,Y , X 2, X Y ,Y 2} for the default-adjusted case.

Let

([
X̂1,h

Ŷ1,h

]
, . . . ,

[
X̂M ,h

ŶM ,h

])H

h=1
be H generated scenarios, where the underlying evolves

with the chosen risk-neutral models. We will perform the valuation by backward in time
recursion, from time tM = T to t0 = 0. For notational convenience, we do not specify the
policy j = {I , I I } of the values.

At the final exercise opportunity, tM , the option is either expiring or exercised, and
the probability of default happening exactly at time tM = T is zero. At time tM the
default-free and default-adjusted option values are equal, i.e. v̂M ,h = g (X̂M ,h) and ûM ,h =
g (X̂M ,h).

At an exercise time tm < T , prior to expiry, we define J bundles for bundling the
Monte Carlo paths, which we denote by {Bm, j }J

j=1. We subdivide the paths into bundles

based on cross-sectional samples of the state variable. For j = 1, . . . , J , on each Monte
Carlo path within the bundle Bm, j , we approximate the default-free function V and
default-adjusted function U at time tm+1, respectively, by a linear combination of the
basis functions:

v̂m+1,h = V (tm+1, [X̂m+1,h , Ŷm+1,h]T ) ≈
d∑

k=0
β

m, j
k

(
X̂m+1,h

)k
,

ûm+1,h = U
(
tm+1, [X̂m+1,h , Ŷm+1,h]T )≈ d∑

|k|=0
η

m, j
k1,k2

(
X̂m+1,h

)k1
(
Ŷm+1,h

)k2 , (4.52)

where d is the degree of the monomials, |k| = k1 +k2, v̂m+1,h and ûm+1,h are the realized
default-free and default-adjusted values, respectively, on the l-th path at time tm , where
l ∈Bm, j , and the coefficients ηr

k and ηR
k are obtained by minimizing least-squares errors.

With the obtained coefficients, the default-free or default-adjusted continuation val-
ues defined in Equation (4.24) for paths within the bundle Bm, j at time tm can be ap-
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proximated by:

ĉr
m,h ≈

d∑
k=0

β
m, j
k ψr

k

(
[X̂m,h , Ŷm,h]T , tm , tm+1

)
,

ĉR
m,h ≈

d∑
|k|=0

η
m, j
k1,k2

ψR
k1,k2

(
[X̂m,h , Ŷm,h]T , tm , tm+1

)
, (4.53)

where the functions ψr and ψR are defined by

ψr
k (Xm , tm , tm+1) = exp(−r (tm+1 − tm))EQ

[
X k

m+1

∣∣∣Xm

]
,

ψR
k1,k2

(Xm , tm , tm+1) = EQ
[

exp

(
−

∫ tm+1

tm

Rs d s

)
X k1

m+1Y k2
m+1

∣∣∣Xm

]
, (4.54)

which represent the conditional expectations discounted at the corresponding rate, con-
ditional on Xm .

We refer to ψr and ψR as the discounted moments. It is straightforward to derive an
analytic formula for the discounted moments from the corresponding discounted ChF.
By regressing over each bundle Bm, j , the expected default-free and default-adjusted val-
ues of continuing the option on each path are approximated.

The early-exercise decision at each path is determined by:

• Policy I:

v̂m,h = max(g (X̂m,h), ĉr
m,h),

ûm,h =
{

g (X̂m,h), g (X̂m,h) > ĉr
m,h ,

ĉR
m,h , g (X̂m,h) ≤ ĉr

m,h .
(4.55)

• Policy II:

ûm,h = max(g (X̂m,h), ĉR
m,h),

v̂m,h =
{

g (X̂m,h), g (X̂m,h) > ĉR
m,h ,

ĉr
m,h , g (X̂m,h) ≤ ĉR

m,h .
(4.56)

We proceed by moving one step backward in time, to tm−1, where the paths are again
subdivided into new bundles (based on the samples at time tm−1) and perform the re-
quired SGBM computations. The algorithm iterates back to time t0, where we do not
need bundles, and we can perform the regression over all paths.

The option value obtained is the SGBM direct estimator. By computing option values
based on another set of MC paths using the obtained coefficients gives the SGBM path
estimator. These values should be close.

In this chapter, we only present results obtained via the SGBM direct estimator. The
SGBM path estimator has been computed and it confirmed the convergence of the algo-
rithm.
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4.5. NUMERICAL RESULTS
We will study the effect of WWR on CVA for European and Bermudan options in this
section. We will use the three models for the dependency structure of the underlying
asset and the intensity.

The effect of WWR on European options can be analyzed by a CVA stress test, for
example, by varying the dependency coefficients. For Bermudan options, we will com-
pare the optimal exercise boundaries over the time horizon and the corresponding CVA
values. The impact of the two exercise policies discussed is studied as well.

As mentioned, CVA is governed by three components: the credit quality, the under-
lying asset, and their dependency structure, i.e. by WWR or RWR. In order to isolate the
impact of WWR (RWR) from the other components, we define a WWR ratio: CVAW

CVAI
, where

only the correlation/dependency coefficients (such as the coefficients b, ρ J or ρ̄) are
varied, while keeping other parameter fixed. CVAW is the maximum CVA value when the
intensity and the underlying asset are ’wrongly’ correlated in the worst case, and CVAI is
the CVA value when the underlying asset and intensity are independent.

The optimal exercise boundary for the Bermudan options is obtained by the COS
method, and SGBM is used to find reference values for the corresponding initial option
values. We use the Euler SDE discretization for generating the scenarios under the three
models, as in [34]. Within the SGBM, the number of Monte Carlo scenarios generated is
105 and the number of discrete monitoring dates is 20. To ensure the SGBM accuracy,
we use 100 bundles at each discrete date.

4.5.1. WWR: THE DF MODEL
The DF model may be a basic model for the intensity, but it provides useful insight in the
connection between the underlying stock and the intensity.

We compute the CVA of a European and a Bermudan put, respectively, and vary co-
efficient b and volatility σx in the numerical experiments. We set the other parameters
as: S0 = 100, K = 100, r = 0.004, h = 0.1, T = 0.5.

Figure 4.1 presents a CVA stress test for a European put, varying coefficient b and
volatility σx = {0.1,0.2,0.4}. We choose a 90% nonnegativity intensity interval for coeffi-
cient b, which varies as σx changes. The interval is larger when the volatility is smaller.
We present the WWR ratio in plot (a) and the CVA value in plot (b) of Figure 4.1. CVA
increases as the value of coefficient b gets smaller, as expected.

Figure 4.1(a) shows that, given a fixed value of the coefficient b, the impact of WWR
on the CVA value of the associated option is larger for higher log-asset volatilities σx .
From Equation (4.34) it is clear that the volatility of the intensity is related to |b|σx . The
intensity model’s volatility thus plays an important role in the WWR. Figure 4.1(b) shows
that the log-asset volatility is the determining factor for the CVA value. In the DF model,
the volatility of the asset does not only impact the absolute value of CVA, but the strength
of WWR as well.

Figure 4.2 presents the optimal exercise boundaries for a Bermudan option. Under
Policy I variations in b do not have an impact on the optimal exercise boundary, and
under Policy II we vary b = {0,−0.2,0.6}. When taking CCR into account, the optimal
exercise boundaries of a put option increase. By comparing the optimal exercise bound-
ary for b = −0.2 with that for b = −0.6, we see that, due to WWR, the optimal exercise
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Figure 4.1: The DF model: CVA test for a European put varying coefficient, b ∈ [−1.134,1.108] when σx = 0.1,
b ∈ [−0.617,0.514] when σx = 0.2, b ∈ [−0.358,0.231] when σx = 0.4. The blue line represents σx = 0.1, the red-
dashed line σx = 0.2 and the black-block-line σx = 0.4. Results are obtained by the COS method, the number
of Fourier terms is 500 and the coefficient of the integration range L = 8.

boundaries increase.
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Figure 4.2: The DF model: optimal exercise boundaries for a Bermudan put using the two exercise policies
with b = {0,−0.2,−0.6}. The number of exercise opportunities M = 10. The log-asset volatility σx = 0.2.

Table 4.1 compares the default-free, default-adjusted and CVA values using the two
policies. We see that by using Policy I, the default-free value is not impacted by variation
in b, but the default-adjusted value gets smaller as b decreases. Hence the value of CVA
increases under Policy I when WWR increases: By varying b, from zero to −0.2 and −0.6,
CVA increased by 0.02 and 0.07, respectively. Policy II reduces the CVA value, and the
impact of WWR on CVA using Policy II is smaller: By varying b from zero to −0.2 and
−0.6, CVA values using Policy II increase by 0.01 and 0.04, respectively.

Under the dependency structure described by the DF model, the CVA value is higher
when WWR increases, for European and Bermudan options under either policy.
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Policy I Policy II

b method V I U I CVAI V II U II CVAII

0
COS 5.541 5.317 0.224 5.531 5.330 0.201

SGBM 5.540 5.317 0.223 5.530 5.330 0.201
std 0.002 0.001 0.001 0.002 0.001 0.000

−0.2
COS 5.541 5.292 0.248 5.527 5.313 0.214

SGBM 5.540 5.291 0.249 5.526 5.312 0.214
std 0.001 0.001 0.000 0.001 0.001 0.000

−0.6
COS 5.541 5.243 0.298 5.518 5.281 0.237

SGBM 5.541 5.243 0.298 5.518 5.281 0.237
std 0.001 0.001 0.001 0.001 0.001 0.000

Table 4.1: The DF model: Default-free and default-adjusted values and CVA for a Bermudan put exercised by
two policies with b = {0,−0.2,−0.6}, respectively. Volatility σx = 0.2. The basis functions in SGBM are {1, X , X 2}
for the default-free and default-adjusted values, as the DF model is a 1D model and Xt is the only factor.

4.5.2. WWR: THE CIRJ MODEL
The dependency in the CIRJ model is in the jump term with different correlation ρ J for
the jump intensities. Here, the intensity process directly influences the underlying asset
process in the CIRJ model. Changing parameters {λ̄,µJ

y ,ρ J } will affect the underlying
log-asset process.

To compare results, we fix the volatility “σBS
x ” and compute the log-asset volatility

σx by the default-free value of an at-the-money European put (with all other parameters
fixed), i.e., σx , is the solution of the following formula:

BS(S0,r,T,K ,σBS
x ) = default-free(S0,r,T,K ,σx ,σy , (λ̄,µJ

y ,ρ J )), (4.57)

where K = S0.
We then vary the values of {σBS

x , λ̄,µJ
y ,ρ J } to see the impact of these parameters on

WWR and on CVA. The other parameters are chosen as: S0 = K = 100, T = 0.5, r = 0.004,
h = 0.1, Y0 = 0.02, γ= 5 see Eq.(4.37), θ = 0.02, σy = 0.1, µJ

x = 0, σJ
x = 0.05.

Figure 4.3 presents the WWR and CVA values for a European put by varying the pa-
rameters. When ρ J = 0, variations in the other parameters do not have any impact on
the WWR or CVA values; in Figure 4.3(a) it is shown that with ρ J 6= 0, the WWR increases
when the jump parameters µJ

y and λ̄J increase and σBS
x decreases. It appears to be the

contribution of the correlated jump terms to the total variance of the log-asset process
that determines the WWR. Figure 4.3 shows that σBS

x , which represents the level of the
total variance in the log-asset process, is an important factor for the CVA values.

Now, we consider a Bermudan option that can be exercised M = 10 times prior to
and upon expiration T . After fixing σBS

x = 0.2, λ̄= 5, µJ
y = 0.04, we compare the optimal

exercise boundaries when varying the jump size correlation ρ J = {0,−0.9} in Figure 4.4.
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Figure 4.3: The CIRJ model: CVA test for a European put varying {σBS
x , λ̄,µJ

y ,ρ J }. Results are obtained by the
COS method, the number of Fourier terms N1 = 60, N2 = 60. integration range L1 = 8, L2 = 6.

In this 2D setting, the optimal exercise boundary at each exercise date is a surface, and
we choose to plot the stock value along the time horizon of this optimal exercise surface
at a fixed point of the Y -grid. As discussed, varying ρ J has an immediate effect on the
log-asset process, and the optimal exercise boundaries for ρ J = {0,−0.9} using Policy I
are different. The exercise region (the area below the curve) always increases when ρ J

gets negative, for each policy. In the CIRJ model, when the jump in the intensity process
is upward, the jump in the log-asset process tends to be downward when ρ J is negative
(notice that we choose µJ

x = 0).
Results in Table 4.2 show that the impact of ρ J on the CVA values of a Bermudan

put is much smaller than on the CVA values of the European put. The CVA values even
become smaller when ρ J is negative. Under this model, the CVA of a Bermudan put in
the presence of WWR need not be higher than CVA without WWR.

4.5.3. WWR: THE HWJ MODEL
There are two correlation coefficients in the HWJ model, the jump size correlation ρ J is
defined as in the CIRJ model. Correlation ρ J defines the same dependency as in the CIRJ
model, studied in Section 4.5.2. An extreme case is λ̄= 0, i.e. there is no jump in (X t ,Yt ),
and hence we can focus on the diffusion correlation ρ̄.

Different from ρ J , correlation ρ̄ does not influence the underlying asset process X t .
We will vary the value of the coefficients σx and σy to study the effect of the volatility on

WWR and CVA. The other parameters are chosen as: r = 0.004, S0 = 100, K = 100, h = 0.1,
Y0 = 0.02, γ= 5, θ = 0.02.

We first perform a CVA stress test for a European put, by varying ρ̄ from −1 to 1, in
Figure 4.5 with σx = {0.1,0.2} and σy = {0.1,0.2}. Figure 4.5(a) shows that the WWR ratio
curves with the same value ofσx are very close. It implies that, given a fixed value of ρ̄, an
important factor for WWR is the intensity volatility σy , and σx only has a minor impact
on the WWR. Correlation ρ̄ is the factor of the contribution of the correlated diffusion
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Figure 4.4: The CIRJ model: Optimal exercise boundary along the time horizon for a Bermudan put, M = 10.
The results are obtained by the COS method. The stock value along the time horizon, fixing the value on the

Y -grid, w̄l = 0.0979. Parameters λ̄= 5, µJ
y = 0.04, σBS

x = 0.2.

