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ERROR BOUNDS FOR THE SOLUTION TO THE 
ALGEBRAIC EQUATIONS IN RUNGE-KUTTA METHODS 

K.DEKKER 

Mathematisch Centrum, Kruislaan 413, !098 SJ Amsterdam, The Netherlands 

Abstract. 

In the implementation of implicit Runge-Kutta methods inaccuracies are introduced due to the 
solution of the implicit equations. It is shown that these errors can be bounded independently of the 
stiffness of the differential equation considered if a certain condition is satisfied. This condition is 
also sufficient for the existence and uniqueness of a solution to the algebraic equations. The BSJ
and SS-stability properties of several classes of implicit methods are established. 

I. Introduction. 

Consider the class F v of ordinary differential equations 

(1.1) y'(x) = f (x, y(x)), 

satisfying for a real constant v the one-sided Lipschitz condition 

(1.2) (f(x,y)-f(x,z),y-z) ~ vlly-zll 2, 'r:/y,zeRN, x !i;; x 0, 

(., .) being an inner product on RN with the corresponding norm II· II. The 
class of equations for which v equals zero, to be denoted by F0 , is of particular 
interest in the study of stiff nonlinear systems, and it has been the subject of 
much recent analysis, e.g. Burrage and Butcher [1], Dahlquist [4]. A common 
property of equations of this class is that the difference between two solutions, 
y(x) and z(x), does not increase as x increases, and it seems natural to require 
that a stable numerical method shares this property. Burrage and Butcher [1] 
associate the concept of RN-stability with this property for implicit Runge-Kutta 
methods and they prove that RN-stability is equivalent to algebraic stability 
under some mild conditions. 

In their analysis they assume that the implicit equations arising from the implicit 
Runge-Kutta scheme are solved exactly. However, in practical situations we are left 
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with errors made in the iteration process used to solve the implicit equations and one 
may wonder whether or not these errors contaminate the final results. Moreover, it is 
not sure that these equations, which aredescribedinsection2,do have a solution at all. 
Recently, Crouzeix, Hundsdorfer and Spijker [2] have constructed an example, in 
which an algebraically stable method, applied to an equation from F 0, yields a system 
of nonlinear algebraic equations without a solution. They proved that algebraic 
stability and irreducibility imply the existence and uniqueness of solutions for all 
eq ua_tions from F v with v strict! y negative. They also gave slightly stronger conditions 
for problems from the class F 0 • In section 3 we present similar results for the more 
general case with v positive. We also derive bounds for the errors due to perturbations 
of the algebraic equations. With these bounds we can easily establish BSI- and 
ES-stability (see Frank, Schneid and Ueberhuber [10]), which is done in section 4. 

Finally w~ consider well-known classes of implicit Runge-Kutta methods in 
section 5. We show that the stepsize restrictions for BSJ-stability, which are 
given for some methods by Frank et al. [10], can be relaxed in case of the 
Gauss, Radau IA and Radau IIA methods. We also prove that the Lobatto IIIC 
methods with an odd number of stages are not BSJ-stable. 

2. The algebraic equations. 

Let .. ., Yn- l• Yn• ... denote a sequence of approximations computed by the implicit 
Runge-Kutta method 

C1 a11 a12 als 

C2 a21 a22 a2s 

(2.1) =~1~ 
c, a,1 a,2 a,, 

b1 b2 b, 

with stepsize h. The approximations are defined by the solution of the equations 

(2.2) 

(2.3) 

• 
Y; = Yn-I +h L a;J(x._ 1 +hci, lj), 

j=! 

• 

i = 1,. . ., s, 

Y. = Yn-1 +h L bJ(x.- 1 +hci, lj), 
j=! 

for n = 1, 2,. ... We will focus our attention to the solution of system (2.2) for 
a fixed n. Introducing the vectors 

[Y1J rf(x+hc1, Yi)] 
Y = : . eRN•, F(x, Y) = : eRN•, 

Y, f(x+hc,, Y,) 
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these equations can be written as 

(2.4) 

where ® denotes the Kronecker product, e is the column vector with each element 
one and IN is the N x N identity matrix. We also consider for some arbitrary 
perturbation vector A the equations 

(2.5) 

and define V = Z- Y, W = hF(xn- l• Z)-hF(xn-l• Y). Obviously, these vectors 
satisfy 

(2.6) 

On the space RNs we define an inner product and a norm by (see Dahlquist 
and Jeltsch [5], 12-13) 

s 
- " - 2 [ - Ns [Y,Y]v= .L.di(Yi,YJ), llYllv= Y,Y]v, forY,YER, 

j= 1 

where D = diag(d1 , ... , d5 ) is a positive diagonal matrix. The inner product on 
R• induced by D will be denoted as 

s 

(x, Y)v = L dhYi• x, y E R 5• 

j=l 

Using the matrix norms subordinate to these vector norms, we have for an 
arbitrary s x s matrix A 

(2.7) llA ®I Nllv = llAllv 

as a simple property of the Kronecker product. 
The following function appears to be of fundamental importance in our analysis. 

