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a b s t r a c t 

Many networking-related settings can be modeled by Markov-modulated infinite-server systems. In such 

models, the customers’ arrival rates and service rates are modulated by a Markovian background process; 

additionally, there are infinitely many servers (and consequently the resulting model is often used as 

a proxy for the corresponding many-server model). The Markov-modulated infinite-server model hardly 

allows any explicit analysis, apart from results in terms of systems of (ordinary or partial) differential 

equations for the underlying probability generating functions, and recursions to obtain all moments. As a 

consequence, recent research efforts have pursued an asymptotic analysis in various limiting regimes, 

notably the central-limit regime (describing fluctuations around the average behavior) and the large- 

deviations regime (focusing on rare events). Many of these results use the property that the number 

of customers in the system obeys a Poisson distribution with a random parameter. The objective of this 

paper is to develop techniques to accurately approximate tail probabilities in the large-deviations regime. 

We consider the scaling in which the arrival rates are inflated by a factor N , and we are interested in the 

probability that the number of customers exceeds a given level Na . Where earlier contributions focused 

on so-called logarithmic asymptotics of this exceedance probability (which are inherently imprecise), the 

present paper improves upon those results in that exact asymptotics are established. These are found in 

two steps: first the distribution of the random parameter of the Poisson distribution is characterized, 

and then this knowledge is used to identify the exact asymptotics. The paper is concluded by a set of 

numerical experiments, in which the accuracy of the asymptotic results is assessed. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction, notation, and preliminaries 

Consider an infinite-server queue modulated by a finite-state

irreducible continuous-time Markov chain J : when the so-called

background process J is in state i ∈ { 1 , . . . , d} , jobs arrive accord-

ing to a Poisson process with rate λi , while the departure rate is

μi . These Markov-modulated infinite-server queues have attracted

some attention during the past decades; see e.g. the early con-
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ributions of D’Auria (2008) , Keilson and Servi (1993) , O’Cinneide

nd Purdue (1986) and later Fralix and Adan (2009) . Importantly,

onsiderably fewer results are available for this model than for the

orresponding single -server queue. This is primarily due to the fact

hat, despite the system’s simple structure, the Markov-modulated

nfinite-server queue hardly allows any explicit analysis: whereas

he Markov-modulated single-server queue has a matrix-geometric

tationary distribution, no such result applies to its infinite-server

ounterpart. The results obtained so far are implicit, in that they

re in terms of partial differential equations characterizing the

robability generating functions related to the system’s transient

ehavior, and recursions for the corresponding moments (where in

ach step of the recursion a system of non-homogeneous ordinary

ifferential equations needs to be solved). 

http://dx.doi.org/10.1016/j.ejor.2016.10.050
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
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The Markov-modulated infinite-server queue can be applied in

arious domains, ranging from biology to the performance anal-

sis of particular communication networks. In the present paper

he focus lies on the latter application, where the model with an

nfinite number of servers typically serves as a proxy for its coun-

erpart with a large but finite number of servers. The Markov mod-

lation of the arrival rates and service rates facilitates the model-

ng of some sort of ‘burstiness’; although the concept of Markov

odulation has been around for a few decades, it still spurs a con-

iderable amount of research effort ( Horváth, 2015; O’Reilly, 2014 ).

or instance, the model can be used to describe the fluctuations in

he users’ activity level (where each user alternates between trans-

itting data or being silent). Also, e.g. in a wireless setting, the

odulation of the service rate can represent channel conditions

hat vary over time. In the context of communication networks,

 particularly relevant feature concerns rare events . More specifi-

ally, a high activity level corresponds to congestion, and therefore

he system should be designed such that such high activity levels

ccur relatively infrequently. 

Given that, as argued above, explicit analysis is hardly possible,

ecent research efforts have focused on the exploration of various

imiting regimes. In the first place, significant progress has been

ade in terms of the derivation of (functional) central limit the-

rems under specific parameter scalings. When inflating the ar-

ival rates by a factor N , and speeding up the background process

y a factor N 

α (for some α > 0), in e.g. ( Anderson, Blom, Mand-

es, Thorsdottir, and De Turck, 2014; Blom, De Turck, and Mand-

es, 2015; Blom, De Turck, and Mandjes, 2016 ) it has been proven

hat the (transient as well as stationary) number of jobs present in

he system is, after centering and normalizing, asymptotically Nor-

ally distributed. An interesting dichotomy was identified, in that

he regimes α < 1 and α > 1 lead to qualitatively different asymp-

otics. 

Also the large-deviations regime has been explored, resulting in

o-called logarithmic asymptotics ( Blom, Kella, Mandjes, & De Turck,

014; Blom & Mandjes, 2013; Blom, De Turck, & Mandjes, 2013 ).

n these papers the arrival rates are scaled by a factor N and the

ackground process is either left unchanged or accelerated by a

actor N 

1+ ε , ε > 0 . With M 

( N ) ( t ) the number of jobs present at time

 in the resulting system, these papers determine the limit 

lim 

→∞ 

1 

N 

log p (N) 
t (a ) =: −I(a ) , with p (N) 

t (a ) := P 

(
M 

(N) (t) ≥ Na 
)
, 

(1) 

s well as the corresponding limit for M 

( N ) ( t )’s steady-state coun-

erpart M 

( N ) . It is observed that these asymptotics are inherently

mprecise, as they essentially just entail that 

p (N) 
t (a ) = e −NI(a ) �(N) , 

or some unknown subexponential function �( N ); we only know

hat �( N ) has the property that, as N → ∞ , 

1 

N 

log �(N) → 0 . (2) 

bserve that (2) still leaves a substantial amount of freedom: �( N )

ould be for instance a constant, but also any polynomial function

f N , or even ‘big functions’ of the type 10 6 · exp ( N 

0.99 ). We con-

lude that logarithmic asymptotics of the type (1) typically pro-

ide valuable insight into the system’s rare-event behavior, but

hat they may be too inaccurate to be used for performance eval-

ation purposes. This shows that there is a clear need for more

recise asymptotic results. 

The main contribution of the present paper is to improve the

ogarithmic asymptotics (1) to so-called exact asymptotics: we
dentify an explicit function ζ ( ·) such that, as N → ∞ , 

p (N) 
t (a ) 

ζ (N) 
→ 1 . 

s it turns out, this ζ ( N ) is the product of the exponential term

dentified above ( e −NI(a ) ), a polynomial term (which is typically

f the form N 

−C , for some C > 0), and a constant. The proof of

his property consists of two steps, and relies on the property that

 

( N ) ( t ) obeys a Poisson distribution with random parameter (as

as observed in e.g. Blom et al., 2014; D’Auria, 2008 ). 

◦ In the first step a system of partial differential equations is set

up for the distribution of this Poisson parameter. 

