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totstandkoming van het proefschrift hebben bijgedragen. Graag houd ik deze traditie in
ere, en wel omdat de volgende personen dit ten volle verdienen.

Uiteraard wil ik beginnen met mijn dagelijks begeleider Erik van Doorn hartelijk te
bedanken voor zijn inzet en enthousiasme. Van vóór het eerste sollicitatiegesprek tot na
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Chapter 1

Introduction

1.1 Introduction

1.1.1 Fluid models for queueing systems

In traditional queueing theory the object of interest is usually a system of one or more
servers at which customers arrive, who want to receive some kind of service. Since there
is uncertainty about the actual arrival times of the customers and/or their service re-
quirements, they may have to wait for service in a queue. In the course of this century
many interesting and insightful results have been found for a wide range of variants of
this model. The basic assumptions in any of these models can be summarized in the no-
tation A/B/n/m − S, which is an extension of Kendall’s characterisation of a queueing
system. Here, A and B indicate the distributions of interarrival times and service times
(that may or may not be independent), n is the number of servers, m the maximum num-
ber of customers that can be accommodated in the system, and S specifies the service
discipline. In their search for more advanced ways to model practical queueing situations,
researchers have added a wide variety of features to this basic model, such as various types
of feedback, multi-class customers, priorities with or without preemption, server vacations,
polling systems, state-dependent arrivals and services, impatient customers, batch arrivals,
batch services, and many more. Indeed, the only thing that seemed to stand the test of
time was that in all of these models individual customers arrive to receive some kind of
service, reflecting the discrete nature of the modeled phenomena.

In the last ten to fifteen years, this last remaining pillar has been torn down as well,
allowing for models in which some continuous entity, referred to as fluid, takes the role
of the individual customers. In these models, fluid flows into a fluid reservoir according
to some stochastic process. The server may be thought of as a tap at the bottom of the
reservoir, allowing fluid to flow out. The rate at which this happens is often constant, but
may also be stochastic, possibly including zero. Since the fluid reservoir takes the role of
the traditional customer queue, it is often referred to as fluid queue. A third term which is
often encountered is fluid buffer, stressing the fact that the storage of fluid is temporary,
to reduce loss of fluid at times when the arrival rate exceeds the service rate.

1
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In the last decade, the literature on queueing theory has paid considerable attention to
Markov-modulated fluid models. In these models, a fluid buffer is either filled or depleted,
or both, at rates which are determined by the current state of a background Markov process,
also called Markovian random environment. Partly, this thesis will engage in analysing this
type of model, as should be clear from its title. The second type of models we encounter
is new, but closely related. We shall call them feedback fluid models. We refer to Section
1.5.1 for a more detailed description, but we mention already that the term feedback has a
different meaning here than in the classical queueing literature. Rather it signifies that the
state of the buffer content influences the behaviour of the regulating background process.

1.1.2 Outline of this chapter

The remainder of this chapter is organised as follows. In Section 1.2 we will introduce
the traditional Markov-modulated fluid model more precisely (but without making many
assumptions) and give a flavour of how this type of model can be solved. In doing so we
will fix the basic notation and terminology that is used throughout this thesis.

Section 1.3 will present an overview of current literature on the subject of Markov-
modulated fluid models. Since there are many topics which are of interest, we will often
refer the reader to other sources where more in-depth overviews may be found. The same
holds for Section 1.4 where some literature is discussed about other types of fluid models
in queueing theory. We will conclude this chapter with Section 1.5, in which we give an
overview of the contributions made in the remaining chapters in this thesis. This includes
a more elaborate explanation of what we mean by feedback fluid models.

1.2 The traditional Markov-modulated fluid model

This section deals with the fairly general Markov-modulated fluid model (henceforth ab-
breviated to MMFM, one of the few acronyms in this thesis). We will sketch the traditional
solution procedure and at the same time fix some notation.

Consider a fluid reservoir. Let Ct denote the amount of fluid at time t in this reservoir;
the symbol C is chosen as a mnemonic for content. Furthermore, let (Xt) be a continuous-
time Markov process. (Xt) will be said to evolve “in the background”. In this section
we will assume that (Xt) has a finite state space N . The same holds for any MMFM
discussed in this chapter, unless otherwise mentioned. In particular we assume here that
N = {1, 2, . . . , N}.

The content of the reservoir is regulated (or driven) by (Xt) in such a way that the net
input rate into the reservoir (i.e. the rate of change of its content) is ri at times when (Xt)
is in state i ∈ N , unless this is not physically possible. Hence we have,

dCt

dt
=

{
0 if Ct = 0 and rXt < 0
rXt else. (1.1)
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In other words, Ct is the reflected version,

Ct = At − min
0≤s≤t

As, (1.2)

of the potential net input process,

At =
∫ t

0
rXsds. (1.3)

The above holds for buffers with infinite capacity. When the buffer has a finite size K,
we have

dCt

dt
=

{
0 if Ct = 0 and rXt < 0, or if Ct = K and rXt > 0,
rXt else. (1.4)

It is assumed that at least one of the parameters ri, i ∈ N be strictly positive, in order
for the model to be meaningful. When the buffer is infinitely large, another assumption
must be made in order to ensure stability of the buffer content. This stability condition is
given by∑

i∈N
piri < 0,

where pi is the stationary probability that (Xt) is in state i ∈ N . When this condition
is satisfied, a stochastic vector (X, C) exists to which the process (Xt, Ct) converges in
distribution as t → ∞. Hence, the stationary joint distribution of (Xt, Ct) exists and can
be written as

Fi(y) = P [X = i, C ≤ y], i ∈ N , y ≥ 0.

The generator of the Markov process (Xt) is denoted by Q, thus Q = [qij] where
qij , i, j ∈ N , i 6= j is the transition rate from state i to state j, and qii = −

∑
j 6=i qij , i ∈ N .

Furthermore, we define the diagonal matrix R as

R = diag (r1, . . . , rN).

It can be shown that the vector

F(y) = [F1(y), F2(y), . . . , FN(y)]T

satisfies the differential equation

RF′(y) = QTF(y), (1.5)

where prime denotes differentiation and superscript T denotes transpose. By assuming
that R is non-singular, i.e. ri 6= 0 for i ∈ N , we arrive at

F′(y) = R−1QTF(y).
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In case the eigenvalues are simple, it follows that

F(y) =
N∑

j=1

cje
ξjyv(j), (1.6)

or, equivalently,

Fi(y) =
N∑

j=1

cje
ξjyv

(j)
i , (1.7)

where the (ξj,v(j)) are the eigenvalue-eigenvector pairs of the matrix R−1QT and cj are
constants that can be determined by boundary conditions. In particular, when the buffer
is infinitely large, we must have that cj = 0 when Re(ξj) > 0. This observation, together
with the following remarkable property that holds for the eigenvalues of the matrix R−1QT ,
will lead us to the conclusion of this short outline. We define

N + ≡ {i ∈ N | ri > 0}, N − ≡ {i ∈ N | ri < 0}, (1.8)

and

N+ ≡ |N +|, N− ≡ |N −|. (1.9)

Then it turns out that when the stability condition is satisfied, the number of eigenvalues
with negative real part equals N+, the number of eigenvalues with positive real part equals
N− − 1, and the last eigenvalue equals zero (notice that the total number of eigenvalues is
N+ + N− = N). For the case of an infinitely large reservoir, this means that the sum in
(1.6) can be reduced to a sum with N+ + 1 terms. Notice that one of these terms, namely
the one corresponding to the eigenvalue 0, can be interpreted as the stationary distribution
of the regulating process. The coefficients cj that appear in the other N+ terms can be
found using the boundary conditions

Fi(0) = 0, i ∈ N +, (1.10)

which must hold since the content of the reservoir is increasing whenever Xt ∈ N +.

1.3 Literature on Markov-modulated fluid models

1.3.1 Introduction

The amount of papers in which fluid queues play a role is enormous. In this section we
give an overview of the main references for Markov-modulated fluid models (MMFMs). A
short outline of other types of fluid models will be given in Section 1.4.

The main reason why the class of MMFMs has attracted so much attention is that
they are relevant for modelling certain phenomena in telecommunication networks. We
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will concentrate on papers which have contributed to the theoretical development of these
models, rather than looking at the practical contexts in which they have been proposed.

In the literature, relatively much attention is paid to models in which the buffer is
infinitely large, because this case is easier to analyse. Furthermore, for most practical
situations in telecommunications the infinite buffer case is a good approximation for the
finite buffer case, since overflow of the buffer is supposed to be extremely rare. The
overflow probability for a finite buffer (typically in the range of 10−8 to 10−12) can then be
approximated by the overshoot probability P [C > y] in the corresponding infinite buffer
model.

In the following, various aspects of Markov-modulated fluid models will be discussed.
In Section 1.3.2 we explain how the use of fluid models for queueing situations that are
essentially discrete has been motivated. The next section shows early developments in
methods that are aimed at finding the stationary distribution of the process (Xt, Ct) in
the basic model of the previous section. Then, in Section 1.3.4, more recent extensions,
as well as other aspects receive some attention, such as transient behaviour and output
characterisation of the basic model, and simple Markov-modulated networks of fluid queues.

Throughout, we will stick to the notation introduced in the previous section as much
as possible, regardless of the notation used in the papers which are described. A final
remark concerns the fact that some papers have a more general setup than described here,
or consider other models as well. Although we realise that this may not do the authors
justice, we will not pay attention to these aspects.

1.3.2 Justification for the use of fluid models

In most queueing situations of interest, discrete entities have to be serviced, e.g. customers,
data cells, etc. Therefore the question arises how it can be justified that fluid models, in
which a continuous entity plays the central role, can be used to describe such situations.

The central point here is that random phenomena may play a role at various time
scales. When the variations on the smaller time scale have less impact than those on the
larger time scale, the use of fluid models can be justified.

This intuition behind the use of fluid models is often emphatically present in telecom-
munication networks, where bursts of data are usually transmitted in many smaller-sized
data packets or cells. Here, the use of fluid models is particularly useful, since the vari-
ations on the cell level are almost neglegible compared to those on the more important
burst level. In many papers, this observation was made. Several papers were written in
which MMFMs were favourably compared with other candidates for modelling traffic in
telecommunication networks, or otherwise shown to give good approximations for the ac-
tual behaviour of network traffic. Therefore they seemed to make more complicated models
superfluous.

A more theoretical basis for the intuitive idea of time scales above has been offered in
[71], where the authors look at the behaviour of a multiplexing queue. The “approximating”
fluid queue is not regarded as an approximation of the real queue, but rather as one of
its components, accounting for the long-term correlations in the arrival process (in other
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words, describing the burst-scale behaviour). The second, cell-scale component must be
added to this, to account for the local fluctuations of the cell arrival rate around the fluid
average. We note that the fluid component may be a Markov-modulated process, but also a
fluid input process with a more general density, (see Section 1.4). The cell-scale component
is related to a

∑
Di/D/1 queue.

A more general justification for the use of fluid models is offered in [21], where a
G/G/s queue in a random environment (Xt) is analysed. The time scale at which the
random environment changes states is much larger than that at which arrivals and service
completions take place. Furthermore, in some of the environment states the traffic intensity
exceeds 1, leading to growing queue length and workload. By normalizing appropriately,
these processes can be shown to converge to fluid processes, irrespective of the particular
choice for the distributions of interarrival and service times (in other words only the first
moments are important). It is also shown that the limit can be refined such that the
limiting process is a diffusion process. An important and obvious conclusion is that it is
natural to study the more tractable approximating fluid (and diffusion) processes than the
real queueing systems.

1.3.3 Finding the stationary distribution

In this section we give an overview of the “early” literature regarding the stationary be-
haviour of MMFMs. The reason why many papers are concerned with the stationary
distribution of the process (Ct) or (Xt, Ct), is that these provide much information that
may be of interest for practical applications, such as tail probabilities, expected buffer
content, expected delay and sojourn time and traffic intensity of in- and outgoing traffic.
Loss probabilities can be found from finite-buffer models or approximated using models in
which the buffer is infinitely large.

An early model which can be viewed as a MMFM is described in [98]. In the context
of production facilities, a finite fluid buffer is considered which is fed and emptied by two
unreliable production units with exponential up- and down-times. In other words, it is
a MMFM driven by a four-state Markov process for which the stationary distribution is
found.

Another early paper on MMFM is [39] which looks into a fluid approximation for
a system in which transmission capacity that is not used by voice calls is used for the
transmission of data packets. Both voice calls and data packets arrive according to Poisson
processes and have exponential holding times, however they operate at different time-scales.
Thus, the data can be approximated as fluid, with a constant input rate into the buffer,
while the output varies, being regulated by the number of active voice calls.

Almost half a year later, the paper which would become the main reference for work in
the area of MMFM was published by Anick, Mitra and Sondhi [6]. They give an elegant
analysis of a simple fluid model (which, by the way, had been considered many years before
in [78] according to [26]). The model describes an infinitely large fluid reservoir which is fed
by n identical, exponential on-off sources and emptied by an output channel with constant
capacity. Thus, the net input is regulated by a specific birth-death process (Xt) with state
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space N = {0, . . . , N} and ri = a i − c. The differential equation for the stationary joint
distribution of (Xt, Ct) is derived, and the spectrum of the key matrix R−1QT is analysed.
Boundary conditions are given and used to find the constants in the solution. Thus, the
procedure in Section 1.2 results for this special case, leading to Fi(y).

In a way, the model in [6] was a generalisation of the earlier model by Kosten [52], where
a limiting case is considered. In particular, both the average off period and the number of
sources (N) approach infinity, in such a way that the total traffic intensity remains finite.
Since the state space N of the regulating process Xt is infinitely large in this model, we
will discuss [52] in more detail in Section 1.3.4 together with other papers that consider
models with this property.

In [54], it was Kosten’s turn to generalize the model in [6]. A fluid buffer is analysed
which is fed by a number of groups of i.i.d. exponential sources. By decomposing the
output capacity, the eigenvalues and -vectors can be found in principle, which makes it
possible to find the stationary buffer content. As an aside, we note that later, in [16] it
is argued that the determination of the coefficients ci (see Section 1.2) still constitutes a
considerable problem. Therefore, by fitting certain characteristics, they approximate the
system by a birth-death fluid queue.

In the last paper by Kosten on a MMFM, [55], he is once more ahead of his time. Based
on the observation that for general MMFMs it is difficult to determine the full stationary
distribution, he focuses on the decay rate of the buffer, i.e. the largest negative eigenvalue
of R−1QT . After all, for the analysis of loss-probabilities the asymptotic behaviour of
P [C > y] for large y is of particular importance, and from (1.7) it is easily seen that
P [C > y] ∼ Aexp(ξ1y) as y → ∞, where ξ1 is the decay rate and A is some constant.
However, since the subject of this section is stationary behaviour – rather than asymptotic
behaviour – we will quickly continue the course of our story.

In [31] we find another way in which the model in [6] has been generalized. They retain a
birth-death structure for the regulating process, but allow general transition probabilities.
The only extra condition imposed is that there is a state k ∈ N such that ri < 0 for
i ≤ k and ri > 0 for k < i ≤ N . Using the theory of orthogonal polynomials an explicit
representation for the stationary joint distribution was found.

Apparently unaware of [31], a slightly less general birth-death fluid model is considered
in [22]; however they mainly pay attention to numerical aspects.

Meanwhile, Mitra [69] had been working in another direction. Not only does he show
how to deal with states i ∈ N for which ri = 0, he also generalizes the model of [6] in two
ways. Again, he considers a buffer which receives input from N i.i.d. exponential sources,
here called producers. However now also the output is assumed to be Markov-modulated,
namely by M i.i.d. exponential consumers. Thus, the net input is regulated by a (time-
reversible) Markov process on the product space of the state spaces of the input and output
processes.

A second generalisation is that he also considers the case of a finite reservoir. (In
the same year [96] solves a particular model with finite reservoir). Among other things,
Mitra states a theorem for the eigenvalues of the equation RF ′(y) = QF (y) for the general
case of a fluid reservoir regulated by a reversible Markov process. In particular he shows
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that all eigenvalues are real and that the number of negative ones equals N+, the number
of positive diagonal elements in the matrix R. This had been proven ad hoc in other
papers, for instance in [31] for the particular case of a birth-death fluid queue, where it is
also proven that the eigenvalues are simple. Also in [92], the eigenvalue-structure receives
attention. In this manuscript it is shown that, for the more general case in which the
regulating process need not be reversible, the number of eigenvalues with negative real
part is equal to N+, and that the eigenvalue with the smallest negative real part is simple
and real, while others may coincide and be non-real.

In [93] a fluid queue is driven by a separable Markov process, which means that the rate
process can be seen as a superposition of independent, not necessarily identical, reversible
Markov processes. Hence, this paper presents a generalisation of [54]. The state space
explosion problem is solved by a decomposition for the equations for the equilibrium prob-
abilities, similar to the one in [54]. The complexity of the problem is thus reduced from∏

N3
k to

∑
N3

k , where the constants Nk are the sizes of the state spaces of the independent
Markov processes which generate the total net input. For a special case of this model,
namely the superposition of two types of sources, approximations were developed in [41].

A next step is the analysis of fluid queues which are regulated by a Markov process
with a nearly completely decomposable state space. These models arise in situations where
some sources change states on very large time scales, while others operate on smaller time
scales. In [51] the stationary distribution is approximated by solving the subsystems that
result from a decomposition, and solving an “aggregative” system.

1.3.4 Extensions and other aspects

Alternative solution procedures

We mention two alternatives to the classical, i.e. spectral analysis, method for solving
the stationary distribution of a MMFM that have been considered in the literature. In
[9], a probabilistic analysis yields that the joint distribution of (X, C) is of phase type;
its parameters can be found by an iterative procedure and the relation between these
parameters and the solution in the form of (1.7) is given.

Another approach is to look first at the embedded content process at epochs when (Xt)
changes states. For this discrete time process the stationary distribution can be found
using Wiener-Hopf factorization. From this distribution the continuous-time stationary
distribution can be found. See further [81, Chapter 4], [84], [85] and [74].

Infinite-state regulating processes

In all papers described until now, the state space N of the regulating process is finite, apart
from [52]. Although this is not a recent reference, we will discuss it in this section, since
it fits well with the other papers here. The model in [52] is that of a fluid reservoir that
receives fluid from messages that arrive according to a Poisson process. Upon arrival, the
content of a message flows into the reservoir at rate 1; the holding time of each message is
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exponentially distributed. Thus, the model can be characterised as a MMFM driven by a
process (Xt), where Xt is the number of messages in an M/M/∞ system and ri = a i − c.
The analysis, which reminds the reader of that in the well-known and more recent paper [6],
leads to a system of equations from which F(0) can be found; F(y) can then be computed
numerically. Also the moments of the buffer content distribution can be found, and the
asymptotical behaviour is studied. The second and third parts of this paper, published
separately in [53] and [56], deal with generalisations of the model in which the holding times
of messages are assumed to have a (generalised) Erlang distribution and a hyperexponential
distribution, respectively.

Many years passed before the same model as in [52] was investigated again in [73].
Here, an exact representation for the transform of F is given. Independently, the model
was studied in [76], where it is called the M/M/1 model with gradual input. After a
moment’s thought it becomes clear why this is also a good characterisation for the same
M/M/∞-driven system (for a short introduction to models with gradual input we refer to
Section 1.4). Its main result is an explicit expression for the transform of the stationary
buffer content distribution.

Another model in wich |N | = ∞ was introduced by Virtamo and Norros [97]. Here,
Xt is the number of customers in an M/M/1 queue. The net rate into the fluid reservoir
is r > 0 when Xt > 0 and −1 when Xt = 0. The stationary distribution is found via the
spectral analysis of the matrix R−1Q̃T , where Q̃ is the symmetrized version of the matrix
Q. A simpler approach to obtain the same result is given in [4], where the relation with
the classical M/G/1 model is exploited in a similar way as in [46].

The model of [97] will be revisited in Chapter 2, where we present procedures which
can be applied to various Markov-modulated fluid queues that are driven by (infinite-state)
birth-death processes.

Fluid networks

In contrast to the vast body of literature on Jackson networks, the amount of literature on
networks of fluid queues is small, one reason being that the stationary joint distribution of
the contents of the reservoirs is not of product form. Also in the class of MMFMs there
is hardly any literature on models involving more than one reservoir. In fact all three
papers on this topic consider the same model. This model was first introduced in [100].
Two types of arriving traffic are buffered, each in a separate reservoir. A constant capacity
server (output channel) serves both buffers such that buffer 1 has priority over buffer 2;
hence buffer 2 is served with the rate which is not used for buffer 1. Thus, if we let (Ci

t)
be the content process of buffer i, and (Xt) the background Markov process which drives
both input processes, it is clear that (C2

t ) is regulated by (Xt, C
1
t ). Hence, in fact we have

a MMFM where the regulating process has an infinite, nondenumerable state space, and is
in fact a MMFM itself. An implicit expression is found for the double Laplace transform
of the stationary joint distribution of (C1

t ) and (C1
t + C2

t ). For the case of a two-state
Markov process the expression can be made explicit, while in the general case first and
second moments can be found. For the general case, an explicit expression was found in
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[20] for the same joint distribution (now Laplace-transformed for the second variable only)
in terms of the eigenvalues and -vectors of a certain key matrix. For the two-state driving
Markov process, the latter are expressed explicitly in terms of the parameters of the model,
leading to the same result as in [100].

The same model is treated in [36], where the output process of buffer 1 is approximated
by a Markov-modulated fluid process, based on the assumption that the length of a period
during which C1

t > 0 is exponentially distributed. Since a model in which buffer 1 feeds
into buffer 2 (together with the low priority fluid input) is equivalent to the original model,
this leads to a fast and simple way to find a robust approximation for the stationary
distribution of the content of buffer 2.

In Chapter 4 we will look into some Markov-modulated two-buffer fluid models.

Output characterisation and transient behaviour

The characterisation of the output of a fluid reservoir can be interesting for various reasons,
e.g. because the output may be the input for a next queueing station or to decide how the
burstiness of the traffic is affected (for the latter subject see also [94]).

The main references we like to mention are [1] and [2], where much insight is given into
the subject, as well as other references.

An explicit expression for the Laplace transform of the busy period (although compu-
tationally inattractive) is found in [8], as well as a procedure to find the mean busy period.
However, the mean is more easily obtained using the expression in [10]. (For the MMFM
driven by the infinite-state M/M/∞ system, the mean busy period is approximated in
[29]). First passage times to empty buffer are studied in [42], also leading to expressions
for the distributions of busy and idle periods.

It may be useful to note that in general, busy and idle times only give a very rough
impression of the output process. For systems with constant output capacity, the output
rate may be unknown during idle times of the buffer, while for other systems the same is
true both for idle and busy periods.

In [34], the output of a fluid model for a so-called dual leaky bucket is considered. We
refer to Section 3.6 for more information on leaky bucket mechanisms, including a short
discussion of [34].

One important reference regarding transient behaviour is [95], where the same system
as in [93] is considered. The system of partial differential equations for Fi(t, y) = P [Xt =
i, Ct ≤ y] is derived and a representation is found for the Laplace transformation of the
solution. Earlier work in this area can be found in [49] and [99].

State-dependent input

The overview paper [61] cites [35], where a model is considered in wich the inflow of fluid
not only depends on the state of the regulating Markov process, but also on the content
of the fluid reservoir. In particular, a number of thresholds 0 = B0 < · · · < Bm, m > 0,
is assumed in the reservoir (where Bm is the size of the reservoir, possibly infinity), such
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that the regulation of Ct by Xt is determined via the rate matrix Rj at times t when
Bj−1 ≤ Ct < Bj, j = 1, 2, . . . , m, instead of via a constant matrix R as is usually the case.
The system of differential equations, as well as the corresponding boundary conditions are
derived and solved step by step. We will come back to this model in Section 1.5.1.

1.4 Connection with other types of fluid models

In this section we will go over some other types of fluid models. However, it is not our
intent to give a comprehensive overview; rather, we will focus on the connection with
Markov-modulated fluid models.

Lévy Processes

A well-known type of input, used in the context of dam models, is a Lévy process, which can
be seen as the continuous-time analogue of a random walk. To explain this, let the amount
of fluid arriving at a buffer during the time interval [0, t] be denoted by At. It is then said
that (At) is a Lévy process when: i. (At) has stationary and independent increments; ii.
(At) is continuous in probability, and its sample paths are right-continuous with left limits.
(see [80, Chapter 3]). In general (At) is the independent sum of a deterministic linear drift
with rate r (say), a Brownian motion with variance σ2; and a pure jump process with Lévy
measure ν(dy) (see [7, Section III.8]). If λ = ||ν|| < ∞, the jump process is a compound
Poisson process with rate λ and jump size distribution given by ν/λ.

Clearly, the process (At) can be decreasing at times. Hence it can be useful to describe
the behaviour of the content of a fluid buffer or dam, if we prevent negative values by adding
a reflecting boundary at zero. However, if we want (At) to describe an input process, it
seems natural to demand that its sample paths are non-decreasing. Thus, we arrive at the
general non-decreasing Lévy process, which can be written as the sum of a linear drift and
a compound Poisson process with positive jumps.

We note that, although (At) is a Markov process, a fluid model with input (At) is not
Markov-modulated in general, in the sense that there is no background Markov process
which determines the instantaneous arrival rate of fluid. This is in fact only the case when
the jump component is zero, leading to continuous linear (deterministic) input.

Markov Additive Process

A generalisation of the Lévy process is the so-called Markov Additive Process (MAP). We
will restrict ourselves to MAPs with an underlying finite-state Markov process (Xt), see
e.g. [11, page 441]. At times when Xt = i, let the process (At) evolve like a Lévy process
with linear drift at rate ri, Brownian motion component with variance σ2

i and pure jump
component given by the Lévy measure νi(dy). Finally, when X(t) makes a transition from
state i to state j, we allow (At) to have a jump with probability pij , the size of which
has distribution function Bij. This defines a Markov additive process (At) with underlying
Markov jump process (Xt), or, as it is also described in the literature, a Markov additive
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process (At, Xt) with Markov component (Xt) and additive component (At). We note that
(At, Xt) is a Markov process, but in general (At) is not.

Clearly, The MAP is a proces with a very general structure. To be useful as input
process, [75] defines a MAP of arrivals by demanding that At > 0, implying ri > 0, σi = 0
and allowing only nonnegative jumps. It has many input processes as special cases, e.g. the
Markov-modulated Poisson process (MMPP), Neuts’ N-process (also known as Markovian
arrival process, which unfortunately is also abbreviated to MAP), batch Markovian arrival
process (BMAP) and of course the nonnegative Lévy process and its special cases (Poisson
process, compound poisson process). Last but not least, we mention Markov-modulated
fluid input.

In fact, the buffer content process (Ct) in a Markov-modulated fluid model can be seen
as (the additive component of) a MAP (At), reflected at zero. To see this we set σi = 0,
and allow no jumps to occur (while ri can be positive and negative, as before). As a
consequence, the sample paths of (At) are piecewise linear, so that we obtain the standard
MMFM of Section 1.2. (For a survey of processes with piecewise linear sample paths
we refer to [27].) We notice that MMFMs in which N is infinitely large have piecewise
linear sample paths only when the set {ri | i ∈ N} is denumerable (assuming that (Xt) is
nonexplosive), which is the case for all work in this thesis. In the next subsection we will
see an example of a model where this is not the case.

Input processes with a continuous density

In this section we briefly discuss models in which the input process (At) has a density, i.e.
we can write At =

∫ t

0 Xsds. The instantaneous net input rate, or density, is assumed to
be a stochastic process (Xt). Many input processes have this property, including standard
MMFMs (as in Section 1.2 with N finite), when we allow the process (Xt) to have jumps.
In the references we consider here, the process (Xt) varies continuously, its state space
typically given by R. It follows that when (Xt) is a Markov process, the model formally
belongs to the category of MMFMs, which is easily seen by taking N = R and ri = i in
Section 1.2. Specific examples of these models can be found in [90], [91] and [62], see also
[61], where (Xt) is an Ornstein-Uhlenbeck process. This model can be seen as a limiting
case of the model in [6] in heavy traffic when we let N → ∞. More general (Gaussian)
input processes are considered in [50] and [28].

Two-state random environment

When we think of a fluid analogue of the standard G/G/1 model, we can do so in two
ways; these will receive some attention in this and the following subsection. The first type
of model is characterized by alternating on- and off periods. During on-periods fluid flows
into the buffer at a constant rate, while during off-periods no fluid arrives. Thus, assuming
that the output rate is constant, we again have a piecewise linear process.

One way of looking at these models is by considering the buffer to be regulated by an
on-off source. This view is often encountered in the telecommunications literature, where
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the distribution of the on-times is nowadays often chosen such that it has a heavy tail.
Another view, inspired by manufacturing systems, is presented in [18]. In this paper the
on- and off-periods are called down- and up-periods respectively, as they describe the state
of the output channel; the down-periods are also called random disruptions. They find the
Laplace transform of the stationary distribution without any assumptions on the up- and
down-times.

Notice that when both on- and off-times (or down- and up-times) are i.i.d. sequences of
random variables with phase-type distributions, this model belongs to the class of MMFMs.
When both times are exponentially distributed, we obtain a fluid model driven by the well-
known exponential on-off source.

In [46] the concept of the (not necessarily Markovian) two-state random environment
is also used, but the deterministic linear flows during up- and down-times are generalized
to deterministic, nonlinear flows and to stochastic flows.

Queueing models with gradual input

The other generalisation of the G/G/1 model is more natural and has been introduced as
early as 1974 by Cohen in [24]. Here the arriving traffic is characterised by (tn, Sn), where
tn is the time at which the n-th burst starts being active, and Sn is the lenght of the time
period it remains active. Each active burst produces fluid at rate 1, while the output rate
of the reservoir is also 1. Note in particular that in this context more than one burst can
be active simultaneously, giving rise to inflows at possible rates 0, 1, 2, . . .. In [24] several
results are obtained by exploiting the connection with traditional queueing models.

In [76] the situation was studied in which both the interarrival times (tn+1 −tn) and the
workloads (Sn) are exponentially distributed. As a consequence, this model can be seen as
a MMFM, and has as such received some attention in Section 1.3.4. The generalization to
the G/G/1 burst model came in [48], where a formula is derived for the Laplace-Stieltjes
transform of the workload. See also [89], where first moments were found based on a
pathwise comparison with the regular G/G/1 queue.

1.5 Contributions in this thesis

Before giving an overview of the subsequent chapters, we will introduce the main contribu-
tions of this work. In Section 1.5.1 we introduce the notion of feedback, while Section 1.5.2
concentrates on the state space N of the regulating process (Xt) in the various models.

1.5.1 Feedback

In this section we introduce the notion of feedback for fluid queues. We start off by men-
tioning that it is totally different from the well-known type of feedback that we encounter
in traditional queueing systems. In fact, assimilating this type of feedback in the context
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of fluid models would by its very nature be meaningless, since it could well be described
by an ordinary fluid queue fed by a different input process.

The feedback fluid models we will investigate have much in common with Markov-
modulated fluid models. In particular we have that the rate of change of the content Ct of
the fluid reservoir is determined by the current state of a stochastic process (Xt) evolving in
the background. However, the evolution of this regulating process is no longer autonomous
(let alone Markovian), but depends on the current state of the fluid reservoir. In other
words, the processes (Xt) and (Ct) now interact, since the dependence works both ways.

To narrow down the variety of feedback fluid models that one can think of, and to
hold out a prospect of success in analysing them, we confine ourselves to models with the
following property. We will assume that the process (Xt) behaves like a Markov process
(X(0)

t ) when the fluid reservoir is empty, and that it behaves as another Markov process
(X(1)

t ) on the same state space N otherwise. Furthermore, the process (Xt) does not change
states with positive probability at times when the reservoir becomes empty. (Note that it
does change states when the reservoir starts filling up after an idle period, since the net
input into the reservoir can only change from negative to positive due to a state transition
of the process (Xt)). The main consequence is that, although the process (Xt) does not
constitute a Markov process, the joint process (Xt, Ct) does.

As far as we know, the models at hand are the first to be analysed in which the
dependence works both ways. Hence, an important motivation for studying these models
has been to investigate whether such behaviour yields to analysis. In this thesis it is shown
that this appears to be the case.

We like to mention one other model in which feedback is distinctly present. In [35]
a MMFM with state-dependent input was considered; we refer to the description of this
model in Section 1.3.4 and adopt the notation thereof. The reason why we come back to
this model in the present context is the following. If we take the rate matrix R constant,
but instead make the Q-matrix of the process (Xt) depend on the state of the fluid reservoir,
we obtain a feedback fluid model. In the resulting model we have that (Xt) evolves as a
Markov process (X(k)

t ) with generator Qk at times t when Bk−1 ≤ Ct < Bk. Although
we did not examine this thoroughly, it seems that this model can be solved, at least in
principle, in the same way as the model in [35].

As an aside we mention that, at least formally, the model in [35] itself can also be
described as a feedback fluid model. The, somewhat unnatural, way to do this, is to view
the model as one in which a fluid reservoir is being driven via a rate matrix diag(R1, . . . , Rm)
by a process (Xt, Yt) with state space N × M and generator ∆(k) ⊕ Q at times when
Bk−1 ≤ Ct < Bk; here M = {1, 2, . . . , m}, ⊕ denotes the Kronecker sum, and ∆(k) is the
m × m matrix with elements ∆(k)

ij = δjk − δij , i, j, k ∈ M, where δij denotes Kronecker’s
delta. As a consequence Yt = k at times when Bk−1 ≤ Ct < Bk.
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1.5.2 Infinite state space N
In almost all Markov-modulated fluid models in the literature, the state space N of the
regulating process (Xt) is finite, three exceptions being mentioned in Section 1.3.4. In the
models we will encounter, N is mostly infinitely large, namely either countably infinite,
in Chapters 2 and 3 (apart from Sections 2.3 and 3.2), or nondenumerable, in Chapters 4
and 5.

Although little attention has been paid to fluid models driven by infinite-state Markov
processes, it appears that their analysis need not always be much more complicated than
that of the more standard models. In fact we can easily distinguish between relatively
“simple” and more “difficult” models. To do so, we recall the subdivision in N that was
made in Section 1.2 in N− and N+. It will turn out, roughly speaking, that we can call a
model simple when N+ is finite and the fluid reservoir is infinitely large.