DEFINITION. Let A be an s x s matrix and D a positive diagonal s x s matrix. 
Then 

(2.8) t/lv[A] = min (Ax,x)v, xER5• 

llxllD = [ 

We note that t/Jv is related with the logarithmic matrix norm µ (see Dahlquist 
[3]). In fact, the following relations hold (cf. Strom [I I]) 

(2.9) t/lv[A] = min{A.ldet(DA+ArD-2A.D) = 0} = -µv[ -A]. 
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3. Error bounds. 

We first quote some definitions from Burrage and Butcher [1] and from 
Dahlquist and Jeltsch [5]. 

DEFINITION. A Runge-Kutta method is said to be algebraically stable if 
B = diag(b 1, •.• , b.) is nonnegative definite and BA+ ArB-bbr is nonnegative 
definite. 

DEFINITION. A Runge-Kutta method is called reducible if there exist two sets 
Sand T such that S =fa cp, Sn T = cp, S v T = {l, ... ,s} and 

b1 = 0 ifjeS, 

aii=O ifieT,jeS. 

The method is called irreducible if it is not reducible. 
In [5] it is shown that B is positive for any algebraically stable irreducible 

method. Consequently we arrive at (see Crouzeix et al. [2]) 

LEMMA 3.1. Any algebraically stable irreducible method satisfies 

(3.1) 1/18 [A] ~ 0. 

Crouzeix, Hundsdorfer and Spijker [2] have constructed an algebraically stable 
irreducible method and a problem from F0 such that system (2.4) does not have 
a solution. Thus, condition (3.1) is not sufficient for the existence of a solution. 
In [2] sufficient conditions are given, restricted however to the classes F,. with 
v ~ 0. In the sequel we consider the general case. 

LEMMA 3.2. Let Y and Z be arbitrary vectors from RN•, let f be a function 
satisfying (1.2) and define V = Z-Y, W = hF(xn_ 1,Z)-hF(xn_ 1, Y). Then we 
have 

[V, W]n ~ vhlJVll1. 

PROOF: By definition of II· lln we have 

s s 

[V, W]n = L d;(~, W;) = L d;h(Z;-Y;,f(xn-l +c;h,Z;)-f(xn-l +c;h, ¥;)) 
i = 1 i= 1 

s 

~ I d;vhllZ;- Y;ll 2 = vhllVll1. • i=l 

THEOREM 3.3 Let Y and Z be solutions of the equations (2.4) and (2.5), respectively, 
for some problem from F v· If A is regular and if there exists a positive diagonal 
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matrix D such that 

(3.2) 

then the difference vectors V and W are bounded by 

(3.3) < ll'A- 1llv 
IJVllD = l/tv[A-1]-vh llL!llv. 

(3.4) 

PROOF. Because A is regular, the matrix A ®IN is invertible. Premultiplication 
of (2.6) with the inverse leads to 

(3.5) 

We take the inner products with V, bound the left hand side from below, using 
the definition of l/lv and Lemma 3.2, and bound the right side with tile Cauchy
Schwarz inequality. We thus obtain 

and (3.3) follows, provided (3.2) holds. The bound for W is a consequence of 
the triangle inequality applied to (2.6). • 

We note that l/ID[A - 1 ] is positive iff lftv[A] is positive (cf. Dekker and Verwer 
[7], section 5.1 ). Hence (3.3) and (3.4) provide error bounds valid for all v, 
if l/tv[A] is positive and if the stepsize h is sufficiently small. If l/tv[A- 1] = 0, 
then the theorem above provides bounds for the classes F v with v < 0 only. 
This situation may arise if we choose D equal to the matrix B. 

