
Process Algebra and Structured

Operational Semantics

Process Algebra and Structured

Operational Semantics

Academisch Proefschrift

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam

op gezag van de Rector Magnificus

prof. dr. P.W.M. de Meijer

in het openbaar the verdedigen in de Aula der Universiteit

(Oude Lutherse kerk, ingang Singel 411, hoek Spui),

op vrijdag 1 november 1991 te 15.00 uur

door

Jan Friso Groote

geboren te Doetinchem

Centrum voor Wiskunde en Informatica

1991

Promotor: prof. dr. J.A. Bergstra
Co-promotor: dr. J.C.M. Baeten
Faculteit: Wiskunde en Informatica

The work in this thesis has been carried out at the CWI, Amsterdam in the
context of ESPRIT project no. 432, an Integrated Formal Approach to Industrial
Software Development (METEOR), RACE project no. 1046, Specification and
Programming Environment for Communication Software (SPECS) and ESPRIT
Basic Research Action no. 3006 (CONCUR).

Acknowledgements

It is hard to give proper credits to all who have contributed to this thesis. Below
I have certainly not mentioned all to whom I am indebted.

I want to thank Jan Bergstra and Jos Baeten for being my promotor and
co-promotor. Together with Jaco de Bakker they have created a very pleasant
working atmosphere at the CWI where I had the feeling that I could exactly
carry out the research that I like to do.

I also want to thank all my colleagues at the CWI, the University of Amsterdam
and elsewhere. Especially, I am a lot indebted to Frits Vaandrager. By writing
an article together, he led me from a state of inertia to a state in which I was
able to write this thesis. More recently we wrote a second article which forms
chapter 3 of this thesis. I am also very grateful to Roland Bol with whom I wrote
the chapter 5 in this thesis, and Alban Ponse with whom the last chapter has
been written. That chapter has been heavily influenced by Jan Bergstra. During
several debates he managed to have us develop a concise language. I also want to
thank Rob van Glabbeek who was always willing to point out flaws in my ideas.
This often helped me to find the right track.

Many thanks also go to Krzysztof Apt, Frank de Boer, Jacob Brunekreef, Arie
van Deursen, Nicolien Drost, Willem Jan Fokkink, Jan Heering, Paul Hendriks,
Eiichi Horita, Jean Marie Jacquet, Jan Willem Klop, Steven Klusener, Henri
Korver, Karst Koymans, Sjouke Mauw, Emma van der Meulen, Aart Middeldorp,
Hans Mulder, Catuscia Palamidessi, Jan Rekers, Jan Rutten, Scott Smolka, Gert
Veltink, Chris Verhoef, Emile Verschure, Jos Vrancken, Fer-Jan de Vries, Jeroen
Warmerdam and Peter Weijland for interesting discussions, pointing out articles,
spotting errors in my papers, helping to use software, stimulating to write my
ideas down and for giving good advice.

Of course I should not forget the members of the SPECS consortium. I learned
a lot from SPECS. I want to thank SPECS for the inspiration (chapter 6 and 7 are
inspired by SPECS) and for showing me the management techniques necessary for
such a project. My thanks especially go to Wiet Bouma, Jeroen Bruijning, Michel
Dauphin, Jens Godskesen, Tanja de Groot, Bertrand Gruson, Jan Gustafsson,
Günter Karjoth, Georg Karner, Martin Kooij, Max Michel, Cees Middelburg,
Marc Phallipou, Simon Pickin, Sylvie Simon and Han Zuidweg.

Last, but not least, I thank my promotor and co-promotor, and Jaco de Bakker,
Peter van Emde Boas, Matthew Hennessy, Paul Klint and Joachim Parrow for
being member of the ‘promotiecommissie’.

June 9, 2009

Contents

1 Introduction 1
1.1 Process algebra . 1

1.1.1 Historical overview . 1
1.1.2 ω-Completeness . 3
1.1.3 An algorithm for branching bisimulation 4
1.1.4 Process algebra with (non deterministic) time steps 4
1.1.5 The definition of µCRL . 4

1.2 Structured operational semantics 5
1.2.1 Historical overview . 5
1.2.2 Negative premises . 7

1.3 The origins of the chapters . 9

2 Proving ω-Completeness using Inverted Substitutions – with Ap-
plications in Process Algebra 17
2.1 Introduction . 17
2.2 Preliminaries . 19
2.3 The general proof strategy . 20
2.4 Applications in finite, concrete, sequential process algebra 22

2.4.1 The semantics B . 24
2.4.2 The semantics RT,FT,R and F 25
2.4.3 The completed trace axioms 28
2.4.4 The trace axioms . 34

2.5 Extensions with the parallel operator 37
2.5.1 Interleaving without communication 37
2.5.2 Interleaving with communication 40

3 An Efficient Algorithm for Branching Bisimulation and Stutter-
ing Equivalence 45
3.1 Introduction . 45
3.2 The RCPS problem . 47
3.3 The Algorithm . 47
3.4 Stuttering equivalence . 53

Contents

3.5 Branching bisimulation equivalence 54
3.6 Concluding remarks . 57

4 Transition System Specifications with Negative Premises 63
4.1 Introduction . 63
4.2 Transition system specifications and stratifications 66
4.3 Examples showing the use of stratifications 75
4.4 The ntyft/ntyxt-format and the congruence theorem 78
4.5 Modular properties of TSS’s . 86
4.6 Congruences induced by ntyft/ntyxt 90
4.7 An overview of trace and completed trace congruences 97

5 The Meaning of Negative Premises in Transition System Speci-
fications 103
5.1 Introduction . 104
5.2 Preliminaries . 105
5.3 Transition relations for TSS’s . 109
5.4 TSS’s and their associated transition relations 114
5.5 Reducing TSS’s . 118
5.6 Reduction and stratification . 126
5.7 Bisimulation relations . 131
5.8 The ntyft/ntyxt-format and the congruence theorem 132
5.9 Conservative extensions of TSS’s 140
5.10 An axiomatisation of priorities with abstraction 145
5.11 Appendix: the relation between TSS’s and logic programs 152

6 ACP with Real-Time Steps 161
6.1 Introduction . 161
6.2 The language and its axioms . 162
6.3 Delays . 167
6.4 Example . 170
6.5 An operational semantics for ACPtτε 173
6.6 Relating ACPτε to ACPtτε . 175

7 The Syntax and Semantics of µCRL 183
7.1 Introduction . 183
7.2 The syntax of µCRL . 184

7.2.1 Names . 184
7.2.2 Lists . 184
7.2.3 Sort specifications . 185
7.2.4 Function specifications . 185
7.2.5 Rewrite specifications . 185
7.2.6 Process expressions and process specifications 186
7.2.7 Action specification . 188
7.2.8 Communication specification 188

Contents

7.2.9 Specifications . 189
7.2.10 The standard sort Bool . 189
7.2.11 An example . 189
7.2.12 The from construct . 189

7.3 Static semantics . 190
7.3.1 The signature of a specification 190
7.3.2 Variables . 191
7.3.3 Static semantics . 192
7.3.4 The communication function 196

7.4 Well-formed µCRL specifications 197
7.5 Algebraic semantics . 197

7.5.1 Algebras . 197
7.5.2 Substitutions . 198
7.5.3 Boolean preserving models 199
7.5.4 The process part . 200

7.6 Effective µCRL-specifications . 206
7.6.1 Semi complete rewriting systems 206
7.6.2 Finite sums . 208
7.6.3 Guarded recursive specifications 209
7.6.4 Effective µCRL-specifications 210
7.6.5 Proving µCRL-specifications effective 211

7.7 Appendix An SDF-syntax for µCRL 214

8 Samenvatting: Procesalgebra en Operationele Semantiek 219

Contents

1

Introduction

This thesis proposes a number of solutions to various problems in process algebra
and operational semantics. Below these problems and their historical contexts
are sketched.

1.1 Process algebra

Process algebra studies concurrent communicating processes in an algebraic
framework. Processes are modelled by structures, for instance projective lim-
its [6], graphs or (especially in this thesis) transition systems. These structures
are equipped with several operators, and so one gets an algebra in the sense of
model theory.

1.1.1 Historical overview

Process algebra as we know it today has a considerable history. It originated
from the wish to compose behaviour of processes into more complex behaviour
through the use of operators. Many models in theoretical computer science, e.g.
Turing machines, Petri nets or automata, are essentially not compositional in
this sense. In 1969 Burstall and Landin [23] gave a plea to apply algebraic
techniques in the study of programming languages. They provided the earliest
examples of process algebras although these in no way resemble the algebras that
are generally considered today.

The roots of process algebra as we know it now can be traced back to the work
of Scott and Strachey [82, 86] (1971). They studied sequential programming
languages and provided them with a mathematical semantics in terms of contin-
uous functions. These functions describe how a program transforms initial input
into final output. Continuous functions are not satisfactory to give a semantics
to many features whose analogues are often found in concrete systems. In 1973
Milner signaled this problem and gave the following classes of programs that
could not be dealt with [59, 60]:

1

2 1. Introduction

1. non terminating programs with side effects,

2. non deterministic programs and

3. parallel programs.

As a basis to study these programs Milner proposed an algebra of processes
with as operations a set of atomic input/output transformations, an alternative
composition operator (?), a sequential composition operator (∗) and a parallel
composition operator (‖). A process is a function from input to output and a
continuation of the process. This continuation is also a process in the sense that
it can read more input and provide new output. This continuous reading and
writing of processes describe its side effects. Non-deterministic behaviour, caused
by the alternative and parallel composition operators is described using an oracle,
which arbitrarily picks a possible future behaviour of the process. These processes
strongly resemble Mealy machines. Somewhat earlier, in 1971, Bekič, who also
wanted to model the behaviour of parallel programs, developed a process algebra
too [10]. Bekič based his work on elementary state transformations. A process
consists of a set of interleaved sequences of these.

Bekič extended his work slightly (for instance to CSP [42], see [11] opus 60
and 62). Milner developed his theory considerably (see e.g. [58, 61, 62]). In
1980 he published his famous book ‘A Calculus of Communicating Systems’ [63].
Generally this book is seen as the starting point for process algebra in its current
form. In this book the main process constructors are an alternative composition
operator (+), action prefix operators (a : .) for a number of atomic actions a,
and a parallel operator (|). Processes are defined as transition systems or labeled
automata modulo either strong congruence or observation congruence. Strong
congruence says that two processes are the same if they can mutually simulate
each other at any time. Observation congruence is defined equally, except that it
takes internal or hidden actions into account. Park [72] adapted these definitions
slightly to obtain the now more popular strong bisimulation and observation (or
weak) bisimulation congruence. The resulting algebra is called CCS in conformity
with the title of Milner’s book.

CCS has had an enormous influence on the development of process based lan-
guages. For instance in 1978, before CCS existed, CSP (Communicating Sequen-
tial Processes) was presented as ‘an ambitious attempt to find a single simple
solution’ for communication and synchronisation in parallel programming (see
[42], quote from the introduction). The synchronous communication of CSP was
meant to serve as a single and simple way to describe parallel programs, as an al-
ternative to constructs such as semaphores [28], conditional critical regions [41],
monitors and queues [21]. In 1985, influenced by Milner, Hoare viewed CSP
as the ‘simplest possible mathematical theory’ that can be used as a specifica-
tion, a programming and a verification language (see [43], quote can be found in
chapter 7).

In 1982 Bergstra and Klop studied the question whether general equations
over a process language, with a set of atomic actions, alternative composition,

1.1. Process algebra 3

sequential composition and a parallel operator, have solutions in a completed
metrical space [12]. In order to solve this question, they introduce the so called
axiomatic approach: a process algebra is any algebra satisfying a number of
elementary equations. In 1984, continuing along this line, they proposed to
determine a general algebraic concurrency theory with some fixed basic operators,
analogous (say) to rings or vector spaces [13, 15]. They defined a hierarchy
of process algebras, starting with BPA (Basic Process Algebra) based on the
alternative composition operator (+) and the sequential composition operator
(·). These operators are supposed to satisfy axioms A1–A5 in table 5.2. PA
(Process Algebra) is BPA extended with the merge (‖) and the left merge (‖).
The left merge has been introduced for a finite axiomatisation of PA [69]. In PA
processes can be described that behave in an interleaved fashion. ACP is PA
extended with the communication merge (|) to describe communication. PA and
ACP also have their characteristic sets of axioms. See [6] for a full treatment
of BPA, PA and ACP. Bergstra and Klop applied the axiomatic approach in an
early stage to prove some processes specifications correct (see e.g. [14]).

The different algebraic theories triggered a substantial amount of research.
For an overview of the developments in process algebra we refer to the textbooks
[6, 37, 43, 65]. In the sequel we only mention the developments in process algebra
relevant to this thesis.

1.1.2 ω-Completeness

Many authors have observed that bisimulations are not the only interesting pro-
cess equivalences. For instance in [25] De Nicola and Hennessy argue that
two processes can be considered equivalent if they cannot be distinguished by
some relevant notion of testing. Due to several different notions of testing this
led to a hierarchy of process equivalences. In van Glabbeek [34] a part of this
hierarchy, namely for finite, concrete1, sequential processes, can be found. In [34]
each defined equivalence has also been provided with a complete axiomatisation
for closed process expressions.

In [68] Moller studied axiomatisations for strong bisimulation for recursion-
free CCS expressions without concurrency and for recursion-free CCS expressions
with the left merge. He addressed the question whether these axiomatisations
are ω-complete, i.e. complete for process expressions containing variables, and
answered it affirmatively. This immediately raised the question whether the
axiomatisations given in [34] are also ω-complete. In chapter 2 of this thesis this
question is answered for almost all axiom sets in [34]. The result is somewhat
surprising. Some sets are ω-complete, some other sets are ω-complete if there
are at least two actions and others are only ω-complete if there are an infinite
number of actions. In order to prove the ω-completeness of these axiom sets in
a concise way, a proof technique is developed which is then fruitfully applied.

1Concrete means in [34] without internal activity.

4 1. Introduction

1.1.3 An algorithm for branching bisimulation

Another question in the area of process equivalences is to establish whether two
processes are equivalent in some sense, and especially to do this automatically. In
[48] (see also [49]) an algorithm is presented to decide weak and strong bisimula-
tion on finite state processes in an efficient manner. It is also shown that deciding
bisimulation can be done considerably more efficiently than deciding many other
equivalences, which are mainly based on traces.

Recently, van Glabbeek and Weijland [35] have proposed an alternative
for weak bisimulation, called branching bisimulation, because they felt that weak
bisimulation did not properly preserve the branching structure of processes. This
led to the question whether the algorithms to decide strong and weak bisimu-
lation could be adapted to branching bisimulation. This question is answered
positively in chapter 3 of this thesis. The algorithm for branching bisimulation
even outperforms the algorithm for weak bisimulation equivalence (see table 3.1
and also [29]).

1.1.4 Process algebra with (non deterministic) time steps

An old and thoroughly studied question is how to describe real time systems and
prove properties about it. In the setting of process algebra (mainly CSP) some
early work has been done (see [32], [50] and [78]). The unpleasant complexity
of these gave rise to the question whether it was possible to describe and verify
real time systems in a simpler way. Based on a simple idea, which turned out
to be exactly the idea underlying [79], a simple real time process algebra has
been set up, which is reported on in chapter 6. This exercise shows that many
real time features can indeed be described and verified in such a simple setting.
Recently, real time process algebra has become popular and many comprehensive
alternatives have been proposed ([5, 40, 70, 71]).

1.1.5 The definition of µCRL

The work on CCS, CSP and ACP has initiated work on specification languages,
i.e. LOTOS [47], PSF [56] and CRL [83], and the programming language OC-
CAM [46]. These languages are constructed by taking some basic process algebra
operators together with some practical extra operators and adding the possibil-
ity to describe data. In these languages the relation between process behaviour
and data manipulation is important. Therefore, there is a need to get a deeper
understanding of it. Due to their intended character LOTOS, CRL, PSF and
OCCAM are not perfect in this respect. There have been some attempts to pro-
vide a better suited language [20, 66]. However, these are not very close to the
specification and programming languages mentioned above. In the last chapter
of this thesis a language, called µCRL (micro CRL), is presented which is based
on process algebra and abstract data types. This language is designed such that
it only contains the most essential operations of both disciplines. It is hoped that
µCRL will provide useful theory to understand the interaction between processes

1.2. Structured operational semantics 5

and data and moreover, that this will lead to techniques for constructing concrete
and reliable systems in an efficient way.

1.2 Structured operational semantics

The field of semantics is the branch of computer science that studies how pro-
gramming and specification languages can be provided with a meaning. Lan-
guages often contain a wealth of syntactical constructs of which the precise mean-
ing is not always – a priori – obvious. Semantics provides programs written in a
language with a meaning by mapping them to a well understood domain.

1.2.1 Historical overview

Semantics came into existence when the first higher level languages were devel-
oped (around 1960). Many approaches were pursued at the same time (see e.g.
Steel [84] or de Bakker [7]). Operational semantics, as it is called nowa-
days, was proposed by McCarthey [57] in 1962. The term ‘operational seman-
tics’ arose somewhere in that decade. Written accounts of it can be found in
[81, 54, 55]. Operational semantics views a program as a combination of atomic
instructions that generally operate on a data-state. A step function step tells,
given a program and a data-state, which atomic action is executed and how it
transforms the data-state. It yields the transformed data-state and the remainder
of the program. An execution of a program in an initial data-state is a sequence

(p0, s0), (p1, s1), ..., (pn, sn), ...

where pi are programs, si are data-states and (pi+1, si+1) = step(pi, si). The
languages PL/I [73] and Algol 60 [53] are early examples of larger languages that
have been provided with such a semantics.

Operational semantics only provides the translation of a program into its mean-
ing indirectly. For instance the meaning of a program may be a mapping from
the initial data-state to its execution, or it may be the mapping from the initial
data-state to the final data-state if it exists. For larger languages such a two step
semantics may become complex and unstructured. It is often especially hard or
even impossible to extract the effect of language constructs as functions in the
semantic domain. In this case the meaning of programs may be clear, but the
meaning of language constructs may be opaque. In order to guarantee that the
effect of the language constructs is also clear, another type of semantics, now
often called denotational semantics, has been developed. In this semantics the
constructs in a language are directly mapped to functions in the semantic do-
main. One of the advantages of this style of semantics is compositionality which
means that the meaning of the whole can be obtained using the meaning of its
parts. Denotational semantics can be traced back to Landin (1965, see [51]) and
Steel (1969, see [85]). It became especially popular due to the work of Scott
and Strachey [82] (see also [86]).

6 1. Introduction

It is often argued that languages should be provided with more than one type
of semantics [8, 44]. The semantics are then related which implies that the
language has the properties of all of them. An operational semantics is defined
as an assistant for the implementor of the language, safe-guarding executability.
A denotational semantics is defined to guarantee that a language is compositional.
A lot of research has been carried out in this vein (see e.g. [1, 2, 8, 74]).