For a schematic overview of various possibilities for fluid models which are driven by a
Markov process with a not necessarily finite state space, we refer to Figure 1.1. The reader
should keep in mind the three assumptions made in this figure, namely that ri 6= 0 for any
i ∈ N , that the buffer is infinitely large (otherwise there is no essential difference between
the north-east and the south-west parts of the figure), and that the set {ri | i ∈ N} is
denumerable (so that the process (Ct) has piecewise linear sample paths).

Some relevant references are indicated in Figure 1.1, while the section numbers show
how the Markov-modulated models in this thesis fit into the framework. This can be helpful
when reading the following overview; the same is true for Table 1.1, where the connection
between Chapters 2 – 5 is clarified.

N finite
N denumerable
Birth-death fluid

models

4.9.2

N− infinite
countably

[100, 20]

[54, 69, 93, ...]

[52, 73, 76]

2.3

finiteN+

nondenu-

nondenu-

[6, 31, 22, ...]
[97, 4]

2.4

2.5finite

countably
infinite

merable

merable

4.6 – 4.9

4.2 – 4.5

Figure 1.1: Various possibilities for N
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State space N Without feedback With feedback

Some birth-death A birth-death fluid
Countably infinite fluid models model with feedback

(mostly) (Chapter 2) (Chapter 3)

Some two-buffer A two-buffer fluid
Non-denumerable fluid models model with feedback

(Chapter 4) (Chapter 5)

Table 1.1: The various models in this thesis

1.5.3 Overview

Beforehand, we note that in all models in this thesis we concentrate heavily on finding the
stationary distributions of the processes involved.

In Chapter 2 we do so for some MMFMs in which the fluid reservoir is infinitely large
and the regulating process (Xt) has a birth-death structure. In view of Figure 1.1 we have
four possibilities, since both N+ and N− can be either finite or infinite. The situation in
which N+ = N− = ∞ does not seem to yield to analysis and is therefore not studied. In the
other three cases we present representation formulas for F, using the theory of orthogonal
polynomials. For each of the remaining two cases in which N is infinitely large we give an
example in which explicit results can be found. In these examples, Xt can be interpreted
as the number of customers in an M/M/1 queueing system, while the respective rate
structures (characterised by the matrix R) are dual in some sense. The exemplary model
for the case N− < ∞ has been analysed before in [97] and [4]. Chapter 2 is based on [32]
and [33].

In Chapter 3 we leave the world of MMFMs and concentrate on a particular feedback
fluid model. This model is closely related to the first exemplary model in Chapter 2, the
essential difference being that the service rate of the M/M/1 system now has a different
value at times when Ct = 0. It turns out that a similar solution procedure works well
here. However, in this chapter we also look into the situation where the fluid reservoir has
a finite capacity. Since an analytic solution does not seem feasible in this case, we find an
approximating procedure for computing the quantities of interest, involving a discretisation
of the fluid reservoir. Chapter 3 is based on [3].

In Chapter 4 we analyse two particular models in which two infinitely large buffers
play a role. The content of the first buffer, Dt, is regulated by a two state Markov process
(Mt), while the content of the second buffer, Ct is regulated by the first one. For the latter
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regulation we consider two possibilities, one of which describes a tandem fluid queue.
The two models can be considered dual in the same sense as the examples in Chapter 2.
In fact they are “almost” generalisations of these examples. In particular, they can be
categorized in the class of MMFMs. This can be understood by taking (Xt) = (Mt, Dt)
as the regulating Markov process for the second buffer. Notice that the state space of this
process is non-denumerable. The stationary marginal distribution of the process (Ct) in
both models is found by establishing a connection with the classical M/G/1 and G/M/1
models respectively. The joint distributions are found via a Laplace approach, that appears
to be a powerful alternative to the classical spectral approach . For one of the models we
also show how this spectral approach can be employed, illustrating why the solutions to
both models are so different. Chapter 4 is based on [60] and [59].

In Chapter 5 we consider another two-buffer fluid model, this time in the presence
of feedback. Thus, again the process (Ct) is regulated by (Xt) = (Mt, Dt), but the net
input rates for the first reservoir adopt different values at times when Ct = 0. Another
difference is that the second buffer is assumed to be finite (the infinite case being included
as a special case). Also it is shown how the results can be applied to the case where the
first buffer is finite, provided that it is not too small. The results obtained include the
stationary joint distribution of the process (Mt, Dt, Ct), which is obtained by combining a
regenerative approach with the results in Chapter 4. Chapter 5 is based on [87]
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Chapter 2

Some birth-death fluid models

2.1 Introduction

In this chapter we shall study the stationary behaviour of the content of a fluid reservoir
which receives and releases fluid flows at rates which are determined by the actual state
of an ergodic birth-death process evolving in the background. The reservoir is assumed to
be infinitely large, which implies that for the stationary distribution of the content of the
reservoir to exist it is necessary that some stability condition be satisfied.

The state space of the background birth-death process will be denoted by N and may
be finite or infinite; in the former case N = {0, 1, . . . , N} for some natural number N ≥ 1,
in the latter case N is the set of nonnegative integers. We shall denote the state of the
background process at time t by Xt and the content of the reservoir at time t by Ct.
The obvious approach to obtaining the stationary distribution of the process (Ct) is by
analysing the two-dimensional process (Xt, Ct), which is Markovian.

Our assumption that the flow rates of fluid into and out of the reservoir are determined
by the current state of the background process, entails that for each i ∈ N there is a real
number ri, the drift in state i, such that ri is the slope of (Ct) when the birth-death process
is in state i, as long as this is physically possible. That is, the rate of change of the content
of the reservoir (or the net input rate) at time t is rXt, provided rXt ≥ 0, or rXt < 0 and
Ct > 0; if the reservoir has emptied at time t it stays empty as long as the drift remains
negative. We shall assume throughout that ri 6= 0 for all states i ∈ N . We shall also
assume that ri > 0 for at least one i ∈ N , since otherwise the reservoir is always empty.

When N = {0, 1, . . . , N} for some natural number N , the model at hand is a general-
ization of the fluid flow models studied in [6], [39], [31] and [22], see Section 1.3. Although
the latter two allow (Xt) to be an arbitrary birth-death process, they require the drift
matrix R to have a particular sign structure. In Section 2.3 we generalize their results, the
only remaining condition being that R should be non-singular, i.e. ri 6= 0, i ∈ N .

Relatively few results are available in the literature dealing with (variants of) our model
when N is infinite, see Section 1.3.4. In Section 2.4, we take the approach of letting N tend
to infinity in the expressions obtained for the truncated model in which N = {0, 1, . . . , N}.

19
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Figure 2.1: Regulation of the process (Ct) by (Xt)

It appears that this is a viable procedure whenever N+, the number of positive components
of the drift vector (r0, r1, . . .) is finite.

In Section 2.5 we deal with the opposite case, namely in which N−, the number of
negative components of the drift vector is finite. We shall present a general procedure
for solving models with this property and show that the procedure works by analysing
a particular model that has been analysed before in [97] and [4], where entirely different
approaches were chosen.

For the sake of completeness we notice that a fourth class of models is conceivable that
fall within the category of birth-death fluid queues. In these models both N+ and N− are
infinite. However, suchlike models are not described here, since their analysis, if at all
possible, appears to be more complicated.

The various analyses in this chapter amount to solving a finite (in Section 2.3) or infinite
(in Sections 2.4 and 2.5) system of differential equations under certain boundary conditions.
The derivation of this system of differential equations will be outlined in Section 2.2, where
also the notation will be introduced. Much of this section is similar to Section 1.2, but we
include it for the sake of completeness.

2.2 Preliminaries

We shall let λi denote the birth rate and µi the death rate in state i, i ∈ N , of the birth-
death process (Xt) with state space N which regulates the content of the reservoir. We
shall assume that the birth and death rates are positive with the exception of the death
rate µ0 in the lowest state and, if N = {0, 1, . . . , N}, the birth rate λN in the highest
state, which are zero. Also, it will be convenient to interpret λi and µi as zero if i 6∈ N .
Now that we have introduced all parameters of the model, we refer to Figure 2.1 where
the behaviour of the processes (Xt) and (Ct) is illustrated.

Focussing on (Xt) for a while, we let

πi ≡
i−1∏
j=0

λj

µj+1
, i ∈ N , (2.1)
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where the empty product should be interpreted as unity. The stationary state probabilities
pi, i ∈ N , of the birth-death process can then be represented as

pi =
πi∑

j∈N πj
, i ∈ N . (2.2)

When N is infinite we shall always assume that the stationary distribution of the birth-
death process exists, that is,

∑
i∈N πi is finite. In order that a stationary distribution

for (Ct), the content of the reservoir at time t, exists, the mean drift should evidently be
negative, that is,

∑
i∈N piri < 0, or, equivalently,∑

i∈N
πiri < 0. (2.3)

We shall assume throughout this chapter that this stability condition is satisfied.
As before we let

N + ≡ {i ∈ N| ri > 0}, N − ≡ {i ∈ N| ri < 0}, (2.4)

and

N+ ≡ |N +|, N− ≡ |N −|. (2.5)

Obviously, N + ∪ N − = N , since we have assumed that the drift in each state is nonzero.
Also, when N is infinite at least one of N+ or N− is infinity.

Putting

Fi(t, y) ≡ P [Xt = i, Ct ≤ y], t ≥ 0, y ≥ 0, i ∈ N ,

and Fi(t, y) ≡ 0 if i 6∈ N , it is not difficult to show that the Kolmogorov forward equations
for the Markov process (Xt, Ct) are given by

∂Fi(t, y)
∂t

= −ri
∂Fi(t, y)

∂y
− (λi + µi)Fi(t, y)

+ λi−1Fi−1(t, y) + µi+1Fi+1(t, y), i ∈ N .
(2.6)

But since we will assume that the process is in equilibrium, we may set Fi(t, y) ≡ Fi(y)
and ∂Fi(t, y)/∂t ≡ 0 and, hence, obtain the system

riF
′
i (y) = λi−1Fi−1(y) − (λi + µi)Fi(y) + µi+1Fi+1(y), i ∈ N , (2.7)

where Fi(y) denotes the equilibrium probability that the birth-death process is in state i
and the content of the reservoir does not exceed y, again with the convention Fi(y) ≡ 0 if
i 6∈ N .

Since the content of the reservoir is increasing whenever the drift is positive, the solution
to (2.7) must satisfy the boundary conditions

Fi(0) = 0, i ∈ N +. (2.8)

Also, we must obviously have

Fi(∞) ≡ lim
y→∞

Fi(y) = pi, i ∈ N . (2.9)
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2.3 Finite state space

In this section we will describe the procedure for solving the differential equations (2.7),
subject to the boundary conditions (2.8) and (2.9), assuming that N = {0, 1, . . . , N} with
N ≥ 1 and that condition (2.3) is satisfied.

It will be convenient to write the homogeneous system (2.7) in matrix form as

F′(y) = R−1QTF(y), (2.10)

where

F(y) ≡ (F0(y), F1(y), . . . , FN(y))T ,

R ≡ diag(r0, r1, . . . , rN),

and the (N +1)×(N +1) matrix Q is the generator of the modulating birth-death process,
that is,

Q ≡


−λ0 λ0 0 · · ·
µ1 −(λ1 + µ1) λ1 0 · · ·
· · · · · · · · · · · · · · ·
· · · 0 µN−1 −(λN−1 + µN−1) λN−1

· · · 0 µN −µN

 . (2.11)

We start off by deriving a representation formula for the characteristic polynomial of
the matrix R−1QT . To this end we define the sequence of polynomials {∆∗

i (x)}N
i=0 by the

recurrence relations

∆∗
0(x) = 1, ∆∗

1(x) = x +
λ0

r0
+

µ1

r1
,

∆∗
i (x) =

(
x +

λi−1

ri−1
+

µi

ri

)
∆∗

i−1(x) − λi−1µi−1

r2
i−1

∆∗
i−2(x), 2 ≤ i ≤ N,

(2.12)

and observe the following, where I denotes the (N + 1) × (N + 1) identity matrix.

Lemma 2.1 The characteristic polynomial det
[
xI − R−1QT

]
of the matrix R−1QT can be

represented as x∆∗
N (x).

Proof. It is easy to see that the statement of the lemma is true if N = 0, so in the
remainder of the proof we will assume N > 0. We define another sequence of polynomials
{∆i(x)}N+1

i=0 by the recurrence relations

∆0(x) = 1, ∆1(x) = x +
λ0

r0
,

∆i(x) =
(

x +
λi−1 + µi−1

ri−1

)
∆i−1(x) − λi−2µi−1

ri−2ri−1
∆i−2(x), 2 ≤ i ≤ N.

(2.13)
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The polynomial ∆i(x) can be interpreted as the characteristic polynomial of the i × i
north-west corner truncation of R−1QT . Upon expanding det

[
xI − R−1QT

]
by its last row

we now obtain

det
[
xI − R−1QT

]
=

(
x +

µN

rN

)
∆N (x) − λN−1µN

rN−1rN
∆N−1(x). (2.14)

It can readily be established by induction, however, that

x∆∗
i (x) =

(
x +

µi

ri

)
∆i(x) − λi−1µi

ri−1ri
∆i−1(x), 0 ≤ i ≤ N,

which proves the lemma. 2

By Favard’s Theorem, see e.g. [19, Theorem I.4.4], the polynomials ∆∗
i (x), i = 0, 1, . . . , N

constitute the first N + 1 elements of a sequence of orthogonal polynomials. It follows,
see [19, Theorem I.5.2], that the zeros of these polynomials, and the zeros of ∆∗

N (x) in
particular, are real and simple. We can therefore conclude from the above lemma that the
eigenvalues of R−1QT are real and simple, with the possible exception of the eigenvalue 0.
Since it has been shown, in a more general setting, in [69] and [93], that the matrix R−1QT

must have N+ negative eigenvalues, N− − 1 positive eigenvalues and one eigenvalue 0, we
can conclude the following.

Lemma 2.2 The eigenvalues ξj, j ∈ N , of R−1QT are all real and simple; ordering them
in increasing magnitude we have ξj < 0, j = 0, . . . , N+ − 1, ξN+ = 0, ξj > 0, j =
N+ + 1, . . . , N.

Knowing that all eigenvalues are simple it is straightforward to verify that the solution
of (2.10) must be of the form

F(y) =
N∑

j=0

cj exp{ξjy}v(j), y ≥ 0, (2.15)

where, for each j ∈ N , the vector v(j) ≡
(
v

(j)
0 , v

(j)
1 , . . . , v

(j)
N

)
is the suitably normal-

ized eigenvector corresponding to the eigenvalue ξj, and cj is a constant. However, since
boundary condition (2.9) must be satisfied, we find that the coefficients cj corresponding to
positive eigenvalues must vanish — that is, cj = 0 for j = N+ +1, . . . , N , by Lemma 2.2 —
and that cN+v(N+) = p, where p ≡ (p0, p1, . . . , pN)T and pi is given in (2.2). Consequently,
(2.15) reduces to

F(y) = p +
N+−1∑
j=0

cj exp{ξjy}v(j), y ≥ 0. (2.16)

The N+ negative eigenvalues ξj in (2.16) can be found by determining the negative
zeros of the polynomial ∆∗

N(x) of Lemma 2.1. Since ∆∗
N(x) is an element of a sequence



24 Chapter 2. Some birth-death fluid models

of orthogonal polynomials, very efficient methods exist for finding these zeros, which can
be interpreted as eigenvalues of a symmetric tridiagonal matrix, see, e.g., [64] and [57].
Since R−1QT is a tridiagonal matrix, the eigenvectors v(0), . . . ,v(N+−1) have nonzero first
components. Hence, for j = 0, . . . , N+ − 1, we can normalize v(j) to have v

(j)
0 = 1 and

subsequently find the remaining components by solving the recurrence relations

v
(j)
0 = 1, µ1v

(j)
1 = r0ξj + λ0

µiv
(j)
i = (ri−1ξj + λi−1 + µi−1)v

(j)
i−1 − λi−2v

(j)
i−2, i = 2, 3, . . . , N.

(2.17)

Finally, the constants c0, . . . , cN+−1 must be determined by the boundary conditions (2.8),
which translate into

pi +
N+−1∑
j=0

cjv
(j)
i = 0, i ∈ N +. (2.18)

As an aside we note that the system (2.18) can be solved explicitly when the drift vector
has a particular sign structure, see [22] and [31].

The above is summarized in the following theorem.

Theorem 2.3 The stationary joint distribution Fi(y) ≡ P [Xt = i, Ct ≤ y], i ∈ N =
{0, 1, . . . , N}, y ≥ 0, of the process (Xt, Ct) is given by

Fi(y) = pi +
N+−1∑
j=0

cjv
(j)
i exp{ξjy}, (2.19)

where ξj, j = 0, . . . , N+ − 1, are the negative eigenvalues of R−1QT , or, equivalently, the
negative zeros of the polynomial ∆∗

N(x) defined in (2.12), and the constants pi, v
(j)
i and cj,

are determined by (2.2), (2.17) and (2.18), respectively.

2.4 Infinite state space with N+ < ∞
2.4.1 Analysis

In this section our goal is to obtain the solution of the differential equations (2.7), subject
to the boundary conditions (2.8) and (2.9), assuming N = {0, 1, . . .} and N+ ≡ |N +| < ∞.
Our approach involves truncation of the state space of the birth-death process to the set
{0, 1, . . . , N} for some sufficiently large N and letting N tend to infinity in the expressions
found for the ensuing finite model by the procedure of the previous section. As we shall
see, the viability of this approach hinges on the fact that N+ is finite.

Concretely, we choose N such that N > max N + and
n∑

i=0

πiri < 0, for all n ≥ N, (2.20)



2.4. Infinite state space with N+ < ∞ 25

which is always possible since stability condition (2.3) is assumed to be satisfied. Next
we truncate the state space of the birth-death process to {0, 1, . . . , N} and make state N
reflecting by setting λN = 0. Theorem 2.3 then tell us that for the truncated system,
which is stable because of (2.20), the stationary probability that the birth-death process
is in state i and the content of the reservoir does not exceed y is given by

F
(N)
i (y) = p

(N)
i +

N+−1∑
j=0

c
(N)
j v

(N,j)
i exp{ξ

(N)
j y}, y ≥ 0, i = 0, 1, . . . , N, (2.21)

where we have indicated dependence on N . Of crucial importance is the fact that the
number of terms in the summation appearing in (2.21) equals N+ < ∞ independent of
N , which allows us to interchange limit and summation when we let N tend to infinity in
(2.21). Before doing so, however, we must determine the limiting behaviour as N → ∞ of
the quantities p

(N)
i , ξ

(N)
j , v

(N,j)
i and c

(N)
j .

First, it is obvious from (2.2) that

p
(∞)
i ≡ lim

N→∞
p

(N)
i = pi, i ∈ N . (2.22)

Subsequently turning to the eigenvalues ξ
(N)
j , j = 0, 1, . . . , N+ − 1, we can show the

following.

Lemma 2.4 The limits

ξ
(∞)
j ≡ lim

N→∞
ξ

(N)
j , j = 0, 1, . . . , N+ − 1,

exist and satisfy −∞ < ξ(∞)
0 < ξ(∞)

1 < · · · < ξ(∞)
N+−1 < 0.

Proof. We recall that the polynomial ∆∗
N (x) defined in (2.12) has negative zeros ξ

(N)
j , j =

0, 1, . . . , N+ − 1, while its other zeros are positive. By lifting the restriction i ≤ N in
(2.12) we make ∆∗

N(x) element of an infinite sequence {∆∗
i (x)}∞

i=0 which, by Favard’s
Theorem, constitutes a sequence of orthogonal polynomials, see [19]. The lemma can now
be established with the help of two results about zeros of orthogonal polynomials, see [19,
Theorems I.5.3 and II.4.6]. Letting xij denote the jth zero in ascending order (counting
from j = 1 to j = i) of the ith polynomial in an orthogonal polynomial sequence, the first
result says that for any fixed j the sequence {xij}∞

i=j is decreasing, so that its limit exists
(possibly −∞). Letting xj ≡ limi→∞ xij , j = 1, . . . , i, and x0 = −∞, the second result
says that if xj = xj+1 for some j ≥ 0, then xj = xj+k for all k = 1, 2, . . . . Considering
that ξ

(N)
N++1, the (N+ + 1)st zero of ∆∗

N (x), is positive for all N , the validity of the lemma
is now evident. 2

Remark 2.1 Interestingly, the sequence {∆∗
i (x)}∞

i=0 is orthogonal with respect to a pos-
itive measure which – in the current setting where N+ < ∞ – has point masses precisely
at the points ξ

(∞)
0 , ξ

(∞)
1 , . . . , ξ

(∞)
N+−1, while the rest of its mass lies on the positive axis and

in 0.
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Having established the existence of the limits ξ
(∞)
j we can obviously let N tend to infinity

in the recurrence relations (2.17) for v
(N,j)
i , i = 0, 1, . . . , N , by which we get the infinite

system

v
(j)
0 = 1, µ1v

(j)
1 = r0ξ

(∞)
j + λ0

µiv
(j)
i = (ri−1ξ

(∞)
j + λi−1 + µi−1)v

(j)
i−1 − λi−2v

(j)
i−2, i ∈ N\{0, 1},

(2.23)

where, for convenience, we have written v
(j)
i ≡ limN→∞ v

(N,j)
i .

Next, we turn to the N+ equations (2.18) for the constants c
(N)
j , j = 0, 1, . . . , N+ − 1.

It is clear that the constants c
(∞)
j ≡ limN→∞ c

(N)
j , j = 0, 1, . . . , N+ − 1, exist and form the

unique solution to the N+ equations (2.18), where v
(j)
i must now satisfy (2.23).

Finally, we can let N tend to infinity in the right-hand side of (2.21) and check that
the resulting expressions indeed represent the solution to (2.7) – (2.9). Summarizing we
have the following.

Theorem 2.5 When N+ is finite, the stationary joint distribution Fi(y) ≡ P [Xt = i, Ct ≤
y], i ∈ N = {0, 1, . . .}, y ≥ 0, of the process (Xt, Ct) is given by

Fi(y) = pi +
N+−1∑
j=0

cjv
(j)
i exp{ξ

(∞)
j y}, (2.24)

where ξ
(∞)
0 , ξ

(∞)
1 , . . . , ξ

(∞)
N+−1 are the limits in Lemma 2.4 and the constants pi, v

(j)
i and cj

are determined by (2.2), (2.23), and (2.18).

As in the finite case, it is evident that we cannot find explicit expressions for the
quantities ξj, pi, v

(j)
i and cj in general. However, in special cases explicit results can be

obtained. The following is an example.

2.4.2 Example

We consider a simple model in which

r0 ≡ r+, ri ≡ −r− < 0, i = 1, 2, . . . ,

so that

N + ≡ {0}, N − ≡ {1, 2, . . .}.

Furthermore, the birth and death rates are constant, viz.,

λi ≡ λ and µi+1 ≡ µ, i ∈ N .

In the remainder of this section it will be convenient to define ρ = λ/µ and σ = r+/(r++r−).
Since πi = ρi, stability of the system is ensured if

σ < ρ < 1, (2.25)
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which we shall assume in the remainder of this example.
Our main problem is to find ξ

(∞)
0 ≡ limN→∞ ξ

(N)
0 , where ξ

(N)
0 is the smallest zero of

∆∗
N (x) defined in (2.12). This problem is solved in the following lemma, the proof of which

hinges on the fact that the sequence {∆∗
i (x)}∞

i=0 can, after appropriate renormalization, be
recognized as a sequence of perturbed Chebysev polynomials, see [19] or [86].

Lemma 2.6 The sequence {ξ
(N)
0 }∞

N=1 constitutes a strictly decreasing sequence with limit

ξ(∞)
0 ≡ lim

N→∞
ξ(N)
0 = − λ

r+
+

µ

r+ + r−
= − µ

r+
(ρ − σ) (2.26)

Proof. When we write

Ti(x) ≡
(

r−√
λµ

)i

∆∗
i

(
2x

√
λµ + λ + µ

r−

)
, (2.27)

we see that

T0(x) = 1, T1(x) = 2x +
√

ρ

σ
,

Ti(x) = 2xTi−1(x) − Ti−2(x), i = 2, 3, . . . ,
(2.28)

so that {Ti(x)} constitutes a sequence of perturbed Chebysev polynomials. Since by (2.25)
we have T1(0) > 1 we find from [19, Section II.4 and page 205] that the sequence {ζi}∞

i=1,
where ζi is the smallest zero of Ti(x), constitutes a strictly decreasing sequence which
converges as i → ∞ to

−1
2

{√
ρ

σ
+

σ
√

ρ

}
.

Translating this result in terms of ∆∗
i (x) completes the proof. 2

Writing vi ≡ v(0)
i the recurrence relations (2.23) reduce to

v0 = 1, v1 = σ

µvi =
(

λ

σ
+ µσ

)
vi−1 − λvi−2, i ∈ N\{0, 1},

which immediately yields

vi = σi, i ∈ N . (2.29)

Since (2.18) becomes

p0 + c0v0 = 0,

so that c0 = −p0, and evidently

pi = (1 − ρ)ρi, i ∈ N , (2.30)
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we finally obtain, for y ≥ 0 and i ∈ N ,

Fi(y) = (1 − ρ)
(

ρi − σi exp{− µ

r+
(ρ − σ)y}

)
. (2.31)

In particular, the stationary marginal distribution of the buffer content process (Ct) is
given by

P [C > y] =
1 − ρ

1 − σ
exp{− µ

r+
(ρ − σ)y}, y ≥ 0. (2.32)

2.5 Infinite state space with N− < ∞
2.5.1 Analysis

We finally consider the case in which N = {0, 1, . . .} and N+ ≡ |N +| = ∞, but N− ≡
|N −| < ∞. As announced we shall present an approach to obtain the equilibrium distri-
bution of the content of the reservoir under these circumstances.

As a starting point we take the (infinite) system of differential equations (2.7) again,
but, for the time being, we forget about the boundary conditions (2.8) and (2.9). Instead,
we shall try to obtain, for each j ∈ N , the solution of (2.7) under the initial conditions

Fi(0) = δij , i ∈ N , (2.33)

where δij is Kronecker’s delta. We shall assume that, for each j ∈ N , this solution is unique
and denote it by {F

(j)
i (y), i ∈ N}. Later on we shall try to find a linear combination of

solutions of this type which fits our original boundary conditions.
We now form the infinite matrices F(y), y ≥ 0, with elements

(F(y))ij ≡ F
(j)
i (y), i, j ∈ N , (2.34)

and note that the system of differential equations and initial conditions satisfied by the
functions F

(j)
i (y), i, j ∈ N , may be represented by

F ′(y) = R−1QTF(y) (2.35)

and

F(0) = I, (2.36)

respectively, where I denotes the infinite identity matrix, R ≡ diag(r0, r1, . . .) and Q is the
generator of the birth-death process, that is,

Q ≡


−λ0 λ0 0 · · ·
µ1 −(λ1 + µ1) λ1 0 · · ·
0 µ2 −(λ2 + µ2) λ2 0 · · ·

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · ·

 . (2.37)
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Writing for convenience

A ≡ R−1QT , (2.38)

it now follows, formally at least, that

F(y) = exp(yA) =
∞∑

n=0

An yn

n!
, (2.39)

and hence that

F
(j)
i (y) =

∞∑
n=0

(An)ij

yn

n!
, i, j ∈ N . (2.40)

To obtain an alternative expression for F
(j)
i (y), i, j ∈ N , we next consider the polyno-

mials Pi(x), i ∈ N , recurrently defined by P0(x) = 1 and

xPi(x) =
∑
k∈N

(A)kiPk(x), i ∈ N , (2.41)

which is equivalent to

P0(x) = 1,
λ0

r1
P1(x) = x +

λ0

r0
,

λi−1

ri

Pi(x) =
(

x +
λi−1 + µi−1

ri−1

)
Pi−1(x) − µi−1

ri−2
Pi−2(x), i ∈ N\{1, 2}.

(2.42)

It is not difficult to see by induction that we also have

xnPi(x) =
∑
k∈N

(An)ki Pk(x), i ∈ N , (2.43)

for all n = 0, 1, . . . , and as a consequence we can write

exyPi(x) =
∞∑

n=0

xn yn

n!
Pi(x) =

∞∑
n=0

∑
k∈N

(An)ki

yn

n!
Pk(x), i ∈ N , (2.44)

which, after interchanging summation signs and substituting (2.40), reduces to

exyPi(x) =
∑
k∈N

F
(i)
k (y)Pk(x) , i ∈ N . (2.45)

Now, if the sequence of polynomials {Pi(x)}∞
i=0, would be orthogonal with respect to some

inner product ( . , . ), then the previous result would imply

(exyPj(x), Pi(x)) = F
(j)
i (y)(Pi(x), Pi(x)), i, j ∈ N , (2.46)
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that is,

F
(j)
i (y) =

(exyPj(x), Pi(x))
(Pi(x), Pi(x))

, i, j ∈ N . (2.47)

Fortunately, the sequence {Pi(x)}∞
i=0 can be shown to constitute a system of so-called

chain-sequence polynomials , see [30]. It follows that a sequence of associated kernel poly-
nomials can be found that is orthogonal with respect to the inner product defined by

(f, g) =
∫ ∞

−∞
f(x)g(x)ψ∗(dx), (2.48)

where ψ∗ is some positive measure on R. In fact, the corresponding kernel polynomials
are, apart from normalization, the polynomials ∆∗

i (x) that are defined in (2.12), with the
convention N = ∞. The following lemma states that, although the polynomials Pi(x) are
not orthogonal with respect to an inner product in the classical sense, an equally valuable
relation holds as a result of these considerations.

Lemma 2.7 If the sequence {∆∗
i (x)}∞

i=0 is orthogonal with respect to a unique positive
measure ψ∗ with finite moment of order −1 (in the sense that ψ∗({0}) = 0 and the integrals∫ 0−

−∞ x−1ψ∗(dx) and
∫ ∞

0+ x−1ψ∗(dx) converge), then there exists a signed measure ψ of total
mass 1 such that∫ ∞

−∞
Pi(x)Pj(x)ψ(dx) =

ri

r0πi
δij , i, j ∈ N . (2.49)

If r0 < 0, the mass on the positive axis is positive and the mass on the negative axis is
negative, while the reverse holds true if r0 > 0.

Proof. It is easily verified that the monic polynomials ∆i(x) given in (2.13) (again with
N = ∞) satisfy

∆i(x) =
i∏

k=1

λk−1

rk

Pi(x). (2.50)

From [30, Theorem 3 and (9)] we see that {∆i(x)}∞
i=0 , and hence {Pi(x)}∞

i=0 , constitutes a
system of chain-sequence polynomials for which the associated system {∆∗

i (x)}∞
i=0 of kernel

polynomials satisfies the recurrence relations in (2.12). In particular, these polynomials are
orthogonal with respect to a positive measure ψ∗. When r0 < 0, we normalize ψ∗ such that
its total mass equals −λ0/r0, so that, under the required conditions, it now follows from
[30, Theorem 5] that a measure ψ exists, signed and normalized as indicated, with respect
to which the polynomials ∆i(x), and hence the Pi(x), are orthogonal. When r0 > 0, the
same normalization of ψ∗ implies this to be a negative measure. However, the validity
of Theorem 5 in [30] can easily be extended to this case, the only difference being the
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sign of ψ. Relation (2.49) can now be found with the help of (2.50), since for the monic
polynomials ∆i(x) it is known that∫ ∞

−∞
∆i(x)∆j(x)ψ(dx) = δij

i∏
k=1

λk−1µk

rk−1rk

, i, j ∈ N . (2.51)

see [19, Theorem I.4.2]. 2

As a consequence of this lemma, F
(j)
i (y) can be represented as

F
(j)
i (y) =

r0πi

ri

∫ ∞

−∞
exyPi(x)Pj(x)ψ(dx), y ≥ 0, i, j ∈ N . (2.52)

As announced our next step is to assume that the solution of the system (2.7) with
boundary conditions (2.8) and (2.9) is a linear combination of the solutions {F

(j)
i (y), i ∈

N}, that is, we assume that there are constants aj, j ∈ N , such that

Fi(y) =
∑
j∈N

ajF
(j)
i (y) =

r0πi

ri

∑
j∈N

aj

∫ ∞

−∞
exyPi(x)Pj(x)ψ(dx), y ≥ 0, i ∈ N , (2.53)

and our next task is to use the boundary conditions to determine these constants, which,
since F

(j)
i (0) = δij , have the interpretation

aj = Fj(0), j ∈ N . (2.54)

At this point our assumption N− ≡ |N −| < ∞ starts playing its crucial role. Indeed,
it follows from boundary condition (2.8) that

Fi(0) = ai = 0, i ∈ N +, (2.55)

so that the summation in (2.53) is essentially finite, and hence

Fi(y) =
r0πi

ri

∫ ∞

−∞
exyPi(x)

 ∑
j∈N −

ajPj(x)

ψ(dx), y ≥ 0, i ∈ N . (2.56)

The following lemma is helpful in determining the constants aj .

Lemma 2.8 The part of the measure ψ which is concentrated on the positive axis consists
of N− − 1 isolated point masses.

Proof. In Chihara’s book [19] we find the relationship between the zeros of a sequence
of monic orthogonal polynomials and the support of the positive measure with respect to
which these polynomials are orthogonal. We therefore start off by analysing the zeros of
the polynomials ∆∗

i (x), as this will give us information about the measure ψ∗ which is
closely related to the measure ψ. Let i ≥ maxN− and let xij (x∗

ij) denote the jth zero,
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j = 1, . . . , i, arranged in increasing order, of the polynomial ∆i(x) (∆∗
i (x)). Then [30,

Theorem 12] tells us that the number of positive zeros of ∆i(x) equals N−, and that

xi1 < xi2 < · · · < xi,i−N− < 0 < xi,i−N−+1 < · · · < xii, (2.57)

while by [30, Theorem 13] we have that

xi,j−1 < x∗
ij < xij , j = 1, . . . , i, (2.58)

where xi0 = −∞. To find the position of x∗
i,i−N−+1 relative to 0, we make two observations.

