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1
I N T R O D U C T I O N

1.1 x-ray transmission computed tomography

Computed tomography is a technique that is used to reconstruct an ob-
ject from a set of projections. It is applied in a broad range of fields, for
example electron tomography, (bio)medical imaging, industrial ima-
ging (such as quality inspection for materials science), and seismic to-
mography. The resolution depends upon the object to be scanned and
can vary from nanometers to kilometers [1–5].

For X-ray transmission computed tomography, the projections are
obtained by sending X-ray beams under varying angles through the
object and measuring the intensity profile of the X-ray beam at a de-
tector after it has traversed the object. The difference in intensity of
the beam before and after intersecting the object, i.e. the attenuation,
is used as input for various algorithms that can compute an image of
the interior of the object. The attenuation of the beam is related to the
type and thickness of the materials that lie on the ray paths between
the X-ray source and the detector, and also on the energy of the X-ray
photons that are used. This will be made more precise in the following.

We now consider a two-dimensional object, i.e. a slice. Let µ(x,y,E)
denote the attenuation coefficient of the material at position (x,y) ∈
R2 for energy level E. Let L be a line from the source to the detector
that is parameterized by L(l), i.e., the variable l denotes the position
on the line L. Let Iin(E) denote the intensity of the beam at energy E
before it intersects with the object. The total intensity I of the beam at
position l1 is then given by Eq. (1.1) [6].

I(l1) =

∫Emax

0

Iin(E)e
−

∫l1
0 µ(L(l),E)dldE, (1.1)



1

2 1 introduction

where Iin(E) is the intensity of the incident beam.
In this work we mainly focus on monochromatic X-ray beams, i.e.

beams with only one energy level E0. In this case, there is a single
attenuation for each position (x,y) in the object, which we denote
by f(x,y) = µ(x,y,E0). Then Eq. (1.1) simplifies to Eq. (1.2), which is
known as the Lambert-Beer law [6, 7].

I(l1) = Iine
−

∫l1
0 f(L(l))dl. (1.2)

Let Iout be the intensity of the beam after traversing the object. We
then define the projection of the object along the line L by Eq. (1.3).

pL = − ln
(Iout

Iin

)
=

∫
L

f(L(l))dl, (1.3)

where ln denotes the natural logarithm.
We conclude that by recording the intensities of both the attenuated

beam and the unattenuated beam (without an object in the scanner),
the integral of the attenuation along lines through the object can be
obtained.

For a line L given in Eq. (1.4), the line integral along L is given by
Eq. (1.5). This transform has been introduced by Johann Radon in 1917

[8] and is now known as the Radon transform [6, 9, 10].

L : x cos θ+ y sin θ = t, for some t ∈ R, (1.4)

(Rf)(θ, t) =
∫∞
−∞ f(t cos θ− s sin θ, t sin θ+ s cos θ)ds, (1.5)

for t ∈ R and θ ∈ [0, 2π).
The Radon transform is of great importance in Computed Tomo-

graphy. In 2D parallel beam scanning techniques, a detector is located
opposite an X-ray source. In this work, we assume the detector is si-
tuated along a straight line perpendicular to a parallel beam of X-ray
as shown in Fig. 1.1a. This figure also illustrates the concept of the line
integrals for the Shepp-Logan phantom. The Shepp-Logan phantom is
an image that consists of ellipses with different gray levels. It resem-
bles a cross-section of a human head.
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(a) Object space (b) Radon space

Figure 1.1: (a) 2D Parallel beam scanning geometry, (b) Projection data in
Radon space.

The measured projection data can now be written as a set of line
integrals depending on the projection angle θ ∈ [0,π) and position t
on the detector (see Eq. (1.6)).

p(θ, t) = (Rf)(θ, t). (1.6)

The projection data for the phantom in Fig. 1.1a is shown in Fig. 1.1b.
The gray level corresponds to the attenuation, where black refers to no
attenuation and white to high attenuation.

There exist exact inversion formulas for the Radon Transform, such
as the inverse Radon Transform [8] and the Fourier Slice theorem [6, 7,
9, 11]. However, these inversion formulas are based on the assumption
that projections are available for all angles θ and for all detector coor-
dinates t. Since in practice only a finite set of projection angles Θ can
be measured for a finite set of detector bins T , such inversion formulas
cannot be used directly as a reconstruction algorithm. Therefore, re-
construction methods have been developed that approximate the object.
These methods can roughly be divided into two categories: analytical
reconstruction methods and algebraic reconstruction methods (ARMs).
A well-known reconstruction method in the analytical group is Filtered
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Backprojection (FBP). We will now consider both FBP and the algebraic
reconstruction methods in more detail.

1.2 fbp

An intuitive way to approximate the unknown function f is to take
each element of the projection data and backproject it along its cor-
responding line through the object. Pixels that are contained in the
support of the function f receive positive contributions from the corre-
sponding backprojected lines for all projection angles. Pixels outside
f receive in general only contributions for a smaller set of projection
angles and their value in the reconstruction is less than that of pixels
inside f. As attenuation coefficients are always positive values, the re-
construction of this backprojection method is a nonnegative image.

A major drawback of this method is that the reconstructed image is
blurred and does not correctly invert the Radon transform. The Fou-
rier Slice Theorem provides a more accurate inversion formula, which
combines the backprojection operation with a filtering step [6, 7, 9, 11].
Let P(θ, v) =

∫∞
−∞ p(θ, t)e−2πivtdt, the one-dimensional Fourier trans-

form of p, taken separately for each angle θ. According to the Fourier
Slice Theorem, we can calculate f from P as shown in Eq. (1.7).

f(x,y) =
∫π
0

∫∞
−∞ P(θ, v)|v|ei2πvtdvdθ, (1.7)

=

∫π
0

q(θ, t)dθ, (1.8)

where t = x cos θ+ y sin θ and q(θ, t) =
∫∞
−∞ P(θ, v)|v|ei2πvtdv.

The term |v| is the important difference between the backprojection
method described above and the formula in Eq. (1.7). The formula in
Eq. (1.8) is a backprojection of the filtered projection data q, which
is obtained by applying the so-called ramp-filter to the original pro-
jection data p. Note that for G(θ, v) = |v| the function q is defined as
q(θ, t) =

∫∞
−∞ P(θ, v)G(θ, v)ei2πvtdv. If we denote the inverse Fourier

transform of G(θ, ·) by g(θ, ·), then Eq. (1.9) follows from the properties
of the Fourier transform.

q(θ, t) =
∫∞
−∞ p(θ, τ)g(θ, t− τ)dτ. (1.9)
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Hence q(θ, ·) equals the convolution of p(θ, ·) with the filter g(θ, ·).
Combining Eq. (1.8) and Eq. (1.9) and discretizing this formula re-

sults in Eq. (1.10), where u(x,y) denotes the value of the reconstructed
image at coordinate (x,y). This formula is known as Filtered Backpro-
jection.

u(x,y) =
∑
θ∈Θ

∑
t∈T

p(θ, τ)g̃(θ, t− x cos θ− y sin θ), (1.10)

where g̃(θ, t) = π
|Θ|
g(θ, t).

Due to the limited number of projection data that can be measured,
FBP can only compute an approximation of the unknown object f. The
reconstruction quality of this approximation highly depends on the
choice for the filter g. In 1971, Ramachandran and Lakshminarayanan
have proposed to use a windowed filter for FBP [12]. We will refer to
it as the Ram-Lak filter Eq. (1.11).

(Ram − Lak) G(θ, v) = |v| rect(v), (1.11)

where rect(v) equals 1 for v ∈ [−ε, ε] for some ε > 0 and 0 other-
wise. This windowed function reduces the effects of noise in the high
frequency domain, which would otherwise be amplified due to the
multiplication with |v|. To further reduce the effects of amplifying the
high frequencies, other windowed filters have been proposed in litera-
ture. For example the Shepp-Logan filter, Hann filter, Cosine filter, and
Hamming filter, see Eq. (1.12)-Eq. (1.15) respectively [6].

(Shepp − Logan) G(θ, v) = |v| rect(v) sinc(v), (1.12)

(Hann) G(θ, v) = |v| rect(v)(0.5− 0.5 cos(2πv)), (1.13)

(Cosine) G(θ, v) = |v| rect(v) cos(πv), (1.14)

(Hamming) G(θ, v) = |v| rect(v)(0.54− 0.46 cos(2πv)),
(1.15)

The main advantage of the Filtered Backprojection is its computa-
tional efficiency. It is also easy to implement and known for its high
accuracy for low-noise projection data with a substantial number of
equiangularly distributed projection angles. The reconstruction accu-
racy degrades in case of a limited angular range, few projection an-
gles or a low signal-to-noise ratio. Fig. 1.2 contains reconstructions of
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(a) Shepp-Logan
phantom

(b) FBP (c) FBP,
|Θ| = 16

(d) FBP,
AR = 135◦

(e) FBP,
I0 = 104

(f) SIRT (g) SIRT,
|Θ| = 16

(h) SIRT,
AR = 135◦

(i) SIRT,
I0 = 104

Figure 1.2: Reconstructions for SIRT with 100 iterations and FBP with the
Ram-Lak filter; unless stated differently, the parameters are n =
255, |Θ| = 128, angular range (AR) = 180◦ and noiseless projecti-
ons.

the well-known Shepp-Logan phantom of both FBP and the algebraic
reconstruction method SIRT (which will be discussed in Section 1.3)
for varying parameters. The Shepp-Logan phantom consists of n× n
pixels. The variable I0 indicates the noise level. It represents the num-
ber of counts per detector element without an object.

1.3 algebraic reconstruction methods

Algebraic reconstruction methods offer an alternative approach to sol-
ving the reconstruction problem. Since the tomographic reconstruction
problem can often not be solved exactly, the reconstruction problem
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is discretized such that we obtain a system of linear equations. The
unknown object is represented on a grid, which we here assume to be
a square, consisting of n× n pixels. The object is characterized by the
vector x ∈ Rn

2
, such that xi corresponds to the density of the object on

pixel i ∈ {1, 2, . . . ,n2}. The contribution of every image pixel to a line
integral is given by the projection matrix W. The number of rows of W
equals the number of projection angles |Θ| multiplied by the number
of detector bins |T |. Hence the discrete reconstruction problem can be
written as Eq. (1.16).

Wx = p, (1.16)

where p ∈ RNTΘ is the projection data and NTΘ = |T ||Θ|.
The number of unknowns in this discrete reconstruction problem is

typically very large and a solution cannot be calculated in reasonable
time by explicit matrix inversion. Therefore, iterative algorithms have
been proposed that solve for a least squares solution. Examples of such
methods are ART/Kaczmarz method, SIRT and CGLS. We will now
discuss SIRT in more detail.

The Simultaneous Iterative Reconstruction Method (SIRT) is an iterative
linear reconstruction method. It updates the current solution based on
the difference between the current forward projection and the measu-
red projection data for all projection angles simultaneously. The kth
iteration step of SIRT can be written as Eq. (1.17) [13, 14]. SIRT conver-
ges to a weighted least squares solution of the reconstruction problem.

u(k+1) = u(k) +ωWT (p−Wu(k)), (1.17)

where u(k) ∈ Rn
2

is the resulting image of the k-th iteration and ω ∈
R is a relaxation parameter.

A disadvantage of many algebraic reconstruction methods including
SIRT is that they require a long computation time. By parallelizing the
computations of SIRT and using GPUs, the reconstruction time can be
substantially reduced [15–17]. However, for large reconstruction pro-
blems the reconstruction time required for SIRT is still much larger
than for FBP, which is an important disadvantage of this method. Ad-
vantages of SIRT are the possibility to incorporate prior knowledge,
the robustness with respect to noise, and the higher accuracy compa-



1

8 1 introduction

red to FBP for limited-data problems and projection angles that are
not equiangularly distributed. The bottom row of Fig. 1.2 contains re-
constructions of SIRT for varying parameters.

1.4 preview

Substantial research efforts have been made to improve the recon-
struction accuracy of the computationally efficient FBP method. This
can be done for example by various pre- and postprocessing steps, or
by using different filters. We will focus in this work on the filtering
step for two-dimensional reconstruction problems in X-ray computed
tomography.

In Chapter 2 ’Fast Approximation of Algebraic Reconstruction Methods
for Tomography’, we introduce a new algorithm to create filters for FBP
which are based on a linear algebraic reconstruction method. This met-
hod is called Algebraic filter-Filtered Backprojection (AF-FBP). The filters
that are created can be used in FBP in the same way as for example
the Ram-Lak filter. The image characteristics of the reconstructions of
AF-FBP are similar to those of the linear Algebraic Reconstruction Met-
hod (ARM) that was used to create the filters. The main benefit of this
method is that, once the filters have been created, reconstructions are
created with the computational efficiency of FBP, while the favorable
reconstruction accuracy of the linear ARM is largely preserved.

By design, the reconstruction of an ARM does not only depend on
the projection data, but also on the size and shape of the reconstruction
grid. Also the position of the object within the reconstruction grid has
an effect on the reconstruction. Both these effects and the discretiza-
tion effects in FBP are examined in Chapter 3 ’Spatial Variations in Re-
construction Methods for CT’.

The method AF-FBP uses by design a single pixel of the recon-
struction grid for the creation of the filters. In the experiments in Chap-
ter 2, the central pixel of the reconstruction grid is chosen for reasons
that are explained there. As a consequence of the results in Chapter
3, choosing a different pixel will lead to different filters. We have the-
refore investigated the idea to use several pixels in the reconstruction
grid to create multiple filters which can be applied to smaller areas of
the reconstruction grid. The implementation and results for applying
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these local filters is presented in Chapter 4 ’Approximating Algebraic To-
mography Methods by Filtered Backprojection: a Local Filter Approach’.

The AF-FBP algorithm presented in Chapter 2 is applicable for linear
ARMs. It is not applicable for nonlinear ARMs such as the Conjugate
Gradient Least Squares (CGLS) method or the Expectation Maximiza-
tion (EM) method. Since also these methods are computationally inef-
ficient compared to FBP, we would like to be able to approximate these
methods with a fast algorithm that is similar to AF-FBP. In Chapter 5

’Algebraic Filter Approach for Fast Approximation of Nonlinear Tomographic
Reconstruction Methods’, the method AF-FBP is extended such that it
can also be used for certain types of nonlinear algebraic reconstruction
methods.

Computed tomography is used in various application fields, for ex-
ample in industrial and (bio)medical imaging. In the experiments con-
ducted in the previously announced chapters, the projection data were
either simulated by computer models or obtained for industrial ima-
ging applications. In biomedical imaging, bone structures and soft tis-
sues with various gray levels are reconstructed. Especially for soft tis-
sues, the difference in gray levels between neighboring tissues can be
small and the boundaries can be highly irregular. In Chapter 6 ’Filtered
Backprojection using Algebraic Filters; Application to Biomedical Micro-CT
Data’, we compare reconstruction results of AF-FBP and FBP with a
selection of standard filters for two experimentally obtained projection
data sets of small animals.

We conclude this thesis with a comparison of several recently pro-
posed methods to create and apply filters for FBP. The algorithms in
Chapter 7 ’The accuracy of FBP with recently introduced filters: a compari-
son’ can all be applied to two-dimensional parallel beam geometries.
We provide a short description of these methods and give an overview
of their characteristics including the computational efficiency. We also
comment on the reconstruction quality based on experimental results.
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2
FA S T A P P R O X I M AT I O N O F A L G E B R A I C
R E C O N S T R U C T I O N M E T H O D S F O R T O M O G R A P H Y

Abstract – Most reconstruction algorithms for transmission tomo-
graphy can be subdivided in two classes: variants of Filtered Back-
projection (FBP) and iterative algebraic methods. FBP is very fast and
yields accurate results when a large number of projections are availa-
ble, with high signal-to-noise ratio and a full angular range. Algebraic
methods require much more computation time, yet they are more flex-
ible in dealing with limited data problems and noise. In this chapter
we propose an algorithm that combines the best of these two approa-
ches: for a given linear algebraic method, a filter is computed that can
be used within the FBP algorithm. The FBP reconstructions that re-
sult from using this filter strongly resemble the algebraic reconstructi-
ons and have many of their favorable properties, while the required
reconstruction time is similar to standard-FBP. Based on a series of
experiments, for both simulation data and experimental data, we de-
monstrate the merits of the proposed algorithm.

This chapter has been published with minor modification as: K. J. Batenburg and L.
Plantagie. Fast Approximation of Algebraic Reconstruction Methods for Tomography.
IEEE Trans. Image Process. 2012; 21(8): 3648–3658. This publication is available through
http://dx.doi.org/10.1109/TIP.2012.2197012. © 2012 IEEE.
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2.1 introduction

Transmission tomography is a mature imaging technique, for which
both the engineering aspects of image acquisition and the mathema-
tical and computational aspects of image reconstruction are well un-
derstood [1–4]. Although tomography is nowadays often used as an
off-the-shelf technique, it is important to realize that the resulting
image depends quite strongly on the employed reconstruction algo-
rithm. When comparing reconstruction methods, various aspects must
be balanced, such as the quality of the reconstructed image, the requi-
red reconstruction time, and robustness to noise.

During the past decades, reconstruction algorithms for transmission
tomography have been developed among different chains [5]. The de-
rivation of analytical algorithms departs from an idealized continuous
representation of the image reconstruction problem, for which analy-
tical solutions can be obtained. The resulting inversion formulas are
then discretized and transformed into a reconstruction algorithm. On
the other hand, algebraic algorithms depart from a discretized model
of the tomographic imaging setup, which is represented by a system
of linear equations. Although a least-squares solution of this system
could in principle be calculated directly, this is impractical due to the
enormous size of the corresponding matrix. Instead, iterative methods
are used, as they can deal effectively with such large sparse systems.

The Filtered Backprojection algorithm (FBP) is among the most po-
pular analytical reconstruction methods. It is capable of computing
accurate reconstructions with high computational efficiency, provided
that high quality projections have been acquired for a sufficiently large
number of angles, distributed evenly between 0◦ and 180◦. For this re-
ason, variants of FBP have dominated clinical CT practice for many
years. In particular, the related Feldkamp, Davis, and Kress (FDK) al-
gorithm for cone-beam reconstruction [6] has demonstrated the ability
to combine fully 3-D image acquisition with accurate and efficient re-
construction.

The limitations of FBP become apparent when only a small number
of projection images can be acquired, when the angular range of the
projections is limited or irregular, or when the measured data is noisy.
In such cases, the reconstruction quality of FBP degrades and artefacts
hamper subsequent image processing tasks, such as segmentation.
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Compared to FBP, iterative algebraic methods have several key ad-
vantages: 1) limited data problems (i.e., small number of projection
angles, limited angular range) can be modeled accurately by adjusting
the system of equations, whereas in FBP the underlying analytical mo-
del is based on the assumption of having projections available from all
angles; 2) noise in the projections can be effectively averaged, by see-
king a least-squares solution of the equation system; 3) certain types of
prior knowledge, such as nonnegativity of the attenuation coefficients,
can be incorporated in the reconstruction algorithm; and 4) physical
properties of the imaging system, such as a spatially varying point-
spread function can be modeled by adjusting the system of equations.

Although the analytical (continuous) formula that is the basis of
the FBP algorithm is exact, interpolation errors are introduced if the
assumptions made in this formula (an infinite number of projections
must be available across a full angular range) are not satisfied. The-
refore, the discretized version of the formula does not yield an exact
solution of the reconstruction problem, not even if the projection data
is noiseless. In contrast, iterative methods minimize the residual pro-
jection error by departing from a discretized model that only incorpo-
rates the data that is really available.

Despite these advantages, the high computational cost of iterative
methods, which can easily be one or two orders of magnitude larger
than the computational load of FBP, is a major obstacle toward wide-
spread practical use of such algorithms. The reconstruction time for
iterative algebraic methods can be strongly reduced by parallelizing
the computations, in particular when combined with the massive pa-
rallelism of modern graphic processing units (GPUs) [7, 8]. Still, the
reconstruction of large volumes by iterative methods takes a long time
when compared with FBP, which can be accelerated similarly by paral-
lel computation.

Connections between algebraic and analytical reconstruction met-
hods have been explored by several authors. In [9], it was shown that
a least-squares matrix formulation of the discretized FBP operator pro-
vides a connection between the analytic and algebraic reconstruction
approach. Any linear, shift invariant reconstruction algorithm is equi-
valent to FBP with a particular filter, which was demonstrated in [10].
In [11], a formula was derived for a filter kernel that can be used to
express the image quality of SIRT.
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In this chapter, we propose an actual reconstruction algorithm that
combines the favorable properties of iterative algebraic methods with
the computational advantages of FBP: for a given linear algebraic met-
hod, an angle-dependent filter is computed that can be used within
the FBP algorithm. The FBP reconstructions that result from using this
filter strongly resemble the algebraic reconstructions, while the requi-
red reconstruction time is similar to that of standard-FBP. In particular,
for one selected image pixel, the reconstruction result of the algebraic
method is identical to the result of applying FBP with the proposed
filter, independently of the projection data.

The filter computation has a high computational cost, which is much
larger than the cost of reconstructing a single image by an algebraic
method. However, as long as the imaging geometry (i.e., projection an-
gles, detector size, etc.) is fixed, the same filter can be used for all subse-
quent reconstructions, as the filter does not depend in any way on the
scanned object. In the vast majority of commercial CT-scanners, only
a few different acquisition schemes are used for a particular scanner.
The filters for these schemes can be computed once, using a separate
computer system, or even a large cluster. Subsequently, reconstructions
can be computed from an arbitrary number of tomography datasets at
the same speed as standard-FBP. The computed filters can be directly
incorporated in existing FBP implementations.

This chapter is structured as follows. In Section 2.2, we briefly re-
visit the analytical model behind the FBP algorithm and its discreti-
zation. Section 2.3 introduces a general model for linear algebraic re-
construction algorithms. The key contribution of this article is made
in Section 2.4, where an expression is derived for algebraic filters (AFs):
filters for the FBP algorithm that are extracted from a linear algebraic
method. We also discuss how such filters can be computed. In Section
2.5, we describe a set of experiments that have been performed to com-
pare the reconstruction quality of our approach with alternative recon-
struction algorithms. The results of these experiments are presented in
Section 2.6. Section 2.7 concludes this chapter.

2.2 the filtered backprojection algorithm

In this chapter, we focus on a parallel beam scanning geometry, using a
single rotation axis. For several other scanning geometries, including
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the fan-beam geometry and the circular cone-beam geometry with
small cone angle, the approach presented here can also be applied,
after rebinning of the projection data.

We start by revisiting the Radon transform and its analytical inver-
sion. Let f : R2 → R be a finite and integrable function with bounded
support for which the Radon transform

p(θ, t) = (Rf)(θ, t)

=

∫∞
−∞ f(t cos θ− s sin θ, t sin θ+ s cos θ)ds (2.1)

is defined almost everywhere in θ ∈ [0,π), t ∈ R. We refer to [12] for
details on the analytical properties of the Radon transform. The vari-
ables θ and t denote the angle with the vertical axis and the signed
distance between the projected line and the origin of the coordinate
system, respectively. We refer to p(θ, ·) as the projection of f for angle
θ. For θ ∈ [0,π), define P(θ,u) =

∫∞
−∞ p(θ, t)e−2πiut dt and q(θ, t) =∫∞

−∞ P(θ,u)G(θ,u)e2πiut du, where G represents a filter. Thus, q(θ, ·)
is obtained from p(θ, ·) by applying the filterG(θ, ·) in the Fourier dom-
ain. Alternatively, the filtering of the projection data can be formula-
ted as a convolution in real space as q(θ, t) =

∫∞
−∞ p(θ, τ)g(θ, t− τ)dτ,

where g(θ, ·) denotes the inverse Fourier Transform of G(θ, ·).
For the choice G(θ,u) = |u|, known as the Ramp filter, the filtered

projections can be used to obtain an exact inversion formula for the
Radon transform

f(x,y) =
∫π
0

q(θ, x cos θ+ y sin θ)dθ. (2.2)

In practice, the function p(θ, t) can only be measured for a finite set
Θ = {θ1, . . . , θd} of projection angles, and at a finite set T = {t1, . . . , t`}
of detector positions. Algorithms that require evaluation of p(θ, t) at
other detector positions, such as the FBP algorithm, typically employ
some form of interpolation to approximate these projection values. For
the sake of clarity, we will assume that T = {−R,−R+ 1, . . . ,R− 1,R}
with R a positive integer, which corresponds to an array of 2R+ 1 con-
tiguous detectors with unit spacing, centered around t = 0.
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The Filtered Backprojection algorithm is obtained by discretizing
Eq. (2.2)

f(x,y) ≈ π
d

∑
θ∈Θ

∫∞
−∞ p(θ, τ)g(θ, x cos θ+ y sin θ− τ)dτ

≈ π
d

∑
θ∈Θ

∑
τ∈T

p(θ, τ)g(θ, x cos θ+ y sin θ− τ)

=
∑
θ∈Θ

∑
τ∈T

p(θ, τ)g̃(θ, τ− x cos θ− y sin θ), (2.3)

where g̃(θ, t) = (π/d)g(θ,−t).
Various discrete approximations of the ideal Ramp filter G(θ,u) =

|u| are used in practice. The Ram-Lak filter, for example, is a windo-
wed Ramp-filter (see Fig. 2.1). Although the Ram-Lak filter can result
in accurate reconstructions if high quality projection data are available,
its amplification of high frequencies results in low reconstruction qua-
lity for noisy data. This effect can be reduced by applying a smooth
window-function to the original filter. Several common filters, such as
the Shepp-Logan and Cosine filter, are based on this principle. Still,
their design is intrinsically heuristic, aimed at optimizing the visual
quality of the reconstructed image.

Instead of designing filters in the Fourier domain as described above,
the filters can also be designed in the spatial domain (i.e., the detector
domain). In [13], new filters are created based on approximations of
the Ramp filter in the spatial domain. In [14], the method of approx-
imate inverse is applied to obtain filters in the spatial domain that
are not derived from the Ramp filter. In [15] and [16], a method is
described to create filters for tomosynthesis based on iterative recon-
structions of certain test objects.

The effect of applying a particular filter to the projection data can be
studied both in the Fourier domain and in the spatial domain, by con-
sidering the functions G and g, respectively. In this chapter, we mainly
focus on the spatial domain, where the filter operation can be inter-
preted according to Eq. (2.3) as follows: the value of the reconstructed
image at point (x,y) is formed by taking the dot-product of the discre-
tized projection data with a weight vector that is formed by evaluating
the function g̃ at consecutive discrete detector points. Therefore, the
filter g̃ determines the weight of the contribution of each detector po-
sition to the reconstructed value.