Structure in operational semantics has also been brought in along another
route. Around 1973 some examples emerged where the operational steps of a
term were defined using the steps of its subterms [9, 44]. This inspired Plotkin
to a more structured approach. In 1977 he introduced a notation that has now
become quite popular to give operational semantics to languages [74]. He defined
the operational semantics by rules of the form:

(p1, s1) −→ (p′1, s
′
1) ... (pn, sn) −→ (p′n, s

′
n)

(p, s) −→ (p′, s′)

where pi (1 ≤ i ≤ n) are subterms of p. The meaning of such a rule is that the
step (now denoted by an arrow) in the conclusion may be done if all steps in
the premises can take place. Plotkin and Hennessy have applied operational
semantics of this kind to a simple programming language [38] and CSP [76]. In
1981 Plotkin wrote an overview of how structural operational semantics could
be applied in general on programming languages [75]. The term structural refers
to the use of smaller processes in the premises than in the conclusion (see also
[24]).

In order to give an operational semantics to CCS Hennessy and Plotkin [39]
used a slightly modified step relation. They wrote

p
a
−→ p′

meaning that process p transforms itself into process p′ by executing an atomic
action a. The a above the arrow represents the side effect that p causes by
executing a. Non-determinism is modelled by giving p the possibility to do several

steps, e.g. p
a
−→ p′ and p

b
−→ p′′ which means that p can either do an a or a

b-step. An explicit data-state turned out not to be necessary and it is therefore
omitted. The operational rules now have the form:

p1

b1
−→ p′1 ... pn

bn
−→ p′n

p
a
−→ p′

where b1, ..., bn and a are atomic actions.
Since then structural operational semantics has become a subject of study

in itself. In [26] and [27] De Simone studied a format of rules, now called
the De Simone-format [36] and he proved a correspondence result with so-called
architectural expressions in Meije-SCCS [4, 64].

The De Simone-format has an important property; if processes are constructed
by operators defined in this format then each subprocess may be replaced by a

1.2. Structured operational semantics 7

failure equivalent [22] process without changing the completed traces of the pro-
cess. Two processes are failure equivalent, if they have the same failure traces,
i.e. traces of the process marked at the end with a set of actions it cannot per-
form after executing the trace. In fact failure equivalence is the coarsest such
equivalence: it is the completed trace congruence induced by the De Simone-
format. From this we may conclude that, assuming that one can only observe
the completed traces of a process, failure equivalence is a natural candidate to
act as a semantics for processes whenever operators can be defined in the De
Simone-format. As languages such as CCS, CSP and ACP can essentially be
defined in this way, failure equivalence is one of the more popular process equiv-
alences. Sometimes one can only directly observe the traces of a process. In this
case trace equivalence is a natural semantics because it is the trace congruence
induced by the De Simone format.

The study of operational semantics has been continued in Groote and Vaan-
drager [36]. There the term structured operational semantics was used, to stress
the uniformity of the notation to define an operational semantics. In [36, 39] it is
not required that in the operational rules the behaviour of a term depends on its
subterms. This means that structural induction is not adequate to prove proper-
ties of operational steps and therefore the term structural operational semantics
is not appropriate any more. In structured operational semantics, the induction
on terms has been replaced by induction on the depth of proof trees.

In [36] a format, called the tyft/tyxt-format has been defined. It has the prop-
erty that strong bisimulation is a congruence with respect to all operators de-
finable in this format and hence, an operational semantics in tyft/tyxt-format
induces a compositional semantical mapping from process expressions to the do-
main of transition systems modulo strong bisimulation equivalence. In [80] this
has been made explicit in the setting of metric semantics. Furthermore, it is
shown in [36] that the completed trace congruence belonging to the tyft/tyxt-
format is 2-nested simulation equivalence and the trace congruence is 1-nested
simulation. In contrast with failure and trace equivalence, there is less reason to
consider nested simulations as natural process semantics as the tyft/tyxt-format
allows one to define rather unusual operators for forming contexts.

1.2.2 Negative premises

The strong point of structured operational semantics is that it is close to intuition.
But it turned out to be convenient and sometimes necessary to use negative in-
formation in the premises. This led to operational semantics that were intuitively
clear, but that did not fit the formats of rules that were studied in [27, 36, 75].
With negative premises rules have the general format

u1

b1
−→ u′1 ... un

bn
−→ u′n v1

c1−6→ ... vm
cm−6→

t
a
−→ t′

.

8 1. Introduction

The idea is that if each term ui can do a bi-step to u′i (1 ≤ i ≤ n) and if vj
cannot do a cj-step (1 ≤ j ≤ m) then t can do an a-step to t′. By default a
term cannot do a step unless the existence of that step has been shown. This
kind of reasoning must be carried out with extreme care as the assumption that
a step cannot take place can lead to the conclusion that it can take place. In the
literature there are a number of operational semantics in which carelessness in
this sense led to structured operational semantics of which the precise meaning is
not completely obvious [19, 45, 67]. This posed the problem of finding techniques
to define meaningful structured operational semantics with negative premises.

A first and rather general solution for the use of negative premises in structured
operational semantics was provided by Bloom Istrail and Meyer [17, 18].
They defined a format for operational rules, often called the GSOS-format, in
which guarded recursion and a form of negative premises are allowed. Their ap-
proach is based on a number of observations which imply that negative premises
in the GSOS-format always make sense. The trace and completed trace congru-
ence for the GSOS-format is 2/3-bisimulation [52], which is also called ready-
simulation. The main features of the GSOS format are the negative premises
and copying of processes. Assuming that these are legitimate operations, ready
simulation is a natural process equivalence [16].

There are several examples of structured operational semantics that do not
fit the GSOS-format. In particular priorities and renaming in combination with
unguarded recursion is problematic. In chapter 4 of this thesis a general method,
based on stratifications in logic programming [3, 77] is adapted to deal with these
cases. The method says that if one can define a so-called stratification for a set
of rules, then these rules define a step function in a reasonable way.

Also in this chapter the ntyft/ntyxt-format is defined as an extension of the
tyft/tyxt-format and it is shown that strong bisimulation is the trace and com-
pleted trace congruence with respect to this format. Due to the capabilities of
the ntyft/ntyxt-format for defining unnatural operators, we do not see this as a
decisive argument in favour of strong bisimulation.

The stratification technique turned out not to be sufficiently strong to deal
with the combination of the rules for internal actions [33], unguarded recursion
and priorities. This question is dealt with in chapter 5. Again inspired by logic
programming [30, 31], a unique stable transition relation is defined as the step
relation belonging to a structured operational semantics with negative premises.
This notion generalizes all definitions of step-functions associated to a set of rules
given up till now. Moreover, it seems that if a set of rules has no unique stable
model, it is hard, if not impossible, to associate a reasonable step function to
such a set.

It is shown that under certain pathological circumstances the operational rules
for priorities, internal actions and unguarded recursion do not have any stable
model. Hence, it is reasonable to conclude that under these circumstances these
rules do not make sense.

As the definition of a unique stable model is not constructive, it is often very
difficult to prove that a unique stable model exists. The stratification technique

1.3. The origins of the chapters 9

from chapter 4 can be used, but, as mentioned earlier, this technique is not
adequate under all circumstances. Therefore a reduction technique, which is also
taken from logic programming [30], is adapted and applied. This technique is
not very easy to use but, as shown in chapter 5, with the stratification technique
from chapter 4 it turns out to be capable of showing the existence of a unique
stable transition relation for priorities, internal actions and unguarded recursion
under some reasonable conditions.

1.3 The origins of the chapters

The chapters 2 to 7 of this thesis are slightly modified versions of articles that
have been published earlier. The chapters are all fully self contained, although
they sometimes refer to each other for comparison or because techniques of other
chapters have been applied. Below a list is given indicating where these articles
appeared. Note that chapter 2 and chapter 6 have been published under different
titles.

Chapter 2 J.F. Groote. A new strategy for proving ω–completeness with
applications in process algebra. In J.C.M. Baeten and J.W. Klop,
editors, Proceedings CONCUR 90, Amsterdam, volume 458 of Lec-
ture Notes in Computer Science, pages 314–331. Springer-Verlag,
1990.

Chapter 3 J.F. Groote and F.W. Vaandrager. An efficient algorithm for
branching bisimulation and stuttering equivalence. In M.S. Pater-
son, editor, Proceedings 17th ICALP, Warwick, volume 443 of Lec-
ture Notes in Computer Science, pages 626–638. Springer-Verlag,
1990.

Chapter 4 J.F. Groote. Transition system specifications with negative
premises. Report CS-R8950, CWI, Amsterdam, 1989. An ex-
tended abstract appeared in J.C.M. Baeten and J.W. Klop, editors,
Proceedings CONCUR 90, Amsterdam, LNCS 458, pages 332–341.
Springer-Verlag, 1990.

Chapter 5 R.N. Bol and J.F. Groote. The meaning of negative premises in
transition system specifications. Report CS-R9054, CWI, Amster-
dam, 1990. An extended abstract appeared in J. Leach Albert,
B. Monien, and M. Rodŕıguez Artalejo, editors, Proceedings 18th

ICALP, Madrid, pages 481–494, 1991.

10 1. Introduction

Chapter 6 J.F. Groote. Specification and verification of real time systems in
ACP. Report CS-R9015, CWI, Amsterdam, 1990. An extended
abstract appeared in L. Logrippo, R.L. Probert and H. Ural, edi-
tors, Proceedings 10th International Symposium on Protocol Spec-
ification, Testing and Verification, Ottawa, pages 261–274, 1990.

Chapter 7 J.F. Groote and A. Ponse. The syntax and semantics of µCRL.
Report CS-R9076, CWI, Amsterdam, 1990.

References

[1] P. America, J.W. de Bakker, J.N. Kok, and J.J.M.M. Rutten. A denotational
semantics of a parallel object-oriented language. Report CS-R8626, CWI,
Amsterdam, 1986. To appear in Information and Computation.

[2] P. America, J.W. de Bakker, J.N. Kok, and J.J.M.M. Rutten. Opera-
tional semantics of a parallel object-oriented language. In Proceedings 13th

ACM Symposium on Principles of Programming Languages, St. Petersburg,
Florida, pages 194–208, 1986.

[3] K.R. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, Volume B, Formal Models and Semantics,
chapter 10, pages 495–574. North-Holland, 1990.

[4] D. Austry and G. Boudol. Algèbre de processus et synchronisations. Theo-
retical Computer Science, 30(1):91–131, 1984.

[5] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. Formal Aspects
of Computing, 3(2):142–188, 1991.

[6] J.C.M. Baeten and W.P. Weijland. Process algebra. Cambridge Tracts in
Theoretical Computer Science 18. Cambridge University Press, 1990.

[7] J.W. Bakker. Semantics of programming languages. Advances in Informa-
tion Systems Science, 2:173–227, 1969.

[8] J.W. de Bakker. Mathematical theory of program correctness. Prentice Hall
International, 1980.

[9] J.W. de Bakker and W.P. de Roever. A calculus for recursive program
schemes. In Proceedings 1st ICALP, pages 167–196. North-Holland, 1972.

[10] H. Bekič. Towards a mathematical theory of processes. Technical Report
TR25.125, IBM Laboratory, Vienna, 1971. This document also appeared in
[11].

[11] H. Bekič. Programming Languages and Their Definition (C.B. Jones, editor),
volume 177 of Lecture Notes in Computer Science. Springer-Verlag, 1984.

References 11

[12] J.A. Bergstra and J.W. Klop. Fixed point semantics in process algebras.
Report IW 206, Mathematisch Centrum, Amsterdam, 1982.

[13] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communica-
tion. Information and Computation, 60(1/3):109–137, 1984.

[14] J.A. Bergstra and J.W. Klop. Verification of an alternating bit protocol
by means of process algebra. In W. Bibel and K.P. Jantke, editors, Math.
Methods of Spec. and Synthesis of Software Systems ’85, Math. Research
31, pages 9–23, Berlin, 1986. Akademie-Verlag. First appeared as: Report
CS-R8404, CWI, Amsterdam, 1984.

[15] J.A. Bergstra and J.W. Klop. Algebra of communicating processes. In
J.W. de Bakker, M. Hazewinkel, and J.K. Lenstra, editors, Mathematics
and Computer Science, CWI Monograph 1, pages 89–138. North-Holland,
Amsterdam, 1986.

[16] B. Bloom. Ready simulation, bisimulation, and the semantics of CCS-like
languages. PhD thesis, Department of Electrical Engineering and Computer
Science, Massachusetts Institute of Technology, August 1989.

[17] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t be traced: prelim-
inary report. In Proceedings 15th ACM Symposium on Principles of Pro-
gramming Languages, San Diego, California, pages 229–239, 1988.

[18] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t be traced. Tech-
nical Report 90-1150, Department of Computer Science, Cornell University,
Ithaca, New York, August 1990.

[19] T. Bolognesi, F. Lucidi, and S. Trigila. From timed Petri nets to timed
LOTOS. In L. Logrippo, R.L. Probert, and H. Ural, editors, Proceedings
10th IFIP WG6.1 International Symposium on Protocol Specification, Test-
ing and Verification, Ottawa, pages 395–408, 1990.

[20] G. Boudol. Towards a lambda-calculus for concurrent and communicating
systems. In TAPSOFT 1989, Lecture Notes in Computer Science 351, pages
149–161. Springer-Verlag, 1989.

[21] P. Brinch Hansen. The programming language Concurrent Pascal. IEEE
Transactions on Software Engineering, 1(2):199–207, 1975.

[22] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe. A theory of communicating
sequential processes. Journal of the ACM, 31(3):560–599, 1984.

[23] R.M. Burstall and P. Landin. Programs and their proofs: an algebraic ap-
proach. In B. Meltzer and D. Michie, editors, Machine intelligence, volume 4,
pages 17–43. Edinburgh University Press, 1969.

[24] R.M.B. Burstall. Proving properties of programs by structural induction.
Computer Journal, 12(1):41–48, 1969.

12 1. Introduction

[25] R. De Nicola and M. Hennessy. Testing equivalences for processes. Theoret-
ical Computer Science, 34:83–133, 1984.

[26] R. De Simone. Calculabilité et expressivité dans l’algebra de processus par-
allèles Meije. Thèse de 3e cycle, Univ. Paris 7, 1984.

[27] R. De Simone. Higher-level synchronising devices in meije–SCCS. Theoret-
ical Computer Science, 37:245–267, 1985.

[28] E.W. Dijkstra. Cooperating sequential processes. In F. Genuys, editor,
Programming Languages, pages 43–112, Academic Press, New York, 1968.

[29] L. Fredlund, P. Ernberg and B. Jonsson. Specification and validation of a
simple overtaking protocol using LOTOS. Technical report T90006, SICS,
Stockholm, 1990.

[30] A. van Gelder, K. Ross, and J.S. Schlipf. Unfounded sets and well–founded
semantics for general logic programs. In Proceedings of the 7th ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
pages 221–230, 1988.

[31] M. Gelfond and V. Lifschitz. The stable model semantics for logic program-
ming. In R. Kowalski and K. Bowen, editors, Proceedings 5th International
Conference on Logic Programming, pages 1070–1080. MIT press, 1988.

[32] R.T. Gerth and A. Boucher. A timed failures model for extended com-
municating processes. In Th. Ottmann, editor, Proceedings 14th ICALP,
Karlsruhe, volume 267 of Lecture Notes in Computer Science, pages 95–114.
Springer-Verlag, 1987.

[33] R.J. van Glabbeek. Bounded nondeterminism and the approximation induc-
tion principle in process algebra. In F.J. Brandenburg, G. Vidal-Naquet, and
M. Wirsing, editors, Proceedings STACS 87, volume 247 of Lecture Notes in
Computer Science, pages 336–347. Springer-Verlag, 1987.

[34] R.J. van Glabbeek. The linear time – branching time spectrum. In J.C.M.
Baeten and J.W. Klop, editors, Proceedings CONCUR 90, Amsterdam, vol-
ume 458 of Lecture Notes in Computer Science, pages 278–297. Springer-
Verlag, 1990.

[35] R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in
bisimulation semantics (extended abstract). In G.X. Ritter, editor, Infor-
mation Processing 89, pages 613–618. North-Holland, 1989.

[36] J.F. Groote and F.W. Vaandrager. Structured operational semantics and
bisimulation as a congruence (extended abstract). In G. Ausiello, M. Dezani-
Ciancaglini, and S. Ronchi Della Rocca, editors, Proceedings 16th ICALP,
Stresa, volume 372 of Lecture Notes in Computer Science, pages 423–438.
Springer-Verlag, 1989. Full version to appear in Information and Computa-
tion.

References 13

[37] M. Hennessy. Algebraic theory of processes. MIT Press, Cambridge, Mas-
sachusetts, 1988.

[38] M. Hennessy and G.D. Plotkin. Full abstraction for a simple programming
language. In J. Bečvář, editor, 8th Symposium on Mathematical Foundations
of Computer Science, volume 74 of Lecture Notes in Computer Science, pages
108–120. Springer-Verlag, 1979.

[39] M. Hennessy and G.D. Plotkin. A term model for CCS. In P. Dembiński,
editor, 9th Symposium on Mathematical Foundations of Computer Science,
volume 88 of Lecture Notes in Computer Science, pages 261–274. Springer-
Verlag, 1980.

[40] M. Hennessy and T. Regan. A temporal process algebra. Report 2/90,
Computer Science Department, University of Sussex, 1990.

[41] C.A.R. Hoare. Towards a theory of parallel programming. In C.A.R. Hoare
and R.H. Perrott, editors, Operating System Techniques, pages 61–71. Aca-
demic Press, 1972.

[42] C.A.R. Hoare. Communicating sequential processes. Communications of the
ACM, 21(8):666–677, 1978.

[43] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall Interna-
tional, 1985.

[44] C.A.R. Hoare and P.E. Lauer. Consistent and complementary formal the-
ories of the semantics of programming languages. Acta Informatica, 3:135–
153, 1974.

[45] H. Ichikawa, K. Yamanaka, and J. Kato. Incremental specifications in LO-
TOS. In L. Logrippo, R.L. Probert, and H. Ural, editors, Proceedings 10th

IFIP WG6.1 International Symposium on Protocol Specification, Testing
and Verification, Ottawa, pages 183–196, 1990.

[46] INMOS, Ltd. The occam programming manual. Prentice Hall International,
1984.

[47] ISO. Information processing systems – open systems interconnection – LO-
TOS – a formal description technique based on the temporal ordering of
observational behaviour ISO/TC97/SC21/N DIS8807, 1987.

[48] P.C. Kanellakis and S.A. Smolka. CCS expressions, finite state processes,
and three problems of equivalence. In Proceedings of the 2nd Annual ACM
Symposium on Principles of Distributed Computing, Montreal, Quebec,
Canada, 1983.

[49] P.C. Kanellakis and S.A. Smolka. CCS expressions, finite state processes,
and three problems of equivalence. Information and Computation, 86:43–68,
1990.

14 1. Introduction

[50] R. Koymans, R.K. Shyamasundar, W.P. de Roever, R. Gerth, and S. Arun-
Kumar. Compositional semantics for real-time distributed computing. In-
formation and Computation, 79:210–256, 1988.

[51] P.J. Landin. A correspondence between ALGOL 60 and Church’s lambda-
notation: Part i. Communications of the ACM, 8(2):89–101, 1965.

[52] K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. In Pro-
ceedings 16th ACM Symposium on Principles of Programming Languages,
Austin, Texas, pages 344–352, 1989.

[53] L.P. Lauer. Formal definition of Algol 60. Technical Report TR.25.088, IBM
Lab. Vienna, 1968.

[54] P. Lucas. Formal definition of programming languages and systems. In
Proceedings of the IFIP Congress 1971, pages 291–297. North Holland, 1972.