COROLLARY 3.4. Let Y, Z, V and W be defined as in Theorem 3.3. Suppose that 
A is regular and that the method is algebraically stable and irreducible. Then we 
have for any problem from F v with v < 0 

(3.6) llVllB ~ llA - l llBllLlllB/( -vh) 

(3.7) llWllB ~ llA -lllB{l + llA- 1llB/( -vh)}llLlllB· 

PROOF. Apply Lemma 3.1 and use l/tB[A- 1] = l/tB[A] ~ 0. • 
Bounds for V and W have also been given for methods with singular matrices A 

by Dekker [6]. However, these bounds are restricted to problems from Fv with 
v ~ 0. For details we refer to [6] and [7, section 5.3]. 

So far we have assumed that the equations (2.4) and (2.5) did have a 
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solution. However, this assumption remains to be proved. In the following 
theorem we show that these equations have a unique solution under somewhat 
milder conditions than required in Theorem 3.3. For the proof we refer to the 
proof of theorem 1 contained in [2], which can be easily extended to our hypo
thesis (see also [7]). 

THEOREM 3.5. If A is regular and if there exists a positive diagonal matrix D 
such that (3.2) holds, then the algebraic equations have a unique solution for any 
problem from F ,. If A is singular and if there exists a positive D such that 
i/JD[A] = 0, then the algebraic equations have a unique solution for any problem 
from F, with v < 0 and any stepsize. 

4. BSI- and SS-stability. 

In the theory of B-convergence (see [9]) the important concepts of BSI-stabil(ty 
and ES-stability have been introduced by Frank, Schneid and Ueberhuber [10]. 
We quote their definitions. 

DEFINITION. A Runge-Kutta method is called RSI-stable if there is a ij > 0 and a 
continuous monotonically increasing function iP defined on ( - oo, ij), where ij and 
q; depend only on the method, such that for arbitrary vectors Y and Z satisfying 
(2.4) and (2.5) one has 

(4.1) llZ- Yll ~ ~(hv)llAll, hv < ij. 

Now, let again Z be a solution of (2.5). We then define 

(4.2) 

DEFINITION. A Runge-Kutta method is called BS-stable if there is a q > 0 and 
a continuous monotonically increasing function <[> defined on ( - oo, q), where 
q and $ depend only on the method, such that 

(4.3) IJzn-Ynll ~ $(hv)llLlll+llCill, hv < q. 

The norms in the definitions above are supposed to be Euclidean. As the norm 
induced by Dis equivalent to the Euclidean norm, Theorem 3.3 applies directly, 
giving a condition sufficient for RSI-stability. 

THEOREM 4.1. A Runge-Kutta method is BSI-stable if A is regular and if 
t/ID[A- 1] > 0 for some positive D. Moreover, one has 

(4.4) ~(hv) = ~a.x1 (d;/d/12 llA- 1 llD/(t/tD[A- 1]-hv), 
'· J 
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Frank et al. [10] present an equivalent condition for BSJ-stability. However, 
in our formulation we arrive in a natural way at a stepsize restriction, which 
can be computed easily, as we will show in section 5. 

THEOREM 4.2. Let a Runge-Kutta method be BSI-stable and let A be regular. 
Then we have 

(4.5) hv < q = q. 

PROOF. Let vn = z.-Yn· We then have, using (3.5), 

!Iv.II= lib+ (bT ®lN)Wll ~ 11811 +ll(bT A- 1 ®JN)(V-Ll)li 

~ llbll+ llbT A- 11i(llVll+llLlll). 

Substitution of the bound (4.1) for V leads to the required result. • 
We remark that the requirements given in these theorems are sufficient, but 

not necessary. In the next section we will show that the Lobatto IIIB methods. 
which have a singular A, are BSJ-stable and not BS-stable. The importance of 
the concepts of BS/-stability and BS-stability is illustrated by the following 
theorem, which emanated from a discussion with Frank and Verwer. 

THEOREM 4.3. Let a Runge-Kutta method be algebraically stable, BSI-stable and 
BS-stable. Then the method is B-convergent. 

PROOF. We refer to [7, section 7.4] for the details. Here we note that BS-stability 
implies B-consistency (cf. [9]), whereas algebraic stability together with BSJ
stability implies B-stability. In Frank et al. [9] it is shown that B-convergence 
follows from B-stability and B-consistency. • 

5. Results for various Runge-Kutta schemes. 

The applicability of the theorems of the previous section depends essentially 
on the determination of a suitable matrix D, such that t/J D[ A - 1] is large enough. 
This task does not seem easy at first glance, but in all examples considered it 
turns out to be very simple. In fact it is easily seen that for all positive D an 
upper bound is given by 

(5.1) lfiD[A- 1] ~ min (A- 1 )u. 
i 

Moreover, this bound is attained if DA- 1 + (DA - 1 )T is a diagonal matrix. There
fore we have chosen D in such a way that the elements d;(A - 1 )n and d 1 (A - 1 )u 
are equal in modulus, and we found out that for this particular choice all off
diagonal elements vanished. We present the results in the following examples. 
For details we refer to [7, sections 5.5-5.9]. 
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EXAMPLE 5.1. Consider the s-stage Gauss method and define 

(5.2) 

(5.3) D = E(C- 1 -/,). 