2

2.3 algebraic reconstruction algorithms 19

(a) Fourier domain (b) Spatial domain

Figure 2.1: Filter formed by multiplying G(θ,u) = |u| with a window
function.

2.3 algebraic reconstruction algorithms

In algebraic reconstruction algorithms, the reconstruction problem is
represented by a system of linear equations. The reconstructed image
is represented on a grid consisting of n pixels. Let p = (pi) ∈ Rm

denote the measured data elements for all projections, collapsed into a
single vector, where m = d`. Every entry pi (i = 1, . . . ,m) corresponds
to a pair (θ, t) ∈ Θ× T , denoting the angle and detector position for
that particular measurement. As an alternative notation, we refer to
this entry as pθt.

In the case of noiseless projection data, the projection process in
tomography can be modeled as a finite linear transformation W that
maps the image v = (vi) ∈ Rn (representing the object) to the vector
p of measured data

Wv = p. (2.4)

The m×n matrix W = (wij) is called the projection matrix and the
product Wv is referred to as the forward projection of v. The entries of
v correspond to the pixel values of the reconstruction. The entry wij
determines the weight of the contribution of pixel j to measurement
i, which usually represents the length of the intersection between the
pixel and the projected line.
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Several algebraic reconstruction algorithms, including the well-
known ART, SART and SIRT algorithms [2], belong to the class of
linear reconstruction methods. This means that their application to given
projection data p ∈ Rm, yielding a reconstructed image u ∈ Rn, can
be modeled as a linear transformation S : Rm → Rn. We identify this
transformation with the corresponding matrix S ∈ Rn×m, called the
reconstruction matrix, yielding the following expression describing the
input-output relation of the reconstruction algorithm

u = Sp. (2.5)

Example 1. For given projection data p, one can apply a range of SIRT-
like reconstruction algorithms to obtain a solution of Eq. (2.4). Taking
u(0) = 0 as the start solution and denoting the reconstruction after k
iterations by u(k), the iteration step of this family of algorithms can be
described by

u(k+1) = (In −ωCWTRW)u(k) +ωCWTRp, (2.6)

where C = (cij) ∈ Rn×n is a diagonal matrix such that
cjj = α(

∑n
i=1 |wij|) for a certain scalar function α, R = (rij) ∈ Rm×m

is a diagonal matrix such that rii = β(
∑m
j=1 |wij|) for a certain scalar

function β, In ∈ Rn×n denotes the identity matrix, and ω is a relaxa-
tion parameter [17].

Let M ∈ R(m+n)×(m+n) be the iteration-matrix given by

M =

(
(In −ωCWTRW) ωCWTR

∅ Im

)
, (2.7)

and define

SK =
(

In ∅
)
MK

(
∅
Im

)
. (2.8)

Then choosing S := SK gives the reconstruction matrix corresponding
to K iterations of the SIRT algorithm.
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2.4 algebraic filters

In this section, we will demonstrate how the reconstruction of a single
pixel by a linear algebraic method can be interpreted as reconstruction
of that same pixel by FBP, using a particular filter that is determined by
the reconstruction matrix of the algebraic method. By using this filter
within FBP to reconstruct the entire image, a reconstruction algorithm
is obtained, which yields reconstructed images that are very similar to
the results of the algebraic method.

Let S be a reconstruction matrix for a certain linear algebraic met-
hod S. We will now focus on a single pixel c ∈ {1, . . . ,n} of the re-
constructed image. Let (xc,yc) ∈ R×R denote the coordinates of the
center of this pixel.

Denote the cth row of S by s(c). Each entry of s(c) corresponds to
an entry in the right hand side of Eq. (2.5), and therefore to a pair
(θ, τ) ∈ Θ× T , which we denote by s(c)θτ . Substituting this notation in
Eq. (2.5) yields

uc =
∑
θ∈Θ

∑
τ∈T

pθτs
(c)
θτ . (2.9)

For θ ∈ Θ, put t(θ)c = xc cos θ + yc sin θ. We now introduce a
function h(c), which is defined for τ ∈ T − t(θ)c , where the minus sign
denotes element-wise subtraction

h(c)(θ, τ) = s(c)
θ(τ+t

(θ)
c )

. (2.10)

Substituting Eq. (2.10) into Eq. (2.9) yields

uc =
∑
θ∈Θ

∑
τ∈T

pθτh
(c)(θ, τ− xc cos θ− yc sin θ). (2.11)

All required evaluations of h(c) in this expression are defined accor-
ding to Eq. (2.10). Comparing Eqs. (2.3) and (2.11), we see that for the
selected pixel c, the result of applying the linear algebraic method S
is equivalent to applying the FBP algorithm with the angle-dependent
filter g̃ = h(c). We refer to such a filter as an algebraic filter (AF).

Just as in FBP, the AF determines the weight of the contribution of
each detector position to the reconstructed value. This brings up the



2

22 2 algebraic filter-filtered backprojection

question if, similar to FBP, the same filter h(c) can also be used to
reconstruct pixels other than c. Note that as h(c)(θ, τ) is only defined
for τ ∈ T − t(θ)c , this will require the domain of h(c)(θ, ·) to be extended
by interpolation.

One may expect that at least for pixels j that are near c, we have

uj ≈
∑
θ∈Θ

∑
τ∈T

pθτh
(c)(θ, τ− xj cos θ− yj sin θ). (2.12)

This approximation can be interpreted as follows: suppose that both
the reconstruction region and the detector (for all angles) are shifted
such that their relative position with respect to pixel j is the same as
the relative position of the original geometry with respect to pixel c.
Then Eq. (2.12) is an exact equality.

We point out that the filter h(c) depends on the particular pixel
c, and may vary throughout the image domain, which may offer an
advantage for the algebraic method compared to the approximation
given in Eq. (2.12), based on a single filter. In particular, algebraic met-
hods have the capability (by their very definition) to confine all the
intensity of the object within the reconstruction grid, which cannot be
accomplished by FBP methods. Still, as will be demonstrated in Section
2.5, even a single filter can already approximate the reconstruction pro-
perties of the underlying algebraic method quite accurately.

To compute the AF for a given linear algebraic method S for a par-
ticular pixel c, the cth row of the reconstruction matrix S must be
computed, which comes down to determining the impulse response
of pixel c for all detector positions. Let eθτ ∈ Rm denote the unit vec-
tor which has a value of 1 for the entry corresponding to (θ, τ). Then
s
(c)
θτ is given by

s
(c)
θτ = [S(eθτ)]c. (2.13)

Therefore, the method S must be applied separately for each (θ, τ) ∈
Θ×T to compute all filter coefficients s(c)θτ .

In the experiments that will be presented in the next section, we will
focus on the AF for the central pixel of the reconstruction grid, i.e., a
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pixel centered at the origin. For this pixel c, we have t(c)θ = 0 for all θ
and therefore

h(c)(θ, τ) = s(c)θτ for all θ ∈ Θ, τ ∈ T . (2.14)

To use this filter for projection angle θ in an FBP implementation, the
discrete representation of h(c)(θ, ·) must first be zero-padded, after
which the Discrete Fourier Transform is applied. The resulting filter
in the Fourier domain H(c)(θ, ·) can then be applied to the Fourier
representation of the projection data in exactly the same way as the
Ramp filter, or other common filters. Note that the AF is different for
each projection angle, while most common filters do not depend on the
angle. This property does not have a significant impact on the running
time of the filtering operation.

When computing the AF for a single pixel c, the required (sequen-
tial) computation time is mV , where V is the computation time of a
single run of the algebraic method. For large image sizes, with many
projections, the computational cost of computing a single filter can be
substantial and several orders of magnitude larger than the cost of
computing a single algebraic reconstruction. However, the resulting
filter does not depend in any way on the scanned object. If the geo-
metrical parameters (projection angles, detector size and position) of
the scanning device are fixed, the same filter can be used for recon-
structing an arbitrarily large number of datasets. In the vast majority
of commercial CT-scanners, only a few different acquisition schemes
are used for a particular scanner. The filters for these schemes can be
computed once, using a separate computer system, or even a large clus-
ter. Subsequently, reconstructions can be computed at the same speed
as standard-FBP.

2.5 experiments

A set of experiments has been performed to compare the accuracy of
reconstructions computed by AF-FBP, using an algebraic filter based
on the iterative SIRT algorithm, with FBP using a standard filter and
with SIRT. Note that no priors are used for the SIRT reconstructions
or for the derivation of the SIRT-based filters. In this section we will
describe the setup of the experiments.
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(a) Phantom 1 (b) Phantom 2 (c) Phantom 3 (d) Phantom 4

Figure 2.2: Phantom images of size 2044×2044 used for the experiments.

2.5.1 General Design of the Experiments

Four phantom images have been used for the experiments; see Fig. 2.2.
The first phantom is the well-known Shepp-Logan phantom. Phantom
2 represents a cross-section of a cylinder head in a combustion en-
gine. Phantom 3 represents a metal foam, and Phantom 4 is a part
of a human mandible. Phantoms 3 and 4 are slightly adjusted recon-
structions of experimental µCT data sets. The size of all phantoms is
2044× 2044 pixels. Note that the phantom size is a multiple of four. In
fact, the reconstructions are computed using a pixel size that is four
times as large as the phantom pixel size, in both directions. The fea-
tures of the phantoms are not aligned with the coarse reconstruction
grid, such that partial volume effects can be observed in the recon-
structions. The detector consists of 511 bins, each having a width of
four image pixels. The size of the detector therefore equals the width
of the phantom images. Parallel beam projections are simulated using
a ray-driven projector based on the Joseph kernel to determine the con-
tribution of an image pixel to each ray [18]. Per detector bin four rays
are traced, thereby ensuring that each image pixel participates with
strictly positive weight. Unless stated otherwise, the projection angles
of the parallel beam projections are regularly distributed between 0◦

and 180◦. The number of projection angles, denoted by d, may vary
during the experiments.

2.5.2 Quantitative Evaluation of the Reconstruction Algorithms

The four phantoms are reconstructed using three different recon-
struction algorithms. Several series of experiments are performed
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to examine the relative reconstruction accuracy of different recon-
struction algorithms. The following three reconstruction methods are
compared.

1. FBP-RL: FBP with the standard Ram-Lak filter; see Section 2.2.

2. SIRT: The reconstruction method described by Eq. (2.6), withω =

1, K = 200, and α(·) and β(·) given by α(x) = β(x) = 1/x for
x ∈ R. It converges to a weighted least-squares solution of the
system Wv = p of minimal norm. We used the version of SIRT
that is described in [17].

3. SIRT-FBP: Filtered Backprojection with an angle-dependent al-
gebraic filter based on SIRT. For every projection angle, the fil-
ter coefficients for the central pixel are obtained using Eq. (2.13),
where the reconstruction algorithm S corresponds with 200 SIRT
iterations.

A square reconstruction grid of z× z pixels is used during the expe-
riments, where each pixel has the same width and height as a detector
bin. Preliminary experiments have shown that in some cases the recon-
struction accuracy of SIRT-FBP improves if the filters are created using
a reconstruction grid with a size z that is larger than the number of
bins of the detector. We denote the number of detector bins by z0.

The quality of the reconstructed images is computed in the image
domain by comparing the reconstruction with the phantom image,
and in the projection domain by comparing the projections of the re-
constructed image with the projections of the phantom. For a recon-
struction u ∈ Rz

2
of size z× z (with z > z0), let ũ ∈ Rz

2
0 denote the

subimage of u of size z0 × z0 with the same central pixel as u. Furt-
hermore, let û be a high resolution version of ũ, obtained by replacing
every pixel in ũ by 4×4 small pixels with the same intensity. Note that
the image û = (ûij) has the same pixel resolution as the phantom
image v = (vij). Define the mean reconstruction error Er by

Er =

∑
i,j

|ûij − vij|∑
i,j
vij

. (2.15)
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Denote the forward projection of u by q = (qθt). Then the mean pro-
jection error Ep is defined by

Ep =

∑
θ∈Θ

∑
t∈T

|qθt − pθt|∑
θ∈Θ

∑
t∈T

pθt
. (2.16)

When comparing FBP-RL with SIRT and SIRT-FBP, the FBP-RL and
SIRT-FBP reconstruction are always computed on a grid of size z0× z0,
whereas the grid size z× z for SIRT can vary. When computing the
projection error, the full z× z reconstruction is used to determine the
forward projection of the SIRT reconstructions.

In the first series of experiments, the effect of the size of the re-
construction grid on the reconstruction accuracy of the algorithms is
examined. In the second series of experiments the size of the recon-
struction grid is kept fixed and the accuracy of the reconstructions
from the three methods is examined as a function of the number of
projection angles d, where the angles are regularly distributed between
0◦ and 180◦.

In certain tomography applications, notably electron tomography,
the angular range of the projections is limited. Contrary to standard
FBP, algebraic methods can easily be adapted to such limited-angle
geometries by adjusting the projection matrix. In the third series of
experiments, the dependence of the reconstruction accuracy on the
angular range is examined for the three methods. In these experiments,
the step between consecutive angles is kept fixed at 0.5◦ and an angular
range of 180◦ corresponds to full angular range with d = 360. This
means that the angular range and the number of projection angles vary
simultaneously.

The experiments described above are based on noiseless projection
data. In the fourth series of experiments the robustness of the recon-
struction algorithms with respect to noise is examined. First, noiseless
projection data are computed. Poisson distributed noise with varying
I0 (number of counts per detector element, measured without an ob-
ject) is applied to this data. The reconstruction quality of FBP with
the standard Ram-Lak is known to degrade for high noise levels. Va-
rious alternative filters have been described in the literature that are
more robust to noise, including the Shepp-Logan (SL), Cosine (Cos),
Hamming (Ham), and Hann (Hann) filters [4, 19]. The reconstruction
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results for SIRT and SIRT-FBP are compared with the results for FBP
using this range of filters.

The AFs used in the previous experiments can vary throughout the
projection angles. In the fifth set of experiments, we consider an an-
gle independent filter, computed by taking the average of the filters for
all projection angles. This way of filtering the projection data enables
an implementation very similar to FBP with a standard filter. The cor-
responding reconstruction algorithm will be denoted by av-SIRT-FBP
and it is compared with SIRT, SIRT-FBP and with FBP for several stan-
dard filters.

Finally, we examine the accuracy of the three reconstruction met-
hods when reconstructing an experimental µCT data set. A diamond
was scanned using a Skyscan 1172 cone-beam µCT scanner. From the
experimental data, 200 parallel beam projections of the central slice
were determined by rebinning the corresponding fan-beam projection
data. Reconstructions computed from these projections using FBP-RL,
SIRT and SIRT-FBP are compared.

As noted before, computing an AF is highly computationally inten-
sive. An optimized GPU implementation of the SIRT algorithm was
used to generate the filters, running on a Tesla S1070 quad-GPU sy-
stem. As an example of the running time, we mention computing a
filter for an image of size 511×511, using 64 angles and a detector of
size 511. The running time for 200 iterations of the SIRT algorithm on a
single GPU is around 0.5 s. To compute the AF for all angles, this com-
putation must be carried out 64×511 times, resulting in a total running
time of 4.5 h.

2.6 results

In this section we provide an overview of the results of the experi-
ments. In addition to the quantitative results concerning the recon-
struction and projection errors, a selection of the reconstructed images
is shown, which is chosen such that it illustrates the behavior of the
reconstruction methods.
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(a) Phantom 1: Er (b) Phantom 1: Ep

(c) Phantom 2: Er (d) Phantom 2: Ep

(e) Phantom 3: Er (f) Phantom 3: Ep

(g) Phantom 4: Er (h) Phantom 4: Ep

Figure 2.3: Mean reconstruction and projection error as a function of the size
of the reconstruction grid, with d = 32.
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(a) Phantom 1: Er (b) Phantom 1: Ep

(c) Phantom 2: Er (d) Phantom 2: Ep

(e) Phantom 3: Er (f) Phantom 3: Ep

(g) Phantom 4: Er (h) Phantom 4: Ep

Figure 2.4: Mean reconstruction and projection error as a function of the size
of the reconstruction grid, with d = 256.
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2.6.1 Varying the Size of the Reconstruction Grid

As the SIRT reconstruction depends on the size of the reconstruction
grid z, the filters that are based on SIRT reconstructions also depend
on z, thereby affecting the quality of the SIRT-FBP reconstructions. In
the first series of experiments we examine the accuracy of the recon-
structions as a function of z. During the first run, the relatively low
number of 32 projection angles is used, while for the second run a
larger set of 256 projection angles is used.

Reconstruction errors are shown in Fig. 2.3 and Fig. 2.4, for d = 32

and d = 256 angles, respectively, where the mean reconstruction er-
ror is plotted in the first column and the mean projection error in the
second column. As expected, the errors of the FBP-RL reconstructi-
ons are independent of z. Since the number of unknowns of the equa-
tion system that is solved by SIRT increases with increasing z, while
the number of equations remains the same, the system becomes in-
creasingly underdetermined. This results in decreasing reconstruction
accuracy of SIRT as a function of z. The results show that the recon-
struction error for SIRT-FBP is minimal when z is between z0 and 3

2z0.
For larger grid sizes the decreasing quality of the SIRT reconstructions
determines the behavior of the errors of the SIRT-FBP reconstructions.
The minimal mean projection error occurs close to z = 3

2z0, and the
error of SIRT-FBP for this grid size is significantly less than the mean
projection error of FBP-RL. Furthermore, the quality of the SIRT-FBP
reconstructions with d = 32 exceeds that of FBP-RL and SIRT on grids
with z between 3

2z0 and 2z0. Such results are not to be expected for
d = 256, since for a sufficiently large number of angles FBP-RL is
known to outperform SIRT. Still we see that SIRT-FBP has a signifi-
cantly smaller reconstruction error than SIRT on these grid sizes.

2.6.2 Varying the Projection Angles

In the second series of experiments the number of projection angles d
is varied between 16 and 256 angles, while z is kept fixed at z = 3

2z0,
based on the results of the previous experiments. Some reconstructi-
ons of Phantom 3 are shown in Fig. 2.5. Fig. 2.6 shows that, for all
considered numbers of projection angles, the mean projection error of
SIRT-FBP is smaller than the mean projection error of the FBP-RL re-
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(a) SIRT (b) SIRT-FBP (c) FBP-RL

(d) SIRT (e) SIRT-FBP (f) FBP-RL

(g) SIRT (h) SIRT-FBP (i) FBP-RL

Figure 2.5: Reconstructions of phantom 3 with z = (3/2)z0 and varying num-
ber of projection angles. Top row: d = 16. Middle row: d = 64.
Bottom row: d = 256.

constructions. For most phantoms, the projection error is also smaller
for SIRT-FBP than for FBP-RL, as long as the number of angles is not
too large (i.e., at most 192).

2.6.3 Varying the Angular Range

In this series of experiments the angular range is varied between 5◦

and 170◦. Fig. 2.7 shows the difference between Phantom 1 and its re-
constructions for a selection of the considered limited angular ranges,
i.e. 35◦, 80◦, 125◦ and 70◦, comparing SIRT, SIRT-FBP and FBP-RL. The
values of the difference plots range between black and white, where a
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(a) Phantom 1: Er (b) Phantom 1: Ep

(c) Phantom 2: Er (d) Phantom 2: Ep

(e) Phantom 3: Er (f) Phantom 3: Ep

(g) Phantom 4: Er (h) Phantom 4: Ep

Figure 2.6: Mean reconstruction and projection error as a function of the num-
ber of projection angles with z = (3/2)z0.
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(a) SIRT (b) SIRT (c) SIRT (d) SIRT

(e) SIRT-FBP (f) SIRT-FBP (g) SIRT-FBP (h) SIRT-FBP

(i) FBP-RL (j) FBP-RL (k) FBP-RL (l) FBP-RL

Figure 2.7: Difference between the original image and reconstructions of
phantom 1 with z = (3/2)z0 and varying angular range; limited
angular range per column (from left to right): 35◦, 80◦, 125◦, 170◦.
Dark (light) pixels correspond to reconstruction values that are
higher (smaller) than those of the original phantom.

pixel is black if the corresponding reconstruction pixel has a value of
at least (3/2) the value of the phantom pixel, and a pixel is white if the
corresponding reconstruction pixel has a value of at most (1/2) the va-
lue of the phantom pixel. The difference plots for SIRT and SIRT-FBP
are very similar, while FBP-RL results in quite different reconstructi-
ons. The results in Fig. 2.8 show the accuracy of the reconstructions
when the angular range is limited, for the three methods. The pro-
jection error is calculated using only those projections that are inclu-
ded in the angular range. The reconstruction errors of SIRT-FBP are
similar to those of SIRT reconstructions, while for an angular range be-
low 150◦ the reconstruction errors of SIRT-FBP are much smaller than
the errors of FBP-RL for all phantoms.
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(a) Phantom 1: Er (b) Phantom 1: Ep

(c) Phantom 2: Er (d) Phantom 2: Ep

(e) Phantom 3: Er (f) Phantom 3: Ep

(g) Phantom 4: Er (h) Phantom 4: Ep

Figure 2.8: Mean reconstruction and phantom error as a function of the angu-
lar range with z = (3/2)z0.
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The projection error of SIRT-FBP reconstructions is smaller than that
of FBP-RL for almost all test cases. Since SIRT-FBP is an approxima-
tion of SIRT, some discrepancy exists between the SIRT and SIRT-FBP
reconstructions. The magnitude of this effect depends on the particu-
lar image, which can lead to an inferior reconstruction quality of SIRT-
FBP compared to FBP-RL in certain cases. An example is Phantom 3

in Fig. 2.8 for the limited angular range between 60◦ and 120◦. The
magnitude of this effect depends on the particular image. The results
also demonstrate that for the cases where iterative reconstruction met-
hods perform well, i.e. few projection angles or highly limited angular
range, SIRT-FBP clearly outperforms FBP-RL.

2.6.4 Variations in the Filters

Since the operation of the SIRT algorithm depends on both the size of
the reconstruction grid and the set of projection angles, the correspon-
ding filters also depend on these parameters. Fig. 2.9 shows a selection
of filters computed for the central pixel for a varying number of pro-
jection angles and varying grid size, respectively. Every row in these
grayscale figures represents a filter. Consecutive rows correspond to
consecutive angles and the first row corresponds to the filter for an
angle of 0◦. The standard Ram-Lak filter, which does not depend on
the projection angle, is also shown for comparison. The SIRT-based fil-
ters corresponding to an angle of 0◦ for d = 64 and d = 256 are also
shown as line plots in Fig. 2.10 together with the standard Ram-Lak fil-
ter. Note that the algebraic filters depend on the particular projection
angle. As the reconstruction grid in our experiments is a square, the
algebraic reconstruction problem is not rotationally invariant, not even
when pixel discretization effects are neglected. In the grayscale figures
that show the SIRT-based filters some irregularities appear in the form
of lines. These may be attributed to aliasing effects due to discretiza-
tion of both the detector and the image domain. For the case of limited
angle tomography, we found that presenting a thorough, yet compact
overview of the filter variations is not straightforward. The filters may
vary significantly depending on the particular projection angle.
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(a) Ram-Lak filter, z = 3
2z0, d = 128

(b) SIRT-based filters, z = 3
2z0, d = 64

(c) SIRT-based filters, z = 3
2z0, d = 128

(d) SIRT-based filters, z = 3
2z0, d = 256

(e) SIRT-based filters, z = z0, d = 128

(f) SIRT-based filters, z = 2z0, d = 128

Figure 2.9: Grayscale representations of various filters, where each row repre-
sents a filter for some projection angle. In all cases, a detector with
511 bins was used (z0). Both the size of the reconstruction grid z
and the number of projection angles d is varied. The range of the
gray scale is [−1, 1] ∗ 10−5.
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(a) Filter for θ = 0◦, z = (3/2)z0, d = 64

(b) Filter for θ = 0◦, z = (3/2)z0, d = 256

(c) Ram-Lak filter

Figure 2.10: Two AFs used in SIRT-FBP and the standard Ram-Lak filter in
the spatial domain.

2.6.5 Noise

All experiments so far were performed using noiseless projection data.
FBP-RL is known to produce poor quality reconstructions from pro-
jection data that are highly polluted with noise, while SIRT hand-
les this data relatively well. In this series we examine the accuracy
of SIRT-FBP compared to FBP with several common filters and SIRT
in case of noisy projection data, where the detector count I0 ranges
from 102 − 106. Some reconstructions are shown in Fig. 2.11. The re-
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(a) SIRT (b) SIRT (c) SIRT (d) SIRT

(e) SIRT-FBP (f) SIRT-FBP (g) SIRT-FBP (h) SIRT-FBP

(i) FBP-RL (j) FBP-RL (k) FBP-RL (l) FBP-RL

Figure 2.11: Reconstruction of phantom 4 with z = (3/2)z0 and varying noise
levels, I0 per column (from left to right): 250, 1000, 5000, 106.

sults in Fig. 2.12 show that the reconstruction errors of SIRT-FBP and
SIRT are very similar and that the reconstruction and projection errors
of SIRT-FBP are significantly lower than the corresponding errors of
FBP reconstructions with any standard filter used in this experiment.
Surprisingly, the projection errors for SIRT-FBP are smaller than for
SIRT for very high noise levels. This can be attributed to the fact that
for SIRT, noise can accumulate in corners of the reconstruction grid,
where the intersection between projected lines and the image domain
is very small for certain projection angles. These effects may cause nu-
merical instabilities, resulting in a somewhat larger projection error,
which does not occur for SIRT-FBP as only the angle-dependent filter
for the central pixel is employed there. We remark that one cannot say
that SIRT-FBP is more robust to noise than FBP in general, as SIRT-FBP
itself is just a variant of FBP with an appropriately chosen filter.
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(a) Phantom 1: Er (b) Phantom 1: Ep

(c) Phantom 2: Er (d) Phantom 2: Ep

(e) Phantom 3: Er (f) Phantom 3: Ep

(g) Phantom 4: Er (h) Phantom 4: Ep

Figure 2.12: Mean reconstruction and projection error as a function of the
noise level with z = (3/2)z0 and d = 256.
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(a) Phantom 1: Er (b) Phantom 1: Ep

(c) Phantom 2: Er (d) Phantom 2: Ep

Figure 2.13: Mean reconstruction and projection error of FBP with several
standard filters, SIRT, SIRT-FBP, and av-SIRT-FBP, as a function
of the number of projection angles with z = (3/2)z0.