λ̄= 5 Policy I Policy II

ρ J method V I U I CVAI V II U II CVAII

0
COS 5.539 5.308 0.230 5.526 5.327 0.199

SGBM 5.541 5.312 0.229 5.526 5.335 0.191
std 0.002 0.002 0.001 0.002 0.002 0.001

−0.9
COS 5.544 5.322 0.222 5.530 5.346 0.184

SGBM 5.551 5.335 0.217 5.537 5.361 0.177
std 0.001 0.002 0.001 0.001 0.002 0.002

Table 4.2: The CIRJ model: Initial values of a Bermudan put, M = 10. The SGBM basis functions for the default-
free computation are {1, X , X 2}, and for the default-adjusted value {1, X ,Y , X 2,Y 2, X Y }. The volatility in the BS

formula is σBS
x = 0.2; µJ

y = 0.04 and λ̄= 5.

terms to the total variance of the log-asset process. Figure 4.5(b) shows again that the
log-asset volatility is the important factor for the CVA values.

Next, we also study Bermudan options by comparing the optimal exercise bound-
aries in Figure 4.6. The optimal boundaries using Policy I do not change when varying
ρ J (see the blue line). We study the cases T = 0.5 and T = 5 (the option can be exercised
M = 10 times). Plot (a) shows that the effect of the diffusion correlation is very small
(almost identical curves). With longer time intervals between two exercise dates in plot
(b), the optimal exercise boundary with ρ̄ J =−0.9 is slightly higher than for ρ J = 0.

Table 4.3 compares results using the COS and SGBM methods. We compare the re-
sults when T = 0.5. Using Policy I, when the correlation ρ̄ gets negative (up to −0.9), the
default-free values stay the same, whereas the default-adjusted values become smaller.
When we increase the value of the intensity volatility σy , from 0.1 to 0.2, the differ-
ences in the default-adjusted values increase. It shows that σy only impacts the default-
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Figure 4.5: The HWJ model: CVA test varying ρ̄ from −1 to 1 with λ̄ = 0. Results are obtained via the COS
method, N1 = 60, N2 = 60, L1 = 8, L2 = 6.

adjusted value and the WWR. The use of Policy II cannot eliminate the increase in CVA
values in the presence of WWR, but it can reduce the differences in the CVA values.
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Figure 4.6: The HWJ model: Optimal exercise boundaries along the time horizon, with σy = 0.2, σx = 0.2,

jump intensity λ̄= 0. Plot (a): Optimal exercise stock values on the Y -grid w̄l = 0.1027, when T = 0.5; Plot (b):
Optimal exercise stock value on the Y -grid w̄l = 0.1030, when T = 5.

COMPARISON OF THE MODELS

When comparing the results in Tables 4.1, 4.2 and 4.3, we see that in the case of indepen-
dence of the two processes, the values of the default-free and default-adjusted Bermu-
dan put corresponding to the two policies are very close when using the same values
for σBS

x and h. For the DF model and the HWJ model, the CVA values of the Bermudan
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λ̄= 0 Policy I Policy II

σy ρ̄ method V I U I CVAI V II U II CVAII

0.1 0
COS 5.541 5.317 0.224 5.531 5.331 0.200

SGBM 5.541 5.316 0.224 5.530 5.332 0.198
std 0.002 0.002 0.001 0.001 0.002 0.001

0.1 −0.9
COS 5.541 5.284 0.257 5.526 5.305 0.221

SGBM 5.541 5.284 0.258 5.527 5.306 0.221
std 0.000 0.001 0.001 0.001 0.001 0.001

0.2 0
COS 5.541 5.317 0.224 5.530 5.332 0.198

SGBM 5.542 5.318 0.224 5.530 5.335 0.195
std 0.001 0.001 0.001 0.001 0.001 0.001

0.2 −0.9
COS 5.541 5.250 0.290 5.521 5.280 0.240

SGBM 5.541 5.251 0.291 5.521 5.281 0.240
std 0.002 0.002 0.001 0.002 0.002 0.001

Table 4.3: The HWJ model: Initial values for a Bermudan put, when λ̄= 0 and T = 0.5; M = 10. The SGBM basis
functions for the default-free value are {1, X , X 2}, and for the default-adjusted values {1, X ,Y , X 2,Y 2, X Y }.

put always increase w.r.t. the WWR, but for the CIRJ model it does not. The intensity
processes in the DF and the HWJ models do not change the properties of the underlying
asset process, but in the CIRJ model the existence of WWR also changes the jump term
in the log-asset process, which may explain the different results.

When comparing Figures 4.2 and 4.6, we see that WWR has more impact on the opti-
mal exercise boundary in the DF model compared to the HWJ model (when ρ J = 0). The
main difference in the dependency structure defined by coefficient b and coefficient ρ̄
is that the intensity value in the DF model is determined by the drift and the diffusion
terms of the stock process, whereas in the HWJ model, coefficient ρ̄ only impacts the
diffusion terms.

For these three models, we present one Monte Carlo path in Figure 4.7, where we
see that for the paths for the CIRJ and the HWJ models, high values of intensity do not
necessarily imply lower stock values. The dependency structure defined by these three
models is different. The impact of WWR on European and Bermudan options may thus
also be different.

4.6. CONCLUSION
We studied the effect of WWR on European and Bermudan options by means of three
types of dependency structure. The results show that the effects of WWR for European
and Bermudan options differs. Different exercise policies can be followed when CCR is
present, which may impact the corresponding CVA values of Bermudan options. The
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Figure 4.7: One path under the risk-neutral measure: The blue lines represent the stock values and the red
dashed lines the value of the Y process. Plot (a) is by the DF model with b =−0.6, σx = 0.2; plot (b) by the CIRJ

model σBS
x = 0.2, λ̄= 5, ρ J =−0.9, µJ

y = 0.04; plot (c) by the HWJ model with σx = 0.2, λ̄= 0 and ρ̄ =−0.9.

way to define the dependency structure also plays a role regarding the WWR. The three
types of dependency structure we considered, gave different results for the optimal exer-
cise boundaries of the Bermudan options and the corresponding option values. Increas-
ing WWR always increased CVA in the case of European options, but for some depen-
dency structure, the CVA of a Bermudan option may decrease when WWR incurs. In ad-
dition to the correlation coefficients, the volatility of the intensity plays an important role
regarding the WWR. When computing the CVA as the difference between the default-free
and default-adjusted values, the CVA VaR and CVA ES can be computed without sub-
simulations by means of the developed algorithms.

APPENDIX 1: BOUNDARIES OF THE COEFFICIENT b
The intensity ht can be regarded as a function of coefficient b, given by

ht =
(

1

2
σ2

x t 2
)

b2 + (
σx

p
t Z

)
b +h, (4.58)

where Z ∼N (0,1) and t ∈ [0,T ].
The value of random variable Z is betweenΦ−1(ζ) andΦ−1(1−ζ) at a probability (1−

2ζ), where ζ < 0.5. With z0 :=Φ−1(1−ζ) > 0, interval [−z0, z0] is the confidence interval
of Z at level ((1−2ζ)).

By fixing Z and t , the expression in (4.58) becomes a quadratic function in b, and its
roots are given by the solution to the function,

∆±(Z , t ) = σ−1
x t−

3
2 (−Z 2 ±

√
Z 2 −2th). (4.59)

The two roots are determined by Z and t ; when fixing t , we find:

• When Z 2 < 2th, i.e. when Z ∈ (−
√

2th,
√

2th), the expression in (4.58) has two
complex-valued roots and intensity h is thus always positive;

• When Z 2 ≥ 2th, the expression in (4.58) has two real-valued roots; It is positive
when b <∆−(Z , t ) or b >∆+(Z , t ).
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We look for values of b so that ht is non-negative for Z ∈ [−z0, z0], where z0 >
√

2th >
0. The derivatives of the two roots,

∂∆±(Z , t )

∂Z
= σ−1

x t−
3
2

(
−1± Z√

Z 2 −2th

)
, (4.60)

where
∣∣∣ Zp

Z 2−2th

∣∣∣< 1, and hence we have:

• When Z ∈ [−z0,−
√

2th],

∂∆−(Z , t )

∂Z
> 0,

∂∆+(Z , t )

∂Z
< 0, (4.61)

from which we see that, on the interval Z ∈ [−z0,−
√

2th], the root ∆− is mono-
tonically increasing and the root ∆+ is monotonically decreasing, and ht > 0 for

Z ∈ [−z0,−
√

2th] when the value of the coefficient b satisfies:

b ∈ (−∞,∆−(− z0, t
))∪ (

∆+
(
−

√
2th, t

)
,+∞)

; (4.62)

• When Z ∈ [
√

2th, z0], we have:

∂∆−(Z , t )

∂Z
< 0,

∂∆+(Z , t )

∂Z
> 0, (4.63)

so, on the interval Z ∈ [
√

2th, z0],∆− is monotonically decreasing and∆+ is mono-
tonically increasing.

Then, ht > 0 for Z ∈ [
√

2th, z0] when the value of b satisfies:

b ∈ (−∞,∆−(√
2th, t

)]∪ (
∆+ (z0, t ) ,+∞)

; (4.64)

The intersection of Set (4.62) and Set (4.64), gives us the set of b-values for which
ht > 0 for Z ∈ [−z0, z0], given by

b ∈ (
∆+ (z0, t ) ,∆−(−z0, t )

)
. (4.65)

Next we will show that the set of the b-value that satisfies ht > 0, for Z ∈ [−z0, z0] over
the time horizon t ∈ [0,T ], is given by

b ∈ (
∆+ (z0,T ) ,∆−(−z0,T )

)
, (4.66)

when z0 > 8
3 th.

Fixing Z , and taking the derivative of the two roots w.r.t. the time t , gives

∂∆±(Z , t )

∂t
= σ−1

x t−
5
2

2
√

Z 2 −2th

(
Z ±

√
Z 2 −2th

)(
Z ±2

√
Z 2 −2th

)
. (4.67)
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From (4.67), ∂∆−(−z0,t )
∂t < 0 and ∂∆+(z0,t )

∂t > 0 when z0 >
√

8
3 th. We can choose ζ ≤

Φ(− 8
3 th) to satisfy this condition. Then, ∆+(z0, t ) is increasing monotonically w.r.t. time

t, and ∆−(−z0, t ) is decreasing monotonically w.r.t. time t. Hence, the bounded inter-
val for the coefficient b, given by (4.65), satisfies ht > 0 for the time period [0,T ] at a
probability (1−2ζ).

APPENDIX 2: DISCOUNTED CHFS

DF MODEL
The default-adjusted discounted ChF of the DF model is given by

ϕDF
R (u, t ,T ; X t ) = exp

[
−

∫ T

t
Rs d s + i u1XT

∣∣∣X t

]
, (4.68)

the expression of which is as follows

ϕDF
R (u, t ,T ; X t ) = exp

(
−

∫ T

t
a(s)d s + ÃR (T − t )+ B̃ R (T − t )X t

)
, (4.69)

with the coefficients

ÃR (T − t ) =
[
−r + i u

(
r − 1

2
σ2

x

)
− 1

2
σ2

x u2
]

(T − t )

b

2

[
i uσ2

x −
(
r − 1

2
σ2

x

)]
(T − t )2 + 1

6
σ2

x (T − t )3,

B̃ R (T − t ) = i u −b(T − t ). (4.70)

The corresponding short rate discounted ChF of the DF model is given by

ϕDF
r (X t , t ,T ) = exp

[
−r (T − t )+ i u1XT

∣∣∣X t

]
, (4.71)

the expression of which is as follows

ϕDF
r (X t , t ,T ) = exp

(
Ãr (T − t )+ B̃ r (T − t )X t

)
, (4.72)

where the coefficients are given by

Ãr (s) =
[
−r + i u

(
r − 1

2
σ2

x

)
− 1

2
σ2

x u2
]

(T − t ),

B̃ r (s) = i u. (4.73)

CIRJ MODEL
The default-adjusted discounted ChF of the CIRJ model is given by

ϕCIRJ
R (u, t ,T ; (X t ,Yt )) = exp

[
−

∫ T

t
Rs d s + i u1XT + i u2YT

∣∣∣(X t ,Yt )

]
, (4.74)
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the expression of which is as follows

ϕCIRJ
R

([
u1

u2

]
, t ,T,

[
X t

Yt

])
= exp

(
−

∫ T

t
ζCIR(s)d s + ÃR (T − t )+ B̃ R

1 (T − t )X t + B̃ R
2 (T − t )Yt

)
,(4.75)

with the coefficients

B̃ R
1 (T − t ) = i u1, B̃ R

2 (T − t ) = γ

σ2
y
+ d1

σ2
y

1+d2ed1(T−t )

1−d2ed1(T−t )
,

ÃR (T − t ) =
[
−r − λ̄+ i u1

(
r − 1

2
σ2

x − λ̄µ̄
)
− 1

2
σ2

x u2
1

]
(T − t )

+γθ
σ2

y

[
(γ+d1)(T − t )−2log

(
d2ed1(T−t ) −1

d2 −1

)]

+λ̄Ḡ

[
2σ2

yµ
J
y

g1g2
log

(
g1 +d2g2ed1(T−t )

g1 +d2g2

)
−
σ2

y (T − t )

g1

]
,

(4.76)

and

d1 =
√
γ2 +2σ2

y , d2 =
i u2σ

2
y −γ−d1

i u2σ
2
y −γ+d1

, Ḡ = exp

(
i u1µ

J
x −

1

2

(
u1σ

J
x

)2
)

,

g1 =−(1− i u1ρ Jµ
J
y )σ2

y + (d1 +γ)µJ
y , g2 = (1− i u1ρ Jµ

J
y )σ2

y + (d1 −γ)µJ
y . (4.77)

The short rate discounted ChF of the CIRJ model is given by

ϕCIRJ
r (u, t ,T ; (X t ,Yt )) = exp

[
−r (T − t )+ i u1XT + i u2YT

∣∣∣(X t ,Yt )
]

, (4.78)

the expression of which is as follows

ϕCIRJ
r

([
u1

u2

]
, t ,T ;

[
X t

Yt

])
= exp

(
Ar (T − t )+ B̃ r

1 (T − t )X t + B̃ r
2 (T − t )Yt

)
, (4.79)

where the coefficients

B̃ r
1 (T − t ) = i u1, B̃ r

2 (T − t ) = 2i u2γ

i u2σ
2
y +eγ(T−t )

(−i u2σ
2
y +2γ

) ,

Ãr (T − t ) =
[
−r − λ̄+ i u1

(
r − 1

2
σ2

x − λ̄µ̄
)
− 1

2
σ2

x u2
1

]
(T − t )

+λ̄Ḡ

[
σ2

y (T − t )

c̃1
+ log

(
i u2c̃1 − c̃0c̃2eγ(T−t )

i u2c̃1 − c̃0c̃2

)
·

(c̃1 − c̃2)σ2
y

γc̃1c̃2

]

+2γθ

σ2
y

[
γ(T − t )− log

(
c̃0eγ(T−t ) − i u2σ

2
y

c̃0 − i u2σ
2
y

)]
(4.80)

where

c̃1 = 1− i u1ρ Jµ
J
y −2γµJ

y , c̃2 = 1− i u1ρ Jµ
J
y , c̃0 = i u2σ

2
y −2γ. (4.81)
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HWJ MODEL
The default-adjusted discounted ChF of the HWJ model is given by

ϕHWJ
R (u, t ,T ; (X t ,Yt )) = exp

[
−

∫ T

t
Rs d s + i u1XT + i u2YT

∣∣∣(X t ,Yt )

]
, (4.82)

the expression of which is given by

ϕHWJ
R (u, t ,T ; (X t ,Yt ))

= exp

(
−

∫ T

t
ζHW(s)d s + ÃR (T − t )+ B̃ R

1 (T − t )X t + B̃ R
2 (T − t )Yt

)
, (4.83)

with the coefficients

B̃ R
1 (T − t ) = i u1, B̃ R

2 (T − t ) = exp
(−γ(T − t )

)(
i u2 − 1

γ

)
+ 1

γ
,

ÃR (T − t ) =
[
−r − λ̄+

(
r − 1

2
σ2 − λ̄µ̄

)
i u1 − 1

2
σ2u2

1

]
(T − t )+

σ2
y

2γ2 (T − t )

+ 1

γ
(γθ+ i u1ρ̄σxσy )

[(
1−e−γ(T−t ))(i u2 + 1

γ

)
− (T − t )

]

+
σ2

y

2γ2

[(
e−γ(T−t ) −1

)(
2i u2 + 2

γ

)
− (

e−2γ(T−t ) −1
)(

i u2 − 1

2
γu2

2 +
1

2γ

)]

+ λ̄Ḡ

γg +µJ
y

log

µJ
y
(
e−γ(T−t ) −1

)+γ(
i u2µ

J
y e−γ(T−t ) − g

)
γ(i u2µ

J
y − g )


+ λ̄Ḡγ

γg +µJ
y

(T − t ), (4.84)

where g = 1− i u1ρ Jµ
J
y , Ḡ = exp

(
i u1µ

J
x − 1

2

(
u1σ

J
x

)2
)
.