[55] P. Lucas. On program correctness and the stepwise development of imple-
mentations. In Proceedings of the Convegno di Informatica Teorica, Univer-
sity of Pisa, March 1973, pages 219–251, 1973.

[56] S. Mauw and G.J. Veltink. A process specification formalism. Fundamenta
Informaticae, XIII:85–139, 1990.

[57] J. McCarthey. Towards a mathematical science of computation. In C.M.
Popplewell, editor, Information Processing 1962, pages 21–28, 1963.

[58] G. Milne and R. Milner. Concurrent processes and their syntax. Journal of
the ACM, 26(2):302–321, 1979.

[59] R. Milner. An approach to the semantics of parallel programs. In Proceedings
Convegno di Informatica Teorica, Pisa, pages 283–302, 1973.

[60] R. Milner. Processes: A mathematical model of computing agents. In H.E.
Rose and J.C. Shepherdson, editors, Proceedings Logic Colloquium 1973,
pages 158–173. North-Holland, 1973.

[61] R. Milner. Synthesis of communicating behaviour. In J. Winkowski, editor,
Proceedings of MFCS, LNCS 64, pages 71–83, 1978.

[62] R. Milner. Flowgraphs and flow algebras. Journal of the ACM, 26(4):794–
818, 1979.

[63] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer-Verlag, 1980.

[64] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer
Science, 25:267–310, 1983.

[65] R. Milner. Communication and concurrency. Prentice Hall International,
1989.

References 15

[66] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, Part
I + II. Technical Report ECS-LFCS-89-85 + ECS-LFCS-89-86, Labora-
tory for Foundations of Computer Science, Computer Science Department,
Edinburgh University, 1989. To appear in Information and Computation.

[67] M.W. Mislove and F.J. Oles. A simple language supporting angelic nonde-
terminism and parallel composition, In Proceedings 7th Conference on the
Mathematical Foundations of Programming Semantics, Pittsburgh, 1991.

[68] F. Moller. Axioms for concurrency. PhD thesis, Report CST-59-89, Depart-
ment of Computer Science, University of Edinburgh, 1989.

[69] F. Moller. The importance of the left merge operator in process algebras.
In M.S. Paterson, editor, Proceedings 17th ICALP, Warwick, volume 443 of
Lecture Notes in Computer Science, pages 752–764. Springer-Verlag, 1990.

[70] F. Moller and C. Tofts. A temporal calculus of communicating systems.
In J.C.M. Baeten and J.W. Klop, editors, Proceedings CONCUR 90, Ams-
terdam, volume 458 of Lecture Notes in Computer Science, pages 401–415.
Springer-Verlag, 1990.

[71] X. Nicollin, J.-L. Richier, J. Sifakis, and J. Voiron. ATP: An algebra for
timed processes. In M. Broy and C.B. Jones, editors, Proceedings IFIP
Working Conference on Programming Concepts and Methods, Sea of Gallilea,
Israel. North-Holland, 1990.

[72] D.M.R. Park. Concurrency and automata on infinite sequences. In
P. Deussen, editor, 5th GI Conference, volume 104 of Lecture Notes in Com-
puter Science, pages 167–183. Springer-Verlag, 1981.

[73] PL/I definition Group. Formal definition of PL/I version 1. Report
TR25.071, American Nat. Standards Institute, 1986.

[74] G.D. Plotkin. LCF considered as a programming language. Theoretical
Computer Science, 5:223–255, 1977.

[75] G.D. Plotkin. A structural approach to operational semantics. Report
DAIMI FN-19, Computer Science Department, Aarhus University, 1981.

[76] G.D. Plotkin. An operational semantics for CSP. In D. Bjørner, editor, Pro-
ceedings IFIP TC2 Working Conference on Formal Description of Program-
ming Concepts – II, Garmisch, pages 199–225, Amsterdam, 1983. North-
Holland.

[77] T.C. Przymusinski. On the declarative semantics of deductive databases and
logic programs. In Jack Minker, editor, Foundations of Deductive Databases
and Logic Programming, pages 193–216. Morgan Kaufmann Publishers, Inc.,
Los Altos, California, 1987.

16 1. Introduction

[78] R. Reed and A.W. Roscoe. A timed model for communicating sequential
processes. Theoretical Computer Science, 58:249–261, 1988.

[79] J.L. Richier, J. Sifakis, and J. Voiron. Une algèbre des processus temporisés,
1987. In A. Arnold, editor, Actes du deuxième colloque C3, Angouléme, 1987.

[80] J.J.M.M. Rutten. Deriving denotational models for bisimulation from struc-
tured operational semantics. In M. Broy and C.B. Jones, editors, Proceedings
IFIP Working Conference on Programming Concepts and Methods, Sea of
Gallilea, Israel. North-Holland, 1990.

[81] D. Scott. Outline of a mathematical theory of computation. In Proceedings of
the 4th Annual Princeton Conference on Information Sciences and Systems,
pages 169–176, 1970.

[82] D.S. Scott and C. Strachey. Towards a mathematical semantics for computer
languages. In Proceedings of the Symposium on Computers and Automata,
volume 21 of Microwave Research Institute Symposia Series, 1971.

[83] SPECS-semantics. Definition of MR and CRL Version 2.1, 1990.

[84] T.B. Steel, editor. Formal Language Description Languages for Computer
Programming. Proceedings of the IFIP Working Conference on Formal Lan-
guage Description Languages. North-Holland, 1966.

[85] T.B. Steel. A formalization of semantics for programming language descrip-
tion. In T.B. Steel, editor, Formal Language Description Languages for
Computer Programming. Proceedings of the IFIP Working Conference on
Formal Language Description Languages, pages 25–36, 1969.

[86] J. Stoy. Denotational Semantics: the Scott-Strachey approach to Program-
ming Language Theory. MIT press, 1977.

2

Proving ω-Completeness using Inverted
Substitutions – with Applications in

Process Algebra

(Jan Friso Groote)

A technique for proving ω-completeness based on variable for term
substitutions is presented. First we apply this technique to axiom
systems for finite, concrete and sequential processes. It turns out that
the number of actions is important for these sets to be ω-complete.
For the axiom systems for bisimulation and completed trace semantics
one action suffices and for the trace axioms 2 actions are enough.
The ready, failure, ready trace and failure trace axiom sets are only
ω-complete if an infinite number of actions is available. Secondly we
consider process algebra with parallelism and show several axiom sets
(containing the axioms of standard concurrency) ω-complete.

2.1 Introduction

An equational theory E over a signature Σ is called ω-complete iff for all open
terms t1, t2:

E ` t1 = t2 ⇔ E ` σ(t1) = σ(t2) for all closed substitutions σ.

Not all equational theories are ω-complete: a well known example is the com-
mutativity of the + in Peano arithmetic: all closed instances are derivable from
any standard axiomatisation, but the law itself is not. Another example is the
three-element groupoid of Murskǐi [13], who showed that for an ω-complete
specification of the groupoid an infinite number of equations is necessary1.

Several process algebra theories are ω-incomplete, too, and up till now this was
more or less ignored (exceptions are Milner [11] and Moller [12]). But there

1Bergstra and Heering have shown that using hidden sorts and functions every recursively
enumerable equational theory has an ω-complete initial algebra specification [1].

17

18 2. Proving ω-Completeness using Inverted Substitutions

are several reasons why ω-completeness should not be neglected. In the first
place equations between open terms play an important role in process algebra.
For instance, processes are often described with sets of (open) equations. A
complete set of axioms (not necessarily ω-complete) gives no guarantee that such
sets of equations can be dealt with in a satisfactory manner. An example of this
situation are the so-called ‘axioms of standard concurrency’ [2] in ACP, which
had to be introduced in addition to the ‘complete’ set of axioms in order to prove
the expansion theorem [3]. The status of these axioms became clear only after
Moller [12] showed that in CCS with interleaving, but without communication,
some of the axioms of standard concurrency are required for ω-completeness.

Furthermore, ω-completeness is also useful for theorem provers [8, 9, 15]. In [14]
the so-called method ‘proof by consistency’ is introduced which can be applied to
show inductive theorems equationally provable if ω-completeness of the axioms
has been shown. In Heering [6] it is argued that ω-completeness is desirable
for the partial evaluation of programs. If P (x, y) is a program with parameters
x and y, and x has fixed value c, then the program Pc(y) (=P (c, y)) should be
evaluated as far as possible. In general this can only be achieved if the evaluation
rules are ω-complete.

A more or less standard technique for proving ω-completeness is the following:
given a set of axioms E over a signature Σ, find ‘normal forms’ and show that
every open term is provably equal to a normal form. Then prove that for all
pairs of different normal forms, closed instantiations can be found that differ in
a model M for E. E does not necessarily have to be complete with respect
to M. This last step shows that the equivalence of these instantiations cannot
be derived from E. From this ω-completeness of E follows directly. We prove
the ω-completeness of the trace and completed trace axioms in this way. This
technique has some disadvantages. The proofs are in general quite long and it is
often difficult to find a suitable normal form.

In this paper we present an alternative technique that employs inverted sub-
stitutions. Basically, it consists of finding a substitution ρ and an inverted sub-
stitution R. If ρ and R satisfy certain properties then ω-completeness follows
directly. The substitution ρ is used to transform a valid (open) equation e into a
closed one which is derivable via some proof. Then R transforms this proof into
a proof of e by replacing variables for subterms in it. It is completely explained
in section 2.3. This inverted substitution technique cannot always be applied,
as shown by an example, but if applicable, proofs of ω-completeness turn out to
be shorter and for the major part straightforward. Moreover, no reference to a
model is necessary. We apply our method to five sets of axioms, which are taken
from [4], for finite, concrete (i.e. without internal moves), sequential processes.
Only for the set of bisimulation axioms ω-completeness had been shown before
by Moller [12] using a longer proof. It turns out that the number of actions is
important for the axiom sets to be ω-complete. We need an infinite number of
actions for the ready trace, failure trace, ready and failure axioms. For the bisim-
ulation and the completed trace axioms at least one action is required whereas for
the trace axioms two actions are necessary. Then we study axiom sets for finite,

2.2. Preliminaries 19

x = x (reflexivity) x = y
y = x (symmetry) x = y y = z

x = z (transitivity)

xi = yi 1 ≤ i ≤ rank(f)
f(x1, ..., xrank(f)) = f(y1, ..., yrank(f))

for all f ∈ F (congruence)

Table 2.1: The inference rules of equational logic

concrete process algebra with interleaving without communication (also done in
[12]) and interleaving with communication. We give straightforward proofs of
the ω-completeness of these sets.

2.2 Preliminaries

Throughout this text we assume the existence of a countably infinite set V of
variables with typical elements x, y, z. A (one sorted) signature Σ = (F, rank)
consists of a set of function names F , disjoint with V , and a rank function
rank : F → NI , denoting the arity of each function name in F . T (Σ) is the set of
closed or ground terms over signature Σ and (Σ) is the set of open terms over Σ
and V . We use the symbol ≡ for syntactic equality between terms. Furthermore,
we have substitutions σ, ρ : V → (Σ) mapping variables to terms. Substitutions
are in the standard way extended to functions from terms to terms. An expression
of the form t = u (t, u ∈ (Σ)) is called an equation over Σ. The letter e is used
to range over equations. An expression of the form

e1, ..., en
e

is called an inference rule. We call e1, ..., en the premises and e the conclusion of
the inference rule. Substitutions are extended to equations and inference rules
as expected.

An equational theory over a signature Σ is a set E of equations over Σ. These
equations are called axioms. An equation e can be proved from a theory E,
notation E ` e, if e is an instantiation of an axiom in E, i.e. e ≡ σ(e′) for some
axiom e′ ∈ E and substitution σ, or if e is the conclusion of an instantiation of
an inference rule in table 2.1 of which all (instantiated) premises can be proved.
If it is clear from the context what E is, we sometimes write only e instead of
E ` e. We write E1 ` E2 if E1 ` e for all e ∈ E2. Note that if E ` t = u for
t, u ∈ T (Σ), then t = u can be proved using ground axioms and inference rules
only.

An equational theory E is ω-complete if for all equations e: E ` e iff E ` σ(e)
for all substitutions σ : V → T (Σ). Note that the implication from left to right

20 2. Proving ω-Completeness using Inverted Substitutions

is trivial. So, in general we only prove the implication from the right-hand side
to the left-hand side.

2.3 The general proof strategy

Let Σ = (F, rank) be a signature and let E be an equational theory over Σ.
We present a technique to show that E is ω-complete. Assume t = t′ is an
equation between open terms that can be proved for all its closed instantiations
by the axioms of E. We transform t = t′ to a closed equation by a substitution
ρ : V → T (Σ) that maps each variable in t and t′ to a unique closed (sub)term
representing this variable. By assumption E ` ρ(t) = ρ(t′). We transform
the proof of this fact to a proof for E ` t = t′ by an inverted substitution R
which replaces each subterm representing a variable by the variable itself. This
transformation yields the desired proof if requirements (2.1), (2.2) and (2.3)
below are satisfied. (2.1) says that the translation of ρ(t) = ρ(t′) must yield
t = t′ (or something provably equivalent). In general this only works properly if
each subterm representing a variable is unique for that variable and cannot be
confused with other subterms. Requirements (2.2) and (2.3) guarantee that the
transformed proof is indeed a proof. This is most clearly stated in (2.5), which
is a consequence of (2.2) and (2.3).

• For u ≡ t and u ≡ t′:
E ` R(ρ(u)) = u. (2.1)

• For each f ∈ F with rank(f) > 0 and u1, ..., urank(f), u
′
1, ..., u

′
rank(f) ∈

T (Σ):

E ∪ {ui = u′i, R(ui) = R(u′i) | 1 ≤ i ≤ rank(f)} ` (2.2)

R(f(u1, ..., urank(f))) = R(f(u′1, ..., u
′
rank(f))).

• For each axiom e ∈ E and closed substitution σ : V → T (Σ):

E ` R(σ(e)). (2.3)

Theorem 2.3.1. Let E be an equational theory over signature Σ. If for each pair
of terms t, t′ ∈ (Σ) that are provably equal for all closed instantiations, there
exist a substitution ρ : V → T (Σ) and a mapping R : T (Σ) → (Σ) satisfying
(2.1),(2.2) and (2.3), then E is ω-complete.

Proof. Let t, t′ ∈ (Σ) such that for each substitution σ : V → T (Σ):

E ` σ(t) = σ(t′). (2.4)

We must prove that E ` t = t′. This is an immediate corollary of the following
statement:

E ` u = u′ for u, u′ ∈ T (Σ) ⇒ E ` R(u) = R(u′). (2.5)

2.3. The general proof strategy 21

It follows from (2.4) that E ` ρ(t) = ρ(t′). Using (2.5) this implies E ` R(ρ(t)) =
R(ρ(t′)). By (2.1) it follows that E ` t = t′.

Statement (2.5) is shown by induction on the proof of E ` u = u′. As u
and u′ are closed terms, we may assume that the whole proof of E ` u = u′

consists of closed terms. First we consider the inference rules without premises.
There are two possibilities. In the first case u = u′ has been shown by the
inference rule x = x, i.e. u ≡ σ(x) ≡ u′ for some substitution σ : V → T (Σ).
Clearly, E ` R(u) = R(u′) using the same inference rule and a substitution
σ′ : V → (Σ) defined by σ′(x) = R(σ(x)). Otherwise, u = u′ is an instantiation
σ(e) of an axiom e ∈ E. Using (2.3) it follows immediately that E ` R(σ(e)).

We check here the inference rules with premises. First we deal with the rule
for transitivity. So assume E ` u = u′ has been proved using E ` u = u′′ and
E ` u′′ = u′. By induction we know that there are proofs for E ` R(u) = R(u′′)
and E ` R(u′′) = R(u′). Applying the inference rule for transitivity again we
have that E ` R(u) = R(u′). The rule for symmetry can be dealt with in
the same way. Now suppose that E ` f(u1, ..., urank(f)) = f(u′1, ..., u

′
rank(f))

has been proved using E ` ui = u′i (1 ≤ i ≤ rank(f)). By induction we
know that E ` R(ui) = R(u′i). Using (2.2), it follows immediately that E `
R(f(u1, ..., urank(f))) = R(f(u′1, ..., u

′
rank(f))). 2

This proof strategy cannot always be applied. This is illustrated by the following
example.

Example 2.3.2. Suppose we have an axiomatisation for the natural numbers
with a function max giving the maximum of any pair of numbers. In the signature
we have a 0, a successor function S and max. The following set Emax of axioms
is easily seen to be complete with respect to the standard interpretation.

max(x, 0) = x,
max(0, x) = x,
max(S(x), S(y)) = S(max(x, y)).

An ω-complete characterisation of the natural numbers with maximum is

max(x, 0) = x,
max(S(x), S(y)) = S(max(x, y)),
max(S(x), x) = S(x),
max(x, x) = x,
max(x, y) = max(y, x),
max(x,max(y, z)) = max(max(x, y), z).

However, it is impossible to use our technique to prove this or any other extension
of Emax ω-complete. This can be seen by considering the following two terms:

t1 = max(S(0), x) and
t2 = x.

22 2. Proving ω-Completeness using Inverted Substitutions

We can see that these terms are not provably equal because with x = 0, the first
term is equal to S(0) and the second is equal to 0. Note that this is the only way
to see the difference. If any term that is not equal to 0 is substituted for x then
both terms are equivalent.

Suppose we would like to apply our technique in this case. If we take ρ such that
ρ(x) = 0 then we must define the translation R such that R(ρ(x)) = R(0) = x.
But then R(ρ(0)) = x which is not (provably) equivalent to 0, violating (2.1).
Suppose ρ is chosen such that ρ(x) 6= 0 and R could be defined such that (2.1)
holds, i.e. Emax ` R(ρ(ti)) = ti (i = 1, 2). This implies that (2.5), which follows
from (2.2) and (2.3), cannot hold because it implies that Emax ` t1 = t2.

So, this example shows that the inverted substitution technique is not generally
applicable, but as will be shown in the next sections, there are enough cases
where application of this technique leads to attractive proofs.

2.4 Applications in finite, concrete, sequential
process algebra

In the remainder of this paper we apply our technique to prove completeness of
several axiom systems. In this section sets given for BCCSP in [4] are studied.
BCCSP is a basic CCS and CSP-like language for finite, concrete, sequential
processes. It is parameterised by a set Act of actions representing the elementary
activities that can be performed by processes. We write |Act| for the number
of elements in Act (|Act| = ∞ if Act has an infinite number of elements). The
language BCCSP contains a constant δ, which is comparable to 0 or NIL in
CCS and to STOP in CSP. We call δ inaction or sometimes deadlock. There is
an alternative composition operator + with its usual meaning and, furthermore,
there is an action prefix operator a : for each action a in Act.

In the sequel we will often use sums of arbitrary finite size. It is convenient to
have a notation for these. Therefore we introduce the abbreviation:∑

i∈I
ti = ti1 + ...+ tin

where I = {i1, ..., in} is a finite index set and ti ∈ (BCCSP) (i ∈ I). We take∑
i∈∅ ti = δ. Note that this notation is only justified if + is commutative and

associative. We only use this notation when this is the case.
The depth |t| of a term t ∈ (BCCSP) is inductively defined as follows:

|δ| = 0, |x| = 0 for all x ∈ V,
|a : t| = 1 + |t| for all a ∈ Act, |t1 + t2| = max(|t1|, |t2|).