◦ In the second step, this is combined with (a uniform version)

of the classical result by Bahadur and Rao (1960) , Höglund

(1979) on the exact tail asymptotics of sample means of i.i.d.

random variables, so as to obtain the exact asymptotics of the

tail probability of our interest. 

Model and notation. As mentioned above, λi is the (Poissonian)

rrival rate when the background process is in state i . We let 

 = (q i j ) 
d 
i, j=1 

e the ( d × d ) transition rate matrix of the (irreducible) back-

round process J , with πππ denoting the corresponding invariant

robability measure (which is a d -dimensional vector πππ ). The en-

ries of Q are non-negative, except for those on the diagonal; the

ow-sums are assumed to be 0, where we define q i := −q ii ≥ 0 . 

Concerning the departure process, two models are considered.

n the first, referred to as Model i , each job present is experienc-

ng a departure rate μi when J is in state i ; as a consequence,

his hazard rate may change during the job’s sojourn time (that

s, when the background process makes a transition). In the sec-

nd, Model ii , the crucial difference is that the job’s sojourn time

s sampled upon arrival: when the background process is then in

tate i , it has an exponential distribution with mean 1/ μi . The evi-

ent independence assumptions are imposed. 

Preliminaries. In Models i and ii , we have that M 

( N ) ( t ) has a

ixed Poisson distribution, i.e., a Poisson distribution with random

arameter ( Blom et al., 2014; D’Auria, 2008 ). More specifically,

ith P ( b ) denoting a Poisson random variable with mean b > 0,

ur target probability p (N) 
t (a ) equals the probability P (P (Nφt (J)) ≥

a ) in Model i and P (P (Nψ t (J)) ≥ Na ) in Model ii , where the func-

ionals φt ( J ) and ψ t ( J ) of the path J ≡ { J ( s ): s ∈ [0, t ]} are given by,

espectively, 

t (J) := 

∫ t 

0 

λJ(s ) e 
− ∫ t 

s μJ(r) d r d s and ψ t (J) := 

∫ t 

0 

λJ(s ) e 
−(t−s ) μJ(s ) d s. 

n intuitive explanation for this property is the following. In Model

i the probability of a job that has arrived at time s is still present

t time t ∈ ( s , ∞ ) is 

 

−(t−s ) μJ(s ) , 

s μJ ( s ) is its hazard rate during its entire lifetime. In Model i this

azard rate may change over time, in the sense that when the

ackground process is in state i it is μi ; therefore, the probability

f a job that has arrived at time s is still present at t is 

 

− ∫ t 
s μJ(r) d r . 

n an earlier paper ( Blom et al., 2014 ) we have developed a tech-

ique to determine for Model i numbers a (−, i ) 
t and a (+ , i ) t (such that

 ≤ a (−, i ) 
t ≤ a (+ , i ) t ) being the smallest, resp. largest numbers that

t ( J ) can attain. The analogous result for ψ t ( J ) (featuring in Model

i ) has been presented in Blom and Mandjes (2013) , resulting in

umbers a (−, ii ) and a (+ , ii ) . 
t t 
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In Model ii , the bounds a (−, ii ) 
t and a (+ , ii ) t are explicitly given: 

a (−, ii ) 
t = 

∫ t 

0 

(
min 

i ∈{ 1 , ... ,d} 
λi e 

−(t−s ) μi 

)
d s, 

a (+ , ii ) t = 

∫ t 

0 

(
max 

i ∈{ 1 , ... ,d} 
λi e 

−(t−s ) μi 

)
d s. (3)

For Model i a specific optimization program needs to be evaluated;

it is relatively straightforward, but we leave out its specific form

here. 

Organization. Section 2.1 considers the situation in which the

probability p (N) 
t (a ) does not correspond to a rare event (i.e., does

not vanish as N → ∞ ); the result is in terms of the distribution

of the Poisson parameter of M 

( N ) ( t ) (of which we characterize the

density in terms of a system of partial differential equations). In

Section 2.2 we study the distribution of φt ( J ) and ψ t ( J ) for val-

ues close to the maximum values they can attain (i.e., a (+ , i ) t and

a (+ , ii ) t ). These results are then used in Section 3 , which covers the

case in which p (N) 
t (a ) decays essentially exponentially as N → ∞ ;

along the lines described above, we determine the exact asymp-

totics. Section 4 contains remarks on computational aspects, as

well as a set of numerical experiments. The paper is concluded by

a discussion of the results obtained in Section 5 . 

2. Exact asymptotics in ‘non-rare range’ — distribution of the 

Poisson parameter 

This section studies the behavior of the Poisson parameters

φt ( J ) and ψ t ( J ) in detail. In the first subsection the obtained results

are used to evaluate the asymptotics of p (N) 
t (a ) for N large for the

case that a is smaller than a (+ , i ) t (for Model i ) or a (+ , ii ) t (for Model

ii ). The second subsection focuses on the shape of the distribution

just below a (+ , i ) t (resp. a (+ , ii ) t ). 

2.1. Exact asymptotics in non-rare range 

We start by considering the situation that the event of inter-

est is not increasingly rare as N → ∞ . For the moment we focus

on Model i , where it is noted that a similar line of reasoning, mu-

tatis mutandis , applies to Model ii . If φt ( J ) > a , then evidently the

probability that P (P (Nφt (J)) ≥ Na ) converges to 1 as N → ∞ , and

otherwise to 0. As a consequence, 

lim 

N→∞ 

p (N) 
t (a ) = P ( φt (J) ≥ a ) . 

As a consequence, we wish to characterize the probabilities

P (φt (J) ≥ a ) , and P (ψ t (J) ≥ a ) ; the main result of this section is

a system of partial differential equations that enables the evalua-

tion of these objects. For ease we assume that there are no dis-

tinct i , j such that both λi = λ j and μi = μ j ; we comment later, in

Remark 1 , on how to relax this assumption. 

Model I 

Our objective is to characterize the quantity 

p i (a, t) := P (φt (J) ≥ a, J(t) = i ) , 

for i ∈ { 1 , . . . , d} , where it is assumed that J(0) = i 0 ∈ { 1 , . . . , d} .
Consider the last 
 > 0 time units immediately before time t , 


to be typically thought of as a small number. In this time interval

the background process either jumps to state i from a state j 
 = i,

or it was already in state i ; the third option, corresponding with

two or more jumps, has probability o ( 
). 