2.6.6 Experiments with an angle independent filter

In this series of experiments, av-SIRT-FBP is compared with SIRT-FBP,
SIRT and with FBP based on various standard filters. Although the
implementation of av-SIRT-FBP is similar to FBP with a standard fil-
ter, the quality of av-SIRT-FBP reconstructions is comparable to that
of SIRT-FBP reconstructions, as can be seen in Fig. 2.13 for Phantoms
1 and 2. The reconstructions of Phantoms 3 and 4 show similar pat-
terns and are therefore not included. We remark that in some cases,
av-SIRT-FBP actually results in a smaller reconstruction error compa-
red to both SIRT and SIRT-FBP. As all experiments presented here deal
with underdetermined systems of linear equations, even SIRT cannot
be expected to converge to the phantom image. As both SIRT-FBP and
av-SIRT-FBP are approximations to SIRT, they sometimes perform bet-
ter and sometimes worse than SIRT.
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(a) SIRT (b) SIRT (c) SIRT (d) SIRT

(e) SIRT-FBP (f) SIRT-FBP (g) SIRT-FBP (h) SIRT-FBP

(i) FBP-RL (j) FBP-RL (k) FBP-RL (l) FBP-RL

Figure 2.14: Diamond reconstruction with z = (3/2)z0 from experimental
µCT data; d per column (from left to right): 20, 40, 100, 200.

2.6.7 Experimental µCT data

For the final experiments, an experimental µCT data set is used. The
dataset was acquired by scanning a raw diamond using a Skyscan 1172

µCT scanner. Cone-beam projection data were acquired for 400 angles
in a full 360◦ angular range, using an angular step size of 0.9◦. The
camera pixel size was 41µm. The projection data for the central slice
are effectively fan-beam data. Since the FBP algorithm and filter deri-
vation used in this chapter are based on a parallel beam geometry, the
projection data were rebinned to a parallel beam geometry, forming a
dataset of 200 parallel beam projections equally distributed between
0◦ and 180◦. Each of the projections consists of 511 detector values.

Since the ground truth data are not available, the reconstructions
are compared with each other to analyze the reconstruction behavior
for the different algorithms. The results in Fig. 2.15 show that the error
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(a) Diamond: Er (b) Diamond: Ep

Figure 2.15: Reconstruction errors as a function of the number of projection
angles for the experimental µCT diamond data with z = (3/2)z0.
As there is no ground truth data available, a comparison is made
between pairs of reconstructions computed by different algo-
rithms.

of the SIRT-FBP reconstructions behaves very similar to that of SIRT
reconstructions, while the difference between SIRT-FBP and FBP-RL
reconstructions is comparable to that between SIRT and FBP-RL re-
constructions. The reconstructions in Fig. 2.14 show the same behavior
patterns. For low numbers of projection angles the mean projection
error of SIRT-FBP is much less than that of FBP-RL.

2.7 conclusions

In this chapter, we have presented an algorithmic approach for compu-
ting AFs that can be used within the framework of the well-known
FBP algorithm. The resulting AF-FBP reconstructs objects with the
computational efficiency of FBP, while maintaining the more robust
reconstruction properties of the chosen algebraic reconstruction techni-
que. We have presented a formal description of the AFs and examined
their properties in several series of experiments for the algebraic recon-
struction method SIRT. The results showed that SIRT-FBP reconstructi-
ons are very similar to SIRT reconstructions. Therefore, AF-FBP could
be applied in situations, where FBP with standard filters was known
to produce low quality reconstructions and algebraic reconstruction
techniques yield superior results, such as low dose tomography, limi-
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ted angle tomography, etc. Computing the AF has a high computati-
onal cost. However, for a fixed scanning geometry and a fixed set of
projection angles, this computation must be performed only once, as it
does not depend on the scanned object. The filter computation should,
therefore, be considered as a calibration step, which can be performed
in an off-line setting. In further research, the properties of AF-FBP will
be analyzed in more detail and generalizations to other common geo-
metries, such as various cone-beam geometries will be considered.
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3
S PAT I A L VA R I AT I O N S I N R E C O N S T R U C T I O N
M E T H O D S F O R C T

Abstract – In both Filtered Backprojection and algebraic recon-
struction algorithms for tomography, the reconstruction of an object
can depend on the position of the object within the discretized region,
even if the object is aligned perfectly with pixel boundaries. In this
chapter, we investigate this effect and report on a simulation study
concerning spatial dependencies in these reconstruction methods. We
demonstrate that for algebraic methods, these dependencies are influ-
enced not only by the discretization within the reconstruction region,
but also by the shape of the reconstruction region itself.

This chapter has been published with minor modification as: L. Plantagie et al. Spatial
Variations in Reconstruction Methods for CT. Proceedings of the Second International
Conference on Image Formation in X-ray Computed Tomography. Salt Lake City, UT, USA,
2012: 170–173.



3

48 3 spatial variations

3.1 introduction

Most reconstruction algorithms for CT can be assigned to either the
class of analytical reconstruction methods, which are based on analy-
tical inversion formulas of the Radon transform, or to the class of al-
gebraic reconstruction methods, which start with a discretized inverse
problem and then apply a numerical solver [1–3].

One of the fundamental differences between these two classes rela-
tes to the spatial locality of the reconstruction properties. Analytical
inversion formulas are usually spatially invariant, in the sense that the
value of a particular point in the reconstruction only depends on the
measured values relative to the position of that point. If this depen-
dency is known for a single point, it can be applied to all image points
(e.g., pixel centers) to obtain a full reconstruction. Also, there is no pre-
defined window outside which the reconstruction must be zero. The
well-known Filtered Backprojection (FBP) algorithm is obtained by dis-
cretizing an analytical inversion formula of the Radon transform, and
can therefore be expected to have approximately similar properties.

For algebraic methods on the other hand, there is no intrinsic reason
why the reconstruction should be spatially invariant, and the recon-
struction is constrained a priori to a reconstruction region, which is dis-
cretized and represented by a collection of basis functions. Outside this
region, the reconstruction is automatically set to zero, as the exterior
region is not covered by the support of the basis functions.

For both FBP and algebraic methods, there may be differences in
the way projection values are sampled to determine the value of an
image pixel, depending on the position of that pixel, due to discreti-
zation and interpolation effects within the projection model. As a con-
sequence, reconstructing an object centered at one position within the
reconstruction region may yield a different result from reconstructing
this same object centered at another position. We refer to these variati-
ons as discretization-effects.

For algebraic methods, the shape and position of the reconstruction
region with respect to the object can also influence its reconstruction.
For example, if a line intersects the reconstruction region as a short
segment in a corner, noise that is present in the projection for that line
can have a strong impact on the values of the pixels on the small seg-
ment. For a line segment that has a longer intersection with the recon-
struction region, the noise can be distributed among many pixels on
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that segment. We refer to these local reconstruction variations, which
depend on the shape of the reconstruction grid, as shape-effects.

In this chapter, we report on a case study that was carried out to in-
vestigate both discretization-effects and shape-effects for the FBP met-
hod and the Simultaneous Iterative Reconstruction Technique (SIRT),
respectively. By moving an object across the reconstruction region and
observing how its reconstruction changes with position, we keep track
of both effects and obtain error maps that can be interpreted visually
and analyzed quantitatively.

This chapter is structured as follows: In Section 3.2, we briefly re-
view the discretization approach followed for FBP and SIRT, respecti-
vely. Section 3.3 describes the simulation experiments performed. The
results of these experiments are presented in Section 3.4, mainly by
providing a sequence of images that represent two different error me-
asures, as a function of the position within the reconstruction region.
In Section 3.5, the observations are discussed and future work in this
direction is briefly outlined.

3.2 method

The Filtered Backprojection (FBP) algorithm is obtained by discretizing
the following inversion formula of the Radon transform (see Section
3.3.2 of [1] for details):

f(x,y) =
∫π
θ=0

∫∞
τ=−∞ p(θ, τ− x cos θ− y sin θ)g(τ)dτdθ, (3.1)

where f : R2 → R denotes the unknown image, p(θ, τ) denotes the
measured line projection at angle θ and detector coordinate τ, and g
denotes a filter, which determines how the detector values are weig-
hted before backprojection to form the value at position (x,y). If we
assume that p corresponds to the Radon transform of a certain original
object, it is easy to see that translating this object over (∆x,∆y) leads to
a corresponding translation in the reconstruction over (∆x,∆y). As a
consequence of the discretization step in FBP, interpolation steps are re-
quired to compute an approximation of Eq. (3.1), leading to violations
in this translational property, which we refer to as discretization-effects.

In algebraic reconstruction methods, the image is represented as a
finite weighted sum of basis functions (see, e.g., Chapter 7 of [1] or
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Section 6.3 of [2]). For this chapter, we limited ourselves to the re-
construction of 2-dimensional (2D) slices from 1D parallel beam pro-
jections using a standard pixel basis, yet the general methodology can
be applied to 3D volume reconstruction using various types of basis
functions, and various acquisition geometries.

When setting up an algebraic method, it is assumed that a certain
reconstruction region is known, which completely contains the scanned
object. Typically, this region is chosen to be either square or rectangu-
lar, while sometimes it is modelled as a disk. This region is then dis-
cretized along with the projection operator, leading to the following
relation between the unknown image x and the measured projection
data p:

Wx = p, (3.2)

where W = (wij) ∈ Rm×n denotes the projection matrix, x = (xj) ∈ Rn

is a vector representation of the pixel values in the unknown image,
and p = (pi) ∈ Rm represents the full set of measured detector values
in all projections.

The exact projection matrix W depends on the selection of the re-
construction region, the choice and distribution of basis functions to
represent the image within this region, and the model used for the
projection operator.

The system in Eq. (3.2) is typically solved using iterative numerical
solvers, as it is both very large and sparse. In this article, we consider
one such iterative method called SIRT [4, 5], which converges to a
weighted least-squares solution of the equation system.

Note that not all individual linear equations in Eq. (3.2) have the
same algebraic structure. Each equation corresponds to a projected
line. Depending on the intersection properties of that line with the
discretized reconstruction region, the number of unknown pixel values
that occur in the equation can vary, as well as their coefficients. As
a consequence, the shape of the reconstruction region can influence
the reconstruction of an object, depending on its location within that
region, referred to as shape-effects of the reconstruction region.
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3.3 experiments

To investigate discretization-effects and shape-effects for both FBP and
SIRT, we performed a simulation study on the reconstruction of a small
object that is placed at varying positions within the reconstruction re-
gion. All experiments were carried out using two different choices for
the reconstruction region: (a) a square region of size 63×63 square
pixels of unit size; (b) a pixelated circular region that is circumscribed
around the square region of (a).

We compare the results for Filtered Backprojection (FBP) using the
ramp-filter, which exhibits only discretization-effects, with the Simulta-
neous Iterative Reconstruction Technique (SIRT), which is expected to
show both discretization-effects and shape-effects. For SIRT, 200 iterati-
ons are performed with a relaxation factor of 1. This iteration number
ensures that convergence has been reached.

Projection data were simulated for a parallel detector geometry,
using a detector consisting of 91 bins of unit size, thereby ensuring
that the full reconstruction region is covered by the detector. The simu-
lation was performed using a ray-driven projector based on the Joseph
kernel to determine the contribution of an image pixel to each ray [6],
implemented as a parallel operation on the GPU [7]. The projection
angles of the parallel beam projections are regularly distributed bet-
ween 0 and 180 degrees. The number of projection angles is kept fixed
at 64. For the SIRT reconstruction, a forward projector based on the
Joseph kernel was used.

As test objects, the square and cross images in Fig. 3.1a were used.
The reconstructions of these objects, when placed in the center of a
square reconstruction region, are shown in Fig. 3.1b and 3.1c.

3.3.1 Experiments without noise

In the first experiment, based on noiseless projection data, the test ob-
jects were moved across the reconstruction area. For each position of
the object, its forward projection was computed and the object was
reconstructed. The reconstruction within a small window around the
object (a surrounding square, containing a boundary layer of one pixel
thickness) was then shifted, placing the reconstructed object in the cen-
ter of the reconstruction region. A comparison was made with the re-
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(a) Original (b) SIRT (c) FBP

Figure 3.1: Test objects and their reconstructions when placed in the center of
the reconstruction region.

construction for which the object was placed in the center, using the
following two error measures: (a) the root mean square error (RMSE)
for all pixels in the window; (b) the absolute value of the difference in
average intensity within the object (AIE).

3.3.2 Experiments that include noise

In the second experiment, the test objects were again moved across
the reconstruction area. Poisson distributed noise was applied to the
projection data based on a flatfield photon count of 106 per detector
pixel. As the exact noise realization depends on the simulated photon
counts, which in turn are affected by discretization issues, we chose to
compare the reconstructions to the actual test object, instead of com-
paring to its reconstruction in the center. The reconstruction within a
window around the object (a surrounding square, containing a boun-
dary layer of five pixels thickness) was compared with the original ob-
ject, using the following two error measures: (a) the root mean square
error (RMSE) for all pixels in the window; (b) the absolute value of the
difference in average intensity within the object (AIE).
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(a) (b)

Figure 3.2: Intensity profile of an object at the center (blue line) and centered
at pixel (32, 8) (dashed red line); (a) square object, (b) plus object.

3.4 results

In this section, we examine the discretization and shape effects of SIRT
and FBP for two test objects and two different shapes of the recon-
struction grid.

3.4.1 Noiseless projection data

In the first series of experiments, the reconstructions of the noiseless
projection data of a shifted object are compared with the reconstructi-
ons of the same object placed in the center of the reconstruction region.
Reconstructions of the phantoms contain a variety of intensity levels
within the reconstructed object. These intensity levels can be visuali-
zed by an intensity profile along a horizontal line through the center
of the reconstructed object. In Fig. 3.2, the intensity profiles are shown
for SIRT reconstructions of the test objects placed in the center of the
reconstruction region and placed near the left boundary of the recon-
struction region.

The reconstructions of the test objects clearly depend on their po-
sition in the reconstruction grid. The root mean square error for all
pixels in the window is used to examine these spatial variations. In
Fig. 3.3 the RMSE are shown for SIRT and FBP reconstructions of both
test objects in a square reconstruction grid. The results are similar for
the circular grid. Since the discretization-effects of SIRT and FBP ap-
pear to be very similar, we subtract the RMSE of FBP from that of SIRT
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(a) SIRT (b) SIRT (c) FBP (d) FBP

Figure 3.3: RMSE of reconstruction of the test objects using a square recon-
struction grid without noise; (a) square object, (b) plus object, (c)
square object, (d) plus object.

(a) (b) (c) (d)

Figure 3.4: Absolute value of the difference of RMSE between SIRT and FBP
of the reconstruction of the test object; (a) square phantom, square
grid, (b) square phantom, circular grid, (c) plus phantom, square
grid, (d) plus phantom, circular grid.

to obtain an approximation of the shape-effects for SIRT. The absolute
value of this difference is shown in Fig. 3.4. Note that some scaling
was required to enhance the visibility.

For square reconstruction grids, reconstructions of an object near the
edge can differ substantially from a reconstruction of the same object
placed in the center of the reconstruction grid. Fig. 3.4 shows that, at
least in some cases, these shape-effects can be reduced by choosing a
different, for example circular, reconstruction grid. These results are
also supported by the second error measure (AIE), as is shown in Fig.
3.5 and 3.6.

3.4.2 Noisy projection data

In the second series of experiments, Poisson noise is applied to the
projection data of the shifted object. An example of a SIRT and FBP
reconstruction of the shifted square test object is shown in Fig. 3.7.
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(a) SIRT (b) SIRT (c) FBP (d) FBP

Figure 3.5: AIE of reconstruction of the test objects using a square recon-
struction grid without noise; (a) square object, (b) plus object, (c)
square object, (d) plus object.

(a) (b) (c) (d)

Figure 3.6: Absolute value of the difference of AIE between SIRT and FBP
of the reconstruction of the test phantom; (a) square phantom,
square grid, (b) square phantom, circular grid, (c) plus phantom,
square grid, (d) plus phantom, circular grid.

(a) SIRT (b) FBP

Figure 3.7: Reconstruction of the shifted square test object with Poisson noise
applied to the projection data.
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(a) (b) (c) (d)

Figure 3.8: Absolute value of the difference of RMSE between SIRT and FBP
of the reconstruction of the test object with Poisson noise; (a)
square phantom, square grid, (b) square phantom, circular grid,
(c) plus phantom, square grid, (d) plus phantom, circular grid.

(a) (b) (c) (d)

Figure 3.9: Absolute value of the difference of AIE between SIRT and FBP of
the reconstruction of the test object with Poisson noise; (a) square
phantom, square grid, (b) square phantom, circular grid, (c) plus
phantom, square grid, (d) plus phantom, circular grid.

As mentioned in section 3.3 the reconstructions are compared to the
original shifted image instead of the reconstruction of the object placed
at the center of the reconstruction region. The spatial variations of SIRT
due to shape-effects are again visualized by comparing both the RMSE
and AIE measures of SIRT and FBP; see Fig. 3.8 and 3.9 for the RMSE
and AIE measure, respectively.

Apparently, as suggested by Fig. 3.9, the total intensity within the
object is invariant under the position of the test object. Fig. 3.8 shows
that, also in the case of noisy projection data, SIRT reconstructions of
an object depend on the position of the object in the reconstruction
region. These spatial variations are influenced by the shape of the re-
construction region.
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3.5 discussion and conclusions

The results of our case study demonstrate that significant discretization-
effects can be observed in both FBP and SIRT reconstructions. More-
over, this effect is highly similar for both algorithms. For SIRT, the
shape-effect also comes into play, yet mainly near the corners of a
square reconstruction region. It appears that this effect can be mitiga-
ted by using a disk-shaped reconstruction region. The magnitude of
shape-effects is increased by the influence of noise in the projection
data, which can cause serious artefacts near the corners of the recon-
struction region.

The actual position dependency may well depend strongly on the
particular projection model used for the reconstruction. Here, we only
considered the Joseph’s method, which is broadly used in tomographic
algorithms. In ongoing and future research, we are now focusing on
the influence of different types of discretizations (e.g., blobs, wave-
lets) on the spatial dependencies, along with various projection models
(e.g., lines, strips).
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A P P R O X I M AT I N G A L G E B R A I C T O M O G R A P H Y
M E T H O D S B Y F I LT E R E D B A C K P R O J E C T I O N : A
L O C A L F I LT E R A P P R O A C H

Abstract – Filtered Backprojection is the most widely used recon-
struction method in transmission tomography. The algorithm is com-
putationally efficient, but requires a large number of low-noise pro-
jections acquired over the full angular range to produce accurate recon-
structions. Algebraic reconstruction methods on the other hand are in
general more robust with respect to noise and can incorporate the avai-
lable angular range in the underlying projection model. A drawback
of these methods is their higher computational cost.

In a recent article, we demonstrated that for linear algebraic recon-
struction methods, a filter can be computed such that applying Filtered
Backprojection using this filter yields reconstructions that approximate
the algebraic method. In the present work, we explore a modification
of this approach, where we use more than one algebraic filter in the
reconstructions, each covering a different region of the reconstruction
grid. We report the results of a series of experiments to determine the
how well the reconstruction and approximation accuracy of this ap-
proach.

This chapter has been published with minor modification as: L. Plantagie and K. J.
Batenburg. Approximating algebraic tomography methods by filtered backprojection:
a local filter approach. Fundamenta Informaticae 2014; 135(1-2): 1–19. The final publica-
tion is available at IOS Press through http://dx.doi.org/10.3233/FI-2014-1109.
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4.1 introduction

Computed Tomography is a general technique for recovering an image
of the interior of a scanned object from its projections, acquired from
a range of angles. In this article, we focus on transmission tomography,
where the source and detector of the scanning device are located on
opposite sides outside the object. The source emits a penetrating beam
that traverses the object. Depending on the thickness and composition
of the materials on its path, part of the incoming beam is absorbed
or scattered by the object. The measurements at the detector can be
considered as projections of the object. This data forms the input for a
tomographic reconstruction algorithm, which computes an image of the
object from all available projections [1–3].

Most of the reconstruction algorithms proposed in the literature can
be divided into two classes: (i) analytical reconstruction methods and
(ii) algebraic reconstruction methods. The analytical reconstruction
methods are based on discretizations of an inversion formula for the
idealized continuous representation of the reconstruction problem
[4]. The algebraic reconstruction methods are derived from a discrete
approach of the reconstruction problem, which is formulated as a
system of linear equations. Due to the large size of the problem, ite-
rative methods are used to solve the problem instead of calculating a
least-squares solution directly.

The best known example of an analytical reconstruction method is
Filtered Backprojection [5]. Due to its fast computation time and robust-
ness with respect to noise, it is often used to obtain reconstructions. Va-
riants of FBP, such as the FDK algorithm for cone-beam reconstruction
[6], are also highly popular in practice. A disadvantage of these recon-
struction methods is their poor reconstruction quality when there are
only few projection angles or when the angular range is limited.

Algebraic reconstruction algorithms, such as ART, SART, and SIRT
[1, 7, 8], typically yield more accurate results in such limited data sce-
narios, as modeling the problem as a system of linear equations allows
to encode exactly which information is known about the object, instead
of interpolating data that has not been measured. The main drawback
of iterative algebraic methods is that they are more computationally in-
tensive, requiring a few times up to a hundred times the computation
time of FBP.
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An alternative route to obtaining more accurate reconstructions is
to adjust the filter of FBP to specific properties of the projection data,
the set of projection angles, or both [9–12]. In a recent article, we de-
monstrated that the operation of certain algebraic methods (those that
are linear) can be approximated by applying FBP with a custom filter.
This filter is computed once and depends on the particular algebraic
method that is to be approximated. This method is known as algebraic
filter-filtered backprojection (AF-FBP) [13]. For a particular pixel, the re-
constructed image that results from applying FBP with this custom
filter has exactly the same value as in the algebraic reconstruction. The
AF-FBP reconstructions have been demonstrated to approximate the
accuracy and robustness of the underlying algebraic method, while
the computational efficiency is comparable to that of the fast FBP re-
construction method.

The AF-FBP method is based on selecting a particular pixel in ad-
vance, for which the filter is computed. This filter is subsequently app-
lied to reconstruct all other image pixels as well. A logical question is
therefore whether the AF-FBP method can be improved by computing
multiple filters, at different locations in the image, and combining the
FBP results for the set of computed filters.

In this article we examine the performance of such an approach,
where the results of multiple algebraic filters are combined. We con-
sider a filter sampling where nine filters are computed instead of a
single one, each covering a tile in the reconstructed image. Two diffe-
rent ways of combining these nine AF-FBP reconstructions are experi-
mentally examined. We compare the reconstruction accuracy with the
standard AF-FBP method, with the algebraic SIRT method, and with
FBP with the standard Ram-Lak filter.

This chapter is structured as follows. In Section 4.2 we briefly dis-
cuss FBP and review the standard AF-FBP method. In Section 4.3 we
describe a variation on the standard AF-FBP. The experiments that we
will perform are described in Section 4.4. In Section 4.5 the results of
these experiments are presented. Section 4.6 contains the discussion,
and the conclusions are drawn in Section 4.7.
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4.2 introduction to af-fbp

In this section we briefly introduce the key concepts of the AF-FBP
method. We refer to [13] for a more detailed description. We consider
here the standard case of reconstructing a 2D image from its parallel
beam projections. The unknown image can be considered as a map
R2 → R, which assigns a grey level to each image coordinate (x,y). For
θ ∈ [0,π) and t ∈ R, the line projection p(θ, t) of f is defined by

p(θ, t) =
∫∫

R2

f(x,y)δ(x cos θ+ y sin θ− t)dxdy. (4.1)

In practice, line projections are meausured for a finite set of pro-
jection angles θ and at a finite set of detector positions t. Denote the fi-
nite set of angles for which projections are available by Θ = {θ1, . . . , θk}
and the finite set of detector positions for which a projected line has
been measured by T = {t1, . . . , t`}. The tomographic reconstruction pro-
blem then consists of recovering f from its line projections for all (θ, t) ∈
Θ × T . Typically, only an approximate solution can be obtained in
practice.

We recall that the Filtered Backprojection algorithm can be described
by

f̃(x,y) =
∑
θ∈Θ

∑
τ∈T

p(θ, τ)g(θ, τ− x cos θ− y sin θ), (4.2)

where f̃(x,y) denotes the reconstructed image and g(θ, t) is a pre-
defined filter, such as the common Ram-Lak filter. Usually this filter
does not depend on the projection angle θ.

In algebraic reconstruction algorithms, the tomographic reconstruc-
tion problem is represented by a system of linear equations of the
form

Wx = p,

were the matrix W = (wij) ∈ Rm×n denotes the discretized projection
operator, the vector x ∈ Rn corresponds to the unknown image and
the vector p ∈ Rm contains the measured projection data. The entry
wij determines the weight of the contribution of pixel j to measure-
ment i, which usually represents the length of the intersection bet-
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ween the pixel and the projected line. As the equation system is usu-
ally inconsistent, an exact solution typically does not exist. For such
cases, a range of numerical algorithms exist that minimize the residual
||Wx−p|| with respect to some vector norm.

A reconstruction algorithm can be considered as an operator S :

Rm → Rn, which maps the vector p of measurements to the recon-
structed image x. We call a reconstruction algorithm linear if S is a
linear operator. In such cases, the algorithm can be described by a ma-
trix S ∈ Rn×m. Several algebraic reconstruction algorithms, including
the well-known ART, SART and SIRT algorithms [1], are linear met-
hods.