The short rate discounted ChF of the HWJ model is given by

ϕHWJ
r (u, t ,T ; (X t ,Yt )) = exp

[
−r (T − t )+ i u1XT + i u2YT

∣∣∣(X t ,Yt )
]

, (4.85)

the expression of which is as follows

ϕHWJ
r

([
u1

u2

]
, t ,T,

[
X t

Yt

])
= exp

(
Ãr (T − t )+ B̃ r

1 (T − t )X t + B̃ r
2 (T − t )Yt

)
, (4.86)

with the coefficients

B̃ r
1 (T − t ) = i u1, B̃ r

2 (T − t ) = i u2e−γ(T−t ).

Ãr (T − t ) =
[
−r − λ̄+

(
r − 1

2
σ2 − λ̄µ̄

)
i u1 − 1

2
σ2u2

1

]
(T − t )

+ i u2

γ

(
θγ+ i u1ρ̄σxσy
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(1−e−γ(T−t ))−

σ2
y u2

2

4γ
(1−e−2γ(T−t ))

+ λ̄

gγ
Ḡ

[
log

(
i u2µ

J
y e−γ(T−t ) − g

i u2µ
J
y − g

)
+γ(T − t )

]
, (4.87)
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APPENDIX 3: CVA VAR AND CVA ES
According to the Basel Committee on Banking Supervision: ’. . . CVA risk is defined as the
risk of losses arising from changing CVA values in response to changes in counterparty
credit spread and market risk factors that drive market prices of derivative transactions...
’ [6][Annex1]. The CVA Expected Shortfall (ES) is an important measure of CVA risk. Em-
ploying the developed algorithms, we can directly compute the CVA VaR and CVA ES
without sub-simulations. As an example, we demonstrate the results of CVA VaR with
different values of the coefficient b under the DF model.

The calculation of the CVA ES can be summarized as in [14]. We first generate sce-
narios under the real-world probability measure (denoted by P) up to the risk horizon.
Then, for each real-world scenario, the CVA values are calculated until expiration, based
on the risk-neutral measure. Subsequently, one determines the empirical real-world (P)
CVA distribution, selects a quantile at a confidence level (say 97.5%) and computes the
CVA VaR. The CVA VaR97.5% is the 97.5% quantile of the CVA loss (CVAt −CVA0). The
corresponding CVA ES reflects the expected value of the losses in the worst 2.5% of the
scenarios under P. The formula for the CVA ES at time t is as follows:

CVA-ES(t ) = EP
[

Lt

∣∣∣Lt > VaRLt (97.5%)
]

, (4.88)

where the CVA loss Lt := CVAt −CVA0; VaRLt (97.5%) is the 97.5% quantile of the loss dis-
tribution Lt ; CVAt represents the CVA value at time t , under the risk-neutral probability
measure.

Calculation of the CVA VaR and the CVA ES requires a change of probability mea-
sure (between P and Q). More details about the change of probability measure can be
found in Chapter 5. It may require sub-simulation (i.e., nested simulation) or even "sub-
sub simulation", which requires a huge computational effort. However, in our setting of
CVA calculation and with the algorithms under consideration, there is no need for sub-
simulation for the computation of CVA VaR or CVA ES. We take the difference between
the default-free and the default-adjusted values for computing CVA instead of comput-
ing the expectation as the integral over the time horizon, and by this we avoid one layer of
sub-simulation. Secondly, we can compute risk-neutral expectations on any simulated
real-world scenario by the algorithms (COS and SGBM). The COS and SGBM algorithms
for efficient CVA computation on risk-neutral scenarios can be found in [32, 78], and
those algorithms for efficient computation on both real-world and risk-neutral scenar-
ios, without sub- simulation, can be found in [30].

As an example, we compute the CVA ES for a Bermudan put under the DF model. Fig-
ure 4.8 shows the CVA ES from time zero until the option’s expiration by the COS method.
We compare the CVA ES values for b = {−0.2,−0.6} using the two policies. It shows that
WWR has a more significant impact on the CVA ES values, compared to the time-zero
CVA values. By Policy II the CVA ES values decrease significantly.



4.6. CONCLUSION

4

111

0 0.1 0.2 0.3 0.4 0.5

time

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

C
V

A
 E

S

policy I, b=-0.2

policy II, b=-0.2

policy I, b=-0.6

policy II, b=-0.6

Figure 4.8: The CVA ES for a Bermudan put under the DF model; S0 = 100, K = 100, r = 0.004, σQx = 0.2, real-

world log-return µP = 0.006, real-world volatility σPx = 0.2, h = 0.1, T = 0.5, and coefficient b = {−0.2,−0.6}.





CHAPTER 5

Efficient computation of exposure profiles on real-world
scenarios

This chapter presents a computationally efficient technique for the computation of ex-
posure distributions at any future time under the risk-neutral and some observed real-
world probability measures, needed for computation of credit valuation adjustment (CVA)
and potential future exposure (PFE). In particular, we present a valuation framework for
Bermudan swaptions. The essential idea is to approximate the required value function
via a set of risk-neutral scenarios and use this approximated value function on the set of
observed real-world scenarios. This technique significantly improves the computational
efficiency by avoiding nested Monte Carlo simulation and by using only basic methods
such as regression. We demonstrate the benefits of this technique by computing expo-
sure distributions for Bermudan swaptions under the Hull-White and the G2++ models.

5.1. INTRODUCTION
The aim of the regulatory capital base, in the Basel framework, is to improve a bank’s
resilience against future losses due to defaults of counterparties [5]. Credit exposure
to counterparties occurs due to financial transactions or investments via OTC (over the
counter) derivatives products. It is defined as the market value of the replacement costs
of transactions if a counterparty defaults, assuming no recovery. Banks are required to
hold regulatory capital to back exposure in the future to all their counterparties.

The Basel Committee gives specific definitions for the credit exposure metrics and
adjustments regarding the future credit risk, to banks/firms [4]. EE and PFE are impor-
tant indicators for the safety of a bank’s portfolio to market movements and are therefore
used as metrics for capital requirements by regulators in Basel II and III [38]. PFE is used
for trading limits for portfolios with counterparties as it may indicate at any future date
the maximum amount of exposure with a predefined confidence. For example, the 99%
PFE is the level of potential exposure that can be exceeded with a probability of 1%. CVA
is a charge which has a direct impact on the balance sheet and the income statement of
a firm as it is an adjustment to the value of financial derivatives.

There are three basic steps in calculating future distributions of exposure [38]:

• generation of scenarios using the models that represent the evolution of the un-
derlying market factors;

• valuation of the portfolio for each scenario at each exposure monitoring date;

This chapter is based on the article ’Efficient computation of exposure profiles on real-world and risk-neutral
scenarios for Bermudan swaptions’, published in Journal of Computational Finance, 20(1):139–172, 2016. [30].
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• determination of exposure values at each date for each scenario.

There is no doubt that CVA must be computed under the risk-neutral measure, as it is the
market price of counterparty default risk. It is the cost of setting up a hedge portfolio to
mitigate the credit risk that arises from exposure against a counterparty. In the setting of
a CVA computation, scenarios are generated under the risk-neutral measure to compute
’risk-neutral exposure distributions’.

In contrast, for risk analysis it is argued that expectations (EE) and quantiles (PFE)
of future exposure values must be obtained via scenarios that can reflect the ’real-world’
in a realistic way. We know that the risk-neutral probability measure used in the pricing
process does not reflect the ’real-world’ probability of future outcomes, as it has been
adjusted based on the assumption that market participants are risk-neutral.

The Girsanov theorem states that the risk-neutral volatility should be equal to the
real-world volatility, when an equivalent measure exists [3]. However, it is well-known
that in practice the risk-neutral market implied volatility differs from the observed real-
world volatility [48, 80]. The observed historical dynamics and the calibrated risk-neutral
dynamics may exhibit a different behavior, which is a challenge for risk management as
the computational cost becomes high.

In practice, calculation of exposure values on each ‘real-world’ scenario at each mon-
itoring date needs to be performed under a risk-neutral measure. For certain products,
like Bermudan swaptions, the valuation is based on Monte Carlo simulations, that can
be computationally intensive, especially since pricing then requires another, ’nested set’
of Monte Carlo paths. The computational cost increases drastically due to the number
of real-world scenarios, risk-neutral paths and the number of monitoring dates.

Employing a simplification, i.e. assuming that the observed real-world scenarios are
‘close’ to the risk-neutral scenarios and that calculation just takes place under one mea-
sure, may lead to serious problems, as there are significant differences between the re-
sulting distributions. Stein [81] showed that exposures computed under the risk-neutral
measure depend on the choice of numéraire, and can be manipulated by choosing a dif-
ferent numéraire. As a conclusion, it is crucial that calculations of EE and PFE must be
done under the real-world instead of the risk-neutral measure.

The computational problem poses a great challenge to practitioners to enhance the
computational efficiency. Available solutions include reduction of the number of moni-
toring dates, the number of Monte Carlo paths, application of variance reduction tech-
niques, using interpolation and enhanced computational platforms such as GPUs. Even
with all these efforts, calculations cost a lot of time [81].

For Bermudan swaptions, Joshi and Kwon [54] provided an efficient approach for
approximating CVA, which relies only on an indicator of future exercise time along sce-
narios, the decision of which is based on the regressed functions. The expected expo-
sure at a monitoring date is then obtained from the corresponding deflated path-wise
cash flows. This approximation method however cannot, in a straightforward fashion,
be used for PFE on the real-world scenarios. For PFE computations, Stein [80] proposed
to avoid nested MC simulations by combining the real-world and the risk-neutral proba-
bility measures. The computed results lie ‘between’ the computed PFE values under the
real-world and the risk-neutral probability measures.

In this chapter we will focus on accurate computation of these risk measures for a
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heavily-traded OTC derivative, the Bermudan swaption. There are well-developed meth-
ods that can be used to compute the time-zero value of Bermudan swaptions, like re-
gression and simulation-based Monte Carlo methods, such as the Least Squares Method
(LSM) [1, 64] or the Stochastic Grid Bundling Method (SGBM) [49, 50, 55], the finite dif-
ference (FD) PDE method or the Fourier expansion-based COS method [28].

This chapter presents an efficient method to significantly enhance the computa-
tional efficiency of exposure values computation without the nested simulation. The
key is to approximate the value function by a linear combination of basis functions ob-
tained by risk-neutral scenarios, and to compute the expected payoff using the approxi-
mated value function to determine the optimal early-exercise strategy on the paths rep-
resenting the observed real-world scenarios. Only two sets of scenarios, one under the
risk-neutral and one under the observed historical dynamics, are needed to compute
the exposure distributions at any future time under the two measures. We apply this
numerical scheme within the context of the LSM and SGBM approaches.

The chapter is organized as follows. Section 5.2 presents background, mathematical
formulation of EE, PFE and CVA, and the dynamic programming framework for pricing
Bermudan swaptions. The interest rate models used are presented in Section 5.3. We
explain the essential insight for computation under two measures, based on the risk-
neutral scenarios, and describe the algorithms for computing the exposure profiles for
SGBM in Section 5.4 and LSM in Section 5.5. We provide reference values for exposure,
based on Fourier-cosine expansions in Section 5.6. Section 5.7 presents numerical re-
sults with the algorithms developed for the one-factor Hull-White and two-factor G2++
models.

5.2. CVA, EE AND PFE AS RISK MEASURES
In this section, we present the general framework for computing the exposure measure-
ments. It is important to choose suitable probability measures to compute CVA, EE and
PFE. We will discuss the practical background and the choice of probability measures.

5.2.1. CALIBRATION AND BACK-TESTING

It is well-known that there are differences between the calibrated historical dynamics
and the dynamics implied by market prices. The reason is that models calibrated to
historical data tend to reflect future values based on historical observations and models
calibrated to market prices reflect market participants’ expectations about the future.
Some research on building a joint framework in the real and risk-neutral worlds is done
by Hull et al. [48]. They propose a joint measure model for the short rate, in which
both historical data and market prices can be used for calibration and the calibrated
risk-neutral and real-world measures are equivalent.

The practical setting regarding calibrating model parameters is however involved.
Back-testing of counterparty risk models is required by the Basel Committee for those
banks with an Internal Model Method approval, for which PFE is an important indicator
for setting limits. Back-testing refers to comparison of the outcomes of a bank’s model
against realized values in the past. The bank’s model must be consistent with regulatory
constraints, in other words, be able to pass the back-testing of PFE. A bank has to strike
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a balance between managing its risk and meeting the expectations of the shareholders.
An over-conservative estimate of market factors for exposure computation would lead
to high regulatory capital reservings.