If the process does not jump, then 

φt (J) = 

∫ t−


λJ(s ) e 
− ∫ t 

s μJ(r) d r d s + 

∫ t 

λi J(s ) e 
−μi (t−s ) d s 
0 t−

= e −μi 


∫ t−


0 

λJ(s ) e 
− ∫ t−


s μJ(r) d r d s + λi 
 + o(
) 

= (1 − μi 
) 

∫ t−


0 

λJ(s ) e 
− ∫ t−


s μJ(r) d r d s + λi 
 + o(
) , 

hich is (1 − μi 
) φt−
(J) + λi 
 + o(
) . As a consequence, up to

erms of order o ( 
), 

p i (a, t) = 

∑ 

j 
 = i 
q ji 
 p j (a, t) + 

( 

1 −
∑ 

j 
 = i 
q i j 


) 

p i 

×(a − λi 
 + aμi 
, t − 
) . 

ubtracting p i ( a , t ) from both sides, dividing by 
, and letting 
↓ 0

eads to the following system of partial differential equations, for

 = 1 , . . . , d: 

d 
 

j=1 

q ji p j (a, t) = 

∂ 

∂t 
p i (a, t) + (λi − aμi ) 

∂ 

∂a 
p i (a, t) . 

e thus arrive at the following result; we present it in a compact

orm by using self-evident vector/matrix notation. 

roposition 1. Consider Model I . Assume a (−, i ) 
t ≤ a ≤ a (+ , i ) t . As N →

 , 

p (N) 
t (a ) → P ( φt (J) ≥ a ) = 

d ∑ 

i =1 

p i (a, t) , 

here p p p (a, t) solves the system of partial differential equations 

 

T p p p (a, t) = 

∂ 

∂t 
p p p (a, t) + (� − a M ) 

∂ 

∂a 
p p p (a, t) . 

Now focus on additional conditions that are to be imposed. Re-

all that J(0) = i 0 . 

• Let us start by identifying the conditions related to t = 0 . Re-

alizing that a (−, i ) 
0 

= a (+ , i ) 
0 

= 0 , we have that p i 0 (0 , 0) = 1 and

p i (0 , 0) = 0 for i 
 = i 0 . 
• Now consider the a -related conditions. Observe that 

P 

(
φt (J) = 

∫ t 

0 

λi 0 e 
− ∫ t 

s μi 0 
d r d s 

)
= P 

(
φt (J) = 

λi 0 

μi 0 

(
1 − e −μi 0 

t 
))

= e −q i 0 t . 

It follows that 

p i 

(
a (−, i ) 

t , t 

)
= (e Qt ) i 0 ,i , p i 

(
a (+ , i ) t , t 

)
= 0 

for all i ∈ { 1 , . . . , d} , but p i 0 ( ·, t) has the special feature of hav-

ing an atom of size e 
−q i 0 

t 
at the value 

a  t := 

λi 0 

μi 0 

(
1 − e −μi 0 

t 
)

∈ 

[ 
a (−, i ) 

t , a (+ , i ) t 

] 
. 

emark 1. Above we imposed the assumption that there are no

istinct i , j such that both λi = λ j and μi = μ j . We now sketch

hat to do when this property does not hold. Let us consider the

ase that there is precisely one j 
 = i 0 such that both λi 0 
= λ j and

i 0 
= μ j ; further generalizations can be performed in the same

anner. It is noted that now the atom at a  t has size 

 

−q i 0 t + 

∫ t 

0 

q i 0 e 
−q i 0 s · q i 0 j 

q i 0 
· e −q j (t−s ) d s = e −q i 0 t + 

e −q j t − e −q i 0 t 

q i 0 − q j 
q i 0 j . 

odel II 

For Model ii a similar approach can be followed. We now con-

entrate on the object 

p̄ (a, t) := P (ψ t (J) ≥ a | J(0) = i ) , 
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or i ∈ { 1 , . . . , d} . Observe the subtle difference with the analysis of

odel i : where we there considered the distribution of φt ( J ) jointly

ith J(t) = i, we now study the distribution of ψ t ( J ) conditional on

(0) = i . 

Consider the first 
 > 0 time units, in which the background

rocess either jumps, or stays in state i (or jumps twice or more,

ut this corresponds to a probability that is o ( 
)). If the process

oes not jump in (0, 
], then, in distribution, 

 t (J) = 

∫ 


0 

λi e 
−(t−s ) μi d s + 

∫ t 



λJ(s ) e 

−(t−s ) μJ(s ) d s 

d = λi e 
−μi t 
 + 

∫ t−


0 

λJ(s ) e 
−(t−
−s ) μJ(s ) d s + o(
) , 

hich is λi e 
−μi t 
 + ψ t−
(J) + o(
) . We thus find that 

p̄ i (a, t) = 

∑ 

j 
 = i 
q i j 
 p̄ j (a, t) + 

( 

1 −
∑ 

j 
 = i 
q i j 


) 

p̄ i 

×(a − λi e 
−μi t 
, t − 
) + o(
) . 

e continue in the usual way: subtracting p̄ i (a, t) from both sides,

ividing by 
, and letting 
↓ 0 leads to the following system of

artial differential equations, for i = 1 , . . . , d: 

d 
 

j=1 

q i j ̄p j (a, t) = 

∂ 

∂t 
p̄ i (a, t) + λi e 

−μi t 
∂ 

∂a 
p̄ i (a, t) . 

his leads to the following statement, again in self-evident nota-

ion. 

roposition 2. Consider Model II . Assume a (−, ii ) 
t ≤ a ≤ a (+ , ii ) t . As N

 ∞ , 

p (N) 
t (a ) → P ( ψ t (J) ≥ a ) = 

d ∑ 

i =1 

p̄ i (a, t) , 

here p̄ p p (a, t) solves the system of partial differential equations 

 p̄ p p (a, t) = 

∂ 

∂t 
p̄ p p (a, t) + (� e −M t ) 

∂ 

∂a 
p̄ p p (a, t) . 

Again additional conditions should be imposed: 

• We have p̄ i (0 , 0) = 1 for all i ∈ { 1 , . . . , d} . 
• In this case p̄ i (a −t , t) = 0 and p̄ i (a + t , t) = 1 for all i ∈ { 1 , . . . , d}

and p i ( a , t ) has an atom of size e −q i t at 

a  i,t := 

λi 

μi 

(
1 − e −μi t 

)
. 

It is noted that these conditions can be adapted in case there

s a j such that λi 0 
= λ j and μi 0 

= μ j , in the way pointed out in

emark 1 . 

.2. Distribution of Poisson parameter close to its domain boundaries 

In this section we study the behavior, for small δ, of φt ( J )

nd ψ t ( J ) being less than δ away from a (+ , i ) t and a (+ , ii ) t , respec-

ively. The exposition is slightly easier for Model ii , due to the fact

hat for that model the maximum attainable variable is explicitly

nown (see (3) ), but for Model i essentially the same approach

an be followed. The results obtained in this subsection are cru-

ial when deriving the exact asymptotics in Section 3 . 