In table 2.2 we present several axiom systems, taken from [4], corresponding
to several semantics in process algebra. We investigate the ω-completeness of
these sets. On the top line of this table we find their abbreviations: B stands

2.4. Applications in finite, concrete, sequential process algebra 23

B RT FT R F CT T

x+ y = y + x + + + + + + +
(x+ y) + z = x+ (y + z) + + + + + + +
x+ x = x + + + + + + +
x+ δ = x + + + + + + +

(see (2.6) in text) + + v v v v
a : x+ a : y = a : x+ a : y + a : (x+ y) + v v v
a(b : x+ u) + a : (b : y + v) =

a : (b : x+ b : y + u) + a : (b : x+ b : y + v) + + v v
a : x+ a : (y + z) = a : x+ a : (x+ y) + a : (y + z) + ω v
a : (b : x+ u) + a : (c : y + v) = a : (b : x+ c : y + u+ v) + v
a : x+ a : y = a : (x+ y) +

Table 2.2: Axioms for several process algebra semantics

for Bisimulation, RT for Ready Trace, FT for Failure Trace, R for Ready, F for
Failure, CT for Completed Trace and finally T for Trace semantics. The axioms
that are necessary for ready trace semantics (besides the axioms for bisimulation)
are given by the following scheme:

a : (
∑
i∈I

ai : xi + y) + a : (
∑
i∈J

ai : xi + y) = a : (
∑
i∈I∪J

ai : xi + y) (2.6)

where {ai | i ∈ I} = {ai | i ∈ J}, and xi, y ∈ V (i ∈ I ∪ J). This scheme differs
from the axiomatisation given in [4], where an additional function name I and
a conditional axiom were used to axiomatise ready trace semantics. We do not
want to introduce these concepts here, although we show in lemma 2.4.2 that for
terms over the signature BCCSP, the ω-completeness of the axiomatisation of [4]
follows directly from the ω-completeness of RT.

Let X stand for any of the semantics B,RT,... The symbol ‘v’ in a column of
semantics X indicates that an axiom is derivable from the other axioms valid for
X. The symbol ‘+’ means that the axiom is required for a complete axiomatisation
of the models given in [4] and ‘ω’ means that the axiom is only necessary for an
ω-complete axiomatisation. It follows immediately that:

B RT

R

FT

F CT T-
��
�*

HHHj

H
HHj

�
��*

- -

where the semantics to the left are finer than the semantics to the right. The
semantics FT and R are incomparable. The abbreviation for a semantics is also
used to denote the set of axioms necessary for its ω-complete axiomatisation.

24 2. Proving ω-Completeness using Inverted Substitutions

Lemma 2.4.1. Let t, u ∈ (BCCSP). If T ` t = u, then |t| = |u|.

Proof. Direct using induction on the proof of t = u. 2

As T ` B, T ` RT etc. it immediately follows from the last lemma that ‘X ` t = u
⇒ |t| = |u|’, where X is any of the sets B, RT, etc.

2.4.1 The semantics B

We start by considering the axioms for bisimulation semantics. If Act contains at
least one element, then B is ω-complete. This fact has already been shown in [12].
Note that it makes no sense to investigate the situation where Act = ∅, because
in that case all closed terms have the form δ, δ+ δ, δ+ δ+ ... and therefore they
are equal and we only require the axiom x = y for an ω-complete axiomatisation.

Theorem 2.4.1.1. If |Act| ≥ 1, then the axiom system B is ω-complete.

Proof. As |Act| ≥ 1, Act contains at least one action a. This action plays an
important role in this proof. We follow the lines set out in theorem 2.3.1. So,
assume we have two terms t, t′ ∈ (BCCSP). Select a natural number m >
max(|t|, |t′|) and define ρ : V → T (BCCSP) by:

ρ(x) = an(x)·m : δ

where ak : δ is an abbreviation of k applications of a : to δ and n : V → NI − {0}
is a function assigning a unique natural number to each variable in V . Define
the inverted substitution R : T (BCCSP)→ (BCCSP) as follows:

R(δ) = δ,
R(t+ u) = R(t) +R(u),
R(b : t) = b : R(t) if b 6= a or |b : t| 6= m · n(x) for all x ∈ V ,
R(a : t) = x if |a : t| = m · n(x) for some x ∈ V .

We now check conditions (2.1), (2.2) and (2.3) of theorem 2.3.1. We prove (2.1)
with induction on a term u ∈ (BCCSP) provided |u| < m. Note that this is
sufficient as |t| < m and |t′| < m.

R(ρ(δ)) = δ,
R(ρ(x)) = R(an(x)·m : δ) = x,
R(ρ(u1 + u2)) = R(ρ(u1)) +R(ρ(u2)) = u1 + u2,
R(ρ(b : u)) = b : R(ρ(u)) = b : u if b 6= a,
R(ρ(a : u)) = R(a : ρ(u)) =∗ a : R(ρ(u)) = a : u.

=∗ follows directly from the observation that |a : ρ(u)| 6= m·n(x) for all x ∈ V . In
order to see this, first note that 1 ≤ |a : u| < m. If u does not contain variables,
it is clear that 1 ≤ |a : ρ(u)| < m and hence, |a : ρ(u)| 6= m · n(x). So, suppose u
contains variables. By applying ρ to u each variable x is replaced by an(x)·m : δ.

2.4. Applications in finite, concrete, sequential process algebra 25

So |a : ρ(u)| = p+ n(x) ·m where x is a variable in u such that there is no other
variable y in u with n(y) > n(x) and p (1 ≤ p < m) is the ‘depth’ of the deepest
occurrence of x in u. As 1 ≤ p < m, |a : ρ(u)| 6= n(x) ·m for each x ∈ V .

Now we check (2.2). Assume B ` ui = u′i and B ` R(ui) = R(u′i) for ui, u′i ∈
T (BCCSP) and i = 1, 2. We find that:

B ` R(u1 + u2) = R(u1) +R(u2) = R(u′1) +R(u′2) = R(u′1 + u′2).
B ` R(b : u1) = b : R(u1) = b : R(u′1) = R(b : u′1) if b 6= a.
B ` R(a : u1) =∗ a : R(u1) = a : R(u′1) =+ R(a : u′1)
if |a : u1| 6= m · n(x) for all x ∈ V .

=∗ follows directly from the condition. As B ` u1 = u′1 it follows that |a : u1| =
|a : u′1| (cf. lemma 2.4.1) and hence, |a : u′1| 6= m · n(x) for all x ∈ V . This
justifies =+.

B ` R(a : u1) = x =∗ R(a : u′1) if |a : u1| = m · n(x) for some x ∈ V .

It follows that |a : u′1| = m · n(x) explaining =∗.
Finally, we must check (2.3). This is trivial as the axioms do not contain

actions. We only check the axiom x+ y = y + x. The other axioms can be dealt
with in the same way. Let σ : V → T (BCCSP) be a substitution, then:

B ` R(σ(x+ y))= R(σ(x)) +R(σ(y))
= R(σ(y)) +R(σ(x)) = R(σ(y + x)).

2

2.4.2 The semantics RT,FT,R and F

We show that the sets of axioms RT,FT,R and F are all ω-complete in case Act
is infinite. If Act is finite, we have the following identity:

a :
∑
i∈J

ai : δ + a : (x+
∑
i∈J

ai : δ) = a : (x+
∑
i∈J

ai : δ) (2.7)

where {ai | i ∈ J} = Act. Each closed instance of this identity is derivable from
the axioms of RT,FT,R or F. However, (2.7) is not derivable in its general form:
if (2.7) were derivable, then it also holds if Act is extended by a ‘fresh’ action
b 6∈ {ai | i ∈ J}. Define a substitution σ satisfying σ(x) = b : δ. Applying σ to
(2.7) yields:

a :
∑
i∈J

ai : δ + a : (b : δ +
∑
i∈J

ai : δ) = a : (b : δ +
∑
i∈J

ai : δ).

but this equation does not hold in the failure model [4]. Hence, it is not derivable
from F and therefore it can certainly not be derived from RT,FT or R.

So, in order to prove RT,FT,R and F ω-complete, Act must at least be count-
ably infinite. The following theorem shows that this condition is also sufficient.

26 2. Proving ω-Completeness using Inverted Substitutions

Theorem 2.4.2.1. If |Act| is infinite, then the axiom sets RT,FT,R and F are
ω-complete.

Proof. Take two terms t, t′. Define a substitution ρ : V → T (BCCSP) by:

ρ(x) = ax : δ

where ax is a unique action for each x ∈ V and ax must not occur in either
t or t′. Note that these actions can always be found as |Act| = ∞. Define
R : T (BCCSP)→ (BCCSP) as follows:

R(δ) = δ,
R(a : u) = a : R(u) if a 6= ax for each x ∈ V ,
R(ax : u) = x,
R(u1 + u2) = R(u1) +R(u2).

Condition (2.1) of theorem 2.3.1 can be checked by induction on the structure of
open terms not containing action prefix operators ax :.

R(ρ(δ)) = δ,
R(ρ(x)) = R(ax : δ) = x,
R(ρ(a : u)) = R(a : ρ(u)) = a : R(ρ(u)) = a : u as a 6= ax for each x ∈ V ,
R(ρ(u1 + u2)) = R(ρ(u1)) +R(ρ(u2)) = u1 + u2.

Condition (2.2) can be checked in the same straightforward manner. Suppose
X ` R(ui) = R(u′i) for ui, u′i ∈ T (BCCSP) and i = 1, 2 where X may be replaced
by either RT,FT,R or F. Then:

X ` R(a : u1) = a : R(u1) = a : R(u′1) = R(a : u′1) if a 6= ax for all x ∈ V .
X ` R(ax : u1) = x = R(ax : u′1).
X ` R(u1 + u2) = R(u1) +R(u2) = R(u′1) +R(u′2) = R(u′1 + u′2).

Finally, we check (2.3). We restrict ourselves to the ready trace axiom scheme
(2.6). All other axioms can be dealt with in the same way. First we assume that
a = ax for some x ∈ V . Let σ : V → T (BCCSP) be a substitution. Then the
following holds in RT:

R(ax : (
∑
i∈I

ai : σ(xi) + σ(y)) + ax : (
∑
i∈J

ai : σ(xi) + σ(y))) =

x+ x = x =
R(ax : (

∑
i∈I∪J

ai : σ(xi) + σ(y))).

In case a 6= ax for each x ∈ V , we have that RT proves:

2.4. Applications in finite, concrete, sequential process algebra 27

R(a : (
∑
i∈I

ai : σ(xi) + σ(y)) + a : (
∑
i∈J

ai : σ(xi) + σ(y))) =

a : (
∑
i∈I

R(ai : σ(xi)) +R(σ(y))) + a : (
∑
i∈J

R(ai : σ(xi)) +R(σ(y))) =

a : (
∑

i∈I−{i∈I|ai=ax}

ai : R(σ(xi)) +
∑

x∈{x|ax=ai∧i∈I}

x+R(σ(y)))+

a : (
∑

i∈J−{i∈J|ai=ax}

ai : R(σ(xi)) +
∑

x∈{x|ax=ai∧i∈J}

x+R(σ(y))) =∗

a : (
∑

i∈(I∪J)−{i∈I∪J|ai=ax}

ai : R(σ(xi)) +
∑

x∈{x|ax=ai∧i∈J}

x+R(σ(y))) =

R(a : (
∑
i∈I∪J

ai : σ(xi) + σ(y))).

=∗ follows from the observations that

{ai | i ∈ I, ai 6= ax for some x ∈ V } = {ai | i ∈ J, ai 6= ax for some x ∈ V }

and
{x | ax = ai ∧ i ∈ I} = {x | ax = ai ∧ i ∈ J}.

This last line follows directly from the fact that {ai | i ∈ I} = {ai | i ∈ J}. 2

In [4] the semantics for RT is characterised by the following conditional axiom:

I(x) = I(y) ⇒ a : x+ a : y = a : (x+ y). (2.8)

It may be used in equational proofs in the same way as the inference rules in
table 2.1, where I(x) = I(y) is the premise and a : x + a : y = a : (x + y) is the
conclusion. The auxiliary function name I gives the initial actions of a term. It
is subject to the following axioms:

I(δ) = δ,
I(a : x) = a : δ,
I(x+ y) = I(x) + I(y).

These axioms, together with the inference rule mentioned above and the axioms
B are called RT′. For terms not including I, RT′ can prove every equation that
can be proved with RT, which we show in the next lemma. As a result, we find
that RT′ is ω-complete for BCCSP-expressions.

Lemma 2.4.2.1. If t, t′ ∈ (BCCSP), then:

RT ` t = t′ ⇒ RT′ ` t = t′.

Proof. The proof is straightforward if one notes that an application of (2.6) can
easily be replaced by an application of the inference rule in RT′ using the axioms
for I. 2

28 2. Proving ω-Completeness using Inverted Substitutions

2.4.3 The completed trace axioms

We now show the ω-completeness for the axiom set CT. However, it is not pos-
sible to use the inverted substitution technique. This will be shown in example
2.4.3.3. Therefore, we use the more traditional technique. Hence, it is necessary
to explicitly define the completed trace semantics for BCCSP. In CT the meaning
of a process is its set of traces that end in inaction.

Definition 2.4.3.1. The interpretation [[.]]CT : T (BCCSP) → 2Act
?

(the set of
subsets of strings over Act) is defined as follows:

[[δ]]CT = ∅,
[[a : t]]CT = {a ? s | s ∈ [[t]]CT} ∪ {a | [[t]]CT = ∅},
[[t1 + t2]]CT = [[t1]]CT ∪ [[t2]]CT.

We say that t1, t2 ∈ T (BCCSP) are completed trace equivalent, notation t1 =CT

t2, iff [[t1]]CT = [[t2]]CT.

Lemma 2.4.3.2 (Soundness). Let t1, t2 ∈ T (BCCSP):

CT ` t1 = t2 ⇒ t1 =CT t2.

Proof. Straightforward using the definitions. 2

The following lemma gives some equations that are derivable from CT.

Lemma 2.4.3.2. CT `

(a) a : x+ a : (x+ y) = a : x+ a : y + a : (x+ y),

(b) a : (x+ y) + a : x+ a : z = a : (x+ y + z) + a : x+ a : z,

(c) a : (b : x+ y) + a : z = a : (b : x+ y + z) + a : z.

Moreover, B+(b)+(c) ` CT. Hence, B+(b)+(c) is an alternative ω-complete ax-
iomatisation for completed trace semantics.

For completed trace semantics theorem 2.4.3.4 states the completeness of the
axioms with respect to the given model. As t1 and t2 may be open terms, ω-
completeness is implied also. The technique as set out in theorem 2.3.1 does not
work. This is shown in the following example.

Example 2.4.3.3. Consider the following two BCCSP-terms.

t1 = a : x+ a : (a : δ + x),
t2 = a : (a : δ + x).

These two terms are clearly different in CT as for a substitution σ with σ(x) = δ,
σ(t1) has a completed trace a which is not available in σ(t2). For every substitu-
tion σ′ with σ′(x) 6= δ, σ′(t1) =CT σ′(t2). Hence, using the same arguments as
in example 2.3.2, we cannot apply our technique.

2.4. Applications in finite, concrete, sequential process algebra 29

The next theorem states that CT is ω-complete.

Theorem 2.4.3.4. If |Act| ≥ 1, then for all t1, t2 ∈ (BCCSP), we have that:

∀σ : V → T (BCCSP) σ(t1) =CT σ(t2) ⇒ CT ` t1 = t2.

Proof. We write ~x for
∑
x∈W x where W ⊆ V is a finite set of variables. ~x is

called a sequence of variables. We call a term t a CT-normal form iff

t ≡
∑
a∈A

(a : (ta + ~ya) +
∑
j∈Ja

a : ~xj)

satisfying for each a ∈ A:

(a) A ⊆ Act is a finite set of actions,

(b) ta is a CT-normal form,

(c) for each j ∈ Ja, it holds that all variables in ~xj also appear in ~ya,

(d) if ta has no initial actions (see below), then for each j ∈ Ja, there is a variable
xj in ~ya that is not present in ~xj ,

(e) for j1, j2 ∈ Ja and j1 6= j2, ~xj1 contains a variable not present in ~xj2 .

If for a CT-normal form t: |A| > 0, then we say that t has initial actions. Note
that if t has no initial actions, then t is equal to δ.

Fact 1. For each term t ∈ (BCCSP), there is a term u in CT-normal form such
that CT ` t = u+ ~x for some sequence of variables ~x.

Proof of fact 1. This proof is based on induction on the structure of t. Let
t ≡ δ. If we take A = ∅ and ~x ≡ δ, we obtain the CT-normal form δ + δ, which
is clearly provably equal to δ. Let t ≡ x. Then we can take the CT-normal form
δ + x.

If t ≡ a : t′, then, by induction, there is a CT-normal form u′, such that u′+~x′,
for some sequence of variables ~x′, is provably equal to t′. Hence:

CT ` t = a : t′ = a : (u′ + ~x′) + δ

and a : (u′ + ~x′) + δ is a CT-normal form (conditions (a),(b),(c),(d) and (e) can
easily be checked).

Suppose t ≡ t1 + t2. Then, by induction, there are CT-normal forms u1 and
u2 such that for sequences ~z1 and ~z2:

CT ` t1 = u1 + ~z1 and CT ` t2 = u2 + ~z2.

The term ul (l = 1, 2) can be written as:

ul ≡
∑
a∈Al

(a : (tla + ~yla) +
∑
j∈Jla

a : ~xj).

30 2. Proving ω-Completeness using Inverted Substitutions

We assume that J1
a ∩ J2

a = ∅ for a ∈ A1 ∩A2. The term t1 + t2 is provably equal
to u1 + u2 + ~z1 + ~z2, which is, using CT, equal to:∑

a∈A1∩A2

(a : (ta + ~y1
a) + a : (t2a + ~y2

a) +
∑

j∈J1
a∪J2

a

a : ~xj) + (2.9)

∑
a∈A1−A2

(a : (t1a + ~y1
a) +

∑
j∈J1

a

a : ~xj) +

∑
a∈A2−A1

(a : (t2a + ~y2
a) +

∑
j∈J2

a

a : ~xj) + ~z1 + ~z2.

Now note that the summands in (2.9) are in CT-normal form for a ∈ A1 − A2

and a ∈ A2 − A1. In order to prove fact 1, it is sufficient to only transform the
first summand into CT-normal form. Therefore we consider for each a ∈ A1∩A2:

a : (t1a + ~y1
a) + a : (t2a + ~y2

a) +
∑

j∈J1
a∪J2

a

a : ~xj . (2.10)

First we deal with the possibility that both t1a and t2a in (2.10) have initial actions.
In this case we can apply the axiom

a : (b : x+ u) + a : (c : y + v) = a : (b : x+ c : y + u+ v)

to rewrite (2.10) to:

a : (t1a + t2a + ~y1
a + ~y2

a) +
∑

j∈J1
a∪J2

a

a : ~xj . (2.11)

This term is a CT normal form, satisfying conditions (a) and (b). Later on we
show how conditions (c), (d) and (e) are satisfied.