In short, a model used by a bank for generating scenarios should be able to reflect the
real world, to meet requirements of back-testing limits by regulators and the return rate
by investors. Based on these, Kenyon et al. [56] proposed a Risk-Appetite measure, which
would fit in with these requirements. When a calibrated model under this Risk-Appetite
measure cannot pass the back-testing, the bank needs to reconsider preferences. From
back-testing, one may find a so-called ’PFE-limit implied volatility’ of a model, by which,
combined with a given budget, a bank’s risk preference can be computed.

In [73], Ruiz called the model that describes the evolution of the underlying market
factors the Risk-Factor-Evolution (RFE) model, on which the back-testing is done peri-
odically. The related probability measure is called the RFE measure there. In that work,
the model used to describe the real world is introduced first, and the relevant probability
measure is defined based on the model. In some sense, there are ’different’ probability
measures induced by the back-testing setting that describe the outcome, assuming the
underlying factors evolve according to the calibrated model.

5.2.2. MATHEMATICAL FORMULATION

Consider an economy within a finite time horizon [0,T ]. The probability space (Ω,F ,P)
describes the uncertainty and information with Ω the sample space consisting of out-
come elements w , F a σ-algebra on Ω, and P : F → [0,1] the probability measure that
specifies the probability of events happening on the measure space (Ω,F ). Information
up to time t is included in the filtration {Ft , t ∈ [0,T ]}.

Assume further a complete market without arbitrage opportunities. There exists an
equivalent martingale measure such that a price associated to any attainable claim is
computed as an expectation under this probability measure w.r.t. the associated numéraire.
We choose to use a risk-neutral probability measure, denoted by Q : F → [0,1] with

numéraire Bt = exp
(∫ t

0 rs d s
)
, where {rs , s ∈ [0, t ]} is the risk-neutral short rate. The

numéraire Bt represents a savings account with B0 = 1.

Inspired by Kenyon et al. [56] and Ruiz [73], we define a probability measure of ob-
served history that can pass the back-testing. We use the notation A : Ω′ → [0,1] to
present the observed historical probability measure on some measure space (Ω′,F ′) that
we choose to reflect the probability of events in the real world. The probability measure
A(Ω′) = 1. The observed historical measure A may not be equivalent to the chosen risk-
neutral measure Q. As a probability space that includes realized outcomes in the past,
the observed measure space should satisfyΩ′ ⊂Ω and the associated filtration F ′

t ⊂Ft .

Let the stochastic process
{

Xt ∈Rn , t ∈ [0,T ]
}

on (Ω,F ) represent all influential mar-
ket factors. We further define the market factor {Xt }T

0 on the space (Ω′,F ′) as the same
mapping as the one on (Ω,F ), i.e. for an outcome w that may happen in both Ω and
Ω′ with different probability, one will have the same realized values for the market fac-
tors. Fixing an outcome w ∈ Ω′ ⊂ Ω the stochastic process is a function of time t , i.e.
Xt (w) : [0,T ] →Rn , which is a path of Xt .
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5.2.3. EE,PFE,EPE AND MPFE
We are going to define the profiles of EE and PFE under the observed historical probabil-
ity measure A, since simulations generated by the corresponding calibrated dynamics
are used to reflect the real evolution of the underlying market factors.

The curve PFE(t ) is a function of future time t until the expiry of the transactions T ,
and its peak value indicates the maximum potential exposure of a portfolio over the hori-
zon [0,T ]. We define the PFE curve at time t ∈ [0,T ] as the 99% quantile of the exposure
distribution, measured by the observed probability measure A, given by

PFE(t ) = inf
{

y
∣∣∣A(

{w : Et (w) < y}
)≥ 99%

}
, (5.1)

where w ∈Ω′ and X0(w) = x.
The maximum PFE (MPFE) is used to measure the peak value at the PFE curve over

the time horizon [0,T ], given by

MPFE = max
t∈[0,T ]

PFE(t ). (5.2)

In a similar way, another measure of credit risk of a portfolio is the expected exposure
(EE), which is the average exposure at any future date, denoted by EE(t ). The value of the
EE curve at a monitoring date t under the observed measure A is given by

EE(t ) = EA [Et ] =
∫
Ω′

Et (w)dA(w), (5.3)

where w ∈Ω′ and X0(w) = x. The real-world EPE over a time period [0,T ] is given by

EPE(0,T ) = 1

T

∫ T

0
EE(t )d s. (5.4)

In particular, we are interested in Bermudan swaptions, the pricing dynamics of
which is presented in the following section

5.2.4. PRICING OF BERMUDAN SWAPTIONS
A Bermudan swaption is an option where the owner has the right to enter into an under-
lying swap either on the swaption’s expiry or at a number of other predefined exercise
dates before the expiry date. As soon as the swaption is exercised, the underlying swap
starts. We assume here that the expiry date of the swap is predefined, so the duration
of the swap is calculated from the swaption exercise date until a fixed end date. The
underlying dynamics for the short rate governing the Bermudan swaption are either the
one-factor Hull-White model or the two-factor G2++ model. Details of these well-known
governing dynamics are presented in Chapter 5.3.

We assume that the exercise dates coincide with the payment dates of the under-
lying swaps, and consider an increasing maturity structure, 0 < T1 < ·· · < TN < TN+1,
with TN+1 the fixed end date of the underlying swap, T1,TN the first and last opportu-
nities to enter, respectively, and we define T0 = 0. We assume that when an investor
enters a swap at time Tn , n = 1,2, ..., N , the payments of the underlying swap will occur
at Tn+1,Tn+2, · · · ,TN+1 with time fraction τn = Tn+1 −Tn . Let N0 represent the notional
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amount and K be the fixed strike. We use indicator δ= 1 for a payer Bermudan swaption
and δ=−1 for a receiver Bermudan swaption.

The payoff for entering the underlying swap at time Tn associated with payment
times Tn = {Tn+1, . . . ,TN+1}, conditional on XTn = x, is given by [13]:

gn(x) = N0

(
N∑

k=n
P (Tn ,Tk+1,x)τk

)
max

(
δ
(
S(Tn ,Tn ,x)−K

)
,0

)
, (5.5)

where the forward swap rate S(t ,Tn ,x) at time t ≤ Tn , associated with time Tn ,. . ., TN+1,
is defined by:

S(Tn ,Tn ,x) = 1−P (Tn ,TN+1,x)∑N
k=n P (Tn ,Tk+1,x)τk

, (5.6)

and P (Tn ,Tk ,x) is the price of a Zero-Coupon Bond (ZCB), conditional on XTn = x, asso-
ciated with times Tn and Tk . The analytic formula of the ZCB is related to the risk-neutral
model for the underlying variable.

We refer to a function gn , a bounded Borel function, as the payoff function at time Tn ,
which represents the value of the future payments of exercising the option at time Tn .
For completeness, we define g0 ≡ 0. We choose for the stochastic process {Xt , t ∈ [0,TN ]}
an Itô diffusion. In that case, gn(XTn ) is a continuous variable, as XTn is a continuous
random variable. The value of not exercising the option at t ∈ [0,TN ) is the value of
continuing the option at time t .

Let time t ∈ [Tn ,Tn+1), where the exercise opportunities are restricted to dates later
than Tn , i.e. {Tn+1, . . . ,TN }. The value of the Bermudan claim is the risk-neutral expec-
tation of the (discounted) future payoff when exercising optimally [68]. With the strong
Markov property of the Itô diffusions [68], the value of this Bermudan claim at time t ,
conditional on Xt = x, is the value that is obtained by maximizing the following object
function [34]:

c(t ,x) = max
j∈{n+1,...,N }

EQ

[
Bt

BT j

g j (XT j )
∣∣∣Xt = x

]
, (5.7)

where n = 0, . . . , N −1. We refer to value function c(t , ·) as the continuation function at
time t .

We wish to determine the exposure at a set of discrete exposure monitoring dates,
{0 = t0 < t1 < ·· · < tM = TN }, with time step ∆tk = tk+1 − tk , k = 0, . . . , M −1. These expo-
sure monitoring dates include the swaption exercise dates {T1,T2, . . . ,TN } and tM is equal
to TN . There are some exposure monitoring dates between each two exercise dates, as
we are also interested in the exposure at those intermediate dates.

Figure 5.1 presents the time lines of the exercise dates of a Bermudan swaption and
the monitoring dates used for exposure computation for convenience. This Bermudan
swaption can be exercised 7 times between year 4 and year 10, i.e. year 4 is the first ex-
ercise date and year 10 is the expiry (the last exercise date). The exposure monitoring
dates are each 1/5 year from time zero until year 10. The monitoring date t20 = 4 coin-
cides with the first exercise date, and monitoring date t50 = 10 is equal the last exercise
opportunity.
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0 1 2 3 4 5 6 7 8 9 10

T 0 T 1 T 2 T 3 T 4 T 5 T 6 T 7

Exercise dates time line.

0 1 2 3 4 5 6 7 8 9 10

t 0 t 5 t 10 t 15 t 20 t 25 t 30 t 35 t 40 t 45 t 50

Monitoring dates time line.

Figure 5.1: Time lines.

We compute the exposure of a Bermudan claim at monitoring dates {tm}M
m=0. Value

function V then satisfies [34]:

V (tm ,x) =


gN (x)) tM = TN

max(c(tm ,x), gn(x)), tm = Tn , n < N

c(tm ,x), Tn < tm < Tn+1, n < N

(5.8)

where the continuation function c is computed as the conditional expectation of the
future option value, given by

c(tm ,x) = EQ
[

Bm

Bm+1
V (tm+1,Xm+1)

∣∣∣Xm = x
]

, (5.9)

which can be proved to be equivalent to (5.7) by induction.
The optimal exercise strategy is now as follows: At state XTn = x, exercise takes place

when gn(x) > c(Tn ,x), and the option is kept at all non-exercise monitoring dates tm .
Value function V and continuation function c are defined over the time period [0,TN ]
and space D ∈Rn .

The pricing dynamics in (5.8) are most conveniently handled by means of a back-
ward recursive iteration. From known value gN at time tM = TN , we compute V (tM−1, ·),
and subsequently function V (tM−2, ·), and so on, until time zero. The essential problem
hence becomes to determine value function V and continuation function c at all moni-
toring dates {tm}M

m=1.
Remark: Given a fixed path w ′ ∈ Ω′ or w ∈ Ω, we compute the option values for

the scenario as V (tm ,Xm(w)) at any monitoring date tm by (5.8). Once the option for
scenario w is exercised at a specific date, the option terminates and the exposure values
regarding this option along the scenario from the exercise date to T become zero.

When a sufficiently large number of scenarios for the risk-neutral model are gener-
ated, the option value can be determined at all monitoring dates for any scenario and
we obtain a matrix of exposure values called the exposure profile.

The exposure profile computed from observed real-world scenarios that are cali-
brated based on historical dates is an empirical real-world exposure density, from which
we can estimate the real-world EE and PFE at each exposure monitoring date. However,
with risk-neutral short rate processes, the exposure profiles on risk-neutral scenarios are
needed to compute the discounted EE.
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We see that the key of computing exposure profiles on the generated scenarios is the
value function V and the continuation function c at all monitoring dates {tm}M

m=1.
Nested Monte Carlo simulation is often used when a simulation-based algorithm is

employed for the valuation, which is expensive as simulations of risk-neutral paths are
needed for each (real-world) scenario at each monitoring date. Suppose that accurate
pricing requires K I risk-neutral paths at M monitoring dates, then the computational
time would be O

(
M 2K I Ka

)
for Ka real-world scenarios for computing EE and PFE pro-

files.

5.3. INTEREST RATE MODELS
In this section, we will present two interest rate models for describing the evolution of
the short interest rate.

5.3.1. ONE-FACTOR HULL-WHITE MODEL
When the risk-neutral short rate follows the well-known Hull-White model, the dynamics
are given by:

rt = θ(t )+xt , (5.10)

d xt = −λxt +σdW Q
t , (5.11)

where x0 = 0, the positive constants λ and σ are the speed of mean reversion and the
volatility, respectively, W Q

t is a standard Wiener process under measure Q, and the de-
terministic reversion level θ(t ) fitting the yield curve is given by

θ(t ) = f M (0, t )+ σ2

2λ2

(
1−e−λt

)2
, (5.12)

where f M (0,T ) represents the market instantaneous forward curve at time 0 for the ma-
turity T given by

f M (0,T ) =−∂ logP M (0,T )

∂T
, (5.13)

where P M (0,T ) is the market value of the discount factor for maturity T .
The formulas of a ZCB and the analytic formulas of the discounted ChF under the

HW model are given in Appendix 1 in this chapter.

We also give the dynamics for generating the observed real world scenario, given by
the following:

rt = µ(t )+xt , (5.14)

d xt = −κxt +ηdW A
t , (5.15)

where x0 = 0. The positive constants κ and η are the speed of mean reversion and the
volatility, respectively, W A

t is a standard Wiener process under measure A, and the de-
terministic reversion level µ(t ) is given by

µ(t ) = f M (0, t )+ η2

2κ2

(
1−e−κt )2

. (5.16)
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where parameters κ,η have been calibrated by empirical time series of the short rate.
We take this form for the dynamics that reflect the real-world evolution of the short

rate. There may be other choices for the definition of the observed real-world dynamics
in combination with risk-neutral dynamics, such as proposed by Hull et al. [48].

5.3.2. G2++ MODEL

When the risk-neutral short rate {rt }T
0 under the risk-neutral measureQ follows the G2++

model, the stochastic process Xt = [x(1)
t , x(2)

t ]T follows the dynamics:

rt = x(1)
t +x(2)

t +γ(t ), (5.17)

d x(1)
t = −λ1x(1)

t d t +σ1dW Q,1
t , (5.18)

d x(2)
t = −λ2x(2)

t d t +σ2

(
ρdW Q,1

t +
√

1−ρ2dW Q,2
t

)
, (5.19)

where x(1)
0 = 0, y (2)

0 = 0, parametersλ1,λ2,σ1,σ2 are positive constants, and (W Q,1
t ,W Q,2

t )
is a standard two-dimensional Brownian motion with correlation |ρ| < 1. The determin-
istic function γ(t ) is given by:

γ(t ) = f M (0, t )+ σ2
1

2λ1

(
1−e−λ1t

)2 + σ2
2

2λ2

(
1−e−λ2t

)2

+ρσ1σ2

λ1λ2

(
1−e−λ1t )(1−e−λ2t ). (5.20)

The formulas of a ZCB and the analytic formulas of the discounted ChF under the
G2++ model are given in Appendix 2 in this chapter.

