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Abstract

This paper considers the optimization of the base-stock level for the classical periodic review lost-sales inventory
system. The optimal policy for this system is not fully understood and computationally expensive to obtain.
Base-stock policies for this system are asymptotically optimal as lost-sales costs approach infinity, easy to
implement and prevalent in practice. Unfortunately, the state space needed to evaluate a base-stock policy
exactly grows exponentially in both the lead time and the base-stock level. We show that the dynamics
of this system can be aggregated into a one-dimensional state space description that grows linearly in the
base-stock level only by taking a non-traditional view of the dynamics. We provide asymptotics for the
transition probabilities within this single dimensional state space and show that these asymptotics have good
convergence properties that are independent of the lead time under mild conditions on the demand distribution.
Furthermore, we show that these asymptotics satisfy a certain flow conservation property. These results lead
to a new and computationally efficient heuristic to set base-stock levels in lost-sales systems. In a numerical
study we demonstrate that this approach performs better than existing heuristics with an average gap with

the best base-stock policy of 0.01% across a large test-bed.

Keywords: Lost sales, base-stock policies, asymptotic results

1. Introduction

This paper studies base-stock policies for the classical lost-sales inventory problem that has been studied
by Karlin and Scarf (1958), Morton (1969, 1971), van Donselaar et al. (1996), Johansen (2001), Janaki-
raman et al. (2007), Zipkin (2008a,b), Levi et al. (2008), Huh et al. (2009b), Goldberg et al. (2012),
Bijvank et al. (2014) and Xin and Goldberg (2014). This system consists of a periodically reviewed stock

point which faces stochastic i.i.d. demand. When demand in a period exceeds the on hand inventory,

*corresponding author, e-mail: j.j.arts@tue.nl
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the excess is lost. Replenishment orders arrive after a lead time 7. At the end of each period, costs for
lost-sales and holding inventory are charged. For such systems, we are interested in minimizing the long

run average cost per period.

The structure of the optimal policy for lost-sales inventory systems with a positive replenishment lead
time is still not completely understood, and the computation of optimal policies suffers from the curse of
dimensionality as the state space is 7-dimensional. Goldberg et al. (2012) show that the policy to order
the same quantity each period is asymptotically optimal as 7 approaches infinity and Xin and Goldberg
(2014) extend this result by showing that the optimality gap decays exponentially in 7. However, for
moderate values of 7 as encountered in practice, it is difficult to find a good policy. The only policy with
a strict performance bound is the dual balancing policy proposed by Levi et al. (2008). This policy has a
cost of no more than twice the optimal costs. In a numerical study, Zipkin (2008a) shows that the dual
balancing policy is effective for low per unit lost-sales penalty costs, but that base-stock policies perform
better in general, especially for high penalty costs. Huh et al. (2009b) show that in fact, base-stock
policies are asymptotically optimal as the lost-sales penalty costs approach infinity. In fact, Bijvank et al.
(2014) show that a wide range of base-stock policies is asymptotically optimal as 7 approaches infinity.
However, computing the best base-stock policy for a lost-sales inventory problem efficiently remains a
challenge. Huh et al. (2009a), p. 398, observe that: “Although base-stock policies have been shown
to perform reasonably well in lost-sales systems, finding the best base-stock policy, in general, cannot
be accomplished analytically and involves simulation optimization techniques”. Although the burden of
optimization is alleviated by the fact that the average cost under a base-stock policy is convex in the
base-stock level (Downs et al., 2001; Janakiraman and Roundy, 2004), evaluating the performance of any

given base-stock policy requires either value iteration or simulation.

This paper presents asymptotic results for lost-sales systems, as do Huh et al. (2009b) and Goldberg
et al. (2012), but contrary to their results, we do not focus on bounding the performance of a heuristic
policy with respect to an optimal policy (although we also include such results). In-stead, we study the

asymptotic dynamics of the base-stock policy for the classical lost-sales system.

We study these dynamics from a different perspective than has been done before. Our perspective
is based on a relation between lost-sales and dual sourcing inventory systems that has been shown by
Sheopuri et al. (2010), and results for dual sourcing inventory systems of Arts et al. (2011). Somewhat
counter-intuitively, our approach involves moving from a 7-dimensional state space description to a (7+1)-
dimensional state space description, where 7 is the order replenishment lead time. This (7+1)-dimensional
state space is the pipeline of all outstanding orders, but not the on-hand inventory. The next key idea
to this approach is to aggregate this pipeline of outstanding orders into a single state variable. This is
essential to lending tractability as the size of the original state space grows exponentially in both the lead
time and the base-stock level. By contrast, the aggregated state space grows linearly in the base-stock

level only.

From the distribution of this single aggregated state variable, all relevant performance measures can
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be computed. The distribution of this single state variable can be studied via a Markov chain. For
the transition probabilities of this Markov chain, we derive asymptotic results and show that the rate of
convergence for these asymptotics is at least exponential regardless of the lead time under mild conditions
on the demand distribution. These mild conditions relate to the limiting behavior of the failure rate of
the demand distribution. To show that the rate of convergence is independent of the lead time, we prove
a new result on the limiting behavior of discrete failure rates of sums of random variables. We believe this
result can be useful outside the present context in problems where sums of independent random variables
and the failure rate play a role. Such is the case in many pricing, risk and reliability, and inventory
problems.

We also show that these limiting results satisfy a type of flow conservation property. This flow
conservation property relates the average size of an order entering or leaving the pipeline to the total
number of items in the pipeline.

Based on all these results, we propose a simple approximation for the performance of a base-stock
policy for lost-sales systems. This approximation requires the solution of S+1 linear equations, where S is
the base-stock level. Our numerical work indicates that this approximation is very accurate. Optimization
based on this approximation outperforms competing heuristics and has a cost difference with the best
base-stock policy of at most 1.3% and 0.01% on average across a wide test-bed.

This paper is organized as follows. The model and notation are described in §2. In §3, we analyze the
model by aggregating the state space, providing asymptotics for this aggregation. In 5 we study the rate of
convergence of these asymptotics, and shows that the heuristic we suggest is asymptotically optimal as the
lost sales penalty cost parameter approaches infinity under some mild distributional assumptions. In §6,
we define and study flow conservation properties of approximations and verify that our approximation has
this property. We consider a few small extensions in §7 and give numerical results for our approximation

in §8. Concluding remarks are provided in §9.