Now, suppose that t1a has no initial actions (the case where t2a has no initial
actions is symmetric and therefore skipped). Then t1a is equal to δ. Hence (2.10)
has the form:

a : (t2a + ~y2
a) + (a : ~y1

a +
∑

j∈J1
a∪J2

a

a : ~xj) (2.12)

and this term satisfies conditions (a) and (b).
From (2.11) and (2.12) we may assume that (2.10) is provably equal to a term

of the form:
a : (t+ ~y) +

∑
j∈J

a : ~xj

which is a CT normal form satisfying conditions (a) and (b). Now, assume
condition (c) does not hold. This means that there is a k ∈ J and a variable x
in ~xk such that x is not in ~y. We can prove from CT using the typical RT axiom
that:

a : (t+ ~x) + a : ~xk +
∑

j∈J−{k}

a : ~xj =

a : (t+ ~x+ ~xk) + a : (t+ ~x) + a : ~xk +
∑

j∈J−{k}

a : ~xj .

2.4. Applications in finite, concrete, sequential process algebra 31

If t has initial actions then this is equal to:

a : (t+ ~x+ ~xk) + (a : ~xk +
∑

j∈J−{k}

a : ~xj),

otherwise, it is equal to:

a : (~x+ ~xk) + a : ~x+ a : ~xk +
∑

j∈J−{k}

a : ~xj .

As J is finite and each ~xj (j ∈ J) contains a finite number of variables, we can
repeat this step a finite number of times and satisfy condition (c).

Hence, we may assume that we have a term a : (t+ ~y) +
∑
j∈J a : ~xj satisfying

conditions (a), (b) and (c). Suppose t has no initial actions and for some j ∈ J , ~xj
and ~y contain the same variables. Apply axiom x = x+x to fulfill condition (d).
Note that the conditions (a), (b) and (c) are not invalidated by this operation.
Now we consider a term:

a : (t+ ~y) +
∑
j∈J

a : ~xj

which satisfies condition (a), (b), (c) and (d), but for which (e) does not hold.
This means that there are sequences of variables ~xj1 and ~xj2 (j1, j2 ∈ J and
j1 6= j2) such that all variables in ~xj1 are also present in ~xj2 . Hence, there is a
sequence of variables ~x such that ~xj1 + ~x = ~xj2 such that ~x and ~xj1 do not have
variables in common. Now we apply lemma 2.4.3(a) to show:

a : (t+ ~y) + a : (~xj1 + ~x) + a : ~xj1 +
∑

j∈J−{j1,j2}

a : ~xj =

a : (t+ ~y) + a : (~xj1 + ~x) + a : ~xj1 + a : ~x+
∑

j∈J−{j1,j2}

a : ~xj =∗

a : (t+ ~y) +
∑

j∈J−{j2}

a : ~xj + a : ~x.

For =∗ we use condition (c) and the typical FT axiom. It can be seen that this
step can also only be applied a finite number of times. So after some time we
achieve a term satisfying all conditions for a CT-normal form. 2

Let in the sequel for l = 1, 2:

tl ≡
∑
a∈Al

(a : (tla + ~yla) +
∑
j∈Jla

a : ~xj).

We say that t1 and t2 are different if one of the following holds:

(1) A1 6= A2,

32 2. Proving ω-Completeness using Inverted Substitutions

(2) A1 = A2 and for some a ∈ A1, t1a and t2a are different,

(3) A1 = A2 and for some a ∈ A1, ~y1
a and ~y2

a do not contain the same variables.

(4) A1 = A2 and for some a ∈ A1, there is a j1 ∈ J1
a such that for each j2 ∈ J2

a ,
~xj1 and ~xj2 do not contain the same variables or, symmetrically, there is a
j2 ∈ J2

a such that for each j1 ∈ J1
a , ~xj2 and ~xj1 do not contain the same

variables.

Fact 2. If two CT-normal forms t1 and t2 are not different, then B ` t1 = t2
(and thus CT ` t1 = t2).

Proof of fact 2. Straightforward. 2

Fact 3. Let t be a CT-normal form. Let m ∈ NI be selected such that m > |t|.
Let σ : V → T (BCCSP) be a substitution such that σ(x) = δ or σ(x) = bm : δ
where b ∈ Act. For each s ∈ [[σ(t)]]CT: 1 ≤ |s| ≤ |t| or |s| > m.

Proof of fact 3. By definition |s| ≥ 1. The remainder of this fact follows
directly by induction on the structure of t. 2

An important corollary of this fact is that |s| 6= m.

Fact 4. Let t1 and t2 be two different CT-normal forms. Let m ∈ NI be selected
such that m > max(|t1|, |t2|) and let b ∈ Act. There is a substitution σ : V →
T (BCCSP) with for each x ∈ V : σ(x) = δ or σ(x) = bm : δ such that σ(t1) 6=CT

σ(t2).

Proof of fact 4. This proof is given by induction on |t1|+ |t2|. As t1 and t2 are
different, one of the following must be the case:

(1) A1 6= A2. Then there is an a ∈ Act such that a ∈ A1−A2 or a ∈ A2−A1. We
only consider the first case. Define σ(x) = δ for all x ∈ V . If a ∈ A1 −A2,
then there is a completed trace a ? s ∈ [[σ(t1)]]CT for some s ∈ Act? and for
any s′ ∈ Act?, a ? s′ 6∈ [[σ(t2)]]CT. Hence, σ(t1) 6=CT σ(t2).

(2) If A1 = A2 then it can be that for some a ∈ A1, t1a and t2a are different. By
induction there is a substitution σ such that for all x ∈ V , σ(x) = δ or
σ(x) = bm : δ and σ(t1a) 6=CT σ(t2a). Hence, there is some s ∈ [[σ(t1a)]]CT −
[[σ(t2a)]]CT or s ∈ [[σ(t2a)]]CT − [[σ(t1a)]]CT. Again we only consider the first
case. It is obvious that a ? s ∈ [[σ(t1)]]CT. We now show that a ? s 6∈
[[σ(t2)]]CT. Note that this immediately implies σ(t1) 6=CT σ(t2). By fact
3 we know that |s| 6= m. As for all x in ~y2

a or in ~xj (j ∈ J2
a), σ(x) = δ

or σ(x) = am : δ, s 6∈ [[σ(~y2
a)]]CT and s 6∈ [[σ(~xj)]]CT. As already stated,

s 6∈ [[σ(t2a)]]CT. Hence, a ? s 6∈ [[σ(t2)]]CT.

2.4. Applications in finite, concrete, sequential process algebra 33

(3) If A1 = A2, then it can be that for some a ∈ A1, ~y1
a and ~y2

a do not contain
the same variables. This means that there is a variable x ∈ ~y1

a such that
x 6∈ ~y2

a or vice versa. It is sufficient to consider only the first case. Define
a substitution σ by:

σ(y) =
{
bm : δ if x = y,
δ otherwise.

Clearly, a?bm ∈ [[σ(t1)]]CT. We show that a?bm 6∈ [[σ(t2)]]CT. By definition
of σ, bm 6∈ [[σ(~y2

a)]]CT. Also, bm 6∈ [[σ(t2a)]]CT because, by fact 3, for no
s ∈ [[σ(t2a)]]CT: |s| = m. By condition (c) of a CT normal form a ? bm 6∈
[[σ(
∑
j∈J2

a
a : ~xj)]]CT. So we may conclude a ? bm 6∈ [[σ(t2)]].

(4) Assume none of the three cases above apply. Then it must be the case that
for some a ∈ A1(= A2) there is a j1 ∈ J1

a such that for each k2 ∈ J2
a , ~xj1

and ~xk2 do not contain the same variables, or there is a j2 ∈ J2
a such that

for each k1 ∈ J1
a , ~xj2 and ~xk1 do not contain the same variables. Consider

all ~xj1 and ~xj2 with the above mentioned property and select one, say ~xj
such that |~xj | is minimal. For symmetry we may assume that j ∈ J1

a .
Define σ by:

σ(x) =
{
δ if x in ~xj ,
bm : δ otherwise.

Note that a ∈ [[σ(t1)]]CT. We show that a 6∈ [[σ(t2)]]CT. From the definition
of completed traces it follows that if a ∈ [[σ(t2)]]CT then

for each k ∈ J2
a , [[σ(~xk)]]CT = ∅ or

t2a has no initial actions and [[σ(~y2
a)]]CT = ∅.

But neither of these holds. Consider some ~xk (k ∈ J2
a). As ~xj is minimal,

it follows by condition (e) that there is some x in ~xk, but x is not in ~xj .
Hence σ(x) = bm : δ and thus [[σ(~xk)]]CT 6= ∅.
By condition (d), either t1a has initial variables or y1

a contains a variable
which is not present in ~xj . Because none of the cases (1), (2), (3) above
applied, t2a and t1a have the same initial actions and y1

a and y2
a contain the

same variables. Hence, [[σ(t2a + ~y2
a)]]CT 6= ∅. So we may conclude that

a 6∈ [[σ(t2)]]CT.

2

With these facts, it is straightforward to finish the proof. Suppose t1, t2 ∈
(BCCSP) and σ(t1) =CT σ(t2) for each closed substitution σ. By fact 1 there

are CT-normal forms u1, u2 and sequences of variables ~y1, ~y2 such that (l = 1, 2):

CT ` tl = ul + ~yl.

There are three possible cases that must be considered.

34 2. Proving ω-Completeness using Inverted Substitutions

1. u1 and u2 are different. By fact 4 there is a trace s ∈ Act? with length
|s| 6= m (m > max(|t1|, |t2|)) such that s ∈ [[σ(u1)]]CT and s 6∈ [[σ(u2)]]CT or
vice versa for a closed substitution σ. For symmetry we only consider the
first case. Hence s ∈ [[σ(u1 + ~y1)]]CT. By fact 4 we also know that for each
x ∈ V , σ(x) = δ or σ(x) = bm : δ. Hence, s 6∈ [[σ(u2 + ~y2)]]CT and therefore
σ(t1) 6=CT σ(t2) which contradicts the assumption.

2. There is a variable x in ~y1 that is not available in ~y2 (or vice versa). Define
a substitution σ by:

σ(y) =
{
bm : δ if y = x,
δ otherwise.

Hence, bm ∈ [[σ(u1 + ~y1)]]CT. As for each s ∈ [[σ(u2)]]CT: |s| 6= m and
x does not appear in ~y2, s 6∈ [[σ(u2 + ~y2)]]CT. Hence, σ(t1) 6=CT σ(t2).
Contradiction.

3. Suppose the cases above do not apply. Then by fact 2:

B ` u1 + ~y1 = u2 + ~y2.

Hence, CT ` t1 = t2.

2

2.4.4 The trace axioms

Again we do not use the inverted substitution technique, although we do not
know whether it can not be applied. In this case the ‘standard’ technique seems
to be more convenient to use. Therefore, we have to give the trace semantics
explicitly. In trace semantics each process is characterised by its set of prefix
closed traces:

Definition 2.4.4.1. The interpretation [[.]]T : T (BCCSP) → 2Act
?

is defined as
follows:

[[δ]]T = ∅,
[[a : t]]T = {a ? σ | σ ∈ [[t]]T} ∪ {a},
[[t1 + t2]]T = [[t1]]T ∪ [[t2]]T.

We say that t1, t2 ∈ T (BCCSP) are trace equivalent, notation t1 =T t2, iff [[t1]]T =
[[t2]]T.

Lemma 2.4.4.2 (Soundness). Let t1, t2 ∈ T (BCCSP):

T ` t1 = t2 ⇒ t1 =T t2.

Proof. Straightforward using the definitions. 2

2.4. Applications in finite, concrete, sequential process algebra 35

For trace semantics we need two actions in order to prove T ω-complete. If
|Act| = 1 then the following axiom is valid:

x+ a : x = a : x.

This can easily be seen by proving T ` t+a : t = a : t for all t ∈ T (BCCSP) with
induction on t if |Act| = 1. The axiom x+a : x = a : x is in general not derivable
from T, because instantiating x with b : δ yields b : δ + a : b : δ 6=T a : b : δ
where a, b ∈ Act are two different actions. In the next theorem we show that if
|Act| ≥ 2 then the axiom set T is ω-complete. First we define the notion of a
syntactic summand. This notion is only used in this section.

Definition 2.4.4.3. Let t, u ∈ (BCCSP). t is a syntactic summand of u,
notation t v u iff:

• t ≡ a : t′ and u ≡ a : t′ for some t′ ∈ (BCCSP) or,

• u ≡ u1 + u2 and t v u1 or t v u2.

Lemma 2.4.4.3. Let t1, t2 ∈ (BCCSP). If for each syntactic summand u ∈
(BCCSP),

u v t1 ⇔ u v t2
then B ` t1 = t2.

Proof. Straightforward. 2

The next theorem says that T is ω-complete if two actions are available.

Theorem 2.4.4.4. If |Act| ≥ 2, then for each t1, t2 ∈ (BCCSP), we have that:

∀σ : V → T (BCCSP) : σ(t1) =T σ(t2) ⇒ T ` t1 = t2.

Proof. We use the abbreviation a1 ? ... ? an : t with a1 ? ... ? an ∈ Act? for
a1 : ... : an : t. For s ∈ Act?, we define |s| to be |s : δ|, i.e. the length of trace
s. For traces s1, s2 ∈ Act? we write s1 ≤ s2 if for some r ∈ Act?, s1 ? r = s2 or
s1 = s2. In this case s1 is a prefix of s2.

First we define a T-normal form, which plays a crucial role in this proof. A
term t ∈ (BCCSP) is a T-normal form if

t ≡
∑
i∈I

si : δ +
∑
i∈J

si : xi

with si ∈ Act? (i ∈ I ∪ J), satisfying:

(1) for each sj (j ∈ I ∪ J) with |sj | > 1, there is a i ∈ I such that si ? a = sj for
some a ∈ Act.

(2) for each sj (j ∈ J) with |sj | > 0, there is a i ∈ I such that sj = si.

36 2. Proving ω-Completeness using Inverted Substitutions

Fact 1. Let t ∈ (BCCSP). Then there is a T-normal form t′ such that:

T ` t = t′.

Proof of fact 1. Straightforward with induction on t. 2

Fact 2. Let t and t′ be two T-normal forms such that for some u, u v t, u 6v t′

or vice versa. Then there is a substitution σ : V → T (BCCSP) such that:

σ(t) 6=T σ(t′).

Proof of fact 2. For symmetry it is sufficient to consider only the case where
u v t and u 6v t′. We can distinguish between:

(1) u ≡ s : δ with s ∈ Act?. Define σ(x) = δ for all x ∈ V . Note that s ∈ [[σ(t)]]T.
Moreover, it holds that s ∈ [[σ(t′)]]T iff s : δ v t′; conditions (1) and (2) are
required to prove this. Hence, as s : δ 6v t′, s 6∈ [[σ(t′)]]T.

(2) u ≡ s : x for some x ∈ V and s ∈ Act?. Let m be a natural number such
that m > max(|t|, |t′|). Define σ(x) = am : b : δ where a, b ∈ Act are two
different actions and σ(y) = δ if y 6≡ x. Clearly, s?am?b ∈ [[σ(t)]]T. We show
that s ? am ? b 6∈ [[σ(t′)]]T. Therefore we write t′ ≡

∑
i∈I si : δ+

∑
i∈J si : yi

in the following way:∑
i∈I

si : δ +
∑
i∈K1

si : yi +
∑
i∈K2

si : x+
∑
i∈K3

si : x+
∑
i∈K4

si : x

where

K1 = {i | i ∈ J and yi 6≡ x},
K2 = {i | i ∈ J, yi ≡ x and |si| < |s|},
K3 = {i | i ∈ J, yi ≡ x and |si| = |s|},
K4 = {i | i ∈ J, yi ≡ x and |si| > |s|}.

Note that J = K1∪K2∪K3∪K4. We show that s?am ?b cannot originate
from any of these components. We deal with all five cases separately:

(a) For any r ∈ [[
∑
i∈I si : δ]]T, |r| < m and therefore r 6= s ? am ? b.

(b) For any r ∈ [[
∑
i∈K1

si : σ(yi)]]T, |r| < m because σ(yi) = δ. Hence,
r 6= s ? am ? b.

(c) For any r ∈ [[
∑
i∈K2

si : σ(x)]]T, |r| ≤ |si| + m + 1 < |s| + m + 1 =
|s ? am ? b|. Hence, r 6= s ? am ? b.

(d) For any r ∈ [[
∑
i∈K3

si : σ(x)]]T, r ≤ si ? a
m ? b for some i ∈ K3. If

|r| < |s| + m + 1, clearly, r 6= s ? am ? b. If |r| = |s| + m + 1, then
r = si ? a

m ? b. As s : x 6v t′, si 6= s. Therefore r 6= s ? am ? b.

2.5. Extensions with the parallel operator 37

(e) Let for some r ∈ Act?, r[i] be the ith symbol in r. For any r ∈
[[
∑
i∈K4

si : σ(x)]]T, r ≤ si ? a
m ? b for some i ∈ K4. If |r| ≤ |s| + m,

then clearly r 6= s ? am ? b. If |r| > |s|+m, consider r[|s|+m+ 1]. As
|si ? am ? b| > |s ? am ? b| > |si|, r[|s|+m+ 1] = a. But, s ? am ? b[|s|+
m+ 1] = b. Hence, if |r| > |s|+m, it also holds that r 6= s ? am ? b.

This finishes the proof of the second fact. 2

Using both facts it follows almost immediately that T is ω-complete with respect
to =T. Suppose t, t′ ∈ (BCCSP) such that for each substitution σ : V →
T (BCCSP), it holds that σ(t) =T σ(t′). Both t and t′ are provably equal to
T-normal forms u and u′ (fact 1). If u and u′ have different syntactic summands,
then by the second fact ρ(u) 6=T ρ(u′) for some substitution ρ : V → T (BCCSP).
This is a contradiction. Hence, by lemma 2.4.4, B ` u = u′ and therefore:

T ` t = u = u′ = t′.

2

2.5 Extensions with the parallel operator

We extend the signature BCCSP with operators for parallelism.

2.5.1 Interleaving without communication

First, we study BCCSP with the merge and the leftmerge, but without commu-
nication. The resulting signature is called BCCSP ‖ . We study BCCSP ‖ in the
setting of bisimulation where |Act| = ∞. The axioms in the two top boxes of
table 2.3 are complete. This follows immediately from the completeness of the
axiom set B for BCCSP because any closed term over the signature BCCSP ‖
can be rewritten to a term over the signature BCCSP.

In order to have an ω-complete set of axioms, we add two new axioms (see the
lower squares of table 2.3). These axioms are derivable for all closed instances.
Therefore they are valid in bisimulation semantics. The complete set of axioms
in table 2.3 is called B ‖ . The following theorem states the ω-completeness of
B ‖ .

x+ y = y + x x ‖ y = x ‖ y + y ‖ x
(x+ y) + z = x+ (y + z) δ ‖ x = δ
x+ x = x a : x ‖ y = a : (x ‖ y)
x+ δ = x (x+ y) ‖ z = x ‖ z + y ‖ z
x ‖ δ = x x ‖ (y ‖ z) = (x ‖ y) ‖ z

Table 2.3: The axioms for BCCSP with the leftmerge

38 2. Proving ω-Completeness using Inverted Substitutions

Theorem 2.5.1.1. The set of axioms in table 2.3 is ω-complete if Act contains
an infinite number of actions.

Proof. We use the technique presented in section 2.3. Suppose two terms t, t′ ∈
(BCCSP ‖) are given. Define ρ : V → T (BCCSP ‖) by ρ(x) = ax : δ where ax

is a unique action for each x ∈ V and ax does neither occur in t nor in t′. Define
R : T (BCCSP ‖)→ (BCCSP ‖) as follows:

R(δ) = δ,
R(a : t) = a : R(t) where a 6= ax for all x ∈ V ,
R(ax : t) = x ‖ R(t),
R(t+ u) = R(t) +R(u),
R(t ‖ u) = R(t) ‖ R(u),
R(t ‖ u) = R(t) ‖ R(u).