Here we also present the dynamics representing the real-world evolution of the un-
derlying factors, by

rt = x(1)
t +x(2)

t +ν(t ), (5.21)

with r0 = f M (0,0) and the process xt = [x(1)
t , x(2)

t ]T satisfies

d x(1)
t = −κ1x(1)

t d t +η1dW A,1
t ,

d x(2)
t = −κ2x(2)

t d t +η2

(
ρ̂dW A,1

t +
√

1− ρ̂2dW A,2
t

)
, (5.22)

where x(1)
0 = 0, y (2)

0 = 0, and (W A,1
t ,W A,2

t ) is a two-dimensional Brownian motion with
correlation |ρ̂| < 1, and ν(t ) given by

ν(t ) = f M (0, t )+ η2
1

2κ1

(
1−e−κ1t )2 + η2

2

2κ2

(
1−e−κ2t )2

+ρ̂ η1η2

κ1κ2

(
1−e−κ1t )(1−e−κ2t ). (5.23)

The positive constants κ1, κ2, η1, η2 and the correlation ρ̂ are calibrated by historical
data.
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5.4. STOCHASTIC GRID BUNDLING METHOD, SGBM
The computation of the conditional risk-neutral expectation is the most expensive part
in the algorithm for dynamics (5.8). We propose an algorithm based on SGBM, that can
approximate the continuation function in (5.9) by basic polynomial functions on the
risk-neutral scenarios. Based on these approximated continuation functions, we can
perform risk-neutral valuation on the real-world scenarios without nested simulations.
To compute CVA and PFE, one only needs one set of Hq risk-neutral scenarios and one
set of Ha real-world scenarios

Pricing in the context of the SGBM approach is based on risk-neural scenarios; Com-
putation of discounted expected option values is performed locally in so-called bundles
by means of local regression. We will store the bundle-wise approximated continuation
functions, and use them to compute exposure profiles for the observed real-world sce-
narios for a Bermudan swaption.

5.4.1. RISK-NEUTRAL SCENARIOS

Let
{

X q
1,h , . . . , X q

M ,h

}Hq

h=1 be Hq scenarios where the underlying factor evolves with the risk-
neutral model. Pricing is done by a backward-in-time iteration as in (5.8), from time tM

to time t0 = 0.
To initialize the computation, the option value at expiry tM = TN is computed as

the immediate payoff gN , i.e. the option value realized on the h-th scenario at time tM ,
v̂ q

M ,h = gN
(
X q

M ,h

)
. As the option either expires or is exercised at time tM , the exposure

equals zero for all paths at time tM ,
{
Ê q

M ,h = 0
}Hq

h=1.

At monitoring dates tm , m = M −1, . . . ,1, J bundles
{
Bm, j

}J
j=1 are defined, consisting

of Monte Carlo path values at tm , that have very similar realized values based on the

cross-sectional risk-neutral samples
{

X q
m,h

}Hq

h=1. The realized values of the risk-neutral
paths form a bounded domain, and these bundles divide the domain into disjoint sub-

domains
{
Dm, j

}J
j=1.

Figure 5.2 shows the Monte Carlo paths in four bundles and the associated disjoint
sub-domains at an exposure monitoring date in the case of a one-dimensional model,
i.e. the Hull-White model. The bundles are based on the values of the realized short
rate at time t = 0.5. The continuation function c(tm , ·) is approximated ’in a bundle-wise
fashion’ by approximating the value function at time tm+1 for the paths in a bundle.

For j = 1, . . . , J , on the MC paths in bundle Bm, j , value function V (tm+1, ·) is approx-
imated by a linear combination of monomials up to order d , i.e.

V (tm+1,Xm+1) ≈
d∑

|k|=0
β

m, j
k (Xm+1)k , (5.24)

where k represents a multi-index notation in the case of the G2++ model, and an inte-

ger in the case of the Hull-White model, the coefficients βm, j
k of the k-th basis function

minimize the sum of squared residuals over the paths in bundle Bm, j , i.e.,

∑
h∈Bm j

(
v̂ q

m+1,h −
d∑

|k|=0
β

m, j
k

(
X q

m+1,h

)k
)2

, (5.25)
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Figure 5.2: An example of bundles and the disjoint sub-domains at time t = 0.5.

with
{

v̂ q
m+1,h

}Hq

h=1 the option values at time tm+1 on the cross-sectional sample
{

X q
m+1,h

}Hq

h=1.
Using the approximated value function in (5.24) instead of the ’true value’ in (5.9),

the continuation function on Dm, j can be approximated by:

c(tm ,x) ≈
d∑

|k|=0
β

m, j
k ψk (x, tm , tm+1), (5.26)

where x ∈ Dm, j and function ψk is the conditional risk-neutral discounted expectation
of basis function φk , defined by

ψk (x, tm , tm+1) := EQ
[

Bm

Bm+1
(Xm+1)k

∣∣∣Xm = x
]

. (5.27)

The analytic formulas for {ψk }d
k=0 can be obtained easily, and often analytically, when

polynomial terms are chosen as the basis functions, see Section 5.4.4.
The expected values on the paths of the bundle Bm, j can then be approximated by

ĉq
m,h ≈

d∑
|k|=0

β
m, j
k ψk (X q

m,h , tm , tm+1), (5.28)

where h ∈Bm, j .

After computation of the continuation values for all paths {ĉq
m,h}

Hq

h=1 at time tm , we
determine the option value at time tm by:

v̂ q
m,h =

max
(
gn(X q

m,h), ĉq
m,h

)
, tm = Tn ,

ĉq
m,h , tm ∈ (Tn ,Tn+1),

(5.29)

where gn is the exercise function.
The exposure value on the h-th path from time tm to expiry tM is updated by the

following scheme:
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1. when exercised at exercise time tm = Tn , value zero is assigned to the exposures
along the path from time tm to expiry, i.e. Ê q

k,h = 0, k = m, . . . , M ;

2. when the option is ‘alive’ at an exercise date, or when tm is a monitoring date be-
tween to exercise dates, the exposure at the path is equal to the approximated
continuation value: Ê q

m,h = ĉq
m,h , and exposure values at later times remain un-

changed.

The algorithm proceeds by moving one time step backward to time tm−1, where the

paths are again divided into new bundles based on the realized values {X q
m−1,h}

Hq

h=1, and
the continuation function is approximated in a bundle-wise fashion. Option values are
evaluated and the exposure profile is updated. The algorithm proceeds, recursively, back
to t0 = 0. At time t0 regression takes place for all paths to get the coefficients {β0

k }d
k=0, i.e.

the option value at time zero is approximated by

v̂ q
0 ≈

d∑
|k|=0

β0
kψk (x0, t0, t1). (5.30)

During the backward recursive iteration, information about the boundaries of the

disjoint sub-domains, Dm, j , is stored along with the associated coefficients
{
β

m, j
k

}d
k=0 for

each index, j = 1, . . . , J , at each monitoring date, tm , m = 0, . . . , M −1. Based on this in-
formation, we can retrieve the piece-wise approximated continuation function for each
time tm .

With the risk-neutral exposure profiles, {Ê q
1,h , . . . , Ê q

M ,h , }
Hq

h=1, the discounted EE of a
Bermudan swaption can be approximated by:

EE∗(tm) ≈ 1

Hq

Hq∑
h=1

exp

(
−

m+1∑
k=0

1

2

(
r̂ q

k,h + r̂ q
k+1,h

)
∆tk

)
Ê q

m,h , (5.31)

where
{

r̂ q
1 j , . . . , r̂ q

M j

}Hq

j=1
represent simulated risk-neutral short rate values.

5.4.2. REAL-WORLD SCENARIOS
During the computations on the risk-neutral scenarios, we have stored the bundle-wise

coefficients
{
β

m, j
k

}d
k=0 and the associated sub-domains

{
Dm, j

}J
j=1, by which we can per-

form valuation and exposure computation for any scenario without nested simulation.
We present the steps to compute exposure profiles on a set of Ha observed real-world

scenarios {X a
1,h , . . . , X a

M ,h}. These profiles are also determined by a backward iteration
from time tM till time t0.

At expiry date tM , the exposure equals zero,
{
Ê a

M ,h = 0
}Ha

h=1;
At a monitoring dates tm < tM , for each index j = 1, . . . , J , we determine those paths

for which X a
m,h ∈Dm,h , and compute the continuation values for these paths by

ĉa
m,h ≈

d∑
|k|=0

β
m, j
k ψk (X a

m,h , tm , tm+1), (5.32)
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where X a
m,h ∈Dm, j .

Based on these continuation values, we update the exposure profile on this set of
real-world scenarios.

At an exercise time tm = Tn , we compare the approximated continuation value ĉa
m,h

with the immediate exercise values gn(X a
m,h) for each path; when the immediate exercise

value is largest, the option is exercised at this path at time tm , and exposure values at this
path from time tm to expiry are set to zero, i.e. Ê a

k,h = 0, k = m, . . . , M .

Otherwise, Ê a
m,h = ĉa

m,h and the later exposure values remain unchanged.

When tm is an intermediate exposure monitoring date, the exposure values are equal
to the continuation values in (5.32).

Notice that the time-zero option value is the same for the risk-neutral and the real-
world scenarios, i.e. v̂ q

0 = v̂ a
0 . Values of the observed real-world PFE and EE curves at

monitoring dates tm can be approximated by:

PFE(tm) = quantile(Ê a
m,h ,99%),

EE(tm) = 1

Ha

Ha∑
h=1

Ê a
m,h . (5.33)

5.4.3. SGBM BUNDLING TECHNIQUE

An essential technique within SGBM is the bundling of asset path values at each moni-
toring date, based on the cross-sectional risk-neutral samples. Numerical experiments
have shown that the algorithm converges w.r.t. the number of bundles [32, 50].

Various bundling techniques have been presented in the literature, such as the recursive-
bifurcation method, k-means clustering [50] and the equal-number bundling method [32].
Here, we use the equal-number bundling technique, as explained in Chapter 3. In the
equal-number bundling, at each time step tm , we rank the paths by their realized values,{

X q
m,h

}Hq

h=1, and place the paths with indices between ( j −1)Hq /J +1 and j Hq /J into the
j -th bundle, Bm, j , j = 1, . . . , J − 1. The remaining paths are placed in the J-th bundle,
Bm,J . Asset paths do not overlap among bundles at time tm and each path is placed in a
bundle.

The advantage of the equal-number bundling technique is that the number of paths
within each bundle is proportional to the total number of asset paths. An appropriate
number of paths in each bundle is important for accuracy during the local regression. As
mentioned, the bundling technique is also used to determine the disjoint sub-domains
on which the value function is approximated in a piece-wise fashion.

For high-dimensional problems, one can either use the equal-number bundling tech-
nique along each dimension, as employed in [32]; or one can project the high-dimensional
vector onto a one-dimensional vector and then apply the equal-number bundling tech-
nique, see [50, 63]. In this chapter, for SGBM computation under the G2++ model, we
project the 2D variable (x(1)

t , x(2)
t ) onto (x(1)

t + x(2)
t ) for using the one-dimensional equal-

number bundling technique.
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5.4.4. FORMULAS FOR THE DISCOUNTED MOMENTS IN SGBM
When we choose monomials as the basis functions within the bundles in SGBM, the
conditional expectation of the discounted basis functions is equal to the discounted mo-
ments. There is a direct link between the discounted moments and the discounted char-
acteristic function (dChF), which we can also use to derive analytic formulas for the dis-
counted moments.

In the one-dimensional case, i.e. the Hull-White model, let the basis functions be
(rt )k , k = 0, . . . ,d . The discounted momentsψk , conditional on rm over the period (tm , tm+1),
are given by:

ψHW
k (rm , tm , tm+1) := EQ

exp

− tm+1∫
tm

rs d s

 (rm+1)k
∣∣∣rm

 . (5.34)

In the two-dimensional case, i.e. the G2++ model, let the basis function be
(
x(1)

t

)k1
(
x(2)

t

)k2
,

k = (k1,k2) and |k| = 0, . . . ,d . The k-th discounted moments over the period (tm , tm+1)
conditional on Xm , are given by

ψG2
k (Xm , tm , tm+1) := EQ

exp

− tm+1∫
tm

rs d s

(
x(1)

m+1

)k1
(
x(2)

m+1

)k2
∣∣∣Xm

 . (5.35)

Further the corresponding discounted moments can be obtained via the relations
between dChF and moments presented in (1.29).

5.5. LEAST SQUARES METHOD, LSM
In this section, we will build an algorithm based on the Least Squares Method (LSM) via
the same technique as presented in Section 5.4.

LSM is a regression-based Monte Carlo method, which is very popular among practi-
tioners. The objective of the LSM algorithm is to find for each path the optimal stopping
policy at each exercise time Tn , and the option value is computed as the average value of
the generated discounted cash flows. The optimal early-exercise policy for the ’in-the-
money’ paths is determined by comparing the immediate exercise value and the approx-
imated continuation value, which is approximated by a linear combination of (global)
basis functions {φk }d

k=0.
One can always combine the (expensive) nested Monte Carlo simulation with LSM

for the computation of EE and PFE on observed real-world scenarios. We will how-
ever adapt the original LSM algorithm to obtain a more efficient method for comput-
ing risk-neutral and real-world exposures. The technique is similar to the one described
for SGBM: valuation on the risk-neutral scenarios, approximation of the continuation
function, and computation of risk-neutral and real-world exposure quantities.

The involved part in LSM is that discounted cash flows, realized on a path, are not
representative for the ’true’ continuation values. In the LSM algorithm, the approxi-
mated continuation values are only used to determine the exercise policy, and therefore
one cannot use them to determine the maximum of the immediate exercise value and
discounted cash flows to approximate the option value [32], as is done in SGBM.
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The challenge is thus to approximate exposure values by means of the realized dis-
counted cash flows over all paths.

In [54], Joshi presents a way to employ realized discounted cash flows and the sign
of the regressed values for an efficient computation of CVA on risk-neutral scenarios.
However, since the average of the discounted cash flows is not the value of a contract
under the observed real-world measure, it cannot be used to compute real-world EE or
PFE quantities.

Here, we propose two LSM-based algorithms for approximation of continuation val-
ues with realized cash flows. They can be seen as alternative algorithms compared to
SGBM for computation of exposure values, when we do not have expressions for the dis-
counted moments (or when LSM is the method of choice for many other tasks). We will
test the accuracy of the algorithms compared to SGBM and to reference values generated
by the COS method in the numerical section.