The first is that the monicity of ∆∗
i (x) implies limx→∞ ∆∗

i (x) = ∞, and hence x∗
i,i−N−+1 < 0

if and only if sign(∆∗
i (0)) = (−1)N−−1. The second observation is that sign(∆∗

i (0)) =
(−1)N−sign(

∑i
k=0 πkrk), see [30, (15)]. By (2.3) we therefore find for sufficiently large i,

x∗
i1 < x∗

i2 < · · · < x∗
i,i−N−+1 < 0 < x∗

i,i−N−+2 < · · · < x∗
ii, (2.59)

so that, in particular, ∆∗
i (x) has N− − 1 strictly positive zeros. To determine the con-

sequences for the support of ψ∗, denoted by supp(ψ∗), we follow [19, Section II.4]. We
define ζN− = ∞ and the limits ζj = limi→∞ x∗

i,i−N−+j+1, j = 1, . . . , N− − 1, which exist in
R+ ∪ {∞}, since for any k ≥ 1, the sequence {x∗

i,i−k+1}∞
i=k is increasing. In fact we have

0 < ζ1 < ζ2 < · · · < ζN−−1 < ζN− = ∞, (2.60)

since ζk = ζk+1 would imply that also limi→∞ x∗
i,i−N−+1 = ζk, which cannot be the case,

see (2.59). It now follows, still from [19], that supp(ψ∗) ∩ R+ \ {ζ1, . . . , ζN−−1} = ∅ and
that at least one supporting point of ψ∗ lies in every open interval (x∗

ij , x
∗
i,j+1), j = 1, . . . , i,

with x∗
i,i+1 = ∞, so that we may conclude that supp(ψ∗) ∩ R+ = {ζ1, . . . , ζN−−1}. The

proof is completed by noting that the support of ψ coincides with that of ψ∗, possibly
supplemented with {0}, see [30, Theorem 5]. 2

As in the proof of the lemma, we let the point masses on the positive axis be located at
the points ζ1, ζ2, . . . , ζN−−1. Considering that Fi(y) is a probability, and hence uniformly
bounded, it follows that the constants aj , j ∈ N −, must be such that∑

j∈N −

ajPj(ζk) = 0, k = 1, 2, . . . , N− − 1, (2.61)

and that the interval of integration in (2.56) may be reduced to (−∞, 0]. The missing
equation for the constants aj , j ∈ N −, comes from the observation that the average
amount of fluid flowing into the buffer should balance the average amount of fluid flowing
out, that is,∑

j∈N+

pjrj = −
∑

j∈N −

(pj − aj)rj, (2.62)

or, with (2.2),∑
j∈N −

ajrj =

∑
j∈N πjrj∑
j∈N πj

. (2.63)
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We observe that this equation can be rewritten as

r0

∑
j∈N −

ajPj(0) =

∑
j∈N πjrj∑
j∈N πj

. (2.64)

since Pi(0) = ri/r0, i ∈ N , as can easily be verified.
We are now ready to state the main theorem of this section.

Theorem 2.9 When N− is finite, and the condition in Lemma 2.7 is satisfied, the sta-
tionary joint distribution Fi(y) ≡ P [Xt = i, Ct ≤ y], i ∈ N = {0, 1, . . .}, y ≥ 0, of the
process (Xt, Ct) can be represented as

Fi(y) = pi +
πi

ri

∫ 0−

−∞
exyPi(x)R(x)ψ(dx). (2.65)

Here, Pi(x), i ∈ N , are the polynomials defined in (2.41), and ψ is the signed measure of
Lemma 2.7 with respect to which these polynomials are orthogonal. Furthermore, R(x) is
a polynomial defined by

R(x) ≡ r0

∑
j∈N −

ajPj(x), (2.66)

with constants aj , j ∈ N −, such that

R(0) =

∑
j∈N πjrj∑
j∈N πj

(2.67)

and

R(ζj) = 0, j = 1, 2, . . . , N− − 1, (2.68)

where ζ1, ζ2, . . . , ζN−−1 are the N− − 1 supporting points of the measure ψ on the positive
axis.

Proof. By substitution and using (2.1), (2.42), and Lemmas 2.7 and 2.8, it is not difficult
to check that Fi(y) = (πi/ri)

∫ 0+
−∞ exyPi(x)R(x) ψ(dx) satisfies the differential equations

(2.7) and the boundary conditions (2.8). It remains to check that condition (2.9) is sat-
isfied. Assuming that ψ∗ is normalized as before, its total mass being −λ0/r0, we use
that ψ({0}) = 1 −

∫ ∞
−∞ x−1ψ∗(dx), see [30, Theorem 5] again, and that

∫ ∞
−∞ x−1ψ∗(dx) =

1 − r0/
∑∞

j=0 rjπj ; the proof of the latter equation is deferred to Section 2.5.3 since it is
rather technical. Since we now find

lim
y→∞

Fi(y) =
πi

ri
Pi(0)R(0)ψ({0})

=
πi

ri

ri

r0

∑∞
j=0 rjπj∑∞
j=0 πj

r0∑∞
j=0 rjπj

= pi,

we conclude that (2.9) is satisfied. 2
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Corollary 2.10 When the sum S(x), given by

S(x) ≡
∑
i∈N

πi

ri
Pi(x), (2.69)

converges uniformly on an interval containing the negative part of the support of the mea-
sure ψ, the stationary distribution of the buffer content process (Ct) can be represented
as

P [C > y] = −
∫ 0−

−∞
exyS(x)R(x) ψ(dx), y ≥ 0. (2.70)

Evidently, the main problem in concrete examples is to find the signed measure ψ with
respect to which the polynomials Pi(x) are orthogonal. In the proofs of both lemmas in this
subsection, we already touched on the technique described in [30] by which this problem is
transformed into the easier problem of finding the (positive) orthogonalizing measure ψ∗

for the associated sequence of polynomials {∆∗
i (x)}∞

i=0. At least in some cases, such as the
model studied in [4] and [97], this technique enables us to find the measure explicitly, as
we show in the next section.

2.5.2 Example

We look at the case where we have

r0 ≡ −r− and ri ≡ r+ > 0, i = 1, 2, . . . ,

so that

N + ≡ {1, 2, . . .}, N − ≡ {0},

and assume that the birth and death rates are constant and given by

λi ≡ λ and µi+1 ≡ µ, i ∈ N .

As in Section 2.4.2 we find it convenient to set ρ ≡ λ/µ; furthermore we now let σ ≡
r−/(r+ + r−). Since πi = ρi, it follows from (2.3) that we must have

ρ < σ, (2.71)

for the system to be stable. We shall assume in what follows that this condition is satisfied.
Since N − ≡ {0} and P0(x) = 1, the polynomial R(x) in Theorem 2.9 is in fact a

constant, which, from (2.67), is readily seen to be

R(x) = R(0) = −r−(1 − ρ/σ). (2.72)

The polynomials Pi(x), i ∈ N , satisfy the recurrence relations

P0(x) = 1, λP1(x) = r+x − λr+/r−,

λP2(x) = (r+x + λ + µ)P1(x) + µr+/r−, (2.73)
λPi(x) = (r+x + λ + µ)Pi−1(x) − µPi−2(x), i = 3, 4, . . . .
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Following the procedure outlined in [30] and using results on perturbed Chebysev polyno-
mials in Chihara’s book [19], the required orthogonalizing measure ψ for these polynomials
can be found as follows. First, we return to the sequence of monic chain-sequence poly-
nomials {∆i(x)}∞

i=0 of (2.13) and the associated system {∆∗
i (x)}∞

i=0 of kernel polynomials.
The latter sequence satisfies the recurrence relations in (2.12), which in this example are
given by

∆∗
0(x) = 1, ∆∗

1(x) = x − λ

r−
+

µ

r+
,

∆∗
i (x) = (x +

λ + µ

r+
)∆∗

i−1(x) − λµ

r2
+

∆∗
i−2(x), i = 2, 3, . . . . (2.74)

By the transformation

Ti(x) ≡
(

r+√
λµ

)i

∆∗
i

(
2x

√
λµ − λ − µ

r+

)
,

we once more find a sequence of perturbed Chebysev polynomials as in (2.28), but now
with T1(x) = 2x−√

ρ/σ, where σ is defined as in this section. The corresponding (positive)
orthogonalizing measure with total mass 1 is given in [19, page 205], whence we find,

2
π

∫ 1

−1
Ti(x)Tj(x)

√
1 − x2

1 + ρ/σ2 − 2x
√

ρ/σ
dx +

(
1 − σ2

ρ

)
Ti

(√
ρ

2σ
+

σ

2
√

ρ

)
Tj

(√
ρ

2σ
+

σ

2
√

ρ

)
= δij . (2.75)

By appropriately transforming the latter result we can find the positive measure ψ∗ with
respect to which the polynomials ∆∗

i (x), i = 0, 1, . . . , are orthogonal. After normalizing
ψ∗ to have total mass λ/r−, it follows from [30, Theorem 5] that the signed measure ψ,
corresponding to the sequence {∆i(x)}∞

i=0 (and hence also to {Pi(x)}∞
i=0), is given by

ψ(dx) =
ψ∗(dx)

x
, x 6= 0, (2.76)

while ψ has an atom in zero of size

ψ({0}) = 1 −
∫ ∞

−∞
x−1ψ∗(dx). (2.77)

Hence, after some straightforward calculations we find that the required orthogonalizing
measure ψ for the polynomials Pi(x) is given by

ψ(dx) =
1

2πx

√
4ρ − (r+x/µ + ρ + 1)2

(ρ − r−x/µ)/σ − 1
dx, (2.78)
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for x in the interval

−µ(1 +
√

ρ)2

r+
≤ x ≤ −µ(1 − √

ρ)2

r+
, (2.79)

while ψ has no mass outside this interval, with the exception of an atom at zero (the size
of which need not concern us), and, if ρ > σ2, an atom at − µ

r−
(σ − ρ) of size

ψ

({
− µ

r−
(σ − ρ)

})
= −ρ − σ2

σ − ρ
. (2.80)

We note that ψ has no mass on the positive axis, which is in accordance with Lemma 2.8,
since N− = 1 in the model at hand.

Finally, we turn to S(x) of (2.69) by writing down the generating function

S(x, z) =
∑
i∈N

πi

ri
Pi(x) zi, (2.81)

which, by using the recurrence relations (2.73), can be shown to be equal to

S(x, z) =
1
r−

−1 + ((r+ + r−)x/µ + 1)z
ρz2 − (r+x/µ + ρ + 1)z + 1

. (2.82)

When we interpret S(x, z) as a function of z for fixed x, it turns out that it is analytic
for |z| ≤ 1 if and only if −2µ(1 + ρ)/r+ < x < 0 (when x lies inside the interval (2.79),
the numerator of S has no real roots, otherwise the roots lie outside the interval (−1, 1)).
Therefore we conclude that the series S(x) converges on the interval −2µ(1+ρ)/r+ < x < 0
to the constant limit

S(x) = − 1
r+

− 1
r−

. (2.83)

As a consequence, S(x) is uniformly convergent in an interval that contains the support of
the measure ψ, which justifies the interchange of summation and integration signs when
summing Fi(y) of (2.65) over all i ∈ N .

Summarizing and slightly rewriting our results we conclude that the stationary distri-
bution of the buffer content can be represented as

P [C > y] =
1 − ρ/σ

2π

∫ −(1−√
ρ)2

−(1+
√

ρ)2

√
4ρ − (x + ρ + 1)2

r−x2 + r+(σ − ρ)x
e

µ
r+

xy
dx

+
r−
r+

( ρ

σ2 − 1
)

e
− µ

r−
(σ−ρ)y1{ρ>σ2}, y ≥ 0, (2.84)

where 1A denotes the indicator function of the event A. It is not difficult to see that (2.84)
is in accordance with the expression given in [97], apart from the erroneous minus sign
there that has already been noted in [4].
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Remark 2.2 If ρ > σ2 the second term in (2.84) is the dominating one as y → ∞. When
ρ ≤ σ2 it is interesting to know the asymptotic behaviour of the first term, which is then
given by

P [C > y] ∼ 1 − ρ/σ

2
√

π

ρ1/4

r−(1 − √
ρ)4 − r+(σ − ρ)(1 − √

ρ)2 ×(
µ

r+
y

)−3/2

exp{−(1 − √
ρ)2 µ

r+
y}, (2.85)

where f(y) ∼ g(y) means limy→∞ f(y)/g(y) = 1. This result is due to [101], where a proof
is given based on Laplace’s method, see [72, page 80].

Remark 2.3 The models in this section and in Section 2.4.2 are dual, in the sense that
the only difference between the two models is the interchange of N+ and N−. Thus, if we
identify r+ (r−) from Section 2.4.2 with r− (r+), the model of the current section follows
from the model in Section 2.4.2 by adding a minus-sign to the matrix R. Minor as it
may seem at first sight, this difference appears to have considerable consequences when we
compare the expressions for the stationary distributions in (2.32) and (2.84). The key to
understanding the difference in complexity of these solutions clearly lies in Lemma 2.2. If
we truncate the state space to {0, 1, . . . , N} and then let N → ∞ for the case N− < ∞
— as we did in Section 2.4 for the case N+ < ∞ — the number of relevant (i.e. negative)
eigenvalues tends to infinity. In the limit we obtain a continuum as well as one or two
single points, together forming the support of the measure ψ.

Something similar happens in the dual case. The measure is again the orthogonal-
izing measure for the polynomials ∆i(x), i = 0, 1, . . ., which was already mentioned in
Remark 2.1 for the general (dual) case. Due to the minus-sign in front of the matrix R,
this measure is basically equal to −ψ, with ψ as in this section. In particular, the con-
tinuous part of its support lies on the positive axis, and therefore does not play a role in
the solution. The only real asymmetry, namely the fact that the atom outside 0 is on the
negative axis, is due to the different stability condition: for the dual case we have σ−ρ < 0.

2.5.3 Completion of proof of Theorem 2.9

In this section we will prove that, under the conditions of Theorem 2.9,∫ ∞

−∞

ψ∗(dx)
x

= 1 − r0∑∞
j=0 rjπj

, (2.86)

where, as before, ψ∗ is the measure with respect to which the sequence {∆∗
i (x)}∞

i=0 is
orthogonal. Again, we will assume that ψ∗ is normalized such that its total mass is −λ0/r0.

We first introduce some notation. Suppose pi and qi+1, i = 0, 1, . . ., are real constants
such that piqi > 0 for i = 1, 2, . . .. Let the infinite-dimensional matrix A be such that its
(i, j)th element, i, j = 0, 1, . . . , is pi+1 if j = i + 1, −(pi + qi+1) if j = i, qi if j = i − 1 and
0 if |j − i| > 1. We define the monic polynomial Qi(x) as the characteristic polynomial
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of the i × i north-west corner truncation of the matrix A. Hence, Qi(x) is given by the
recurrence formula,

Q0(x) = 1, Q1(x) = x + p0 + q1,
Qi(x) = (x + pi−1 + qi)Qi−1(x) − pi−1qi−1Qi−2(x), i = 2, 3, . . . .

(2.87)

We assume that there is a unique positive measure with total mass 1 with respect to
which these polynomials are orthogonal, and denote it by φ(dx). Notice that when we let
pi = λi/ri and qi = µi/ri, we find that Qi(x) = ∆∗

i (x) and φ(dx) = −r0/λ0 ψ∗(dx).
For n = 1, 2, . . ., we construct a discrete measure φn such that its kth moment equals

the kth moment of φ, k = 0, . . . , 2n − 1, see e.g. [12]. In particular we define φn as
consisting of point masses 1/

∑n−1
j=0 Q̃2

j(xnk) in xnk, k = 1, . . . , n, where {Q̃j(x)}∞
j=0 is the

orthonormal version of the sequence {Qj(x)}∞
j=0 and xnk is the kth zero of Qn(x). The

“method of moments” tells us that φn converges weakly to φ as n → ∞, see [12] again. As
a result we can conclude for s /∈ supp(φ) that∫ ∞

−∞

φ(dx)
s − x

= lim
n→∞

∫ ∞

−∞

φn(dx)
s − x

. (2.88)

This relation is useful because by [19, Theorem III.4.3] we have∫ ∞

−∞

φn(dx)
s − x

=
Q̃

(1)
n−1(s)
Q̃n(s)

=
Q

(1)
n−1(s)
Qn(s)

,

where {Q
(1)
n (x)}∞

n=0 and {Q̃
(1)
n (x)}∞

n=0 are the numerator polynomials corresponding to the
sequences {Qn(x)}∞

n=0 and {Q̃n(x)}∞
n=0 respectively. As a consequence, if 0 /∈ supp(ψ∗), we

can take s = 0 and find after some calculations using [30, equations (15) and (17)] that
(2.86) holds.

In the case where 0 is a part of supp(ψ∗), it must be the largest point of accumulation
of supp(ψ∗), see Lemmas 2.7 and 2.8. In the remainder of this section we will therefore
assume that the support of φ has at least one accumulation point. We will denote the
largest by τ and assume furthermore that φ has only finitely many supporting points to
the right of τ , since ψ∗ has this property. It is our objective to extend the validity of (2.88)
to the case s ≥ τ (although irrelevant for our current purpose, we mention that when
s ∈ supp(φ) and s > τ , both sides of (2.88) may be interpreted as infinity). In this way
we can show that (2.86) also holds when 0 ∈ supp(ψ∗) by simply taking s = 0 (= τ).

Notice that an immediate proof of (2.88) using weak convergence is not possible, since
the function x 7→ (s − x)−1 is not bounded on supp(φ) for s ∈ supp(φ). We will follow the
approach in the proof of [43, Lemma 6] to handle this problem. First we define for t ≥ 0,

fn(t) ≡
∫ ∞

−∞
extφn(dx), n = 1, 2, . . . , (2.89)

and

f(t) ≡
∫ ∞

−∞
extφ(dx). (2.90)
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Since x 7→ ext is bounded on supp(φ), f(t) is the pointwise limit of fn(t) as n → ∞ by
weak convergence. The reason why we introduce these functions is that by interchanging
the order of integration we easily find for s sufficiently large that∫ ∞

0
e−stf(t)dt =

∫ ∞

−∞

φ(dx)
s − x

, (2.91)

while a similar relation holds when f(t) and φ(dx) are replaced by fn(t) and φn(dx) re-
spectively.

We will now show that fn(t) is increasing in n, so that, by monotone convergence, we will
be justified in concluding that

∫ ∞
0 e−stf(t)dt exists and equals limn→∞

∫ ∞
0 e−stfn(t)dt. In

order to show the monotonicity of fn(t) in n we prove two lemmas that give some properties
for related functions. Before defining these functions we introduce the n×n matrix A(n, q),
which is obtained from the matrix A by truncation and a small perturbation, replacing qn

by q. Concretely, we define

A(n, q) ≡


−(p0 + q1) p1 0 · · ·

q1 −(p1 + q2) p2 0 · · ·
0 · · · · · · · · · 0
· · · 0 qn−2 −(pn−2 + qn−1) pn−1

· · · 0 qn−1 −(pn−1 + q)

 . (2.92)

It is not difficult to see that the characteristic polynomial Q(n,q)(x) of this matrix sat-
isfies Q(n,q)(x) = Qn(x) + (q − qn)Qn−1(x). We will denote the zeros of Q(n,q)(x) by
x

(n,q)
k , k = 1, . . . , n and define the discrete measure φ(n,q)(x) as consisting of point masses

1/
∑n−1

j=0 Q̃2
j(x

(n,q)
k ) at the points x

(n,q)
k , k = 1, . . . , n. We note that for k = 0, . . . , 2n − 2,

the kth moment of φ(n,q) does not depend on q, since it coincides with the kth moment
of φ, see [19, equation (II.5.4)].

The next step is to define for t ≥ 0,

f
(n,q)
i,j (t) =

1∏j
k=1 pk

∏i
k=1 qk

∫ ∞

−∞
extQi(x)Qj(x)φ(n,q)(dx), i, j = 0, . . . , n − 1.

It can be shown by substitution that the n×n matrix F (n,q)(t) with elements f
(n,q)
i,j (t) is the

unique solution to the system of differential equations (d/dt)F (n,q)(t) = AT (n, q)F (n,q)(t)
with initial condition F (n,q)(0) = I; hence F (n,q)(t) = etAT (n,q).

We are now ready to prove the announced lemmas.

Lemma 2.11 f
(n,q)
i,j (t) is decreasing in q for each t > 0 and i, j = 0, . . . , n − 1.

Proof. Let ck(q) =
∫ ∞

−∞ xkφ(n,q)(dx), k = 0, 1, . . .. The first moment that truly depends
on q, namely c2n−1(q), can be found from

0 =
∫

xn−1Q(n,q)(x)φ(n,q)(dx) = c2n−1(q) + qc2n−2 +
2n−3∑
k=0

akck,

where the constants ak are independent of q. It follows that c2n−1(q) is a decreasing linear
function of q. Putting q1 < q2 and using a Taylor expansion, we now find for small t that
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f
(n,q1)
i,j (t) − f

(n,q2)
i,j (t) =

=
1∏j

k=1 pk

∏i
k=1 qk

∫ ∞

−∞
extQi(x)Qj(x)

(
φ(n,q1)(dx) − φ(n,q2)(dx)

)
=

1∏j
k=1 pk

∏i
k=1 qk

t2n−1−i−j

(2n − 1 − i − j)!
(
c2n−1(q1) − c2n−1(q2) + o(t2n−1−i−j)

)
> 0. (2.93)

Finally, when (2.93) holds for t1 and t2, we also have F (n,q1)(t1+t2) = F (n,q1)(t1)F (n,q1)(t2) >
F (n,q2)(t1)F (n,q2)(t2) = F (n,q2)(t1 + t2), where the inequality holds componentwise. The
lemma now follows immediately. 2

Lemma 2.12 We have for t ≥ 0,

lim
q→∞

f (n,q)
i,j (t) = f (n−1,qn−1)

i,j (t), i, j = 0, . . . , n − 1.

Proof. As q → ∞, one zero of Q(n,q)(x), x
(n,q)
n say, tends to −∞, while for the other zeros

we find x(n,q)
k → xn−1,k, that is, they converge to the zeros of Qn−1(x). Furthermore we find

that φ(n,q)(x(n,q)
k ) → φn−1(xn−1,k), k = 1, . . . , n−1, and as a consequence φ(n,q)(x(n,q)

n ) → 0.
Hence φ(n,q) converges to φn−1 = φ(n−1,qn−1) and the lemma follows. 2

The fact that fn(t) = f
(n,qn)
0,0 (t) increases in n is now immediate from the lemmas above.

As announced we conclude that
∫ ∞
0 e−stf(t)dt = limn→∞

∫ ∞
0 e−stfn(t)dt, or, in other

words, that (2.88) holds. However, this does not help us to show (2.88) for s ≥ τ , since
(2.91) holds true only for sufficiently large s, namely for s > max supp(φ). We resolve this
problem by defining for t ≥ 0,

f τ
n(t) ≡

∫ τ

−∞
extφn(dx), n = 1, 2, . . . ,

and

f τ (t) ≡
∫ τ

−∞
extφ(dx),

where, as before, the latter one is the pointwise limit of the first as n → ∞. We can now
write for s ≥ τ∫ τ

−∞

φ(dx)
s − x

=
∫ ∞

0
e−stf τ (t)dt = lim

n→∞

∫ ∞

0
e−stf τ

n(t)dt = lim
n→∞

∫ τ

−∞

φn(dx)
s − x

, (2.94)

where the second equality is justified by Lebesgue’s dominating convergence theorem, us-
ing the fact that f τ

n(t) ≤ fn(t) ≤ f(t). Finally, since interchanging a limit and a finite
summation is allowed, and hence∫ ∞

τ

φ(dx)
s − x

= lim
n→∞

∫ ∞

τ

φn(dx)
s − x

, (2.95)

we can conclude the following.
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Proposition 2.13 Let φ and φn be the corresponding measures to a sequence of orthogonal
polynomials {Qi(x)}∞

i=0, as before, with a finite set of supporting points to the right of τ ,
the largest point of accumulation of supp(φ). Then, for s ≥ τ ,∫ ∞

−∞

φ(dx)
s − x

= lim
n→∞

∫ ∞

−∞

φn(dx)
s − x

= lim
n→∞

Q
(1)
n−1(s)
Qn(s)

(2.96)

Applying this in the setting of Section 2.5.1 with s = τ = 0, we find that (2.86) holds
under the conditions in Theorem 2.9 (or Lemma 2.7), also when 0 ∈ supp(ψ∗).
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Chapter 3

A birth-death fluid model
with feedback

3.1 Introduction

We consider a single-server queueing system at which customers arrive according to a
Poisson process with rate λ. Customers arriving while the server is busy wait for their
turn if there is a free waiting position and are lost otherwise.

During idle periods of the server a fluid commodity which we shall designate as credit
accumulates in a reservoir at a constant rate r+ > 0. The credit reservoir depletes during
busy periods of the server at a constant rate r− > 0 as long as the reservoir is nonempty.
It may be helpful to think of credit as energy which the server gathers when idle and
consumes when busy.

In the following it will become clear that the current model involves feedback in the
sense that the current state of the fluid reservoir influences the behaviour of the regulating
queueing system. The amounts of service which customers require in the presence of credit
are independent and exponentially distributed random variables with mean 1/µ1, which
results in a departure rate of µ1 as long as there are customers in the system and the credit
reservoir is nonempty. When the credit reservoir becomes empty, however, the server slows
down and the departure rate drops to µ2 ≤ µ1.

Notice that for µ1 = µ2 = µ we have a (Markov-modulated) fluid model without
feedback. In fact this is the same model as that in Section 2.4.2, where the regulating
process can be interpreted as the number of customers in an M/M/1 queueing system
with parameters λ and µ.

We shall let Xt denote the number of customers in the system and Ct the content
of the credit reservoir at time t. The interaction between the processes (Xt) and (Ct) is
summarized schematically in Figure 3.1. Obviously, the two-dimensional process (Xt, Ct)
constitutes a Markov process which, under a suitable stability condition, possesses a unique
stationary distribution. Our foremost aim is to obtain this distribution.

An important motivation for studying the present model is to investigate whether

43
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-λ ��
��t t t

Xt︷ ︸︸ ︷
µ1 if Ct > 0
µ2 if Ct = 0

& %Ct

6

+r+ if Xt = 0

?
−r− if Xt > 0

Figure 3.1: Interaction between the processes (Xt) and (Ct)

models with feedback yield to analysis. As it turns out, the particular type of feedback we
consider (different behaviour of (Xt) when Ct = 0) does not influence the analysis heavily
when we compare it to Section 2.4.2.

Another motivation for studying the present model is that it may serve as a model
for a traffic regulation mechanism in an ATM network. This application is described in
Section 3.6.

In the following we will first discuss the case of an infinite credit reservoir. Although
primarily interested in the model with infinite waiting room, we shall start off, in Section 3.2
by studying the case in which the number of customers in the system is bounded by some
number N . Subsequently, in Section 3.3, we let N → ∞ in the expressions found to
obtain the stationary distribution of (Xt, Ct) (and related quantities of interest) when the
waiting room is unbounded. The reason that we try this approach, which worked so well
in Section 2.4, is that the analysis amounts to solving a system of differential-difference
equations that resembles the system of equations appearing in the corresponding fluid
model without feedback.

An approach similar to that for the infinite credit reservoir does not seem to lead to
tractable results when the reservoir has finite capacity. By way of introduction to our
approach to this case, we will present, in Section 3.4, an alternative analysis for the model
with infinite credit reservoir and infinite waiting room, in which we keep track of the amount
of credit by observing the number of suitably defined credit quanta rather than the actual
volume of credit in the reservoir. Subsequently, in Section 3.5, we use an extension of this
discretization technique to obtain an approximative solution for the finite-reservoir model.
We also validate this approximation by simulation. We believe that the discretization
technique of Sections 3.4 and 3.5 has much wider applicability (see, e.g., [5]), and consider
its presentation as one of the main contributions of this chapter.

Finally, in Section 3.6 we turn to the application we have in mind, that of a traffic
regulation mechanism operating on a very bursty on-off source. We present some numerical
results that have been obtained by the methods of Section 3.5 and show the trade-off
between extra delay incurred by the regulation mechanism on the one hand and burstiness
reduction of the regulated traffic stream on the other.
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3.2 Finite waiting room and infinite credit reservoir

3.2.1 Preliminaries

We assume in this section that the waiting room is bounded and has N−1 waiting positions,
so that the state space N of the process (Xt) is given by N = {0, 1, . . . , N}. Clearly, to
have stability of the process (Xt, Ct), it is necessary and sufficient that the expected net
rate of credit into the reservoir, conditional on the reservoir being non-empty, be negative.
Since {

1 +
λ

µ1
+

(
λ

µ1

)2

+ · · · +
(

λ

µ1

)N
}−1

is the stationary probability of the server being idle in an M/M/1/N system with arrival
rate λ and service rate µ1, this condition translates into

λ

µ1
> σN , (3.1)

where σN ≡ σN(r+, r−) denotes the unique positive solution of the equation

x + x2 + · · · + xN =
r+

r−
. (3.2)

In what follows we shall assume that condition (3.1) is satisfied.
Letting

Fi(t, y) ≡ P [Xt = i, Ct ≤ y], t ≥ 0, y ≥ 0, i ∈ N , (3.3)

it is not difficult to show that the Kolmogorov forward equations for the process (Xt, Ct)
are here given by

∂F0(t, y)
∂t

+ r+
∂F0(t, y)

∂y
= −λF0(t, y) + µ1F1(t, y) − (µ1 − µ2)F1(t, 0)

∂Fi(t, y)
∂t

− r−
∂Fi(t, y)

∂y
= λFi−1(t, y) − (λ + µ1)Fi(t, y) + µ1Fi+1(t, y)

+ (µ1 − µ2)(Fi(t, 0) − Fi+1(t, 0)), i ∈ N\{0, N}
∂FN (t, y)

∂t
− r−

∂FN (t, y)
∂y

= λFN−1(t, y) − µ1FN(t, y) + (µ1 − µ2)FN (t, 0).

(3.4)

Assuming as before, that the process is in equilibrium, we may set Fi(t, y) ≡ Fi(y) and
also ∂

∂t
Fi(t, y) ≡ 0 for all i ∈ N in (3.4) and, hence, obtain the system

r+F ′
0(y) = −λF0(y) + µ1F1(y) − (µ1 − µ2)F1(0)

−r−F ′
i (y) = λFi−1(y) − (λ + µ1)Fi(y) + µ1Fi+1(y)

+ (µ1 − µ2)(Fi(0) − Fi+1(0)), i ∈ N\{0, N}
−r−F ′

N (y) = λFN−1(y) − µ1FN(y) + (µ1 − µ2)FN (0).

(3.5)
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Notice that this system of differential equations is non-homogeneous, as opposed to situa-
tions in which no feedback is present.

Since credit accumulates whenever the server is idle, the solution to (3.5) must satisfy
the boundary condition

F0(0) = 0. (3.6)

Also, letting

pi ≡ lim
y→∞

Fi(y) = lim
t→∞

P [Xt = i], i ∈ N , (3.7)

the limiting distribution of the (non-Markov) process (Xt), we must obviously have∑
i∈N

pi = 1. (3.8)

Finally, the solution to (3.5) should satisfy the rate balance equations

λpi = µ1 (pi+1 − Fi+1(0)) + µ2Fi+1(0), i ∈ N\{N}. (3.9)

We note that, by letting y → ∞ in (3.5), these balance equations are readily seen to be
equivalent to

lim
y→∞

F ′
i (y) = 0, i ∈ N . (3.10)

3.2.2 Stationary joint distribution

By differentiating (3.5) we obtain a homogeneous system of differential equations for the
derivatives

fi(y) ≡ F ′
i (y) , i ∈ N , (3.11)

which is conveniently written down in matrix notation as

f ′(y) = R−1QT f(y). (3.12)

Here,

f(y) ≡ (f0(y), f1(y), . . . , fN(y))T ,

and R and Q are the (N + 1) × (N + 1) matrices

R ≡ diag(r+,

N︷ ︸︸ ︷
−r−, −r−, . . . , −r−), (3.13)

and

Q ≡


−λ λ 0 · · ·
µ1 −(λ + µ1) λ 0 · · ·
· · · · · · · · · · · · · · ·
· · · 0 µ1 −(λ + µ1) λ

· · · 0 µ1 −µ1

 . (3.14)

As in Section 2.3 we first turn to the eigenvalues of the matrix R−1QT . This can now be
done simply by invoking Lemma 2.2 for the current situation. We find
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Lemma 3.1 The eigenvalues ξj, j ∈ N , of R−1QT are all real and simple; ordering them
in increasing magnitude we have ξ0 < 0, ξ1 = 0, and ξj > 0 for j = 2, . . . , N .

Since the eigenvalues of R−1QT are all distinct, the general solution of (3.12) is of the
form

f(y) =
N∑

j=0

cj exp {ξjy}v(j),

where as before for every j ∈ N , the vector v(j) is the suitably normalized eigenvector
corresponding to the eigenvalue ξj and cj is a constant. However, the boundary conditions
(3.10) and the above lemma are readily seen to imply that with the exception of c0 all
constants ci must vanish. As a consequence we must have

f(y) = c0 exp {ξ0y}v(0)

for some constant c0. Upon integrating this result and writing v for −c0v(0)/ξ0, it now
follows immediately that

F(y) = p − exp {ξ0y}v, (3.15)

where p ≡ (p0, p1, . . . , pN)T with pi, i ∈ N , as defined in (3.7).
Since v is, apart from normalization, the unique eigenvector of R−1QT corresponding

to the single negative eigenvalue ξ0, its components vi, i ∈ N , satisfy the relations

µ1v1 = (λ + r+ξ0)v0

µ1vi+1 = (λ + µ1 − r−ξ0)vi − λvi−1, i ∈ N\{0, N}.
(3.16)

As for the components of p, it is clear that these cannot be determined in a straightforward
manner as in (2.2), since (Xt) is not Markovian due to the presence of feedback. However,
the boundary conditions (3.6) and (3.9) entail that the components of p should satisfy the
recurrence relations

p0 = v0

µ2pi+1 = λpi − (µ1 − µ2)vi+1, i ∈ N\{N},
(3.17)

besides the normalization condition (3.8). Thus we have a total of 2N + 2 linearly inde-
pendent equations for the 2N + 2 quantities vi and pi, i ∈ N .