Define the ‘maximizing path’ 

t (s ) := arg max 
i ∈{ 1 , ... ,d} 

λi e 
−(t−s ) μi . 

s was shown in Blom et al. (2014) , Blom and Mandjes (2013) γ t ( ·)
umps at most d − 1 times in [0, t ]; let D ≤ d − 1 be this number

f jumps. Then there are two cases: no jumps at all in [0, t ], and
 positive number of jumps in [0, t ] (in which case we denote by

 1 up to s D the epochs of these jumps). The former case being el-

mentary, we focus in this section on the latter case. Without loss

f generality we assume that the states are labeled such that γ t ( s )

isits the states 1 up to D + 1 when s increases from 0 to t . 

We first evaluate the difference between the maximum value

 

(+ , ii ) 
t of ψ t ( J ) (corresponding to jumps at s 1 up to s D ) with the

alue of ψ t ( J ) that results from jumps at times s 1 + v 1 ε up to s D +
 D ε, where the v i ε are small (but not necessarily positive). It is

eadily checked that this difference equals, with s 0 = 0 , s D +1 = t,

nd v 0 = v D +1 = 0 , 

 +1 
 

i =1 

(∫ s i 

s i −1 

λi e 
−μi (t−r) d r −

∫ s i + v i ε 

s i −1 + v i −1 ε 
λi e 

−μi (t−r) d r 

)
, 

hich can alternatively be written as 

 +1 
 

i =1 

λi 

μi 

e −μi t ( e μi s i − e μi s i −1 ) −
D +1 ∑ 

i =1 

λi 

μi 

e −μi t 
(
e μi (s i + v i ε) − e μi (s i −1 + v i −1 ε) 

)
,

r, further simplified, 

 +1 
 

i =1 

λi 

μi 

e −μi (t−s i ) (1 − e μi v i ε ) −
D +1 ∑ 

i =1 

λi 

μi 

e −μi (t−s i −1 ) (1 − e μi v i −1 ε ) , (4)

otice that, due to v 0 = v D +1 = 0 the last term of the first sum can

e left out, and the same holds for the first term of the second

um. Recalling that, immediately from the definition of s 1 , . . . , s D , 

i e 
−μi (t−s i ) = λi +1 e 

−μi +1 (t−s i ) , i = 1 , . . . , D, 

e have that (4) equals, up to terms that are o ( ε 2 ), 

D 
 

i =1 

(
λi e 

−μi (t−s i ) − λi +1 e 
−μi +1 (t−s i ) 

)
v i ε + 

D ∑ 

i =1 

ω i (v i ε) 2 = 

D ∑ 

i =1 

ω i (v i ε) 2 ;

ere we have used the definition, for i = 1 , . . . , D, 

 i := 

λi +1 μi +1 

2 

e −μi +1 (t−s i ) − λi μi 

2 

e −μi (t−s i ) 

= 

λi +1 

2 

(μi +1 − μi ) e 
−μi +1 (t−s i ) = 

λi 

2 

(μi +1 − μi ) e 
−μi (t−s i ) . 

It is readily verified that along γ t ( ·) it holds that μi ≥ μj if i

 j , and hence all coefficients ω i are non-negative; this is in line

ith the fact that the functional ψ t ( J ) is maximized by the path

t ( ·). We thus arrive at 

 

(
ψ t (J) ≥ a (+ , ii ) t − δ

)
= π1 q 1 e 

−q 1 s 1 
q 12 

q 1 
q 2 e 

−q 2 (s 2 −s 1 ) 

· · · q D,D + 1 
q D 

q D + 1 e −q D + 1 (t−s D ) V (δ) + o(V (δ)) ,

here V (δ) denotes the volume of the set 

 (δ) := 

{ 

(x 1 , . . . , x D ) : 
D ∑ 

i =1 

ω i x 
2 
i < δ

} 

, 

hich is κt · R D = κt · δD / 2 for some constant κ t > 0 and R := 

√ 

δ
eing the ‘scale’ of the ellipsoid. We have thus identified a constant

¯t > 0 such that 

im 

δ↓ 0 
P 

(
ψ t (J) ≥ a (+ , ii ) t − δ

)
δ−D / 2 = κ̄t . 

 similar argument provides us with the corresponding density

lose to a (+ , ii ) t ; then essentially the integration needs to be done

ver ∂S (δ) , which is of the order R D −1 . Appealing to the chain rule

with d R/ d δ = (2 
√ 

δ) −1 ), we thus find that for a constant ˆ κt > 0 , 

im 

δ↓ 0 
P 

(
a (+ , ii ) t − ψ t (J) ∈ d δ

)
δ−D/ 2+1 = ˆ κt . (5) 
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We note that above we tacitly imposed the regularity condition

that all transition rates along the path γ t ( ·) are positive: 

q i,i +1 > 0 for all i ∈ { 1 , . . . , D } . (6)

As an aside we mention that adaptation of the arguments to

the case in which along γ t ( ·) there are (one or more) states i ∈
{ 1 , . . . , D } corresponding with q i,i +1 = 0 is a purely technical issue,

and is relatively straightforward. Importantly, it can be checked

that it affects the power of δ appearing in (5) . Example 2 illus-

trates how this issue can be dealt with. 

Example 1. Consider Model ii with d = 2 . We consider the case

that λ1 < λ2 and μ1 < μ2 , so that the curves λi e 
−μi (t−s ) intersect

at 

s 1 = t − s̄ , with s̄ := 

log (λ1 /λ2 ) 

μ1 − μ2 

;

we assume t > s̄ . Because of the choice of our parameters, we are

in the situation that the maximizing path jumps once in [0, t ],

where 

ω 1 = 

λ2 

2 

(μ2 − μ1 ) e 
−μ2 (t−s 1 ) = 

λ2 

2 

(μ2 − μ1 ) 

(
λ1 

λ2 

)−μ2 / (μ1 −μ2 ) 

. 

We conclude that 

V (δ) = 

2 

√ 

2 δ√ 

λ2 (μ2 − μ1 ) 

√ (
λ1 

λ2 

)μ2 / (μ1 −μ2 ) 

, 

and hence 

κ̄t = π1 q 12 q 2 e 
−q 1 t 

2 

√ 

2 √ 

λ2 (μ2 − μ1 ) 

(
λ1 

λ2 

)(q 1 −q 2 + μ2 / 2) / (μ1 −μ2 ) 

. 

Example 2. In this example we consider a situation in which reg-

ularity condition (6) does not apply. We point out how in this case

the density close to a (+ , ii ) t can be evaluated. As becomes clear, the

procedure is straightforward but tedious; therefore we assume in

the next section, when evaluating the asymptotics, that the simpler

situation in which (6) is in place. 

We consider the same setting as in the previous example, but

now with d = 3 where the transition rates q ij are such that state

2 can be reached from state 1 only via state 3 : q 13 , q 32 > 0 but

q 12 = 0 . We assume that for any s ∈ [0, t ] the function λ3 e 
−μ3 (t−s )

nowhere majorizes λ1 e 
−μ1 (t−s ) or λ2 e 

−μ2 (t−s ) . In other words: as

in the previous example the maximizing path subsequently visits

states 1 and 2 (and the resulting value of a (+ , ii ) t is the same), but

the modulating Markov chain cannot jump directly from state 1 to

2. 