We now focus on a single pixel c ∈ {1, . . . ,n} of the reconstructed
image. It has coordinates (xc,yc) ∈ R2. Denote the cth row of S by
s(c). Each entry of s(c) corresponds to an entry in the vector p of
measured projection data, and therefore to a pair (θ, τ) ∈ Θ× T , which
we denote by s(c)θτ . Let u = Sp. We then have

uc =
∑
θ∈Θ

∑
τ∈T

pθτs
(c)
θτ , (4.3)

which is very similar to the filtered backprojection formula of Eq. (4.2).
The vector s(c) can be computed by computing a series of reconstructi-
ons using a basis of unit vectors as input. For a given θ ∈ Θ, define
t
(θ)
c = xc cos θ+ yc sin θ. Now define the function h(c)(θ, ·) by the fol-

lowing formula:

h(c)(θ, τ) = s(c)
θ(τ+t

(θ)
c )

, for τ ∈ T − t(θ)c . (4.4)

We refer to h(c) as the algebraic filter for the algorithm S. Note that
h(c)(θ, ·) is only defined on a discrete domain. Intermediate values can
be obtained by interpolation. Also note that the value h(c)(θ, τ) can
depend on the projection angle θ. Just as in FBP, the algebraic filter
determines the weight of the contribution of each detector position to
the reconstructed value. For the selected pixel c, using the algebraic
filter in FBP will result in an identical reconstructed value as for the
linear algebraic method S. It was demonstrated in [13] that if this same
filter is also used to reconstruct all other image pixels, using the FBP
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formula, an image is obtained that approximates the result of the linear
algebraic reconstruction method very well.

4.3 af-fbp with multiple filters

In this section we describe a modified AF-FBP method where recon-
structions of several filters are combined into one final reconstruction.
As described in Section 4.2, we can create a filter for FBP based on any
linear algebraic reconstruction method. This filter is created by com-
puting a series of reconstructions (one for each detector element in the
set T ), and storing the value of a single image pixel. The resulting filter
depends on the choice of the image pixel. For the standard AF-FBP
method the pixel in the center of the image grid is chosen (referred to
as the central image pixel at location (xc,yc) ∈ R2) to compute the fil-
ter. Afterwards, this filter can be applied to any vector p of projection
data, resulting in a reconstruction for which the central pixel has the
same value as for the algebraic method.

In algebraic methods, the positioning of the reconstruction grid im-
poses implicit constraints on the reconstruction problem, namely that
the reconstructed image is zero outside the region of the reconstruction
grid. These constraints mainly affect the reconstruction near the boun-
dary of the reconstruction grid. In general, these implicit constraints
are beneficial to the quality of reconstructions computed by algebraic
methods, as they limit the support of the reconstructed images to a
subregion of R2. As a consequence, an object that is positioned in a
corner of the reconstruction grid is not reconstructed identically (up
to a shift) to an object that is positioned in the center of the grid. It
is therefore natural to consider the question whether an algebraic fil-
ter computed for a pixel near a corner of the reconstruction grid is
substantially different from the central filter, and whether it can pro-
vide more accurate reconstructions in this region. At the same time,
using multiple filters for the reconstruction increases the implementa-
tion complexity of the reconstruction algorithm compared to FBP, as
well as the computation time.

For the sake of simplicity, we limit our investigation here to the
case where nine filters are used, obtained by dividing the image grid
symmetrically in three columns and three rows. The central image
pixel is also the center of one of these subregions. Since the size of
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the image grid need not be divisible by three, the subregions need not
be of equal size. The size of the subregion in the center of the image
equals the image size divided by three. If this is not an integer, we
use the smallest integer that is larger than this number. This integer is
denoted by s. The pixels that are selected are located at (xc± s,yc± s),
(xc,yc ± s), (xc ± s,yc), (xc,yc). For each pixel a filter is created as
described in Section 4.2.

According to Eq. (4.4), computing the filter for an image pixel j ∈
{1, . . . ,n} with coordinates (xj,yj) requires the computation of the row
s(j) of the matrix S. Subsequently, for each angle θ, the part of s(j) that
corresponds with this angle is shifted over a distance t(θ)j = xj cos θ+
yj sin θ. Zero padding is applied for the filter values that fall outside
the region where this shifted filter can be defined by interpolation.

After computation of the nine filters, each of these filters can be used
in a standard FBP implementation. In this way we obtain nine recon-
structions of the original image. The nine reconstructions can be com-
bined in several ways to obtain a final reconstruction of the original
image. In this chapter we explore two different ways to combine the
reconstructions and we compare the reconstruction accuracy of both
methods with the linear algebraic method, standard AF-FBP and FBP
with the standard Ram-Lak filter.

4.4 experiments

In this section we describe a series of simulation experiments that we
performed to examine the accuracy of the modified AF-FBP method.

4.4.1 Phantoms

The phantoms that are used in the experiments are shown in Fig. 4.1.
Fig. 4.1a is a cross-section of a cylinder head in a combustion engine,
Fig. 4.1b represents a cross-section of a wind turbine blade, Fig. 4.1c
is the Shepp-Logan phantom which represents a simplification of a
cross-section of a human brain [14], and Fig. 4.1d is a cross-section of
a mandible.

The phantoms are defined on a square grid of 2044 × 2044 pixels
and are contained in the inscribed circle with diameter 2044 pixels.
Real world objects can in general not be represented exactly on such a
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(a) Cylinder head (b) Turbine blade (c) Shepp-Logan (d) Mandible

Figure 4.1: The phantoms.

pixel grid. To take this into account in our experiments, we reconstruct
the phantoms on a coarser grid of 511× 511 pixels. To determine the
reconstruction error we then refine the reconstruction to 2044× 2044
pixels by replacing every pixel in the coarse grid by a block of 4× 4
pixels with the same value.

As shown by experiments in [13], the quality of the reconstructions
improves when the filters are created on a larger grid of 767 × 767
pixels instead of 511× 511 pixels. Therefore, we use this larger grid to
create the filters and to create the algebraic reconstructions. With error
measures described in Section 4.4.4, we examine the reconstruction
quality of the modified AF-FBP method.

4.4.2 Projection data

The projection data are obtained using a parallel beam scanning ge-
ometry. The detector consists of 511 elements, each having a width
of four image pixels. The Joseph’s model is used to obtain the con-
tribution of each image pixel to an individual projection ray [15]. Per
detector element we use four rays, each having a width of one image
pixel. This ensures that every image pixel contributes with nonzero
weight to at least one ray per projection angle. The projection angles
are equiangularly distributed within the full range of 180 degrees. The
number of projection angles d varies during the experiments.
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4.4.3 Reconstruction methods

In the experiments we use four different reconstruction methods to
obtain the reconstructions. All algebraic filters are based on the itera-
tive SIRT algorithm. In particular, the following algorithms are compa-
red:

sirt Simultaneous Iterative Reconstruction Method. The kth ite-
ration u(k) is given by Eq. (4.5), where u(0) = 0.

u(k+1) = (In −ωCWTRW)u(k) +ωCWTRp, (4.5)

where C = (cij) ∈ Rn×n and R = (rij) ∈ Rm×m are diagonal
matrices given by cjj = α(

∑n
i=1 |wij|) and rii = β(

∑m
j=1 |wij|)

respectively, In ∈ Rn×n denotes the identity matrix, and ω is a
relaxation parameter [8, 16]. In this chapter we set ω = 1, α(x) =
β(x) = 1/x for x ∈ R. We stop the SIRT algorithm after a fixed
number of 200 iterations.

fbp-rl Filtered Backprojection method given by Eq. (4.2) using
the standard Ram-Lak filter.

sirt-fbp sf SIRT-FBP ’Single Filter’; this is the standard SIRT-
FBP method using one angle-dependent filter based on the cen-
tral pixel of the reconstruction grid; see Section 4.2.

sirt-fbp ir SIRT-FBP ’Isolated Regions’; this is a variation on
SIRT-FBP using nine pixels to calculated nine angle-dependent
filters. The selection of these nine pixels is described in Section
4.3. For each filter a reconstruction is created using FBP with
this filter. The subregion containing the pixel that was used to
create the filter is used for the final reconstruction. These subre-
gions do not overlap and will be referred to as isolated regions.
The collection of all these isolated subregions forms a complete
reconstruction.

sirt-fbp bi SIRT-FBP ’Bilinear Interpolation’; for this method
we use the same subregions as for IR, but we perform an addi-
tional bilinear interpolation step instead of only collecting the
isolated subregions.
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4.4.4 Error measure

The accuracy of the reconstruction methods is examined using two dif-
ferent error measures. The first measure is obtained by calculating the
sum of absolute pixel differences between the reconstruction and the
original object. After normalization, the resulting error is denoted as
the mean reconstruction error Er. Since the reconstruction has a coarser
grid than the original image, we cannot compare them directly. We first
select in the 767× 767 reconstruction grid the smaller 511× 511 pixel
grid with the same central pixel as the reconstruction grid. We then en-
large this grid by replacing every pixel by a block of 4× 4 pixels with
the same value to obtain a grid of 2044× 2044 pixels. We denote this
image by û = (ûij) ∈ Rn

2
with n = 2044 and the original phantom by

v = (vij) ∈ Rn
2
. The mean reconstruction error is then defined by

Er =

∑
i,j

|ûij − vij|∑
i,j
vij

. (4.6)

The second measure is obtained by calculating the sum of absolute
pixel differences between the reconstruction u = (ukl) and the alge-
braic reconstruction uARM = (uARM

kl ) on the same grid of 511× 511 pixels
that was used in the mean reconstruction error before refining it. Af-
ter normalization this error is denoted as the mean ARM reconstruction
error EARM

r , defined by

EARM
r =

∑
k,l

|ukl − u
ARM
kl |∑

k,l
uARM
kl

. (4.7)

4.4.5 Series of experiments

The reconstructions are compared in three series of experiments.
In the first series of experiments the number of projection angles is

varied. We show the resulting mean reconstruction errors Er, as well
as the mean ARM reconstruction errors EARM

r , for all four phantoms
and using several different interpolation methods for the filters. The
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aim of this series is to compare the accuracy of the five reconstruction
methods for a varying number of projections (d ∈ {16, 24, 32, 64}).

In the second series of experiments we apply varying amounts of
Poisson noise to the projection data. FBP with a Ram-Lak filter is
known to produce poor quality reconstructions if the projection data
has a low signal-to-noise ratio, while SIRT provides superior results
for such data. We examine the reconstruction quality of SIRT-FBP with
multiple filters, compared to SIRT, FBP-RL and standard SIRT-FBP.

In the third series of experiments a larger detector is used to obtain
the projections and to create the filters. As discussed in Section 4.3,
a shift operation has to be applied when computing an algebraic fil-
ter for a non-central image pixel. If such an image pixel is near the
boundary of the reconstruction region, then substantial zero-padding
is needed for some angles on one side of the shifted filter. Enlarging
the size of the detector (and hence the size of the filter), decreases the
number of zeros that has to be inserted. A disadvantage is the larger
computation time to create the filter. In this series of experiments we
examine the effect of using these larger filters on the reconstruction
quality.

4.5 results

In this section we present the results of the experiments described in
the previous section. We start with discussing the algebraic filters for
the different selected image pixels and show their effect on the re-
constructions. Then we compare the reconstructions of SIRT-FBP with
multiple filters with reconstructions of both the standard SIRT-FBP and
FBP-RL.

4.5.1 Filter dependence on the selected pixel

The algebraic filters depend quite strongly on the pixel that is used
to create them. Each image in Fig. 4.2 provides a visual representation
of a particular row s(j) of the matrix S, where the vertical axis corre-
sponds with the projection angle and the horizontal axis corresponds
with the position on the detector. The selected pixels p1, . . . ,p9 are
numbered row-wise, starting at the top left corner with p1.
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(a) pixel p1

(b) pixel p5

(c) pixel p6

(d) pixel p8

Figure 4.2: Visual representations of rows of the matrix S for d = 32 pro-
jection angles.

(a) Filter for pixel p1

(b) Filter for pixel p5

(c) Filter for pixel p6

(d) Filter for pixel p8

Figure 4.3: Filters for d = 32 projection angles after linear interpolation and
shifting.

Fig. 4.3 shows the corresponding filters that are the result of Eq. 4.4,
after applying a linear interpolation and angle-dependent shifting of
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the images in Fig. 4.2. The large homogeneous grey areas arise due to
the necessary zero-padding to obtain a filter of size 511 after shifting.
These areas might have a large influence on the resulting reconstructi-
ons. To examine this influence, we also include experiments for a lar-
ger filter of 767 elements. Since this gives rise to a larger system of
equations Wx = p, the algebraic reconstructions will change as well.
The corresponding filters will therefore not only contain fewer zero
elements, but are different from the filters in Fig. 4.3 in the nonzero
entries as well. The results are shown in Section 4.5.4.

In Fig. 4.4 the reconstructions are shown for the nine different angle-
dependent filters with d = 32. These reconstructions are combined
into a final reconstruction using either the filters corresponding to the
central pixel (denoted by SF), or to the collection of isolated subregions
(denoted by IR), or to a bilinear interpolation of the isolated regions
(denoted by BI), as discussed in Section 4.4.3.

4.5.2 Varying the number of projection angles

In the first series of experiments the four phantoms are reconstructed
using different numbers of projection angles. The projection data are
noiseless in these experiments. Fig. 4.6 shows the mean reconstruction
errors for the turbine blade phantom.

The mean reconstruction error of both standard SIRT-FBP and mo-
dified SIRT-FBP is very close to the error of SIRT. The variation SIRT-
FBP with bilinear interpolation outperforms SIRT-FBP with isolated
regions. This is expected behavior, since bilinear interpolation uses the
values of a pixel in two or more reconstructions, which results in a
smoothing of the presumed larger pixel errors near the boundary of
the isolated regions. Therefore, we expect the mean reconstruction er-
ror, Er, to be smaller than that of SIRT-FBP with isolated regions. Furt-
hermore, we observe that standard SIRT-FBP results in reconstructions
that are slightly more accurate than SIRT or SIRT-FBP with multiple fil-
ters. FBP-RL is substantially less accurate than the other reconstruction
methods considered here.

The standard SIRT-FBP method uses only a single filter based on
the central pixel. These results therefore show that the local use of
filters based on pixels other than the central pixel does not reduce the
mean (ARM) reconstruction error. This might be due to the fact that
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(a) FBP with filter for p1 (b) FBP with filter for p2 (c) FBP with filter for p3

(d) FBP with filter for p4 (e) FBP with filter for p5 (f) FBP with filter for p6

(g) FBP with filter for p7 (h) FBP with filter for p8 (i) FBP with filter for p9

Figure 4.4: Reconstructions of the cylinder head phantom using the filters
based on the nine different image pixels.

shifting and zero-padding of these filters is required before they can
be applied to the projection data, resulting in the loss of some accuracy
in the approximation of the ARM due to the additional interpolation
step.

SIRT-FBP with bilinear interpolation is not only more accurate than
SIRT-FBP with isolated regions, it is also a better approximation of
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(a) SIRT (b) FBP-RL

(c) SIRT-FBP SF (d) SIRT-FBP IR (e) SIRT-FBP BI

Figure 4.5: Reconstructions of the cylinder head phantom with d = 32; (a)
SIRT reconstruction using 200 iterations; (b) FBP with Ram-Lak fil-
ter; (c) SIRT-FBP with the filters corresponding to the central pixel;
(d) SIRT-FBP combining the nine reconstructions from isolated re-
gions; (e) SIRT-FBP combining the nine reconstructions using bili-
near interpolation.

SIRT. Its mean ARM reconstruction error is only slightly larger than
that of standard SIRT-FBP. The mean ARM reconstruction error of
SIRT-FBP with isolated regions is larger than that of standard SIRT-
FBP and SIRT-FBP with bilinear interpolation. However, it is still much
smaller than that of FBP-RL.

Furthermore, we observe that the reconstruction errors are almost
indifferent to the method chosen to interpolate the filter. Every row
in Fig. 4.6 shows the reconstruction error for a different interpolation
method. We will therefore not include the results of the different in-
terpolation methods in the remainder of this chapter and only show
the results using the linear interpolation method for the filters. These
results for the other three phantoms are shown in Fig. 4.7. The left-
hand side column shows the same pattern as for the turbine blade.



4

74 4 local filter approach

(a) FI linear, Er (b) FI linear, EARM
r

(c) FI nearest, Er (d) FI nearest, EARM
r

(e) FI spline, Er (f) FI spline, EARM
r

(g) FI cubic, Er (h) FI cubic, EARM
r

Figure 4.6: Mean (ARM) reconstruction error Er (EARM
r ) for the turbine blade

phantom. Several interpolation methods are used to compute the
filters; SF = single filter, IR = isolated regions, BI = bilinear inter-
polation.
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(a) Cylinder head, Er (b) Cylinder head, EARM
r

(c) Mandible, Er (d) Mandible, EARM
r

(e) Shepp Logan, Er (f) Shepp Logan, EARM
r

Figure 4.7: Mean reconstruction error Er of the cylinder head phantom (top
row), mandible phantom (middle row), Shepp Logan phantom
(bottom row). Linear interpolation is applied to compute the fil-
ters. SF = single filter, IR = isolated regions, BI = bilinear interpo-
lation.

The mean ARM reconstruction errors for SIRT-FBP with bilinear inter-
polation are again smaller than for SIRT-FBP with isolated regions. In
all cases, the reconstructions computed using algebraic filters are more
accurate than for FBP-RL.
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4.5.3 Poisson noise

In the second series of experiments we apply Poisson noise to the pro-
jection data, by simulating the Poisson distribution based on a varying
number of photons used for the beam profile. The lower this photon
count, the higher the noise level. The results for varying noise levels
are shown in Fig. 4.8 and Fig. 4.9.

It can be observed in Fig. 4.8 that FBP-RL cannot handle noisy
projection data very well. The mean reconstruction errors for high
amounts of noise are large compared to those for SIRT-FBP and SIRT.
The right-hand side column of both figures is a detail of the figures on
the left-hand side. In this detail we observe that SIRT-FBP performs
slightly better in terms of the mean reconstruction error than SIRT.
This is consistent with observations in [13] for d = 64. It can also be
observed for the other numbers of projection angles. Furthermore, as-
sembling the modified SIRT-FBP reconstruction using isolated regions
or bilinear interpolation reduces Er for high amounts of noise. The
local reconstructions using filters corresponding to the selected pixels
p1, p3, p7 and p9 contain less noisy reconstructions in the area around
the selected pixel. Since only this area is used while assembling the
final reconstruction, this might explain the smaller Er. For less noisy
projection data, the standard SIRT-FBP method based on one angle-
dependent filter performs equally well or better than the modified
SIRT-FBP method, depending on the number of projection angles.

In Fig. 4.9 the results are shown for d = 32 and d = 64. The mean
ARM reconstruction errors EARM

r with d = 16 and d = 24 are similar to
those for d = 32 and therefore not included in this chapter. The recon-
structions of the standard SIRT-FBP (with one angle-dependent filter)
differ less from SIRT than SIRT-FBP with multiple angle-dependent
filters. We do observe that bilinear interpolation results in reconstructi-
ons that are closer to the SIRT reconstructions than using isolated regi-
ons.

All results for the cylinder head are representative for the other three
phantoms. The results for the other phantoms are therefore not inclu-
ded in this chapter.



4

4.5 results 77

(a) d = 16 (b) d = 16, detail

(c) d = 24 (d) d = 24, detail

(e) d = 32 (f) d = 32, detail

(g) d = 64 (h) d = 64, detail

Figure 4.8: Mean reconstruction error Er of the cylinder head phantom for
varying amounts of noise applied to the projection data. Linear
interpolation is applied to compute the filters. SF = single filter, IR
= isolated regions, BI = bilinear interpolation.
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(a) d = 32 (b) d = 32, detail

(c) d = 64 (d) d = 64, detail

Figure 4.9: Mean ARM reconstruction error EARM
r of the cylinder head

phantom for varying amounts of noise applied to the projection
data. The rows correspond to different numbers of projection an-
gles d. Linear interpolation is applied to compute the filters. SF =
single filter, IR = isolated regions, BI = bilinear interpolation.

4.5.4 Varying the size of the detector

In the third series of experiments we increase the size of the detector
from 511 elements to 767 elements. The filters that cover the recon-
struction grid of 511×511 pixels need less zero-padding. Several filters
are shown in Fig. 4.10.

The reconstruction errors using these larger filters are shown in
Fig. 4.11. We compare them with the results for the smaller filters in
Fig. 4.6. We observe that both Er and EARM

r of SIRT-FBP are less affected
by the method chosen to assemble the reconstruction than for the smal-
ler filters with a support of 511 elements. The value of Er is comparable
in both cases. The right-hand side column of the figure shows that the
reconstructions using a detector of 767 elements are more similar to
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(a) Filter for pixel p1

(b) Filter for pixel p5

(c) Filter for pixel p6

(d) Filter for pixel p8

Figure 4.10: Larger filters with 767 elements per angle for d = 32 projection
angles.

the SIRT reconstructions than those using a smaller detector of 511
elements, although the differences are small.

The results for different interpolation methods used in the computa-
tion of the filter and for different phantoms are similar to those discus-
sed above and are omitted here.
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(a) Turbine blade, Er (b) Turbine blade, EARM
r

(c) Shepp Logan, Er (d) Shepp Logan, EARM
r

Figure 4.11: Mean (ARM) reconstruction error Er (EARM
r ) for filters with 767

elements per angle, for varying number of projection angles. Li-
near interpolation is applied to compute the filters. SF = single
filter, IR = isolated regions, BI = bilinear interpolation.

4.6 discussion

Our experimental results suggest that the standard SIRT-FBP method
approximates SIRT better than SIRT-FBP with nine algebraic filters. An
interesting result is obtained in the case where we apply high amounts
of Poisson noise to the projection data and compare the reconstructi-
ons with the phantom instead of with the SIRT reconstruction. In this
case, the reconstructions of SIRT-FBP with bilinear interpolation are
more accurate than the standard SIRT-FBP reconstructions and the
FBP-RL reconstructions. Although it is not the aim of the AF-FBP met-
hod to improve the accuracy of the reconstructions, since there we
want to approximate the ARM as best as possible, it opens new oppor-
tunities for further research.
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The value of the pixel that was used to create the filter for SIRT-FBP
is the same in both the SIRT reconstruction and the SIRT-FBP recon-
struction. We can therefore view SIRT as an SIRT-FBP with an alge-
braic filter calculated for every image pixel. Hence we have compared
the reconstruction accuracy of SIRT-FBP with one, with nine and with
511× 511 algebraic filters. The results show that for high amounts of
Poisson noise the reconstruction accuracy of SIRT-FBP with nine alge-
braic filters outperforms that of SIRT-FBP with both one algebraic filter
and with 511× 511 algebraic filters. Assuming that the reconstruction
accuracy of SIRT-FBP depends smoothly on the number of algebraic
filters, there should be an optimal number of algebraic filters that max-
imizes the reconstruction accuracy of SIRT-FBP. Also the position of
the selected pixels in the image grid can influence this accuracy and
should be examined in more detail.

4.7 conclusions

In this chapter we have investigated an approach to create algebraic
filters (AFs) that can be used in the Filtered Backprojection method.
Reconstructions of the standard AF-FBP method can be computed
using the same computation time as FBP, while they resemble the re-
construction properties of the linear algebraic reconstruction method
that was used to create the filter. Compared to the original AF-FBP
method, which is based on a single filter, the approach proposed in
this chapter is based on computing multiple filters, each covering a
region of the reconstruction grid. For each (angle-dependent) filter we
calculate an FBP reconstruction. Parts of these reconstructions are com-
bined into a final reconstruction by either assembling separate regions
or by using bilinear interpolation for neighboring regions from each
reconstruction. In a series of simulation experiments, we examined the
reconstruction accuracy of these variations by comparing the recon-
structions with both the phantoms and the corresponding algebraic
reconstructions, based on the SIRT algorithm.

For the sake of clarity, we focused on a particular scenario where
nine filters are created, each based on a different pixel in the recon-
struction grid. The resulting reconstructions show little dependence
on the different interpolation methods that can be applied to compute
the filters. Since in the creation of some filters substantial zero-padding
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is required, we also created filters with an extended support to reduce
this zero-padding. This results in only a small effect on the quality of
the corresponding reconstructions, while it increases the computation
time of the filters.

Assembling the final reconstruction using bilinear interpolation re-
sults in general in a more accurate reconstruction than combining se-
parate regions. The differences between standard AF-FBP and AF-FBP
based on multiple filters are small and in many situations the stan-
dard AF-FBP method outperforms the suggested variations. There are
situations, such as projection data with few angles and a high amount
of noise, where modified AF-FBP using bilinear interpolation outper-
forms standard AF-FBP when we compare the reconstructions with
the original phantoms. In general however we observe that using more
than one angle-dependent filter does not automatically lead to a better
approximation of the corresponding algebraic method, or in a more
accurate reconstruction method.

Our findings suggest that for the AF-FBP method, the central pixel
is actually a very good choice for computing the filter, even if this filter
is then applied to reconstruct image pixels in the outer regions of the
reconstruction grid.
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A L G E B R A I C F I LT E R A P P R O A C H F O R FA S T
A P P R O X I M AT I O N O F N O N L I N E A R T O M O G R A P H I C
R E C O N S T R U C T I O N M E T H O D S

Abstract – In this chapter we present a computational approach
for fast approximation of nonlinear tomographic reconstruction met-
hods by filtered backprojection methods. Algebraic reconstruction al-
gorithms are the methods of choice in a wide range of tomographic
applications, yet they require significant computation time, restricting
their usefulness. We build upon recent work on the approximation of li-
near algebraic reconstruction methods and extend the approach to the
approximation of nonlinear reconstruction methods, which are com-
mon in practice. We demonstrate that if a blueprint image is available
that is sufficiently similar to the scanned object, our approach can com-
pute reconstructions that approximate iterative nonlinear methods, yet
have the same speed as filtered backprojection.

This chapter has been published with minor modification as: L. Plantagie and K. J. Ba-
tenburg. Algebraic filter approach for fast approximation of nonlinear tomographic re-
construction methods. J. Electron. Imaging 2015; 24(1). 013026. This publication is avai-
lable through http://dx.doi.org/10.1117/1.JEI.24.1.013026. Copyright 2015 Society of
Photo-Optical Instrumentation Engineers. One print or electronic copy may be made
for personal use only. Systematic reproduction and distribution, duplication of any
material in this paper for a fee or for commercial purposes, or modification of the
content of the paper are prohibited.
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5.1 introduction

Computed Tomography (CT) deals with the reconstruction of an ob-
ject from a series of projections of this object, taken along a range of
angles [1–4]. Depending on the application, projection images are typi-
cally acquired by a scanning device, using a photon or particle beam
that is transmitted through the object (e.g. X-rays, electrons, neutrons).
Besides extensive applications in medical imaging, tomography is a
common technique in many other fields in academia (materials science,
micro-biology) as well as industry (quality inspection, process monito-
ring) [5–9].