Summarizing, we have found the following.

Theorem 3.2 The stationary joint distribution Fi(y) ≡ P [Xt = i, Ct ≤ y], i ∈ N =
{0, 1, . . . , N}, y ≥ 0, of the process (Xt, Ct) is given by

Fi(y) = pi − vi exp {ξ0y} , (3.18)

where ξ0 is the smallest eigenvalue of R−1QT , and the quantities pi and vi, i ∈ N , are
determined by (3.8) and the recurrence relations (3.16) and (3.17).
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It is now a simple exercise to determine the stationary distribution of the process
(Xt, Ct), once ξ0 is known. To obtain more information on this smallest eigenvalue we turn
back to the sequence of polynomials {∆∗

i }∞
i=0 in (2.12), which are here given by

∆∗
0(x) = 1, ∆∗

1(x) = x +
λ

r+
− µ1

r−
,

∆∗
i (x) =

(
x − λ + µ1

r−

)
∆∗

i−1(x) − λµ1

r−2 ∆∗
i−2(x), i = 2, 3, . . . . (3.19)

Letting

σ ≡ lim
N→∞

σN =
r+

r+ + r−
, (3.20)

and indicating dependence of R, Q and ξ0 on N we can state the following result, which is
immediate from Lemmas 2.1 and 2.6.

Theorem 3.3 The smallest eigenvalue ξ
(N)
0 of the matrix R−1

N QT
N is the unique negative

zero of the polynomial ∆∗
N (x), N = 1, 2, . . ., and {ξ

(N)
0 }∞

N=1 constitutes a strictly decreasing
sequence with limit

ξ
(∞)
0 ≡ lim

N→∞
ξ

(N)
0 = −λ − µ1σ

r+
. (3.21)

This theorem tells us that the eigenvalue ξ(N)
0 is the unique zero of ∆∗

N (x) in the interval
(ξ(∞)

0 , 0). This knowledge enables us to use a very stable and efficient bisection algorithm
to compute ξ

(N)
0 for any particular value of N ≥ 1.

3.2.3 Examples

First looking into the case N = 1 we have σ1 = r+/r−, and, by Theorem 3.3,

ξ
(1)
0 = − λ

r+
+

µ1

r−
. (3.22)

The relations (3.16), (3.17) and (3.8) reduce to

v0 = p0

v1 = v0 r+/r−
µ2p1 = λp0 − (µ1 − µ2)v1

p0 + p1 = 1.

It follows that

v0 = p0 =
µ2

λ + µ2 − (µ1 − µ2)σ1

v1 =
µ2σ1

λ + µ2 − (µ1 − µ2)σ1

p1 =
λ − (µ1 − µ2)σ1

λ + µ2 − (µ1 − µ2)σ1
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Hence,

F0(y) =
µ2

λ + µ2 − (µ1 − µ2)σ1

(
1 − exp

{
−

(
λ

r+
− µ1

r−

)
y

})
, (3.23)

F1(y) =
1

λ + µ2 − (µ1 − µ2)σ1
×(

λ − (µ1 − µ2)σ1 − µ2σ1 exp
{

−
(

λ

r+
− µ1

r−

)
y

})
, (3.24)

and, in particular,

P [C > y] =
(1 + σ1)µ2

λ + µ2 − (µ1 − µ2)σ1
exp

{
−

(
λ

r+
− µ1

r−

)
y

}
. (3.25)

Next letting N = 2 we have σ2 = −1
2 + 1

2

√
1 + 4r+/r− and

ξ
(2)
0 =

1
2

− λ

r+
+

λ + 2µ1

r−
−

√(
λ

r+
+

λ

r−

)2

+
4λµ1

r2
−

 . (3.26)

The relations (3.16), (3.17) and (3.8) reduce to the system

v0 = p0

µ1v1 = (λ + r+ξ
(2)
0 )v0

µ1v2 = (λ + µ1 − r−ξ
(2)
0 )v1 − λv0

µ2p1 = λp0 − (µ1 − µ2)v1

µ2p2 = λp1 − (µ1 − µ2)v2

p0 + p1 + p2 = 1 ,

which can easily be solved numerically.

3.3 Infinite waiting room and infinite credit reservoir

3.3.1 Preliminaries

We will use the results of the previous section to analyse the system in which both waiting
room and credit reservoir are unbounded. Throughout this section N = {0, 1, . . .}, but
otherwise the notation and terminology of the previous section are maintained.

Obviously, stability of the service system (apart from the credit reservoir) now requires
that λ < µ2. To have stability of the content of the credit reservoir we must impose(

1 − λ

µ1

)
r+ − λ

µ1
r− < 0,
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since λ/µ1 is the probability of the server being busy in an M/M/1/∞ system with arrival
rate λ and service rate µ1. Thus, in order to have stability of the entire system (and
µ1 ≥ µ2), we will assume

σ <
λ

µ1
≤ λ

µ2
< 1, (3.27)

with σ given by (3.20).
As an aside we note that the assumption µ1 ≥ µ2 is motivated by the application we

have in mind, see Section 3.6, but the model yields to analysis without it. Actually, the
ensuing analysis remains valid under the stability condition µ1σ < λ < µ2, apart from the
case λ = µ2σ, which requires some additional work.

Defining Fi(t, y) and Fi(y) as in the previous section, our task is now to solve the system

r+F ′
0(y) = −λF0(y) + µ1F1(y) − (µ1 − µ2)F1(0)

−r−F ′
i (y) = λFi−1(y) − (λ + µ1)Fi(y) + µ1Fi+1(y)

+ (µ1 − µ2)(Fi(0) − Fi+1(0)), i ∈ N\{0},

(3.28)

with boundary conditions (3.6), (3.8) and (3.10). As in Section 2.4, our approach is to
let N → ∞ in the solution for finite N , and subsequently check whether the resulting
expressions satisfy the required conditions.

3.3.2 Stationary joint distribution

In view of Theorems 3.2 and 3.3 we obtain

Fi(y) = pi − vi exp
{

−(λ − µ1σ)
y

r+

}
, i ∈ N , (3.29)

if we let N → ∞. Also, the recurrence relation (3.16) reduces to

v1 = σv0

vi+1 =
(

λ

µ1σ
+ σ

)
vi − λ

µ1
vi−1, i ∈ N\{0},

(3.30)

from which we immediately obtain

vi = σiv0, i ∈ N . (3.31)

With this result the relation (3.17) becomes

p0 = v0

µ2pi+1 = λpi − (µ1 − µ2)σi+1v0, i ∈ N .
(3.32)

Writing

P (x) ≡
∞∑
i=0

pix
i,
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we subsequently get

(λx − µ2)P (x) =
µ1σx − µ2

1 − σx
v0, (3.33)

that is,

P (x) =
v0

λ − µ2σ

{
(µ1 − µ2)σ

1 − σx
+

λ − µ1σ

1 − (λ/µ2)x

}
. (3.34)

It follows that

pi =
v0

λ − µ2σ

{
(µ1 − µ2)σi+1 + (λ − µ1σ)

(
λ

µ2

)i
}

, i ∈ N . (3.35)

It remains to determine v0, but (3.8) tells us that P (1) = 1, so that (3.33) yields

v0 =
(µ2 − λ)(1 − σ)

µ2 − µ1σ
. (3.36)

Substitution of (3.31), (3.35) and (3.36) in (3.29) finally gives us the expression for Fi(y)
given below in Theorem 3.4, which is readily checked to satisfy the required conditions.

Theorem 3.4 The stationary joint distribution Fi(y) ≡ P [Xt = i, Ct ≤ y], i ∈ N =
{0, 1, . . .}, y ≥ 0, of the process (Xt, Ct) is given by

Fi(y) =
(µ2 − λ)(1 − σ)

µ2 − µ1σ

×
{

λ − µ1σ

λ − µ2σ

(
λ

µ2

)i

+ σi

(
(µ1 − µ2)σ
λ − µ2σ

− exp
{

−(λ − µ1σ)
y

r+

})}
.

Corollary 3.5 The stationary marginal distributions of the number of customers in the
system and of the content of the credit reservoir are given by

P [X = i] =
(µ2 − λ)(1 − σ)

(λ − µ2σ)(µ2 − µ1σ)

{
(λ − µ1σ)

(
λ

µ2

)i

+ (µ1 − µ2)σi+1

}
, i ∈ N .(3.37)

and

P [C > y] =
µ2 − λ

µ2 − µ1σ
exp

{
−(λ − µ1σ)

y

r+

}
, y ≥ 0. (3.38)

When we remove the feedback by setting µ1 = µ2 = µ the service system behaves as
an independent M/M/1 system, and so the distribution of the number of customers in the
system must be geometric, as indeed is indicated by (3.37). Moreover, the expression given
in (3.38) reduces to (2.32) with ρ = λ/µ, which is not surprising, since in Section 2.4.2 the
model without feedback is discussed.
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3.3.3 Stationary sojourn and waiting time distributions

We can obtain the distribution of the stationary sojourn time S of an arbitrary customer
by conditioning on the state of the Markov process (Xt, Ct) on arrival of the customer.
Indeed, invoking PASTA we easily get

P [S > s] =
∞∑
i=0

{
P

[
Ei+1(µ1) >

µ2

µ1
s

]
Fi(0)

+
∫ sr−

0
P

[
Ei+1(µ1) >

y

r−
+

µ2

µ1

(
s − y

r−

)]
dFi(y)

+
∫ ∞

sr−

P [Ei+1(µ1) > s]dFi(y)
}

,

where Ei+1(µ1) denotes an Erlang-distributed random variable with parameters i + 1 and
µ1, representing the amount of work in the system (the time required to serve all customers
present at rate µ1) immediately after the arrival of a customer, given that this customer
finds i customers in the system. Subsequent substitution of the result of Theorem 3.4 yields
after tedious but straightforward calculations an explicit expression for the distribution
of S. The distribution of the stationary waiting time W may be obtained by a similar
calculation. The results are summarized in the next theorem.

Theorem 3.6 The distribution of the stationary sojourn time S is given by

P [S > s] = ζ exp
{
−λσ−1(1 − σ)s

}
+ (1 − ζ) exp {−(µ2 − λ)s} , s ≥ 0, (3.39)

while the distribution of the stationary waiting time W satisfies

P [W > s] = ζσ exp
{
−λσ−1(1 − σ)s

}
+ η exp {−(µ2 − λ)s} , s ≥ 0, (3.40)

where

ζ ≡ (µ1 − µ2)(µ2 − λ)σ
(λ − µ2σ)(µ2 − µ1σ)

< 1 and η ≡ λ(λ − µ1σ)(1 − σ)
(λ − µ2σ)(µ2 − µ1σ)

< 1 − ζσ.

Clearly, when µ1 > µ2, then ζ > 0, so that S has a hyperexponential distribution.
When µ1 = µ2 the sojourn time of a customer is not influenced by credit and therefore
its distribution is simply the sojourn time distribution in an M/M/1-queue, and hence
exponential. Indeed, ζ = 0 in this case.

3.4 Alternative analysis via discretization

The model in which both waiting room and credit reservoir are bounded can in principle be
analysed in a way similar to that of Section 3.2, with the complication that all N nonzero
eigenvalues of the matrix R−1QT , rather than only one, play a role in the solution. As a
result of this complicating aspect it does not seem possible to obtain the solution of the



3.4. Alternative analysis via discretization 53

model with infinite waiting room and finite credit reservoir by letting N tend to infinity
as in Section 3.3.2. By way of introduction to our alternative (approximative) approach to
this problem in the next section, we will now present an alternative analysis for the model
in which both waiting room and credit reservoir are unbounded.

The basic idea behind the analysis is to discretize the state space for credit by observing
quanta of credit rather than volume of credit. Indeed, we imagine that at the beginning of
each idle period the reservoir receives a quantum of credit whose size is initially zero but
increases at rate r+ during the idle period, so that the size at the end of the idle period is
exponentially distributed with parameter λ/r+. We also imagine that during busy periods
these quanta of credit are drained at rate r− in their order of arrival, and disposed of as
soon as their sizes are reduced to zero. We shall denote the number of credit quanta in the
reservoir at time t by C̃t. In other words, C̃t can be viewed as the state of a counter at
time t, which increases by one at the beginning of each idle period and decreases by one
each time a quantum of credit has been disposed of.

Our interest now focuses on the two-dimensional process (Xt, C̃t), for which we want
to compute the stationary distribution. Once we know this distribution we shall be able
to calculate the stationary distribution of the original process (Xt, Ct).

The process (Xt, C̃t) does not constitute a Markov process, since the length of an idle
period of the server determines the size of a credit quantum, and, hence, influences future
behaviour of the process after the idle period. However, if we disregard periods of time
corresponding to idle periods of the server and consider the process only during busy
periods, then we are dealing with a process which is a Markov process, since the sizes of
the credit quanta currently present (including the one that is being drained, if any) are
independent of the past. Note in particular that the reduction in size of the quantum that
is currently being drained (if any) is determined by the past of the new process, but, since
idle periods and hence credit quanta before being drained are exponentially distributed
(with parameter λ/r+), the past of the new process does not provide any information
about the current size of the quantum, which is still exponentially distributed.

Letting q(i, j) denote the stationary probability that the new process is in state (i, j),
the balance equations for this process are readily seen (see also Figure 3.2) to be given by

(λ + µ2)q(i, 0) = λq(i − 1, 0) + (λr−/r+)q(i, 1) + µ2q(i + 1, 0), i ∈ N\{0}, (3.41)

with the convention q(0, 0) ≡ 0, and

(λ(1 + r−/r+) + µ1)q(1, 1) = µ2q(1, 0) + (λr−/r+)q(1, 2) + µ1q(2, 1) (3.42)
(λ(1 + r−/r+) + µ1)q(1, j) = µ1q(1, j − 1) + (λr−/r+)q(1, j + 1) + µ1q(2, j),

j ∈ N\{0, 1}, (3.43)
(λ(1 + r−/r+) + µ1)q(i, j) = λq(i − 1, j) + (λr−/r+)q(i, j + 1) + µ1q(i + 1, j),

i ∈ N\{0, 1}, j ∈ N\{0}. (3.44)
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Figure 3.2: Flow diagram of the Markov process with r = r−/r+

The solution of the system (3.41) – (3.44) is given in the next lemma, which can easily
be verified by substitution.

Lemma 3.7 The stationary probabilities q(i, j), i ∈ N\{0}, j ∈ N , satisfy

q(i, j) = bσi
(µ1σ

λ

)j

, i, j ∈ N\{0}, (3.45)

and

q(i, 0) =
bµ1σ

λ − µ2σ

((
λ

µ2

)i

− σi

)
, i ∈ N\{0}, (3.46)

with σ as defined in (3.20) and b being a normalizing constant.

As an aside we note that a deductive proof of this lemma may be based on the fact
that for j ≥ 1 the probabilities q(i, j) must be of the form

q(i, j) = bαiβj,

which is revealed by a careful analysis of the transition structure.
We next look at the complete process (Xt, C̃t) and let p(i, j) denote the stationary

probability that the process is in state (i, j) (state (0, j) now corresponds to an idle server
and j quanta of credit in the reservoir, including the one in development). We recall that
the process (Xt, C̃t) is not a Markov process, because the sojourn time of the process in
state (0, j) equals the amount of credit that is added during that period, which, in turn,
influences future behaviour of the process. However, it is clear that p(i, j)/q(i, j) equals
the stationary probability that the server is busy, and hence is constant for all i ∈ N\{0}
and j ∈ N . Moreover, it is intuitively obvious that the rate balance equations

λp(0, 1) = µ2p(1, 0)
λp(0, j) = µ1p(1, j − 1), j ∈ N\{0, 1},

(3.47)
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must hold true, a result that can be formally justified by Miyazawa’s rate conservation
law (see [70], in particular the arguments on page 17). Interestingly, substitution of the
preceding results in (3.41) – (3.44) leads to equations for the probabilities p(i, j) which
are precisely the balance equations that we would be justified in writing down directly if
(Xt, C̃t) were a Markov process. We can now conclude the following.

Theorem 3.8 The stationary distribution p(i, j) ≡ P [Xt = i, C̃t = j], i, j ∈ N , of the
process (Xt, C̃t) is given by p(0, 0) = 0,

p(i, 0) =
cµ1σ

λ − µ2σ

((
λ

µ2

)i

− σi

)
, i ∈ N\{0}, (3.48)

and

p(i, j) = cσi
(µ1σ

λ

)j

, i ∈ N , j ∈ N\{0}, (3.49)

where c is a normalization constant given by

c ≡ (µ2 − λ)(λ − µ1σ)(1 − σ)
µ1(µ2 − µ1σ)σ

. (3.50)

We can now easily recover the result of Theorem 3.4. Indeed, given the number of credit
quanta at an arbitrary point in time, their sizes must be independent and identically
distributed according to an exponential distribution with parameter λ/r+. Hence, with
Ej(λ/r+) denoting an Erlang-distributed random variable with parameters j and λ/r+, we
have

Fi(y) = p(i, 0) +
∞∑

j=1

p(i, j)P [Ej(λ/r+) ≤ y]. (3.51)

Substitution of (3.48) – (3.50) and a little algebra subsequently lead to the required result.

3.5 Infinite waiting room and finite credit reservoir

3.5.1 Preliminaries

We will now assume that the credit reservoir has finite capacity K, but otherwise maintain
the notation and assumptions of the previous section. Evidently, the stability condition
for this model is λ/µ2 < 1. We will not analyse the model directly but rather apply a
modification of the approach of Section 3.4 to a model which approximates the model at
hand. As a result we obtain an approximation for the stationary distribution of (Xt, Ct),
which, however, can be made arbitrarily accurate at the cost of increasing computing time.

The approximative model differs from the model at hand in the way credit is collected
and spent. As in Section 3.4 , we let credit be composed of quanta, of which a maximum
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number M , say, is now allowed in the credit reservoir. Instead of collecting one credit
quantum in the reservoir during an idle period, as in Section 3.4, we now collect a random
number of credit quanta in the following way. At the beginning of each idle period the
reservoir, if it is not full, receives a credit quantum whose size is initially zero but increases
at rate r+ until either the idle period or an exponentially distributed spell of mean 1/ν
has ended, whichever happens first. In the latter case, and if there is still room, a second
credit quantum is added whose size again grows at rate r+ until either the remaining idle
period or the length of a new, exponentially distributed spell of mean 1/ν, has ended. If
the latter happens first, a third quantum is added to the reservoir if possible, and so on,
until either the complete idle period has come to an end or the total number of credit
quanta has reached level M , whichever happens first. Note that letting ν = 0 amounts to
creating one credit quantum per idle period, as in Section 3.4.

Clearly, the size of each credit quantum is exponentially distributed with mean r+/(λ+
ν). Moreover, if there were no restriction on the number of credit quanta, the total volume
of credit added during an idle period would be exponentially distributed with mean r+/λ.
As in Section 3.4, we imagine that during busy periods of the server the credit quanta
are drained at rate r− in their order of arrival, and disposed of as soon as their sizes are
reduced to zero.

It is intuitively clear that the approximative model will resemble the original model
closer and closer by letting 1/ν, and hence the mean size of a credit quantum, tend to
zero and simultaneously letting M , the maximum number of credit quanta in the reservoir,
tend to infinity in such a way that

Mr+

λ + ν
= K, (3.52)

with K being the maximum volume of credit in the reservoir in the original model. This
intuition is validated by the numerical results of Section 3.5.3.

In the next subsection we will show how to perform an exact analysis of the approxi-
mative model. We let C̃t again denote the number of credit quanta in the reservoir at time
t, and our aim is to compute the stationary distribution of the process (Xt, C̃t). It will be
convenient to let

γn ≡
(

1 − λ

λ + ν

)n−1
λ

λ + ν
, γ̄n ≡

∞∑
m=n

γm =
(

1 − λ

λ + ν

)n−1

, n = 1, 2, . . . ,

so that γn is the probability that n credit quanta are added to the reservoir during an
idle period, conditional on the reservoir having sufficient capacity. Evidently, the stability
conditions for the approximative and the original model are identical.

3.5.2 Analysis of the approximative model

As in Section 3.4, we first disregard periods of time corresponding to idle periods of the
server and consider the process (Xt, C̃t) only during busy periods, as a result of which we
are dealing with a two-dimensional Markov process with state space {(i, j), i ∈ N\{0}, j ∈
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M}, where M ≡ {0, 1, . . . , M}. Letting q(i, j) denote the stationary probability that this
new process is in state (i, j), and writing

τ ≡ (λ + ν)
r−
r+

, (3.53)

the balance equations for the new process are given by

(λ + µ2)q(i, 0) = λq(i − 1, 0) + τq(i, 1) + µ2q(i + 1, 0), i ∈ N\{0}, (3.54)

with the convention q(0, 0) ≡ 0, and

(λ + µ1 + τ)q(1, j) = µ2γjq(1, 0) + µ1

j−1∑
k=1

γj−kq(1, k) + τq(1, j + 1) + µ1q(2, j),

j ∈ M\{0, M}, (3.55)

(λ + τ)q(1, M) = µ2γ̄Mq(1, 0) + µ1

M−1∑
k=1

γ̄M−kq(1, k) + µ1q(2, M), (3.56)

(λ + µ1 + τ)q(i, j) = λq(i − 1, j) + τq(i, j + 1) + µ1q(i + 1, j),
i ∈ N\{0, 1}, j ∈ M\{0}, (3.57)

with the convention q(i, M + 1) ≡ 0. Evidently, one of these equations is redundant; in
what follows we shall not use (3.56).

To solve these equations we first note that taking j = M in equation (3.57) yields the
difference equation

(λ + µ1 + τ)q(i, M) = λq(i − 1, M) + µ1q(i + 1, M), i ∈ N\{0, 1}. (3.58)

The most general solution of this difference equation gives q(i, M) as a linear combination
of ith powers of the roots of the equation

(λ + µ1 + τ)x = λ + µ1x
2. (3.59)

But one of the roots being larger than 1, its weight in the linear combination must be zero,
and so

q(i, M) = A0,0ω
i, i ∈ N\{0}, (3.60)

where A0,0 is some constant and ω is the smallest root of the equation (3.59), that is,

ω ≡ λ + µ1 + τ −
√

(λ + µ1 + τ)2 − 4λµ1

2µ1
. (3.61)

Subsequently substituting (3.60) into equation (3.57) for j = M − 1, we obtain an
inhomogeneous difference equation for the probabilities q(i, M − 1). It follows that

q(i, M − 1) = Aωi + A1,1iω
i, i ∈ N\{0}, (3.62)
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for some constant A and

A1,1 ≡ τωA0,0

λ − µ1ω2 ,

since the first term in (3.62) constitutes the (summable) solution of the homogeneous
equation, while the second term is a particular solution of the inhomogeneous equation. It
will be convenient to represent q(i, M − 1) as

q(i, M − 1) = ωi
1∑

k=0

A1,k

(
1 + i

k

)
, i ∈ N\{0}, (3.63)

with a constant A1,0 which is yet to be determined.
Our next step is to substitute (3.63) into (3.57) for j = M − 2 and solve the resulting

difference equation for the probabilities q(i, M − 2). Thus proceeding, we can work our
way back from q(i, M) to q(i, 1) and find after some simple calculations that

q(i, M − j) = ωi

j∑
k=0

Aj,k

(
j + i

k

)
, j ∈ M\{M}, i ∈ N\{0}, (3.64)

with constants Aj,k satisfying

Aj,k =
µ1ω

2Aj,k+1 + τωAj−1,k−1

λ − µ1ω2 , j ∈ M\{0, M}, k = 1, 2, . . . , j, (3.65)

where Aj,j+1 ≡ 0.
Upon substitution in equation (3.54) of the expression we have thus found for q(i, 1)

we subsequently obtain an inhomogeneous difference equation for the probabilities q(i, 0).
Solving this equation under the conditions q(0, 0) = 0 and

∑
i q(i, 0) < ∞, yields after

some algebra

q(i, 0) =
M∑

k=0

AM,k

{
ωi

(
M + i

k

)
−

(
λ

µ2

)i (
M

k

)}
, i ∈ N , (3.66)

with constants AM,k satisfying

AM,k =
ω((λ + µ2 − 2µ2ω)AM,k+1 − µ2ωAM,k+2 − τAM−1,k)

λ − (λ + µ2)ω + µ2ω2 , k ∈ M\{M}, (3.67)

where AM,M = AM,M+1 ≡ 0.
At this point it is convenient to express the stationary state probabilities p(i, j) of the

process (Xt, C̃t) in terms of the probabilities q(i, j) in a way similar to that of Section 3.4.
Indeed, it is clear that p(i, j)/q(i, j) must be equal to the stationary probability that the
server is busy, and, hence, must be constant for i ∈ N\{0} and j ∈ M. Moreover, the
rate balance equations

(λ + ν)p(0, 1) = µ2p(1, 0)
(λ + ν)p(0, j) = νp(0, j − 1) + µ1p(1, j − 1), j = 2, 3, . . . , M − 1

λp(0, M) = νp(0, M − 1) + µ1{p(1, M − 1) + p(1, M)},
(3.68)
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must hold true, by Miyazawa’s rate conservation law (see again [70]). It follows in particular
that the equations (3.55), which we have not used yet, may be rewritten as

(λ + µ1 + τ)p(1, j) = λp(0, j) + τp(1, j + 1) + µ1p(2, j), j ∈ M\{0, M}, (3.69)

precisely the equation balancing probability flow in and out of state (1, j) which we would
have written down directly if the process {(Xt, C̃t), t ≥ 0} were a Markov process.

After a little algebra we can now conclude the following.

Theorem 3.9 The stationary distribution p(i, j) ≡ P [Xt = i, C̃t = j], i ∈ N , j ∈ M, of
the process (Xt, C̃t) is given by p(0, 0) = 0,

p(0, j) =
c

ν

j∑
k=1

(
ν

λ + ν

)k

{µ1 + δkj(µ2 − µ1)} q(1, j − k), j ∈ M\{0, M}, (3.70)

p(0, M) =
c

λ

M∑
k=0

(
ν

λ + ν

)k−1+δk0

{µ1 + δkM(µ2 − µ1)} q(1, M − k), (3.71)

and

p(i, j) = cq(i, j), i ∈ N\{0}, j ∈ M, (3.72)

where c is a normalization constant, δij is Kronecker’s delta as before, the q(i, j) are given
by (3.64) and (3.66), and the (M + 1)(M + 2)/2 constants Aj,k, j ∈ M, k = 0, 1, . . . , j,
are determined (apart from normalization) by AM,M = 0, and the linear equations (3.65),
(3.67), and (3.69).

It is now a matter of routine to calculate performance characteristics such as the mean
number of customers in the system and hence, by applying Little’s law, the mean sojourn
time of a customer.

3.5.3 Validation of the approximative model

To investigate how well the discretization technique works we compare the mean sojourn
time of a customer in the original model with the mean sojourn time of a customer in the
approximative model. The results for the original model have been obtained by simulation,
while the results for the approximative model have been calculated via the procedure
outlined in the previous subsection.

In the last column of Table 3.1 we have listed the values of E[SK ], the mean sojourn
time of a customer in the original model when the credit reservoir is bounded by K, for
several values of K and six sets of values of the other parameters. Throughout we have
chosen λ = 1 and r+ = 1. We have also indicated a 95% confidence interval for the values
of E[SK ]. In each case these confidence intervals were obtained from 40 runs of 107 arrivals.
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µ1 µ2 r− K E[SK,M ] E[SK ]
M 2 4 6 8 10 20

2 1.5 0.5 1 1.617 1.603 1.598 1.596 1.594 1.591 1.587 ± 0.003
2 1.436 1.410 1.400 1.395 1.392 1.385 1.378 ± 0.003
5 1.151 1.143 1.138 1.128 1.117 ± 0.002

2 1.5 1 1 1.776 1.777 1.777 1.777 1.778 1.778 1.777 ± 0.003
2 1.644 1.646 1.647 1.648 1.648 1.648 1.648 ± 0.003
5 1.436 1.437 1.437 1.437 1.437 ± 0.003

2 1.5 2 1 1.879 1.884 1.886 1.886 1.887 1.888 1.887 ± 0.003
2 1.805 1.817 1.821 1.823 1.824 1.826 1.826 ± 0.003
5 1.732 1.735 1.737 1.741 1.744 ± 0.003

1.5 1.1 0.5 2 8.865 8.870 8.871 8.872 8.872 8.873 8.855 ± 0.066
3 8.436 8.438 8.439 8.440 8.441 8.438 ± 0.060
5 7.726 7.727 7.728 7.730 7.695 ± 0.065

1.5 1.1 1 2 9.455 9.488 9.499 9.504 9.507 9.513 9.507 ± 0.069
3 9.322 9.339 9.347 9.352 9.361 9.373 ± 0.072
5 9.120 9.133 9.140 9.155 9.162 ± 0.074

1.5 1.1 2 2 9.750 9.774 9.781 9.784 9.786 9.790 9.789 ± 0.071
3 9.720 9.729 9.734 9.736 9.741 9.746 ± 0.082
5 9.681 9.685 9.688 9.693 9.693 ± 0.064

Table 3.1: Convergence of E[SK,M ] to its limit E[SK ] (λ = 1, r+ = 1)

Other columns in Table 3.1 list the corresponding values of E[SK,M ], the mean sojourn
time in the approximative model when the number of credit quanta is bounded by M ,
for various values of M . The parameter ν in the approximative model has always been
chosen such that (3.52) is satisfied. Computing the quantities E[SK,M ] requires a fraction
of a second, which is negligible compared to the effort required to obtain E[SK ]. We can
conclude from the results of Table 3.1 that E[SK,M ] is a good approximation for E[SK ]
already for small values of M .

3.6 Two-level traffic shaper

3.6.1 Introduction

We will show that the system with finite credit reservoir can serve as a model for a traf-
fic regulation mechanism operating on a very bursty traffic source in an ATM network.
However, we will first give some information on traffic regulation in ATM networks.

Probably the best-known techniques for regulating (or shaping) cell streams entering an
ATM network are variants of the leaky-bucket mechanism, also known as token-bank throttle
or generic cell rate algorithm (see, e.g., [13] and [88]). The mechanism has recently been
included in the recommendations of the ITU and the ATM Forum; for more information
we refer to Section 2.1 of [83] and the references there.

The basic operation of the leaky-bucket scheme is simple. Before entering the network
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cells are sent to a buffer. In order to get access to the network a cell at the head of the
line in this buffer needs a token from a token bank. If no token is available the cell has
to wait. Tokens arrive deterministically and evenly spaced to the token bank at a rate
which equals the specified average arrival rate of the source (the sustainable cell rate). The
capacity of the token bank is finite and tokens that arrive at a full bank are blocked and
lost. The token-bank throttle guarantees that the long-term average rate at which cells
enter the network never exceeds the sustainable cell rate. However, for some period of
time, determined by the size of the token bank and the cell arrival stream, the scheme
permits a higher rate, equalling, in fact, the actual cell arrival rate.

There have been proposals for extensions of the token-bank throttle, which behave as
two-level regulators, see, e.g., [34, 40, 68, 77, 82], see also [83]. Such shapers have the
additional feature that during periods in which the token bank is nonempty, the rate at
which cells enter the network will not exceed a second specified rate (the peak cell rate).
Again, this scheme allows a higher rate than the sustainable cell rate for some period
of time, but the input rate will never exceed the peak cell rate. The size of the token
bank determines the maximum burst duration (i.e., the maximum duration of a peak-
rate period). Thus, a two-level shaper forces the traffic to conform to three (previously
negotiated) traffic parameters: sustainable cell rate, peak cell rate and maximum burst
duration.

Exact analyses of various versions of the token-bank throttle have appeared in many
papers (see [13, 14, 15, 34, 66, 88], and the references mentioned therein). Crucial in these
analyses is that at any moment in time either the cell buffer or the token bank is empty.
Hence, the process describing both the number of cells waiting and the content of the token
bank is essentially one-dimensional. This feature is not shared by a two-level traffic shaper
and therefore its analysis is much more difficult. The behaviour of a two-level traffic shaper
has been studied through simulations in [77].

We note that in [34] an exact analysis using a fluid approximation was carried out.
However, this paper does not really describe a two-level traffic shaper as we have just
introduced it, since in this model cells are delayed in the cell buffer only to enforce sustain-
able cell rate conformation, and not to enforce peak rate conformation. Rather, cells that
violate the peak rate constraint are marked and then transmitted into the network anyway,
to be discarded later within the network if necessary. As a consequence, this model does
share the above-mentioned feature, along with the relative ease of the ensuing performance
analysis.

We will now picture a setting involving a two-level traffic shaper which is well described
by the model of Section 3.1. Indeed, consider a cell stream generated by an on-off source
with exponentially distributed on-times and off-times, for which the on-times are short
and the arrival rate during on-times is high. Ignoring the duration of the on-times and
the discrete nature of the cells, the stream may be looked upon as a Poisson process in
which an event is the generation of a burst of information (corresponding to a batch of
cells) whose total size is exponentially distributed with mean θ−1, say.

Next, suppose that the cell stream is sent to a buffer at the entrance of a network,
access to which is regulated by a two-level traffic shaper. We ignore the discrete nature
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of tokens (as we did for the cells) and regard them as a fluid commodity, which, following
[63], we may call credit. This credit then flows continuously into a reservoir (corresponding
to the token bank) as long as it is not completely filled, at a constant rate r+, say. Credit
is released from the reservoir only when the information buffer is nonempty, the output
rate being equal to the input rate r+ if the credit reservoir is empty, but to r+ + r−, say,
if the reservoir is nonempty. Note that, as far as the content of the credit reservoir is
concerned, this is equivalent to saying that the reservoir fills at rate r+ (as long as it is not
full) during idle periods of the server, and empties at rate r− (as long as it is nonempty)
during busy periods of the server. The information itself is released from the information
buffer at rate r+ + r− as long as there is credit, and at rate r+ otherwise, implying that
bursts of information leave the network at rate θ(r+ + r−) as long as there is credit, and
at rate θr+ otherwise.

It is not difficult to see that by choosing µ1 ≡ θ(r+ +r−) and µ2 ≡ θr+ and interpreting
customers as bursts of information the model of Section 3.1 matches the setting described
above.