2. Model

We consider a periodic review single stage inventory system with a replenishment lead time of 7 periods
(tr € Ng = NU{0}). Periods are numbered forward in time and demand in period ¢ is denoted D; and
{D}2, is a sequence of non-negative i.i.d. discrete random variables with 0 < E[D;] < co. We let D
denote the generic single period demand random variable and we let D*) denote demand over k periods.
We denote the order placed in period ¢ by @ and note that this order arrives in period ¢+ 7. The pipeline
of orders is denoted Q; = (Qy, Qi—1,...,Q¢—r). We let I; denote the on-hand inventory at the beginning
of period t before Q;—, arrives. The lost sales in period ¢ are denoted by Ly = (Dy — I + Q¢—-)", where
2T = max(0,x). In each period, a holding cost of h per unit on-hand inventory before the arrival of an
order is incurred. Lost sales are penalized with p per lost sale. The system is operated by a base-stock

policy with base-stock level S € Ny. Thus, at the beginning of period ¢, an order is placed to raise the
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inventory position Y; (on-hand inventory plus all outstanding orders) up to the base-stock level S:

Qt =95~ )/;fa (1)
where
t—1
Vi=L+ > Qp t>0. (2)
k=t—T1
We assume without loss of generality that Iy < .S and Q; =0 for t = —7,...,—1, so that Q; > 0 for all

t € Ng. The random variable @) depends on S; to stress this, we will sometimes use the notation Q:(.5).
For each of the variables described, we use the subscript oo to denote a random variable in steady state;
for instance P(Io = x) = limy_,oo P(I; = x). Some care needs to be taken to ensure steady state variables
do exist; Huh et al. (2009a, Theorem 3) prove that a sufficient condition for these steady state random
variables to be well defined is P(D < S/(7 + 1)) > 0. Most discrete distributions commonly used, such
as Poisson, geometric, and (negative) binomial all satisfy this condition. Also any demand distribution
with P(D = 0) > 0 verifies this condition. Our objective will be to minimize the long run average cost

per period C(S) over the base-stock level S:
C(S) = pE[Loc] + hE[Iso]. 3)

We note that this description of the problem is slightly different from most descriptions in that we account
for holding costs at the beginning of a period before the order that is due in that period arrives, whereas
we account for lost sales at the end of a period. Obviously this convention does not change the long run

expected cost per period, but in the analysis, it will make the equations more transparent.

3. State space aggregation

The dynamics of Iy, L; and @Q; are given by

L1 = (It + Qi—r — D)™, (4)
Ly= (D¢ — It — Q1" (5)
Qi+1 = Dy — Ly, (6)

where (z)T = max{0,z}. Define the pipeline sum, A;, as the sum of all outstanding orders at time ¢,

including the order that arrives in period ¢ and the order that was placed in period ¢:

t
A= Qr=Qe", (7)

k=t—71

where e is the vector of all ones of length 7 + 1. For the pipeline sum, we have the following result.

Lemma 3.1. The following equations hold for all t > 0
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((J,) At + It =5
(b) At+1 = min(S, At - Qt—T + Dt)

Proof. For (a), we can simply write using (1) and (2)

t—1
A+ Li=Qi+ Y Qp+L=8-Y,+Y, =85
k=t—r1

For (b), we have
A1 =8 —TLiy1 =S — L+ Qi—r — D))" =8 — (S — A4+ Q1—r — D))" = min(S, Ay — Q1—r + Dy),

where the first equality follows from part (a), the second by substituting Equation (4), the third applying
(a) again, and the final equality is easily verified by distinguishing the case (S — A; + Qt—r — D¢)™ =0
and (S_At+Qt—T_Dt)+ = S_At"i_Qt—’r_Dt‘ O]

Finding E[A)] gives us all the information we need to evaluate C'(S) because

E[ln] = S — E[As] (8)
by Lemma 3.1 (a), and
E[Loo] = E[Doo] — E[Quo] = E[Doc] — E[As] /(7 + 1) (9)
by using equations (7) and (5), and so
C(S) = —(h+p/(1 +1)E[A] + hS + pE[Do). (10)

Finally, we note that Lemma 3.1 (b) gives us the basis for a one-dimensional Markov chain for A; from
which we can determine the distribution and mean of A,,. This Markov chain has transition probabilities

pij = P(Ai1 = j|A; = 1) that can be found by conditioning:

(11)

b limy o0 Y0 _oP(Qrr =i+ k —jlA =))P(Dy = k), if0<j<S;
Y limy oo ko P(Qrr = k|A; = )P(D; > S+ k —1i), ifj=S.

Unfortunately, to evaluate limy_, o P(Qi—r = i|A; = j), we need to evaluate the (7 4 1)-dimensional
Markov chain Q. That is,

Z | =xNqeT= P(Qt = Q)
lim P(Qi—r = z|4; = y) = lim —3dri=efde =y
t—oo ( t | t ) t—o0 Zq‘qu:y ]P)(Qt — q)

Thus, in this view of the problem, the dimension of the system just increased from 7-dimensional space

(12)

to (7 4+ 1)-dimensional space and so this task suffers from the curse of dimensionality even more than
finding optimal policies does. In fact, it can be shown that the state space of Q; grows exponentially in
both S and 7 as (S+§+1). (For a derivation of this result, see §A.5.) However, in the limit that S — oo,

and S = 1,0 we can characterize P(Q;—, = i|4; = j) and we pursue this in the next section.
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4. Asymptotics

In this section, we show that as S approaches infinity and all other parameters stay constant, that
P(Qir = il At = ) > P (Demrot = i|4h,y Di = ) - (13)

Furthermore, for S = 0, 1, (13) holds with equality in the limit that ¢t — co. We use these results to find
an asymptotic approximation for C(S). To state our results, we need some additional notation. We let

P, denote convergence in probability.!

Theorem 4.1. The following holds for all t > T when everything is held constant except S':
(a) As S — 00, Qi1 2. p,

(b) As S — o0, P(Qi41 =1) = P(Dy =1).

(c) AsS—)oo,P(Qt_T:i]At:j)%]P’(Dt . 1—z’zk e k—j).

(d) For S=0and S=1andi<j<5§,
Jim P(Qi-y = il Ay = ) =P (Diro1 =14} Dh =)

Proof. First note that, by Equation (6), Qi+1 < D; with probability 1 for all ¢ > 0. This implies in
particular that Q11 <gt D, i.e., P(Qi+1 < x) > P(D; < x) (see Shaked and Shantikumar, 2007) and so

also

P(Atgx)>]P’< ;gltTIDk<x) (14)

Second, we observe that Q¢11 = Dy if and only if L; = 0 which, by Equations (5) and Lemma 3.1 (a), is
equivalent to the inequality
D <S—A+Qi—r. (15)

With this set up, we will now show that as S — oo, Qut1 LN D;. Let 6 € (0,1) and let Sy satisfy
P(D(™+2) < S5) > 1—¢. (Such an S5 < oo exists because E[D] < oo and so lim, o P (D(T+2) < :v) =1.)
Now for S > S5, we have

P(|D; — Qiy1| > 0) = P(Dy — Qi1 > 0)
=1-P(Dy = Qi11)
1 P(Dy < S — A+ Qi)
<1-P(Di+ A < S)
gl—[P’(D(T”)SS)<1—(1—6):5. (16)

! A sequence of random variables X, is said to converge in probability to X (notation X, LN X) if limp o0 P(| Xn — X | >
g)=0forall e > 0.
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The first equality holds because Dy > Q441 with probability one. The second equality holds because Dy
and Q41 are discrete random variables. The third equality holds because, as observed above, Q¢+1 = Dy
if and only if (15) holds. The second inequality follows by substituting (14), and the final inequality
follows from the fact that S > Ss. This convergence in probability implies also the convergence in
distribution asserted in part (b): In the limit that S approaches infinity, Q11 iDt for all ¢ > 7 where
2 denotes equality in distribution.

Part (c) now follows from part (b).

For part (d), the case S = 0 is trivial. Consider the case S = 1. For the condition A; = 0, the result
is again trivial. For the condition A; = 1, we know that at time ¢, Q; = 1 for exactly one k € {t —7, ..., t}
and 0 otherwise, because A; < S. Thus, the state space of the pipeline Q;, consists of the zero vector 0
and the unit vectors e;, for ¢ = 1,--- |7, where e; corresponds to the state that Qy11—; =1 and Qx =0

if Kk #t¢t+ 1 —14 and 0 corresponds to an empty pipeline. The transition probabilities of Q; are given by:

P(D=0), ifx=0andy € {0,e,41};

P(D >0), ifx=ejandy € {0,e,41};

P(Qit+1=x|Q=y) = (17)

, ifx=e;y;andy=e; foriec{l,...,7};

1
0, otherwise.