In this chapter we focus on the reconstruction phase of the tomo-
graphy pipeline, where an image of the original object is computed
from the projections by a reconstruction algorithm. The characteris-
tics of the reconstructed image depend not only on the set of input
projection data, but also on the reconstruction algorithm employed. A
range of reconstruction methods have been proposed in the literature,
each having strong and weak points with respect to reconstruction qua-
lity, reconstruction time, and robustness [2, 10–13]. The reconstruction
methods that are used often in practice can be divided into two ca-
tegories: analytical methods and algebraic methods. Here, we use the
term "algebraic methods" to refer to the category of algorithms that
converge to a least-squares solution (e.g. the Simultaneous Iterative
Reconstruction Technique (SIRT)), as well as the category of statistical
methods such as the Expectation Maximization (EM) algorithm.

In the ideal situation, where the reconstruction problem can be re-
presented by a continuous set of data, we can find an exact solution of
the reconstruction problem using an analytical method. This method
uses an inversion formula to obtain the analytical solution. By discre-
tizing this inversion formula, a reconstruction algorithm is obtained
that approximates the analytical result. Typically, such methods are
based on the assumption that the projections can be sampled continu-
ously and a full range of angles are available. In practice, interpolation
techniques must be used to account for missing projection data [1].

The Filtered Backprojection (FBP) algorithm – and its many variants
– is the most prominent example of an analytical reconstruction met-
hod. Due to its computational efficiency, ease of implementation, and
high accuracy if sufficient data is available, FBP is extensively used
in practice [14]. Reconstructions are obtained by convolution of the
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projection data with a filter, followed by a so-called backprojection
step. The filter can be customized and affects the quality of the re-
construction. FBP is capable of computing accurate reconstructions if
a large number of low-noise projections are available, sampled along
the full angular range. For reconstruction tasks involving just a small
number of projections, or limited-angle datasets, FBP reconstructions
are typically plagued by serious artefacts which hamper image inter-
pretation .

Algebraic methods solve a system of linear equations, which repre-
sents the discretized tomographic reconstruction problem. This equa-
tion system directly models the finite set of projections available in the
actual scan, resulting in a very large and sparse matrix describing the
equations. The computation time required to calculate a least squares
solution is so high, that in practice iterative methods are used for its
solution [1]. The algebraic reconstruction methods are known to pro-
duce more accurate reconstructions than FBP when few projections are
available or with noisy data. A key drawback of these methods is their
high computational cost.

A subclass of the algebraic reconstruction methods consists of the
linear algebraic reconstruction methods (LARMs). An algebraic recon-
struction method is linear if the algorithm acts on the projection data
as a linear operator. Examples of LARMs are ART, SART and SIRT [3].

In [15], a method was introduced to create filters for FBP that are ba-
sed on the operation of linear algebraic reconstruction methods. The
reconstructions of FBP with these filters approximate reconstructions
of the corresponding algebraic reconstruction methods. This method
is known as Algebraic Filter FBP (AF-FBP). Using these filters, one can
approximate the accuracy of algebraic reconstruction methods while
at the same time attaining the computational efficiency of FBP. The
construction of the filters is computationally intensive, but needs to
be performed only once for a given set of geometrical parameters (i.e.
number of projections and their corresponding angles). The filters do
not depend on the object that is being reconstructed. An important
limitation of the method for constructing these filters is that the under-
lying algebraic reconstruction method (ARM) is required to be linear.

Other methods have been proposed in literature to create filters for
FBP [16–19]. There are two different approaches; creating filters based
on theoretical derivations which are suited for every geometry, [16, 17]
and creating filters based on the geometry [18, 19]. The AF-FBP met-
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hod belongs to this second group. Like the filters in [19], an iterative
reconstruction method is used to obtain the filters. An important diffe-
rence between these two methods is that in [19] an object consisting of
three thin rods is used in the calculations of the filters, while AF-FBP
for LARMs is object-independent.

Many common iterative tomographic reconstruction methods do not
meet the linearity condition. Therefore, they cannot be approximated
directly by the AF-FBP. Examples of these methods are conjugate gra-
dient least squares (CGLS), and the statistical reconstruction method ex-
pectation maximization (EM) [20–22]. The CGLS algorithm is mildly non-
linear, in the sense that the algorithm becomes a LARM as the number
of iterations tends to infinity. In tomography, only a relatively small
number of iterations are typically performed, not only for limiting the
computation time but also due to the regularizing effect embedded
in the method itself. The Expectation Maximization algorithm (EM)
maximizes the log likelihood function of the reconstructed image for
a given set of projection data, assuming that the observed data and
the Radon transform of the object are related by a Poisson distribution.
Such statistical reconstruction methods are known to yield superior re-
constructions to LARMs if the projection data contains a high level of
(Poisson distributed) noise [23].

Even though each of the reconstruction methods mentioned above
yields a different reconstruction, the forward operator in the under-
lying inverse problem solved by these methods is still a linear ope-
rator (i.e. a discretized Radon transform). We therefore intuitively ex-
pect that many nonlinear algebraic reconstruction methods (NLARMs)
can locally be approximated by a linear method. By the term "locally"
we refer here to the case where the reconstruction of a similar image,
called a blueprint, is already available and only the difference of the
projections compared to this known image needs to be reconstructed.
Hence we refer not to spatial locality in the image, but to locality in
the space of images, where each image is considered as a point in a
high-dimensional vector space.

In this chapter we adapt the AF-FBP approach to approximate
NLARMs that have this locally linear behavior, such that AF-FBP can
still be applied in cases where a blueprint object is available. We pre-
sent the results of a series of experiments performed to assess the
nonlinearity present in the CGLS and EM methods. We subsequently
examine the reconstruction quality of our adapted AF-FBP method
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and compare them with reconstructions obtained by applying the
NLARM directly.

The ability to compute fast approximations of NLARM reconstructi-
ons is useful in cases where the object to be reconstructed is expected
to contain (small) variations with respect to the blueprint, which is
known in advance. Such cases can be found, for example, in the field
of nondestructive testing and inspection. Our approach is based on the
computation of an algebraic filter that depends on the blueprint image.
This processing step is computationally demanding, as it involves a se-
ries of runs of the iterative algebraic method. Once the filter has been
computed, new images can be reconstructed with the same speed as
Filtered Backprojection. Our method will mainly be useful in scenarios
where a large number of similar objects are scanned in sequence, and
where algebraic methods are required due to limitations in the scan-
ning geometry or scanning time. In such cases, the approach enables
the approximation of advanced algebraic methods, while still maintai-
ning a low computation time, sufficient for real-time reconstruction.

The concept of replacing the full reconstruction problem by the task
of reconstructing the difference from a blueprint object has been used
in various nonlinear inverse problems in imaging (e.g. seismic inver-
sion [24] and electrical impedance tomography) but is applied here for
the first time to fast approximation of nonlinear tomographic recon-
struction methods, thereby considerably extending the applicability of
AF-FBP.

This chapter is structured as follows. In Sect. 5.2 the algorithms
are briefly discussed and notation is introduced. The AF-FBP met-
hod for linear algebraic reconstruction methods is briefly introduced in
Sect. 5.3.1. In Sect. 5.3.2, we extend the AF-FBP approach to NLARMs.
In Sect. 5.4 we describe the setup and results of a series of computa-
tional experiments, comparing the proposed AF-FBP method to other
methods. We conclude with discussion and conclusions in Sect. 5.5.

5.2 preliminaries

In this chapter, the projection data are obtain using a source and de-
tector that rotate around the object in the 2D plane. We use parallel
beams that cover all image pixels for each projection angle. The appro-
ach presented here is not limited to the scanning geometry described
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here, but can be applied to other scanning geometries as well (e.g. fan-
beam, cone-beam). An additional rebinning step of the projection data
is necessary for these geometries. First, we give a brief introduction to
the concepts and notation of FBP, followed by a description of the key
algebraic methods studied in this chapter.

5.2.1 Filtered Backprojection

Our description of Filtered Backprojection introduces the same nota-
tion as used in Section II of [15], but is included here to keep the
present article self-contained.

In the continuous tomography model that is used to describe Filte-
red Backprojection, the unknown image is represented by a finite and
integrable function f : R2 → R of bounded support. Projections p(θ, ·)
of f are defined by the Radon transform

p(θ, t) = (Rf)(θ, t) =
∫∞
−∞ f(t cos θ− s sin θ, t sin θ+ s cos θ)ds, (5.1)

where θ ∈ [0,π) denotes the projection angle and t ∈ R refers to the
signed distance of a projected line from the origin.

The unknown image f can be recovered analytically from its Radon
transform based on the following inversion formula:

f(x,y) =
∫π
0

∫∞
−∞ P(θ,u)G(θ,u)e2πiut dudθ, (5.2)

where t = x cos θ+y sin θ, G(θ,u) = |u| and P(θ, ·) is the Fourier trans-
form of p(θ, ·). The function G(θ, ·) acts as a filter on the projection
data [25].

In practical experiments, the detector that measures the projections
p(θ, ·) is discretized as an array of detector elements, each measuring
a single value. Moreover, the set of angles θ for which projections are
available is also finite and discrete.

Let R ∈ N>0. For simplicity, we assume that the detector contains
l = 2R + 1 detector elements of unit width and that it is symme-
tric around t = 0. Hence, the lines (θ, t) for which the Radon trans-
form is observed by these detector elements correspond to the set
T = {−R,−R+ 1, . . . ,R− 1,R} of values for the parameter t in the Ra-
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don transform. Furthermore, the finite set of projection angles is given
by Θ = {θ1, . . . , θd}. The FBP formula, which approximates Eq. (5.2), is
then given by

f(x,y) ≈ π
d

∑
θ∈Θ

∑
τ∈T

p(θ, τ)g(θ, x cos θ+ y sin θ− τ), (5.3)

with g the inverse Fourier transform ofG. In practice, various filters are
used in FBP, combining the ideal ramp filter with smooth windowing
functions. Examples are the Ram-Lak filter (using a hard frequency
cut-off) and the Hann and Cosine filters (using soft windowing) [3].

5.2.2 Algebraic Reconstruction Methods

In this section we introduce the class of Algebraic Reconstruction Met-
hods (ARMs). The input for these methods is the set of measured pro-
jections and a matrix describing the projection geometry, which toget-
her define a system of linear equations. Let p = (pi) ∈ Rm denote
a vector containing the m = dl measured detector values (with d the
number of angles and l the number of detectors), and let v = (vi) ∈ Rn

denote the object to be reconstructed. We now form the system of li-
near equations

Wv = p, (5.4)

where the matrix W, called the projection matrix, describes the geo-
metry of the tomography setup. Each entry pi of the projection data
corresponds to an angle θ ∈ Θ and detector bin t ∈ T , and is therefore
also denoted as pθt. Its value corresponds to the weighted sum of the
values vj on the line parameterized by (θ, t). Various models can be
used to determine the weight of the contribution of the pixels on such
a line, such as the line model, strip model [26], and Joseph’s model
[27]. Algebraic reconstruction methods solve the system in Eq. (5.4) by
starting at an initial guess of the solution (which can be the zero vec-
tor) and iteratively refining the solution. If the system is inconsistent,
due to noise or other artefacts in the projection data, the residual of the
equation system is often minimized with respect to a particular norm.
The results of ARMs can depend substantially on the particular ARM
that is selected, for several reasons. First of all, the iteration process is
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typically terminated before convergence has been fully reached, such
that the resulting reconstruction depends on convergence properties of
the algorithm. Secondly, the norm that is minimized depends on the
particular ARM. Thirdly, if the equation system is underdetermined
(which is quite common in tomography), the particular solution that
is chosen among all solutions depends on the ARM.

Algebraic reconstruction methods can be modeled as an operator
R : Rm → Rn that maps a vector p ∈ Rm of projection data to a re-
constructed image u ∈ Rn. Some ARMs are linear, meaning that their
operation can be written as u = Rp with R ∈ Rm×n a matrix (called
the reconstruction matrix of the ARM). By definition, a linear ARM has
the property that R(λp+ µq) = λR(p) + µR(q) for all λ,µ ∈ R and
p,q ∈ Rm, which makes it possible to decompose its operation as a
sum of reconstructions of unit vectors. This property is essential to the
filter construction presented in [15]. The well-known SIRT algorithm is
an example of a linear method that can be used to compute algebraic
filters.

Many ARMs used in practice are not linear. Here, we consider two
examples. The CGLS algorithm is nonlinear, except in the limit case of
an infinite number of iterations. In this limit, CGLS converges to the
same reconstruction that would result by applying the Moore-Penrose
inverse [28] to the projection data, which is a linear operator. For any
finite number of operations, CGLS is not linear. We therefore refer
to CGLS as a mildly nonlinear ARM. Another example of a common
nonlinear ARM is the Expectation Maximization (EM) algorithm. Even
in the case of an infinite number of iterations EM does not have the
linearity property. Therefore, we refer to EM as a nonlinear ARM. Below,
we will outline CGLS and EM in more detail.

5.2.2.1 CGLS

The Conjugate Gradient (CG) algorithm is commonly used for solving
large systems of linear equations, due to its fast convergence. It is origi-
nally designed for large sparse systems of equations with a symmetric
and positive-definite matrix [29]. We apply a variant of this method,
Conjugate Gradient Least Squares (CGLS), where the CG algorithm is
applied to the system of normal equations WTWv = WTp.
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Put u(0) = 0, r0 = p, and d0 = WTp. The iteration which computes
uk+1 (k = 0, 1, 2, . . .) is then given by Eq. (5.5).

αk+1 = ‖WTrk‖22 / ‖Wdk‖22,

uk+1 = uk +αk+1d
k,

rk+1 = rk −αk+1Wdk, (5.5)

βk+1 = ‖WTrk+1‖22 / ‖WTrk‖22,

dk+1 = WTrk+1 +βk+1d
k,

For any system of linear equations, the CGLS algorithm converges
to the least squares solution of minimal norm. One way to express
this property, is that CGLS converges to W†p, where W† denotes the
Moore Penrose inverse. As W† is a matrix, the limit behavior for CGLS
corresponding to a large number of iterations is linear. In practice, one
often performs just a few iterations, thereby implicitly imposing a form
of regularization on the reconstructed image. As we will demonstrate
in Sect. 5.4.1, CGLS is not linear in this case, but a linear model can be
used as an approximation.

5.2.2.2 EM

Expectation Maximization (EM) aims at finding the reconstruction that
is most likely to result in the measured projection data, where the
measurements have been perturbed by Poisson noise. The detected
photon counts in an X-ray scanner follow such a distribution. The re-
construction that maximizes the likelihood then satisfies Eq. (5.6) [2,
30];

û = ûWT e
−Wû

e−p
, (5.6)

where W has column sum 1 and the arithmetic operations are per-
formed element wise [28, 31]. Here, we focus on a straightforward
Expectation Maximization method that iteratively solves Eq. (5.6). For
a nonzero start solution u0, the (k+ 1)th iteration of the multiplicative
algorithm EM is given by Eq. (5.7);

uk+1 = ukWT e
−Wuk

e−p
. (5.7)
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Note that in practice, regularization is often employed to make the
method more stable [28].

5.3 algebraic filters for fbp

We now briefly discuss the AF-FBP approach for linear algebraic recon-
struction methods, followed by our adaptation to make this method
applicable to nonlinear algebraic reconstruction methods.

5.3.1 The Linear Case

In [15], a method is presented to create filters for FBP based on a linear
algebraic reconstruction method (LARM) of choice. The reconstructi-
ons of FBP with these filters approximate the reconstruction quality of
the LARM. As explained in Sect. 5.2.2, a linear reconstruction method
can be represented by the reconstruction matrix R. The value uc of a
single pixel c ∈ {1, . . . ,n} in the reconstruction u = Rp is given by

uc =
∑
θ∈Θ

∑
t∈T

r
(c)
θt pθt, (5.8)

where r(c)θt is the entry of R in row c and column θt.
Define the center of pixel c as (xc,yc) ∈ R × R, and let t(θ)c =

xc cos θ+ yc sin θ for θ ∈ Θ. Define the function h(c) by

h(c)(θ, τ) = r(c)
θ(τ+t

(θ)
c )

, (5.9)

where (θ, τ) ∈ (Θ× (T − t
(θ)
c )). Then we can write uc as

uc =
∑
θ∈Θ

∑
t∈T

h(c)(θ, t− t(θ)c )pθt. (5.10)

Note that the formulas are valid for any set of projection data, either
consistent (i.e. in the range of the Radon transform) or inconsistent.
Comparing Eqs. (5.3) and (5.10) shows that h(c) acts as a filter on
the projection data for pixel uc. This filter is called an algebraic filter,
and is determined by calculating the impulse response of pixel c for
all the detector positions θt. Similarly, we can create filters for the
other pixels in the image domain. It is reasonable to expect that these
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filters resemble h(c), at least for pixels in a neighborhood of uc. As
shown in [15], applying the algebraic filter of uc to all the pixels in the
image results in a reconstruction quality that is comparable to that of
the LARM used to create the filter. This method is known as AF-FBP
with the algebraic filter h(c). Note that in practice, one uses a Fourier
convolution operation to evaluate the result of applying the filter to
the projection data.

5.3.2 The Nonlinear Case

Nonlinear algebraic reconstruction methods (NLARMs) are used in
many applications of computed tomography. As with linear recon-
struction methods, a disadvantage of these methods is their expensive
computational cost. If the AF-FBP approach as described in Sect. 5.3.1
could be applied, then this would lead to a method with relatively low
computational cost that approximates the NLARM.

The method described in Sect. 5.3.1 requires linearity of the recon-
struction operator R (see Sect. 5.2.2), which is clearly not satisfied for
general NLARMs. We now introduce a variant of AF-FBP that can be
applied to NLARMs, provided that the NLARM behaves locally as a
linear transformation. We say that a reconstruction method is locally
linear if for a set of projections p ∈ Rm and a small perturbation
∆p ∈ Rm, there exists a linear transformation Lp : Rm → Rn such
that

R(p+∆p) ≈ R(p) + Lp∆p. (5.11)

As the matrix Lp can be seen as a linear reconstruction method that
reconstructs the perturbation of the projection data with respect to the
projection data p, we can approximate this method by FBP with an
appropriately chosen filter h(c).

A difference with the filter method for the linear case is the depen-
dence of the matrix Lp on the projection data p. For every new set
of projections p the matrix Lp changes and the filter h(c) has to be
recalculated. In certain practical applications, in particular in indus-
trial tomography, a blueprint of the scanned object is already available,
while one aims to reconstruct the deviations from this blueprint. In
this case, the measured projection data pm is the superposition of the
forward projection pb of this blueprint and the forward projection of
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the variation, denoted by ∆p. The reconstruction v = R(pm) is then
given by v = R(pb + ∆p). Since R is a locally linear transformation,
there exists a matrix Lpb ∈ Rm×n such that v ≈ R(pb) +Lpb∆p. Note
that Lpb is independent of the perturbation ∆p.

In the remainder of this chapter we will refer to the known image
as the blueprint image. An example of a blueprint image is the cross-
section of a turbine blade. Variations on this blueprint are cracks, holes
or local variations in density, while the general shape and size of the
blade is equal to that of the blueprint.

For these locally linear transformations we can create a filter with a
similar method as described in Sect. 5.3.1 for linear algorithms. Instead
of calculating an impulse response as in the linear case, we now cal-
culate a local derivative around pb, because Lpb depends on pb and
acts on the perturbation ∆p. Hence for a given pixel c, we calculate the
filter values at θ ∈ Θ, t ∈ T as stated in Algorithm 1.

Algorithm 1: Calculate filters for locally linear algebraic recon-
struction algorithms
Data: R : Rn → Rm an NLARM,

pb ∈ Rm the projection data of a blueprint image,
Θ the set of all projection angles,
T the set of all detector pixels.

Result: The algebraic filter h(c) corresponding to R for pb.
begin

Choose a pixel c in the image
Define (xc,yc) ∈ R×R the center of pixel c
Define eθt the unit vector with value 1 at entry θt for
θ ∈ Θ, t ∈ T

for θ ∈ Θ do
for t ∈ T do

l
(c)
θt = [R(pb + eθt)]c − [R(pb)]c

end
Define t(θ)c = xc cos θ+ yc sin θ
Define h(c) for τ ∈ T − t(θ)c by h(c)(θ, τ) = l(c)

θ(τ+t
(θ)
c )

end
end
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This filter h(c) can be used in FBP in the same way as the (angle
dependent) standard filters and the filters for the linear algebraic re-
construction methods. The implementation of AF-FBP for NLARM is
stated in Algorithm 2. We will refer to this algorithm as nlAF-FBP. In
cases where the distinction between the linear and nonlinear variant
of AF-FBP is not relevant for the discussion, we use the general term
AF-FBP.

Algorithm 2: Applying the AF-FBP filters for NLARM
Data: BP : Rn → Rm the unfiltered backprojection operation,

R : Rn → Rm an NLARM,
pm ∈ Rm the measured projection data,
pb ∈ Rm the projection data of the blueprint image,
Θ the set of all projection angles,
T the set of all detector pixels.

Result: Reconstruction v ∈ Rn.
begin

// Calculate the perturbation ∆p

∆p = pm −pb
for θ ∈ Θ do

// Apply the angle dependent algebraic

filter h(c) on ∆p

p̃ =
∑
τ∈T h

(c)(θ, τ− t(θ)c )∆pθτ
end
v = R(pb) +BP(p̃)

end

5.4 experiments

To examine the performance of the nlAF-FBP method, a series of com-
putational experiments has been carried out based on simulated pro-
jection data. Validating the approach is not straightforward, as the re-
construction accuracy depends not only on the algebraic method and
its parameters, but also on the blueprint image and the scanned ob-
ject. We have chosen to focus on five key-aspects: (i) to verify that the
selected nonlinear algebraic methods indeed exhibit locally linear be-
havior; (ii) to demonstrate the image quality of the nlAF-FBP approxi-
mation for a set of realistic differences between blueprint and scanned
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(a) Cylinder head (b) Turbine blade (c) Shepp-Logan (d) Mandible

Figure 5.1: The blueprint images.

object; (iii) to investigate robustness with respect to noise; (iv) to deter-
mine robustness with respect to image registration errors between the
scanned object and the blueprint; and (v) to investigate the robustness
with respect to beam hardening artefacts.

As blueprint images, we consider both binary images and blueprints
having continuous grey levels. They are shown in Fig. 5.1 and corre-
spond to (5.1a) a cross-section of a cylinder head, (5.1b) a cross-section
of a turbine blade, (5.1c) the well-known Shepp-Logan phantom, and
(5.1d) a cross-section of a mandible. All the blueprint images are de-
fined on a grid of 2044×2044 pixels. The cylinder head and turbine
blade phantoms are representative for inspection tasks in industrial
tomography, which we consider the primary application target of our
nlAF-FBP approach. The Shepp-Logan and mandible phantom have
been added to demonstrate how the algorithm performs for objects
with multiple and continuous grey levels, respectively.

Real-world objects can typically not be represented on a pixel grid.
To approximate the continuous nature of real objects, the reconstructi-
ons are performed on a coarser grid, where four phantom pixels corre-
spond to one pixel in the reconstruction grid. The projection data are
computed based on a detector of 511 bins with a width of four image
pixels per bin. We use an equiangular parallel beam geometry with
a relatively small number of 64 projections, varying between 0 and
180 degrees, as this is a scenario where algebraic methods typically
are preferred over Filtered Backprojection. We use the strip model to
determine the contribution of each image pixel to a projection ray [26].

The following reconstruction methods are used in the computational
experiments:
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algebraic reconstruction methods

cgls Conjugate Gradient Least Squares; see Sect. 5.2.2.1. The
start solution in Eq. (5.5) is u0 = 0. The total number of iterati-
ons is K = 10.

em Expectation Maximization; see Sect. 5.2.2.2. The start solution
in Eq. (5.7) is u0 = 1. The total number of iterations is given by
K = 50.

filtered backprojection methods

fbp-rl , fbp-hann, fbp-cos Filtered Backprojection with the
standard Ram-Lak, Hann and Cosine filters; see Sect. 5.2.1.

nlcgls-fbp Filtered Backprojection with an algebraic filter ba-
sed on CGLS with 10 iterations. The filter coefficients for the
central pixel in Alg. 1 are used to create the filter.

nlem-fbp Filtered Backprojection with an angle-dependent alge-
braic filter based on EM with 50 iterations. For every blueprint
image a non-zero pixel close to the central pixel in Alg. 1 is se-
lected to calculate the filter coefficients.

For nlCGLS-FBP and nlEM-FBP, the algebraic filters are applied to
the perturbation ∆p as described in Alg. 2 to obtain the AF-FBP re-
constructions. For FBP with standard filters (FBP-RL, FBP-Hann, FBP-
Cos), the filters are applied to the measured projection data.

To quantify the quality of the reconstructed images, we consider
two error measures: the deviation from the phantom itself (i.e. the
unknown ground truth) and the deviation from a reconstruction obtai-
ned by the algebraic method that one tries to approximate. To com-
pare the reconstructions to the phantom, the reconstruction is upsam-
pled by a factor 4, replacing each reconstruction pixel by a block of
4×4 pixels with the same value. We denote this enlarged image of
2044×2044 pixels by û = (ûij) ∈ Rn

2
with n = 2044. We define the

mean reconstruction error Er by

Er =

∑
i,j

|ûij − vij|∑
i,j
vij

, (5.12)
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where v = (vij) ∈ Rn
2

denotes the phantom. The mean ARM recon-
struction error EARM

r is computed similarly, yet the reconstruction is
compared to the ARM reconstruction (either CGLS or EM) instead
of the phantom. Our approach is designed to approximate the under-
lying nonlinear algebraic method, so ideally the ARM reconstruction
error will be small, while the reconstruction error with respect to the
phantom can still be considerable.

5.4.1 Local Linearity

The validity of the proposed approach is based on the assumption that
nonlinear tomographic reconstruction methods exhibit approximately
linear behavior in the vicinity of the blueprint image. We performed
a set of experiments to validate this assumption. In these experiments,
the value of a single pixel in the reconstruction is monitored while a
perturbation of increasing norm is introduced in the projections. If the
reconstruction method is locally linear, the value of this pixel should
also depend linearly on the magnitude of the perturbation.