3.6.2 Numerical results

With the results of this chapter we can evaluate the behaviour of the two-level traffic
shaper in the setting described above. To illustrate this, we look into the influence of K,
the maximum amount of credit in the reservoir, on the mean sojourn time. Furthermore,
we study the trade-off, as K decreases, between extra delay on the one hand and reduction
of burstiness of the output stream on the other.

In Figure 3.3, we display the mean sojourn time as a function of the maximum amount
of credit for two different parameter settings. When K = 0 we are dealing with a simple
M/M/1 system in which the mean sojourn time equals 1/(µ2 − λ). For K > 0, the mean
sojourn time has been calculated with the method of Section 3.5. Note that, as K → ∞,
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Figure 3.3: Behaviour of E[SK ] as a function of K for the parameter settings
(a) λ = 1, µ1 = 3, µ2 = 1.5, r− = r+ = 1 and (b) λ = 1, µ1 = 2.2, µ2 = 1.1, r− = r+ = 1
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the mean sojourn time tends to 1/(µ1 − λ), the mean sojourn time in an M/M/1 system
with service rate µ1. The parameter settings of Figures 3.3(a) and 3.3(b) lead to mean
sojourn times of 0.5 and 0.833, respectively, when K → ∞. We observe that a large part of
the possible reduction of the mean sojourn time is already achieved for small values of K.

In Figure 3.4 we show, for the same parameter settings as before, the relation between
mean delay and burstiness of the output stream, when the maximum amount of credit in
the reservoir varies from 0 to ∞. We quantify the burstiness of the output stream by the
variance σ2

K of the output rate of the service system, that is,

σ2
K = p0(0 − λ)2 + p1(µ1 − λ)2 + p2(µ2 − λ)2,

where p0, p1 and p2 are the fractions of time the output rate equals 0, µ1 and µ2, respectively.
Obviously, when K = 0 then p0 = 1−λ/µ2, p1 = 0 and p2 = λ/µ2. For K > 0, the fractions
have been calculated numerically using the method of Section 3.5. When K = ∞, then,
clearly, p0 = 1 − λ/µ1, p1 = λ/µ1 and p2 = 0. Graphs such as Figure 3.4 may be used to
make the trade-off between the benefit of burstiness reduction and the drawback of extra
delay.
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Chapter 4

Some two-buffer fluid models

4.1 Introduction

In this chapter we consider two closely related systems of fluid queues. Both these systems
consist of two infinitely large reservoirs. The first one receives its input from an exponential
on-off source and is emptied at a constant rate. The second reservoir is driven by the first
one.

For the way in which the regulation of this second reservoir takes place we will consider
two possibilities, leading to the two systems just mentioned. In the first part of this chapter
we will consider the situation in which the content of the second reservoir increases at times
when the first reservoir is nonempty, while it decreases if this is not the case (unless also
the second reservoir itself is empty). We will refer to this model as the tandem model,
although it will be formulated slightly more general than the model in which the output
of the first reservoir feeds into the second one.

In the second part of the chapter a similar model with two buffers is studied, which
will be referred to as the dual model. The reason for this is that it may be regarded dual
to the tandem model just described, in the same way as the models in Sections 2.4.2 and
2.5.2 are dual: in the dual model the content of the second reservoir increases when the
first one is empty, and decreases otherwise.

In both models, (Mt) will denote the two-state Markov process that regulates the first
reservoir. Furthermore, the contents of the first and second buffer at time t will be given
by Dt and Ct respectively. One reason for choosing this “counter-alphabetical” notation
is that it ensures that the relation of the current model(s) with those in the next chapter
(where D and C are used as mnemonics for data and credit) will not become blurred by
non-corresponding notation. Another, more significant, reason is that it clarifies how the
models fit into the context of standard Markov-modulated fluid models in Section 1.2: a
fluid reservoir with content Ct is driven by a Markov process (Xt) which in this case is
given by (Xt) ≡ (Mt, Dt). Note that Mt is included, since (Dt) is not a Markov process.
Thus, in both models we have a fluid reservoir that is regulated by a Markov process with
a nondenumerable state space N ≡ {0, 1} × [0, ∞).

65
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Our aim is to derive the stationary marginal distributions of (Dt) and (Ct), as well as the
stationary joint distribution of (Mt, Dt, Ct), both for the tandem model and its dual. We
show how a variety of techniques from renewal theory, Laplace transformation, stochastic
integration and standard queueing theory can be fruitfully used to achieve this goal. A
starting point for the analyses is the relationship between the waiting time in a G/G/1-
queue and the content of the second buffer. In fact, the duality between the two models
considered is closely related to the duality between the M/G/1- and the G/M/1-queue.

As we already mentioned in Section 1.3.4, networks of fluid queues have not received
much attention in the literature, since their solutions do not have a product form. In
addition to the references on Markov-modulated fluid networks in that section, we mention
here [47]. In this paper an n-node tandem fluid queue with increasing Lévy input and
deterministic linear internal flows is analyzed, generalizing the dam model of [80]. It is
one of the few examples where the (Laplace-transform of) the stationary joint distribution
of the contents of more than one reservoir is actually derived. More recent work in this
context can be found in [44] and [45] and references there.

The rest of this chapter is organized as follows. The tandem model is described in
Section 4.2. In Section 4.3 we derive the stability conditions for this system. We obtain
the marginal distributions of the buffers in stationarity in Section 4.4. Other performance
measures such as the expected buffer content, the utilization and the decay rate of the
buffers are also given. In Section 4.5 the first main result of this chapter is given: the
stationary joint distribution of the process (Mt, Dt, Ct) for the tandem model.

In Section 4.6 the dual model is formulated. Again, we first determine the stability
conditions, which is done in Section 4.7. As a by-product of this stability analysis we
find the limiting distribution of the content of the second buffer given that the first one
is empty. In Section 4.8 we use this information to derive the second main result of this
chapter: the joint stationary distribution of the process (Mt, Dt, Ct) for the dual model.
Finally, in 4.9 we present another method to find this result, based on the classical spectral
expansion method, enabling us to compare both solution techniques.

Notation We note that several variables and parameters are used in both the tandem
and the dual model. Although the interpretation of these variables and parameters remains
the same throughout the chapter, the actual algebraic form may differ for the two models.

4.2 Tandem model

We consider a fluid system consisting of two infinitely large reservoirs, with contents Dt and
Ct at time t respectively, and a continuous-time Markov process (Mt), wich is characterised
by its state space {0, 1} and its Q-matrix, which is given by

Q =
(

−a a
b −b

)
. (4.1)

The first reservoir is driven by (Mt) in the following manner. When (Mt) is in state 1, the
content of the first buffer increases at constant rate d+, otherwise it decreases at rate d−,



4.2. Tandem model 67

(0) (1)�
-

b

a

Mt

& %
Dt

6

+d+ if Mt = 1

?
−d− if Mt = 0 & %

Ct

6

+c+ if Dt > 0

?
−c− if Dt = 0

Figure 4.1: Interaction between the subsystems of the tandem system

provided that it is not empty. The second buffer is driven by the first one, in such a way
that its content increases at rate c+ when the first buffer is not empty, and else decreases
at rate c−, provided that the second buffer is not empty. We note that c+, c−, d+ and d−
are positive numbers, and that the meaning of these symbols is reflected in the notation (d
and c for the rates pertaining to the first and second buffer respectively)

A schematic overview of the behaviour of the interaction between the processes (Mt),
(Dt) and (Ct) is given in Figure 4.1, while a realization of the processes (Dt) and (Ct) is
given in Figure 4.2. The parameter values used here and in other figures pertaining to the
tandem model are a = 1, b = 2, d+ = 2, d− = 6, c+ = 3 and c− = 2.5.

Observe that the stochastic process (Mt, Dt, Ct) is a Markov process with state space
{0, 1} × S, where

S = {(x, y) ∈ R | y ≥ xc+/d+}.

This model may be used to describe a fluid version of the classical tandem model: two
fluid buffers with constant release rates are placed in series, the first buffer is fed by an
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Figure 4.2: Realisation of the buffer content processes for the tandem model
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exponential on-off source while the second one is fed by the output of the first. In this case
d− = c+ + c−; notice however, that our model can handle slightly more general scenarios.

The analysis of the model is now carried out through a study of the process (Mt, Dt, Ct).
For simplicity, we assume that M0 = 1 and D0 = C0 = 0.

4.3 Tandem model: stability

Before we study the limiting behaviour as t → ∞ for this model, we need to find out under
which conditions the process (Mt, Dt, Ct) has a limiting distribution. In doing so, we will
need some preliminary results.

Let (Vt) be the potential net input process for the first buffer, defined as

Vt =
∫ t

0
rMsds. (4.2)

where the rates are r(0) = −d− and r(1) = d+. The Markov process (Vt) is called a
random velocity process in [79], where more information on these processes can be found.
Analogous to the analysis on page 12 of this reference, we find the following result.

Proposition 4.1 Let Y be the first entrance time of (Vt) into 0, and let Pi,x denote the
probability measure under which (Mt) starts in i and (Vt) in x, for i = 0, 1, x ≥ 0. The
corresponding expectation operator is denoted by Ei,x. We have,

E0,x e−sY = eλ1(s)x, (4.3)

E1,x e−sY =
b eλ1(s)x

s + b − λ1(s)d+
, (4.4)

where

λ1(s) =
η(s) −

√
ξ(s)

2d−d+
, (4.5)

with

η(s) = bd− − ad+ + s(d− − d+),

and

ξ(s) = (bd− − ad+)2 + 2s(d− + d+)(bd− + ad+) + s2(d− + d+)2.

Proof. For fixed s ≥ 0, let φ0(x) and φ1(x) denote the left-hand sides of (4.3) and (4.4),
respectively. By conditioning on the first transition epoch of (Mt), we obtain the following
integral equations:

φ0(x) = e−(s+a)x/d− + a

∫ x/d−

0
e−(s+a)u φ1(x − ud−) du, (4.6)

φ1(x) = b

∫ ∞

0
e−(s+b)u φ0(x + ud+) du. (4.7)
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Differentiation with respect to x leads to the differential equation

φ′(x) = Aφ(x),

where φ(x) = (φ0(x), φ1(x))T and

A =
(

−(s + a)/d− a/d−
−b/d+ (s + b)/d+

)
.

The eigenvalues of A are λ1(s) as in (4.5) and

λ2(s) =
η +

√
ξ(s)

2d−d+
. (4.8)

In particular, φ0(x) = c1 eλ1(s)x + c2 eλ2(s)x, for some constants c1 and c2. It is not difficult
to see that λ1(s) ≤ 0 and λ2(s) ≥ 0, for s ≥ 0. Since φ0(x) must remain bounded as
x → ∞ and φ0(0) = 1, we have c2 = 0 and c1 = 1, which gives (4.3). Finally, if we insert
(4.3) into (4.7), we find (4.4) after some algebra. 2

Corollary 4.2 The expectations E0,xY and E1,xY are finite if and only if

bd− − ad+ > 0.

When this condition holds, we have for any x ≥ 0,

E0,xY =
(a + b)x

bd− − ad+
, (4.9)

E1,xY =
d− + d+ + (a + b)x

bd− − ad+
. (4.10)

We are now ready to derive the stability conditions for the process (Mt, Dt, Ct). Clearly,
this process is regenerative. As regeneration epochs we may, and henceforth will, choose
the times when (Mt, Dt, Ct) is in state (1, 0, 0), including time 0. The point at issue is
under which conditions the expected length of a regeneration cycle is finite. This question
is answered in the following theorem.

Theorem 4.3 The process (Mt, Dt, Ct) is regenerative with regeneration cycles that have
a non-lattice distribution with finite expectation, if and only if

bd−
c+d− + c−d+ + c+d+

− a

c−
> 0. (4.11)

Proof. Let B0, B1, . . . and I0, I1, . . . denote respectively the lengths of the busy periods
and the idle periods of (Dt), and let B (I) be a generic busy (idle) period.

We first consider the process at embedded points in time. Specifically, let Zi be the
content of the second buffer at the beginning of the ith busy period, i = 0, 1, 2, . . .. We
have Z0 = 0 and

Zi+1 = [Zi + c+Bi − c−Ii]+, i = 0, 1, 2 . . . , (4.12)
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where [x]+ denotes the maximum of x and 0. In other words, Zi has the same distribution as
the waiting time of the ith customer in an M/G/1-queue with interarrival times distributed
as c−I and service times distributed as c+B.

Obviously, (Zi) is a regenerative process, the regeneration epochs being the (discrete)
times i where Zi = 0. By e.g. [7], Proposition VIII.1.3, the expected length of a regenera-
tion cycle is finite if and only if

c− EI > c+ EB. (4.13)

Let τ and T denote the first strictly positive regeneration epoch of (Zi) and (Mt, Dt, Ct),
respectively. We have

T = B0 + I0 + · · · + Bτ−1 + Iτ−1,

and consequently by Wald’s Lemma

ET = Eτ E(B + I) = Eτ (EB +
1
a
).

Thus, it remains to show that both Eτ and EB are finite if and only if (4.11) holds.
From Corollary 4.2 we know that a necessary and sufficient condition for EB to be finite,
is

bd− − ad+ > 0. (4.14)

In that case,

EB =
d− + d+

bd− − ad+
, (4.15)

and hence, in view of (4.13), Eτ is finite if and only if (4.11) holds. Sufficiency and necessity
of (4.11) for ET < ∞ is now immediate, since (4.14) is implied by (4.11).

Finally, T must have a non-lattice distribution, since P [T ∈ [x, x + h]] > 0 for any
choice of x ≥ 0 and h > 0. This can be established by choosing the first transition epochs
of (Mt) appropriately. 2

Remark 4.1 The relationship between the buffer content and the waiting time distribu-
tion of an associated G/G/1-queue is a well-known property of fluid models in a “two-state
random environment” or “with random disruptions”. In such models, the buffer content
is driven by an i.i.d. sequence {(Di, Ui)} of down- and up-times, such that the content
increases at down-times and decreases at up-times, see e.g. [18] and [46]. Indeed, for the
second buffer, the two-state environment consists of the i.i.d. sequence {(Bi, Ii)} of busy
and idle periods of the first buffer.

Corollary 4.4 If (4.11) holds, a random vector (M, D, C) exists, to which (Mt, Dt, Ct)
converges in distribution as t → ∞.
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We will henceforth assume (4.11) to be satisfied and interpret (M, D, C) as the state of
the system in stationarity. Its distribution will be denoted by F = (F0(dx, dy), F1(dx, dy)),
where

Fi(dx, dy) = P [M = i, D ∈ dx, C ∈ dy]
= lim

t→∞
P [Mt = i, Dt ∈ dx, Ct ∈ dy], i ∈ {0, 1}. (4.16)

Before trying to find this distribution we will first concentrate on the marginal distributions
of D and C.

4.4 Tandem model: stationary marginal distributions

The stationary distribution of the first buffer is well-known (see e.g. Theorem 2.3). We
include it for completeness.

Proposition 4.5 The stationary distribution of the process (Mt, Dt) is for x ≥ 0 given by

P [M = 0, D ≤ x] =
b

a + b
− a

a + b

d+

d−
e−αx, (4.17)

P [M = 1, D ≤ x] =
a

a + b
− a

a + b
e−αx, (4.18)

where

α =
b

d+
− a

d−
. (4.19)

Note that α > 0 is equivalent to (4.14), and hence implied by (4.11).

Corollary 4.6 The stationary distribution of the content of the first buffer decreases ex-
ponentially with decay rate α. Moreover, the utilization ρd of the first buffer is given by

ρd = P [D > 0] =
a

a + b

d− + d+

d−
. (4.20)

The expected stationary buffer content is

ED =
d+

a + b

ρd

1 − ρd
.

Next, we consider the stationary distribution of the content of the second buffer. In view
of Remark 4.1, we may view the second buffer as a system with random disruptions. We
will therefore proceed as in [46] and [4].
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Let B and I be a generic busy and idle period of the first buffer, as before. By
Proposition 4.1, the Laplace-Stieltjes transform (LB, say) of B is given by

LB(s) =
b

s + b − d+λ1(s)
, (4.21)

with λ1(s) as in (4.5).
Let the stochastic variable Z have the limiting distribution of the Lindley process in

(4.12). Since Z can be interpreted as the actual waiting time of an arbitrary customer
in an M/G/1-queue, its Laplace-Stieltjes transform LZ satisfies the Pollaczek-Khintchine
formula, which leads to

LZ(s) =
s (c−EI − c+EB)

c−sEI − 1 + LB(c+s)
, (4.22)

where EB is given in (4.15) and EI = 1/a.
The following lemma gives another interpretation of the distribution of Z.

Lemma 4.7 The conditional distribution of (C | D = 0) is the same as the distribution
of Z.

Proof. Assuming an equilibrium situation, we compare the content of the second buffer
at two instants, namely at an arbitrary instant in an idle period of the first reservoir and
at the end of such an idle period. Clearly, the age of the idle period is exponentially
distributed with parameter a in both cases. Therefore, we may conclude that also the
amount of fluid that has flown into the second buffer during the present idle period has
the same distribution for both cases, and hence our statement follows. 2

As a consequence we find by standard renewal theory that the distribution of C is given
by the following mixture of two distributions,

C
d=

{
Z w.p. 1 − ρd,
Z + c+B∗ w.p. ρd,

(4.23)

where B∗ is independent of Z and distributed as the residual lifetime of B. The Laplace-
Stieltjes transform LC of C therefore satisfies

LC(s) = LZ(s)
(

ρd
1 − LB(c+s)

c+sEB
+ (1 − ρd)

)
. (4.24)

The following theorem asserts that it is possible to invert this expression analytically.

Theorem 4.8 The stationary marginal distribution of the process (Ct) is given by

P [C = 0] = 1 − ρc,

P [C ∈ dy] = (1 − ρc)
c− + c+

c+
e−βy ×(

a

c−
− c+νω

2

∫ y

0
e−(θ−β)u H0(0, u) du

)
dy, y > 0.
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Here,

H0(0, y) =
I1(y

√
ω)

y
√

ω
, (4.25)

where I1 is the modified Bessel function of the first kind of order 1 (see also (4.58)), and

β =
bd−

c+d− + c−d+ + c+d+
− a

c−
, (4.26)

θ =
bd− + ad+

c+(d− + d+)
, (4.27)

ρc =
a

a + b

c− + c+

c−

d− + d+

d−
, (4.28)

ν =
d− + d+

c+d− + c−d+ + c+d+
, (4.29)

ω =
4abd−d+

c2
+(d− + d+)2 . (4.30)

(4.31)

Proof. To find the inverse Laplace transform of (4.24), we apply the shift s → s − θ
to obtain

LC(s − θ) = (1 − ρc)

(
1 +

a(c− + c+)
c+c−(s − (θ − β))

− s −
√

s2 − ω

s − (θ − β)
c− + c+ν

2

)
, (4.32)

Using the fact that the inverse Laplace transform of the function s 7→ s −
√

s2 − ω is
the function y 7→ ωH0(0, y), see e.g. [37, page 235,(28)], the result follows. 2

Notice that the stability condition (4.11) can also be written as β > 0. Theorem 4.8
gives a probabilistic interpretation for this parameter, as well as for ρc. Moreover, since
the expectation of C can be derived straightforwardly from LC , we find the following
counterpart to Corollary 4.6.

Corollary 4.9 The stationary distribution of the content of the second buffer has decay
rate β, in the usual sense that limy→∞ −y−1 log P [C > y] = β. Moreover, the utilization
of the second buffer is given by ρc in (4.28). The expected stationary buffer content is

EC =
bc+

a(a + b)
ρc

1 − ρc

ρd

1 − ρd

.

Remark 4.2 The fact that ρd and ρc are of the form (4.20) and (4.28) has an easy inter-
pretation: if the first buffer is stable, the average input rate must be equal to the average
output rate, in other words,

(d+ + d−)
a

a + b
= d− P [D > 0],
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which leads to (4.20). For the second buffer, a similar inflow-outflow analysis leads to

(c+ + c−) P [D > 0] = c− P [C > 0],

which gives (4.28). To make these arguments rigorous, observe that by conditioning on D
and using Lemma 4.7, we have P [C > 0] = (1 − ρd)P [Z > 0], while P [Z > 0] follows from

P [Z > 0] = 1 − lim
s→∞

LZ(s) =
c+EB

c−EI
=

ac+(d− + d+)
c−(bd− − ad+)

, (4.33)

where we used (4.22), (4.15) and the fact that EI = 1/a. Equation (4.28) now follows
immediately.

Equation (3.8) of [84] provides yet another way to derive P [C = 0]. Let the potential
net input process for the second reservoir be given by

Wt =
∫ t

0

(
c+1{Ds>0} − c−1{Ds=0}

)
ds,

and let W t = infs≤t Ws. As before, 1A denotes the indicator function of the event A. Since
dWt/dt = −c− 1{Ct=0}, we have

P [C = 0] = lim
t→∞

t−1
∫ t

0
1{Cs=0} ds = − lim

t→∞

W t

c−t
= − lim

t→∞

Wt

c−t

= − 1
c−

{c+P [D > 0] − c−P [D = 0]} = P [D = 0] − c+

c−
P [D > 0],

where P [D > 0] is given in (4.20).

Remark 4.3 The decay rate of the stationary distribution of the content of a fluid buffer
has received much attention in the telecommunication literature, since it gives an indication
of the probability of buffer overflow for large buffers. Moreover, once the decay rate has
been established, efficient simulation procedures (importance sampling) can be used to
estimate the actual loss probability, see e.g. [17]. The evaluation of the decay rate may be
carried out using the theory of large deviations. In this context, [67] considers a two-node
tandem fluid model, in which two buffers are connected in series via a channel of capacity c1

(we use the notation of [67]). The output capacity of the second buffer is c2 and the input
rate into the first one is ri at times when a modulating n-state Markov process is in state
i, i ∈ {1, . . . , n}. Let R = diag{r1, r2, . . . , rn}, and let Λ be the infinitesimal generator
of the driving Markov process. Finally, define c(θ) to be the largest eigenvalue of the
matrix R+Λ/θ. Then the decay rate of the second buffer is the unique positive solution to
c(θ) = c2. (Actually, the decay rate is the solution to a slightly more complicated equation
– see (2) of [67] – but the present formulation suffices for our purposes.)

For n = 2, the model of [67] is a special case of the present model, and we may take
Λ = Q, r1 = 0, r2 = d+ + d−, c1 = c− + c+ = d− and c2 = c−. For this parameter setting,
the solution of c(θ) = c2 is given by θ = b/(c+ + d+) − a/c−, which is in accordance with
the expression we found for the decay rate in (4.26), see also Corollary 4.9.

Since the distribution of the buffer content is given in Theorem 4.8, we do not need
(fast) simulation to find the probability of buffer overflow in this particular model.



4.5. Tandem model: stationary joint distribution 75

4.5 Tandem model: stationary joint distribution

In this section we derive the joint distribution F of the random vector (M, D, C). The
form of the distribution is easily established (see also Figure 4.2). As a consequence
of Theorem 4.3, the state (0, 0, 0) is a positive recurrent state of the Markov process
(Mt, Dt, Ct). This state is entered via the set {(0, 0, y) | y ≥ 0} and left via the set
{(1, x, y) | x ≥ 0, y = xc+/d+}. Moreover, the set {0, 1} × {(x, y) | y < xc+/d+} is never
entered. These considerations suggest that F be of the following form,

F0({0, 0}) = 1 − ρ, (4.34)

F0({0}, dy) = σ0(y) dy, y > 0, (4.35)

F1(dx, c+/d+dx) = σ1(x) dx, x > 0, (4.36)

Fi(dx, dy) = fi(x, y) dx dy , x > 0, y > xc+/d+, i = 0, 1, (4.37)

for some constant ρ and certain densities σ0, σ1, f0 and f1. From Theorem 4.8, we have
F0({0, 0}) = P [C = 0] = 1−ρc, so that the constant ρ is immediately given by ρc in (4.28).
We now set out to find the densities in three consecutive steps.

Density σ0

By Lemma 4.7 we have

E e−sC 1{D=0} = (1 − ρd)LZ(s), (4.38)

with LZ given in (4.22). Applying the shift s 7→ s − θ, as in (4.32), yields after some
algebra

E e−(s−θ)C 1{D=0} = (1 − ρc)
(

1 +
a

c−(s − (θ − β))
− s −

√
s2 − ω

s − (θ − β)
c+ν

2

)
,

so that σ0 is found by inverse Laplace transformation in exactly the same way as P [C ∈ dy]
in the proof of Theorem 4.8. We have, for y > 0,

σ0(y) = (1 − ρc) e−βy

(
a

c−
− c+νω

2

∫ y

0
e−(θ−β)uH0(0, u) du

)
. (4.39)

Density σ1

The expected sojourn time of the process (Dt, Ct) in the set {(x̂, ŷ) | c+x̂ = d+ŷ, x̂ ≤ x}
during the first regeneration period can be found by conditioning on the time the process
stays on the line {(x, y) | x ≥ 0, y = xc+/d+} after t = 0. Since this time is exponentially
distributed with parameter b, it follows after some calculations and applying the theory of
regenerative processes, that

P [c+D = d+C, D ≤ x] =
1 − e−bx/d+

bET
.
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Since we also have that

1 − ρc = P [C = 0] =
1

ET

1
a
,

we obtain

P [c+D = d+C, D ≤ x] =
a(1 − ρc)

b

(
1 − e−bx/d+

)
. (4.40)

Finally, by differentiating with respect to x, we find

σ1(x) = (1 − ρc)
a

d+
e−bx/d+ (4.41)

Densities f0 and f1

This last step is the most difficult one. Our approach is to determine the densities f0 and
f1 via a Laplace-transformed version of the stationary Kolmogorov forward equations for
the Markov process (Mt, Dt, Ct). Thereto, we define the joint Laplace transforms qi by

qi(p, s) = E1{M=i} e−pD−sC , i ∈ {0, 1}, p, s ≥ 0. (4.42)

We will write q(p, s) for the column vector with entries q0(p, s) and q1(p, s).

Lemma 4.10 The vector q(p, s) satisfies:

A(p, s) q(p, s) = B(p, s)
(

q0(∞, s)
q0(∞, ∞)

)
, (4.43)

where

A(p, s) =
(

−a + d−p − c+s b
a −d+p − c+s − b

)
,

and

B(p, s) =
(

d−p − c+s − c−s c−s
0 0

)
Proof. We only prove the first row of the matrix equation, the second row can be proved
in a similar manner.

Consider the stochastic processes (Xi(t), t ≥ 0) , i ∈ {0, 1}, defined by

Xi(t) = e−pDt−sCt 1{Mt=i}.

Notice that both these processes are of bounded variation. We denote the continuous
part of (Xi(t)) by (Xc

i (t)). In particular, we have for t > 0,

X0(t) = X0(0) + Xc
0(t) +

∑
0<u≤t

[X0(u) − X0(u−)]. (4.44)
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We now concentrate on (X0(t)). The derivative of (Xc
0(t)) is easily found to be

d

dt
Xc

0(t) = X0(t)
(
d−p1{Dt>0} − c+s1{Dt>0} + c−s1{Dt=0,Ct>0}

)
, t > 0. (4.45)

Moreover, the pure jump part of (X0(t)) can be written in stochastic integral form,∑
0<u≤t

[X0(u) − X0(u−)] = −
∫ t

0
X0(u−) dAu +

∫ t

0
X1(u−) dBu, (4.46)

where (At) and (Bt) denote the counting processes that count the number of jumps of
(Mt) from state 0 to 1 and from 1 to 0, respectively. The stochastic intensities at time t
of (At) and (Bt) are given by a1{Mt=0} and b1{Mt=1}, respectively. Because (X0(u−)) is a
left-continuous adapted process, we have by the theory of stochastic integration, (see e.g.
[65]) that

E

∫ t

0
X0(u−) dAu = E

∫ t

0
X0(u−) a1{Mu=0} du, (4.47)

and a similar result holds for the other integral in (4.46). If we now take expectations in
(4.44) and use (4.45)–(4.47), we arrive at

EX0(t) = EX0(0)

+ d−p

∫ t

0
EX0(u)1{Du>0} du − c+s

∫ t

0
EX0(u)1{Du>0} du

+ c−s

∫ t

0
EX0(u)1{Du=0,Cu>0} du

− a

∫ t

0
EX0(u) du + b

∫ t

0
EX1(u) du.

Now differentiate both sides of the previous equation with respect to t and let t → ∞. By
the continuity of Laplace transforms, we obtain

0 = d−p
(
q0(p, s) − q0(∞, s)

)
− c+s

(
q0(p, s) − q0(∞, s)

)
+ c−s

(
q0(∞, s) − q0(∞, ∞)

)
− a q0(p, s) + b q1(p, s).

The first row of (4.43) now follows immediately. 2

Notice that the quantities in the right-hand side of (4.43) are known. In particular,
using (4.42), (4.38) and (4.22), we have

q0(∞, s) = (1 − ρd)
c−s − ac+sEB

c−s − a + aLB(c+s)
, (4.48)

where EB is given in (4.15) and LB in (4.21). Furthermore, q0(∞, ∞) = P [M = 0, D =
0, C = 0] = P [C = 0] = 1 − ρc with ρc given in (4.28).
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Solving q(p, s) from equation (4.43) yields for all p, s ≥ 0,

q1(p, s) = a
(−d−p + c−s + c+s) q0(∞, s) − c−s (1 − ρc)

det A(p, s)
(4.49)

and

q0(p, s) =
b + d+p + c+s

a
q1(p, s),

which, after some algebra, reduces to

q0(p, s) =
b + d+p + c+s

d+(p + λ2(c+s))
q0(∞, s) (4.50)

and

q1(p, s) =
a

d+(p + λ2(c+s))
q0(∞, s), (4.51)

where λ2(s) is given in (4.8), and q0(∞, s) in (4.48).

Remark 4.4 It is possible to derive q0(∞, s) directly from Lemma 4.10. For this, write

det A(p, s) = −d−d+(p + λ1(c+s))(p + λ2(c+s)),

where λ1(s) and λ2(s) are given in (4.5) and (4.8); recall that λ1(s) ≤ 0 ≤ λ2(s) for s ≥ 0.
Since for all p, s ≥ 0, q(p, s) must remain bounded, in particular for p = −λ1(c+s), the
numerator in (4.49) must be zero on the set {(p, s) | s ≥ 0, p = −λ1(c+s)}. This gives a
linear equation in q0(∞, s), from which (4.48) follows.

We are now ready to specify the complete distribution of (M, D, C).

Theorem 4.11 The stationary joint distribution F of the process (Mt, Dt, Ct) is of the
form (4.34) – (4.37), where

σ0(y) = (1 − ρc) e−βy

(
a

c−
− c+νω

2

∫ y

0
e−(θ−β)uH0(0, u) du

)
, (4.52)

σ1(x) = (1 − ρc)
a

d+
e−bx/d+ , (4.53)

f0(x, y) = (1 − ρc)
νbc−

d− + d+
e

− b
d+

x × (4.54)(
d+γω

b
e

−θ
�
y− c+

d+
x
�

H1(x, y − c+

d+
x)

+
a

c−
e

−β
�
y− c+

d+
x
�

{1 + xωγ

∫ y− c+
d+

x

0
e−(θ−β)uH0(x, u)du}

− c+νω

2
e

−β
�
y− c+

d+
x
� ∫ y− c+

d+
x

0
e−(θ−β)uH1(x, u)du

)
,
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f1(x, y) = (1 − ρc)
a

d+
e

− b
d+

x × (4.55)(
ωγ x e

−θ
�
y− c+

d+
x
�

H0(x, y − c+

d+
x)

+
a

c−
e

−β
�
y− c+

d+
x
�

{1 + xωγ

∫ y− c+
d+

x

0
e−(θ−β)uH0(x, u)du}

−c+νω

2
e

−β(y− c+
d+

x)
∫ y− c+

d+
x

0
e−(θ−β)uH1(x, u)du

)
.

Here, the functions H0 and H1 are given by

H0(x, y) =
I1

(√
ω(y2 + 2xyγ)

)
√

ω(y2 + 2xyγ)
, (4.56)

H1(x, y) =
y2 + xyγ

y2 + 2xyγ
H0(x, y)

+
xyγ

y2 + 2xyγ

I0

(√
ω(y2 + 2xyγ)

)
+ I2

(√
ω(y2 + 2xyγ)

)
2

(4.57)

where Ii is the modified Bessel function of the first kind of order i, i.e.,

Ii(z) =
(z

2

)i
∞∑

k=0

(
z
2

)2k

k!(k + i)!
. (4.58)

Furthermore,

γ =
c+(d− + d+)

2d−d+
, (4.59)

while all other constants are the same as in Theorem 4.8.

Proof. It remains to be shown how f0(x, y) and f1(x, y) can be found from q0(p, s) and
q1(p, s). First, inverse transformation of q0(p, s) and q1(p, s) with respect to p yields the
functions

g0(s) =
(

δ0(x) +
b − d+λ2(c+s) + c+s

d+
e−λ2(c+s) x

)
q0(∞, s),

g1(s) =
a

d+
e−λ2(c+s) x q0(∞, s).

where δ0 denotes Dirac’s delta function at 0. Since the distribution F1 only has mass on S,
we know that for fixed x ≥ 0, g1 must be the Laplace transform of a (generalized) function
on the interval [xc+/d+, ∞). Therefore, by multiplying g1(s) with exp(sxc+/d+) we obtain
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the Laplace transform h̃1(s) = exp(sxc+/d+)g1(s) of a function h1 on [0, ∞). After some
calculations we find,

h̃1(s − θ) = (1 − ρc)
a

d+
e

− b
d+

x
exγ(s−

√
s2−ω) ×

(
1 +

a

c−(s − (θ − β))
− c+ν

2
s −

√
s2 − ω

s − (θ − β)

)
.

We can invert h̃1(s − θ) straightforwardly (still for fixed x ≥ 0) by using the following two
facts. First, the function

y 7→ H0(x, y)xωγ,

is the inverse Laplace transform of

s 7→ exp(xγ(s −
√

s2 − ω)) − 1,

see e.g. [37, page 250, (41)]. Secondly, by differentiating H0 with respect to x we see that

y 7→ ωH1(x, y),

is the inverse Laplace transform of

s 7→ (s −
√

s2 − ω) exp(xγ(s −
√

s2 − ω)).