It is easily verified that the stationary distribution of Q; exists and satisfies P(Qoo = €;) = P(Qoo = €i41)

for i =1,...,7. From this, it follows using (12) that lim; . P(Qi—r = 1|4; = j) = %H’ and P(Q—, =
0|4 =j) = . Now, we find
P(D=1)P (D" =0) P(D=1)P(D=0)"
IP’(DT _1‘ D:l): - —1/(r +1).
rore1 = 5o D P (DD = 1) (r+1)P(D=1)P(D=0) /[(r+1)
The complement then equals 7/(7 + 1). O

To state our next result, we let Ao, denote the random variable that results from approximating
P(Ay1 = j|Ay = 4) with limiting results in Theorem 4.1, i.e., P </~loo = x) = 7(x) where 7(z) solves the

set of linear equations

Mm

#)pij, §=0,...,8-1, > #(i)=1, (18)

=0 1=0

with A

N LooP (Der =i+ k= j| ST D= 1) (D = k), i ] <
bij =

" SheoP (Prrot = K|Sk D= i) B(Dy = Sk~ ), ifj =S,
Furthermore, we let

C(8) = —(h+p/(r + 1)E[Ax] + hS + pE D],

and I, = S — Ay so that P(Io, = z) = 7#(S — z) (by Lemma 3.1 (a)).
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Theorem 4.2. IfP(D < S/(t+1)) >0, then as S — oo,

(a) Dij — pij,

(b) 7(x) — P(Ax = ),

(c) E [Aw} S E[As],

(d) C(S)—C(S) — 0.

Furthermore we have that C(1) = C(1) and if T = 0, then C(S) = C(S) for all S € Ny.

Proof. Part (a) follows directly from Theorem 4.1 (c¢). From Huh et al. (2009a) Theorem 3, we know
that under the condition P(D < S/(7 + 1)) > 0, A is well defined. Consequently, P(Asx = z), E[A)]
and C(S) can all be computed using only O(S3) algebraic manipulations on lim;_,o P(Q¢—, = i|A; = 7).
Since limits are preserved under such manipulations, we obtain (b)-(d). That C(1) = C(1) follows from
Theorem 4.1 (d), and C(S) = C(S) if 7 = 0 follows from observing that A; is one-dimensional in this
case and so A; = A; with probability one. O

Even for rather small S, the distributions of I, and A, are very well approximated by the distri-
butions of I~oo and floo. Figure 1 illustrates this for I, by showing the distribution of I, as determined
by simulation in conjunction with the distribution of I. The same also holds for C (S) compared with
C(S) as shown in Figure 2. In §8, we report a more elaborate numerical study that shows that the
approximations obtained are indeed very good across a much wider range of instances.

We conclude this section by remarking that the results above can be used to efficiently find good
base-stock levels for lost-sales systems. From Downs et al. (2001), we know that C'(.S) is convex in S, so a
simple heuristic to find a good base-stock level is simply to perform a golden section search (or any other
algorithm of choice) on C (S) with the upper bound Syp and lower bound S on S given by Theorem
4 of of Huh et al. (2009Db):

) - + ht

SUB:1nf{y:P(D( +1) Sy) Zp—i-ph(T—l—l)}’ (20)
] - —h(r+1

SLB:Hlf{y:P(D( “)Sy) EM}

We call this heuristic the ASYMP-heuristic because it is based on asymptotic results. In the numerical
section, we explore this and find that this heuristic is both accurate and fast.
5. Rates of convergence

In this section, we show that the asymptotics of the previous section have very good convergence properties

under mild conditions on the demand distribution. To state our results, we introduce the hazard rate of
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Figure 2: The true cost function C(S) and the approximated cost function C(S) for the lost-sales system with 7 =4, h = 1,
p = 10 for Poisson, negative binomial and geometric demand in (a)-(c) respectively. The mean demand for all these distributions

is 10.
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demand over k periods as
P
H®(a) =P (D = o|D® > o) = ELPZ=2)
x

We start by presenting the following lemma and proposition that relates the limit of hazard rates of
sums of random variables to the limits of the hazard rates of individual random variables. We believe

this proposition can be useful in different applications.

Lemma 5.1. Let X be a non-negative discrete random variable on the integers. Then
Hn)=PX =n|X>n)—>r

as n — oo if and only if for any m € Ny

P(X >n+m)

PX>n 0"

as n — 0o.
The proof of this Lemma is in the appendix.

Proposition 5.2. Let X and Y be independent discrete random wvariables on the integers such that
PX=n|X>n)—=randPY =nlY >n) > sasn—oco. ThenP(X+Y =n|X+Y >n) — min{r, s}

as n — oQ.

Proof. Without loss of generality, assume r» < s. We distinguish the following three cases: r=1,r < s <1
and r = s < 1. For the proof of the last two cases we use an approach similar to that of Embrechts and
Goldie (1980) for a closely related property of continuous random variables.

Case r = 1: Pick ¢ > 0 and let M be such that P(X =1i) > (1 —¢)P(X > i) for ¢ > M and let
n > 2M. (Such an M exists because 7 = 1.) Then we have

PX+Y =n)>P(X+Y=nnX>M)=3",,P(X=0)PY =n—1i)

> (1— &) S0y P(X > i)P(Y =n i)
=1-¢gP(X+Y >nnY <n—-M)
=(1-e)PX+Y>n)—-PX+Y >nnY >n— M)
>1-¢)[P(X+Y >n)—PY >n— M).

The second inequality follows from our choice of M. Dividing the last result by P(X 4+ Y > n) yields

P(Y >n— M)

L BX+Y =n)
P(X +Y >n)

T T R

(21)
Therefore it suffices to show that P(Y >n — M)/P(X +Y >n) — 0 as n — oco. Observe that

PX+Y>n)>PX+Y >nNX<M+1)>PY >n—M—1)P(X <M+1). (22)
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Therefore

P(Y >n— M)
P(X+Y >n)

- P(Y >n— M) _1—IP’(an—M—1|Y2n—M—1)_>O
TPY>n-M-1DP(X<M+1) P(X <M+1) '
(23)

The last term converges to 0 because P(Y =n— M — 1Y >n— M — 1) — s = 1 by assumption.
Case r < s < 1: By Lemma 5.1 we know that

P(X >n+m)
P(X > n)

P(Y >n+m)

= =" PY > n)

= (1—=s)™,

as n — oo along the integers, for every m € N. This should be compared with the class of distributions
called L(7), for v > 0. A random variable U is a member of £(7) if

P(U >z +vy) oY
P(U > z)

as * — oo (not necessarily along the integers) for all y > 0. Theorem 3 of Embrechts and Goldie (1980)

essentially states that if U € L(y) and V' € L(4), then U + V € L(min{~,d}). Since we consider discrete

random variables, X is not a member of the class £(—1In(1 —r)), so Theorem 3 of Embrechts and Goldie

(1980) does not apply directly. However, we pursue a similar line of proof for this and the next case.