5.5.1. RISK-NEUTRAL SCENARIOS
First of all, we briefly explain the original LSM algorithm with the risk-neutral scenarios.
At the final exercise date, tM = TN , the option holder can either exercise an option or not,
and the generated cash flows are given by qM ,h = gN (X q

M ,h), h = 1, . . . ,K q .
At exposure monitoring dates tm ∈ (Tn−1,Tn) at which the option cannot be exer-

cised, the realized discounted cash flows are updated by:

qm,h = qm+1,h exp
(
− 1

2
(r̂ q

m,h + r̂ q
m+1,h)∆t

)
. (5.36)

At an exercise date tm = Tn prior to the last exercise opportunity, the exercise de-
cision is based on the comparison of the immediate payoff by exercising and the con-
tinuation value when holding the option on the ’in-the-money’ paths; the continuation
values at those ’in-the-money’ paths are approximated by projecting the (discounted)
cash flows of these paths onto some global basis functions {φ1, . . . ,φB };

The option is exercised at an in-the-money path, when the payoff is larger than the
continuation value. After determining the exercise strategy at each path, the discounted
cash flows read:

qm,h =
gn

(
X q

m,h

)
, exercised,

qm+1,h exp
(
− 1

2 (r̂ q
m,h + r̂ q

m+1,h)∆t
)
, to be continued.

(5.37)

Again computation of the discounted cash flows at any monitoring date takes place
recursively, backward in time. At time t0 = 0, the option value is approximated by v̂ q

0,h ≈
1

Hq

∑Hq

h=1 q0,h .

During the backward recursion, the discounted cash flows realized on all paths at
each monitoring date tm are computed.

For the computation of the real-world EE and PFE quantities, valuation needs to be
done on the whole domain of realized asset values, as we need the continuation values at
each monitoring date for all paths. We therefore propose to use the realized discounted
cash flows determined by (5.37) or (5.36) on the risk-neutral scenarios.
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One possible algorithm in the LSM context is that we also employ two disjoint sub-
domains, similar as in SGBM. At each monitoring date tm ∈ (Tn−1,Tn], MC paths are
divided into two bundles based on the realized values of the underlying variable, so that
the approximation can take place in two disjoint sub-domains, given by

Un,1 = {x
∣∣gn(x) ≤ 0}, Un,2 = {x

∣∣gn(x) > 0}. (5.38)

The continuation function is approximated on these two sub-domains as

c(tm ,x) ≈
d∑

|k|=0
ζ

m, j
k xk , (5.39)

where x ∈Un, j , the coefficients ζk (tm , j ) are obtained by minimizing the sum of squared
residuals over the two bundles, respectively, given by:

∑
X

q
m,h∈Un, j

(
qm+1,h exp

(
− 1

2
(r̂ q

m,h + r̂ q
m+1,h)∆t

)
−

B∑
k=1

ζk (tm , j )
(

X q
m,h

)k )2
. (5.40)

We refer to this technique as the LSM-bundle technique.

The other possible algorithm is to perform the regression over all MC paths, and to
compute the approximated continuation function on each path. The regression is as in
(5.40) using basis functions and discounted cash flows, but for all paths. We call this the
LSM-all algorithm. Notice that the exercise decision is still based on the ’in-the-money’
paths with approximated payoff using (5.39) at exercise dates Tn < TN , n = 1, . . . , N −1.

We compute the risk-neutral exposure profiles with the approximated value func-
tions in (5.39) by means of the same backward recursion procedure as in Section 5.4.1.

5.5.2. REAL-WORLD SCENARIOS

The LSM-bundle algorithm can directly be used for computing exposure on the observed
real-world scenarios. It is based on the same backward iteration as in Section 5.4.2, how-
ever, the continuation values are computed by the function in (5.39), i.e.

ĉa
m,h ≈

d∑
|k|=0

ζ
m, j
k

(
X a

m,h

)k
. (5.41)

At an early-exercise date tm = Tn < TN , the early-exercise policy is determined for
’in-the-money’ paths by comparing ĉa

m,h and the immediate exercise value gn(X a
m,h).

Exposure values along the path from time tm to expiry are set to zero if the option at a
path is exercised.

By the LSM-all algorithm, we use the continuation function approximated in (5.39)
for determining the optimal early-exercise time on each real-world path, and the re-
gressed function is based on all paths to compute exposure values. We will compare
the LSM-bundle and LSM-all algorithms in the numerical section part.
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5.5.3. DIFFERENCES BETWEEN SGBM AND LSM ALGORITHMS
SGBM differs from LSM w.r.t. the bundling and the local regression based on the dis-
counted moments. By these components, SGBM approximates the continuation func-
tion in a more accurate way than LSM, but at a (small) additional computational cost.
Here, we give some insights in these differences.

The use of SGBM bundles may improve the local approximation on the disjoint sub-
domains, and we can reduce the number of basis functions.

Another important feature of SGBM is that ‘option values’ are obtained from regres-
sion, to obtain the coefficients for the continuation function.

Loosely speaking, the continuation function is approximated locally on the bounded

sub-domains
{
Dm, j

}J
j=1 by projection on the functions

{
ψk

}d
k=0.

Compared to SGBM, LSM is based on the discounted cash flows for regression to
approximate the expected payoff, however, discounted cash flows do not represent the
’realized expected payoff’ on all MC paths. In LSM the expected payoff is only used to de-
termine the optimal early-exercise time and not the option value. One cannot compute
the option value by using the maximum of the expected payoff and the exercise value, as
it will lead to an upward bias for the time-zero option value [64].

SGBM does not suffer from this and the maximum of the exercise value and the re-
gressed continuation values gives us the direct estimator. It is recommended to also com-
pute the path estimator for convergence of the SGBM algorithm. Upon convergence, the
direct and the path estimators should be very close [50].

The LSM approach is a very efficient and adaptive algorithm for computing option
values at time zero. The LSM-based algorithms for computing exposure can be regarded
as alternative ways of computing the future exposure distributions based on simulation.
We will analyze the accuracy of all variants in the numerical sections.

5.6. THE COS METHOD
In this section we explain the computation of the continuation function of Bermudan
swaptions under the one-factor Hull-White model by the COS method. The COS method
is an efficient and accurate method based on Fourier-cosine expansions. It can be used
to determine reference values for the exposure. For Lévy processes and early-exercise
options, the computational speed of the COS method can be enhanced by incorporating
the Fast Fourier Transform (FFT) into the computations. We cannot employ the FFT, be-
cause resulting matrices with the Hull-White model do not have a special form (Toeplitz
and Hankel matrices, see [28]) to employ the FFT.

In addition, we use the 2D cosine-expansions developed in [72] here to recover the
density under the G2++ model.

5.6.1. HULL-WHITE MODEL
First of all, we write out the payoff function under the Hull-White model using (5.63) and
(5.5). The payoff function gn at time Tn , n = 1,2. . . , N , under the Hull-White model is
given by

gn(x) = N0δ

(
1−

N∑
j=n

ĉ j A(Tn ,T j+1)exp
(
B(Tn ,T j+1)x

))
, (5.42)
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where ĉ j = τ j K , j = n, . . . , N −1, ĉN = 1+τN K , A and B are coefficients associated to the
ZCB price, given in (5.63), δ= 1 for a payer swaption and δ=−1 for a receiver swaption.

In a one-dimensional model, we write Xt = xt . We will approximate the density func-
tion on an integration range [a,b], which should be chosen such that the integral of the
discounted density function over the region [a,b] resembles very well the value of a ZCB
between time t and T given X t = x. In this chapter, we choose the integration range over
a period [0,T ] by

a = θ(T )−
√
σ2

2λ

[
1−e−2λT

]
L, b = θ(T )+

√
σ2

2λ

[
1−e−2λT

]
L, (5.43)

where L is the parameter chosen to control the length of the integration range. In the
numerical section, we choose L = 8.

The discounted density can be recovered by a linear combination of cosine terms
expressed by[28]

f̂xm+1|xm (y ; x) ≈ 2

b −a

Q−1∑′
k=0

Pk (x, tm , tm+1)cos
(
kπ

y −a

b −a

)
, (5.44)

where the symbol
∑′

in (5.44) implies that the first term of the summation is multiplied
by 1

2 , and the Fourier-coefficients Pk are given by:

Pk (x, tm , tm+1) := Re

{
ϕHW

(
kπ

b −a
; tm , tm+1, x

)
·exp

(
− i akπ

b −a

)}
, (5.45)

where ϕHW is the discounted ChF under the Hull-White model, given in (5.64) in Ap-
pendix 1.

With equation (5.9), the continuation function, conditional on X tm = x, at any mon-
itoring date tm ∈ [0,TN ) can be computed as an integral over [a,b]:

c(tm , x) ≈
b∫

a

V (tm+1, y) f̂xm+1|xm (y ; tm , tm+1, x)d y,

≈ 2

b −a

Q−1∑′
k=0

Pk (x, tm , tm+1)Vk (tm+1) , (5.46)

where the coefficients Vk (tm+1) are defined by

Vk (tm+1) :=
b∫

a

V (tm+1, y)cos
(
kπ

y −a

b −a

)
d y. (5.47)

The coefficients {Vk }Q−1
k=0 can be computed at exposure monitoring dates

{
tm

}M
m=1,

by the backward recursion as in (5.8). Analytic formulas, in the case of the Hull-White
model, for the coefficients {Vk }Q−1

k=0 can be computed by backward recursion.
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At the expiry date, tM = TN , the option value equals the payoff of the underlying
swap, i.e. V (tM , ·) = gN (·). We are only interested in the ’in-the-money’ region regarding
the function gn , for which we need to solve gN (x∗(TN )) = 0.

Function gN is positive on the range (a, x∗(TN )) for a receiver Bermudan swaption,
and on the range (x∗(TN ),b) for a payer Bermudan swaption. We compute the integral
on the range where gN > 0 for the coefficients Vk

(
tM

)
. The formulas for the integral are

given by:

Vk (tM ) =
b∫

a

gN (y)cos
(
kπ

y −a

b −a

)
d y

=
{

Gk
(
a, x∗(TN ),TN

)
, for a receiver swaption,

Gk
(
x∗(TN ),b,TN

)
, for a payer swaption,

(5.48)

where the coefficient Gk is presented in Appendix 3.
In the COS method, computation also takes place in backward fashion. We distin-

guish an early-exercise date from an intermediate date between two exercise times. At
an intermediate date, tm ∈ (Tn−1,Tn), V (tm , ·) = c(tm , ·), thus the coefficients Vk at time
tm are given by

Vk (tm) =
b∫

a

c(tm , y)cos
(
kπ

y −a

b −a

)
d y =Ck (a,b, tm), (5.49)

where the coefficient Ck is presented in Appendix 3.
At an early-exercise date tm = Tn , n = N −1, . . . ,1, the option value is the maximum of

the continuation value and the immediate exercise value, hence we solve the following
equation

c
(
Tn , x∗(Tn)

)− gn
(
x∗(Tn)

)= 0.

Solution x∗(Tn) represents the optimal early-exercise boundary at time Tn . The equation
can be solved by some root-finding algorithm, such as the Newton-Raphson method.

The coefficients {Vk (tm)}Q−1
k=0 at time tm = Tn with the optimal exercise value x∗(Tn)

are given by:

Vk (Tn) =
b∫

a

max
(
c(Tn , y), gn(y)

)
cos

(
kπ

y −a

b −a

)
d y

=
{

Gk
(
x∗(Tn),b,Tn

)+Ck
(
a, x∗(Tn),Tn

)
, payer

Gk
(
a, x∗(Tn),Tn

)+Ck
(
x∗(Tn),b,Tn

)
, receiver

(5.50)

The computation of the coefficients
{
Vk

}Q−1
k=0 depends on the early-exercise bound-

ary value at each exercise date Tn . The continuation function from the Fourier-cosine
expansions in (5.46) converges with respect to the number of Fourier terms Q when the
integration interval is chosen properly.
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At each tm , the continuation values for all scenarios can be computed by (5.46). Risk-
neutral and real-world exposure profiles are obtained by backward iteration as in Sec-
tions 5.4.1 and 5.4.2. One can employ interpolation to enhance the computational speed
for the computation of the continuation values.

5.6.2. G2++ MODEL

This section presents computation of the Bermudan swaptions under the G2++ model
applying the 2D-cosine-expansion techniques [72]. First, we write out the the payoff
function gn under the G2++ model at time Tn ,

gn(x) = N0δ

(
1−

N∑
j=n

ĉ j C (Tn ,T j+1)exp
(
D1(Tn ,T j+1)x(1) +D2(Tn ,T j+1)x(2)

))
, (5.51)

where ĉ j = τ j K , j = n, . . . , N −1, ĉN = 1+τN K , C , D1 and D2 are coefficients associated
to the ZCB price, given in (5.68), δ = 1 for a payer swaption and δ = −1 for a receiver
swaption.

On an integration range [a1,b1]× [a2,b2], we approximate the discounted density by
its Fourier-cosine expansions [72]

f̂Xm+1|Xm (y;x) ≈ 2

b1 −a1

2

b2 −a2

Q1−1∑′
k1=0

Q2−1∑′
k2=0

Pk1,k2 (x, tm , tm+1) ·

cos

(
k1π

y1 −a1

b1 −a1

)
cos

(
k2π

y2 −a2

b2 −a2

)
, (5.52)

where the symbol
∑′

in (5.44) implies that the first term of the summation is multiplied
by 1

2 , Q1 and Q2 represent the number of cosine terms, and the Fourier-coefficients Pk

are given by:

Pk1,k2 (x, tm , tm+1)

= 1

2

[
Re

{
ϕG2

(
k1π

b1 −a1
,

k2π

b2 −a2
; tm , tm+1,x

)
exp

(
− i k1πa1

b1 −a1
− i k2πa2

b2 −a2

)}
+Re

{
ϕG2

(
k1π

b1 −a1
,

k2π

b2 −a2
; tm , tm+1,x

)
exp

(
− i k1πa1

b1 −a1
+ i k2πa2

b2 −a2

)}]
,(5.53)

where ϕG2 is the discounted ChF presented as (5.71) in Appendix 2.
The continuation function, conditional on Xtm = x, at any exposure monitoring date

tm ∈ [0,TN ) can be computed as an integral over [a,b]:

c(tm ,x) ≈
b1∫

a1

b2∫
a2

V (tm+1,y) f̂Xm+1|Xm (y;x)dy,

≈ 2

b1 −a1

2

b2 −a2

Q1−1∑′
k1=0

Q2−1∑′
k2=0

Pk1,k2 (x, tm , tm+1)Vk1,k2 (tm+1) , (5.54)
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where the coefficients Vk (tm+1) are defined by

Vk1,k2 (tm+1) :=
b1∫

a1

b2∫
a2

V (tm+1,y)cos

(
k1π

y1 −a1

b1 −a1

)
cos

(
k2π

y2 −a2

b2 −a2

)
d y1d y2, (5.55)

with k1 = 0, . . . ,Q1 −1, k2 = 0, . . . ,Q2 −1.
The coefficients {Vk1,k2 } can be computed at monitoring dates

{
tm

}M
m=1, by the back-

ward recursion as in (5.8) in a similar way as under the Hull-White model.
Now we need to deal with a 2D integral. At expiration, we need to find out the exer-

cise region, and at those early-exercise dates Tn prior to the expiration TN , we need to
determine the continuation region and early-exercise region. For this purpose, we divide
the domain of the first dimension, [a1,b1], into Q3 subintervals:

[a1,b1] = [w1, w2]∪ [w2, w3] . . .∪ [wl , wl+1] . . .∪ [wQ3 , wQ3+1], (5.56)

and the center of the subinterval is given by w̄l = 1
2 (wl +wl+1).