Consider the path at which there is a transition from state 1

to 3 at time s 1 − v 1 ε, and then a transition from state 3 to 2 at

time s 1 + v 2 ε, with v i ε small and positive. The difference between

a (+ , ii ) t and the value of ψ t ( J ) resulting from this path is 

λ1 

μ1 

e −μ1 (t−s 1 ) 
(
1 − e −μ1 v 1 ε 

)
+ 

λ2 

μ2 

e −μ2 (t−s 1 ) 
(
e μ2 v 2 ε − 1 

)
− λ3 

μ3 

e −μ3 (t−s 1 ) 
(
e μ3 v 2 ε − e −μ3 v 1 ε 

)
, 

which behaves, for v i ε small, as z 1 v 1 ε + z 2 v 2 ε, with z i :=
λi e 

−μi (t−s 1 ) − λ3 e 
−μ3 (t−s 1 ) ; recall that z i > 0. We thus arrive at, ig-

noring terms that are o(V (δ)) , 

P 

(
ψ t (J) ≥ a (+ , ii ) t − δ

)
= π1 q 1 e 

−q 1 s 1 
q 13 

q 1 
q 3 e 

−q 3 ·0 q 32 

q 3 
q 2 e 

−q 2 (t−s 1 ) V (δ) 

= π1 q 13 e 
−q 1 s 1 q 32 q 2 e 

−q 2 (t−s 1 ) V (δ) , 
here V (δ) denotes the volume of the set 

 (δ) := 

{
(x 1 , x 2 ) ∈ R 

2 
+ : z 1 x 1 + z 2 x 2 < δ

}
, 

.e., δ2 /(2 z 1 z 2 ). Conclude that for δ small the probability under in-

estigation is essentially proportional to δ2 . This is in contrast with

he order 
√ 

δ that we found in Example 1 ; apparently the likeli-

ood of reaching values close to a (+ , ii ) t is considerably smaller in

xample 2 , as a consequence of the additional transitions needed. 

. Exact asymptotics in ‘rare range’ 

In the previous section we have considered the situation in

hich p (N) 
t (a ) converges to a positive constant; this case corre-

ponds to the exceedance level a being between the minimum and

aximum value of the Poisson parameter underlying the distri-

ution of M 

( N ) ( t ). In the present section we look at the opposite

ase, i.e., the case in which p (N) 
t (a ) vanishes as N grows large. We

resent the analysis for Model i , but Model ii can be dealt with

ully analogously. 

Below we consider the situation that a > a (+ , i ) ; the asymptotic

nalysis of 1 − p (N) 
t (a ) for a < a (−, i ) follows in the same way. To

his end, we first realize that we have the following representation,

ue to the fact that M 

( N ) ( t ) has a Poisson distribution with random

ean: 

p (N) 
t (a ) = 

∫ a (+ , i ) t 

a (−, i ) 
t 

P (P (Nα) ≥ Na ) P (φt (J) ∈ d α) ;

he integral is on the interval [ a (−, i ) 
t , a (+ , i ) t ] , as this is the interval

f values that φt ( J ) can attain. 

The first step is to analyze P (P (Nα) ≥ Na ) , relying on standard

robabilistic tools. Define, for α ∈ [ a (−, i ) 
t , a (+ , i ) t ] , with �(ϑ | α) :=

og E e ϑP(α) , the Legendre transform 

(a | α) := sup 

ϑ 
( ϑa − �(ϑ | α) ) = sup 

ϑ 

(
ϑa − α(e ϑ − 1) 

)
. 

As the optimizing ϑ equals ϑ(a | α) = log (a/α) > 0 , we have

(a | α) = a log (a/α) + α − a. As can be found in e.g. ( Dembo &

eitouni, 1998 ), the lattice version of the Bahadur–Rao result

 Bahadur & Rao, 1960 ) states that, as N → ∞ , 

 (P (Nα) ≥ Na ) ·
(
e NI(a | α) 

√ 

2 πN · ξ (a | α) 
)

→ 1 , 

here 

(a | α) := 

√ 

�′′ (a | α) 
(
1 − e −ϑ(a | α) 

)
= 

√ 

a 

(
1 − α

a 

)
. 

nterestingly, we know that this convergence is uniform in α ∈
 a −t , a 

+ 
t ] , as an immediate consequence of the results in Höglund

1979) . This implies that, for all ε > 0 we have that for N large

nough 

sup 

∈ [ a −t , a + t ] 

P (P (Nα) ≥ Na ) ·
(
e NI(a | α) 

√ 

2 πN · ξ (a | α) 
)

∈ (1 − ε, 1 + ε

n addition, we have, uniformly in N , the celebrated Chernoff

ound : 

 (P (Nα) ≥ Na ) ≤ e −NI(a | α) . (7)

hen analyzing the asymptotics of p (N) 
t (a ) for N large and a >

 

(+ , i ) 
t , two cases need to be distinguished: the case that φt ( J ) does

ot have an atom in a (+ , i ) t , and the case that it has. Let us start

ith the former case (which is more involved than the latter case).

� Case 1 — φt ( J ) does not have an atom in a (+ , i ) t . Fix some δ ∈
(−1 , − 1 

2 ) . We split p (N) 
t (a ) into 

 

(
a (−, i ) 

t , a (+ , i ) t − N 

δ
)

+ K 

(
a (+ , i ) t − N 

δ, a (+ , i ) t 

)
, (8)
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here, for u < v , 

(u, v ) := 

∫ v 

u 

P (P (Nα) ≥ Na ) P (φt (J) ∈ d α) . 

Let us start by analyzing the first term in (8) ; our goal is to

how that it can be ignored (asymptotically, i.e., as N → ∞ ) relative

o the second term. Observe that, because of (7) , 

 

NI(a | a (+ , i ) t ) K 

(
a (−, i ) 

t , a (+ , i ) t − N 

δ
)

≤ A t e 
NI(a | a (+ , i ) t ) 

( 

sup 

α∈ [ a (−, i ) 
t ,a (+ , i ) t −N δ ] 

e −NI(a | α) 

) 

(9) 

here A t := a (+ , i ) t − a (−, i ) 
t ; in view of the shape of the asymptotic

xpansion that eventually comes out, we multiplied by e NI(a | a (+ , i ) t ) .

ow realize that I ( a | α) is convex in α, having the value 0 when

= a, and that it is decreasing in α, since a > a (+ , i ) t . It thus follows

hat 

rg inf 
α∈ [ a (−, i ) 

t ,a (+ , i ) t −N δ ] 

I(a | α) = a (+ , i ) t − N 

δ. 