Observe that
PX+Y >nNY >n—m)

0<

“TPX+Y>nnY <n-m)

< P(Y >n—m)

“TP(X>nNnY <n-—m)

:]P’(Y>n—m).}P’(X>n—m)_ P(X >n) 0 (1)1 =0 (24)

P(X >n—m) P(X > n) P(X >n)P(Y <n—m) '

The last step follows from the following three observations: (1) g((;/(iim — 0 because r < s by as-
sumption; (2) % — (1 —r)~™ by an application of Lemma 5.1; (3) P(X;igf;(;’gnim) =1/P(Y <

n —m) — 1. The above implies that

P(X +Y >n) CPX+Y>nnY>n-m)+PX+Y >nNY >n—m) L1 (25)
PX+Y>nNY <n—-m) PX+Y >nnNnY <n-—m) '

Let f(n) ~ g(n) denote lim,_,~ f(n)/g(n) = 1. Then (25) can be rewritten as
P(X4+Y >n)~ P(X >n—k)P(Y =k), (26)
k=0
by observing that P(X +Y >nNY <n—m) => " "P(X >n—k)P(Y = k). Replacing m by m — [
and n by n — [ in (26) we also have that

n—m

P(X+Y >n—1)~ )
k=0

P(X >n—k—1)
P(X >n—k)

P(X >n— k)PY = k). (27)
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Now define Mx (j,1) = sup,>;{P(X >n—1)/P(X > n)} and mx(j,1) = inf,>;{P(X > n—1)/P(X > n)}.

Then the right hand side of (27) is bounded as follows:

— "~ P(X>n—k—1)
P(X >n—kPY =k) < P(X >n—k)P(Y =k)
ho — P(X >n—k)
< Mx(n,0) Y P(X >n—k)PY =k). (28)
k=0

Now since limy, o0 mx (n,1) = lim,, 0o Mx(n,1) = (1 —7)~! by Lemma 5.1, we obtain from (27) and (26)

respectively that

P(X+Y >n—1)~ 1—rl§:PX>n— PY =k)~ (1—7)"'"P(X +Y > n). (29)
k=0

A last application of Lemma 5.1 completes the proof for this case.

Case r = s < 1: Observe first that for any £ > 0 we have that
(30)

PX+Y >n)=PX+Y >nnY <n—k) +P(X+Y >nnX <k)+P(X > kPY >n—k).

Define my and My similarly as myx and Mx. Now for any k& > 0

MX+Y>n—l:

P Y>n—z)

P(X Dp

4WY;E*(X>@MY>”—@
n—k

< Mx (k1) P(X >n—i)P(Y =i)+
=0

N
—

My(n—k+1.0) Y BY >n —i)B(X = i) + Mx(k, JB(X > HP(Y > n— k)

i\
o

=Mx(k,)P(X+Y >nnY <n-—k)+
Myn—k+L)P(X+Y >nNnX <k-1)+
Mx(,DP(X +Y >nnX >kNY >n— k)

< max{My (k,1), My (n — k+1,)}P(X +Y > n). (31)

Thus we have that

P(X+Y —1
hgljogp (IP(;—}- Y>>nn) ) < ligs;ipmax{MX(k,l),My(n —k+1,0)} =max{Mx(k,1), (1 —r)""}
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for every k € Nyg. Now let k — oo to conclude that

. PX+Y >n—1)
lim sup

s TP(X + Y > n) O (32)

IN

For a lower bound on P(X +Y > n —[) we can write similarly

P(X +Y) = 2: X>"_Z_”MX>n—mMY_@
=0

P(X >n—1)
klPY>n—z—l) . .
+; BY > =1 P)Y >n—)P(X =)
+ﬂ§;)”mx>mmy>n—m
n—=k
>mx (k1)) P(X >n—i)P(Y =)+
=0

my(n—k+0L0S PY >n—i)P(X =i)+mx(k, )P(X > k)P(Y >n — k)

7

> max{mx (k,l),my(n—k+1L1)}P(X+Y >n).

N
—~

I\
=)

Now similarly we have that

%ggfpgégigfjgy)Zl?&ghmmﬁnX%J%nwOr—k+LD}:rmmhnX%J%(l—r)q

for all £ € N. Let £ — oo to conclude that
P(X+Y >n-—1)

lim inf > (1—-r)7"
v sy 24 (33)
Combining (32) and (33) and applying Lemma 5.1 completes the proof. O

Oddly, the hazard rate properties of common discrete random variables are not found in standard lit-
erature. For the most commonly used demand models, namely Poisson, geometric, and negative binomial,

we summarize results in Proposition 5.3.

Proposition 5.3. If D is a Poisson distributed random variable, then P(D = n|D > n) — 1 as n —
oo. Furthermore, if D is a negative binomially (geometrically) distributed random variable with success

probability p and r required successes, then P(D =n|D >n) — p as n — oo.

The proof of this proposition is in the appendix. With these results, we now turn to the rate of

convergence of the limits in §4.

Theorem 5.4. If lim, ..o P(D =n|D >n)=1—-0 € (0,1), then Q¢+1 converges to Dy in probability at

least exponentially in S for any lead time T, i.e., for any € € (0,1 —0),

P(D; — Qe1(S) > 0) < O ((0+¢)%).
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Furthermore, if limy, oo P(D = n|n > n) =1, Qi1 converges to Dy in probability super-exponentially in
S, i.e., for any e € (0,1),
IP)(_Dt — Qt+1(S) > 0) < O (ES) .

Proof. From (16), we know that P(D; — Q¢1(S) > 0) < P(D"*2) > ). Suppose that lim,, . P(D =
n|D >n) =1—-6 € (0,1). By Proposition 5.2, we have that lim, oo H7*?(z) =1 -6 € (0,1). This
implies that for any ¢ € (0,6), we can choose an N € N such that for all z > N, H™"2(z) > 1 -6 — .
Now fix C' > 0 such that

P(D*? > ) < C( +¢)° (34)

for all S < N. Next observe that for S > N

P(D*? > S5+1) P(DU* > S) —P (D2 =5 +1)
_ =1-H*? H<O+e.
P (D0 > 3) P (D0 > 3) (F+1)=b+e (&)

Now we proceed by induction to show that P(D(7+2) > §) < C(f + ¢)® for all S € N. We have already

verified the induction hypothesis that P(D™2 > §) < C(6+¢)® for all S < N. Suppose it holds for some

S > N and consider S + 1:

P(D0+2) > S +1)
P (D(7+2) > )

< (0+2)P (D0 > 5)

P (D<T+2> > S+ 1) -

=

(D(T+ 2 > S)

<(O+e)C(0+¢e) =00 +e)

The first inequality holds by using (35) and the second follows from the induction hypothesis.

The second part of the proof follows an analogous argument where § = 0, and so we omit it. O

The results in Theorem 5.4 carry over to the rate of convergence for the limits in Theorem 4.1.

Theorem 5.5. Iflim, ;oo P(D =n|D >n) =1—-6 € (0,1], Ax converges in distribution to A at least
exponentially fast in S regardless of the lead time T, i.e. for any e > 0 the following hold:

P(Ac = ) = 7(z) + O (0 +¢)),
E [A] = E[As] + O ((6 +¢)"),
C(S)=C(S)+ 0 ((0+¢)).

The proof of Theorem 5.5 is in §A.3.