For each subinterval, we determine the value x∗
l ,m at expiration and other early-

exercise dates, i.e. when tm = Tn , n = N , N −1, . . . ,1, for the computation of the integral.

• At time tM = TN , x∗
l ,M is the zero solution of the payoff function gN over each small

interval [wl , wl+1]

gN

(
[w̄l , x∗

l ,M ]T
)
= 0. (5.57)

The region of positive payoff at time tM is given by

[wl , wl+1]× [x∗
l ,M ,b2], payer; [wl , wl+1]× [a2, x∗

l ,M ], receiver, (5.58)

with l = 1,2. . . ,Q3.

• At time tm = Tn , n = N −1, . . . ,1, x∗
l ,m determines the early-exercise boundary over

each small interval [wl , wl+1]

gN

(
[w̄l , x∗

l ,M ]T
)
= c

(
tm , [w̄l , x∗

l ,M ]T
)

. (5.59)

The early-exercise region is given by

[wl , wl+1]× [x∗
l ,m ,b2], payer; [wl , wl+1]× [a2, x∗

l ,m], receiver, (5.60)

with l = 1,2. . . ,Q3.

In this way, we compute the integration in (5.55) by the summation of integrals over
Q3 sub-domains at those early-exercise dates. For instance, for a payer option, the coef-
ficients Vk1,k2 at tm = Tn are approximated as

Vk1,k2 (tm) ≈
Q3∑
l=1


wl+1∫
wl

b2∫
x∗

l ,M

gn(y)dy+
wl+1∫
wl

x∗
l ,M∫

a2

c(tm ,y)dy

 . (5.61)

This technique of decomposing the integration domain has been demonstrated for
computing Bermudan geometric basket put options by Ruijter and Oosterlee [72]. On
those non-exercise dates, the integration is done over the whole region [a1,b1]× [a2,b2].
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5.7. NUMERICAL EXPERIMENTS
We test the developed algorithms for different test cases under the one-factor Hull-White
model and the two-factor G2++ model, respectively.

The notional amount of the underlying swap is set equal to 100. We define a T1 ×TN

Bermudan swaption as a Bermudan option written on the underlying swap that can be
exercised between T1 and TN , the first and last early-exercise opportunities. The option
can be exercised annually after T1, and the payment of the underlying swap is made by
the end of each year until fixed end date TN+1 = TN +1, i.e. the time fraction τn = 1.

We take a fixed strike K to be 40%S, 100%S and 160%S, where S is the swap rate
associated with date T1 and payment dates T1 = {T2, . . . ,TN+1} given by equation (5.6).
It is the ATM strike of the European swaption which expires at date T1 associated with
payment dates T1.

5.7.1. EXPERIMENTS WITH THE HULL-WHITE MODEL
We generate risk-neutral and real-world scenarios using the Hull-White model presented
in Section 5.3 with risk-neutral parameters λ and η obtained by market prices, and real-
world parameters κ and η by historical data.

Table 5.1 reports the time-zero option values, CVA and the real-world EPE and MPFE
of 1Y×5Y and 4Y×10Y receiver Bermudan swaptions by the COS method, SGBM, and the
LSM-bundle and LSM-all algorithms.

For the computation of future exposure distributions, one needs to combine the COS
method computations with Monte Carlo scenario generation, so there are standard er-
rors as well for the corresponding CVA, EPE and MPFE values. We present 100×CVA
values instead of CVA to enlarge the differences and standard errors in Table 5.1.

The reference results by the COS method are obtained with Q = 100 cosine terms.
In the SGBM algorithm, we use as basis functions {1,r,r 2} for the approximation of the
continuation values and 10 bundles containing an equal number of paths. In LSM, we
choose a cubic function based on {1,r,r 2,r 3} for the approximation. It is observed that
SGBM and LSM converge with respect to the number of basis functions, and from our
experiments we also find that for longer maturities, to main the accuracy, one needs
either a larger number of basis functions or a larger number of bundles.

As shown in Table 5.1, the differences in the computed time-zero option values be-
tween all algorithms are very small. The LSM-bundle and LSM-all algorithms return
the same time-zero option value as they are based on the same technique to determine
the early-exercise policy. Compared to LSM, SGBM has improved accuracy with smaller
variances. The absolute differences in V0-values between SGBM and COS are as small as
10−3, and the standard errors are less than 1%. The largest difference in V0 between LSM
and COS is 6 ·10−3 with a standard error between 1−2% in the table.

SGBM is particularly accurate for computing the MPFE values. Results in Table 5.1
show that the absolute differences for MPFE computed by SGBM and by COS are less
than 0.01. The LSM-all algorithm does not result in satisfactory results for the exposure
values. MPFE is over-estimated, while EPE is under-estimated. The LSM-bundle algo-
rithm however shows significant improvements with smaller errors.

For the computation of EPE and MPFE, the results obtained via these algorithms
have a similar standard error. It shows that the dominating factor in the EPE and MPFE
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variances is connected to the number of generated scenarios.

1Y×5Y

K/S value COS SGBM LSM-bundle LSM-all

40%

V0 4.126 4.127(0.00) 4.126(0.01) 4.126(0.01)
MPFE 9.125(0.06) 9.118(0.06) 9.039(0.05) 8.8(0.05)
EPE 1.704(0.00) 1.705(0.00) 1.708(0.01) 1.806(0.01)
100CVA 15.87(0.01) 15.74(0.01) 15.75(0.08) 15.87(0.08)

100%

V0 5.463 5.464(0.00) 5.461(0.01) 5.461(0.01)
MPFE 11.07(0.05) 11.07(0.05) 11.06(0.05) 10.9(0.04)
EPE 2.094(0.00) 2.096(0.00) 2.098(0.00) 2.215(0.00)
100CVA 18.56(0.02) 18.33(0.02) 18.35(0.04) 18.44(0.04)

160%

V0 7.11 7.11(0.00) 7.113(0.01) 7.113(0.01)
MPFE 14.43(0.04) 14.42(0.04) 14.26(0.04) 13.92(0.04)
EPE 2.368(0.00) 2.369(0.00) 2.372(0.01) 2.483(0.01)
100CVA 21.28(0.02) 20.95(0.02) 20.98(0.05) 21.01(0.05)

4Y×10Y

K/S value COS SGBM LSM-bundle LSM-all

40%

V0 4.235 4.236(0.00) 4.237(0.01) 4.237(0.01)
MPFE 14.12(0.12) 14.13(0.12) 13.86(0.11) 13.16(0.09)
EPE 1.827(0.00) 1.829(0.00) 1.834(0.01) 1.91(0.01)
100CVA 38.22(0.02) 37.98(0.02) 38.04(0.13) 38.34(0.13)

100%

V0 6.199 6.199(0.00) 6.201(0.02) 6.201(0.02)
MPFE 19.29(0.11) 19.29(0.11) 19.08(0.12) 18.08(0.10)
EPE 2.606(0.00) 2.607(0.00) 2.616(0.01) 2.719(0.01)
100CVA 53.35(0.05) 52.92(0.05) 53.03(0.14) 53.26(0.14)

160%

V0 8.691 8.691(0.00) 8.687(0.02) 8.687(0.02)
MPFE 24.33(0.09) 24.34(0.09) 24.28(0.09) 23.42(0.09)
EPE 3.526(0.00) 3.527(0.00) 3.539(0.01) 3.628(0.01)
100CVA 71.94(0.06) 71.35(0.06) 71.47(0.09) 71.5(0.10)

Table 5.1: Bermudan receiver swaption under the Hull-White model. (a) 1Y×5Y S ≈ 0.0109; risk-neutral σ =
0.020; λ = 0.020; real-world η = 0.010; κ = 0.015. (b) S ≈ 0.0113; risk-neutral σ = 0.010,λ = 0.012; real-world
η = 0.006 κ = 0.008 . Risk-neutral and real-world scenarios are generated; the forward rate is flat, f M (0, t ) =
0.01; the default probability function PS(t ) = 1− exp(−0.02t ) and LGD = 1; option values and CVA are based
on Hq = 100 · 103 risk-neutral scenarios; MPFE and EPE are based on Ha = 100 · 103 real-world scenarios;
the number of monitoring dates M = TN /∆t with ∆t = 0.05; standard errors are in parentheses, based on 10
independent runs.

Figure 5.3 compares the statistics of the risk-neutral and real-world exposure distri-
butions: the mean in Fig.5.3(a) and the 99% quantile in Fig.5.3(b), for a 4Y/10Y receiver
Bermudan swaption along time horizon [0,10]. The significant difference between the
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curves shows that one cannot use quantiles computed by risk-neutral exposure distri-
butions to represent the real-world PFE. There are downward jumps in the EE and PFE
curves at each early-exercise date {4Y ,5Y , . . .}, as the swaption on some of the paths is
exercised.

(a) exposure average (b) exposure quantile 99%

Figure 5.3: Comparison of the mean and 99% quantile of the exposure distributions, computed
by the COS method, based on risk-neutral and real-world scenarios, for the 4Y/10Y Bermudan
receiver swaption, as specified in Table 5.1 when K /S = 1.

The mean and the 99% percentile of the real-world exposure are the required EE and
PFE values. Figure 5.4 compares the EE and PFE curves obtained by the different algo-
rithms for the period 2Y to 4Y and the period 6Y to 8Y. LSM tends to over-estimate the
PFE prior to the first early-exercise opportunity and to under-estimate it afterwards. The
SGBM results are as accurate as the reference values.

(a) PFE, 2Y to 4Y (b) PFE, 6Y to 8Y

Figure 5.4: Comparison of PFE curves obtained by COS, SGBM and LSM for years [2,4] to years [6,8],
for the 4Y/10Y Bermudan receiver swaption specified in Table 5.1, when K /S = 1.

The main reason for SGBM’s excellent fit in the tails of the distributions is that, at
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each date, the algorithm provides an accurate local approximation of the continuation
function for the whole realized domain of the underlying factor.

Figure 5.5(a) compares the reference continuation functions (by COS) to the approxi-
mated continuation functions (by SGBM and LSM) on the bounded realized risk-neutral
region at time 6.5Y for the 4Y/10Y receiver swaption. The approximation by LSM-all is
not accurate at the upper and lower regions, which explains its performance in Table 5.1.
We observe an accuracy improvement in the results by the LSM-bundle algorithm. From
the plot we observe that SGBM’s approximated function resembles the reference value
well on the whole domain. Fig.5.5(b) presents the empirical density of the risk-neutral
short rate and the observed real-world short rate, where we see that the realized domain
under the risk-neutral measure is wider spread.

(a) continuation function (b) short rate density

Figure 5.5: Comparison of continuation functions via all algorithms at 6.5 Y, for the 4Y/10Y Bermu-
dan receiver swaption, specified in Table 5.1, when K /S = 1.

Table 5.2 gives the computational times for these algorithms. SGBM is significantly
faster than the reference COS algorithm; LSM is less accurate but faster than SGBM. The
experiments are performed on a computer with CPU Intel Core i7-2600 3.40GHz×8 and
RAM memory 15.6 Gigabytes. The computational cost increases proportionally w.r.t. pa-
rameter M .

TN M COS SGBM LSM-bundle LSM-all

5Y 100 60.9s 4.48s 3.32s 1.67s
10Y 200 122.7s 9.02s 7.09s 3.26s

Table 5.2: Computational costs (seconds) for computation of risk-neutral and real-world exposures
distributions.
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5.7.2. EXPERIMENTS WITH THE G2++ MODEL
The dynamics of the risk-neutral and real-world G2++ models are given in Section 5.3,
where the associated parameters, i.e. the reversion speed κ1, κ2, the volatility η1, η2, and
the correlation ρ̂ are based on historical data, and risk-neutral parameters λ1, λ2, σ1, σ2

and ρ are based on market prices.
In this two-dimensional model, we use the following monomials as the basis func-

tions in the LSM algorithm:{
1, x(1)

t , x(2)
t ,

(
x(1)

t

)2
, x(1)

t x(2)
t ,

(
x(2)

t

)2
,
(
x(1)

t

)3
,
(
x(1)

t

)2
x(2)

t , x(1)
t

(
x(2)

t

)2
,
(
x(2)

t

)3
}

,

and the basis functions in the SGBM algorithm are given by:{
1, x(1)

t , x(2)
t ,

(
x(1)

t

)2
, x(1)

t x(2)
t ,

(
x(2)

t

)2
}

,

from which we observe that the number of basis functions increases rapidly w.r.t. the
dimension of the underlying variable.

The associated discounted moments, required in SGBM, can easily be derived from
the analytic formula of the discounted ChF of the G2++ model, and, as for Hull-White
model, we use J = 10 bundles in SGBM. In SGBM, we can either use the two-dimensional
equal-number bundling method, introduced in [32], or the one-dimensional version
based on projecting the high-dimensional variable onto a one-dimensional variable.
Here, we create the bundles based on the realized values of (x(1)

t + x(2)
t ) on each path

at time tm .
Table 5.3 reports the time-zero option value results for SGBM and LSM as well as the

exposure measures for receiver Bermudan swaptions, where we can analyze the differ-
ence between the results by these algorithms.

Figure 5.6 presents the PFE curves computed on the real-world scenarios and the
mean and the 99% quantiles of the risk-neutral exposure distributions at each monitor-
ing date. As expected, there is clear difference between the statistics of the risk-neutral
and the real-world exposure distributions.

Table 5.4 presents the computational cost of the algorithms for this two-dimensional
model. The cost increases w.r.t. the dimension of the variable.