In order to show the axioms in table 2.3 ω-complete we must check properties
(2.1), (2.2) and (2.3) of theorem 2.3.1.

(2.1) We show that B ‖ ` R(ρ(u)) = u with induction on u ∈ (BCCSP ‖),
provided u does not contain actions of the form ax.
R(ρ(x)) = x ‖ δ = x,
R(ρ(δ)) = δ,
R(ρ(t+ u)) = R(ρ(t)) +R(ρ(u)) = t+ u,
R(ρ(a : t)) = R(a : ρ(t)) =∗ a : R(ρ(t)) = a : t.
=∗ follows from the fact that a 6= ax for all x ∈ V .

(2.2) For the +-operator the proof is straightforward: B ‖ ∪{R(ti) = R(ui) | i =
1, 2} ` R(t1 + t2) = R(t1) + R(t2) = R(u1) + R(u2) = R(u1 + u2). The
function names ‖ and ‖ can be dealt with in the same way. The action
prefix case is slightly more complicated. R(t1) = R(u1) ` R(a : t1) = a :
R(t1) = a : R(u1) = R(a : u1) if a 6= ax for all x ∈ V . If a = ax for some
x ∈ V , then R(t1) = R(u1) ` R(ax : t1) = x ‖ R(t1) = x ‖ R(u2) = R(ax :
u1).

(2.3) It is straightforward to check the axioms that do not explicitly refer to
actions. So we only check the axiom a : x ‖ y = a : (x ‖ y). Let σ : V →
T (Σ) be defined such that σ(x) = t and σ(y) = u. B ‖ ` R(a : t ‖ u) = a :
R(t) ‖ R(u) = a : (R(t) ‖ R(u)) = R(a : (t ‖ u)) if a 6= ax for all x ∈ V .
In the other case B ‖ ` R(ax : t ‖ u) = (x ‖ R(t)) ‖ R(u) = x ‖ (R(t) ‖
R(u)) = R(ax : (t ‖ u)).

2

In many cases it is easy to show the ω-completeness of the axioms of new features
introduced in BCCSP ‖ . As examples we introduce the silent step τ into BCCSP ‖
and we consider BCCSP ‖ in trace semantics.

2.5. Extensions with the parallel operator 39

Example 2.5.1.2. We add a constant τ (the silent step or internal move) to
BCCSP ‖ . The new signature is called BCCSPτ‖ . The internal step has been
axiomatised in different ways. In [10] τ is characterised by three τ -laws. This
characterisation is often called weak bisimulation.

a : τ : x = a : x,
τ : x+ x = τ : x,

a : (τ : x+ y) = a : (τ : x+ y) + a : x.

If one adds these laws to B ‖ , obtaining Bτ‖ , we have to add the following two
axioms in order to make Bτ‖ ω-complete. Axioms of this form already appeared
in [7].

z ‖ τ : x = z ‖ x,
z ‖ (τ : x+ y) = z ‖ (τ : x+ y) + z ‖ x.

Both new axioms are derivable for all closed instances, and therefore valid in any
model for Bτ‖ .

In [5] τ is characterised by the single equation:

a : (τ : (x+ y) + x) = a : (x+ y).

This variant is called branching bisimulation. The set B ‖ , together with this
axiom is called Bb‖ . The single axiom:

z ‖ (τ : (x+ y) + x) = z ‖ (x+ y)

suffices to make Bb‖ ω-complete. This axiom is derivable for all closed instances,
and therefore it holds in any model for Bb‖ .

We do not give the ω-completeness proofs as they can easily be given along the
lines of the proof of theorem 2.5.1.1. In fact it suffices to only check condition
(3) for the new axioms, because conditions (1) and (2) are provable in exactly
the same way.

Example 2.5.1.3. Here we study the ω-completeness of BCCSP ‖ in trace
semantics. As any term over the signature BCCSP ‖ can be rewritten to a term
over the signature BCCSP by the axioms in B ‖ , and T is complete for the
signature BCCSP in trace semantics, B ‖ ∪ T is complete for BCCSP ‖ in trace
semantics. For ω-completeness we must add the equation:

x ‖ y + x ‖ z = x ‖ (y + z),

which is derivable from B ‖ ∪T for all its closed instances. The proof of this fact
follows the lines of the proof of theorem 2.5.1.1.

40 2. Proving ω-Completeness using Inverted Substitutions

2.5.2 Interleaving with communication

In this section the signature BCCSP is extended with the merge, the leftmerge
and the communication merge (|). The signature obtained in this way is called
BCCSP|. Its properties are described by the axioms in table 2.4 which are taken
from [2]. In order to represent communication, we have an operator | on actions.
The actions that we consider are those that are freely generated using Act, | and
the commutativity and associativity of |. The axioms in the upper two squares

x+ y = y + x
(x+ y) + z = x+ (y + z)
x+ x = x
x+ δ = x

x ‖ y = x ‖ y + y ‖ x+ x | y x | y = y | x
a : x ‖ y = a : (x ‖ y) a : x | b : y = (a | b) : (x ‖ y)
δ ‖ x = δ δ | x = δ
(x+ y) ‖ z = x ‖ z + y ‖ z (x+ y) | z = x | z + y | z
(x ‖ y) ‖ z = x ‖ (y ‖ z) (x | y) | z = x | (y | z)
x ‖ δ = x x | (y ‖ z) = (x | y) ‖ z

Table 2.4: The axioms for BCCSP|

of table 2.4 combined with the condition that | on actions is commutative and
associative, are already complete for BCCSP|-terms in the bisimulation model.
This can again easily be seen by the fact that any term over the signature BCCSP|
can be rewritten to a term over BCCSP. For BCCSP the four axioms in the left
upper corner of table 2.4 are complete in the bisimulation model. The axioms in
the lower squares are necessary for an ω-complete axiomatisation. We call the
axiom system in table 2.4 B|.

Example 2.5.2.1. The following facts are derivable from B|. We leave the
proofs to the reader.

x ‖ y = y ‖ x,
(x ‖ y) ‖ z = x ‖ (y ‖ z),
(a1 | ... | (ai | ai+1) | ... | an) : x = (a1 | ... | (ai+1 | ai) | ... | an) : x,
(a1 | ... | (ai(ai+1 | ai+2)) | ... | an) : x =

(a1 | ... | ((ai | ai+1) | ai+2) | ... | an) : x.

The last two identities show that it is not necessary to include axioms for the
commutativity and the associativity of | on actions in B|.

Theorem 2.5.2.2. B| is ω-complete if Act contains an infinite number of actions.

Proof. This proof has the same structure as the proof of theorem 2.5.1.1. We
only give the non-trivial steps. Suppose two terms t, t′ ∈ (BCCSP|) are given.

2.5. Extensions with the parallel operator 41

Define ρ : V → T (BCCSP|) as follows:

ρ(x) = ax : δ

where ax is unique for each x ∈ V and does not occur in t or t′. We define
R : T (BCCSP|)→ (BCCSP|) by:

R(δ) = δ,
R((a1 | ... | an) : t) = (a1 | ... | an) : R(t)

if ai 6= ax for 1 ≤ i ≤ n and x ∈ V ,
R(ax : t) = x ‖ R(t),
R((ax | a1 | ... | an) : t) = x | R((a1 | ... | an) : t) for n ≥ 1,
R((a1 | a2 | ... | an) : t) = R(a2 | ... | an | a1) : t)

for n ≥ 2 provided a1 6= ax for all x ∈ V ,
R(t+ u) = R(t) +R(u),
R(t ‖ u) = R(t) ‖ R(u),
R(t ‖ u) = R(t) ‖ R(u),
R(t | u) = R(t) | R(u).

For ρ and R we now check properties (2.1), (2.2) and (2.3) of theorem 2.3.1.

(2.1) Straightforward. In this step the axiom x ‖ δ = x plays an essential role.

(2.2) Straightforward for almost all cases, the only exception being the action
prefix operator (a1 | ... | an) : x where for some ai (1 ≤ i ≤ n), ai = ax
with x ∈ V . Assuming that B| ` R(t) = R(u) for t, u ∈ T (BCCSP|), we
show that B| ` R((a1 | ... | an) : t) = R((a1 | ... | an) : u).

R((a1 | ... | an) : t) =

(a) xj | (... | (xj′ | ((ak | ... | ak′) : R(t)))...) =
xj | (... | (xj′ | ((ak | ... | ak′) : R(u)))...) =
R((a1 | ... | an) : u) if there is a 1 ≤ i ≤ n such that ai 6= ax for all
x ∈ V .

(b) x1 | (... | (xn−1 | (xn ‖ R(t)))...) =
x1 | (... | (xn−1 | (xn ‖ R(u)))...) = R((a1 | ... | an) : u), otherwise.

(2.3) Only the axioms containing occurrences of the action prefix operator are
non trivial to check. So we consider the axioms a : (x ‖ y) = a : (x ‖ y)
and a : x | b : y = (a | b) : (x ‖ y). We start off with the first one. Let
a = (a1 | ... | an) and let σ be a closed substitution such that σ(x) = t and
σ(y) = u. Three cases must be considered.

(a) ai 6= ax for all 1 ≤ i ≤ n and x ∈ V .
B| ` R(a : t ‖ u) = a : R(t) ‖ R(u) =

a : (R(t) ‖ R(u)) = R(a : (t ‖ u)).

42 2. Proving ω-Completeness using Inverted Substitutions

(b) ai = axi for each 1 ≤ i ≤ n and xi ∈ V .
R((a1 | ... | an) : t ‖ u) =
(x1 | (... | (xn−1 | (xn ‖ R(t)))...)) ‖ R(u) =
(((x1 | ... | xn−1) | xn) ‖ R(t)) ‖ R(u) =
((x1 | ... | xn−1) | xn) ‖ (R(t) ‖ R(u)) =
(x1 | (... | (xn−1) | (xn ‖ (R(t) ‖ R(u))))...)) =
R((a1 | ... | an) : (t ‖ u)).

(c) For some 1 ≤ i ≤ n, ai 6= ax for all x ∈ V and for some 1 ≤ i ≤ n,
ai = ax.
R((a1 | ... | an) : t ‖ u) =
(xj | (... | (xj′ | ((ak1 | ... | ak′) : R(t)))...)) ‖ R(u) =
(xj | ... | xj′) | ((ak1 | ... | ak′) : R(t) ‖ R(u)) =
(xj | ... | xj′) | ((ak | ... | ak′) : (R(t) ‖ R(u))) =
xj | (... | (xj′ | ((ak | ... | ak′) : (R(t) ‖ R(u))))...) =
R((a1 | ... | an) : (t ‖ u)).

We now check the axiom a : x | b : y = (a | b) : (x ‖ y). We can distinguish
9 cases (cf. checking the axiom a : x ‖ y = a : (x ‖ y)). We do not discuss
all of these, but restrict ourselves to the case where some of the actions,
but not all, in a and b have the form ax.

R(a : t | b : u) =
(xj1 | (... | (xj′1 | (ak1 | ... | ak′

1
) : R(t))...)) |

(yj2 | (... | (yj′2 | (bk2 | ... | bk′
2
) : R(u))...)) =

(xj1 | ... | xj′1 | yj2 | ... | yj′2) |
((ak1 | ... | ak′

1
) : R(t) | (bk2 | ... | bk′

2
) : R(u)) =

(xj1 | (... | (xj′1 | (yj2 | (... | (yj′2 | ((ak1 | ... | ak′
1
) |

(bk2 | ... | bk′
2
)) : (R(t) ‖ R(u)))...)))...)) =

R((a1 | ... | an | b1 | ... | bn) : (t ‖ u)).

In the last step we used example 2.5.2.1 to rearrange the actions.

2

References

[1] J.A. Bergstra and J. Heering. Which data types have ω-complete initial
algebra specifications? Report CS-R8958, CWI, Amsterdam, December
1989.

[2] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communica-
tion. Information and Computation, 60(1/3):109–137, 1984.

[3] J.A. Bergstra and J.V. Tucker. Top down design and the algebra of commu-
nicating processes. Science of Computer Programming, 5(2):171–199, 1984.

References 43

[4] R.J. van Glabbeek. The linear time – branching time spectrum. In J.C.M.
Baeten and J.W. Klop, editors, Proceedings CONCUR 90, Amsterdam, vol-
ume 458 of Lecture Notes in Computer Science, pages 278–297. Springer-
Verlag, 1990.

[5] R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in
bisimulation semantics (extended abstract). In G.X. Ritter, editor, Infor-
mation Processing 89, pages 613–618. North-Holland, 1989.

[6] J. Heering. Partial evaluation and ω-completeness of algebraic specifications.
Theoretical Computer Science, 43:149–167, 1986.

[7] M. Hennessy. Axiomatising finite concurrent processes. SIAM Journal on
Computing, 17(5):997–1017, 1988.

[8] D. Kapur and D.R. Musser. Proof by consistency. Artificial Intelligence,
31:125–157, 1987.

[9] A. Lazrek, P. Lescanne, and J.-J. Thiel. Tools for proving inductive equali-
ties, relative completeness, and ω-completeness. Information and Computa-
tion, 84:47–70, 1990.

[10] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer-Verlag, 1980.

[11] R. Milner. A complete axiomatisation for observational congruence of finite-
state behaviours. Technical Report ECS-LFCS-86-8, Department of Com-
puter Science, University of Edinburgh, 1986.

[12] F. Moller. Axioms for concurrency. PhD thesis, Report CST-59-89, Depart-
ment of Computer Science, University of Edinburgh, 1989.

[13] V.L. Murskǐi. The existence in three-valued logic of a closed class with finite
basis, not having a finite complete system of identities. Doklady Akademii
Nauk SSSR, 163:815–818, 1965. English translation in: Soviet Mathematics
Doklady, 6:1020-1024, 1965.

[14] D.L. Musser. On proving inductive properties of abstract data types. In
Proceedings 7th ACM Symposium on Principles of Programming Languages,
New York, pages 154–162. ACM, 1980.

[15] E. Paul. Proof by induction in equational theories with relations between
constructors. In B. Courcelle, editor, 9th Coll. on Trees in Algebra and
Programming, Bordeaux, France, pages 211–225, London, 1984. Cambridge
University Press.

44 2. Proving ω-Completeness using Inverted Substitutions

3

An Efficient Algorithm for Branching
Bisimulation and Stuttering Equivalence

(Jan Friso Groote & Frits Vaandrager)

This paper presents an efficient algorithm for the Relational Coars-
est Partition with Stuttering problem (RCPS). The RCPS problem is
closely related to the problem of deciding stuttering equivalence on fi-
nite state Kripke structures (see Browne, Clarke and Grumberg
[3]), and to the problem of deciding branching bisimulation equiva-
lence on finite state labelled transition systems (see van Glabbeek
and Weijland [12]). If n is the number of states and m the number
of transitions, then our algorithm has time complexity O(n · (n+m))
and space complexity O(n + m). The algorithm induces algorithms
for branching bisimulation and stuttering equivalence which have the
same complexity. Since for Kripke structures m ≤ n2, this confirms
a conjecture of Browne, Clarke and Grumberg [3], that their
O(n5)-time algorithm for stuttering equivalence is not optimal.

3.1 Introduction

In this paper we present an efficient algorithm for the Relational Coarsest Par-
tition with Stuttering problem (RCPS). This problem is interesting because it is
closely related to (1) deciding stuttering equivalence on finite Kripke structures,
and (2) deciding branching bisimulation equivalence on finite labelled transition
systems. Below we comment on these two problems separately.

Temporal logic model checking procedures have been successful in finding errors
in relatively small network protocols and sequential circuits (for an overview
see [5]). However, a serious problem for the model checking approach is the
state explosion problem: in general, the number of states in the global state
graph may grow exponentially with the number of components. In order to
deal with this problem, it seems natural to hide details that do not need to be
visible externally and merge those states that become indistinguishable. In the

45

46 3. An Efficient Algorithm

setting of temporal logic, hiding of ‘details’ is achieved by making it illegal to
refer to these details in temporal logic formulas. If a program is constructed in
a hierarchical fashion, then state explosion may be avoided by simplifying the
components before computing the global state graph [6]. Our paper deals with
the question how the idea of merging indistinguishable states can be implemented
in the setting of the logic CTL∗.

The computation tree logic CTL∗ [10] is a very powerful temporal logic that
combines both branching time and linear time operators. CTL [4] is a restricted
subset of CTL∗ that permits only branching time operators. One of the operators
in CTL/CTL∗, the nexttime operator X, has been subject to some criticism.
Lamport [15] argues that in reasoning about concurrent systems, the nexttime
operator may be dangerous since it refers to the global next state instead of the
local next state. If, for this reason, one decides not to use the nexttime operator,
then it becomes interesting to study the equivalences on states induced by the sets
of formulas CTL−X and CTL∗−X. The idea is that two states that satisfy the
same CTL−X/CTL∗−X formulas have the same relevant properties (and maybe
some irrelevant ones as well) and are therefore identified. Browne, Clarke and
Grumberg [3] introduce the notion of stuttering equivalence on Kripke structures
and prove that this equivalence characterises both the equivalence induced by
CTL−X and the equivalence induced by CTL∗ −X. They show that stuttering
equivalence can be decided in polynomial time but give a rather high upper bound
of O(n5) for the time complexity, where n is the number of states of the Kripke
structure. They conjecture the existence of a faster algorithm. The present paper
confirms this conjecture: our algorithm for the RCPS problem solves stuttering
equivalence in O(m ·n) time, where m is the number of transitions in the Kripke
structure. Here, like in the rest of this paper, we assume m ≥ n. This assumption
may be dropped if m+n is read wherever we write m. In Kripke structures always
m ≤ n2.

van Glabbeek and Weijland [12] introduce the notion of branching bisim-
ulation equivalence on labelled transition systems. This equivalence resembles,
but is finer than the observation equivalence of Milner [17]. They argue that,
unlike observation equivalence, branching bisimulation preserves the branching
structure of processes, in the sense that it preserves computations together with
the potentials in all intermediate states that are passed through, even if silent
moves are involved.

We show how our algorithm for RCPS can be easily transformed to an O(m ·n)
algorithm for deciding branching bisimulation equivalence (O(m log m + m · n)
if the set of labels is infinite or not fixed).

The structure of this paper is as follows. In section 3.2 we present the RCPS
problem and in section 3.3 our algorithm to solve it. Section 3.4 describes how
the algorithm can be used to decide stuttering equivalence and in section 3.5 we
show how a variant of the algorithm solves the problem of deciding branching
bisimulation. Section 3.6 contains some concluding remarks. We expect that,
at the price of a more complicated algorithm, the efficiency of our algorithm for
RCPS can be slightly improved upon by incorporating ideas from the O(m log n)

3.2. The RCPS problem 47

algorithm of Paige and Tarjan [18] for the Relational Coarsest Partition prob-
lem (RCP). Also in section 3.6, we compare the complexity of deciding branching
bisimulation equivalence with the complexity of deciding observation equivalence.