Then D is positive and one can show that 

Consequently, 

,,, [A-1] 1 . (Ec-2v-1) 1 . ( 2)-1 
'l'D = 21llln ii= 2mm C;-Ci ' 

i i 

which is positive because C;E (0, 1) for i = 1, ... , s. We conclude that the Gauss 
method is ESJ-stable and ES-stable with the stepsize restriction 

(5.4) 

We note that the condition on the stepsize given in [10] is more restrictive. 

EXAMPLE 5.2. Consider the s-stage Radau IA method and define 

(5.5) D = E(J,-C). 

Again D is positive and one finds 

Consequently, 

(5.6) 

and BSI- and ES-stability follow. Again, the stepsize condition is less restrictive 
than the one given in [10]. 

EXAMPLE 5.3. Consider the s-stage Radau IIA method and define 

(5.7) D = Ec- 1. 

Then D is positive and we obtain after some calculations 

DA- 1 +(DA- 1f = Ec- 2 +e,e;. 
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As a result we have 

(5.8) 
_ 1 {·! J:?in {c;)- 1 

l/lv[A ] = i<s 
1 

ifs ;?; 2, 

ifs= 1. 

Consequently the method is ES!- and ES-stable. We note that the values given 
by (5.6) and (5.8) are equal, because of the relation between the Radau IA 

points ci and the Radau HA points ci, given by C; = 1-c.+ 1-i• i = 1,. . ., s. 

EXAMPLE 5.4. The two-stage Lobatto IIIC method is BSI- and ES-stable, according 
to Frank, Schneid and Ueberhuber [ 10]. A simple calculation shows tjJ 1[ A - 1 J = I, 

so we have a stepsize restriction with q = q = 1. We observe that this condition 
is Jess restrictive than the one given by Burrage and Butcher [1, Example 5.4]. 

EXAMPLE 5.5. Consider the s-stage Lobatto me method with s odd. In Dekker [6] 

it is shown that in case of the three-stage method no bound on V exists for 

problems from F 0 . This result can be generalized for arbitrary odd s. In fact, 
by choosing x = e1 -e. in (2.8), it is easily seen that 

(5.9) l/lv[A] ;;;; 0 

for all positive diagonal D, and thus we have l/J v[ A - 1 ] ;;;; 0. Hence Theorem 3.3 
only applies to the classes F. with v < 0. The differential equation 

(5.10) y' (x) = A.(x )y(x ), 

for i = 1 or i = s 
for 2 ;;;; i ~ s -1, 

with y > O provides a counterexample from the class F 0 . It is easily seen that 

satisfies equation (2.6) with Ll = (e, 0, ... , 0, -e)r. Consequently llVll/llLlll increases 
beyond all bounds by taking y large enough. 

We conjecture that relation ·(5.9) also holds for the methods with s even and 
larger than 2. We verified this by numerical computations for s = 4, 6, 8, 10. 

However, we did not find a simple counterexample for the lack of BSJ-stability 
for these methods. 

EXAMPLE 5.6. Consider the Lobatto IIIA and IIIB methods (see Ehle [8]). These 
methods are not algebraically stable, and it is easy to show that they are not 

ES-stable, either. To that end one should consider problem (5.10) with a function 
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J.(x) satisfying A.(x. _ i) = J.(x. _ 1 + h) = - y and A.(x) == 0 in the internal abscissae. 
The BSJ-stability behaviour of these methods is .remarkably different. The 

Lobatto IIIA methods are not BSJ-stable, but the IIIB methods are, with a 
stepsize restriction given by ij == q = (1-c2 )- 1• This result can be proved by 
considering the (s -1) x (s - 1) matrix A, which is obtained from the singular 
matrix A by deletion of the last row and column. Reducing B and C in a 
similar way, and choosing 

- - - 2 D = B(Js-i -C), 

we obtain 

After some straightforward calculations we obtain ljJ D[ A:- 1] =: ( 1 - c 2 )- 1• 
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