We examined this property for CGLS and EM by considering two
sets of projection data p, q, for the blueprint and the scanned object
respectively. The perturbation ∆p ∈ Rn in Eq. (5.11) is defined as
λ(q− p) with λ ∈ [0, 1]. We compute both R(p) + λ(R(q) −R(p)) and
R(p+ λ(q− p)) for every value of λ ∈ [0, 1] and compare the results
for a particular pixel (located in the interior of the phantom) in the
reconstruction.

Figure 5.2 shows the grey level of this pixel as a function of the
parameter λ, for CLGS and EM in two scenarios: (i) a disk-shaped gap
of grey level 0 and radius 50 pixels is introduced in the cylinder head
phantom, creating an artifical gap; the observed pixel is included in
this disk. (ii) The images p and q are completely different; p is the
Shepp-Logan phantom, whereas q is the cylinder head phantom.

The results are visualized using a blue (dotted) curve and a red
(solid) line. The red line corresponds to the pixel value of R(p) +

λ(R(q) −R(p)), and the blue curve corresponds to the pixel value of
R(p + λ(q − p)), for λ ∈ [0, 1] variable. Large deviations of the blue
curve from the red line imply that the corresponding reconstruction
method does not behave locally as a linear function.
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(a) CGLS (b) EM

(c) CGLS (d) EM

Figure 5.2: Plots of the local linearity for a particular image pixel; if the algo-
rithm is locally linear, the blue and red lines should coincide. (a-b)
deviation is a black disk of radius 50; (c-d) true object is comple-
tely different from blueprint.

Although these results depend on the particular pixel for which the
grey value is plotted, they illustrate general observations about the
two algorithms that we found in a broad set of observed pixels: (i)
the CGLS algorithms shows almost perfectly linear behavior for small
perturbations and close-to-linear behavior for large deviations; (ii) the
EM algorithm clearly shows nonlinear behavior already for small de-
viations, although it may still be sufficiently linear for our purpose; for
large deviations, EM exhibits strongly nonlinear behavior.

5.4.2 Variations with cracks

To evaluate how the nlAF-FBP approach performs for realistic devia-
tions between the blueprint and the scanned object, we now consider
the cylinder head and turbine blade phantoms, which resemble objects
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(a) (b) (c) (d)

Figure 5.3: Example from each of the four categories of crack images: (a) cy-
linder head (broad); (b) cylinder head (narrow); (c) turbine blade
(broad); (d) turbine blade (narrow).

that are common in the field of nondestructive testing. Four sets of test
images have been manually created by introducing artificial cracks to
the phantom objects. For each of the two objects, a set of broad cracks
was created, as well as a set of narrow cracks. Each set consists of six
images. An example for each set is shown in Figure 5.3, where the
crack is magnified in the left corner.

In Table 5.1 we show the mean ARM reconstruction errors (i.e.
compared to either CGLS or EM) over each of the four sets, for
the proposed nlAF-FBP method vs. FBP with three standard filters
(FBP-Cos, FBP-Hann, and FBP-RL). We observe that the mean ARM
reconstruction error for nlCGLS-FBP is very small compared to FBP
with standard filters. For nlEM-FBP the approximation of EM is not
as good compared to CGLS, but the ARM reconstruction errors are
still substantially smaller than those of FBP with standard filters for
all cracks examined.

An illustration of the results for a particular testcase is shown in Fi-
gure 5.4. In all images, the box in the left corner contains a zoomed ver-
sion of the crack. We first note that a standard Filtered Backprojection
reconstruction without the use of a blueprint object (Fig. 5.4a) clearly
shows the crack, yet also contains a considerable number of streak ar-
tefacts, making it difficult to distinguish between defects and artefacts.
The CGLS (Fig. 5.4b) and EM (Fig. 5.4d) reconstructions are less prone
to such artefacts. For both CGLS and EM, the nlAF-FBP reconstruction
is visually very similar to the result of the algebraic method, whereas
the FBP-Cos method yield quite different results. We observed similar
results using other standard FBP filters.
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Class nlAF-FBP FBP-Cos FBP-Hann FBP-RL

CGLS

Cylinder head
(broad)

1.7e-3
(7.5e-4)

1.9e-2
(1.7e-3)

1.6e-2
(1.6e-3)

2.6e-2
(2.1e-3)

Cylinder head
(narrow)

4.0e-4
(1.1e-4)

6.4e-3
(8.3e-4)

4.9e-3
(6.1e-4)

1.1e-2
(1.4e-3)

Turbine blade
(broad)

4.7e-3
(3.0e-3)

4.7e-2
(1.9e-2)

3.9e-2
(1.5e-2)

6.9e-2
(3.3e-2)

Turbine blade
(narrow)

8.4e-4
(3.1e-4)

1.3e-2
(3.5e-3)

1.0e-2
(2.7e-3)

2.3e-2
(5.9e-3)

EM

Cylinder head
(broad)

6.8e-3
(1.2e-3)

6.4e-1
(9.3e-4)

6.0e-1
(8.4e-4)

7.2e-1
(1.1e-3)

Cylinder head
(narrow)

1.9e-3
(2.1e-4)

6.4e-1
(1.6e-4)

6.0e-1
(1.3e-4)

7.2e-1
(2.7e-4)

Turbine blade
(broad)

2.8e-2
(1.4e-2)

8.8e-1
(3.2e-3)

8.3e-1
(2.7e-3)

9.8e-1
(4.5e-3)

Turbine blade
(narrow)

5.9e-3
(1.9e-3)

8.7e-1
(4.6e-4)

8.2e-1
(3.4e-4)

9.7e-1
(8.8e-4)

Table 5.1: Mean ARM reconstruction errors for the different categories of
cracks, for the different reconstruction methods. For each set of ex-
periments, the mean ARM reconstruction error is shown in black,
and the standard deviation (over 6 crack images) in light grey.

We emphasize that the goal of our approach is to provide an accu-
rate approximation of the algebraic method, which is not necessarily
the same as providing the most accurate reconstruction. The results of
Table 5.1 and Fig. 5.4 demonstrate that indeed the nlCGLS-FBP and
nlEM-FBP methods provide a reconstructed image highly similar to
the respective CGLS and EM reconstructions.

5.4.3 Robustness with respect to noise

So far, the projection data used in the experiments was noiseless. Since
real (i.e. measured) datasets often contain noise, we also examine the
robustness of nlAF-FBP with respect to noise. We applied Poisson
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Figure 5.4: Illustration of reconstruction results for a broad crack in the cy-
linder head; (a) FBP-Cos, without using a blueprint, (b) CGLS, (c)
nlCGLS-FBP, (d) EM, (e) nlEM-FBP. The images (c) and (e) are ba-
sed on reconstruction of the difference between the object and the
blueprint.

noise to the projection data by first transforming the Radon transform
data into photon counts (using the exponential function), subsequently
generating noisy photon count by drawing from a Poisson distribution
for each detector value, and then using the logarithm to convert the
noisy data back to linearized projection data. Note that the resulting li-
nearized projections can contain negative values, which are set to 0. In
the results, the noise level is indicated by I0, the photon count measu-
red at a detector pixel without an object between source and detector
(higher value means less noise). Fig. 5.5 shows a series of examples
of reconstructed images for the mandible and turbine blade phantoms.
Fig. 5.6 shows the mean reconstruction error and mean ARM recon-
struction error for the mandible phantom as a function of noise level,
averaging the results over a large number of noise realizations.

By visually comparing the reconstructions in Fig. 5.5, we notice that
nlCGLS-FBP handles noisy projection data well compared to FBP with
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(a) Blueprint (b) FBP-Hann (c) FBP-Cos (d) FBP-RL

(e) CGLS (f) nlCGLS-FBP (g) EM (h) nlEM-FBP

(i) Blueprint (j) FBP-Hann (k) FBP-Cos (l) FBP-RL

(m) CGLS (n) nlCGLS-FBP (o) EM (p) nlEM-FBP

Figure 5.5: Reconstructions for the mandible and turbine phantom with
noisy projection data; (a)-(h): I0 = 105, (i)-(p): I0 = 106.

a standard filter. This is confirmed by the corresponding reconstruction
errors, where the accuracy of nlCGLS-FBP is similar to that of the
CGLS reconstructions. The accuracy of nlEM-FBP is also much bet-
ter than that of FBP with standard filters, but it is not as close to EM as
nlCGLS-FBP is to CGLS. It is, however, a good approximation of EM



5

106 5 algebraic filters for nonlinear methods

(a) CGLS, Er (b) EM, Er

(c) CGLS, EARM
r (d) EM, EARM

r

Figure 5.6: Mean reconstruction error with either the original phantom (Er)
or the ARM reconstruction (EARM

r ) for the mandible phantom with
varying Poisson noise levels I0 applied to the projection data.

based on the results of EARM
r . We observe similar results for the other

phantoms and for other numbers of projection angles.
Hence in case of noisy projection data, nlAF-FBP yields results that

approximate the NLARM well for both CGLS and EM, yet a more accu-
rate approximation is observed for CGLS compared to EM. Compared
to FBP using standard filters, the nlAF-FBP method (for both CGLS
and EM) yields reconstruction with a strongly reduced noise level.

5.4.4 Robustness with respect to registration errors

Even if a blueprint of the scanned object is available, there may be
registration errors between the scanned object and the blueprint, in ad-
dition to the deviations of the actual object structure. To examine the
effect of such errors on the reconstruction accuracy of the AF-FBP met-
hod, we performed a series of experiments where the scanned object
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(a) CGLS (b) EM

Figure 5.7: Mean reconstruction error with the rotated phantom (Er) for the
Shepp-Logan phantom.

is obtained by rotating the blueprint around its center. The rotations
are denoted by the number of degrees, where a positive number cor-
responds to a rotation clockwise and a negative number to a rotation
counterclockwise.

In Fig. 5.7 the mean reconstruction error is shown for the Shepp-
Logan phantom. For small rotations of at most a few degrees, nlCGLS-
FBP is almost as accurate as CGLS. Using FBP with standard filters
to obtain reconstructions results in considerably higher reconstruction
errors. The nlEM-FBP is less tolerant to registration errors and becomes
less accurate than EM already for rotations of 1 degree. We observed
similar results for the other phantoms.

5.4.5 Beam hardening

The previous experiments have been conducted using a monochroma-
tic X-ray beam. For a monochromatic beam, the law of Lambert-Beer
states that the measured projections (after log-correction) increase line-
arly with the thickness of a homogeneous object. In practice, however,
a polychromatic X-ray beam is often used and the measured projecti-
ons depend on the thickness of the object in a nonlinear way, resulting
in beam hardening artefacts [2]. Especially for objects with metal parts,
such as the cylinder head phantom and turbine blade phantom, beam
hardening should be taken into account.

We performed a series of experiments to determine the behaviour
of the nlAF-FBP method when the projection data are obtained using
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(a) Blueprint (b) CGLS (c) nlCGLS-FBP (d) FBP-Hann

Figure 5.8: Reconstructions of the cylinder head phantom with a broad crack.
Note that the subfigures (b)-(d) have a different grey level range
compared to the phantom, to provide a more clear visualization
of the beam hardening artefacts.

Class nlCGLS-
FBP

FBP-Cos FBP-Hann FBP-RL

CGLS

Cylinder head
(broad)

1.7e-3
(4.8e-4)

2.7e-1
(3.2e-4)

2.4e-1
(2.7e-4)

3.4e-1
(4.3e-4)

Cylinder head
(narrow)

9.9e-4
(5.2e-5)

2.7e-1
(5.5e-5)

2.4e-1
(4.5e-5)

3.4e-1
(9.8e-5)

Turbine blade
(broad)

1.3e-1
(4.8e-4)

3.4e-1
(1.2e-3)

3.0e-1
(1.0e-3)

4.2e-1
(1.9e-3)

Turbine blade
(narrow)

1.3e-1
(5.4e-5)

3.3e-1
(1.7e-4)

2.9e-1
(1.2e-4)

4.1e-1
(4.7e-4)

Table 5.2: Mean ARM reconstruction errors for the different categories of
cracks for CGLS, using a polychromatic X-ray beam. For each set of
experiments, the mean ARM reconstruction error is shown in black,
and the standard deviation (over 6 crack images) in light grey.

a polychromatic source. For the sake of brevity, we focus here on the
CGLS algorithm. To simulate beam hardening, we apply the correla-
tion between material thickness and attenuation as found by [32]. The
reconstructions are shown in Fig. 5.8. The corresponding mean ARM
reconstruction errors for CGLS for both the cylinder head phantom
and the turbine phantom are shown in Table 5.2.

We observe that also for a polychromatic X-ray beam the mean
ARM reconstruction error for nlCGLS-FBP is smaller than that of FBP
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with standard filters. Hence nlCGLS-FBP reconstructions resemble the
CGLS reconstruction better than reconstructions of FBP with standard
filters.

5.5 discussion and conclusions

We have presented a novel approach for computing algebraic filters
that can be used in FBP. With these filters we can approximate alge-
braic reconstruction methods with the computational efficiency of filte-
red backprojection. Contrary to the original AF-FBP method, which re-
quires the underlying algebraic reconstruction method to be linear, our
new approach is aimed at approximating nonlinear reconstruction met-
hods, provided that they exhibit local linearity for reconstructions close
to a given blueprint image. We experimentally investigated this local li-
nearity property for two nonlinear methods: Conjugate Gradient Least
Squares with a small number of iterations, and Expectation Maximi-
zation. The results show that while for CGLS the local linearity as-
sumption is satisfied quite well, EM shows significant deviations from
linear behavior. Using our approach for computing filters that act on
the difference between the measured projection data and the projections
of the blueprint, we performed experiments to assess the capabilities
of our algorithm for both CGLS and EM. For CGLS, our approach re-
sults in reconstructions that are highly similar to the result of applying
CGLS directly to the measured data, while reducing the computation
cost to that of applying FBP (once the pre-processing has been done).
The variations can be confined to small regions (such as cracks), but
moderate registration errors with respect to the blueprint image are
also tolerated well. These results are not restricted to monochromatic
beams. Also for polychromatic beams nlCGLS-FBP approximates the
reconstruction accuracy of CGLS. For the EM algorithm, which has a
stronger nonlinear nature, the results are mixed. Noisy projection data
and cracks are in general handled well. For variations concerning the
whole blueprint image, such as rotations, the approximation accuracy
of nlEM-FBP degrades. Hence in several scenarios the nonlinear alge-
braic filter approach yields more accurate reconstructions than using
a standard filter for FBP, but there are also cases where it fails. Investi-
gating the exact conditions under which our method is favorable, and
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also the influence of the pixel location for which the filter is computed,
will require further research.

Compared to FBP, algebraic methods are more suitable for limited-
data scenarios. The ability to approximate the results of slow, nonlinear
algebraic methods using very fast FBP methods opens up the possi-
bilities of reducing the acquisition time, while keeping reconstruction
quality constant. As already discussed in [15], computing the algebraic
filters is computationally highly demanding, as it requires one to carry
out a large number of ARM reconstructions (one per detector element).
Even when using a moderately sized GPU cluster, the computation of
a new filter may take a full day of computation time, based on the im-
plementation in [33]. As outlined in [15], the computational load can
sometimes be considerably reduced by angle independent filters.

The computational overhead for calculating a set of filters for a blue-
print becomes cumbersome when the blueprint changes frequently.
The presented method is therefore especially suitable for nonde-
structive testing and inspection of a small range of industrial objects,
for which blueprints are readily available. In situations where alge-
braic reconstruction methods are preferred over FBP with standard
filters, such as a limited range of available projection angles, the exten-
sive computation time can be a bottleneck in the testing process. For
scenarios where a large number of similar objects must be scanned,
the nlAF-FBP approach allows for very fast – or even real-time – re-
construction of batches of objects once the filters have been computed.
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F I LT E R E D B A C K P R O J E C T I O N U S I N G A L G E B R A I C
F I LT E R S ; A P P L I C AT I O N T O B I O M E D I C A L
M I C R O - C T D ATA

Abstract – For computerized tomography (CT) imaging in (bio)-
medical applications, radiation dose reduction is extremely important.
This can be achieved simply by reducing the number of projection
images taken. In order to obtain accurate reconstructions from few pro-
jections, however, common reconstruction techniques are not sufficient.
Algebraic reconstruction methods (ARMs) are often more suited, but
inflict a much higher computational burden. In this work, a recently
proposed method is applied to biomedical µCT, in which the benefits
of ARMs are combined with the computational efficiency of the com-
mon Filtered Backprojection (FBP) algorithm. Our experimental results
demonstrate that this approach yields reconstructed images highly si-
milar to those obtained by an ARM, while maintaining the favorable
computational efficiency of FBP.

This chapter has been published with minor modification as: L. Plantagie et al. Filtered
Backprojection using Algebraic Filters; Application to Biomedical Micro-CT Data. In-
ternational Symposium on Biomedical Imaging. 2015: 1596–1599. This publication is avai-
lable through http://dx.doi.org/10.1109/ISBI.2015.7164185. © 2015 IEEE.
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6.1 introduction

Computerized tomographic (CT) imaging has many applications in clini-
cal settings, in (bio)medical research, and in industry. In this chapter,
we focus on the biomedical imaging task. For example, in osteoporo-
sis research, reconstructions from µCT scanners are commonly used
to perform a longitudinal analysis on the bone structures of small ani-
mals subjected to some form of treatment [1]. Due to the harmful na-
ture of X-rays, radiation dose reduction is an important research goal
for the community. One common way of reducing radiation is simply
to take fewer projection images. This requires reconstruction methods
that can handle such datasets well.

Two main types of reconstruction methods exist in the literature.
Analytical reconstruction methods are based on a discretization of an ex-
act inversion formula for the reconstruction problem. Well-known met-
hods of this type are Filtered Backprojection (FBP) and Feldkamp-David-
Kress (FDK). These methods perform a filtering step of the measured
data in the Fourier space with a predefined filter. Many standard fil-
ters are known from literature, such as the Ram-Lak, Hann and Cosine
filter [2]. The optimal filter depends on the characteristics of the pro-
jection data, such as the signal to noise ratio and the number of pro-
jection angles. The main advantage of analytical methods is their high
computational efficiency, which is why they are offered in nearly all
commercial CT-scanner packages [3]. The downside of these methods,
however, is their inflexibility to special scanning geometries and its in-
ability to deal with insufficient data (e.g. when only few projections
images are available).

Algebraic reconstruction methods (ARM) are typically much more ro-
bust with respect to incomplete or noisy projection data, due to their
inherent ability to model the actual projection geometry of the scan-
ning device. ARMs, such as SIRT, ART and CGLS [4], which compute
a reconstruction by applying a sequence of update iterations, generally
converge to a solution that is optimally consistent with the measu-
red data, with respect to some norm. The drawback of these methods
is their heavy computational burden compared to analytical methods.
Moreover, the rapid improvement in detector technology is leading to
ever larger volume sizes (i.e. higher resolution reconstructions) much
faster than the advances in computational hardware can keep up with.
Ideally therefore, one would like to combine the computational requi-
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(a) Rat femur (b) Mouse thorax

Figure 6.1: FBP reconstructions of two µCT scans using (a) 360 projection
angles; (b) 225 projection angles.

rements of analytical methods with the robustness of algebraic met-
hods. In [5], a method was described for developing filters for analy-
tical methods that are based on the convergence behavior of a linear
ARM. The reconstructions of FBP with these filters approximate the
reconstructions of the corresponding ARM.

Many other methods have been developed to create optimal filters
for FBP. Here, we mention only some recent work in the field. In [6],
Zeng derives a filter in the frequency domain based on the Landweber
algorithm. Nielsen et al. derive filters specifically for a tomosynthe-
sis geometry [7]. Pelt and Batenburg use artificial neural networks to
find good filters based on prior knowledge for datasets with a small
number of projection angles [8]. They also provide a method to find
filters such that the projection error is minimal [9]. In [10], Kunze et
al. describe a method that also approximates an ARM. Opposed to
the method described in [5], Kunze et al. need objects to obtain their
filters.

In this chapter, we will apply the method from [5] to two sets of
biomedical µCT data, that are acquired from a rat femur and a mouse
thorax respectively. We aim to show the resemblance between SIRT and
FBP that is obtained by using the custom filters from [5]. Reconstructi-
ons of the scanned objects using many projection angles are shown in
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Fig. 6.1, where a display range was chosen to enhance visibility. The
same range is used for all reconstructions in this chapter.

This chapter is structured as follows. In Sec. (6.2), the method from
[5] is briefly described. Sec. (6.3) contains information on acquiring the
experimental data and the experiments that are performed. The results
are shown in Sec. (6.4). We discuss our findings and conclude this chap-
ter in Sec. (6.5).

6.2 the af-fbp method

This section contains a brief discussion of the Algebraic Filter - Filtered
Backprojection (AF-FBP) reconstruction method. We first consider the
Filtered Backprojection method and then explain the reasoning behind
creating filters based on a linear ARM. For simplicity, we consider only
a 2D parallel beam setup, but the concepts can be extended to other
geometries as well.

FBP is a discretization of the inverse Radon transform, where the
projection data p is filtered by a filter g and then backprojected. The
filter g : R2 → R can be chosen freely, depending on the experimental
setup. The reconstruction formula for FBP is given by Eq. (6.1).

f(x,y) =
∑
θ∈Θ

∑
τ∈T

pθτg(θ, τ− x cos θ− y sin θ), (6.1)

where f : R2 → R is the unknown image, Θ denotes the set of pro-
jection angles, T denotes the set of detector bins and p ∈ Rm with
m = |Θ| · |T |.

The AF-FBP method generates angle-dependent filters g based on
the convergence of a linear ARM [5]. For this chapter we use the itera-
tive method SIRT. Since SIRT is a linear, stationary Richardson solver,
there exists a reconstruction matrix R : Rm → Rn such that, for a fixed
number of K iterations, the reconstruction u ∈ Rn of SIRT is given by
u = Rp. By writing this equation element wise for a certain pixel c of
u, we obtain Eq. (6.2).

uc =
∑
θ∈Θ

∑
τ∈T

r
(c)
θτ pθτ, (6.2)

where r(c) denotes the cth row of R.
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Let the coordinates of the center of pixel c be denoted by (xc,yc) ∈
R×R, then t(θ)c = xc cos θ+ yc sin θ is the projection of pixel c on the
detector at angle θ. For a variable τ ∈ T − t(θ)c , where the minus sign
denotes element wise subtraction, we define a function h(c) : Rm → R

by Eq. (6.3).

h(c)(θ, τ) = r(c)
θ(τ+t

(θ)
c )

. (6.3)

Combining Eq. (6.2) and Eq. (6.3) yields the formula in Eq. (6.4).

uc =
∑
θ∈Θ

∑
τ∈T

pθτh
(c)(θ, τ− xc cos θ− yc sin θ). (6.4)

Hence for the central pixel c, the role of function h(c) equals that of
the filter g in Eq. (6.1). It has been shown in [5] that, for pixel c being
the pixel at the center of the image grid, the use of the function h(c)

as a filter in the FBP method yields a good approximation of the linear
ARM. We refer to h(c) as an algebraic filter.

Each coefficient of the algebraic filter can be obtained by applying
SIRT to projection data p that equals a unit vector eθτ, with entry one
on position θτ and zero otherwise. The resulting image pixel uc will
then equal r(c)θτ ; see also Eq. (6.2). After applying this step for all unit
vectors eθτ with θ ∈ Θ and τ ∈ T , the algebraic filter h(c) can now be
deduced from r(c) by using Eq. (6.3).

The algebraic filter h(c) can be applied to projection data in the same
way as standard filters that are often used for FBP.

6.3 experiments

In this section, we describe experiments that we performed and define
the measure that we use to examine the image quality of the recon-
structions.

We consider the central slices of the two datasets depicted in Fig. 6.1.
As the method AF-FBP is deduced for a parallel beam scanning ge-
ometry, the central slices were rebinned to parallel beam projection
data. The first dataset concerns an ex-vivo scan of a rat femur, cross-
sectioned at the epiphyseal plate, an area of interest for femur research.
In total, 376 projection images were taken with a resolution of 5µm in
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(a) SIRT (b) FBP-Hann

Figure 6.2: Reconstructions of femur projection data with 60 projection an-
gles and SIRT with K = 50 iterations.

a Bruker µCT SkyScan 1172 scanner running at 40kV. The second data-
set concerns an in-vivo scan of a mouse, cross-sectioned at the thorax.
Its 451 projections of resolution 34µm were taken in a Bruker µCT
SkyScan 1076 system running at 59kV. For both datasets, the SkyScan
NRecon software was used for data preprocessing and beam harde-
ning correction. To emulate low dose scans, we selected 45 and 60

projection angles from both scans.
In the experiments, we apply the SIRT-FBP method (FBP with an

algebraic filter based on SIRT) to the above mentioned datasets. The
aim of SIRT-FBP is to approximate the SIRT reconstruction. We will
first consider the reconstructions of SIRT and FBP with a standard
filter. They are shown for the femur dataset in Fig. 6.2, where SIRT
is performed with K = 50 iterations and the Hann filter is chosen as
the standard filter for FBP. The reconstructions of SIRT and FBP-Hann
(FBP with a standard Hann filter) have characteristic imaging features.
The SIRT reconstruction is a smoothed image, while the FBP-Hann
reconstruction contains extensive streaking artifacts. Furthermore, the
heavy computational burden of SIRT can be a reason to choose FBP,
even when a researcher would favor the reconstruction quality of SIRT
over FBP. In those situations, SIRT-FBP could be applied, which yields
an approximation of SIRT with comparable computation time as FBP
with standard filters.



6

6.4 results 121

In all experiments, the number of detector bins is D = 799. The
reconstruction grid is a square, consisting of D×D pixels of unit size.
The number of iterations for SIRT is K = 50, unless stated differently.
The forward projections that are needed to execute SIRT are obtained
using the Joseph kernel [11]. For the calculations in this chapter we
use the ASTRA toolbox [12].

6.3.1 Quality measure

The quality of the reconstructions is examined by comparing the recon-
structions with the SIRT reconstruction, since the aim of SIRT-FBP is
to approximate SIRT. The reconstructions are compared on the recon-
struction grid of D×D pixels. Denote a reconstruction by u = (ukl)

with 1 6 k, l 6 D. Furthermore, let the algebraic reconstruction be
denoted by uARM = (uARM

kl ). Then the mean ARM reconstruction error is
defined as

EARM
r =

∑
k,l

|ukl − u
ARM
kl |∑

k,l
uARM
kl

. (6.5)

Hence EARM
r is an L1-norm in the object space combined with a scaling

term. We assume that the set of projection data is nonnegative and that
uARM is nonzero.