3.2 The RCPS problem

Let S be a set. A collection {Bj | j ∈ J} of nonempty subsets of S is called
a partition of S if

⋃
j∈J Bj = S and for i 6= j: Bi ∩ Bj = ∅. The elements

of a partition are called blocks. If P and P ′ are partitions of S then P ′ refines
P , and P is coarser than P ′, if any block of P ′ is included in a block of P .
The equivalence ∼P on S induced by a partition P is defined by: r ∼P s iff
∃B ∈ P : r ∈ B ∧ s ∈ B.

The Relational Coarsest Partition with Stuttering problem (RCPS) can now be
specified as follows:

Given: a nonempty, finite set S of states, a relation −→⊆ S × S of transitions
and an initial partition P0 of S.

Find: the coarsest partition Pf satisfying:

(i) Pf refines P0;

(ii) if r ∼Pf s and r −→ r′, then there is an n ≥ 0 and there are s0, ..., sn ∈ S
such that:

– s0 = s;

– for all 0 ≤ i < n: r ∼Pf si and si −→ si+1;

– r′ ∼Pf sn.

Below we show that a coarsest partition satisfying (i) and (ii) always exists; if it
exists, then clearly it is unique.

3.3 The Algorithm

Next we describe our algorithm for the RCPS problem. We fix a nonempty, finite
set S of states, a transition relation −→ and an initial partition P0. Let |S| = n
and | −→ | = m. For B,B′ ⊆ S we define the set pos(B,B′) as the set of states
in B from which, after some initial stuttering, a state in B′ can be reached:

pos(B,B′) = {s ∈ B | ∃n ≥ 0 ∃s0, ..., sn :
s0 = s, [∀i < n : si ∈ B ∧ si −→ si+1] and sn ∈ B′}.

Call B′ a splitter of B and (B,B′) a splitting pair iff ∅ 6= pos(B,B′) 6= B. Since
pos(B,B) = B, a block can never be a splitter of itself. If P is a partition of
S and B′ a splitter of B, define Ref P (B,B′) as the partition obtained from P

48 3. An Efficient Algorithm

by replacing B by pos(B,B′) and B − pos(B,B′). P is stable with respect to a
block B′ if for no block B, B′ is a splitter of B. P is stable if it is stable with
respect to all its blocks. Thus the RCPS problem consists of finding the coarsest
stable partition that refines P0. Our algorithm maintains a partition P that is
initially P0. The following refinement step is repeated as long as P is not stable:

find B,B′ ∈ P such that B′ is a splitter of B;
P := Ref P (B,B′)

Theorem 3.3.1. The above algorithm terminates after at most n− |P0| refine-
ment steps. The resulting partition Pf is the coarsest stable partition refining
P0.

Proof. In order to see that the algorithm terminates, observe that after each
iteration of the refinement step the number of blocks of P has increased by one.
Since a partition of S can have at most n blocks, termination will occur after at
most n− |P0| iterations.

Next we show that the algorithm solves the RCPS problem. By induction on
the number of refinement steps we prove that any stable refinement of P0 is also a
refinement of the current partition. Clearly the statement holds initially. Suppose
it is true before a refinement step that refines a partition P to a partition Q, using
a splitting pair (B,B′). Let R be any stable refinement of P0 and let C be a block
of R. It is enough to show that C is included in a block from Q. By the induction
hypothesis, we can assume that C is included in a block D of P . If D 6= B, then
D is a block of Q and we are done. So suppose D = B. We have to show that
either C ⊆ pos(B,B′) or C ⊆ B − pos(B,B′). Suppose that there are r, s ∈ C
with r ∈ pos(B,B′) and s /∈ pos(B,B′). We derive a contradiction. There are
r0, ..., rn such that r = r0, for all i < n: ri ∈ B ∧ ri −→ ri+1 and rn ∈ B′. Let
C0, ..., Cn be the blocks of R such that ri ∈ Ci. Then C0 = C and, by induction,
for all i < n: Ci ⊆ B and Cn ⊆ B′. Now use the fact that R is stable to construct
a sequence s0, ..., sm with s0 = s, for i < m: si ∈ B ∧ si −→ si+1 and sm ∈ B′.
This contradicts s /∈ pos(B,B′). Thus we have proved the induction step. 2

Below we describe an implementation of our algorithm. We show how to compute
in O(m) time whether or not a partition is stable. The computation is organised
in such a way that if the partition is not stable, a counterexample, i.e. a splitting
pair (B,B′), is produced. Next we show how to compute Ref P (B,B′) in O(m)
time. Since the number of iterations of the main loop is O(n), this establishes a
complexity of O(m · n) for the RCPS problem.

Efficient implementation of the algorithm requires some preprocessing. Let P
be a partition. We call a transition s −→ s′ inert with respect to P , or P -inert,
iff s ∼P s′. If in the initial partition a set of states is strongly connected via
inert transitions, then these states will be in the same block of the final parti-
tion: by definition of inert they are in the same block of the initial partition,
and no refinement step will place two states from the set in a different block.

3.3. The Algorithm 49

As a preprocessing step in our algorithm we look for strongly connected compo-
nents with respect to inert transitions in the initial partition and ‘collapse’ these
components to one state. Here we can use the well-known O(m) algorithm for
finding strongly connected components in a directed graph (see for instance Aho,
Hopcroft and Ullman [1]). Thus it is sufficient to solve the RCPS problem in
the case where P0 contains no cycles of inert transitions.

For B ⊆ S, define the set bottom(B) of bottom states of B by:

bottom(B) = {r ∈ B | ∀s : r −→ s ⇒ s /∈ B}.

If P is a partition, then the set bottom(P) of bottom states of P is given by:

bottom(P) =
⋃
B∈P

bottom(B).

The following two observations play a crucial role in the implementation of our
algorithm:

Lemma 3.3.2. Let P be a refinement of P0 and let B,B′ ∈ P . Then B′ is a
splitter of B iff

(1) B 6= B′,

(2) for some r ∈ B and r′ ∈ B′: r −→ r′, and

(3) there is an s ∈ bottom(B) such that for no s′ ∈ B′: s −→ s′.

Proof. “⇒” Suppose B′ is a splitter of B. Then B 6= B′ because a block can
never split itself. By definition of a splitter: ∅ 6= pos(B,B′). Thus r −→ r′ for
some r ∈ B and r′ ∈ B′. Suppose that for every bottom state s of B there is an
s′ ∈ B′ with s −→ s′. We derive a contradiction. Pick an element t ∈ B. Since
P0 contains no cycle of P0-inert transitions, P does not contain a cycle of P -inert
transitions. Thus there must be a path of inert transitions from t to a bottom
state t′ of B. Since for some t′′ ∈ B′ we have t′ −→ t′′, t is in pos(B,B′). But
since t was chosen arbitrarily, this means that pos(B,B′) = B. This contradicts
the fact that B′ is a splitter of B.
“⇐” Suppose that B and B′ satisfy condition (1), (2) and (3). Then B′ is a
splitter of B: pos(B,B′) 6= ∅ because of (2), and pos(B,B′) 6= B because of (1)
and (3). 2

Lemma 3.3.3. Let P,R be partitions such that R refines P , and P and R have
the same bottom states. Let B be a block of both P and R such that P is stable
with respect to B. Then R is stable with respect to B.

Proof. Let P , R and B be as above. Pick a block B′ of R. Suppose that B
is a splitter for B′. We will derive a contradiction. Application of lemma 3.3.2
gives: (1) B′ 6= B, (2) for some r ∈ B′ and r′ ∈ B: r −→ r′, and (3) there is an

50 3. An Efficient Algorithm

··············

s t u

v w
?

-

?

Figure 3.1: Stability is not inherited under refinement

s ∈ bottom(B′) such that for no s′ ∈ B: s −→ s′. Now use that B′ is included
in some block C of P . Clearly C 6= B. Moreover we can find r ∈ C and r′ ∈ B
with r −→ r′. Since bottom(P) = bottom(R) we have bottom(B′) ⊂ bottom(C).
Thus we can find an s ∈ bottom(C) such that for no s′ ∈ B: s −→ s′. Now apply
lemma 3.3.2 to conclude that B is a splitter for C, which is a contradiction. 2

Remark 3.3.4. In the setting of the Relational Coarsest Partition problem,
stability is inherited under refinement in general; that is, if R is a refinement of
P and P is stable with respect to B, then so is R. The O(m log n) algorithm of
Paige and Tarjan [18] depends crucially on this property.

In the case of the RCPS problem stability is in general not inherited un-
der refinement; the condition in lemma 3.3.3 that P and R have the same
bottom states cannot be dropped. An example is presented in figure 3.1. If
P = {{s, t, u}, {v, w}} and R = {{s, t}, {u}, {v, w}}, then P is stable w.r.t. {v, w}
but R is not. As a consequence the idea behind the Paige and Tarjan [18] al-
gorithm cannot be applied to the RCPS problem in the same way.

In the implementation of the algorithm, there is for each block, state and transi-
tion a corresponding record of type block, state resp. transition (see figure 3.2).
We identify a block, state and transition with the record representing it. There
are two doubly linked lists, tobeprocessed and stable, of blocks. A block B is in
stable when the current partition is stable with respect to B. Otherwise B is
in the list tobeprocessed. Initially, all blocks of P0 are in the list tobeprocessed
and the list stable is empty. Each block B contains a list of bottom states in
B and a list of non-bottom states in B. We assume that whenever s −→ s′ for
s, s′ ∈ B − bottom(B), s is after s′ in the list of non-bottom states. Initially,
the division of states in bottom states and non-bottom states, and also the or-
dering on the non-bottom states, can be accomplished by a standard depth first
search algorithm using O(m) time and space (see for instance Aho, Hopcroft
and Ullman [1]). Each state contains a pointer to the block of which it is an
element. Each transition contains two pointers to resp. its starting state and
its target state. Each non-bottom state contains a list of the inert transitions
starting in this state. Each block points to a list of the non-inert transitions
that end in this block. Each state and each block has an auxiliary field flag of

3.3. The Algorithm 51

B1

B2

tobeprocessed

?

6

?

····

····

····

····

φ1 φ2 φ3
- - - ····

B3

stable

?

····

····

····

····

s1s2···· ��

t1t2···· ��

····

ψ1

ψ2

?

?

····

– B1, B2, B3, ... are the blocks of the current partition.

– s1, s2, ... are the bottom states in block B1.

– t1, t2, ... are the non-bottom states in block B1.

– φ1, φ2, φ3, ... are the non-inert transitions that end in block B1.

– ψ1, ψ2, ... are the inert transitions that start in state t1.

Figure 3.2: The data structure of the implementation

52 3. An Efficient Algorithm

type boolean, which is 0 initially. Moreover we use an auxiliary list BL of blocks,
which is empty initially.

Next we describe how to find out in O(m) time whether a partition is stable.
Let B′ be a block in tobeprocessed. Scan the list of non-inert transitions which
end in B′. When some transition is visited, the flag of the starting state is raised
(i.e. the value 1 is assigned to the field flag of the starting state). If the flag
of the block to which the starting state belongs has not yet been raised, then
we do so and add a copy of this block to the list BL. After having scanned all
non-inert transitions ending in B′, we consider the list BL. This list contains all
blocks, different from B′, which contain a state from which a state from B′ can
be reached. There is at most one reference to each block in the list. Remove the
first block B from the list BL. By lemma 3.3.2, B′ is a splitter of B iff there is
a bottom state s of B such that for no s′ ∈ B′: s −→ s′. So in order to find
out whether B′ is a splitter of B we only have to check whether the flag of all
bottom states in B is raised.

Suppose that B′ is a splitter of B. In this case we remove B from the linked
list of blocks in which it occurs (in general this can be either the list tobeprocessed
or the list stable), and insert two new blocks B1 and B2 in the list tobeprocessed.
The flag fields of the new blocks are set to 0. All bottom states of B with a raised
flag become bottom states of B1, the other bottom states of B become bottom
states of B2. Next we scan the non-bottom states of B. If for some non-bottom
state the flag is not raised and if none of the outgoing P -inert transitions leads
to a state in B1, then this state becomes a non-bottom state of B2 (here we use
the ordering on the list of non-inert states in the old partition). In this case the
outgoing inert transitions of this state remain the same. Otherwise, the state
is placed in B1. It may be that certain transitions which were inert in the old
partition lead to a state in B2. In that case they have to be moved to the list
of non-inert transitions which end in B2. It may be that a state which is not a
bottom state in the old partition becomes a bottom state in the new partition,
just because no inert transitions are left. If, in a refinement, a non-bottom state
becomes a bottom state, then (cf. lemma 3.3.3) we append the list stable to the
list tobeprocessed and make stable empty. The non-inert transitions ending in B
are distributed in the obvious way over B1 and B2.

If B′ is not a splitter of B, or if it is a splitter and we have carried out the
splitting as described above, then we consider the next first block of the list BL
and check whether B′ is splitter for that block, etc. When we have dealt with
all blocks of BL then we know that for no block in the current partition B′ is
a splitter. We move B′ from the list tobeprocessed to the list stable, reinitialise
all flags by an additional scan of the non-inert transitions with an end state in
B′, and we apply the same procedure for a next block in tobeprocessed, etc. If
tobeprocessed is empty then we know that the current partition is stable.

One can easily check that in O(m) time we either have found a splitter and
refined the partition, or we have established that the current partition is stable.
Moreover the space complexity is O(m). Thus we have the following theorem:

3.4. Stuttering equivalence 53

Theorem 3.3.5. The RCPS problem can be decided in O(m · n) time, using
O(m) space.

Remark 3.3.6. The implementation may be simplified slightly by eliminating
the stable list. However, since the stable list provides a very simple way to avoid
a lot of work (in our trial implementation the time performance increased with
more than a factor 2), we decided to include it in the above description.

3.4 Stuttering equivalence

In this section we show how a solution of the the RCPS problem can be used
to decide stuttering equivalence on finite Kripke structures. Let AP be a set of
atomic proposition names.

Definition 3.4.1. A Kripke structure is a triple K = (S,−→,L) where S is a set
of states, −→⊆ S×S is the transition relation and L : S → 2AP is the proposition
labelling. A Kripke structure is finite if the set of states is finite and for each
state the set of associated proposition names is finite.

Definition 3.4.2. Let K = (S,−→,L) be a Kripke structure. A relation R ⊆
S × S is called a divergence blind stuttering bisimulation if it is symmetric and
whenever r R s then:

(i) L(r) = L(s) and

(ii) if r −→ r′ then there exist s0, ..., sn ∈ S (n ≥ 0) such that s = s0, for all
0 ≤ i < n: si −→ si+1 ∧ r R si, and r′Rsn.

Two states r, s ∈ S are divergence blind stuttering equivalent, notation K : r↔––dbss
or just r↔––dbss, iff there exists a divergence blind stuttering bisimulation relation
relating r and s.

One can easily check that divergence blind stuttering equivalence is indeed an
equivalence relation.

Let K = (S,−→,L) be a finite Kripke structure with |S| = n and | −→ | = m.
In order to determine whether two states in S are divergence blind stuttering
equivalent, one can use our RCPS algorithm as follows.

The initial partition P0 is constructed by putting all states with the same labels
in the same block. Assuming that the set AP is finite and fixed, the initial
partition can be computed in O(n) time using a lexicographic sorting method
[1]. If lexicographic sorting is not feasible, it can be computed in O(n log n)
time. Next the RCPS algorithm is used to compute the coarsest stable partition
Pf that refines P0. This takes O(m · n) time. The following theorem says that
partition Pf solves our problem.

Theorem 3.4.3. Two states are in the same block of Pf exactly when they are
divergence blind stuttering equivalent.

54 3. An Efficient Algorithm

Proof. Suppose r, s ∈ B for some block B in Pf . Let Rf be the relation
that relates two states iff they are in the same block of Pf . Clearly r Rf s. We
show that Rf is a divergence blind stuttering bisimulation. Let p, q ∈ S with
pRfq. As Pf refines P0, L(p) = L(q). Moreover, condition (ii) of definition
3.4.2 holds as it exactly coincides with the condition (ii) in the RCPS problem.
Hence Rf is a divergence blind stuttering bisimulation and r and s are divergence
blind stuttering equivalent. Let Ps be the partition of S induced by ↔––dbs. By
definition of divergence blind stuttering Ps refines P0. Moreover, Ps is stable. As
Pf is the coarsest stable partition refining P0, Ps refines Pf . 2

Thus the time complexity of deciding divergence blind stuttering equivalence is
at most O(m · n+ n log n) = O(m · n) (remember m ≥ n).

In De Nicola and Vaandrager [9] it is shown that for finite Kripke struc-
tures divergence blind stuttering equivalence coincides with the equivalence in-
duced by CTL−X and CTL∗−X formulas if one quantifies over all paths in the
Kripke structure (the finite as well as the infinite ones). If one only quantifies
over the infinite paths, then this leads to the following stuttering equivalence [3]:

Definition 3.4.4. Let K = (S,−→,L) be a Kripke structure. Let s0 be a state
not in S and let p0 be an atomic proposition such that for all s in S: p0 /∈ L(s).
Define a Kripke structure K′ = (S′,−→′,L′) by:

– S′ = S ∪ {s0},

– −→′=−→ ∪{(s, s0) | s ∈ S has no outgoing transition or occurs on a cycle
of states which all have the same label},

– L′ = L ∪ {(s0, {p0})}.

Two states r, s ∈ S are stuttering equivalent if in K′: r↔––dbss (note that this defi-
nition does not depend on the particular choice of state s0 and atomic proposition
p0).

For finite Kripke structures the stuttering equivalence as defined above coincides
with the equivalence induced by CTL−X and also CTL∗ − X if one quantifies
over infinite paths [9]. Since Browne, Clarke and Grumberg [3] proved the
same result for their version of stuttering equivalence, both notions agree. For
finite Kripke structures the transformation of definition 3.4.4 can be accomplished
in O(m) time. Thus our algorithm for RCPS can be used to decide stuttering
equivalence in O(m · n) time.

3.5 Branching bisimulation equivalence

The RCPS algorithm cannot be used directly for deciding branching bisimulation
equivalence. We have to generalise RCPS to the case where transitions have

3.5. Branching bisimulation equivalence 55

labels.

The Generalised Relational Coarsest Partition with Stuttering problem (GRCPS)
is given by:

Given: A nonempty, finite set S of states, a finite set A of labels containing the
silent step τ , a relation −→⊆ S×A×S of transitions and an initial partition P0

of S.

Find: the coarsest partition Pf satisfying:

(i) Pf refines P0,

(ii) if r ∼Pf s and r
a
−→ r′, then either a = τ and r′ ∼Pf s, or there is an

n ≥ 0 and there are s0, ..., sn, s
′ such that s0 = s, for all 0 < i ≤ n:

[r ∼Pf si ∧ si−1

τ
−→ si], sn

a
−→ s′ and r′ ∼Pf s′.

Our algorithm for the GRCPS-problem is a minor modification of the algorithm
for the RCPS-problem. Therefore, we will not describe it in detail but only
sketch the differences. We fix S, A, −→ and P0 and, as usual, write |S| = n and
| −→ | = m. For B,B′ ⊆ S and a ∈ A, the set posa(B,B′) is defined by:

posa(B,B′) = {s ∈ B | ∃n ≥ 0 ∃s0, ..., sn ∈ B ∃s′ ∈ B′ :

s0 = s, [∀0 < i ≤ n : si−1

τ
−→ si] and sn

a
−→ s′}.