s a consequence, (9) is majorized by 

 t e 
NI(a | a (+ , i ) t ) e −NI(a | α(+ , i ) 

t −N δ ) . (10) 

e now present an upper bound on the exponent featuring in (10) .

t is a trivial exercise to verify that standard estimates yield 

(a | a (+ , i ) t ) − I(a | a (+ , i ) t − N 

δ ) = a log 
a (+ , i ) t − N 

δ

a (+ , i ) t 

+ N 

δ ≤
(

1 − a 

a (+ , i ) t 

)
N 

δ ≤ −cN 

δ, 

or some positive c (where it is used that a > a (+ , i ) t ). Conclude that

xpression (10) is bounded from above by A t exp ( −cN 

1 −δ ) , and

herefore we obtain, as N grows large, 

 

(D +1) / 2 e NI(a | a (+ , i ) t ) K 

(
a (−, i ) 

t , a (+ , i ) t − N 

δ
)

≤ N 

(D +1) / 2 A t e 
−cN 1 −δ → 0 . (11) 

Let us now concentrate on the second term in (8) ; as we will

how, it dominates the contribution of the first term. To this end,

e first focus on an upper bound, but, as we see later on, a cor-

esponding lower bound can be derived very similarly, thus estab-

ishing the exact asymptotics of p (N) 
t (a ) . Because of the (uniform

ersion of) the Bahadur–Rao result (as was stated above), we have

hat for any ε > 0, 

im sup 

N→∞ 

N 

(D +1) / 2 e NI(a | a (+ , i ) t ) K 

(
a (+ , i ) t − N 

δ, a (+ , i ) t 

)

≤ (1 + ε) · lim sup 

N→∞ 

N 

D/ 2 

∫ a (+ , i ) t 

a (+ , i ) t −N δ
G N (α) P (φt (J) ∈ d α) , (12) 

here, with η(a | α) := 1 / ( 
√ 

2 π ξ (a | α)) , 

 N (α) := e N I(a | a (+ , i ) t ) −N I(a | α) η( a | α) . 

We now further analyze (12) . To this end, we first define 

¯
 (α) := a log 

(
1 − α

a (+ , i ) t 

)
+ α, 

nd assume that the regularity condition (6) applies. By virtue of

tandard continuity arguments it follows that in combination with

5) , for all ε ′ > 0, Expression (12) is majorized by 

(1 + ε ′ ) η(a | a (+ , i ) t ) ̂  κt · lim sup 

N→∞ 

N 

D/ 2 

∫ a (+ , i ) t 

a (+ , i ) t −N δ
e N I(a | a (+ , i ) t ) −N I(a | α) 
c × (a (+ , i ) t − α) D/ 2 −1 d α

β := a (+ , i ) t −α= (1 + ε ′ ) η(a | a (+ , i ) t ) ̂  κt · lim sup 

N→∞ 

N 

D/ 2 

∫ N δ

0 

× e N ̄G (β) βD/ 2 −1 d β. 

sing elementary Taylor expansions, it is easily verified that there

re numbers � and u such that, with 

 := 

(
a 

a (+ , i ) t 

− 1 

)
> 0 , 

or N sufficiently large and all β ∈ [0, N 

δ], 

N 

1+2 δ − bβN ≤ N 

(
a log 

(
1 − β

a (+ , i ) t 

)
+ β

)
≤ uN 

1+2 δ − bβN. 

s a consequence, using in step (i) that δ < − 1 
2 and in step (ii)

> −1 , 

im sup 

N→∞ 

N 

D/ 2 

∫ N δ

0 

e N ̄G (β) βD/ 2 −1 d β

≤ lim sup 

N→∞ 

N 

D/ 2 e uN 1+2 δ

∫ N δ

0 

e −bβN βD/ 2 −1 d β

(i) = lim sup 

N→∞ 

N 

D/ 2 

∫ N δ

0 

e −bβN βD/ 2 −1 d β

α := bβN = 

1 

b D/ 2 −1 
lim sup 

N→∞ 

∫ bN δ+1 

0 

e −ααD/ 2 −1 d α
(ii) = 

�(D/ 2) 

b D/ 2 
. 

he corresponding lower bound can be found along the same lines:

or an arbitrary ε ′ > 0, 

im inf 
N→∞ 

N 

(D +1) / 2 e NI(a | a (+ , i ) t ) K 

(
a (+ , i ) t − N 

δ, a (+ , i ) t 

)
≥ (1 − ε ′ ) η(a | a (+ , i ) t ) ̂  κt · lim inf N→∞ 

N 

D/ 2 e �N 1+2 δ

×
∫ N δ

0 

e −bαN αD/ 2 −1 d α, 

hich can be evaluated as before. By taking ε ′ ↓ 0, upon combining

he above upper and lower bound, we obtain 

lim 

→∞ 

N 

(D +1) / 2 e NI(a | a (+ , i ) t ) K 

(
a (+ , i ) t − N 

δ, a (+ , i ) t 

)
= η(a | a (+ , i ) t ) ̂  κt 

�(D/ 2) 

b D/ 2 
. (13) 

Next we combine the asymptotics of both intervals, i.e., the one

ver [ a (−, i ) 
t , a (+ , i ) t − N 

δ ) and the one over [ a (+ , i ) t − N 

δ, a (+ , i ) t ] . From

11) and (13) , the main result of this section follows. The analogous

esult for Model ii can be derived in precisely the same way; the

nly difference lies in the value of the constant ˆ κt . 

heorem 1. Consider Model I . Assume a > a (+ , i ) t , and let φt ( J ) have

o atom in a (+ , i ) t ; in addition, assume that regularity condition (6)

pplies. As N → ∞ , 

 

(D +1) / 2 e NI(a | a (+ , i ) t ) p (N) 
t (a ) → 

(
a (+ , i ) t 

a − a (+ , i ) t 

)D/ 2 
ˆ κt �(D/ 2) √ 

2 π ξ(a | a (+ , i ) t ) 
. 

� Case 2 — φt ( J ) has an atom in a (+ , i ) t . We now consider the

ituation that 

 (a (+ , i ) t ) := P 

(
φt (J) = a (+ , i ) t 

)
> 0 . 

ecause of the arguments used in the derivation of Theorem 1 , we

bserve that the contribution to the probability of interest due to

he event φt (J) ∈ [ a (−, i ) 
t , a (+ , i ) t ) is of an order of at most 

e −N I(a | a (+ , i ) t ) 
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(up to a multiplicative constant); realize that this is a consequence

of the fact that the corresponding path requires at least one jump.

From the Bahadur–Rao result, however, it is directly seen that the

contribution due to the event φt (J) = a (+ , i ) t is larger, viz. of the or-

der (up to a multiplicative constant) 

e −N I(a | a (+ , i ) t ) 

√ 

N 

. 

As a consequence, the latter scenario dominates, and we obtain the

following exact asymptotics; again, an analogous result is valid for

Model ii . 