5.8. CONCLUSION
This chapter presents computationally efficient techniques for the simultaneous com-
putation of exposure distributions under the risk-neutral and the observed real-world
probability measures. They are based on only two sets of scenarios, one generated un-
der the risk-neutral dynamics and another under the observed real-world dynamics, and
on basic techniques such as regression. Compared to nested Monte-Carlo simulation,
the techniques presented significantly reduce the computational cost and maintain high
accuracy, which we demonstrated by numerical results for Bermudan swaptions, com-
paring to references results generated by the Fourier-based COS method. We illustrate
the easy implementation for both the one-factor Hull-White and the two-factor G2++
models.
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(a) 1Y×5Y

K/S value COS SGBM LSM-bundle

40%

V0 1.740 1.742(0.00) 1.748(0.00)
MPFE 5.059(0.05) 5.057(0.05) 5.049(0.09)
EPE 0.770(0.00) 0.771(0.00) 0.776(0.01)
100CVA 7.475(0.00) 7.486(0.01) 7.514(0.03)

100%

V0 2.895 2.897(0.00) 2.903(0.01)
MPFE 6.518(0.02) 6.521(0.02) 6.442(0.15)
EPE 1.111(0.00) 1.113(0.00) 1.112(0.00)
100CVA 10.04(0.01) 10.05(0.01) 10.07(0.02)

160%

V0 4.561 4.560(0.00) 4.566(0.00)
MPFE 9.624(0.04) 9.627(0.04) 9.677(0.11)
EPE 1.327(0.00) 1.328(0.00) 1.330(0.00)
100CVA 12.66(0.01) 12.66(0.01) 12.69(0.02)

(b) 3Y×10Y

K/S value COS SGBM LSM-bundle

40%

V0 0.858 0.861(0.00) 0.863(0.00)
MPFE 2.652(0.02) 2.785(0.02) 2.709(0.05)
EPE 0.444(0.00) 0.447(0.00) 0.446(0.00)
100CVA 8.649(0.01) 8.683(0.01) 8.688(0.03)

100%

V0 2.466 2.466(0.00) 2.474(0.00)
MPFE 7.159(0.02) 7.157(0.02) 7.099(0.03)
EPE 1.058(0.00) 1.06(0.00) 1.064(0.00)
100CVA 19.52(0.02) 19.53(0.02) 19.62(0.03)

160%

V0 5.418 5.42(0.00) 5.428(0.01)
MPFE 12.06(0.02) 12.06(0.02) 12.18(0.02)
EPE 1.836(0.00) 1.838(0.00) 1.843(0.00)
100CVA 35.48(0.02) 35.49(0.02) 35.59(0.06)

Table 5.3: Receiver Bermudan swaption under the G2++ model. (a) S ≈ 0.0104; risk-neutral σ1 = 0.015, σ2 =
0.008, λ1 = 0.07, λ2 = 0.08, ρ = −0.6; real-world η1 = 0.005, η2 = 0.01, κ1 = 0.54, κ2 = 0.07, ρ̂ = −0.8. (b)
S ≈ 0.0102; risk-neutral σ1 = 0.005, σ2 = 0.008, λ1 = 0.09, λ2 = 0.15, ρ =−0.6; real-world η1 = 0.002, η2 = 0.006,
κ1 = 0.04, κ2 = 0.07, ρ̂ = −0.8. Risk-neutral and real-world scenarios are generated; forward rate f M (0, t ) =
0.01; the default probability function PS(t ) = 1− exp(−0.02t ) and LGD = 1; option values and CVA are based
on Hq = 100 ·103 risk-neutral scenarios; MPFE and EPE are based on Ha = 100 ·103 real-world scenarios; the
number of monitoring dates M = TN /∆t with ∆t = 0.05.

We recommend SGBM because of its accuracy and efficiency in the computation
of continuation values. A highly satisfactory alternative is to use the LSM-bundle ap-
proach. The reference COS method is highly efficient for computing time-zero values
of the Bermudan swaption, but for the computation of exposure, there is room for im-
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Figure 5.6: PFE and the 99% quantile of the exposure distributions of a receiver Bermudan swaption,
as specified in Table 5.3 when K /S = 1.

TN M LSM-bundle SGBM COS

5Y 100 6.28s 8.10s 868.14s
10Y 200 12.96 15.07s 1840.72s

Table 5.4: Computational costs (seconds) for the computation of risk-neutral and real-world expo-
sures distributions under the G2++ model.

provement in terms of computational speed.

The results for the parameter values chosen show that there are clear differences in
exposure distributions on the risk-neutral and the real-world scenarios. The proposed
algorithms are based on the requirement that the sample space induced by the observed
historical model is a subspace of the sample space under the risk-neutral measure.

The valuation framework presented is flexible and may be used efficiently for any
type of Bermudan-style claim, such as Bermudan options and swaptions. For a Bermu-
dan option, one can compute the sensitivities of CVA by SGBM at the same time, which is
an additional benefit. The algorithms developed can be extended easily to the situation
in which model parameters are piecewise constant over the time horizon.

APPENDIX 1: ZCB AND DISCOUNTED CHF UNDER THE HULL-
WHITE MODEL
The value of a ZCB under the HW model between times [t ,T ], conditional on rt = x,
under the risk neutral measure Q is given by

P HW(t ,T, x) = A(t ,T )eB(t ,T )x , (5.62)
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where coefficients A and B are given by

B(t ,T ) = 1

λ

[
1−e−λ(T−t )

]
,

A(t ,T ) = P M (0,T )

P M (0, t )
exp

{
B(t ,T ) f M (0, t )− σ2

4λ
(1−e−2λt )B(t ,T )2

}
. (5.63)

The dChF for the underlying variable rt can be expressed by the following formula:

ϕHW(u; t ,T,rt ) = EQ
[

exp

(
−

∫ T

t
rs d s + i urT

)∣∣∣rt

]
= exp

(
−

∫ T

t
θ(s)d s + i uθ(T )

)
EQ

[
exp

(
−

∫ T

t
gs d s + i ugT

)∣∣∣xt = rt −θ(t )

]
= exp

(
−

∫ T

t
θ(s)d s + i uθ(T )+ Ã(T − t )+ B̃(T − t )xt

)
(5.64)

where the analytic formula of the integral for function θ over time [t ,T ] is given by∫ T

t
θ(s)d s =

∫ T

t
f M (s)d s + σ2

4λ3

(
λ(T − t )+4

(
e−λT −e−λt

)
−

(
e−2λT −e−2λt

))
, (5.65)

and the coefficients are the solutions of the ODEs, given by

dB̃

d s
(s) =−1−λB̃(s),

d Ã

d s
(s) = 1

2
σ2(B̃(s)

)2, (5.66)

with B̃(0) = i u and Ã(0) = 0.
The analytic solution of the ODEs is given by

B̃(T − t ) = i ue−λ(T−t ) − 1

λ

(
1−e−λ(T−t )

)
,

Ã(T − t ) = λ2

2σ3

(
σ(T − t )−2

(
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+ 1

2
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)
− i uλ2

2σ2

(
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)2 − u2λ2

4σ

(
1−e−2λ(T−t )

)
. (5.67)

APPENDIX 2: ZCB AND DISCOUNTED CHF UNDER THE G2++
MODEL
The value of a ZCB between times t and T under the G2++ model is given by

P G2(t ,T, x(1)
t , x(2)

t ) = D(t ,T )exp
(
−C 1(t ,T )x(1)

t −C 2(t ,T )x(2)
t

)
, (5.68)

where the coefficients are given by:

D(t ,T ) = P M (0,T )

P M (0, t )
exp

{
1

2

(
H (t ,T )−H (0,T )+H (0, t )

)}
,

C 1(t ,T ) = 1

λ1

(
1−e−λ1(T−t )

)
, C 2(t ,T ) = 1

λ2

(
1−e−λ2(T−t )

)
, (5.69)
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with the function H (t ,T )

H (t ,T ) = σ2
1

∫ T

t
C 1(s)2d s +σ2

2

∫ T

t
C 2(s)2d s +2ρσ1σ2

∫ T

t
C 1(s)C 2(s)d s. (5.70)

The 2D discounted ChF of the G2++ model for variable Xt = [x(1)
t , x(2)

t ] is given as
follows:

ϕG2(u1,u2; t ,T, x(1)
t , x(2)

t ) = EQ
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t
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t

)
, (5.71)

where the analytic formula of the integral for the function γ over time [t ,T ] is given by,
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γ(s)d s =

∫ T

0
f M (0, s)d s + σ2

1

4λ3
1

(
4(e−λ1T −e−λ1t )−2(e−2λ1T −e−2λ1t )+2(T − t )λ1

)
+ σ2

2

4λ3
2

(
4(e−λ2T −e−λ2t )−2(e−2λ2T −e−2λ2t )+2(T − t )λ2

)
+ρσ1σ2

λ1λ2

[
1

λ1

(
e−λ1T −e−λ1t

)
+ 1

λ2

(
e−λ2T −e−λ2t

)
+T − t

]
− ρσ1σ2

λ1λ2(λ1 +λ2)

(
e−(λ1+λ2)T −e(λ1+λ2)t

)
. (5.72)

and the coefficients B̃1, B̃2 and ÃG2 are determined by the following ODEs:

dB̃1

d s
(s) =−1−λ1B̃1(s),

dB̃2

d s
(s) =−1−λ2B̃2(s),
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1B̃ 2
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2
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with initial conditions B̃1(0) = i u1, B̃2(0) = i u2 and ÃG2(0) = 0.

Their solution is given by:

B̃1(T − t ) = i u1e−λ1(T−t ) − 1

λ1

(
1−e−λ1(T−t )

)
,
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,
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t
B̃ 2

2 (s)d s, (5.74)

where the integral can be computed analytically.
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APPENDIX 3: COEFFICIENTS Gk AND Ck

The coefficients Gk at time Tn over [xc , xd ] are computed by

Gk

(
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)
= N0

xd∫
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y −a

b −a

)
gN (y)d y

= N0δ
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)
, (5.75)

where the coefficients are given by

A 1
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]
, (5.76)

where An, j+1 := A(Tn ,T j+1) and B n, j+1 := B(Tn ,T j+1). A and B are given by (5.63) in
Appendix 1.

The coefficients Ck at time tm over [xc , xd ] are computed via an integral

Ck (xc , xd , tm) :=
xd∫
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c(tm , y)cos
(
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y −a
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)
d y

≈ 2
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{
Wl (tm , tm+1)Xk,l (xc , xd )

}
Vl (tm+1), (5.77)

in which coefficients
{
Vl

(
tm+1

)}Q−1
l=0 have been computed at time tm+1, and coefficients
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W and X are given by

Wl (tm , tm+1) = exp

−
tm+1∫
tm

θ(s)d s + i lπ

b −a
θ(tm+1)− B̃lθ(tm)

exp
{
− i alπ

b −a
+ Ãl

}
,

Xk,l (xc , xd ) =
xd∫

xc

cos
(
kπ

y −a

b −a

)
e B̃l y d y

= 1(
kπ

b−a

)2 + B̃ 2
l

[
kπ

b −a
sin

(
kπ

xd −a

b −a

)
e B̃l xd + B̃l cos

(
kπ

xd −a

b −a

)
e B̃l xd

− kπ

b −a
sin

(
kπ

xc −a

b −a

)
e B̃l xc − B̃l cos

(
kπ

xc −a

b −a

)
e B̃l xc

]
, (5.78)

with B̃l = B̃ (∆t ) and Ãl = Ã (∆t ) when u = lπ
b−a , l = 0,1, . . . ,Q. Analytic formulas of B̃ and

Ã are presented by (5.67) in Appendix 1.



CHAPTER 6

Conclusions and Outlook

6.1. CONCLUSIONS
In this thesis, we have presented an efficient algorithm, SGBM, for computing future ex-
posure profiles, under the risk-neutral probability measure for the purpose of CVA cal-
culation, and under the real-world probability measure for the purpose of quantifying
credit risk.

We demonstrated that SGBM converges w.r.t. the number of paths, the number of
bundles and the polynomial order. The algorithm is highly adaptive for various models
and financial contracts. It is an adequate scheme for computing exposure profiles be-
cause of its accuracy over all paths. The derivation of analytic formulas of discounted
moments was presented using the relation between the discounted ChF and the dis-
counted moments.

We investigated the impact of stochastic volatility and stochastic interest rate in asset
models on the exposure distribution of option contracts over the risk horizon. In SGBM,
we derived the analytic formulas of the discounted ChF for the hybrid models used in
this thesis. For the options with early-exercise features, we proposed an algorithm for
computing exposure profiles without sub-simulation. We propose a bundling technique
under 2D and 3D models that balances the requirements for the number of paths and
the number of bundles.

For the purpose of having a benchmark, we also developed the COS method for com-
putation of exposure profiles for Bermudan options. The COS method is further devel-
oped for the valuation of Bermudan options and their exposure under the Hull-White
and the G2++ models.

We proposed three models for the stochastic intensity to deal with wrong way risk
(WWR). In these models, we defined the dependency structure of the intensity and the
other market factors in three ways: a deterministic function, the correlation between
diffusion terms, or/and the correlation in the jump terms. Based on the proposed mod-
els, CVA stress testing for European options is performed and we see that the WWR risk
caused higher CVA values for European option contracts.

As an extension, we showed the changes in the exercise region of a Bermudan option
in the presence of CCR and WWR, by studying the early-exercise regions, in the case of
no default risk, a constant intensity and a stochastic intensity. We find that a Bermudan
put option is more likely to be exercised when there exists CCR. The impact of WWR on
CVA of Bermudan options, however, is model-dependent.

We presented the computation of CVA VaR and CVA ES for option contracts without
any sub-simulation based on the algorithms developed by us in this thesis.

The algorithms developed in this thesis may provide a solution for the computational
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demand in practice. The study of WWR can be interesting for the impact on the exercise-
behavior.

6.2. OUTLOOK
The algorithms and models proposed need to be tested with real market data. A next
topic following the results in this thesis, can be to use real market data to test the effi-
ciency and accuracy of the algorithm.

Additional factors that need to be considered are to include volatility in LGD, the im-
pact of netting and collateral agreements. We know that in the financial world, LGD is
not a constant as assumed in this thesis. Instead, LGD varies w.r.t. the market move-
ments as well. The volatility in LGD may make significant contribution to CVA.

Another important issue for future research is to study the debit valuation risk (DVA).
In this thesis, we have studied the unilateral CVA. In practice, however, CCR is bilateral
to both parties in a contract. The CVA from the perspective of the counterparty, is DVA.
It arises due to one’s own default risk.

Netting and collateral agreements are commonly used in practice and banks should
consider the corresponding risk. Other risks that banks need to manage include KVA
(capital valuation adjustment), FVA (funding valuation adjustment), costs of margin,
collateral and transaction [38]. In recent years, banks have started to set up a so-called
’XVA desk’ to support the pricing, and the risk and collateral management. Effective and
adequate ways for computation and modeling for these risks are highly in demand [14].

There are many challenges in the field of CCR. Research on these topics is appreci-
ated to help building a resilient financial market.
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