Corollary 5.6. If D has a Poisson distribution, then for any ¢ > 0, it holds that P(Ae = ) =
7(x) + O (%), E[Ax] = E[As] + O (¢9), and C(S) = C(S) + O (¢5). If D has a negative binomial
distribution with success probability p, then for any e > 0, it holds that P(As = ) = 7(z)+O ((p + €)7),
E[Ax] = E[Ax] + O ((p +¢)%), and C(S) = C(S) + O ((p +¢)%).
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Since the random variable D is heavy-tailed if and only if, lim,,_,oc P(D = n|D > n) = 0 (Foss et al.,
2011), we have no results on the rate of convergence for heavy-tailed demand distributions. However, in
the numerical section we also test our approximation for the heavy-tailed generalized Pareto distribution
and find that also here the approximation performs very well.

We close this Section with an asymptotic optimality result of the heuristic we proposed in §4. We

defined the ASYMP heuristic as the heuristic whose base-stock level is given by
SAsyMp = argmingeg, - g 1) C(9), (36)
with Spp and Syp given by 54. The optimal base-stock level is denoted S* = argminge(g, . . 5,51 C(5).

Theorem 5.7. Iflim, oo P(D=n|D>n)=1-6¢€ (0,1), then

limM: lim M: ljmw

p—oo C(S*) p—oo C(S*) p—=oo  C(S*)
The proof of this theorem is in the appendix.

=1.

6. Internal consistency: flow conservation

Our approximation relies on aggregating a pipeline of orders into a single state variable. Because A; is
originally a pipeline of orders, everything that goes in has to come out. Furthermore, everything that

goes in, stays there for 7 + 1 periods. Thus by Little’s law, we must have that
(7 + DE[Qoo] = E[Ax]. (37)

Alternatively, we might observe that A; = Ezzt_T Q. also directly implies (37). In this light, we may
think of (37) as expressing flow conservation: Since A; contains 7 + 1 order quantities, on average the
outgoing order should equal the total number of items in the pipeline divided by the length of the
pipeline. Thus, an attractive property of any approximation of A; is that it also satisfies (37) in some
way. Let us make this more precise. Via (11), an approximation of lim;_, P(Q;—r = z|A; = y) induces
an approximate Markov chain for A;. Let us denote the Markov chain induced by such an approximation
Ay, and let us denote the approximation for limy_ac P(Qi—r = z|Ay = y) by ]P’(Qt_T = x]At =y). Now

under this approximation, the outgoing order has long run mean

£ (0] - [0

y=0

At:y]]P’(Aoo:y).
The next Proposition identifies a large class of approximations P(Qt,T = x|121 = y) that leads to an
approximate chain A; that satisfies (t+1E [Qoo} =E [floo}

Definition 1. 4 Markov chain A; induced by replacing limy_,oc P(Qi—r = z|As = y) with some approxi-
mation P(Qt,T = $|/Alt = y) in the transition probabilities (11) is called internally consistent if it satisfies

(r+1E [Qoo} —E [Aoo} .
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With Definition 1 in place, we can state the main result of this Section.

Proposition 6.1. Any Markov chain A, on 0, . .., S with transition probabilities Dij = P(At_i_l = j|/it =1)

such that . R R
IoP (Qur =it k= jldi=i)P(D = k), f0<j<S;

P (G i (38)
2o P (Qt-r = k‘At = 2) P(Dy>S+k—1i), ifj=>5;

pij =
is internally consistent if
P (Q = m’A = y) =P (Xi—r = x‘Z};:FT Xp=y)
for some integer valued non-negative i.i.d. sequence of random variables X;.

Proof. First observe that > Y_ P (Xt,T = x‘Z};:t_T X = y) =1 and so A, is a Markov chain indeed.
Now we establish that (7 4+ 1)E {QOO} =K [floo} Because

E [Xn‘zilfc:th Xk = y] =K [Xn+1‘22=t77 Xk = y]

forany n € {t —7,...,t — 1} and

t
Y E[Xa|Sio Xk =y] =,

n=t—r

we have that

E [Xo|Yhor—r Xe =y] = y/(7 +1). (39)
Now for E [Qoo} we find

~ S ~ S ~ ~
E Qo] = DB [Xir [Shorr Xi =] P (A = y) = D 0/(r + VP (Ao = y) =E[Auc] /(7 + 1),
y=0 y=0

The second equality holds by substituting (39). O

Of all possible choices for X; in Proposition 6.1, Dy is of course the most obvious because of Theorems
4.1 and 4.2.

Corollary 6.2. A, is internally consistent.

Proof. This follows from Proposition 6.1 and the assumption that D; is a series of i.i.d. discrete non-
negative random variables. O
7. Extensions

The results in the previous sections can be used for several variations of lost-sales inventory models.

Below we discuss two such extensions.
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7.1 General single period cost functions

Our results give approximations, not only for the moments of I, and L, but also for their entire
distribution. Thus, a cost function that is not necessarily linear in I; and L; can also be accommodated.
To see how the distribution of L., and I, can be approximated by the given results, note that by
Lemma 3.1 P(Ioc = ) = P(Ase = S — ) and using Theorem 4.2, this can be approximated by 7(S — ).

Furthermore, for the distribution of L; we have for = > 0

S
P(Lt = $) ZP((Dt — Iy —Qtf-r)Jr = $) = ZP(Dt :$+y+Qt77|At = S—y)P(It :y)
=0
S—y ’
=Y > PDy=z+y+ 2P =y)P(Qrr = 2|4 =5 —y). (40)
y=0 2=0

Now letting t — oo in (40) and using the limit results in Theorems 4.1 and 4.2 to approximate, we find

(again for z > 0):

S S—y

Lo =1) ZZPDt—x—i—y—l—z) (S—yP (Dt_T_l ’Zk e 1Dk:S—y).

y=0 z=0

7.2 Service level constraints

Suppose that we would like to minimize inventory holding cost while retaining the fillrate (fraction of
demand not lost) above a target level 8 € [0,1). If we choose to control this system by a base-stock
policy, the objective now becomes to minimize S such that SE[D] < E[Ax]/(7 + 1). An approximate
solution to this problem can be found by approximating E[A] by E [[loo

The out-of-stock probability at the end of period, P(Is, = 0) can be approximated by P(Iinfty = 0).
Again, under a base-stock policy, this can be used to minimize inventory holding costs subject to an

out-of-stock probability constraint.

8. Numerical results

In this section, we test the ASYMP-heuristic numerically by comparing it to the performance of the best
base-stock policy and several other heuristics for setting base-stock levels in lost-sales inventory systems.
We describe our sets of test instances and set-up in §8.1 and several heuristics in 8.2. In §8.3 we report

our numerical results.

8.1 Test instances and set-up

We use and extend the test bed of Huh et al. (2009b) which is an extension of the test bed of Zipkin
(2008a). (Note that the papers of Zipkin (2008a) and Huh et al. (2009b) also report the performance of the
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globally optimal replenishment policy.) The first and second set of instances in this test bed have Poisson
and Geometric demand distributions respectively, both with mean 5 and lead times 7 € {1,2,3,4}. The
holding cost is kept constant at h = 1 while the penalty costs p € {1,4,9,19,49,99,199}.

The third set of test instances have Poisson demand with means ranging from 1 to 10. Holding cost
is kept constant at h = 1, p € {1,4,9,14,49,99,199} and 7 € {2,4}. This set extends the set of Huh
et al. (2009b) by including 7 = 4.