Corollary 1. Consider Model I . Assume a > a (+ , i ) t , and let φt ( J ) have

an atom in a (+ , i ) t . As N → ∞ , 

√ 

N e NI(a | a (+ , i ) t ) p (N) 
t (a ) → 

F (a (+ , i ) t ) √ 

2 π ξ(a | a (+ , i ) t ) 
. 

4. Computational issues 

The objective of this section is to present an efficient simulation

method for estimating p (N) 
t (a ) for the situation that a is large than

(in Model i ) a (+ , i ) t or (in Model ii ) a (+ , ii ) t . In addition we include a

numerical experiment featuring a typical example. 

Basic method, and its logarithmic efficiency. Particularly when

N is large, the probability p (N) 
t (a ) will be small, thus imposing

constraints on the feasibility of standard Monte Carlo techniques.

There is, however, an interesting remedy. To this end, note that we

can express the probability of our interest as 

p (N) 
t (a ) = E P (Na, N φt (J )) (14)

(where, as an aside, we mention that we point the procedure out

for Model i , but Model ii can be dealt with fully analogously); the

function 

P (n, λ) := 

∞ ∑ 

k = n 
e −λ λk 

k ! 
, 

is the tail distribution of the Poisson distribution, and is avail-

able in standard software packages. The form (14) suggests the fol-

lowing simple and effective simulation approach: in run � (with

� = 1 , . . . , M) the path J � is sampled, the parameter φt ( J � ) is calcu-

lated, and the probability p (N) 
t (a ) is estimated by 

1 

M 

M ∑ 

� =1 

P (Na, Nφt (J � )) . 

This procedure is logarithmically efficient ( Asmussen and Glynn,

2007 , Chap. VI). To see this, first note that we have the obvious

deterministic upper bound 

P (Na, Nφt (J)) ≤ P (N a, N a (+ , i ) t ) , (15)

as a consequence of the stochastic monotonicity of the Poisson dis-

tribution in its parameter. Due to Jensen’s inequality in combina-

tion with Theorem 1 and Corollary 1 we have the lower bound 

lim inf 
N→∞ 

1 

N 

log E P 

2 (Na, Nφt (J)) ≥ 2 lim 

N→∞ 

1 

N 

log E P (Na, Nφt (J)) 

= −2 I(a | a (+ , i ) t ) . 

Because of (15) , however, this lower bound is actually achieved: 

lim sup 

N→∞ 

1 

N 

log E P 

2 (Na, Nφt (J)) ≤ 2 lim 

N→∞ 

1 

N 

log P (N a, N a (+ , i ) t ) 

= −2 I(a | a (+ , i ) t ) . 

We thus obtain logarithmic efficiency. Often simulation experi-

ments are performed until the estimate has reached a certain ef-

ficiency: the ratio of the width of the confidence interval to the
stimate is smaller than some predefined number (e.g. 10%). In

ractical terms, in this setting with p (N) 
t (a ) decaying essentially ex-

onentially in N , logarithmic efficiency effectively means that the

umber of runs that is needed grows at most subexponentially in

 . 

Importance-sampling based acceleration. In fact, the rare event

tudied in this paper is the effect of the combination of (i) the

oisson parameter φt ( J ) attaining a rare value, say φ, and (ii) a

oisson random variable with parameter N φ attaining a rare value.

ote that the above approach adequately deals with the random-

ess due to effect (ii) – that is, we do not need to sample the Pois-

on random variable, but we use computations instead. 

The question that is left concerns the rarity which is a conse-

uence of φt ( J ) attaining a rare value. In the proofs we have seen

hat overflow is most likely caused by φt ( J ) attaining a value ‘close

o’ its maximal value a (+ , i ) t , which only happens when the jump

pochs are close to those of some maximizing path (that was ex-

licitly determined in Blom et al. (2014) and Blom and Mandjes

2013) for Models i and ii , respectively). We saw that the probabil-

ty of φt ( J ) being an amount in the order of δ away from its max-

mum value a (+ , i ) t , is of the order δD /2 , i.e., relatively rare. Impor-

ance sampling can be used to resolve this issue in the following

ay. 

Choose 
 sufficiently small such that all s i pairs are at least

 
 apart; recall that the s i are the transition epochs along the

ath that optimizes the Poisson parameter. We let T 0 = 0 and T i ,

or i = 1 , 2 , . . . , D + 1 be the subsequent transition epochs of the

ackground process in our simulation, and U i := T i − T i −1 the cor-

esponding sojourn times. We write, with γ ( ·) being functions that

ap [0, t ] onto { 1 , . . . , d} and s̄ i := s i − s i −1 , 

 (
) := 

{ 

γ (·) 
∣∣∣∣∣

γ (s ) = i ∀ s ∈ [ T i −1 , T i ) ∀ i = 1 , . . . , D + 1 ;
U i ∈ ( ̄s i − 
, ̄s i + 
) ∀ i = 1 , . . . , D ;
U D +1 ≥ t − s D + D 


} 

. 

he set Z (
) should be interpreted as the collection of paths that

re ‘close to’ the path that maximizes the random parameter of the

oisson distribution; recall that, without loss of generality, we had

abeled the states such that along this optimizing path the states 1

p to D + 1 are subsequently visited. 

The idea is now to estimate the quantities 

 ( P (Na, Nφt (J)) 1 { J 
∈ Z (
) } ) and E ( P (Na, Nφt (J)) 1 { J ∈ Z (
) }
eparately, and to add the resulting estimates up. The first of these

uantities is estimated under the actual measure P , whereas for

he second (which contains the rare event of φt ( J ) being close to

 

(+ , i ) 
t ) we use importance sampling. In more detail: 

◦ The quantity E ( P (Na, Nφt (J)) 1 { J 
∈ Z (
) } ) is estimated by per-

forming M 1 runs: 

1 

M 1 

M 1 ∑ 

� =1 

P (Na, Nφt (J � )) 1 { J i 
∈ Z (
) } , 

with the J � sampled under P . 

◦ The quantity E ( P (Na, Nφt (J)) 1 { J ∈ Z (
) } ) can be estimated us-

ing an importance sampling approach: an alternative measure,

say Q , is used to draw samples φt ( J 1 ) up to φt (J M 2 
) , and then

the simulation output (i.e., P (Na, Nφt (J � )) ) is translated back in

terms of the original probability measure P by multiplying it

with an appropriate likelihood ratio L � (to be interpreted as a

Radon–Nikodym derivative d P / d Q ). 