It follows that h1(y) = δ0(y) σ1(x) + f1(x, y + xc+/d+), with σ1 and f1 as in (4.53) and
(4.55).

Similarly, for fixed x > 0, let h̃0(s) = exp(sxc+/d+)g0(s). We find

h̃0(s − θ) = (1 − ρc) ν e
− b

d+
x
exγ(s−

√
s2−ω)

(
ab

(d− + d+)(s − (θ − β))

+
c−c+

2d−
(s −

√
s2 − ω) − bc−c+ν

2(d− + d+)
s −

√
s2 − ω

s − (θ − β)

)
.

Notice that the term δ0(x) q0(∞, s) in g0(s) does not play a role, since we assume x to be
strictly positive. Inversion of h̃0 finally yields h0(y) = f0(x, y + xc+/d+). 2

Remark 4.5 The current model can be seen as a refinement of the model in Section 2.5.2
if we interpret the driving process (Xt) in that model as the number of customers in an
M/M/1 queueing system with parameters λ and µ. However, as far as the content of the
fluid reservoir is concerned, it does not matter if we choose the regulating process to be
the amount of work (Dt) in the system, since clearly Xt = 0 if and only if Dt = 0.

Now if we take in the current model d+ = b/µ, the net amount of fluid that flows into
the buffer during an on-time is exponentially distributed with parameter µ. Thus, if we
let b → ∞ (and hence d+ → ∞) and take a = λ, d− = 1, c− = r−, and c+ = r+, both
models are identical, so that the joint distribution of the amount of work in the M/M/1
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system and the content of the buffer is given by σ0 and f0 in Theorem 4.11 (notice that
the set S is now given by [0, ∞) × [0, ∞), while the densities corresponding to M = 1 are
identically 0). In particular, the marginal distribution of Theorem 4.8 can be shown to
turn into the one in (2.84) by using the fact that I1(z) = (z/π)

∫ 1
−1

√
1 − x2 exp(zx)dx and

that for b ≥ 1,
∫ 1

−1

√
1 − x2/(x− b)dx = −π(b−

√
b2 − 1), see [4]. As an aside we mention

that we cannot easily find an expression for the joint distribution of (Xt, Ct), where Xt is
the number of customers in the M/M/1-queue, which remained implicit in Section 2.5.2.

Clearly, it is not difficult to obtain numerical results from Theorem 4.11. In Figures 4.3 and
4.4 the various densities are shown for the parameter values given in Section 4.2. Notice
that β, the decay rate of the second reservoir is rather small in this case, β ≈ 0.014.
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Figure 4.3: The densities σ0 and σ1 as functions of y and x, respectively
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Figure 4.4: The densities f0 and f1 as functions of x and y

As announced in Section 4.1, the rest of this chapter deals with the dual model, which
can be considered as a similar refinement to the model in Section 2.4.2.
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Figure 4.5: Interaction between the subsystems of the dual system

4.6 Dual model

As in the first part of this chapter we consider a fluid system consisting of two infinitely
large reservoirs. The first one is regulated by a two-state continuous-time Markov process
(Mt) in the same way as before; also the transition intensities of (Mt) are given by a (from
0 to 1) and b (from 1 to 0). The only difference with the tandem model is that the content
of the second buffer increases at rate c+ when the first buffer is empty, and decreases at
rate c− otherwise, provided that it is not empty.

As before, we let Dt and Ct denote the contents of the first and second buffer at time
t, respectively. A schematic overview of the behaviour of the three subsystems is given in
Figure 4.5, while a realisation of the processes (Dt) and (Ct) is given in Figure 4.6. This
time we assume that (M0, D0, C0) = (0, 0, 0).

As for the tandem model, the stochastic process (Mt, Dt, Ct) is a Markov process. Its
state space is simply given by {0, 1} × R+ × R+.
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Figure 4.6: Realisation of the buffer content processes for the dual model
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4.7 Dual model: stability

In analogy to Theorem 4.3, we find the conditions under which the limiting distribution of
the process (Mt, Dt, Ct) exists. As regeneration epochs we choose the times (including 0)
at which (Mt, Dt, Ct) = (0, 0, 0).

Theorem 4.12 The process (Mt, Dt, Ct) is regenerative with regeneration cycles that have
a non-lattice distribution and finite expectation if and only if

b

d+
− a

d−
> 0, (4.60)

and
a

c+
− bd−

c−d− + c−d+ + c+d+
> 0. (4.61)

Proof. Let I0, I1, . . . and B0, B1, . . . denote respectively the lengths of the idle periods and
the busy periods of (Dt), and let I (B) be a generic idle (busy) period. Note that these
periods alternate as I0, B0, I1, B1, . . ., rather than as B0, I0, B1, I1, . . ., which was the case
in the tandem model. We consider an embedded process (Zi) where Zi is the content of
the second buffer at the beginning of the ith idle period of the first buffer, i = 0, 1, 2, . . ..
Clearly, this leads to Z0 = 0 and

Zi+1 = [Zi + c+Ii − c−Bi]+, i = 0, 1, 2 . . . , (4.62)

the Lindley equation for a G/M/1 queue with interarrival times distributed as c−B and
service times distributed as c+I.

The rest of the proof can be copied from the proof of Theorem 4.3, apart from (4.13),
which is replaced by

c− EB > c+ EI. (4.63)

Note however that here (4.60) is not implied by (4.61). 2

Remark 4.6 While for the tandem case, the content of the second buffer at the beginning
of a busy period is the actual waiting time in an M/G/1-queue (with inter-arrival times
distributed as c−I and service times distributed as c+B), we now find an embedded process
that is related to the waiting time in a G/M/1-queue.

Corollary 4.13 If (4.60) and (4.61) hold, a random vector (M, D, C) exists, to which the
process (Mt, Dt, Ct) converges in distribution as t → ∞.

We will henceforth assume (4.60) and (4.61) to be satisfied. The interpretation of (M, D, C)
and the definition of the limiting distribution F are the same as for the tandem model case,
see (4.16).

The following lemma can be compared to Lemma 4.7.
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Lemma 4.14 The conditional distribution of (C | D = 0) is exponential with intensity

β =
a

c+
− bd−

c−d− + c−d+ + c+d+
. (4.64)

Proof. Let (Zi) be the Lindley process in the proof of Theorem 4.12. Under the stability
conditions given in Theorem 4.12, the process (Zi) converges in distribution to a random
variable Z, say. By Theorems IX.1.2(b) and IX.1.3 of [7], we have

P [Z ≤ z] = 1 − (1 − βc+/a) e−βz.

Here β is the unique strictly positive solution of the equation 1 = E eβU , where U is
distributed as c+I − c−B and I and B are generic idle and busy periods of the first buffer
respectively. It follows that β satisfies

1 =
a

a − βc+

b

βc− + b − λ1(βc−)d+
,

which is readily solved to give (4.64). Furthermore, by standard regenerative processes
theory,

(C | D = 0) d= Z + c+I∗,

where I∗ denotes the residual lifetime of an idle period. In particular,

E(e−sC | D = 0) =
(

βc+

a
+ (1 − βc+

a
)

β

β + s

)
a

a + c+s
=

β

β + s
,

which had to be shown. 2

Notice that β > 0 due to our assumption after Corollary 4.13. In the following section we
will thankfully use Lemma 4.14.

4.8 Dual model: stationary joint distribution

In this section we find the limiting distribution F of the process (Mt, Dt, Ct). First, we
derive a set of algebraic equations for the Laplace transform of F, as in Lemma 4.10.
Secondly, we use Lemma 4.14 to solve these equations.

Again, q(p, s) is a vector with components q0(p, s) and q1(p, s), given by

qi(p, s) = E1{M=i} e−pD−sC , i ∈ {0, 1}, p, s ≥ 0. (4.65)

Lemma 4.15 The vector q(p, s) satisfies:

A(p, s)q(p, s) = B(p, s)

 q0(∞, s)
q0(p, ∞)
q1(p, ∞)

 , (4.66)
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with

A(p, s) =
(

−a + d−p + c−s b
a −b − d+p + c−s

)
,

and

B(p, s) =
(

d−p + c+s + c−s c−s 0
0 0 c−s

)
.

Proof. Similar to the proof of Lemma 4.10; note that here q0(∞, ∞) = 0. 2

From Lemma 4.15 we obtain for all p, s ≥ 0,

q(p, s) =
H(p, s)

det A(p, s)

 q0(∞, s)
q0(p, ∞)
q1(p, ∞)

 , (4.67)

where

H(p, s) =
(

−b − d+p + c−s −b
−a −a + d−p + c−s

)
B(p, s).

Next, we use Lemma 4.14 and the first part of (4.20), by which we have

q0(∞, s) = (1 − ρd)
β

s + β
. (4.68)

It remains to determine qi(p, ∞), i ∈ {0, 1}, which we will do via an argument that is
similar to the argument in Remark 4.4. Let s1(p) and s2(p) denote the two roots of the
quadratic equation det A(p, s) = 0, see Figure 4.7. We note that both roots are real and
that for the smallest, s1 say, we have s1(−α) = s1(0) = 0, where α is given in (4.19).

p

s

Figure 4.7: The roots s1 and s2 as functions of p
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By writing out (4.67) we find that q0(p, s) is of the form

q0(p, s) =
c3(p)s3 + c2(p)s2 + c1(p)s + c0(p)

(s − s1(p))(s − s2(p))(s + β)
, (4.69)

where the ci are unknown but analytic functions of p, at least for p > −α because qi(p, ∞) <
Ee−pD and α is the decay rate of the first reservoir. We now fix p such that −α < p < 0.
Because for s > 0 we have that q0(p, s) < Ee−pD we can conclude that q0(p, s) must be
bounded for s > 0. Moreover, since it is not difficult to show that s1(p) > 0 and s2(p) > 0
(see Figure 4.7), it follows that the numerator in (4.69) must be zero for s = s1(p) and
for s = s2(p). This provides us with two linearly independent equations for q0(p, ∞) and
q1(p, ∞). As an aside we note that taking q1(p, s) instead of q0(p, s) in the reasoning above
leads to an equivalent set of equations. After quite a bit of algebra, the solution can be
written as

q0(p, ∞) = (1 − ρd)
bc+ + ac− + c+d+p

c−d− + c+d+

ζ − α

(p + α)(p + ζ)
, (4.70)

q1(p, ∞) = (1 − ρd)
a

d+

ζ − α

(p + α)(p + ζ)
, (4.71)

where we have defined

ζ = α + β
c−d− + c+d+

d−d+
=

ac−

c+d+
+

bc−

c−d− + c−d+ + c+d+
. (4.72)

The Laplace transforms q0 and q1 now follow from (4.67), (4.68), (4.70) and (4.71) and
take, after some strenuous rewriting, the form

q0(p, s) = (1 − ρd)β
(p + ζ)(p + b/d+) + s(ac− + bc+ + c+d+p)/(d+d−)

(p + α)(p + ζ)(s + β)
, (4.73)

q1(p, s) = (1 − ρd)β
a

d+

p + ζ + s(c+d+ + c−d−)/(d+d−)
(p + α)(p + ζ)(s + β)

. (4.74)

We are now ready to state the main result for the dual model.

Theorem 4.16 The stationary joint distribution F of the process (Mt, Dt, Ct) is of the
form

F0({0}, dy) = σ0(y) dy, y > 0,

Fi(dx, {0}) = µi(x) dx, x > 0, i ∈ {0, 1}

Fi(dx, dy) = fi(x, y) dx dy, x, y > 0, i ∈ {0, 1}

(4.75)
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where the densities σ0, µi and fi, i ∈ {0, 1} are given by

σ0(y) = (1 − ρd) β e−βy, (4.76)

µ0(x) = (1 − ρd)
(

a

d−
e−αx − bc+

c−d− + c−d+ + c+d+
e−ζx

)
, (4.77)

µ1(x) = (1 − ρd)
a

d+
(e−αx − e−ζx), (4.78)

f0(x, y) = (1 − ρd)
bc+β

c−d− + c−d+ + c+d+
e−ζx−βy, (4.79)

f1(x, y) = (1 − ρd)
aβ

d+
e−ζx−βy, (4.80)

and the constants ρd, α, β and ζ are given in (4.20), (4.19), (4.64) and (4.72) respectively.

Proof. Lemma 4.14 gives (4.76), and inverse Laplace transformation of (4.70) and (4.71)
yields (4.77) and (4.78). In order to obtain the densities fi, we first rewrite qi(p, s) to a
form in which we can recognize (the transforms of) the densities we just found. The result
is given by

q0(p, s) = (1 − ρd) β

{
ac− + bc+ + c+d+p

d+d−(p + α)(p + ζ)
+(

1 +
bc+

c−d− + c−d+ + c+d+

1
p + ζ

)
1

s + β

}
, (4.81)

q1(p, s) = (1 − ρd)
a

d+

{
ζ − α

(p + α)(p + ζ)
+

β

(p + ζ)(s + β)

}
. (4.82)

By inversion of these expressions, we now easily find (4.79) and (4.80). 2

Corollary 4.17 The stationary marginal distribution of the process (Ct) is given by

P [C ≤ y] = 1 − ρce
−βy, y ≥ 0, (4.83)

with

ρc = (1 − ρd)
c− + c+

c−
.

Therefore, as in the tandem case, the parameter β as given in (4.64) may be interpreted
as the decay rate for the second buffer, while the utilization of this buffer is given by ρc.
The expected stationary content of the second buffer is given by

EC =
ρc

β
.
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Remark 4.7 As the tandem model offers a refinement to the model in Section 2.5.2, the
dual model can be seen as an extension of the model in Section 2.4.2. The correspondance
is the same as in Remark 4.5. In particular in the resulting model we have, as can be
expected, that,

P [D = 0, C ≤ y] = F0(y),

and for x > 0,

P [D ≤ x, C ≤ y] =
∞∑
i=1

Fi(y) P [Ei(µ) ≤ x],

where the distribution function Fi is given in (2.31) and Ei(µ) denotes an Erlang-distributed
random variable with parameters i and µ.

The remarkable difference in complexity of the solutions for the tandem and the dual
model can be explained as in Remark 2.3, by looking at the spectral expansion for the
solution of each model. Therefore we conclude this chapter with the following section.

4.9 Dual model: spectral analysis

4.9.1 Introduction

In this section we show how the dual model can be solved using the spectral approach. First
we will consider an approximative model, in which the second reservoir is being regulated
by a Markov process with a countably infinite state space. Although this process has no
birth-death structure, we will use similar techniques as in Section 2.4, to indicate how this
model can be solved, without working out the details of the analysis. The second step is
done in Section 4.9.3 where the distribution of (Mt, Dt, Ct) is obtained. We will end with
some concluding remarks.

4.9.2 An approximative model

This section is devoted to an approximation of the model in Section 4.6, for which the state
space of the modulating Markov process is denumerable. We prove a lemma about a system
of difference equations and indicate how this can be used to solve the (approximative)
model. More important however is that in Section 4.9.3 we can show that, by taking
appropriate limits, the system of difference equations leads to a system of differential
equations, which is used to find the solution to the original model.

Specifically, we approximate the process (Mt, Dt) by another Markov process (Mt, D̃t),
in which D̃t now represents the number of fluid quanta in the first reservoir. Instead of a
continuous inflow of fluid during on-periods, we suppose that fluid quanta of size 1/n arrive
according to a Poisson process with rate nd+. In order to avoid the possibility of an empty
first reservoir during on-periods, we will suppose that a quantum is added as soon as an
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Figure 4.8: Transition diagram of the Markov process (Mt, D̃t)

on-period starts. Also, we suppose that quanta are removed from the first reservoir during
off periods according to a Poisson process with rate nd−. Thus, the transition diagram of
(Mt, D̃t) is given in Figure 4.8, and the corresponding (infinite-dimensional) generator has
the following block-tridiagonal structure.

T ≡


H0 D+

D− H D+

D− H D+

... ... ...

 , (4.84)

where

H =
(

−a − nd− 0
b −b − nd+

)
, H0 =

(
−a 0
b −b − nd+

)
,

D− =
(

nd− 0
0 0

)
and D+ =

(
0 a
0 nd+

)
We assume that the Markov process (Mt, D̃t, Ct) is stationary, and define

G(y) ≡ (G0(y),G1(y),G2(y), . . .)T , y ≥ 0, (4.85)

where

Gj(y) = (G0,j(y), G1,j(y)), j ∈ N, y ≥ 0,

with

Gi,j(y) ≡ P [Mt = i, D̃t = j, Ct ≤ y], i ∈ {0, 1}, j ∈ N, y ≥ 0.

Notation. Throughout this section blackboard bold characters (such as G, P, etc.) will
indicate vectors that can typically be partitioned into two-dimensional vectors (correspond-
ing to the two possible values for Mt), which will be written in bold-faced type.

Note that the Markov process (Mt, D̃t) has been constructed such that state (1,0) is
transient. We could therefore eliminate it from the state space as we are interested in
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stationary behaviour only. However, to maintain our notational convention we prefer not
to do so, but rather let G1,0(y) = 0 for all y ≥ 0.

It can be shown by writing down the Kolmogorov forward equations for the system and
then assuming equilibrium, that G must be a solution of the differential equation

d

dy
G(y) = R−1T T G(y). (4.86)

Here, T is the generator in (4.84), while the diagonal matrix R, containing the net input
and output rates of fluid in the various states of the modulating proces (Mt, D̃t), is given
by

R ≡ diag(c+, 1, −c−, −c−, . . .). (4.87)

Note that the choice of the second diagonal element is not relevant. Since the second
reservoir cannot be empty while the first reservoir is empty, the solution must satisfy the
boundary condition

G0,0(0) = 0. (4.88)

Moreover, we must impose

lim
y→∞

∞∑
j=0

(G0,j(y) + G1,j(y)) = 1. (4.89)

To analyse (4.86), we apply a similar procedure as described in Section 2.4. First,
we truncate the state space of the process (Mt, D̃t) to {0, 1} × {0, 1, 2, . . . , m}, for some
sufficiently large m. From this truncated state space we eliminate state (1, 0), so that the
generator of the new process is the (2m + 1) × (2m + 1)-matrix

Tm ≡


−a d+

d− H D+

· · · · · · · · ·
D− H D+

D− H1

 , (4.90)

where H, D+ and D− are as before, and

H1 =
(

−nd− 0
b −b

)
,

d+ = (0, a),
d− = (nd−, 0)T .

When we define

Rm ≡ diag(c+,

2m︷ ︸︸ ︷
−c−, −c−, . . . , −c−), (4.91)
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it follows that the stationary distribution Gm of the truncated process is the solution of
the differential system

d

dy
Gm(y) = R−1

m T T
mGm(y), (4.92)

and is hence formally given by

Gm(y) = e−R−1
m T T

myGm(0).

By [92], we know that the eigenvalues ξk, k = 0, 1, . . . , 2m, of the matrix R−1
m T T

m, when
ordered properly, satisfy ξ0 < 0 = ξ1 < Re(ξ2) ≤ Re(ξ3) ≤ · · · ≤ Re(ξ2m), where ξ0 and ξ1

are real. Since we are looking for a bounded solution, Gm must be of the form

Gm(y) = c0V0e
ξ0y + c1V1, y ≥ 0,

where Vk is a suitably normalized eigenvector corresponding to ξk and ck is a constant,
k = 0, 1. The values for c0 and c1 follow from boundary conditions, similar to the ones in
(4.88) and (4.89). Therefore we may conclude that, for any m, the solution of (4.92) is of
the form

Gm(y) = Pm − Vme−βmy, y ≥ 0.

Here, Pm denotes the stationary distribution of the truncated modulating Markov process,
−βm is the unique negative eigenvalue of R−1

m T T
m, and Vm is the corresponding, suitably

normalized eigenvector. Finally, letting m → ∞, we get the same form for the original
process,

G(y) = P− Ve−βy, y ≥ 0, (4.93)

where

β = limm→∞ βm,
P = (p0,p1, . . .)T , with pj = (p0,j, p1,j), j = 0, 1, . . . ,
V = (v0,v1, . . .)T , with vj = (v0,j , v1,j), j = 0, 1, . . . ,

respectively. After determining β, P and V, it can be shown by substitution that (4.93)
indeed is a solution of (4.86). Note that the components of P and V have a probabilistic
interpretation, namely

pi,j = P [Mt = i, D̃t = j], i ∈ {0, 1}, j = 0, 1, . . . ,
vi,j = P [Mt = i, D̃t = j, Ct > 0], i ∈ {0, 1}, j = 0, 1, . . . ,

so that we immediately have that p1,0 = v1,0 = 0.
To learn more about the relation between β and V, we investigate the eigenvalue problem

T T
V = −βRV. (4.94)
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Writing out (4.94), where we leave out the equation concerning state (1, 0) and set v1,0 = 0,
we obtain

−av0,0 + nd−v0,1 = −βc+v0,0

av0,0 − (b + nd+)v1,1 = βc−v1,1,

and, for j = 1, 2, . . . ,

−(a + nd−)v0,j + bv1,j + nd−v0,j+1 = βc−v0,j

av0,j + nd+v1,j − (b + nd+)v1,j+1 = βc−v1,j+1.

The following lemma is now immediate.

Lemma 4.18 The components of the eigenvector V corresponding to eigenvalue −β satisfy
the difference equation

vj+1 = Avj j = 1, 2, . . . , (4.95)

where

A =


a + nd− + βc−

nd−
− b

nd−
a

b + nd+ + βc−

nd+

b + nd+ + βc−

 ,

with initial condition

v1 =

 −βc+ + a

nd−
a

b + nd+ + βc−

 v0,0 . (4.96)

Since det A > 0 and det (A − I2) < 0 for β > 0, it turns out that for the eigenvalues ζ1(β)
and ζ2(β) of A we have 0 < ζ1(β) < 1 < ζ2(β). Therefore, in order for a bounded solution
V to exist, v1 must be in the eigenspace of ζ1(β), which gives an equation from which we
can determine β. Also, since P is the eigenvector corresponding to eigenvalue 0, we can use
Lemma 4.18 to find an expression for its components. Finally, applying conditions (4.88)
and (4.89), it is possible to solve the model exactly. We will however proceed by showing
how the results of this section can be used to obtain the solution of our original problem.

4.9.3 Taking the limit

In this section we will show how the stationary distribution F of the process (Mt, Dt, Ct)
can be found, using the results for the approximative system of the previous section. We
will first derive an analogue to Lemma 4.18 for our original model. Then, we proceed by
carrying out an analysis similar to the one suggested after Lemma 4.18, which will lead to
the same result as in Theorem 4.16.
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We first consider a sequence of auxiliary systems, as described in the previous section.
However, now we are interested in the amount of fluid in the first reservoir, rather than
the number of fluid quanta (apart from the state of the on-off source and the content of the
second reservoir). Concretely, let M

(n)
t , D

(n)
t and C

(n)
t denote the state of the on-off source,

the first reservoir and the second reservoir at time t, respectively, for any n ∈ N\{0},
where 1/n is the size of a fluid quantum as before. In particular, D

(n)
t = D̃t/n. Assuming

stationarity of the Markov process (M (n)
t , D

(n)
t , C

(n)
t ), we define for any n,

F
(n)
i (x, y) ≡ P [M (n)

t = i, D
(n)
t ≤ x, C

(n)
t ≤ y], x, y ≥ 0, i ∈ {0, 1},

and in vector notation,

F(n)(x, y) ≡ (F (n)
0 (x, y), F (n)

1 (x, y))T , x, y ≥ 0.

F(n)(x, y) can be expressed easily in terms of the quantities in Section 4.9.2, namely

F(n)(x, y) =
bxnc∑
j=0

G(n)
j (y) =

bxnc∑
j=0

p(n)
j − v(n)

j e−β(n)y x, y ≥ 0,

where we have indicated dependence of these quantities on n, and where bxc is the largest
integer ≤ x.

Clearly, the stochastic process (M (n)
t , D

(n)
t , C

(n)
t ) is a good approximation for the orig-

inal process (Mt, Dt, Ct) if n is large. It seems therefore plausible that the stationary
distribution F of the latter satisfies

F(x, y) = lim
n→∞

F(n)(x, y), x, y ≥ 0.

We draw the conclusion that

F(x, y) = P(x) − V(x)e−βy, x, y ≥ 0, (4.97)

assuming that the following limits exist,

P(x) = lim
n→∞

bxnc∑
j=0

p(n)
j , x ≥ 0, (4.98)

V(x) = lim
n→∞

bxnc∑
j=0

v(n)
j , x ≥ 0, (4.99)

β = lim
n→∞

β(n). (4.100)

We note that for v(x) ≡ V′(x) we have

v(x) = lim
n→∞

nv(n)
bxnc+1, x ≥ 0, (4.101)
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assuming the right hand side exists, since for x ≥ 0,∫ x

0
lim

n→∞
nv(n)

btnc+1dt = lim
n→∞

∫ x

0
nv(n)

btnc+1dt

= lim
n→∞

bxnc∑
j=1

v(n)
j + v(n)

bxnc+1(xn − bxnc)

 = V(x) − V(0).

Similarly, we have

v′(x) = lim
n→∞

n2(v(n)
bxnc+2 − v(n)

bxnc+1), x ≥ 0. (4.102)

We are now ready to prove the following lemma.

Lemma 4.19 If it exists, the vector function v(x) satisfies the differential equation

v′(x) = Bv(x) x ≥ 0, (4.103)

where

B =


a + βc−

d−
− b

d−
a

d+
−b + βc−

d+

 ,

with initial condition

v(0) =

 −βc+ + a

d−
a

d+

V0(0). (4.104)

Proof. By (4.95), we have

v(n)
bxnc+2 − v(n)

bxnc+1 = (A(n) − I)v(n)
bxnc+1 , x ≥ 0,

where we have indicated the dependence on n of matrix A in Lemma 4.18. Multiplying
both sides of this equation by n2 and taking the limit for n → ∞ while applying (4.101)
and (4.102), yields (4.103), where B = limn→∞ n(A(n) − I). Similarly, (4.104) follows from
multiplying (4.96) by n and taking the limit for n → ∞. 2

Since for −β < 0 also det B < 0, we have for the eigenvalues ζ1(β) and ζ2(β) of B that
ζ1(β) < 0 < ζ2(β). For v(x) to be bounded for x ≥ 0, we must therefore have that v(0) is
an eigenvector of ζ1(β), or equivalently, v(0) must be orthogonal to the left eigenvector of
ζ2(β). After some calculus it follows that this is the case if and only if

β =
a

c+
− bd−

c−d− + c−d+ + c+d+
. (4.105)
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Using (4.105), we now solve (4.103) – (4.104) and obtain

v(x) = e−ζxv(0), x ≥ 0,

where

ζ = −ζ1(β) =
ac−

c+d+
+

bc−

c−d− + c−d+ + c+d+
(4.106)

and

v(0) =

 bc+

c−d− + c−d+ + c+d+
a

d+

V0(0).

Integration yields for x ≥ 0,

V(x) = V(0) −
∫ x

0
v(t)dt

=
(

V0(0)
0

)
+

V0(0)
ζ

 bc+

c−d− + c−d+ + c+d+
a

d+

(
1 − e−ζx

)
. (4.107)

We could follow a similar procedure to obtain P(x) from p(n)
j based on (4.98). However,

since P(x) = limy→∞ F(x, y), it is the solution to the standard fluid flow problem involving
just the on-off source and first reservoir, which has already been given in Proposition 4.5.
Finally, since the second reservoir cannot be empty while the first reservoir is empty, and
hence F0(0, 0) = 0, we have that

V0(0) = P0(0) =
d+α

a + b
. (4.108)

Combining (4.97) with Proposition 4.5, (4.107) and (4.108), we can conclude that the
stationary joint distribution of the Markov process (Mt, Dt, Ct) is given by

F(x, y) = P(x) − V(x)e−βy, x, y ≥ 0,

with

P(x) =

 b

a + b
a

a + b

 −

 a

a + b

d+

d−
a

a + b

 e−αx , x ≥ 0,

and

V(x) = (1 − ρd)
(

1
0

)
+

1 − ρd

ζ

 bc+

c−d− + c−d+ + c+d+
a

d+

(
1 − e−ζx

)
, x ≥ 0,

where the constants ρd, α, β and ζ are given in (4.20), (4.19), (4.105) and (4.106) respec-
tively. It is not difficult to check that this is equivalent to the statement in Theorem 4.16.
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Remark 4.8 In fact the discretization performed in this section is not essential. In-
stead of manipulating matrices for the approximative models, we could immediately find
Lemma 4.19 by manipulating differential operators.

Remark 4.9 Now that we solved the dual model using the spectral analysis, we can
explain the difference in complexity of the solutions for the tandem and the dual model.
The reason that the dual model is amenable to spectral analysis is that there is only
one state in the regulating process (Mt, Dt) for which the content of the second reservoir
increases, namely (0,0). As a consequence, only one negative eigenvalue plays a role in the
solution, namely −β.

When we try to solve the tandem model via this approach, we obtain an infinite,
uncountable number of states in which the second buffer fills up, and a continuum of
negative eigenvalues that play a role in the solution. This makes the analysis much harder,
if not impossible, and explains the complexity of the solution in Theorem 4.11.



Chapter 5

A two-buffer fluid model
with feedback

5.1 Introduction

In this final chapter we once more consider a system of two fluid reservoirs driven by
a two-state (on and off) continuous-time Markov process. In fact it resembles the dual
system of the previous chapter, since the net input rate into the first reservoir is positive
(negative) when the on-off process is in the on-state (off-state), while the second reservoir
accumulates fluid when the first reservoir is empty, and releases fluid otherwise, at constant
rates. Thus, we may again view the second reservoir as being driven by the joint process
of the content of the first reservoir and the on-off Markov process.

The main difference is that, unlike in the previous chapter, we incorporate the notion
of feedback into our model, as described in Section 1.5.1. This feedback mechanism entails
that the rates at which the first reservoir fills or depletes depend on the state (empty or
nonempty) of the second reservoir.

The main motivation for studying this model is that it provides a more detailed de-
scription of a two-level traffic shaper than the model in Chapter 3. By this we mean the
following (see also Remarks 4.5 and 4.7 for the relation between birth-death fluid models
and two-buffer fluid models). In Section 3.6 we assumed that the cell stream that arrives at
the traffic shaper is generated by an on-off source with exponentially distributed on-times
and off-times, for which the on-times are short and the arrival rate during on-times is high.
Ignoring the duration of the on-times and the discrete nature of the cells, we then looked
upon the stream as a Poisson arrival process of exponentially distributed bursts of data
cells. In the current chapter we do not ignore the duration of the on-times. The number
of data cells in the buffer will not be described by the number of bursts in a queueing
system as in Chapter 3, but by the amount of fluid in the first reservoir. This is why we
will henceforth use the term data buffer for this reservoir, while the second reservoir will
be called credit buffer as in Chapter 3.

In this context it is important that we let the credit buffer be finite. In most of this

97
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chapter we assume that this is the case and are able to find analytical results for this
situation. Since we shall also consider the situation in which the credit buffer is infinitely
large, we will find that the finiteness of the credit buffer complicates the form of the
stationary distribution considerably.

Although the application mentioned above is the main motivation for our present study,
the model is formulated in general terms to allow for other interpretations. Most notably,
the model also captures a two-node fluid tandem queue with a finite second reservoir, driven
by an on-off source. Another conceivable situation that can be described is that of such
a tandem queue, where the flow rate from the first to the second reservoir is diminished
when the latter is completely filled, to prevent or reduce loss of data.

We note that in [5] the same model as the one at hand is analysed in the context of
two-level traffic shaping via an approximative discretization approach, along the lines of
the discretization technique in Chapter 3.

The structure of this chapter is as follows. First we describe the model in Section 5.2.
We also show here how the parameters should be chosen such that the two above-mentioned
special cases of practical interest are obtained, viz. the two-level traffic shaper and the
tandem queue with finite second buffer. Returning to the general model, we provide the
condition under which the system is stable in Section 5.3.

In Section 5.4 we concentrate on the marginal distribution of the second reservoir.
We employ two techniques, both of which make use of the distribution of an embedded
Markov chain, which is derived in Section 5.4.2. The first of these techniques, described
in Section 5.4.3 gives results for the two special cases of interest. The second technique,
similar to the Laplace-transform techniques in Chapter 4, is described in Section 5.4.4 and
yields results which are useful for any parameter values that satisfy the stability conditions.

The main result of this chapter is presented in Section 5.5, namely an explicit expression
for the stationary joint distribution of the stochastic process that describes the state of
the on-off source and the contents of both reservoirs. The proof of the theorem is given in
three subsections, the first of which exploits a useful relationship between the current model
and the tandem model of the previous chapter. This explains why the solution is fairly
complicated, involving integrals of modified Bessel functions; however, as in Chapter 4,
these can easily be evaluated numerically.

Section 5.6 shows how the stationary distribution simplifies for the special case in which
both reservoirs are infinitely large. It is also shown that an extra stability condition must
be satisfied in this situation.

Finally, in Section 5.7 we find the stationary distribution for the case in which both
reservoirs are finite, provided that the first reservoir is not too small. When we apply these
results to the earlier mentioned tandem situation, this actually gives us the distribution
for a tandem fluid queue with two finite reservoirs, again when the first reservoir is not too
small.
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5.2 Model

5.2.1 General model

We consider a fluid system consisting of two reservoirs, which we shall henceforth call
buffers: an infinitely large data buffer and a finite credit buffer of size K. The amount
of fluid that flows into and out of these buffers depends on the contents of both buffers
and ultimately on a continuous-time Markov process (Mt), with state space {0, 1} and
transition intensities a (from 0 to 1) and b (from 1 to 0).

When the credit buffer is not empty, the content of the data buffer increases at rate d+

when (Mt) is in state 1 and decreases at rate d− when (Mt) is in state 0, provided that
the data buffer is not empty. However, when the credit buffer is empty, the up and down
rates are d0

+ and d0
−, instead of d+ and d− respectively.

Furthermore, the content of the credit buffer increases at rate c+ when the data buffer
is empty (provided that the credit buffer is not completely filled), and decreases at rate c−
otherwise (provided that the credit buffer is not empty) . Notice that d+, d−, d0

+, d0
−, c+ and

c− are positive numbers, as in the previous chapter and that the meaning of the symbols
is reflected in the notation (d for data, c for credit).