The fourth set of instances has negative binomial demand with r» € {1,2} required successes and
success probability ¢ € {0.1,0.2,0.3,0.4,0.5}. The other parameters are as in the third set. (So here too,
we add instances with 7 = 4.)

Finally we added a fifth set of instances with heavy-tailed discretized generalized Pareto demand.
Appendix B provides some details of the discretized generalized Pareto distribution. We use two distri-
bution settings, one with shape parameter £k = 0.1 and scale parameter ¢ = 5 and another with shape
parameter k = 0.4 and scale parameter o = 10. We again fix h = 1, let p € {1,4,9,19,49,99,199} and
let 7 € {1,2,3,4}.

We compute the best base-stock levels via simulation with common random number across different
base-stock levels. The results of Janakiraman and Roundy (2004) ensure that the cost function under
this procedure is convex. The runlength of the simulations was set such that the halfwidth of a 99%
confidence interval was less than 1% of the point estimate of the total costs. The actual performance of

different heuristics is also evaluated using simulation with the same (common) random numbers.

8.2 Haeuristics

The first heuristic we consider has been suggested by Huh et al. (2009b) and is asymptotically optimal
as p — oo under mild conditions on the demand distribution. The heuristic is to select the base-stock
level that minimizes cost for an analogous backorder system with p 4+ 7h as the cost per backorder per

SHS

period. The resulting base-stock level is denoted and is the solution to a news vendor problem:

+7h
SHS _mf{ ;IP(D(TH) < ) > p}.
Y =Y)= p+ (T+1)h
We call this heuristic the HS-heuristic. (HS stands for Huh et al. (2009b) Simple heuristic.)
Huh et al. (2009b) observe that the HS-heuristic performs quite poorly and so they suggest an im-
proved heuristic that is also asymptotically optimal (as p — oo) and based on solving news vendor

problems. This improved heuristic has base-stock level SH4 that satisfies

h P
gHA— P el p (D0t <) > 2 infly:P(D<y)>-—L_\,
p+hln Y ( _y)_p—i—h +p—|—hm y:P( _y>_p+h

We call this heuristic the HA-heuristic. (HA stands for Huh et al. (2009b) Advanced heuristic.)
Finally we will consider an adaptation of a heuristic suggested by Bijvank and Johansen (2012), which

we will denote ABJ-heuristic. The original heuristic was designed for a setting with fractional lead times,
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Table 1: Average and maximum gaps with the best base-stock policy and hitrates for different heuristics for setting base-stock

levels.
Average GAP (%) Maximum GAP (%) Hitrate (%)
Demand distribution HS HA ABJ ASYMP HS HA ABJ ASYMP | HS HA ABJ ASYMP
Poisson mean 5 19.99 1.14 0.39 0.04 156.72 5.59 1.88 1.01 14 46 57 89
Geometric mean 5 30.67 4.61  0.00 0.00 232.25 11.22  0.02 0.00 0 0 86 100
Negative Binomial 35.71 5.28 0.01 0.00 278.13 28.21 0.13 0.17 0 0 85 92
Poisson mean 1-10 24.83  2.57 0.37 0.02 181.45 25.40 2.12 1.30 5 24 53 94
Generalized Pareto 39.23 9.05 0.00 0.00 304.58 23.32 0.07 0.04 0 0 66 73
Lead time (7)
1 8.87 1.71  0.11 0.04 48.17 4.38 1.88 1.01 11 25 79 89
2 19.95 3.02 0.14 0.02 125.17  18.99  2.03 1.30 4 18 73 93
3 40.06  7.47 0.06 0.00 208.70 17.55 1.13 0.04 4 4 75 75
4 43.86 5.96 0.21 0.00 304.58  28.21 2.12 0.15 0 5 62 91
Penalty cost (p)
1 138.56  6.64 0.12 0.00 304.58  28.21 1.21 0.11 0 7 71 95
4 37.44  5.03 0.03 0.00 90.81 19.93  0.45 0.24 0 23 84 93
9 18.00 4.92 0.11 0.02 52.28  23.32 1.61 1.01 0 16 75 91
19 9.68 4.67 0.17 0.04 35.67 23.18 1.33 1.30 0 14 70 86
49 5.57 4.08 0.28 0.00 27.15 22.88 2.03 0.15 4 57 95
99 3.74 3.40 0.28 0.00 24.72  22.68 1.88 0.08 7 59 88
199 2.90 2.81 0.15 0.00 23.82 2294 2.12 0.06 9 9 66 88
Total
30.84 4.51 0.16 0.01 304.58 28.21  2.12 1.30 3 12 69 91

compound Poisson demand and holding costs that are accrued continuously over time rather than at the
end of a period. However, the ideas behind their heuristic can be adapted to the present setting. The idea
is to apply a correction factor to an analogous backlogging system to satisfy a property that resembles
flow conservation. We provide a complete derivation for the present setting in Appendix C. In short, the

ABJ-heuristic chooses the base-stock level SAB7 as

S~ (S)E [ (5 - D)
T+1

+
S4BT = argmingey, ¢ he(S)E [(5 - D(T“)) ] +p | E[D] - ., (41)

where ¢(5) is a function of S given by:

s
(r+1) (IE [(5 _ Dmﬂ _E [(s _ D(r+1>)+]> +E [(s - D(T+1))+} '

C =

Finally of course, there is the ASYMP-heuristic that we developed in §4. The ASYMP-heuristic has

base-stock level SASYMP — argminge s, o . sy p) C(S).
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8.3 Results

In this section, we present aggregated results about the gap with the best base-stock level and the
hitrate: the percentage of instances in which a heuristic finds the best base-stock level. Arts (2013)
provides details per instance in a style similar to that of Zipkin (2008a) and Huh et al. (2009b). Here we
provide aggregate results in Table 1 for the average and maximum gap with the best base-stock policy
and the hitrate. These results have been aggregated over the different types of demand distributions,

lead times and lost-sales penalty costs.

First of all, the results show that the ASYMP-heuristic is very effective and outperforms all the other
heuristics with a considerable margin. The average and maximum gap with the best base-stock level are
0.01% and 1.30% respectively and in 91% of instances, the ASYMP-heuristic found the best base-stock
level. The worst case performance is for the instance with 7 = 2, p = 19 and Poisson demand with a
mean of 2 per period. This is evidence that the impression given by Figures 1 and 2 holds across a very

wide range of instances.

The performance of the other heuristics all degrade with lead time and improve with the penalty
costs. All these heuristics are based on somehow adapting results for systems with backorders to systems
with lost-sales, which explains why this happens. By contrast, the ASYMP-heuristic is not based on

somehow correcting a backlogging model and so it does not suffer from the same drawbacks.

It is perhaps striking that the ASYMP-heuristic performs better for negative binomial (geometric
included) and generalized Pareto demand than it does for Poisson demand, even though the theoretical
convergence properties are stronger for Poisson demand; see Proposition 5.3 and Theorem 5.4. A plausible
explanation for this is that for finite .S, internal consistency as outlined in §6 is more instrumental in
the quality of our approximation than the asymptotic results in §4. Since the ABJ-heuristic is based on
correcting a backlogging model to satisfy a property that closely resembles flow conservation, this also

explains why the ABJ-heuristic performs better than the HS and HA-heuristics.

We do see that the hitrate deteriorates significantly as p increases for all heuristics. This is because

the best base-stock level increases with p and so the exact optimum is easier to miss.