The measure Q is constructed as follows. The transition proba-

bilities are changed in such a way that with probability 1 the

background process visits the states 1 up to D + 1 . Along this

path, the time spent in state i is sampled from a distribution
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Fig. 1. The distribution function P (ψ 1 (J) ≤ a ) for a ∈ [ a (−, ii ) 
1 

, a (+ , ii ) 
1 

] , dashed the 

curves κ̄1 

√ 

a − a (−, ii ) 
1 

and 1 − κ̄1 

√ 

a (+ , ii ) 
1 

− a . 
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I

t  

p  

E  

E  

o  
with density, for s ∈ ( ̄s i − 
, ̄s i + 
) , 

q i e 
−q i s 

(∫ s̄ i +


s̄ i −

q i e 

−q i r d r 

)−1 

= 

q i e 
−q i s 

σi 

, with 

σi : = e −q i ( ̄s i −
) − e −q i ( ̄s i +
) 

(where the density is defined to be 0 elsewhere), for i =
1 , . . . , D . The time spent in state D + 1 is sampled from a dis-

tribution with density, for s ≥ t − s D + D 
, 

q D +1 e 
−q D +1 s 

σD +1 

, with σD +1 := e −q D +1 (t−s D + D 
) 

(and 0 elsewhere). Observe that all paths sampled under Q are

necessarily in Z (
) . The likelihood ratio of such a path reads 

L = π1 

D ∏ 

i =1 

(
q i,i +1 

q i 

)
·
( 

D +1 ∏ 

i =1 

σi 

) 

. 

Performing M 2 runs, we have thus constructed the estimator,

with L � the likelihood ratio corresponding with the � th sam-

ple, 

1 

M 

M 2 ∑ 

P (Na, Nφt (J � )) L � . 

2 

� =1 

Fig. 2. Left panel: Ne NI p (N) 
1 

(1) for N ∈ { 20 , 40 , . . . , 300 } ; r
As an alternative, one could use the following estimator (in self-

vident notation), based on M runs under the original and alterna-

ive measure: 

1 

M 

( 

M ∑ 

� =1 

P 

(
Na, N φt (J (P ) � ) 

)
1 { J (P ) � 
∈ Z (
) } + P 

(
Na, N φt (J (Q ) � ) 

)
L � 

) 

. 

xample 3. Following up on Example 1 , we consider Model ii with

 = 2 and the following choice of the parameters: λ1 = μ1 = 1 ,

2 = 2 , μ2 = 5 , q 1 = q 2 = 1 , and t = 1 . As it turns out, s 1 = 1 −
og 

4 
√ 

2 , and 

 

(+ , ii ) 
1 

= 

∫ 1 −log 
4 √ 

2 

0 

λ1 e 
−μ1 (1 −r) d r + 

∫ 1 

1 −log 
4 √ 

2 

λ2 e 
−μ2 (1 −r) d r 

= 

1 

4 
√ 

2 

− 1 

e 
+ 

2 

5 

( 

1 −
(

1 

4 
√ 

2 

)5 
) 

, 

hich equals 0.704838. We focus on the probability p (N) 
1 

(a ) that

 

( N ) ( t ) exceeds Na , with a = 1 > a (+ , ii ) 
1 

. Likewise, 

 

(−, ii ) 
1 

= 

∫ 1 −log 
4 √ 

2 

0 

λ2 e 
−μ2 (1 −r) d r + 

∫ 1 

1 −log 
4 √ 

2 

λ1 e 
−μ1 (1 −r) d r 

= 

2 

5 

( (
1 

4 
√ 

2 

)5 

− e −5 

) 

+ 1 − 1 

4 
√ 

2 

, 

hich equals 0.324588. Fig. 1 presents the distribution function

f ψ 1 ( J ). Observe that there are atoms of size π1 e 
−q 1 t = (2 e ) −1 ≈

 . 183940 at 1 − e −1 ≈ 0 . 632120 , and of size π2 e 
−q 2 t = (2 e ) −1 ≈

 . 183940 at 2 
5 (1 − e −5 ) ≈ 0 . 397305 ; these atoms correspond to the

cenarios that the process starts in state 1 (state 2, respectively)

nd does not leave that state before t = 1 . It is also seen that the

hape of P (ψ 1 (J) ≤ a (−, ii ) 
1 

+ δ) as well as P (ψ 1 (J) ≥ a (+ , ii ) 
1 

− δ) for

small is roughly proportional to 
√ 

δ, in line with results derived

arlier in this paper. 

By virtue of Theorem 1 we know that Ne NI p (N) 
1 

(1) should con-

erge to a constant as N → ∞ , with the decay rate I equal to 

(1 | a (+ , ii ) 
1 

) = − log a (+ , ii ) 
1 

+ a (+ , ii ) 
1 

− 1 ≈ 0 . 0546252 ;
his convergence is confirmed by the left panel of Fig. 2 . The right

anel of Fig. 2 shows the (approximately) exponential decay of

p (N) 
1 

(1) (as a function of N ). 

xample 4. In this example we take the same parameters as in

xample 3 , but fix N = 80 . Our objective is to find, for a given value

f ε, the value of a such that p (80) 
1 

(a ) < ε. Then Na could be used
ight panel: − log 10 p 
(N) 
1 

(1) for N ∈ { 20 , 40 , . . . , 300 } . 
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Fig. 3. − log 10 p 
(80) 
1 

(a ) for a ∈ [0.8, 1.25]. 
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as a (somewhat rough) approximation of the number of servers

needed in the corresponding finite-server system so as to keep the

blocking probability below ε. From Fig. 3 we see that e.g. for ε =
10 −3 we need 80 × 0 . 92 ≈ 74 servers, and for ε = 10 −4 we need

80 × 0 . 98 ≈ 78 servers. 

5. Discussion and concluding remarks 

In this paper we have identified the exact asymptotics of the

tail distribution of the number of jobs M 

( N ) ( t ) present in a Markov-

modulated infinite-server queue at some time t > 0; this find-

ing extends earlier obtained logarithmic asymptotics ( Blom et al.,

2014; Blom & Mandjes, 2013 ). In the asymptotic regime that we

consider, in which the arrival rates are inflated by a factor N , the

exact asymptotics are the product of a polynomial function (in N )

and an exponential function (in N ). The degree of the polynomial

function depends on the number of jumps the background process

makes so as to maximize the (random) Poisson parameter that de-

scribes the distribution of M 

( N ) ( t ). 

In our paper we have concentrated on the exact asymptotics for

the model in which the transition rate matrix Q of the background

process is not scaled. A topic for future research could relate to

identifying such asymptotics for the setting in which Q is scaled

by a factor N 

α . For α = 1 logarithmic asymptotics have been ob-

tained in De Turck and Mandjes (2014) , where related results in

a more general diffusion setting were derived in Huang, Mandjes,

and Spreij (2016) building on the framework developed in Liptser

(1996) , but these do not seem to lend themselves to a straight-
orward extension to exact asymptotics. For α > 1 the system es-

entially behaves as an ordinary (non-modulated, that is) M/M/ ∞
ueue, and it is therefore conceivable that its exact asymptotics co-

ncide with those of that M/M/ ∞ queue. 
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