We let Dt and Ct denote the content of the data and credit buffer at time t, respectively,
and observe that the stochastic process (Mt, Dt, Ct) is a Markov process. A schematic
overview of the interaction between (Mt), (Dt) and (Ct) is given in Figure 5.1.

(0) (1)�
-

b

a

Mt

& %
Dt

6

+d+ if Mt = 1, Ct > 0
+d0

+ if Mt = 1, Ct = 0

?
−d− if Mt = 0, Ct > 0
−d0

− if Mt = 0, Ct = 0
& %

K

Ct

6

+c+ if Dt = 0

?
−c− if Dt > 0

Figure 5.1: Interaction between the processes (Mt), (Dt) and (Ct)

A realization of the process (Dt, Ct) is given in Figure 5.2. The parameter values used
here and in other figures in this chapter are a = 1, b = 2, d+ = 2, d− = 6, d0

+ = 4, d0
− =

3, c+ = 2.5, c− = 3 and K = 3.
At first sight an obvious choice for the state space of (Mt, Dt, Ct) would be {0, 1} ×

[0, ∞) × [0, K]. However, a close inspection of the behaviour of the system shows that for
any t we must have Dt ≤ d+(K − Ct)/c−, unless Ct = 0, see Figure 5.2. Therefore, we
denote the state space of (Mt, Dt, Ct) by {0, 1} × S with

S = S1 ∪ S2, (5.1)
S1 = {(x, y) | 0 < y ≤ K, 0 ≤ x ≤ (K − y)d+/c−}, (5.2)
S2 = {(x, y) | y = 0, x ≥ 0}. (5.3)
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K

Dt
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Figure 5.2: Realisation of the buffer content processes

In the remainder of this section we will discuss two possible applications of the model.
In both cases the data buffer and credit buffer are closely related. The first application
describes a two-level traffic shaper as in Section 3.6, controlling the traffic flow coming
from an on-off source. The second model describes a fluid tandem queue as in the first
part of Chapter 4, but with a finite second reservoir.

5.2.2 Modelling a two-level traffic shaper

Instead of six parameters d+, d−, d0
+, d0

−, c+, c− for the behaviour of both buffers, we take
three parameters v0, v1 and v2 such that v0 > v1 > v2 > 0 and choose

d+ = v0 − v1, d− = v1,
d0

+ = v0 − v2, d0
− = v2,

c+ = v2, c− = v1 − v2.
(5.4)

The interpretation is the following. The data buffer only receives data when the on-off
source is in the on-state, at rate v0. The output rate is v1 if credit is available and
v2 (< v1) otherwise. We can think of v2 as the long term average rate at which the data
buffer is allowed to send. The rate v1 is a higher rate that may be used for a limited period
of time, namely as long as credit is available. The particular values of c+ and c− can be
explained by arguing that whenever the data buffer is not sending (i.e., when it is empty),
the “unused capacity” v2 is saved up for later use in the form of credit, while this credit is
consumed when the data buffer is sending at high rate; the “extra capacity” v1 −v2 that is
used by the data buffer is taken from the credit buffer. Note that the above is equivalent
to saying that the credit buffer is constantly filled at rate v2, while it it is drained at the
same rate as the data buffer (0, v1 or v2) at any time.
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5.2.3 Modelling a tandem queue with finite second buffer

The second way in which the general model may be applied is given by the following choice
of parameters. Again we have three parameters for the flow rates, v0, v1 and v2, such that
v0 > v1 > v2 > 0, but now we take

d+ = d0
+ = v0 − v1, d− = d0

− = v1,
c+ = v2, c− = v1 − v2.

(5.5)

Notice that the feedback has disappeared now, since d+ = d0
+ and d− = d0

−. Furthermore
we define the process (C̄t) by C̄t ≡ K − Ct. We can interpret C̄t as the content of a buffer
which receives fluid from the data buffer at rate v1 whenever Dt > 0 and C̄t < K, while
it releases fluid at rate v2 when C̄t > 0. Hence the process (Mt, Dt, C̄t) describes a fluid
tandem queue with finite second buffer.

In Section 5.7 we extend the (general) model to the case where the data buffer is also
finite, although it must in some sense be larger than the credit buffer. This provide us
with results for the tandem model with two finite reservoirs, see Remark 5.2.

5.3 Stability

In this section we will derive the conditions under which the stochastic process (Mt, Dt, Ct)
has a limiting distribution. It is clear that (Mt, Dt, Ct) is a regenerative process; as regen-
eration epochs we choose the times t when simultaneously Mt = 0, Dt = 0 and Ct = 0.
We assume that t = 0 is a regeneration epoch and denote the next one by T , i.e.

T = min{t > 0 | Mt = 0, Dt = 0, Ct = 0}. (5.6)

We also define

T1 = min{t > 0 | Ct = 0}. (5.7)

(See Figure 5.2 for a visualisation.) The following theorem provides the condition under
which ET is finite.

Theorem 5.1 The process (Mt, Dt, Ct) is regenerative with regeneration cycles that have
a non-lattice distribution and finite expectation if and only if

α =
b

d0
+

− a

d0
−

> 0. (5.8)

Proof. It is clear that Ct > 0 for t ∈ (0, T1) and that Ct = 0 for t ∈ [T1, T ]. We will first
show that ET1 is finite; after this it remains to be shown when E[T − T1] is finite. Since
we assume that t = 0 is a regeneration epoch, the process (Dt, Ct) stays on the y-axis after
t = 0 for a while (see Figure 5.2). It will leave the y-axis after a time period of length t1
that is exponentially distributed with parameter a. Then, after at most K/c− time units,
it either hits the x-axis or the y-axis. In the latter case, it again remains on the y-axis for
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an exponentially distributed period of time, t2 say, and so on. We define N as the number
of times that the process (Dt, Ct) enters the positive y-axis in the time interval [0, T1]. Note
that N takes values in {1, 2, . . .} and EN < ∞ since the probability that (Dt, Ct) will not
reach the y-axis again (once it has left this) before T1 is always greater than e−bK/c−. Since
N is a stopping time for the i.i.d. sequence {t1, t2, . . .}, and

T1 ≤ t1 +
K

c−
+ . . . + tN +

K

c−
,

it follows by Wald’s Lemma that

ET1 ≤ EN

(
1
a

+
K

c−

)
< ∞.

To examine E[T −T1], we note that the conditional expectation E[T −T1 | MT1 = i, DT1 =
x] is equal to the expected first entrance time into 0 of a Markov additive process (Vt) as in
Section 4.3, with parameters a, b, d0

+ and d0
−, given that (Vt) starts in x and (Mt) in i. It

now follows immediately from Corollary 4.2 that condition (5.8) is necessary and sufficient
for E[T − T1 | MT1 = i, DT1 = x] to be finite, and hence for E[T − T1] to be finite since
DT1 ≤ Kd+/c− < ∞.

Finally, by choosing the first three transition epochs of (Mt) appropriately, it is easily
seen that T must have a non-lattice distribution. 2

Corollary 5.2 If (5.8) holds, a random vector (M, D, C) exists, to which the process
(Mt, Dt, Ct) converges in distribution as t → ∞.

We will henceforth assume condition (5.8) to be satisfied. As in the previous chapter we
will interpret (M, D, C) as the state of the system in stationarity. Its distribution F is
given by F(dx, dy) = (F0(dx, dy), F1(dx, dy)) with

Fi(dx, dy) = P [M = i, D ∈ dx, C ∈ dy]
= lim

t→∞
P [Mt = i, Dt ∈ dx, Ct ∈ dy], i ∈ {0, 1}. (5.9)

Our primary interest is in finding this distribution. However, before doing so in Section 5.5,
we first analyse the marginal distribution of the content of the credit buffer.

5.4 Stationary marginal distribution of (Ct)

5.4.1 Introduction

In this section we concentrate on the stationary distribution of the content of the credit
buffer. As in Chapter 4 it will be useful to look at an embedded process of (Ct), namely
at points in time when an idle period of the data buffer is finished. In Section 5.4.2 we
do so and derive the stationary distribution of this embedded process. We will use this
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information in a quite straightforward manner in Section 5.4.3 to find the distribution of
C for the two special cases of our model that were introduced in Sections 5.2.2 and 5.2.3.
Finally, in Section 5.4.4 we sketch a second approach that yields the distribution of C
for the general case. This approach uses Laplace-transform techniques similar to those in
Chapter 4, and also uses the results for the embedded process in Section 5.4.2.

5.4.2 An embedded process

Before introducing the embedded process, we will first give some preliminaries. Recall
our assumption that M0 = 0, D0 = 0 and C0 = 0, and let I0, I1, . . . and B0, B1, . . . denote
respectively the lengths of the idle periods and the busy periods of (Dt). Note that {Ii} is an
i.i.d. sequence with generic idle period I that is exponentially distributed with parameter
a, whereas the sequence {Bi} is not i.i.d. Finally, let Y be a stochastic variable as in
Proposition 4.1 starting in x = 0 and i = 1. Note that Y is distributed as a busy period of
(Dt) when we forget the effect of an empty credit buffer. In particular, the Laplace-Stieltjes
transform LY of Y is given by

LY (s) =
b

s + b − λ1(s)d+
,

with λ1 as in Proposition 4.1.
We will now analyse the embedded process (Zk), where Zk is the content of the credit

buffer at the end of the kth idle period, k = 0, 1, . . .. The behaviour of the process (Zk) is
given by Z0 = c+I0 and

Zk+1 = K − [K − c+Ik+1 − [Zk − c−Bk]+]+, k = 0, 1 . . . , (5.10)

where [x]+ denotes the maximum of x and 0. Direct analysis of (5.10) is problematic,
because the variables Bk are not independent, and their distributions are unknown. For-
tunately, the distribution of Zk is the same as that of Z ′

k when we define Z ′
0 = c+I0 and

Z ′
k+1 = K − [K − c+Ik+1 − [Z ′

k − c−Yk]+]+, k = 0, 1 . . . , (5.11)

where {Ik} and {Yk} are independent i.i.d. sequences distributed as I and Y respectively.
This identifies Z ′

k as the virtual waiting time immediately after arrival of a customer in
a G/M/1-queue with uniformly bounded virtual waiting time . Specifically, the capacity
of the waiting room is K, the interarrival times are c−Y0, c−Y1, . . . and the service times
c+I0, c+I1, . . ..

The distribution of the stationary content immediately after an arrival, Z say, is given
by U(z) in (5.104) of [25, Part III] or in (6.10) of [23]. The fact that for certain parameter
values P [Y = ∞] > 0 is of no consequence to the analysis, since (Zk) still converges in
distribution to a proper random variable Z. Thus we obtain

P [Z ≤ y] =

 1 − G(K − y)
G(K)

, y ∈ [0, K),

1 y ∈ [K, ∞),
(5.12)
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where the function G is the inverse Laplace transform of the function

LG(s) =
1

1 − sc+/a − LY (sc−)
. (5.13)

It is now a matter of calculus to find the distribution of Z.

Proposition 5.3 The stationary distribution of the process (Zk) is given by

P [Z = K] = PZK (5.14)
P [Z ∈ dy] = fZ(y) dy, y ∈ (0, K) (5.15)

where

PZK =
(

1 +
a

c+β
(1 − e−βK) +

c−νω

2β

∫ K

0

(
e−β(K−u) − 1

)
e−θuH0(0, u) du

)−1

, (5.16)

and

fZ(y) = PZK e−β(K−y)
(

a

c+
− c−νω

2

∫ K−y

0
e−(θ−β)uH0(0, u) du

)
. (5.17)

Here, the function H0 is the same as in Theorem 4.11, i.e.,

H0(0, u) =
I1 (u

√
ω)

u
√

ω
, (5.18)

where I1 is the modified Bessel function of the first kind of order 1. The constants β, θ, ν
and ω are given by

β =
bd−

c−d− + c−d+ + c+d+
− a

c+
, (5.19)

θ =
bd− + ad+

c−(d− + d+)
, (5.20)

ν =
d− + d+

c−d− + c−d+ + c+d+
, (5.21)

ω =
4abd−d+

c2
−(d− + d+)2 . (5.22)

Proof. Applying a convenient shift we obtain from (5.13),

LG(s − θ) = −
(

a2

c2
+β

+
a

c+

)
1

s − θ
+

a2

c2
+β

1
s − (θ − β)

+
ac−ν

2c+

s −
√

s2 − ω

(s − θ)(s − (θ − β))
,
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where the constants β, θ, ν and ω are given in (5.19), (5.20), (5.21) and (5.22). This may
be inverted directly to give

G(y) = − a

c+

(
1 +

a

c+β
(1 − e−βy) +

c−νω

2β

∫ y

0

(
e−β(y−u) − 1

)
e−θuH0(0, u) du

)
. (5.23)

The result now follows from (5.12). 2

The following observation is sufficiently important to state as a lemma. The proof is the
same as for Lemma 4.7.

Lemma 5.4 The conditional distribution of (C | D = 0), is the same as the distribution
of Z, and hence given in Proposition 5.3.

It follows in particular, by conditioning on D, that

P [C = K] = PZK P [D = 0]. (5.24)

5.4.3 Two special cases

We now return to the distribution of C. Clearly, it must have a density for 0 < y < K, and
probability masses in y = 0 and y = K. The actual form is given in the next proposition.

Proposition 5.5 The stationary marginal distribution of the process (Ct) is given by

P [C = 0 ] = 1 +
c+

c−
PCK −

(
1 +

c+

c−

)
PCK

PZK

(5.25)

P [C ∈ dy] = fC(y) dy, y ∈ (0, K) (5.26)
P [C = K] = PCK (5.27)

where

fC(y) = PCK

(
1 +

c+

c−

)
e−β(K−y)

(
a

c+
− c−νω

2

∫ K−y

0
e−(θ−β)uH0(0, u) du

)
, (5.28)

H0, PZK, β, θ, ν and ω are the same as in Proposition 5.3, and PCK is a constant that is
yet to be determined.

Proof. For the density fC(y) we have that

fC(y) = lim
ε→0

EU(y, ε)
ε ET

(5.29)

where U(y, ε) is defined as the total sojourn time of the process (Ct) in the set (y, y + ε]
during the first regeneration period. By defining UI(y, ε) and UB(y, ε) as the sojourn
time of (Dt, Ct) in {0} × (y, y + ε] and (0, ∞) × (y, y + ε] respectively, we can make two
observations. First, we have that U(y, ε) = UI(y, ε)+UB(y, ε). Secondly, since the number
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of visits during one regeneration period of (Dt, Ct) to the sets {(0, y)} and (0, ∞) × {y} is
equal, we have that c+UI(y, ε) = c−UB(y, ε). Together, it follows that

U(y, ε) = UI(y, ε)
(

1 +
c+

c−

)
. (5.30)

Observing that

lim
ε→0

EUI(y, ε)
ε ET

= P [D = 0]fZ(y)

and combining this with (5.29), we arrive at

fC(y) =
(

1 +
c+

c−

)
P [D = 0]fZ(y), (5.31)

from which we immediately have (5.28), using (5.17) and (5.24). Finally, from normaliza-
tion it follows that

P [C = 0] = 1 − PCK −
(

1 +
c+

c−

)
P [D = 0]

∫ K

0
fZ(y)dy,

= 1 − PCK −
(

1 +
c+

c−

)
PCK

PZK

(1 − PZK),

which leads to (5.25). 2

Remark 5.1 We note that, in accordance with Lemma 5.4, the result in Proposition 5.5
may be slightly refined to

P [D = 0, C = K] = PCK , (5.32)

P [D = 0, C ∈ dy] =
c−

c− + c+
fC(y) dy, (5.33)

and

P [D > 0, C = 0 ] = 1 +
c+

c−
PCK −

(
1 +

c+

c−

)
PCK

PZK

(5.34)

P [D > 0, C ∈ dy] =
c+

c− + c+
fC(y) dy. (5.35)

Although the results obtained in this subsection so far are valid for the general case,
they are only applicable to cases in which we can find the constant PCK . In the remainder
we show that we are able to do so in the two special cases of Sections 5.2.2 and 5.2.3, due
to the close relationship between the data buffer and the credit buffer in both cases. We
will not only give the resulting expression for PCK , but also for other quantities of interest
that can be obtained easily.
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Two-level traffic shaper

We take the three parameters v0, v1 and v2 as in (5.4) and show that simple expressions
for PCK = P [C = K] and P [D = 0] are easily obtained for this case. Balancing the long
term input and output of the credit buffer yields

v2 (1 − PCK) = v1 P [D > 0, C > 0] + v2 P [D > 0, C = 0], (5.36)

while a similar balance for the data buffer gives

a

a + b
v0 = v1 P [D > 0, C > 0] + v2 P [D > 0, C = 0]. (5.37)

As an aside we mention that (5.36) is equivalent to (5.25), which is easily seen when
we use (5.24), and the equalities P [D > 0, C > 0] = 1 − P [D = 0] − P [C = 0] and
P [D > 0, C = 0] = P [C = 0]. From (5.36) and (5.37) it follows that

PCK = 1 − a

a + b

v0

v2
. (5.38)

Using (5.24) we can now also find a simple expression for P [D = 0],

P [D = 0] = P −1
ZK

(
1 − a

a + b

v0

v2

)
, (5.39)

while from (5.36) or (5.37) we find

P [C = 0] =
v1

v1 − v2

{(
1 − a

a + b

v0

v1

)
− P −1

ZK

(
1 − a

a + b

v0

v2

)}
. (5.40)

The constant PZK in these expressions can clearly be expressed in the parameters of the
model by combining (5.16) with (5.4).

The fact that PCK is independent of K and v1, may be surprising at first sight, but
it can easily be understood by considering the process (Mt, Dt − Ct + K). This process
describes an elementary Markov-modulated fluid system in which an infinitely large fluid
reservoir receives fluid at rate v0 at times when Mt = 1, while there is a constant output
rate v2, as long as Dt −Ct +K > 0. Since the credit buffer can be completely filled only at
times when the data buffer is empty, we have that P [C = K] = P [D − C + K = 0]. This
leads to an alternative derivation of (5.38) in which the parameters K and v1 clearly do
not play any role. Also, this viewpoint gives us a means to find the expected data buffer
occupancy, since we can derive that

E[D − C + K] =
av0

a + b

v0 − v2

bv2 − a(v0 − v2)
,

while EC follows immediately from Proposition 5.5.
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Tandem queue with finite second buffer

A second way in which the general model may be applied is given by the parameter choice
in (5.5). Since the process (Mt, Dt) is not influenced by (C̄t), it follows from (4.20) or
directly from the balance equation for the data buffer, that

P [D = 0] = 1 − a

a + b

v0

v1
. (5.41)

As a consequence, we immediately find

P [C̄ = 0] = PCK = PZK

(
1 − a

a + b

v0

v1

)
, (5.42)

and

P [C̄ = K] = P [C = 0] =
a

a + b

v0

v1
− v2

v1 − v2
(1 − PZK)

(
1 − a

a + b

v0

v1

)
, (5.43)

by using (5.24) and (5.25) respectively, where PZK can be found from (5.16) and (5.5).

5.4.4 General case

In this section we briefly sketch a way in which the distribution of C, the content of the
credit buffer in stationarity, can be found for the general case. We will proceed along the
lines of Chapter 4, which results in the Laplace-Stieltjes transform of C. In particular,
we also find formulas for several probabilities of interest, including the constant PCK that
remained implicit for the general model in the previous section.

We start off by defining the functions qi(p, s) as

qi(p, s) = E1{M=i}e
−pD−sC, i = 0, 1.

Notice immediately that q1(∞, s) = 0, while Lemma 5.4 tells us that

q0(∞, s) = P [D = 0]LZ(s), (5.44)

where LZ , the Laplace-Stieltjes transform of Z, can be straightforwardly derived using
Proposition 5.3, resulting in

LZ(s) = E e−sZ = PZK

{
e−sK +

1
s − β

{
e−βK

(
a

c+
− c−νω

2

∫ K

0
e−(θ−β)uH0(0, u) du

)
−e−sK

(
a

c+
− c−νω

2

∫ K

0
e(s−θ)uH0(0, u) du

)}}
. (5.45)

More information on the functions qi is given in the following lemma, where as before
q(p, s) = (q0(p, s), q1(p, s))T .
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Lemma 5.6 The vector q(p, s) satisfies

A(p, s)q(p, s) = B(p, s)

 f(p, s)
q0(p, ∞)
q1(p, ∞)

 , (5.46)

with

A(p, s) =
(

−a + d−p + c−s b
a −b − d+p + c−s

)
,

B(p, s) =
(

1 d−p − d0
−p + c−s 0

0 0 −d+p + d0
+p + c−s

)
and

f(p, s) = (d−p + c+s + c−s)q0(∞, s) − c+se−sKPCK .

Proof. The derivation of (5.46) can be carried out analogous to the proof of Lemma 4.10
and is not much harder, despite the finiteness of the credit buffer and the presence of
feedback. 2

As a consequence of this lemma we have

q(p, s) =
H(p, s)

det A(p, s)

 f(p, s)
q0(p, ∞)
q1(p, ∞)

 , (5.47)

where

H(p, s) =
(

−b − d+p + c−s −b
−a −a + d−p + c−s

)
B(p, s).

We now denote the zeros of det A(p, s) for fixed p ≥ 0 by s1(p) and s2(p) and observe that
s1(p) ≤ 0 ≤ s2(p). As in Remark 4.4 we can now use the fact that q(p, s) must remain
bounded for all p ≥ 0. Notice in particular that this must also be true when s ≤ 0, since
then qi(p, s) < E e−sC < e−sK . Thus, we are able to express q0(p, ∞) and q1(p, ∞) in
terms of f1(p) = f(p, s1(p)) and f2(p) = f(p, s2(p)), and find

q0(p, ∞) =
(f1(p) + f2(p))(b + d0

+p)g(p) + c−(f1(p) − f2(p))g0(p)
2p(bd0

− − ad0
+ + d0

−d0
+p)g(p)

,

q1(p, ∞) = a
(f1(p) + f2(p))g(p) + c−(f1(p) − f2(p))g1(p)

2p(bd0
− − ad0

+ + d0
−d0

+p)g(p)
,

where

g(p) = c−
√

(−a − b + d−p − d+p)2 − 4p(−bd− + ad+ − d−d+p),
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g0(p) = ab + b(d− + d+)p + d0
+p(b − a) + d0

+p2(d− + d+),

and

g1(p) = a + b + d−p − 2d0
−p + d+p.

Evaluating (5.47) for p = 0 and summing q0 and q1 now gives,

E e−sC =
c− + c+

c−
q0(∞, s) − c+

c−
PCK e−sK

+
a(c−d− + c−d+ + c+d+) − bc+d−

c−(bd0
− − ad0

+)
q0(∞, 0)

+
c+PCK

c−(bd0
− − ad0

+)
(
a e−(a+b)K/c− (d− − d0

− + d+ − d0
+) + bd− − ad+

)
− a(c− + c+)(d− − d0

− + d+ − d0
+)

c−(bd0
− − ad0

+)
q0(∞, (a + b)/c−).

Finally, the following proposition follows, using (5.44) and (5.24).

Proposition 5.7 The Laplace-Stieltjes transform of C is given by

LC(s) = E e−sC = P [D = 0]
{

c− + c+

c−
LZ(s) − c+

c−
PZK e−sK +

χ

c−

}
, (5.48)

where LZ(s), the Laplace-Stieltjes transform of Z, is given in (5.45), PZK is given in (5.16)
and

χ =
{

a(c−d− + c−d+ + c+d+) − bc+d−

+ c+(bd− − ad+) PZK

+ ac+(d− − d0
− + d+ − d0

+) PZK e−(a+b)K/c−

− a(c− + c+)(d− − d0
− + d+ − d0

+) LZ((a + b)/c−)
}
/(bd0

− − ad0
+). (5.49)

When we take the inverse Laplace transform we find the same result as in Proposi-
tion 5.5, apart from the expression for P [C = 0] = LC(∞) in terms of PZK and P [D = 0].
This extra information makes it possible to find the following expressions, which are con-
sistent with the ones for the special cases in the previous subsection.

Corollary 5.8 The following equalities hold,

P [D = 0] =
c−

c− + c+(1 − PZK) + χ
, (5.50)

P [C = 0] =
χ

c− + c+(1 − PZK) + χ
, (5.51)

PCK =
c−PZK

c− + c+(1 − PZK) + χ
, (5.52)

where PZK and χ are given in (5.16) and (5.49) respectively.
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Proof. If we take s = 0 and s → ∞ respectively in equation (5.48), we immediately
obtain (5.50) and (5.51). PCK is found by (5.24). 2

In principle it should be possible to obtain expressions for q0(p, s) and q1(p, s), which
could then lead to an explicit result for the joint distribution of the process (Mt, Dt, Ct)
via inverse Laplace transformation. However, this analysis becomes too difficult to carry
out. In the following section we will take another direction to find the joint distribution.
The analysis will be completely independent from the current section.

5.5 Stationary joint distribution

We are interested in the stationary joint distribution F of the process (Mt, Dt, Ct), defined
in (5.9). When we let S

◦
denote the interior of S, we expect F to be of the following form,

F0({0}, {K}) = PCK , (5.53)
Fi(dx, dy) = fi(x, y) dx dy, (x, y) ∈ S

◦
, i = 0, 1, (5.54)

F0({0}, dy) = σ0(y) dy, y ∈ [0, K], (5.55)
F1(dx, K − c−/d+ dx) = σ1(x) dx, x ∈ [0, Kd+/c−], (5.56)

Fi(dx, {0}) = µi(x) dx, x ∈ [0, ∞), i = 0, 1. (5.57)

Observe that, as in the previous section, the notation PCK for the probability mass in
(0, 0, K) is an abbreviation for P [C = K]. In Figure 5.3 the distribution F is rendered
graphically.
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Figure 5.3: The stationary distribution

The following theorem states that the form above is correct and gives explicit expres-
sions for the densities.
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Theorem 5.9 The stationary joint distribution F of the process (Mt, Dt, Ct) is of the form
(5.53)–(5.57), where the various densities are given as follows.

σ0(y) = PCK e−β(K−y)
(

a

c+
− c−νω

2

∫ K−y

0
e−(θ−β)uH0(0, u) du

)
, (5.58)

σ1(x) = PCK
a

d+
e

− b
d+

x
, (5.59)

f0(x, y) = PCK
νbc+

d− + d+
e

− b
d+

x × (5.60)( d+γω

b
e

−θ
�
K−y− c−

d+
x
�

H1(x, K − y − c−

d+
x)

+
a

c+
e

−β
�
K−y− c−

d+
x
�

{1 + xωγ

∫ K−y− c−
d+

x

0
e−(θ−β)uH0(x, u)du}

− c−νω

2
e

−β
�
K−y− c−

d+
x
� ∫ K−y− c−

d+
x

0
e−(θ−β)uH1(x, u)du

)
,

f1(x, y) = PCK
a

d+
e

− b
d+

x × (5.61)(
ωγ x e

−θ
�
K−y− c−

d+
x
�

H0(x, K − y − c−

d+
x)

+
a

c+
e

−β
�
K−y− c−

d+
x
�

{1 + xωγ

∫ K−y− c−
d+

x

0
e−(θ−β)uH0(x, u)du}

− c−νω

2
e

−β
�
K−y− c−

d+
x
� ∫ K−y− c−

d+
x

0
e−(θ−β)uH1(x, u)du

)
,

µ0(x) =
e−αx

d0
−

{J1(x ∧ Kd+/c−) + η1(x ∧ Kd+/c−) J2(x ∧ Kd+/c−)} (5.62)

µ1(x) =
d0

−
d0

+
µ0(x) − 1{x<Kd+/c−}

d0
+

J2(x). (5.63)

Here, the constant PCK may be obtained by normalisation and the functions H0 and H1

are the same as in Theorem 4.11, that is, they are given by

H0(x, y) =
I1

(√
ω(y2 + 2xyγ)

)
√

ω(y2 + 2xyγ)
, (5.64)

H1(x, y) =
y2 + xyγ

y2 + 2xyγ
H0(x, y)

+
xyγ

y2 + 2xyγ

I0

(√
ω(y2 + 2xyγ)

)
+ I2

(√
ω(y2 + 2xyγ)

)
2

(5.65)

where Ii is the modified Bessel function of the first kind of order i,

Ii(z) =
(z

2

)i
∞∑

k=0

(
z
2

)2k

k!(k + i)!
.
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Furthermore, x ∧ Kd+/c− ≡ min(x, Kd+/c−),

η0(u) =
a(eαu − 1)

d0
−α

, (5.66)

η1(u) = η0(u) + eαu, (5.67)

J1(x) = c−

∫ x

u=0
{η0(u)f0(u, 0) + η1(u)f1(u, 0)} du, (5.68)

J2(x) = c−

∫ Kd+/c−

u=x

{f0(u, 0) + f1(u, 0)}du + σ1(Kd+/c−), (5.69)

and finally,

α =
b

d0
+

− a

d0
−

, (5.70)

β =
bd−

c−d− + c−d+ + c+d+
− a

c+
, (5.71)

θ =
bd− + ad+

c−(d− + d+)
, (5.72)

ω =
4abd−d+

c2
−(d− + d+)2 , (5.73)

γ =
c−(d− + d+)

2d−d+
, (5.74)

ν =
d− + d+

c−d− + c−d+ + c+d+
. (5.75)

Notice that this result is in agreement with the results of the previous section. In
particular we note that in correspondence with Lemma 5.4 we have that

σ0(y) = P [D = 0] fZ(y), (5.76)

where

P [D = 0] = PCK +
∫ K

0
σ0(y) dy =

PCK

PZK

. (5.77)

To illustrate that calculation of the densities in Theorem 5.9 is numerically feasible, some
graphs are shown in Figures 5.4 – 5.6, where the parameter values are the same as in
Figure 5.2. The most difficult part of the numerical calculations is the normalization. For
Figures 5.4–5.6 we used the explicit expression for PCK that is given in (5.52).
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The proof of Theorem 5.9 requires that we split the state space {0, 1} × S of the Markov
process in two parts, namely {0, 1} × S1 and {0, 1} × S2, where S1 and S2 are defined in
(5.2) and (5.3), see also Figure 5.7(a). The proof is presented in three steps. In the first
step we will find F on the set {0, 1}×S1 for the case β > 0 by relating it to the stationary
distribution of a tandem fluid queue. In the second step, we find F on the set {0, 1} × S2.
Finally, in the third step we show that the results are also valid for parameter values for
which β ≤ 0.

Step 1: Densities σ0, σ1, f0 and f1

In this step we will establish a close relation between the model under consideration and
the tandem fluid model in Chapter 4. Hereto, let (Mt, Dt, Ĉt) be the stochastic process
that corresponds to the tandem fluid model with the following parameters. We identify the
parameters a, b, d+ and d− with the parameters of the same name in the current model.
Furthermore we will choose the parameters c+ and c− to be equal to the parameters c−
and c+, respectively, of the current model, in other words the symbols are interchanged.
In this and the following subsection we will assume that the stability condition for this
tandem model holds; since this does not cover all parameter values for which the current
model is stable, we will lift this restriction in Step 3. The condition can be found from
(4.11) by interchanging the symbols c+ and c− and is given by

bd−
c−d− + c−d+ + c+d+

− a

c+
> 0, (5.78)

or, equivalently, β > 0, where β is given in (5.71). Corollary 4.4 now tells us that a
stationary distribution for the process (Mt, Dt, Ĉt) exists. We will denote this distribution
by F̂ = (F̂0(dx, dy), F̂1(dx, dy)), where

F̂i(dx, dy) = P [M = i, D ∈ dx, Ĉ ∈ dy]
= lim

t→∞
P [Mt = i, Dt ∈ dx, Ĉt ∈ dy], i ∈ {0, 1}. (5.79)

Clearly, F̂ can be found from Theorem 4.11, again by interchanging c+ and c−.
To find the announced relation between the processes (Mt, Dt, Ct) and (Mt, Dt, Ĉt), we

consider yet another stochastic process (C̄t), where C̄t is the amount of free space in the
credit buffer at time t. Hence, C̄t = K − Ct. In Figure 5.7 the respective state spaces of
the processes (Dt, Ct), (Dt, C̄t) and (Dt, Ĉt) are given.

We will now compare two processes. On the one hand we have the process (Mt, Dt, C̄t),
with state space {0, 1} × (S̄1 ∪ S̄2), where S̄i ≡ {(x, y) | (x, K − y) ∈ Si}. On the other
hand we have the process (Mt, Dt, Ĉt) with state space {0, 1} × Ŝ where Ŝ ≡ {(x, y) | y ≥
0, 0 ≤ x ≤ yd+/c−}. It is clear that Ŝ can be written as Ŝ = S̄1 ∪ Ŝ2, with Ŝ2 =
{(x, y) | y ≥ K, 0 ≤ x ≤ yd+/c−}. Moreover, the behaviour of the two processes on
{0, 1} × S̄1 is identical, and both processes enter this set in the same way if α > 0 (namely
via state (0, 0, K) with probability one). It is therefore possible to express the distribution
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(c) Ŝ = S̄1 ∪ Ŝ2
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(a) S = S1 ∪ S2 (b) S̄ = S̄1 ∪ S̄2

Figure 5.7: The sets S, S̄ and Ŝ

of (M, D, C̄) on {0, 1} × S̄1 (and hence that of (M, D, C) on {0, 1} × S1) in terms of F̂ ,
the stationary distribution of (Mt, Dt, Ĉt). This is done in the following proposition.

Proposition 5.10 If α > 0 and β > 0, the stationary joint distribution F of the process
(Mt, Dt, Ct) on the set {0, 1} × S1 is given by

Fi(dx, dy) = k F̂i(dx, K − dy), (x, y) ∈ S1, i = 0, 1. (5.80)

The constant k is given by

k =
P [C̄ < K]
P [Ĉ < K]

=
ET̂

ET
, (5.81)

where T (T̂ ) is the length of a generic regeneration period of the process (Mt, Dt, C̄t) (the
process (Mt, Dt, Ĉt)) if we choose state (0, 0, K) as regeneration state.