In closing, we comment on computation times. Evaluating the best base-stock policy using value
iteration is almost as difficult as determining the optimal policy. Bijvank and Johansen (2012) use a
value iteration algorithm in a very similar setting and report computation times of several minutes op
to several hours. We already observed that the state space required to evaluate the performance of a
base-stock policy grows exponentially in both S and 7. By contrast, the state space of needed to evaluate
C(S) is linear in S only.

We determined the optimal base-stock levels with simulation and found computation times of several
minutes to be the norm on a machine with 2.4 GHz Intel processor and 4GB of RAM. By contrast, all

the heuristics have computation times of less than 0.01 second for all instances on the same machine.
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9. Conclusion

We have presented a different view on the dynamics of a lost-sales system under a base-stock policy by
focussing on the pipeline of outstanding orders. This alternate view led us to single dimensional state
space description. We studied the transition probabilities within this state space using asymptotics and
found that these asymptotics satisfy a type of flow conservation property. To show that the convergence
of our asymptotic results is independent of the lead time, we proved a new property of the asymptotic
behavior of the failure rate of discrete random variables under convolution. Based on these theoretical
results, we proposed a heuristic to set base-stock levels and found that it outperforms existing heuristics
and has an average and maximum gap with the best base-stock policy of 0.01% and 1.30% across a wide
test-bed. Furthermore, our heuristic is computationally very efficient, the most demanding algorithmic

requirement being the solution of linear equations.
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A. Proofs

A.1 Proof of Lemma 5.1

Proof. (If clause) This follows by taking m = 1 and observing that
P(X >n+1)
P(X > n)
(Only if) Let Ay = {z € {1,--- ,k — 1}|P(X = z) > 0}. The probability mass function of X can be
written in terms of its hazard rate as follows:
P(X =n)=H(n) [ (1 - H()). (42)
k€An
Because P(X = n|X > n) — r, P(X = n) > 0 for all sufficiently large =. Using (42), we have for

=PX>n+1X>n)=1-PX=n+1X>n+1)—1—-r

sufficiently large n that

P(X:n—i-l) . H(n+1)(1_H(n))erAn(l_H(k)) _ H(n"_l) —H(n+1)—>1—7‘. (43)

P(X =n) H(n) [Tpea, (1 — H(K)) H(n)
Using this we find
Ipw:P(X>n+m\X>n):1—]P’(X§n+m|X>n) (44)
:1_P(n<X§n+m):1_”i”P(X:k) (15)
P(X >n) W (X >n)
. P(X=n+1) [(H(n+2) P(X =n+1)
‘1_1@(in+1)_<H(n+1)_H("+2)>P(in+1)_”' (46)
H(n+m) P(X =n+1)
_(H(n—i—m—l)_H(n+m>>P(XZn+1)'

The fourth equality holds by substituting (43). Now as n — oo, we have by combining (46) and (43) and
using that H(n) — r that

m—1

P(X >n+m) — & 1—(1—=r)m
—_— = 1 - 1- =l-r——=(1-r)™ 47
e e M (47)
O
A.2 Proof of Proposition 5.3
Proof. Let p denote the mean of the Poisson distributed random variable D. Then we have for H(n) =
P(D =n|D > n)
H(n) = e_u% = % = 1
k n k k
E;O:n 6_1“;7! l:T' + Z:O:n—i-l % 1+ ;% Zzozn—i-l %
1 1
(48)

p— >
oo ___pF T 143 (u/n)k
L+ 20 7o 2 k=1 (p/n)
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Now using that limg—0 Y po a® =lim,_,0a/(1—a) = 0, we observe that (48) implies that lim,, o, H(n) >

limy, 00 m = 1. Noting that P(D = n|D > n) < 1 for all n € Ny, we have by the squeeze

theorem that lim, o H(n) = 1.
If D is a negative binomial random variable, then D is the sum of several geometric random variables

(for which the hazard rate is p everywhere) and so the result follows from Proposition 5.2. O

A.3 Proof of Theorem 5.5

Proof. We prove that the exponential convergence in probability of ;11 to D; implies exponential con-
vergence in distribution. The entire theorem then follows, as from then on, only algebraic manipulations

are involved. Recall that Q1 < D; with probability one and so for any a € Ny
]P)(Dt S a) S P(Qt+1 S CL). (49)
Now for this same a, we have:
P(Qiy1 <a) =P(Qi+1 <anNDy <a)+P(Qi1 <anNDi>a)
(Dt S a)+]P’(Qt+1 —Dt Sa—DtﬂCL—Dt <0)
(Dt < CL) + P(Dt — Qt+1 > 0)
(D < a)+0 ((0+¢)%), (50)

IN

IN

P
P
P

IN

where (50) follows from applying Theorem 5.4. Combining (49) and (50) yields the desired result. O

A.4  Proof of Theorem 5.7
We will first present some lemma’s that will facilitate our proof.

Lemma A.1. When lim, oo H(n) = lim, yooP(D = n | D > n) = 1—-60 € (0,1), then for any
e € (0,min(0,1 — 0)) there exists an N € N and C =P(D > N) > 0 such that

ClH—e)" N <PD>n)<CO+e)" N (51)
foralln > N.

Proof. Let € € (0,min(#,1 — #)). Pick N such that |[H(n) — 1+ 6| < ¢ for all n > N. (Such a finite N
exists by the assumption lim,,_,oc H(n) =1—60.) Let C =P(D > N) > 0. We will use induction. Observe
that (51) holds with equality for n = N by construction. Now suppose (51) holds for some n > N. We
will show that it holds for n + 1. The upper bound holds because

P(D >n+1)

F(D > n) P(D >n) < (0+¢e)P(D>n)=C(0+e)" 1N, (52)

P(D>n+1)=

where the second inequality follows from (35) and the choice of N. The lower bound is completely

analogous. 0
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Lemma A.2. [flim, ,ccP(D=n|D>n)=1-6¢€ (0,1), then

. St .. Su . Sasymp
lim = lim = lim ——— =1
p—oo —loggp  p—oe —loggp  p—oo —logyp

Proof. Let ¢ € (0,min(6,1 — #)). Applying Lemma A.1 and Proposition 5.2 yields C(f — ¢)%:8=N <

P(DUHY > §;5) < C(0+¢)5e8=N for appropriately chosen constants N and C. Using (20), this implies
that for sufficiently large p

207 (T +1)

o1p = N+ 1080 ( p+h(r+1)

> =N+ log(gfg)(20_1h(7' +1)) —logy—_oy(p+ (T +1))  (53)
and

SLB > N+ ].Og(9+€) (2071}7,(7' + 1)) - lOg(9+5) (p + h(T + 1)) (54)
Therefore, using (53), we find that

. Sim N +logp_oy2C7h(1 +1)) =logp_e)(p+ M7+ 1))  log_oy(p+h(T +1))
lim < lim = lim .
p—oo —loggp — poreo —logyp p—roo logy p

(55)
But since log, x is continuous in a, and & can be chosen arbitrarily in (0, max(6, 1 —6)) we must have (by
letting ¢ | 0):
Ste iy, 1080(p+A(T +1))

li = 1. 56
pooe —loggp — poe logy (p) (56)
Analogous arguments starting with (54) yield
S
lim —22 > 1. (57)

pioe “loggp —

Combining (56) and (57) yields lim,_, %gﬁ;p =1

The argument to establish lim, ., = 1 is almost identical so we omit it. The final equality