6.4 results

In this section, we show the results of the experiments described in
Sec. (6.3). We emphasize that the purpose of AF-FBP is to approximate
the quality of the corresponding ARM reconstructions, instead of im-
proving the overall reconstruction quality.

In Fig. 6.3 we show the reconstructions of the femur dataset for SIRT,
SIRT-FBP, FBP-RL (FBP with a standard Ram-Lak filter) and FBP-Cos
(FBP with a standard Cosine filter). The number of projection angles
is d = 60 and the number of SIRT iterations is K = 50. For the recon-
struction of FBP-Hann (FBP with a standard Hann filter) we refer to
Fig. 6.2. Notice the resemblance between the SIRT and SIRT-FBP recon-
struction, and the streak artifacts for FBP-RL and FBP-Cos which are
much more pronounced.
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(a) SIRT (b) SIRT-FBP

(c) FBP-RL (d) FBP-Cos

Figure 6.3: Reconstructions of femur projection data with 60 projection an-
gles and SIRT with K = 50 iterations.

We use the mean ARM reconstruction error (see Sect. 6.3.1) to com-
pare the reconstructions. The results are shown in Table 6.1. The EARM

r

for SIRT-FBP is significantly smaller than that of FBP with standard fil-
ters. This implies that SIRT-FBP approximates the SIRT reconstruction,
while FBP reconstructions with standard filters differ substantially
from SIRT reconstructions.

We obtain similar results for a different number of iterations K in
the range from 10 to 1000, although the differences in EARM

r decrease
for increasing K.
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Class SIRT-FBP FBP-RL FBP-Hann FBP-Cos

45 projection angles

femur 0.18 1.6 1.3 1.4
thorax 0.13 0.50 0.43 0.46

60 projection angles

femur 0.17 1.3 1.1 1.2
thorax 0.12 0.42 0.36 0.38

Table 6.1: Mean ARM reconstruction errors EARM
r for K = 50.

6.5 conclusions and discussion

We introduced the method AF-FBP, which uses custom filters that are
created based on a linear ARM. The reconstructions of AF-FBP approx-
imate the reconstructions of the ARM that was used to create the filters.
This was already shown in earlier work for simulated data [5]. In this
work, we have applied this new method to experimental biomedical
µCT data for the first time. Our results demonstrate that reconstructi-
ons approximating the image quality of SIRT can now be created with
the computationally fast FBP method.

In this chapter we have focused on the image quality of AF-FBP
compared to SIRT, because SIRT-FBP is designed to approximate SIRT.
Whether it is advantageous to use SIRT (or SIRT-FBP) instead of FBP
with other filters depends on the application and the features that are
desirable for the particular imaging task. In future work, we will inves-
tigate how other algebraic methods – that are capable of incorporating
prior knowledge or particular noise models – can be approximated
following a similar approach.
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I N T R O D U C E D F I LT E R S : A C O M PA R I S O N

7.1 introduction

The field of Computerized tomography (CT) focuses on reconstructing an
image of a scanned object from its projections. Projection data are obtai-
ned using a scanning device, for example using X-rays (CT-scanning)
or electrons (electron microscopy). The size of objects that can be scan-
ned by tomography varies from nanometers in electron tomography
to kilometers in seismic tomography [1–4].

In many tomography applications, such as medical and industrial
imaging, finding an exact reconstruction is not possible due to the
size of the reconstruction problem and due to inconsistent projection
data. Therefore, many algorithms have been developed that approxi-
mate the scanned object. Two common categories of such methods are
the algebraic reconstruction methods and the analytical reconstruction
methods.

The algebraic reconstruction methods (ARMs) use a discrete represen-
tation of the tomographic reconstruction problem. This approach of-
ten involves iterative reconstruction techniques to solve the system of
linear equations. Examples of these methods are the Kaczmarz met-
hod which is also known as the algebraic reconstruction technique
(ART) and the simultaneous iterative reconstruction technique (SIRT).
Also expectation maximization (EM) is a well-known iterative recon-

The author would like to acknowledge Dr. D.M. Pelt from the Centrum Wiskunde &
Informatica, Amsterdam, The Netherlands, for developing the software that was used
to generate the reconstructions for the experiments in this chapter and for his useful
textual comments.
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struction method [5, 6]. Algebraic reconstruction methods are well-
suited for incorporating certain types of prior knowledge. These met-
hods are preferred for limited-data problems, for example if only pro-
jections from few angles are available, or if the projections have a limi-
ted angular range. A disadvantage of algebraic methods is their high
computational burden, which can become a bottleneck if large objects,
or a large number of objects, have to be reconstructed in a short period
of time.

The analytical reconstruction methods are based on a continuous re-
presentation of the tomographic reconstruction problem. The Filtered
Backprojection algorithm (FBP) is a commonly used reconstruction met-
hod in CT imaging. It is a computationally fast reconstruction method,
since it only requires a filtering step followed by a backprojection step.
For low-noise projection data with a substantial number of equiangu-
larly distributed projection angles, FBP is known to produce accurate
reconstructions.

Due to the computational efficiency of FBP, extensive efforts have
been made to improve the quality of its reconstructions for situations
where FBP is known to produce poor quality reconstructions. This re-
construction quality depends strongly on the filters that are used in
the FBP algorithm. Choosing the optimal filter for a particular recon-
struction problem is not straightforward and often some standard va-
riation on the Ramp filter is used. Many methods have recently been
published to create filters for FBP. In this chapter we will compare
methods that can be used in 2D parallel-beam tomography.

New filters can be obtained from theoretical derivations, as shown
by Zeng [7]. Other methods, such as OFBP [8] and AF-FBP [9], create
new filters using information from algebraic reconstruction methods
and thereby incorporating the geometry of the reconstruction problem
in the filters. Applying neural networks is another approach to obtai-
ning filters for FBP, as shown by Pelt and Batenburg [10]. Pelt and
Batenburg also introduce the method MR-FBP [11], where the filter
depends on the measured projection data.

Also in the field of tomosynthesis, creating better filters for FBP has
been a topic of interest. An example is OFBP, which was already men-
tioned above. Also Godfrey et al. [12] and Nielsen et al. [13] have re-
cently introduced new filter methods for FBP. Since these algorithms
cannot be translated into parallel-beam tomography, as opposed to
OFBP, they will not be included in this chapter.
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In this chapter, we will provide an overview of recently proposed
methods to compute filters for the FBP algorithm. While the original
descriptions of these methods are quite diverse, we formulate a com-
mon framework in which each of these methods can be expressed in a
straightforward way. After an introduction to the various methods co-
vered in this chapter, we will provide an analysis of the characteristic
properties of each method. An illustration of the results obtained from
the various filter methods is subsequently provided through a series
of simulation experiments. We conclude this chapter with discussion
and conclusions.

7.2 methods

In this section, we first describe the geometry that will be used in
this chapter and the FBP method with standard filters. Then we give
a short description of the methods that will be compared throughout
this chapter.

We consider a parallel-beam geometry with a monochromatic X-ray
source rotating in a circular trajectory around the object. The object is
represented as a function f : R2 → R. We denote the set of projection
angles by ΘwithNΘ = |Θ|, and the set of detector bins by T withNT =

|T |. Define NTΘ = NTNΘ. Furthermore we denote the projections by
p ∈ RNTΘ .

We assume that the measured projections are related to the object f
by the continuous Radon transform, given in Eq. (7.1).

p(θ, t) = (Rf)(θ, t) =
∫∞
−∞ f(t cos θ− s sin θ, t sin θ+ s cos θ)ds

(7.1)

So, for each projection angle θ ∈ Θ, we obtain the value of the Radon
transform for a discrete set of detector coordinates T . The reconstruction
problem then consists of recovering the function f from this set of mea-
surements.

In algebraic methods, the domain of f is discretized as a discrete
(typically square) set of N×N pixels, forming a vector of N2 pixel va-
lues. Similarly, the measured projections are represented by a vector of
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size NTΘ. This leads to the following discretized version of the recon-
struction problem:

Wx = p. (7.2)

In this system of linear equations, the vector x represents the unknown
object, the vector p represents the combined projection data for all
angles, and the projection matrix W models a discretization of the
Radon transform, defining the relationship between x and p.

This chapter deals with filtered backprojection methods, which can all
be written as

u = WTHp, (7.3)

where u ∈ RN
2

denotes a vector containing the N×N-reconstruction,
WT denotes the transpose of the projection matrix (also known as the
backprojection operator), and H ∈ RNTΘ×NTΘ denotes some filter ma-
trix. The particular choice of the filter matrix H defines the recon-
struction algorithm. In the following subsections we will introduce a
series of filtered backprojection methods that have been proposed in
the literature.

7.2.1 FBP

We first briefly comment on the FBP method itself. We recall that the
Radon transform in Eq. (7.1) has an exact inversion formula given by
Eq. (7.4).

f(x,y) =
∫π
0

∫∞
−∞ p(θ, τ)g(θ, t− τ)dτdθ, (7.4)

where g : R2 → R is the inverse Fourier transform of the Ramp filter
G(θ,q) = |q|.

The FBP method is obtained by discretizing Eq. (7.4), as follows:

f(x,y) =
∑
θ∈Θ

∑
τ∈T

pθτg(θ, τ− x cos θ− y sin θ). (7.5)

Hence FBP can be written in the form of Eq. (7.3), where H is defined
by the filters g. The actual filter that is used in FBP does not have to be
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the Ramp filter. In fact, each of the methods that we will cover in this
chapter uses a different filter g.

7.2.2 Standard filters for FBP

There are several common filters for FBP, which will be called standard
filters here. These filters are variations of the Ramp filter. The Ramp
filter itself is not commonly used, since it amplifies the noise in the
high frequencies, resulting in a poor reconstruction quality. Therefore,
frequency windows are applied to the Ramp filter.

A well-known filter was proposed by Ramachandran and Lakshmi-
narayanan. It uses a simple windowing function, as shown in Eq. (7.6)
[2, 14]. We refer to this filter as the Ram-Lak filter.

G(θ,q) = |q| rect(q). (7.6)

Other, more smooth filter functions are the Cosine filter and the Hann
filter, see Eq. (7.7) and Eq. (7.8) respectively.

G(θ,q) = |q| rect(q) cos(πq/2), (7.7)

G(θ,q) = |q| rect(q) (0.5− 0.5 cos(2πq)). (7.8)

The latter two functions aim at smoothening the edges of the Ram-
Lak filter. The advantage of the Cosine and Hann filter is that they
reduce image noise. A disadvantage is that they do not preserve edges
in the image.

A major advantage of the FBP method with such a standard filter
is its computational efficiency. The complexity of the filtering step in
the Fourier space is O

(
NTΘ logNT

)
and a backprojection operation

is O
(
NTN

2
)
. The standard filters are independent of both the object

to be scanned and the geometry that is used, including the number of
projection angles and the size of the reconstruction grid. A drawback is
that no prior knowledge can be incorporated. Furthermore, FBP with
standard filters is known to perform poorly in case of a missing wedge
or limited number of projection angles.
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7.2.3 MR-FBP

The method minimal residual filtered backprojection (MR-FBP) is pro-
posed by Pelt and Batenburg (2014). It is designed for limited-data
problems and it aims at finding the filter that minimizes the projection
error of the resulting reconstruction, i.e. the difference between the
forward projection of the reconstruction and the projection data p.

FBP consists of a filtering step, which is a convolution of the pro-
jection data p by some filter, followed by a backprojection. As argued
in [11], FBP can also be written as a convolution of some filter h by p,
followed by a backprojection operation, see Eq. (7.9).

FBPh(p) = WTCph, (7.9)

where FBPh denotes FBP with the filter h applied, WT is the back-
projection, and the matrix Cp is the convolution by p. The filter h

is chosen such that it minimizes the squared difference between the
forward projection of the reconstruction and the measured projection
data.

h∗ = argmin
h

[p−WWTCph]
2. (7.10)

Exponential binning is used to reduce the number of unknowns for the
filter h [11]. The resulting MR-FBP algorithm requires the computation
of O

(
logNT

)
projection operations and the total computation time is

O
(
NΘN

2 logNT +NTΘ[logNT ]2
)

for NT ≈ N.
The filter h∗ is designed to minimize the residual in Eq. (7.10). It

determines the filter as part of the reconstruction algorithm, since the
optimal filter depends on both the object to be scanned and the scan-
ning geometry. Therefore, the geometry can be altered during the expe-
riments, as opposed to some other reconstruction methods discussed
in this chapter. It is also possible for this method to incorporate prior
knowledge for example by adding a regularization term to Eq. (7.10).
Determining the filter is relatively fast and various scanning geome-
tries can be used.

A disadvantage of MR-FBP is that it is less suited for creating large
numbers of reconstructions with the same geometry, because the filter
depends on the measured projection data. The filter therefore changes
for every scanned object.
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7.2.4 AF-FBP

Filters for FBP can also be created using a linear algebraic recon-
struction method (ARM). In [9], Batenburg and Plantagie introduce
the method algebraic filter - filtered backprojection (AF-FBP). They use
the simultaneous iterative reconstruction technique (SIRT) to demon-
strate the characteristics of this method. We will follow this approach
here.

For any linear algebraic reconstruction method, there exists a trans-
formation matrix R ∈ RN

2×NTΘ such that u = Rp. For some pixel c of
the reconstruction grid, denoted by (xc,yc), define its projection onto
the detector by t(θ)c = xc cos θ+ yc sin θ for θ ∈ Θ. Furthermore, let
r(c) denote the cth row of R and r(c)θτ the entry of this row correspon-
ding to angle θ and detector element τ ∈ T . It is shown in [9] that there
exists a function h(c) such that

uc =
∑
θ∈Θ

∑
τ∈T

pθτh
(c)(θ, τ− t(θ)c ). (7.11)

When c is chosen such that it is the central pixel of the reconstruction
grid, then h(c) can be expressed as R applied to a set of unit vectors
eθτ with value 1 at position (θ, τ) and value 0 otherwise, see Eq. (7.12).

h
(c)
θτ = [Reθτ]c, ∀θ ∈ Θ, τ ∈ T . (7.12)

This angle dependent filter is then applied to obtain all image pixels
of the reconstruction. As shown in [9], the characteristics of these re-
constructions resemble those of the linear ARM that was used to create
the filters. The reconstruction time is however significantly reduced
compared to that of the ARM, since FBP can be used for the recon-
struction. This is advantageous in situations with only few projection
angles or limited projection range, where an ARM in general gives
more accurate reconstructions than FBP with standard filters. When
the computational burden of ARMs prevents the use of such an ARM,
AF-FBP could be a good alternative. Another advantage of AF-FBP is
that certain types of prior knowledge can be incorporated when crea-
ting the filters.

A disadvantage of AF-FBP is the time that is needed to create its fil-
ters. It takes O

(
NTΘ

)
ARM reconstructions to obtain this filter. Howe-
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ver, since the filter is object independent, these calculations need only
be executed once for a given geometry. Furthermore, not all ARMs are
suitable for AF-FBP, since only linear ARMs can be used. The geome-
try is currently limited to 2D parallel beam. Several parameters need
to be set in advance, such as the pixel c and the number of iterations k.
Also a relaxation parameter ω needs to be chosen, which is contained
in SIRT.

7.2.5 Zeng

In [7], Zeng uses the algebraic Landweber algorithm to obtain a fil-
ter for FBP. The Landweber algorithm is an iterative algebraic recon-
struction method that solves the system of linear equations Wx = p to
obtain the minimum least squares solution. It is equivalent to SIRT that
is used by AF-FBP. The kth iteration step of the Landweber algorithm
is given by Eq. (7.13).

x(k+1) = x(k) +ωWT (p−Wx(k)), (7.13)

where ω is a relaxation parameter. Zeng describes a method to obtain
a filter in the frequency domain based on this Landweber algorithm.
The filter can be used in the FBP method.

The first step to deduce the formula for this filter, is to rewrite
Eq. (7.13) into the form in Eq. (7.14), where x(0) is assumed to equal
zero and k is finite.

x(k) = (WTW)−1[I− (I−ωWTW)k]WTp, (7.14)

where I denotes the identity matrix.
It is shown by Zeng that the impulse-response of the matrix WTW,

determined in the central region of the reconstruction grid, behaves ap-
proximately as 1/r. This means that if we move away from the central
pixel along radial lines, the intensity observed decays as 1/r. Further-
more, the 1D Ramp filter is a good approximation of the operation
(WTW)−1. Hence the filter in 1D Fourier space is given by Eq. (7.15).

Hk(vt) = |vt|
[
1−

(
1−

ω

|vt|

)k], (7.15)

where vt denotes the spatial frequency with respect to the detector.
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When we compare the filter in Eq. (7.15) with the general form in
Eq. (7.3), we see that the filter H is given by a 1D Fourier transform of
p followed by applying the windowed ramp filter Hk and a 1D inverse
Fourier transform of this filtered data.

An advantage of this method is that the computational burden to
obtain the filter is low. Furthermore, the filter can be obtained for a
variety of geometries and is independent of the object to be scanned.

This method is specifically designed to approximate the Landweber
algorithm. It is therefore not directly applicable to other algebraic re-
construction methods. It requires the start solution x(0) to be equal
to zero and the number of iterations k has to be chosen in advance.
The parameter ω needs to be chosen appropriately, since a value ex-
ceeding 2/σmax, with σmax the largest singular value of WTW, results
in a diverging algorithm, while the rate of convergence decreases with
a decreasing ω.

7.2.6 OFBP

Filters for FBP can also be created based on the impulse response
of an algebraic reconstruction algorithm, as observed by scanning a
very thin object on the detector. The method optimized filtered back-
projection (OFBP) is an example of such a method. It is described by
Kunze et al. in 2007 for breast tomosynthesis, with typically few pro-
jection angles and a limited angular range[8].

The iterative reconstruction method SIRT is used to derive a met-
hod to obtain filters for FBP. Kunze et al. derive an iterative method
called corrected projections simultaneous iterative reconstruction techniques
(P-SIRT) which has its update step in the projection space followed by
a backprojection, see Eq. (7.16).

p(k+1) = p(k) +p−WωWTp(k),

u(k+1) = ωWTp(k+1), (7.16)

where ω is a relaxation parameter. The initial parameter p(0) equals
the measured projection data p.
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In the limit case k → ∞, a reconstruction of P-SIRT is given by
Eq. (7.17).

u(∞) = ωWT (WωWT )−1p, (7.17)

The matrix H = ω(WωWT )−1 acts as a filter on the projection data.
Exact inversion of this matrix is difficult to perform due to the large

scale of the problem. Kunze et al. approximate this inversion by simu-
lating Dirac-line-functions using thin wires to determine the impulse
responses. These impulse responses are then used as the correspon-
ding angle-dependent filters for FBP.

Kunze et al. use three thin wires to determine three impulse respon-
ses. These impulse responses are then averaged to obtain the filters.
The impulse response is assumed to have finite support and to be shift
invariant within a projection angle. The distance between the wires
should be large enough to avoid overlapping of the impulse responses.
It is shown in [8] that the impulse responses for the top, middle and
end of a wire are very similar, hence no averaging is needed in the di-
rection of the wire. The impulse response corresponding to the middle
of the wire is used for the filters. It is furthermore assumed that the
filters created using these wires are independent for each projection
angle.

An advantage of this method is that the computational burden to
create the filters is low. Furthermore, since the filters are object inde-
pendent, the filters need only be determined once for a given geome-
try and scanning device. With this method it is possible to incorporate
prior knowledge when determining the filters.

A disadvantage of the method is that it is designed to approximate
P-SIRT only. It is not possible to create filters with this method that
can be used to approximate other algebraic reconstruction methods.
Furthermore, as opposed to the other methods presented here, a spe-
cific object needs to be scanned to be able to determine the impulse
responses, i.e. the three thin wires. As a result, the filters depend on
the geometry and on the scanning device that is used to create the
filters. Parameters that need to be chosen are the number of iterati-
ons, the thickness and position of the wires, the supersampling and
interpolations that need to be used.
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7.2.7 lNN-FBP

A different approach for solving the CT reconstruction problems is
by using neural networks. In [10] the neural network filtered backpro-
jection method (NN-FBP) is introduced. The NN-FBP method consists
of two stages: a training stage and a reconstruction stage. For the training
stage, a series of high quality images of typical objects is required, al-
ong with their projections. It is important that these images are repre-
sentative for the objects that will be reconstructed later on, in the re-
construction stage. In the training stage, a supervised learning algorithm
is employed, to derive a set of filters such that the reconstructed pixel
values for the training set are as similar as possible to the high qua-
lity test images. This learning algorithm is based on neural network
theory. More concrete, the neural network is modeled as a multilayer
perceptron. It consists of a layer of input nodes z, a weight matrix Ŵ, a
layer of hidden nodes ĥ, an activation function σ that is applied to the
output of each node, and a second weight matrix Q. With appropri-
ate choices of the variables, this network can be written as a weighted
sum of Filtered Backprojections. As a full description of the network
model is outside the scope of our current description, we refer to [10]
for the exact details. By reducing the number of hidden nodes in the
network to one, and choosing a linear activation function σ equal to
the identity function, the neural network can even be written as a sin-
gle filtered backprojection operation as shown in Eq. (7.18). We refer to
this method as linear NN-FBP (lNN-FBP).

nQ,Ĥ(z) = q0FBPĥ0
(x,y) = [Ŵ

T
q0ĥ0p](x,y), (7.18)

where the function nQ,Ĥ(z) defines the value of a single reconstructed
pixel (x,y), based on the network parameters Q and Ĥ, and on the
input projection data z. The input values for z are derived from the
projection data after a translation and reflection operation.

Pelt and Batenburg use an independent validation set during the
training phase to avoid overfitting. After obtaining the optimal values
q∗0 and ĥ

∗
0 for q0 and ĥ0 respectively, and due to the shift invariance

of FBP, a reconstruction with lNN-FBP is obtained from a single FBP
with filter h = q∗0ĥ

∗
0 applied to the projection data. This filter is angle

independent. The computational complexity of the reconstruction part
of lNN-FBP with one hidden node equals O

(
NΘN

2).
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For lNN-FBP a large training set of images is needed. If there is
prior knowledge available of the object to be scanned, then this can be
incorporated by the choice of this training set. An additional advan-
tage of this method is that the optimal filters need only be computed
once for a given training set. Furthermore, since FBP is shift-invariant,
the filter calculation need not be repeated for every pixel of the recon-
struction. The method is described here for a 2D scanning geometry. It
is however also suitable for extension to 3D scanning geometries.

A drawback of the method is that the object to be scanned needs to
be close enough to the training set, otherwise the parameters Q and
Ĥ are no longer accurate to minimize the squared difference between
the reconstruction and the original object. Furthermore, the quality of
the reconstructions depends on several decisions which have to made
in advance. These include the size of the training set and the method
to obtain correct outputs (i.e. FBP with a standard filter or an algebraic
reconstruction method with a high number of projection angles). It is
furthermore known from literature that linear NN-FBP is less accu-
rate than a normal NN-FBP with multiple nodes and with a nonlinear
activation function σ.

7.2.8 Characteristics

We conclude this section with a brief overview of the main characteris-
tics of the reconstruction methods that have been introduced above.

The first characteristic that we consider is the ability to handle few
projection angles, see also Table 7.1. The standard filters for FBP and
the method of Zeng are known to produce poor quality reconstructi-
ons for these datasets, while MR-FBP, AF-FBP, OFBP and lNN-FBP
can handle this input much better since they create filters based on an
explicit model of the projection angles that are actually available.

The ability to handle noisy projection data varies amongst the diffe-
rent filter methods. The Ram-Lak filter amplifies high frequencies and
thus noise. The Cosine and Hann filters do not amplify these high fre-
quencies and can handle noisy data better. MR-FBP, AF-FBP, OFBP and
lNN-FBP perform better in reducing noise than FBP with standard fil-
ters. According to its inventor, the filter of Zeng depends on the index
k which is the number of iterations in the Landweber method. For low
k the noise is reduced while for high k the resolution increases and
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Table 7.1: Characteristics of the different filtering methods; v = yes, x = no,
- (−−) = (very) incapable or slow, + = capable or fast, +/- = inter-
mediate.

the noise is amplified. The results of OFBP and AF-FBP also depend
on the parameter k.

The methods MR-FBP, AF-FBP, OFBP and lNN-FBP are suitable to
incorporate some types of prior knowledge of the scanned object by
using an L2 regularization. For lNN-FBP more object specific informa-
tion can be incorporated in the training stage.

The geometry can be chosen freely for FBP with standard filters,
MR-FBP and Zeng. For the other methods the filters are created based
on a certain geometry. When the number of projection angles or the
size of the detector or reconstruction grid changes, new filters should
be calculated based on this new geometry.

The total reconstruction time can be split into two parts: a preproces-
sing time, where the filters are calculated once for a given geometry,
and a reconstruction time, where the actual reconstruction method is
applied. The preprocessing time depends on the parameters that are
used. For lNN-FBP, this step consists of the training stage and depends
on both the geometry and the size of the training set. For AF-FBP
the preprocessing time depends on the algebraic method that is used
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and the geometry. The method OFBP requires only a small amount
of preprocessing time compared to AF-FBP and lNN-FBP. The other
methods do not require processing time or they calculate a filter ba-
sed on the projection data of the scanned object. The time required for
these calculations is included in the reconstruction time. Therefore, the
reconstruction time of MR-FBP is high compared to that of the other
methods.

The last three characteristics concern additional elements that are
required for the preprocessing step. The method lNN-FBP requires a
training set to be able to compute the filter, OFBP requires a phantom
(in 3D three thin rods) to calculate the filter, and filters from MR-FBP
depend on the scanned object.

7.3 experiments

In this section we describe the experiments that were performed and
the choices that were made to implement the reconstruction methods.
We compare the reconstruction time and preprocessing time of the
different reconstruction methods. We also compare the quality of the
reconstructions with the phantom using both the mean square error
(MSE) and the structural similarity index (SSIM) for varying numbers
of projection angles and for varying amounts of Poisson noise (expres-
sed by the detector count I0).

7.3.1 Phantoms

The Shepp-Logan phantom is used in the first series of experiments.
It consists of a well-described pattern of ellipses and gray values, see
Fig. 7.1a.