Proof. We assume α, β > 0 and consider Figures 5.7(b) and 5.7(c). The choice of (0, 0, K)
as regeneration state for the proces (Mt, Dt, C̄t) entails that during any regeneration period
this process first sojourns in {0, 1} × S̄1, for a time period that is distributed as T1 (which
was defined in (5.7)), while during the remainder of such a regeneration period it stays in
{0, 1} × S̄2, with sojourn time distributed as T − T1. A similar observation can be made
for the process (Mt, Dt, Ĉt): first it resides in {0, 1} × S̄1, with sojourn time distributed
as T̂1, say, after which it remains in {0, 1} × Ŝ2, for a time period distributed as T̂ − T̂1.
Moreover, the pathwise behaviour of both processes in the time interval (0, T1) on {0, 1}×S̄1

is identical. Hence, we have for any A ⊂ {0, 1} × S̄1,

P [(M, D, C̄) ∈ A | (D, C̄) ∈ S̄1] = P [(M, D, Ĉ) ∈ A | (D, Ĉ) ∈ S̄1],
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or

P [(M, D, C̄) ∈ A] =
P [(D, C̄) ∈ S̄1]
P [(D, Ĉ) ∈ S̄1]

P [(M, D, Ĉ) ∈ A]

=
ET1/ET

ET̂1/ET̂
P [(M, D, Ĉ) ∈ A] = k P [(M, D, Ĉ) ∈ A].

Finally, since

Fi(dx, dy) = P [M = i, D ∈ dx, C̄ ∈ K − dy], i = 0, 1,

we easily find the stated results. 2

It is now a matter of combining Proposition 5.10 and Theorem 4.11 (with the symbols
c+ and c− interchanged), to find (5.53) – (5.56) and (5.58) – (5.61), when we take PCK ≡
F0({0}, {K}) = k F̂0({0}, {0}).

Step 2: Densities µ0 and µ1

Having found the distribution of (Mt, Dt, Ct) on {0, 1} × S1 (apart from normalization) in
the previous subsection, we proceed to derive the densities µ0 and µ1 in (5.57). To do so,
we first need to prove two lemmas. The first one gives us the entrance distribution G of
the process (Mt, Dt, Ct) into the set {0, 1} × S2, that is,

Gi(dx) = P [MT1 = i, DT1 ∈ dx], 0 ≤ x ≤ Kd+/c−, i = 0, 1.

with T1 as in (5.7).

Lemma 5.11 The joint distribution G of the stochastic variable (MT1 , DT1) is given by

G0(dx) = ET c− f0(x, 0) dx (5.82)
G1(dx) = ET

{
c− f1(x, 0) + δKd+/c−(x) σ1(Kd+/c−)

}
dx, (5.83)

where δKd+/c− denotes the Dirac measure at Kd+/c−, and σ1, f0 and f1 are given in (5.59),
(5.60), and (5.61).

Proof. We consider the set {i} × (0, x] × (0, ε). The sojourn time Vi(x, ε) of (Mt, Dt, Ct)
in this set during the interval [0, T ] is equal to ε/c− + o(ε) if {MT1 = i, DT1 ≤ x} occurs,
and is o(ε) otherwise. In other words, we have

Vi(x, ε) =
ε

c−
1{MT1=i,DT1≤x} + o(ε).

If we take expectations, divide by ET and apply the Key Renewal Theorem, we obtain

P [M = i, D ≤ x, 0 < C < ε] =
ε

c−ET
P [MT1 = i, DT1 ≤ x] + o(ε).



118 Chapter 5. A two-buffer fluid model with feedback

We now find for x < Kd+/c−,

Gi((0, x]) = c−ET lim
ε→0

1
ε

∫ ε

0

∫ x

0
fi(u, v)du dv = c−ET

∫ x

0
fi(u, 0)du,

while an extra term ET σ1(Kd+/c−) appears if i = 1 and x = Kd+/c−. The result is now
immediate. 2

For the second lemma, we define Ni(x) as the number of times that the process (Mt, Dt, Ct)
visits (i, x, 0) before it reaches (0, 0, 0) during the first regeneration period. Also, for u ≥ 0
and j = 0, 1, we let

Pj,u[ · ] ≡ P [ · | MT1 = j, DT1 = u],

and

Ej,u[ · ] ≡ E[ · | MT1 = j, DT1 = u].

Lemma 5.12 The conditional expectations Ej,uNi(x) are given by

Ej,uN0(x) =

 Ej,uN1(x) = e−αx ηj(u), u ≤ x, j = 0, 1,
Ej,uN0(x) = e−αx η1(x), u > x, j = 0, 1,
Ej,uN1(x) = e−αx η0(x), u > x, j = 0, 1,

(5.84)

where

η0(u) =
a(eαu − 1)

d0
−α

, (5.85)

η1(u) =
bd0

−eαu − ad0
+

d0
−d0

+α
= η0(u) + eαu, (5.86)

and α = b/d0
+ − a/d0

−.

Proof. First, we define

pj(u, x) = Pj,u[Dt = x for some t ∈ (T1, T ] ]

By conditioning on the first transition epoch of the process (Mt), we obtain the following
relations for u ≤ x,

p0(u, x) =
∫ u/d0

−

0
p1(u − d0

−v, x) ae−av dv,

p1(u, x) =
∫ (x−u)/d0

+

0
p0(u + d0

+v, x) be−bv dv + e−b(x−u)/d0
+ ,

while for u > x we have pj(u, x) = 1.
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x u
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1

x u

0.5

1

Figure 5.8: The probabilities p0(u, x) and p1(u, x) for fixed x

Using the transformations v 7→ u − d0
−v and v 7→ u + d0

+v, respectively, and differen-
tiating with respect to u gives the following differential equation for the vector p(u, x) =
(p0(u, x), p1(u, x))T in u,

∂

∂u
p(u, x) =

(
−a/d0

− a/d0
−

−b/d0
+ b/d0

+

)
p(u, x), 0 ≤ u < x,

with boundary conditions p0(0, x) = 0 and p1(x, x) = 1. It follows that the probabilities
pj(u, x) are given by

pj(u, x) = 1, u > x, j = 0, 1, (5.87)
pj(u, x) = ηj(u)/η1(x), u ≤ x, j = 0, 1, (5.88)

see Figure 5.8. Since the conditional distribution of N0(x) is given by

Pj,u[N0(x) = 0] = 1 − pj(u, x)
Pj,u[N0(x) = k] = pj(u, x) (1 − p0(x, x)) (p0(x, x))k−1, k = 1, 2, . . . ,

we have

Ej,uN0(x) =
pj(u, x)

1 − p0(x, x)
.

Furthermore, we have

Ej,uN1(x) =
{

Ej,uN0(x), if x > u,
Ej,uN0(x) − 1, if x < u.

The desired result now follows immediately using (5.87) and (5.88). 2

We are now ready to specify the densities µi, i = 0, 1.
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Proposition 5.13 If α > 0 and β > 0, the stationary joint distribution F of the process
(Mt, Dt, Ct) on the set {0, 1} × S2 is given by

Fi(dx, {0}) = µi(x) dx, x > 0, i = 0, 1. (5.89)

The densities µi, i = 0, 1, are given by

µ0(x) =
e−αx

d0
−

{J1(x ∧ Kd+/c−) + η1(x ∧ Kd+/c−)J2(x ∧ Kd+/c−)}

µ1(x) =
d0

−
d0

+
µ0(x) − 1{x<Kd+/c−}

d0
+

J2(x),

where x ∧ Kd+/c− ≡ min(x, Kd+
c−

),

J1(x) = c−

∫ x

u=0
{η0(u)f0(u, 0) + η1(u)f1(u, 0)} du,

J2(x) = c−

∫ Kd+/c−

u=x

{f0(u, 0) + f1(u, 0)}du + σ1(Kd+/c−),

and η0 and η1 are given in (5.85) and (5.86).

Proof. First we denote the sojourn time of the process (Mt, Dt, Ct) in the set {i}× [x, x+
ε] × {0} by Wi(x, ε), that is,

Wi(x, ε) =
∫ T

t=T1

1{Mt=i,Dt∈[x,x+ε]}dt.

Clearly, we have

Ej,uW0(x, ε) =
Ej,uN0(x)

d0
−

ε + o(ε), (5.90)

Ej,uW1(x, ε) =
Ej,uN1(x)

d0
+

ε + o(ε). (5.91)

Combining

µi(x) = lim
ε→0

1
ε ET

1∑
j=0

∫ Kd+/c−

u=0
Ej,uWi(x, ε)Gj(du), x > 0, i = 0, 1,

with (5.90) and (5.91) and then using Lemmas 5.11 and 5.12 leads to the result. 2

It is not difficult to check that Propositions 5.10 and 5.13 together lead to the conclusion
that the distribution F given in Theorem 5.9 indeed is the stationary distribution of the
process (Mt, Dt, Ct) when α > 0 and β > 0.

As a side result in this subsection, we find an expression for ET , namely ET = 1/J2(0).
This can be found by normalisation of the distribution G in Lemma 5.11.
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Step 3: β ≤ 0

In this last step it remains to be shown that the distribution in Theorem 5.9 not only
represents the stationary distribution of the process (Mt, Dt, Ct) when α > 0 and β > 0,
as we showed in the previous steps, but also when α > 0 and β ≤ 0.

We fix the parameters b, d+, d−, d0
+, d0

−, c+, c− and K, and let a vary. Then we
have α > 0 if and only if a < a1 = bd0

−/d0
+, while β > 0 is equivalent to a < a0 =

(bd−c+)/(c−d− + c−d+ + c+d+), see Figure 5.9. We will assume that a0 < a1, otherwise
α > 0 would imply β > 0.

0 a0 a1

a-

β > 0
α > 0

β < 0
α > 0

β < 0
α < 0

Figure 5.9: Behaviour of α and β as functions of a

In what follows we will need the infinitesimal generator A of the process (Mt, Dt, Ct),
which is an operator mapping a function h : R2 → R2 to another function Ah : R2 → R2,
with, for x, y ≥ 0,

(Ah)(x, y) = lim
t↓0

t−1

(
E[hMt(Dt, Ct) − h0(x, y)|M0 = 0, D0 = x, C0 = y]
E[hMt(Dt, Ct) − h1(x, y)|M0 = 1, D0 = x, C0 = y]

)
.

It is not difficult to see that

(Ah)(x, y) = Qh(x, y) + (A0h)(x, y), x > 0, 0 < y < K (5.92)
(Ah)(0, y) = Qh(0, y) + (A1h)(0, y), 0 < y < K, (5.93)
(Ah)(x, 0) = Qh(x, 0) + (A2h)(x, 0), x > 0, (5.94)

(Ah)(0, K) = Qh(0, K) + (A3h)(0, K), (5.95)

where Q is the generator of the process (Mt),

A0 =
(−d−

∂
∂x

− c−
∂
∂y

0
0 d+

∂
∂x

− c−
∂
∂y

)
, (5.96)

A1 =
(

c+
∂
∂y

0
0 d+

∂
∂x

− c−
∂
∂y

)
, (5.97)

A2 =
(

−d0
−

∂
∂x

0
0 d0

+
∂
∂x

)
, (5.98)

and

A3 =
(

c+
∂
∂y

0
0 d+

∂
∂x

− c−
∂
∂y

)
. (5.99)
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The operator A can be viewed as a generalisation of the Q-matrix corresponding to a
continuous-time Markov process with a finite state space. In the latter context a probability
measure π is stationary if and only if it satisfies πQ = 0, i.e. if πQv = 0 for all vectors
v. Likewise, here a measure F is stationary if and only if it satisfies FAh = 0 for all
(vector-valued) functions h, i.e.,∫ ∞

0

∫ ∞

0
FT (dx, dy)(Ah)(x, y) = 0, (5.100)

(see, e.g., [38, page 239]). According to Corollary 5.2 a unique limiting distribution exists
for any a ∈ (0, a1), regardless of the value of β. Moreover, we know that for a ∈ (0, a0)
this distribution is given by the specific distribution we found in Steps 1 and 2. We
will designate this distribution here by Fa to emphasize its dependence on the parameter
a. Because the limiting distribution is stationary, we can conclude that for any suitable
function h and any a ∈ (0, a0), equation (5.100) holds for F = Fa, that is,

0 = PCK a (h1 − h0)(0, K) +
∫ K

0
σ0(y)

(
a(h1 − h0)(0, y) + c+

∂h0

∂y
(0, y)

)
dy

+
∫ Kd+/c−

0
σ1(x)

(
−b(h1 − h0)(x, K − c−x/d+) + d+

∂h1

∂x
(x, K − c−x/d+)

− c−
∂h1

∂y
(x, K − c−x/d+)

)
dx

+
∫ K

0

∫ (K−y)d+/c−

0

[
f0(x, y)

(
a(h1 − h0)(x, y) − d−

∂h0

∂x
(x, y) − c−

∂h0

∂y
(x, y)

)

+ f1(x, y)
(

−b(h1 − h0)(x, y) + d+
∂h1

∂x
(x, y) − c−

∂h1

∂y
(x, y)

)]
dxdy

+
∫ ∞

0

[
µ0(x)

(
a(h1 − h0)(x, 0) − d0

−
∂h0

∂x
(x, 0)

)

+ µ1(x)
(

−b(h1 − h0)(x, 0) + d0
+

∂h1

∂x
(x, 0)

)]
dx . (5.101)

To show that the above is also true for a ∈ [a0, a1), we prove the following lemma,
in which we will show that for certain a ∈ C the right hand side of (5.101) is a complex
analytic function of a. Because it is hard to check whether the normalization constant
PCK is an analytic function of a, we set PCK = 1 for a moment, thereby ignoring the
probabilistic interpretation of Fa (and of PCK itself).
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Lemma 5.14 For any entire function h : C2 → C2, the function

a 7→
∫ ∞

0

∫ ∞

0
FT

a (dx, dy)(Ah)(x, y)

with PCK = 1 is complex analytic for a ∈ {z ∈ C|Re(z) < a1}

Proof. First we note that the singularities of the functions H0 and H1 in (5.64) and
(5.65) can be removed by writing

H0(x, y) =
1
2

∞∑
k=0

(z/4)k

k!(k + 1)!
, (5.102)

H1(x, y) = H0(x, y) +
ωxyγ

4

∞∑
k=0

(z/4)k

k!(k + 2)!
, (5.103)

with

z = ω(y2 + 2xyγ) =
4bd−d+

c2
−(d− + d+)2 (y2 + 2xyγ) a .

Since the power series in (5.102) and (5.103) are uniformly converging for all z ∈ C, they
are entire functions of z. Furthermore, since

(a, u) 7→ 4bd−d+

c2
−(d− + d+)2 a u2 ,

is an entire function of a for fixed u, but also of u for fixed a (a, u ∈ C), and since sums,
products and concatenations of entire funtions are again entire functions, we conclude that
the integrand in (5.58) is also an entire function of a (for fixed u) and of u (for fixed a).
But then the integral in (5.58), and hence (a, y) 7→ σ0(y) is an entire function of a for fixed
y and of y for fixed a, since the same holds in general for

(a, y) 7→
∫ y

0
g(a, u)du

when g is an entire function of a for fixed u and of u for fixed a. Similar statements can
be shown to hold for σ1, f0, f1, J1, J2, µ0 and µ1.

The lemma now follows readily because the partial derivatives of h are entire functions
of x for fixed y and of y for fixed x. The restriction to Re(a) < a1 is due to the divergence
of the last integral in (5.101) for other values of a. 2

By analytic continuation, we can now conclude that equation (5.101) holds, for any a ∈ C
with Re(a) < a1, even for general PCK . In particular, for a real, a ∈ [a0, a1), we find Fa to
be a stationary distribution, when we choose PCK such that the total probability is 1, as
before. The fact that Fa is the only stationary distribution is immediate, since we know
that the process has a unique limiting distribution, regardless of the initial distribution.

This concludes the proof of Theorem 5.9.
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5.6 Special case: infinite credit buffer

We will now consider the case in which the credit buffer is infinitely large. We will establish
an explicit result for the stationary distribution, which turns out to be relatively simple.
Before we do so, however, we determine the conditions under which this distribution exists.

Theorem 5.15 If the size K of the credit buffer is infinite, the process (Mt, Dt, Ct) is
regenerative with regeneration cycles that have a non-lattice distribution and finite expec-
tation if and only if

α =
b

d0
+

− a

d0
−

> 0, (5.104)

and

β =
bd−

c−d− + c−d+ + c+d+
− a

c+
< 0. (5.105)

Proof. As before, we take (0, 0, 0) as regeneration point and assume that (M0, D0, C0) =
(0, 0, 0). Furthermore, we let the stochastic variables Y , I0, I1, . . ., and B0, B1, . . . be as
in Section 5.4.2. We first consider the process at embedded points in time. Specifically,
Zk will denote the content of the credit buffer at the beginning of the kth idle period,
k = 0, 1, . . . (notice that in Section 5.4.2 we observed the system at the endings of the idle
periods). Thus, we let Z0 = 0 and

Zk+1 = [Zk + c+Ik − c−Bk]+, k = 0, 1, . . . ,

We form a Lindley process (Z ′
k) with the property that the distribution of Z ′

k is the same
as the distribution of Zk, by defining Z ′

0 = 0 and

Z ′
k+1 = [Z ′

k + c+Ik − c−Yk]+, k = 0, 1, . . . ,

where {Yk} is an i.i.d. sequence of random variables distributed as Y . Letting τ = min{k >
0 | Zk = 0}, we find that Eτ < ∞ if and only if

c− EY > c+ EI, (5.106)

since the regeneration periods of the processes (Zi) and (Z ′
i) have equal distributions. We

now use Corollary 4.2 to assert that when bd− > ad+, then (5.106) is equivalent to

c−
d− + d+

bd− − ad+
>

c+

a
,

while on the other hand, if bd− ≤ ad+, then EY = ∞ and (5.106) is obviously satisfied.
In fact, since bd− ≤ ad+ implies β < 0, we can conclude that Eτ < ∞ if and only if β < 0.

We now consider the joint process (Mt, Dt, Ct) in continuous time, and let T and T1 be
as defined in (5.6) and (5.7). We want to show that T has a finite expectation if and only
if (5.104) and (5.105) hold.
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First, we note that the following inequalities hold,

I0 + B0 + · · · + Iτ−1 < T1 ≤ T = I0 + B0 + · · · + Iτ−1 + Bτ−1.

Because the total inflow into the credit buffer during the time interval [0, T1] must be equal
to the total outflow, we have

c+(I0 + I1 + · · · + Iτ−1) = c−(T1 − I0 − I1 · · · − Iτ−1), (5.107)

which immediately leads to

T1 =
c− + c+

c−
(I0 + · · · + Iτ−1).

By applying Wald’s Lemma we subsequently find

ET1 =
c− + c+

c−

Eτ

a
,

which is finite if and only if β > 0. It remains to be shown that E[T −T1] is finite. During
the interval [T1, T ], the data buffer has up- and down-rates d0

+ and d0
−, respectively, while a

(rough) upperbound for the amount of data at time T1 is d+T1. Therefore, by conditioning
on T1 and using Corollary 4.2, we have

E[T − T1] ≤ E
d0

− + d0
+ + (a + b)d+T1

bd0
− − ad0

+
< ∞,

provided that (5.104) holds. Reversely, if (5.104) does not hold, E[T − T1 | T1] is not finite
according to Corollary 4.2.

The proof that T has a non-lattice distribution is the same as for the case in which the
credit buffer is finite. 2

We will assume in the remainder of this section that α > 0 and β < 0, and conclude
that the stationary distribution F of the process (Mt, Dt, Ct) exists. In the proof of the
following theorem we show how this distribution follows from the one in Theorem 5.9 by
letting K → ∞.

Theorem 5.16 If the size K of the credit buffer is infinite, the stationary joint distribution
F of the process (Mt, Dt, Ct) is given by

F0({0}, dy) = σ0(y) dy, y > 0, (5.108)
Fi(dx, dy) = fi(x, y) dx dy, x, y > 0, i = 0, 1, (5.109)

Fi(dx, {0}) = µi(x) dx, x > 0, i = 0, 1, (5.110)
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where the densities σ0, fi and µi, i = 0, 1, are given by

σ0(y) = κ eβy, (5.111)

f0(x, y) = κ
bc+

c−d− + c−d+ + c+d+
e−ζx+βy, (5.112)

f1(x, y) = κ
a

d+
e−ζx+βy, (5.113)

µ0(x) =
κ

d0
−(ζ − α)

{a(c−d0
− + c+d+)
d+d0

−
e−αx

−bc+(c−d− + c−d+ + c+d+ − c−d0
+)

d0
+(c−d− + c−d+ + c+d+)

e−ζx
}
, (5.114)

µ1(x) = κ
a(c−d0

− + c+d+)
d0

−d+d0
+(ζ − α)

(e−αx − e−ζx). (5.115)

The constants α and β are as in (5.70) and (5.71), and

ζ =
ac−

c+d+
+

bc−

c−d− + c−d+ + c+d+
, (5.116)

κ =
αβζd+d0

−d0
+

(a + b)(β(c−d0
− + c+d+) − αd0

−d0
+)

. (5.117)

Proof. We assume that α > 0 and β < 0. It is clear that for K → ∞ the state space
of the process (Mt, Dt, Ct) becomes {(x, y) | x, y ≥ 0}, and, hence, that the form of the
distribution in (5.53) – (5.57) must simplify to (5.108) – (5.110). Notice that the probability
mass in (5.53) and the density σ1 in (5.56) indeed vanish, since limK→∞ PCK = 0, which is
intuitively clear and can be verified using (5.52).

We will now show how the expressions for the densities σ0, fi and µi, i = 0, 1, in
Theorem 5.9, simplify to the ones above by taking the limit for K → ∞. First we let
K → ∞ in the expression for σ0 in (5.58), and use that

ω

∫ ∞

0
e−(θ−β)uH0(0, u) du = (θ − β) −

√
(θ − β)2 − ω,

see [37, page 235]. This leads to (5.111) with

κ =
(

a

c+
− c−ν

2

(
θ − β −

√
(θ − β)2 − ω

))
lim

K→∞
PCK e−βK

=
(

a

c+
− bc+d−d+

(c−d− + c−d+ + c+d+)2

)
lim

K→∞
PCK e−βK , (5.118)

supposing that the limit exists. Next, looking at the expression for f0 in (5.60), we find
that

lim
K→∞

e−θKH1(x, K) = 0,
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where we used

Ii(z) =
(z

2

)i
∞∑

k=0

(
z
2

)2k

k!(k + i)!
<

(z

2

)i

ez,

and θ >
√

ω. For the other two terms we find

1 + xωγ

∫ ∞

0
e−(θ−β)uH0(x, u)du = e

xγ
�
θ−β−

√
(θ−β)2−ω

�
, (5.119)

and

ω

∫ ∞

0
e−(θ−β)uH1(x, u)du =

(
θ − β −

√
(θ − β)2 − ω

)
e

xγ
�
θ−β−

√
(θ−β)2−ω

�
, (5.120)

see the proof of Theorem 4.11. This leads us immediately to (5.112), with κ as in (5.118).
Equation (5.113) is checked in a similar way. Taking the limit in (5.62) and (5.63) yields

µ0(x) =
c−e−αx

d0
−

{∫ x

u=0
{η0(u)f0(u, 0) + η1(u)f1(u, 0)}du

+η1(x)
∫ ∞

u=x

{f0(u, 0) + f1(u, 0)}du
}

µ1(x) =
d0

−
d0

+
µ0(x) − c−

d0
+

∫ ∞

u=x

{f0(u, 0) + f1(u, 0)}du.

After substituting (5.66), (5.67), (5.112) and (5.113) and tedious rewriting we obtain
(5.114) and (5.115). Finally, we find κ by normalization or by substituting (5.52) into
(5.118). 2

At the end of this section we like to mention that a more straightforward derivation of
Theorem 5.16, using the Laplace approach, is described in [58]. Although some calculations
are more laborious, the analysis is conceptually the same as that in Section 4.8. This could
be expected since the dual model from Chapter 4 can be regarded as the model at hand,
only without feedback.

5.7 Generalisation: finite data buffer

We will shortly discuss the model in which both the credit buffer and the data buffer have
finite sizes, K and L respectively, while the rest of the system remains unchanged, as in
Section 5.2. We will only consider the case for which L > Kd+/c−, since then the analysis
in Section 5.5 carries through almost identically. In that case, the form of the stationary
distribution will be as follows (see Figure 5.10).
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Figure 5.10: The stationary distribution for finite data buffer

F
(L)
0 ({0}, {K}) = P

(L)
CK , (5.121)

F
(L)
i (dx, dy) = f

(L)
i (x, y) dx dy, (x, y) ∈ S

◦(L), i = 0, 1, (5.122)

F
(L)
0 ({0}, dy) = σ

(L)
0 (y) dy, y ∈ [0, K], (5.123)

F
(L)
1 (dx, K − c−/d+dx) = σ

(L)
1 (x) dx, x ∈ [0, Kd+/c−], (5.124)

F
(L)
i (dx, {0}) = µ

(L)
i (x) dx, x ∈ [0, L), i = 0, 1. (5.125)

F (L)
1 ({L}, {0}) = P (L)

DL . (5.126)

Here, the superscript is used to emphasize the dependence on L. The corresponding quan-
tities from Section 5.5 will be written with superscript (∞) in the remainder of this section.
The main result is stated in the following theorem.

Theorem 5.17 If the size of the data buffer is L > Kd+/c− and α > 0, the stationary
joint distribution F(L) of the process (M (L)

t , D
(L)
t , C

(L)
t ) is of the form (5.121)–(5.126). The

various probability masses and densities are given as follows.

P
(L)
CK = ψ P

(∞)
CK (5.127)

f
(L)
i (x, y) = ψ f

(∞)
i (x, y) (5.128)

σ
(L)
0 (y) = ψ σ

(∞)
0 (y) (5.129)

σ
(L)
1 (x) = ψ σ

(∞)
1 (x) (5.130)

µ
(L)
i (x) = ψ µ

(∞)
i (x) (5.131)

P
(L)
DL = ψ

d0
−
b

µ
(∞)
0 (L), (5.132)

with

ψ =
(

1 − a + b

αb
µ

(∞)
0 (L)

)−1

.
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Proof. With some modifications, the analysis in Section 5.5 can be carried out for the
case of finite L. It follows that F(L) is given in Theorem 5.9 if we superscribe PCK and the
densities with (L), and restrict x to the interval [0, L) in (5.57). Therefore, if we interpret
(5.127) as the definition of ψ, (5.128) – (5.131) follow immediately. It remains to find P

(L)
DL ,

which can be done by evaluating

P
(L)
DL =

1
ET (L)

1∑
j=0

∫ Kd+/c−

u=0
Ej,uW

(L)
1 (L) G

(L)
j (du),

where

W
(L)
1 (L) =

∫ T (L)

t=T
(L)
1

1{M
(L)
t =1,D

(L)
t =L}dt,

and the rest of the notation is similar to that of Section 5.5. Since

Ej,uW
(L)
1 (L) =

Ej,uN
(L)
1 (x)
b

,

we can use Lemmas 5.11 and 5.12 to find that

P
(L)
DL =

e−αL

b

{
c−

∫ Kd+/c−

u=0

{
η0(u)f (L)

0 (u, 0) + η1(u)f (L)
1 (u, 0)

}
du +

η1(Kd+/c−)σ(L)
1 (Kd+/c−)

}
.

Using (5.62), (5.128), (5.130) and (5.131), we now find (5.132). Finally, ψ follows from the
normalization condition

ψ

(
1 −

∫ ∞

L

(µ(∞)
0 (x) + µ

(∞)
1 (x)) dx

)
+ P

(L)
DL = 1.

2

Obviously, the stationary distribution can also be shown to exist when α ≤ 0. If we set
PCK = 1, the expressions for the various densities remain valid for some normalization
constant ψ (if we replace η0(u) in (5.66) by au/d0

− for α = 0). Since Theorem 5.9 does not
hold for this case, it is more difficult to find an explicit expression for this normalization
constant.

Remark 5.2 In Section 5.2.3 it was shown how a tandem model with finite second reser-
voir follows easily from the model in Section 5.2 by choosing the parameters as in (5.5).
In particular it is clear that the stationary distribution for such a model is given by
F(dx, K − dy) with F as in Theorem 5.9, keeping the aforementioned parameter choice in
mind.

In the same way Theorem 5.17 gives us the stationary distribution for a tandem fluid
queue in which both buffers are finite, provided that the fluid rates are such that during
long on-periods of the fluid source, the second buffer will be completely filled before the
first buffer.
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orthogonal, 23
perturbed Chebysev, 27, 35

positive measure, 25, 30
potential net input process, 3, 68, 74

quanta
of credit, 53
of fluid, 88

random velocity process, 68
random disruptions, 13, 70
random environment, 6

Markovian, 2
two-state, 12, 70

rate conservation law, 55, 59
regulation, 2

shaping, 60
signed measure, 30
sojourn time, 52, 62
spectral analysis, 88
spectrum, 7
stability, 3, 21, 45, 49, 68, 83, 101
state space

countably infinite, 15
finite, 22, 45
infinite, 8, 15, 19, 24, 28, 49
nearly completely decomposable, 8
nondenumerable, 15, 65

state-dependent input, 10
stationary behaviour, 6
stochastic integration, 77
support, 31
sustainable cell rate, 61

tandem model, 65, 101, 108, 129
time scales, 5

token-bank throttle, 60
traffic regulation, 60
transient behaviour, 10
truncation, 24, 90
two-buffer fluid models, 65, 97
two-level traffic shaper, 60, 97, 100, 107

uniformly bounded
virtual waiting time, 103

utilization, 71, 73, 87

waiting time, 52
Wiener-Hopf factorization, 8
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Samenvatting

De afgelopen twintig jaar hebben Markov-modulated fluid queues (Markov-gemoduleerde
vloeistof-wachtsystemen) veel aandacht gehad. In deze modellen stroomt vloeistof in en/of
uit een reservoir met een snelheid die wordt bepaald door de huidige toestand van een
achterliggend Markov-proces. In het eerste hoofdstuk van dit proefschrift geven we een
korte inleiding op hoe de stationaire verdeling voor een dergelijk model gewoonlijk wordt
gevonden, evenals een literatuuroverzicht over Markov-gemoduleerde en aanverwante vloei-
stofmodellen. De rest van het proefschrift behandelt de vraag hoe de stationaire verdeling
kan worden gevonden voor sommige vloeistofmodellen die tot nu toe weinig of geen aan-
dacht hebben gehad. De twee belangrijkste bijdragen zijn de volgende.

1. We richten ons met name op modellen waarin de toestandsruimte van het regule-
rende Markov-proces oneindig groot is, al dan niet aftelbaar. In het aftelbare geval
kijken we voornamelijk naar regulerende processen die een geboorte-sterfte structuur
hebben. We geven procedures om de stationaire verdeling te vinden met behulp van
orthogonale polynomen. In het overaftelbare geval kijken we naar eenvoudige syste-
men van fluid queues, waarin één fluid queue het gedrag van een tweede reguleert.
Een voorbeeld van zo’n systeem is een fluid tandem queue.

2. We beschouwen modellen waarin de toestand van het vloeistofreservoir het gedrag
van het regulerende proces bëınvloedt, zodat dit laatste geen Markov-proces is. We
noemen dergelijk systemen feedback fluid queues (vloeistof-wachtsystemen met terug-
koppeling), om de wederzijdse afhankelijkheid te benadrukken tussen het vloeistofre-
servoir en het regulerende proces.

Over de toegepaste technieken waarmee de stationaire verdeling wordt bepaald in de diverse
modellen merken we op dat naast de spectraal-expansie methode, die algemeen wordt
gebruikt in dit verband, ook Laplace-transformatie technieken zijn gebruikt. Tevens is
gebruik gemaakt van de relatie met traditionele wachtsystemen van M/G/1 of G/M/1
type. In twee gevallen is de inhoud van het vloeistofreservoir (resp. één van de reservoirs)
gediscretiseerd, wat leidt tot benaderingen en tussenresultaten.

De reden dat Markov-gemoduleerde vloeistof-wachtsystemen zo populair zijn geworden
is dat ze de voornaamste eigenschappen van veel situaties in telecommunicatiesystemen
goed kunnen beschrijven. Hoewel dit proefschrift vooral theoretisch van aard is, is er ook
enige aandacht voor het praktisch nut van de erin behandelde modellen. We laten met
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name zien dat feedback-vloeistofmodellen relevant zijn voor het modelleren van “two-level
traffic shapers” die in het kader van zogenaamde ATM-telecommunicatienetwerken zijn
voorgesteld als verkeers-regulator.
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Summary

In the last twenty years the field of Markov-modulated fluid queues has received considerable
attention. In these models a fluid reservoir receives and/or releases fluid at rates which
depend on the actual state of a background Markov chain. In the first chapter of this thesis
we give a short introduction on how the stationary distribution for such a model is usually
found, as well as a literature overview on Markov-modulated and related fluid queues. The
rest of the thesis is concerned with finding stationary distributions for some types of fluid
models that have received little or no attention until now. The two main contributions are
the following.

1. We focus on models in which the state space of the regulating Markov process is
infinitely large, either denumerable or not. Regarding the first type, we mainly look
into regulating processes that are of birth-death type. We present procedures to
find the stationary distribution, using the theory of orthogonal polynomials. In the
nondenumerable case, we look into simple systems of fluid queues, in which one fluid
queue regulates the behaviour of another (one example being a fluid tandem queue).

2. We look into models in which the state of the fluid reservoir influences the behaviour
of the regulating process, so that the latter does not constitute a Markov process.
We call suchlike systems feedback fluid queues, to emphasize the two-way dependence
between fluid reservoir and regulating process.

With respect to the techniques employed to obtain the stationary distribution in the var-
ious models, we mention that apart from the spectral expansion method, which has been
widely used in this context, we also apply Laplace-transform techniques, and exploit the
connection with traditional queueing systems of M/G/1 or G/M/1 type. In two cases
we discretize the content of (one of) the fluid reservoir(s), leading to approximations and
intermediate results.

The reason that Markov-modulated fluid queues have become so popular is that they
can capture the basic characteristics of many situations in telecommunication systems.
Although this thesis concentrates mainly on theoretical aspects, some attention has gone
to the practical use of the models discussed in it. In particular, feedback fluid models are
shown to be relevant in modeling two-level traffic shapers which have been proposed in the
context of so-called ATM telecommunication networks.
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