SuB
—logyp
follows because Sr,g < Sasymp < Sys. ]

Lemma A.3. Iflim, ,ocP(D=n|D>n)=1-6¢€ (0,1), then

lim 7C(SLB) = lim 7C(SUB)

=h
p—oo  Spp p—oo Syp

Proof. By Lemma 5 of Huh et al. (2009b) we have the upper bound

C(SLB) - hE[(SLB — D(T+1)>+] + T%IE[(D(TH) — Srp)t]

Stp SLB (58)
14 p/(T+1)E[(D<T+(1>—139LB)+]
—D+1))+
_ RE[(SLp—D )] (59)

SrB
hE[(SLp—D(T+1))+]
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. . (r+1) _
Now we will proceed to analyse lim,, RE[( SLBSEIJ;(T D) and p/%[l()i[gga;uliﬁ)ﬂ . Observe that Spp <

E[(Spp — DUt < Sy — E[D+Y], so that by the squeeze theorem
SLB 1

I S 60
pooo hE[(Spp — DOF)H R (60)

because Sy — o0 as p — oo by Lemma A.2. Next we have

p/(r+ DE[(DTHD — Spp)t] A P(DUY > Spp)E[DTHY — Spp | DUHY > S

RE[(Spp — D(T+1)+] ~ hP(DUHY < Sp)E[Spp — DO+ | D+ < S; ]

i EID T = Sup | DO > 81

hﬁlZﬁZiBE[SLB — D) | DT+ < S Bl

2h(t + 1)p? +2h%(7 +1)?p E[DTH) — Spp | DD > Sy 5]
h(r 4+ 1)p2 —h3(r +1)3  E[Spg — DU+D | DO+ < §; 5]

—~2.0=0 (61)

as p — oo. The first inequality follows from (54). The final limit follows from observing that by Lemma

A.1 and Proposition 5.2, there exists an € € (0,0) such that for sufficiently large Sip

fe') P D(T+1) =9 +x
E[DT) — S5 | DUTY > Spp) =) (IP(D(TH) >L§LB) |

_EZB(DC > §,B)(0+ )
- [P’(D(TJrl) > SLB)

1
— — 2
1—g_c > (62)
and E[Spp — D) | DUHD < 1 p] > Spp — E[DUTY] = oo as p — oo. Combining (59), (60), and
(61), we conclude that limy, o C(SSLLBB ) > h.

Now using the lower bound from Lemma 5 of Huh et al. (2009b) and analogous arguments we obtain

C(SLp) _ hE[(Spp = DT + (p + ThE[(DTFY — Spp)*]

— h, 63

St SLB (63)

as p — 00, so that lim,_, C(Siff) = h. The proof for lim, ,o. C(Syp)/Sup = 1 is analogous so we omit
it. L]

Now we can present the proof of Theorem 5.7.

Proof. limy,_,o, C(Syp)/C(S*) is asserted in Theorem 5 of Huh et al. (2009b). Using Lemmas A.2 and A.3

this implies lim;,_, %m =1, so that lim,_,o, C(S*)/ — logyp = h. Using Lemmas A.2 and A.3

again this implies lim,_, C(Srp)/C(S*) = limy_ % = 1. Since C(S) is convex (Theorem

11 of Janakiraman and Roundy (2004)), and Srp < Sasymp < Sup, we have that C(Sasymp) <
max(C(Srg),C(Sup)) so that also lim,_,oc C(Sasymp)/C(S*) = 1. O
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Corollary A.4. Consider any heuristic that finds a base-stock level Sgpyr such that Spp < Sprur <
Sup. Iflim, oo P(D =n | D >n) =1—-60 € (0,1), then this heuristic is asymptotically optimal as
p — 00, in particular

lim C(Speur)/C(S™) =
pP—00
Proof. Same as proof of Theorem 5.7 with Sagy pp replaced by Sgeur- ]

A.5 Derivation of the state space size of Q;

The size of the state space of the vector Markov chain Q; is
S(S,7) = |{X € Nj™|xel < S}H.

Now observe that &(S, 7) can be expressed recursively in 7. We have for 7 =0

S
&(5,00=> 1=5+1. (64)
k=0
For 7 =1 we have similarly
S S—ki 1
S8 )=>» Y 1= S(S+1)(5+2), (65)
k1=0 ko=0

where the second equality follows from substituting (64). We can continue such back substitution to

obtain
S S—ki S—ki—k2 1
Z Z 1 = 2 (S+1)(S+2)(S+3) (66)
1=0 ko=0 3:0
S S—k1S—ki—ko S—k1—ka—k3 1
Z Z Z 1 = (S + 1S +2)(S+3)(S +4). (67)
1=0 koa=0 k3=0 =
It is now easy to see that
js S+7+1)! S+7+1
S(9,7) = +1,HSJF _(),_( S > (68)

Thus, & grows exponentially in both 7 and S.

B. The generalized Pareto distribution
A non-negative continuous random variable X is said to have a generalized Pareto distribution if

P(X <a)=F(z)=1-(1+kz/o)"/k
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for some k > 0 (shape parameter), o > 0 (scale parameter) and all z > 02. If k£ < 1, X has finite mean
E[X]=0/(1-k),

and if k < 1/2, it also has finite variance

0.2

1— k)21 - 2k)

Var[X] =

It is easily verified that X has a heavy-tail. If Y = |X 4 1/2], then Y is said to have a discretized

generalized Pareto distribution and
PY =y)=Fly+1/2) - F(y - 1/2)

for y € N.

C. Adapted Bijvank and Johansen Heuristic

The adapted Bijvank and Johansen (2012) heuristic (ABP-heuristic for short) is constructed as follows.
The random variable fb(S ) should approximate the on-hand inventory at the beginning of a review period
after order receipt, before demand occurs. The approximation is to apply a correction factor ¢ to the

equivalent random variable in the analogous backordering system as follows:

~ cIP’(D(T):S—a;), 0<x<S;
1-cP(DM < 8), z=0.

Similarly, we let the random variable fe(S) approximate the on-hand inventory at the ending of a period
after demand occurs. Using the same correction factor applied to the analogous backordering system we

have
- P(DTD =S —2), 0<z<S;
P(I.(S) =x) = ( (r41) )
1—cP(DtY) < 8), z=0.
The question now becomes how the correction factor ¢ should be determined. Since we know that
fb(S ) — fe(S ) is the order quantity under a base-stock policy, it seems reasonable to choose ¢ to verify

. _5 —E[L(S)] _ S—E[lx] E[Ay]

E[L(S)] —Elle(S)] = —— T =~ =~ ~ ElQx] (69)

Note that (69) expresses something that resembles the notion of internal consistency as defined in defi-
nition 1. Solving (69) (left of the approximate equality) for ¢ yields

S
<T+n(EUs_Dmy}_EUS_DvH»j>+EU5_Dquj

(70)

C =

2The generalized Pareto distribution can, and sometimes is, generalized further by introducing a location parameter and

also allowing k£ < 0.
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An approximation for the cost under a given base-stock level S is now given by:

S—E [fe(S)}

C(8) = hE |1.(S)] +p | EID) - ——

(71)

S—cE [(s - D(T“))Jr}
T+ 1

= heE {(S - D(T+1)>+] +p | E[D] -

where ¢ as a function of S is given by (70). The ABJ-heuristic consists in choosing S to minimize (71).
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