In the second series of experiments a foam phantom is used which is
obtained from experimental micro-CT data, see Fig. 7.1b. The original
cone beam dataset was obtained by a Skyscan 1172 with 511 projection
angles. The reconstructed foam is a 3D object of consisting of 524 2D
slices of 1000× 1000 pixels. A slice close to the center of the foam is
used as the phantom for the experiments. Different slices from the 3D
object are used as training examples for lNN-FBP.
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(a) Shepp-Logan (b) Metal foam

Figure 7.1: The phantoms.

7.3.2 Implementation details

The standard Ram-Lak filter for FBP is the windowed Ramp filter,
where the window is the interval [−1, 1]. The same window is used
for the Cosine and Hann filter, where some smoothening function is
applied to Ram-Lak filter.

There are several implementation details to be discussed for the
MR-FBP algorithm. The matrix W can be too large to obtain explicitly.
Therefore, the matrix Ap = WWTCp is obtained column-by-column,
where each column is obtained as the forward projection of applying
FBP with unit vectors (with entries in {0, 1}) as filters to the projection
data p. Furthermore, exponential binning is used to reduce the num-
ber of unknowns for the filter h. Small bins are used around the center
of the detector, and the size of the bins increases exponentially furt-
her away from this center. The filter is also assumed to be symmetric
around this center, which decreases the number of unknowns even
further. The direct method called gels* lapack routine is used to find
h∗ in Eq. (7.10).

For the AF-FBP method the algebraic reconstruction method SIRT
with k = 100 iterations and relaxation parameter ω = 1 is used to
obtain the filters. The method SIRT itself is also included in the experi-
mental results to give an idea of the reconstruction time and accuracy
of an algebraic method.
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For the method of Zeng there are two parameters to be chosen in
advance. Zeng has empirically determined the value of the relaxation
parameter ω = 0.5 for the filter function to be the optimal value. The
number of iterations k of the Landweber algorithm is chosen to be
k = 100.

The method OFBP is described for breast tomosynthesis. Since there
are no limitations that prevent applying it to other geometries, we will
apply it in this chapter to the parallel beam geometry. Instead of a
thin rod we use a thin line placed vertically through the center of the
detector as a 2D-phantom to calculate the filters. The thickness of the
line equals the size of a detector pixel. Supersampling of 25 beams
per detector pixel is used to obtain the projections. The number of
iterations used for P-SIRT is k = 10 and the relaxation parameter for
P-SIRT isω = 1. It will become clear in the results section that k = 10 is
not always the optimal choice. We therefore also include some results
with k = 100, which is the same number of iterations that is used for
AF-FBP and Zeng, even though it is outside the scope of this work to
determine (near) optimal parameters for every filter method.

The set of training objects for lNN-FBP consists of 100 slightly al-
tered Shepp-Logan phantoms, where either the direction of some el-
lipses, or the size or gray value is altered. Every image pixel of the
training object can be used to train the neural network. Therefore, the
size of the total training set is much higher than the number of training
objects. The total training set and the validation set consist each of 106

different image pixels. We use the Levenberg-Marquardt algorithm to
find the vectors q∗

0 and ĥ
∗
0 that minimize the square differences be-

tween the output of the multilayer perceptron and the correct out-
put. Furthermore, we use the Nguyen-Widrow initialization method
to obtain start values for the parameters. Lastly, exponential binning is
implemented to reduce the training time.

7.3.3 Geometry parameters

As mentioned before, a parallel beam scanning geometry has been
used to obtain the projection data. The weight of each image pro-
jection for a specific projection is determined using the Joseph kernel.
The number of projection angles NΘ varies between 8 and 64 and the
projection angles are sampled equiangularly in the interval [0, 180) de-



7

7.4 results 141

grees. The number of counts on the detector I0 is varied from 103 (high
noise level) to 106 (low noise level).

The projection data is downsampled to 256 bins and the phantoms
are reconstructed on a square grid of 256× 256 pixels. The phantom
is also downsamples to 256× 256 pixels and the reconstructions are
compared with this downsampled phantom to avoid the inverse crime.

7.4 results

The results of the experiments will be presented in this section. We
first give examples of filters for the different reconstruction methods.
Then we compare the timings and we conclude this section with a
comparison of the reconstruction qualities of the filtering methods.

7.4.1 Filters

The filters that are used in FBP vary per reconstruction method. They
are all shown in Fig. 7.2 with |Θ| = 24. If a filter is angle-dependent
then the filter corresponding to an angle of 22.5 degrees is shown.

Note the difference in both the absolute values of the filter and in
smoothening of the edge of the filter, which is mainly seen for FBP-Cos
and FBP-Hann. Furthermore, we observe a local maximum between
detector bins 1 and 50 in the experimentally determined filters MR-
FBP, SIRT-FBP, OFBP and lNN-FBP. This local maximum is not present
in the theoretically derived filters FPB-RL, FBP-Cos, FBP-Hann and
Zeng.

We also notice the small filter values for OFBP with 10 iterations, the
number of iterations that was suggested by the inventors [8]. When
we compare the reconstruction qualities of the different methods, then
OFBP with k = 10 is not competitive with the other methods. We the-
refore adjusted the number of iterations to k = 100, which is the same
number of iterations as for SIRT-FBP and Zeng. The impact of this deci-
sion is shown in Fig. 7.3 and Fig. 7.4, where the filters with k = 10 and
k = 100 are shown corresponding to an angle of 22.5 degrees, and two
reconstructions of the metal foam phantom are shown with I0 = 103

and |Θ| = 64. Also note the resemblance of the filters between OFBP
with k = 100 and SIRT-FBP with k = 100. Since the filters for k = 100

substantially improve the results of OFBP, we have decided to show
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Figure 7.2: Filters for FBP with |Θ| = 24. The Shepp-Logan phantom is used
for the MR-FBP filter calculation and for the training set for lNN-
FBP.

Figure 7.3: Filters for FBP with |Θ| = 24with k = 10 and k = 100, respectively.
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(a) (b)

Figure 7.4: Reconstructions of the metal foam phantom with |Θ| = 64 and
I0 = 103 for OFBP with (a) k = 10, (b) k = 100.

Table 7.2: Preprocessing time (PREP) and reconstruction time (REC) for both
NΘ = 8 and NΘ = 64 using the Shepp-Logan phantom with I0 =
5 ∗ 103.

results for OFBP with k = 100 in the remainder of this chapter, for re-
asons of better comparison. It is, however, not in any way the purpose
of this work to find optimal parameters for the different reconstruction
methods. We therefore use the parameters that are suggested by their
inventors for the other reconstruction methods.

7.4.2 Timings

The time that is required to produce a reconstruction is split into
the preprocessing time and the actual reconstruction time, see Section
7.2.8.
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(a) Preprocessing time (b) Reconstruction time

Figure 7.5: Timings required to reconstruct the Shepp-Logan phantom.

The preprocessing times and reconstruction times for the different
reconstruction methods are shown in Fig. 7.5 and Table 7.2 for NΘ = 8

and NΘ = 64 where I0 = 5 ∗ 103. The phantom to be reconstructed
was the Shepp-Logan phantom.

We observe that the preparation time of lNN-FBP is substantial but
does not increase with increasing number of projection angles. The
time that is required to obtain a filter for SIRT-FBP increases linearly
with the number of projection angles. The actual reconstruction time
for these methods is comparable to that of FBP with standard filters,
since no additional calculations need to be done after the filters have
been created for a given geometry. In contrast to these methods, MR-
FBP needs no preprocessing time, while the reconstruction time is sub-
stantially higher and increases with the number of projection angles.
We have included the reconstruction time that is required for SIRT
with k = 100 iterations for comparison.

We also observe a slightly larger reconstruction time for lNN-FBP
compared to for example FBP with standard filters. The difference is
small though, and is due to a slightly different implementation.

7.4.3 Number of projection angles

In this series of experiments, we vary the number of projection angles
and show the resulting MSE and SSIM for a fixed amount of noise
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(a) Ram-Lak (b) Cosine (c) Hann (d) Zeng

(e) SIRT-FBP (f) OFBP 100 (g) MR-FBP (h) lNN-FBP

(i) Ram-Lak (j) Cosine (k) Hann (l) Zeng

(m) SIRT-FBP (n) OFBP 100 (o) MR-FBP (p) lNN-FBP

Figure 7.6: Reconstructions of (a)-(h) the Shepp-Logan phantom, I0 = 103,
|Θ| = 24, (i)-(p) the metal foam phantom, I0 = 104, |Θ| = 32.
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applied to the projection data. We first show some reconstructions in
Fig. 7.6 of the Shepp-Logan phantom for I0 = 103 and |Θ| = 24, and
of the metal foam for I0 = 104 and |Θ| = 32. The results for both the
Shepp-Logan phantom and the metal foam phantom with I0 = 103 are
shown in Fig. 7.7.

We observe that the differences in performance with this high noise
level are large for both the MSE and SSIM measure. For few projection
angles, FBP with standard filters and the method of Zeng are clearly
outperformed by the other methods. FBP with the Ram-Lak filter per-
forms worst with respect to both measures for all considered projection
data. For a larger number of projection angles, the differences in recon-
struction quality become smaller.

The reconstruction methods lNN-FBP, SIRT-FBP, SIRT and OFBP per-
form similarly with respect to both the MSE and SSIM, where we note
that lNN-FBP is slightly better than the other methods. The exception
is the SSIM for the Shepp-Logan phantom, where lNN-FBP is sub-
stantially more accurate than all other filter methods. Furthermore, we
observe that the reconstruction quality of SIRT-FBP and SIRT is compa-
rable, and that it is slightly better than OFBP with respect to the MSE.
For a sufficiently large number of projection angles, the SSIM of OFBP
is larger than that of SIRT-FBP.

The reconstruction quality of MR-FBP for low numbers of projection
angles is relatively high compared to the other methods, while for hig-
her numbers of projection angles MR-FBP performs relatively poorly.

7.4.4 Poisson noise

For the second series of experiments, we vary the amount of Poisson
noise for a fixed number of projection angles. Again we observe that
the reconstruction quality strongly depends on the chosen parame-
ters, the phantom that is used and on the number of projection angles.
This is demonstrated in Fig. 7.8, where the MSE and SSIM are shown
for reconstructions of the Shepp-Logan phantom and the metal foam
phantom for both |Θ| = 16 and |Θ| = 64.

For few projection angles, the standard filters Ram-Lak, Cosine and
Hann are outperformed by the other methods. Also Zeng cannot com-
pete with the other filter methods for the metal foam phantom. For
the Shepp-Logan phantom, however, the method of Zeng is a strong
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(a) Shepp-Logan (b) Shepp-Logan, detail

(c) Metal foam (d) Metal foam, detail

(e) Shepp-Logan (f) Metal foam

Figure 7.7: Mean square error and structural similarity index measure with
I0 = 103.
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(a) Shepp-Logan, |Θ| = 16 (b) Metal foam, |Θ| = 16

(c) Shepp-Logan, |Θ| = 16 (d) Metal foam, |Θ| = 16

(e) Shepp-Logan, |Θ| = 64 (f) Metal foam, |Θ| = 64

(g) Shepp-Logan, |Θ| = 64 (h) Metal foam, |Θ| = 64

Figure 7.8: Quality of the reconstructions using the MSE and SSIM.
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competitor for the other methods. The ranking of these methods also
depends on the measure; for MSE the method lNN-FBP performs best
for both phantoms, while for SSIM the outcome does not only depend
on the phantom, it also depends on the amount of noise that is app-
lied to the projection data. The methods lNN-FBP, OFBP and SIRT all
perform best for a specific combination of these influencing factors.

The results also depend heavily on the number of projection angles.
For the high number of projections |Θ| = 64, we observe that lNN-
FBP performs very well with respect to the MSE, while the SSIM of
lNN-FBP varies from the best to below average compared to the other
methods. The opposite is seen for SIRT-FBP, OFBP and Zeng, where
for example the MSE of SIRT-FBP is large for low noise levels, while
the SSIM varies from the best to average depending on the phantom
that is reconstructed. The method MR-FBP performs well with respect
to the MSE for low noise levels, while it ranges from poorly to average
for the SSIM.

7.5 discussion and conclusions

The scientific research of the last decade that had aimed at improving
filters for FBP has resulted in several new filtering methods. In this
chapter we presented an overview of these algorithms and compared
their characteristics. We have also shown some reconstruction results
for two different phantoms.

Since the reconstruction methods have very different characteristics,
the choice for a specific reconstruction method depends on many fac-
tors. Time constraints are often an important factor in this decision; in
this work both the preprocessing time and the reconstruction time are
considered during the experiments. Furthermore, the number of pro-
jection angles and the amount of noise have a large impact on the qua-
lity of the reconstructions. Some filtering methods are better at hand-
ling few projection angles and high noise levels than others. Another
factor that can play a role in the choice for a specific reconstruction
method is the ability to incorporate prior knowledge.

The reconstruction methods lNN-FBP and AF-FBP require a large
amount of preprocessing time and are therefore only suitable if the fil-
ters can be repeatedly used in a large number of experiments. The met-
hod OFBP also requires some preprocessing time, but this is small com-
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pared to AF-FBP. The method MR-FBP requires a large reconstruction
time, since it calculates a filter for every reconstruction based on the
measured projections. Therefore this method is less favorable if large
numbers of objects need to be scanned. The theoretically derived fil-
ters Ram-Lak, Cosine, Hann and Zeng require no preprocessing time
and only a very short reconstruction time.

When not the reconstruction time but the ability to handle noise and
few projection angles is the highest contributing factor to the choice
for a reconstruction method, then the decision which method is best
is less straightforward. We have shown that the reconstruction quality
of the various methods depends highly on the number of projection
angles and the amount of noise that is applied to the projection data.
The suitability of the different methods varies with the phantom that
is used. Furthermore, the outcome of comparing the reconstruction
qualities depends on the choice of the measure. For the combination
of geometry and phantoms we have considered here, the method lNN-
FBP performs in most situations for both measures very well, while
Ram-Lak, Cosine, Hann and Zeng cannot handle few projection angles
and high noise levels well. The relative reconstruction qualities of the
methods AF-FBP, MR-FBP and OFBP vary too much per phantom and
geometry to draw any conclusions on which one performs best.

The ability to incorporate some types of prior knowledge is not ex-
amined in this chapter. Neither did we attempt to optimize the para-
meters of the reconstruction methods, such as the number of iterations
k or the relaxation parameter ω. We have used the values suggested
by their inventors, with the exception of OFBP since its reconstruction
quality was otherwise not competitive with respect to the other filte-
ring methods. Optimizing the parameters is outside the scope of this
work.

Furthermore, we have deliberately refrained ourselves from any at-
tempt to explain the observations in the Results section. Instead, we
have limited our comments to a description of the behavior of the fil-
tering methods. Since the aim of this chapter is to give an overview
of the different filtering methods and their characteristics, the Results
section is merely an illustration of the preceding theory. It requires
further research with an increased number of phantoms and varying
scanning geometries to be able to recommend filtering methods for
specific reconstruction settings.
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S A M E N VAT T I N G

achtergrond

Computed tomography (CT) is een techniek in de beeldvorming waar-
bij met behulp van wiskunde een afbeelding wordt gemaakt van het
inwendige van een object zonder het open te maken. De term tomo-
graphy is afgeleid van het Griekse tomos (snede). Er zijn vele toepas-
singen voor CT, waarbij de bekendste de medische beeldvorming is. Bij
CT-scans in ziekenhuizen stuurt men röntgenstraling door het mense-
lijk lichaam om dwarsdoorsnedes zichtbaar te maken. Naast medische
toepassingen kent CT ook vele industriële toepassingen. Zo wordt er
bijvoorbeeld op hele kleine schaal (nanometers) naar materialen geke-
ken met behulp van een elektronenmicroscoop, en wordt er op hele
grote schaal (kilometers) onderzoek gedaan naar structuren in de bo-
dem bij seismische tomografie. Ook wordt computed tomography ge-
bruikt bij materiaalkunde, bijvoorbeeld bij de inspectie van turbinebla-
den, waarbij wordt onderzocht of een voorwerp scheuren of andere
onregelmatigheden bevat.

Bij computed tomography worden stralen door een object gestuurd
en aan de andere zijde opgevangen door een detector. Deze detector
meet de intensiteit van de stralen en verzamelt zo informatie over de
hoeveelheid straling die onderweg verloren is gegaan. Door genoeg
stralen onder verschillende hoeken door het object te sturen, wordt
voldoende informatie verzameld om de dwarsdoorsneden van het ob-
ject te benaderen of zelfs exact te berekenen. Deze dwarsdoorsneden
kunnen als afbeelding worden weergegeven door de hoeveelheid geab-
sorbeerde straling om te zetten in grijswaarden. Doordat twee verschil-
lende materialen van dezelfde dikte in het algemeen ongelijke hoeveel-
heden straling absorberen, kunnen de materialen waaruit het object
bestaat worden onderscheiden op basis van hun grijswaarden. Zo zijn
organen te onderscheiden bij een CT-scan in het ziekenhuis, en zijn
bijvoorbeeld scheuren zichtbaar bij materiaalkundig onderzoek.

Een veelgebruikte term voor het resultaat van CT is een reconstructie.
Hoewel er idealiter een exacte reconstructie wordt gemaakt, accepteert
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men vaak een benadering om zo bijvoorbeeld de stralenbelasting of
de benodigde rekentijd te verminderen. Daarnaast is een exacte recon-
structie in veel gevallen niet mogelijk omdat een reconstructie wordt
weergegeven op een raster bestaande uit pixels, vergelijkbaar met de
pixels van een digitale fotocamera, terwijl de meeste objecten die wor-
den gescand niet exact op zo’n raster kunnen worden weergegeven.
Een voorbeeld hiervan is een object met gebogen lijnen. Ook zitten
er vaak kleine verstoringen in de gemeten waarden op de detector en
kunnen stralen onderweg worden afgebogen, ook wel ruis respectieve-
lijk verstrooiing genoemd, waardoor de reconstructie niet exact overeen-
komt met het gescande object. Hoe meer de reconstructie overeenkomt
met het gescande object, hoe hoger de kwaliteit van de reconstructie
is.

reconstructiemethoden

Er wordt veel onderzoek gedaan naar de meest optimale technieken
voor het berekenen van een reconstructie, zodat de reconstructie het
object zo goed mogelijk benadert. Hierbij zijn er twee hoofdrichtingen
te onderscheiden. De eerste hoofdrichting maakt gebruik van een in-
versieformule via een analytische benadering met continue variabelen.
Deze formule bevat een filter wat wordt toegepast op de data die met
de detector is verzameld, de input data genoemd. Deze methode heet
dan ook Filtered Backprojection (FBP). Deze methode levert een benade-
ring op van het object en de kwaliteit van de reconstructie hangt sterk
af van het gebruikte filter, het aantal hoeken waaronder gescand is, en
de hoeveelheid ruis op de input data. Het grootste voordeel van deze
methode is de korte tijd die nodig is om de reconstructie te berekenen.
Een bekend nadeel van deze methode is de gevoeligheid voor ruis op
de input data waardoor de kwaliteit van de reconstructie snel achteruit
gaat als de ruis toeneemt. Daarnaast moeten de gebruikte hoeken bij
het scannen gelijkmatig verdeeld zijn over 180◦ of 360◦ . In de praktijk
is het soms niet mogelijk om 180◦ rond het object te kunnen draaien,
bijvoorbeeld bij elektronenmicroscopie. Hier zit het object in een hou-
der die rond kan draaien, waarbij de bron en detector stil staan. In
deze gevallen met een beperkt hoekbereik zijn reconstructies met FBP
onnauwkeurig.
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De tweede hoofdrichting benadert het reconstructieprobleem als een
stelsel vergelijkingen. Hierbij wordt al direct uitgegaan van een dis-
crete situatie waarbij het object wordt gezien als een raster met on-
bekende grijswaarden. Deze methodes worden algebraïsche reconstruc-
tiemethodes (ARMs) genoemd. Vaak wordt de reconstructie berekend
door een vast stappenplan meerdere keren (cycli) te doorlopen waarbij
het resultaat van iedere cyclus steeds een (tussentijdse) reconstructie
is. Door meerdere cycli uit te voeren wordt de reconstructie steeds aan-
gepast met als doel om de kwaliteit van de reconstructie te verbeteren.
Zo wordt bijvoorbeeld na iedere cyclus berekend wat de input data
zou zijn geweest als de tussentijdse reconstructie zou zijn gescand.
Deze fictieve data wordt vergeleken met de werkelijk gescande data.
Het verschil tussen beide datasets wordt in de volgende cyclus ge-
bruikt om de reconstructie te verbeteren. Dit noemen we een iteratieve
methode. Dit proces kost vaak substantieel meer rekentijd dan FBP,
wat tot problemen leidt wanneer er veel objecten in korte tijd wor-
den gescand en de rekentijd groter is dan de tijd die nodig is om te
scannen. Er ontstaat een wachttijd voordat de input data kan worden
verwerkt, waardoor veel geheugen nodig is om deze datasets tijdelijk
op te slaan. Grote voordelen van deze methode zijn de relatieve onge-
voeligheid voor ruis op de input data, en de mogelijkheid om met een
beperkt hoekbereik van de projecties relatief goede reconstructies te
berekenen. Daarnaast kan al bekende informatie over het object wor-
den meegenomen in de berekeningen. Een voorbeeld hiervan is als bij
materiaalkundig onderzoek een object uit één of enkele materialen be-
staat met bekende grijswaarden. Deze vooraf bekende informatie kan
de kwaliteit van de reconstructie sterk positief beïnvloeden.

algebraïsche filters

Vanwege zijn relatief korte rekentijd is FBP een frequent gebruikte re-
constructiemethode bij CT. Door de hierboven beschreven nadelen is
FBP echter niet in alle situaties een geschikte methode om te gebrui-
ken en wordt er gekozen voor een tragere ARM. Aangezien de kwa-
liteit van de reconstructies van FBP wordt beïnvloed door de keuze
van het filter, is er al veel onderzoek gedaan om nieuwe filters te
ontwikkelen die betere reconstructies opleveren. Bij aanvang van dit
promotietraject is er echter nog weinig werk bekend waarin ARMs als
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basis worden gebruikt om filters te creëren voor FBP. In dit proefschrift
wordt een nieuwe methode gepresenteerd om zulke filters te bereke-
nen, Algebraic filters - Filtered Backprojection (AF-FBP) genaamd. Met
deze methode wordt, voor een van tevoren vastgesteld scanprotocol
met onder andere het aantal projectiehoeken, de grootte van de detec-
tor en specificaties voor de bron, eenmalig een filter berekend op basis
van informatie van een (aanvankelijk lineaire) ARM. Het zo verkregen
filter wordt vervolgens toegepast in FBP. Deze AF-FBP reconstructies
zijn een benadering van de reconstructies van de ARM die is gebruikt
om het filter te berekenen. Het filter is niet afhankelijk van het object
en kan dus hergebruikt worden bij verschillende objecten zolang het-
zelfde scanprotocol wordt gebruikt. AF-FBP is dus een methode met
de rekensnelheid van FBP die bij benadering reconstructies oplevert
met dezelfde eigenschappen als de reconstructies van de corresponde-
rende ARM.

Bij de berekening van het filter voor AF-FBP wordt specifiek het
pixel gebruikt dat centraal in het reconstructiegebied ligt. In dit proef-
schrift is aangetoond dat de kwaliteit van een reconstructie afhankelijk
is van onder andere de plaats van het object in het reconstructiegebied.
Daarom is ook de toegevoegde waarde van het gebruik van meerdere
pixels onderzocht voor de berekening van de filters. Hieruit blijkt dat
het gebruik van negen filters voor subgebieden van het reconstructiege-
bied geen verbetering van de kwaliteit van de reconstructies oplevert.
Wel is het zinvol gebleken om bij de berekening van het filter de zij-
den van het reconstructiegebied groter te kiezen dan de lengte van de
detector, om zo het effect van randartefacten op het filter, en daarmee
op de reconstructies, te reduceren.

De methode AF-FBP maakt gebruik van de lineariteit van een ARM,
en is in zijn huidige vorm niet geschikt om toe te passen op niet-
lineaire ARMs. Indien er echter objecten worden gebruikt die naar
verwachting slechts kleine variaties zijn op een bekende blauwdruk,
kan AF-FBP worden aangepast zodat deze ook voor een subklasse
van de niet-lineaire ARMs toepasbaar is. Bij kleine variaties op een
blauwdruk is ook het verschil in input data tussen het gescande object
en de blauwdruk gering. De niet-lineaire ARMs waarvoor een aan-
gepaste AF-FBP is ontwikkeld, kunnen gesplitst worden in een niet-
lineaire transformatie op de input data van de blauwdruk, en een li-
neaire transformatie op het verschil in input data van de blauwdruk
en het gescande object. Ze worden daarom in dit proefschrift aange-
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duid als lokaal lineaire ARMs. AF-FBP kan zo worden aangepast dat
deze wordt toegepast op dit verschil in input data en dus een recon-
structie oplevert van dit verschil. Het resterende onderdeel van de re-
constructie, namelijk de niet-lineaire transformatie van de input data
van de blauwdruk, hoeft slechts eenmalig berekend te worden voor
de gegeven blauwdruk. Voor alle variaties op de blauwdruk kan deze
uitkomst worden overgenomen zonder deze opnieuw te berekenen.
Hiermee kan ook voor deze lokaal lineaire ARMs met korte rekentijd
een reconstructie worden berekend die de reconstructie van de corres-
ponderende lokaal lineaire ARM benadert.

Dit proefschrift sluit af met een overzicht van de eigenschappen van
verschillende recent ontwikkelde methoden om filters te creëren voor
FBP. Hieruit blijkt dat de keuze voor een filter in belangrijke mate
wordt bepaald door de tijd die beschikbaar is voor de berekeningen,
het aantal hoeken waaronder gescand kan worden, en de hoeveelheid
te verwachten ruis op de input data. Aangezien AF-FBP aanzienlijk
meer tijd nodig heeft om de filters te berekenen, deze filters onafhan-
kelijk zijn van het gescande object, en afhankelijk zijn van de scan-
procedure, is deze methode met name geschikt wanneer een beperkt
aantal scanprocedures wordt gebruikt. De prestaties van de verschil-
lende filters onderling zijn erg afhankelijk van de gescande objecten,
de gekozen scanprocedure, en de maatstaf die gebruikt wordt om de
kwaliteit van een reconstructie te bepalen. Voor een meerderheid van
de onderzochte gevallen is de kwaliteit van de reconstructies van AF-
FBP bovengemiddeld vergeleken met die van de andere filters.
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