We say that B′ is a splitter of B with respect to a iff B 6= B′ or a 6= τ , and
∅ 6= posa(B,B′) 6= B. If P is a partition of S and B′ is a splitter of B with respect
to a, then Ref aP (B,B′) is the partition P where B is replaced by posa(B,B′) and
B − posa(B,B′). P is stable with respect to a block B′ if for no block B and for
no action a, B′ is a splitter of B w.r.t. a. P is stable if it is stable with respect
to all its blocks.

The algorithm maintains a partition P that is initially P0. It repeats the
following step, until P is stable:

find blocks B,B′ ∈ P and a label a ∈ A
such that B′ is a splitter of B with respect to a;

P := Ref aP (B,B′).

Theorem 3.5.1. The above algorithm for the GRCPS problem terminates after
at most n − |P0| refinement steps. The resulting partition Pf is the coarsest
stable partition refining P0.

Proof. Similar to the proof of theorem 3.3.1. 2

We must now show that one can find a splitter B′ with respect to some label
a in time O(m) or find in O(m) time that no such splitter exists. Moreover, a

56 3. An Efficient Algorithm

refinement must be carried out in O(m) time. To this purpose we use the data

structure of the RCPS algorithm. But now a transition s
a
−→ s′ is called (P-)inert

if s ∼P s′ and a = τ , and a state s ∈ B is a bottom state of B if s ∈ B and there
is no s′ ∈ B such that s

τ
−→ s′. The data structure is initialised in the same way

as for the RCPS algorithm. However, the non-inert transitions ending in a block
B are grouped on label, i.e. all transitions with the same label are in subsequent
records in the list. If there are non-inert transitions with a label τ ending in
a block B, then they are at the beginning of the list. This facilitates adding
inert transitions that become non-inert after a refinement at the beginning of
the transition list. Grouping of the transitions has time complexity O(m log m)
(heapsort) or O(|A|+m) (bucket sort).

The following lemmas are the counterparts of theorem 3.3.1 and lemma 3.3.2.
As the proofs are similar, they are omitted.

Lemma 3.5.2. Let P be a refinement of P0 and let B,B′ ∈ P and a ∈ A. Then
B′ is a splitter of B with respect to a iff

1) a 6= τ or B 6= B′,

2) for some r ∈ B and r′ ∈ B′: r
a
−→ r′, and

3) there is a bottom state s of B such that for no s′ ∈ B′: s
a
−→ s′.

Lemma 3.5.3. Let P,R be partitions such that R refines P , and P and R have
the same bottom states. Let B be a block of both P and R such that P is stable
with respect to B. Then R is stable with respect to B.

A splitter can be found in the same way as in the RCPS algorithm. Continue the
following step until the list tobeprocessed is empty or a splitter has been found.
Consider a block B from the list tobeprocessed. Consider subsequently all groups
Φ of non-inert transitions ending in B with the same label a, set the flag field of
the starting states of transitions in Φ and construct BL. A copy of Φ is maintained
for resetting the flags. Then check stability of all blocks B′ in BL with respect
to B and label a and split B′ if necessary. Due to lemma 3.5.2 and lemma 3.5.3
this can be performed in exactly the same way as in the RCPS case. Reset the
flags of the states using the copy of Φ. If B splits itself into blocks B1 and B2,
it is not necessary to check more transitions ending in B, as they must again be
checked for B1 and B2. If all incoming transitions in block B have been checked,
if B is not split and if there is no new bottom state, move B from tobeprocessed
to stable.

Branching bisimulation is mostly defined on labelled transition systems (LTS’s).
The GRCPS-algorithm can be used to decide branching bisimulation on finite
LTS’s.

Definition 3.5.4. A labelled transition system (LTS) is a triple L = (S,A,−→)
with S a set of states, A a set of labels containing the silent step τ , and −→⊆
S ×A× S a transition relation. L is called finite if both S and A are finite.

3.6. Concluding remarks 57

Definition 3.5.5 ([12]). Let L = (S,A,−→) be an LTS. Let ⇒ be the transitive

and reflexive closure of
τ
−→. A relation R ⊆ S ×S is a branching bisimulation iff

it is symmetric and whenever r R s and r
a
−→ r′, then either a = τ and r′Rs, or

there exist s1, s
′ such that s ⇒ s1

a
−→ s′ and r R s1 and r′Rs′.

Two states r, s ∈ S are branching bisimilar, notation r↔––bs, iff there exists a
branching bisimulation relation relating r and s.

We could have strengthened this definition by requiring all intermediate states
in s⇒ s1 to be related with r. The following lemma implies that this would lead
to the same equivalence relation.

Lemma 3.5.6 (cf. lemma 1.3 of [12]). Let L = (S,A,−→) be an LTS and let for

some n > 0, r0

τ
−→ r1

τ
−→ ...

τ
−→ rn−1

τ
−→ rn be a path in L with r0↔––brn. Then

for all 0 ≤ i ≤ n: r0↔––bri.

Theorem 3.5.7. Let L = (S,A,−→) be a finite LTS. Let Pf be the final
partition obtained after applying the GRCPS algorithm on an initial partition
containing only block S. Then ∼Pf=↔––b.

Proof. “⊆” Using theorem 3.5.1 it follows that ∼Pf is a branching bisimulation
relation.
“⊇” ↔––b induces a stable partition on S (use lemma 3.5.6). As Pf is the coarsest
stable partition, ∼Pf⊇ ↔––b. 2

So in order to compute whether two states in a finite LTS are branching bisim-
ilar we can apply the GRCPS algorithm with as initial partition the partition
containing the set of states as only block. This takes O(m log m + m · n) resp.
O(|A|+m · n) time, depending on the sorting algorithm that has been used.

3.6 Concluding remarks

Is our O(m ·n) algorithm for the RCPS problem optimal? We do not think so. In
fact we expect that our algorithm can be slightly improved upon by incorporating
ideas behind the O(m log n) algorithm of Paige and Tarjan [18] for the RCP
problem. Let mi be the number of inert transitions in the initial partition and
let ni be the number of states which have an outgoing inert transition in the
initial partition but are bottom states in the final partition. We expect that the
following holds:

Conjecture 3.6.1. The RCPS problem can be decided in O(m · ni + mi · n +
m log n) time, using O(m) space.

As already observed in remark 3.3.4, stability is not inherited under refinement
in general: problems arise when, in a refinement, a non-bottom state becomes

58 3. An Efficient Algorithm

a bottom state. This situation can occur ni times. The summand m · ni in
the expression above corresponds to the additional amount of work that has to
be done to deal with these situations. At present we do not see how to avoid
scanning all inert transitions when we do a refinement step. This explains the
summand mi · n. If there are no inert transitions, then the algorithm which we
conjecture is as efficient as the Paige and Tarjan [18] algorithm for the RCP
problem. However, often mi will be of the same order as m. In that case the
order of complexity equals the one of our O(m·n) algorithm. For this reason, and
also because the algorithm which we conjecture is rather complex (it combines
the techniques of Paige and Tarjan [18] with the techniques of our O(m · n)
algorithm), we decided to concentrate first on a clear exposition of the O(m · n)
algorithm.

In a sense, branching bisimulation equivalence can be viewed as an alternative
to observation equivalence. Thus it is interesting to compare the complexities of
deciding these equivalences. First consider the situation where the set A of labels
is fixed (so O(m) ≤ O(n2)). All known algorithms for deciding observation equiv-
alence (see e.g. [2, 14]) work in two phases. First a transitive closure algorithm
is used to compute the so-called double arrow relation. With a simple algorithm
(see e.g. [1]) this takes O(n3) time. The result of the transitive closure is a new
LTS with at most O(n2) more edges than the original LTS. Next a variant of the
Paige and Tarjan [18] algorithm is used to decide strong bisimulation equiva-
lence on the new LTS. This takes O(n2 log n) time. The resulting complexity in
this case for deciding observation equivalence is O(n3), which is the same as the
complexity of our algorithm. Now there are numerous sub-cubic transitive clo-
sure algorithms in the literature (see e.g. [7] for an O(n2.376) algorithm). These
algorithms tend to be practical only for large values of n. Still we have that if the
set of labels is fixed, the number of states is large and the number of transitions
is of order O(n2), observation equivalence can be decided faster than branching
bisimulation if one uses these sub-cubic algorithms.

However, things change if one does not fix the set of labels. Since one has
to compute the double arrow relation for all labels that occur in the LTS, the
complexity of computing the double arrow relation then becomes O(m · n2.376)
[14] (at least, we do not know any faster solution). In that case our algorithm
for branching bisimulation is more efficient.

Clearly, the issue of comparing the complexities of observation equivalence
and branching bisimulation is nontrivial and the analysis above does not give
very much insight into the performance of our algorithm in practical applica-
tions. Therefore, we wrote a trial implementation in Pascal and compared the
performance of this implementation with the performance of AUTO [19] and
Aldébaran [11], as far as we know the two fastest tools currently available for
deciding observation equivalence.

The process we used for our tests was the ‘scheduler’ as described by Milner
[16]. This scheduler schedules k processes in succession modulo k, i.e. after
process k process 1 is reactivated again. However, a process must never be

3.6. Concluding remarks 59

c c
c

c c@@R �
6

�

@
@
@
@R

@
@
@
@R

6

b̄i

b̄i

ci+1 ci+1

c̄i

ai

�
�
�
�c1 · nil
�
�
�
�C1

�
�
�
�C2

�
�
�
�C3

�
�
�
�C4

�
�
�
�Ck

········ ········
········

········
········

··
··
··
··

··
··
··
··

Figure 3.3: A cycler and a scheduler

reactivated before it has terminated. The scheduler is constructed of k cyclers
C1, ..., Ck, where cycler Ci takes care of process i. The left part of figure 3.3
shows the transition system for cycler Ci. In the right part the architecture of the
scheduler is depicted. The dotted lines indicate where the cyclers synchronise.
Cycler Ci first receives a signal c̄i which indicates that it may start. It then
activates process i via an action ai. Next, it waits for termination of process i,
indicated by b̄i, and in parallel, using ci+1, the next cycler is informed to start.
Afterwards the cycler is back in its initial state. The cycler Ci is described by:

Ci = c̄i · ai · (b̄i|ci+1) · Ci.

The complete scheduler for k processes is described by:

Schk = (c1 · nil|C1|...|Ck)\c1...\ck.

Here c1 · nil is an auxiliary process that starts the first cycler.
The results of experiments with schedulers of different size are given in table 1.

Here k is the number of cyclers per scheduler. The second and third column give
the number of states resp. transitions of the corresponding transition system.
Then we give the time necessary to calculate the bisimulation equivalence classes
of the schedulers for AUTO (AU), Aldébaran (AB) and our trial implementation
(BB). We give these figures not only for the case where labels ai and b̄i are both
visible, but also for the case where actions b̄i are hidden (i.e. renamed into τ).
The figures for AUTO and our trial implementation have been obtained using a
SUN 3/60 with 16 MB of memory. The figures for Aldébaran, which are taken
from [11], were obtained with a 50 MB SUN 3/60. It is important to note that
these figures refer only to the second phase of the algorithm where the strong
bisimulation equivalence classes are computed. So the time it takes to carry out
the first phase (the transitive closure) is not included. This means that, roughly
speaking, the figures for Aldébaran must be multiplied by 2. The figures for
AUTO refer to the time needed for both phases of the algorithm. In separate
columns the number of resulting equivalence classes of both experiments are
given. They are the same for branching bisimulation and observation equivalence.
In the table, “-” means that no outcome was obtained due to lack of memory
and “*” means that no outcome is reported in [11].

60 3. An Efficient Algorithm

both ai and b̄i visible only ai visible

k states trans. AU AB BB eq.cl. AU AB BB eq.cl.

4 97 241 0.5s 0.26s 0.07s 64 0.4s 0.15s 0.02s 4
5 241 721 1.9s 0.88s 0.3s 160 1.1s 0.6s 0.07s 5
6 577 2017 8.0s 2.6s 0.9s 384 3.3s 1.9s 0.2s 6
7 1345 5377 38s 7.2s 2.5s 896 12s 6.9s 0.5s 7
8 3073 13825 201s 21s 7.7s 2048 57s 24s 1.2s 8
9 6913 34561 - 56s 23s 4608 - 80s 2.9s 9

10 15361 84481 - 160s 67s 10240 - - 7.4s 10
11 33793 202753 - * 214s 22528 - - 19s 11
12 73729 479233 - * 1254s 49152 - - 53s 12

Table 3.1: Some test results

Our implementation improves the performance of Aldébaran and AUTO con-
siderably, especially when a lot of τ ’s are around. For the space requirements
this is directly reflected in the fact that, in the case where only the ai-actions
are visible, we can handle 12 cyclers on a 16 MB machine, whereas Aldébaran,
on a 50 MB machine, can handle only 9 cyclers and AUTO, on a 16 MB ma-
chine, only 8. The figures about the time performance also show a considerable
improvement (up to a factor 47). So in this experiment our algorithm is doing
better than the usual algorithms for observation equivalence. We expect that al-
gorithms for branching bisimulation will perform better than algorithms for weak
bisimulation. However, we find it hard to draw this as a firm conclusion from
the experiments, since these are influenced by many factors that are difficult to
control, such as the skill of the programmer and the programming language used.

References

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The design and analysis of
computer algorithms. Addison-Wesley, 1974.

[2] T. Bolognesi and S.A. Smolka. Fundamental results for the verification of
observational equivalence: a survey. In H. Rudin and C. West, editors,
Proceedings 7th IFIP WG6.1 International Symposium on Protocol Speci-
fication, Testing, and Verification, Zürich, Switserland, May 1987. North-
Holland, 1987.

[3] M.C. Browne, E.M. Clarke, and O. Grümberg. Characterizing finite Kripke
structures in propositional temporal logic. Theoretical Computer Science,
59(1,2):115–131, 1988.

[4] E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In D. Kozen, editor, Pro-
ceedings of the Workshop on Logic of Programs, Yorktown Heights, volume

References 61

131 of Lecture Notes in Computer Science, pages 52–71. Springer-Verlag,
1981.

[5] E.M. Clarke and O. Grümberg. Research on automatic verification of finite
state concurrent systems. Ann. Rev. Comput. Sci., 2:269–290, 1987.

[6] E.M. Clarke, D.E. Long, and K.L. McMillan. Compositional model checking.
In Proceedings 4th Annual Symposium on Logic in Computer Science, Asilo-
mar, California, pages 353–362, Washington, 1989. IEEE Computer Society
Press.

[7] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic
progressions. In Proceedings of the 19th Annual ACM Symposium on Theory
of Computing, New York City, pages 1–6, 1987.

[8] R. De Nicola, U. Montanari, and F.W. Vaandrager. Back and forth bisim-
ulations. In J.C.M. Baeten and J.W. Klop, editors, Proceedings CONCUR
90, Amsterdam, volume 458 of Lecture Notes in Computer Science, pages
152–165. Springer-Verlag, 1990.

[9] R. De Nicola and F.W. Vaandrager. Action versus state based logics for
transition systems. In I. Guessarian, editor, Semantics of Systems of Con-
current Processes, Proceedings LITP Spring School on Theoretical Computer
Science, La Roche Posay, France, volume 469 of Lecture Notes in Computer
Science, pages 407–419. Springer-Verlag, 1990.

[10] E.A. Emerson and J.Y. Halpern. ‘Sometimes’ and ‘Not Never’ revisited:
on branching time versus linear time temporal logic. Journal of the ACM,
33(1):151–178, 1986.

[11] J.-C. Fernandez. An implementation of an efficient algorithm for bisimula-
tion equivalence. Science of Computer Programming, 13:219–236, 1990.

[12] R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in
bisimulation semantics (extended abstract). In G.X. Ritter, editor, Infor-
mation Processing 89, pages 613–618. North-Holland, 1989.

[13] R.J. van Glabbeek and W.P. Weijland. Refinement in branching time se-
mantics. Report CS-R8922, CWI, Amsterdam, 1989. Also appeared in:
Proceedings AMAST Conference, May 1989, Iowa, USA, pp. 197–201.

[14] P.C. Kanellakis and S.A. Smolka. CCS expressions, finite state processes,
and three problems of equivalence. Information and Computation, 86:43–68,
1990.

[15] L. Lamport. What good is temporal logic? In R.E. Mason, editor, Infor-
mation Processing 83, pages 657–668. North-Holland, 1983.

[16] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer-Verlag, 1980.

62 3. An Efficient Algorithm

[17] R. Milner. Communication and concurrency. Prentice Hall International,
1989.

[18] R. Paige and R. Tarjan. Three partition refinement algorithms. SIAM
Journal on Computing, 16(6):973–989, 1987.

[19] R. de Simone and D. Vergamini. Aboard AUTO. Technical Report 111,
INRIA, Centre Sophia-Antipolis, Valbonne Cedex, 1989.

4

Transition System Specifications with
Negative Premises

(Jan Friso Groote)

In this paper the general approach to Plotkin style operational seman-
tics of [16] is extended to Transition System Specifications (TSS’s)
with rules that may contain negative premises. Two problems arise:
first the rules may be inconsistent, and secondly it is not obvious how
a TSS determines a transition relation. We present a general method,
based on the stratification technique in logic programming, to prove
consistency of a set of rules and we show how a specific transition re-
lation can be associated with a TSS in a natural way. Then a special
format for the rules, the ntyft/ntyxt-format, is defined. It is shown
that for this format three important theorems hold. The first theo-
rem says that bisimulation is a congruence if all operators are defined
using this format. The second theorem states that under certain re-
strictions a TSS in ntyft-format can be added conservatively to a TSS
in pure ntyft/ntyxt -format. Finally, it is shown that the trace congru-
ence for image finite processes induced by the pure ntyft/ntyxt-format
is precisely bisimulation equivalence.

4.1 Introduction

In recent years, many process calculi, programming languages and specification
languages are provided with an operational semantics in Plotkin style [29, 30].
We mention CCS [22, 24], SCCS [23], ACP [15], Meije [4], Esterel [9], LOTOS
[18] and Ada [3].

In [16] an operational semantics in Plotkin style is defined by a TSS (Transition
System Specification). Basically, a TSS consists of three components. The first
component is a signature defining the language elements. All terms over this
signature are referred to as (process) terms or processes. The second component
of a TSS is a set of actions or labels representing the different activities that

63

64 4. Transition System Specifications with Negative Premises

process terms may do. The last component is a set of rules that define how
processes can perform certain activities depending on the presence of specific
actions in other processes. In [16] the possibility to perform activity based on
the absence of actions is not considered.

But in many cases it is convenient to have this possibility. For instance, a
deadlock detector D(p) of a process p can naturally be specified as follows: if
p can do no action then D(p) may signal deadlock. We find deadlock detectors
described in this way in [20, 28].

Deadlock detection is also used in sequencing processes. If in p · q (process
p sequenced with q) p cannot do anything, q may start. See for instance [25]
or [10], where it is observed that sequencing can only be defined using negative
premises.

Negative conditions are also useful to describe priorities. Suppose θ is a unary
operator that blocks all actions which do not have the highest priority. An
operational description of θ(p) could be that it can only perform action a if it
cannot perform any activity with higher priority. Descriptions of priorities with
negative premises can be found in [6, 13, 16].

Another area where negative conditions can be fruitfully applied is the area
of synchronous parallel operators. Suppose a sender wants to send data to a
receiver. If the receiver is willing to accept the data, then data transfer will take
place. If the receiver is not willing to accept the data then the sender may not be
blocked and data may for instance disappear. This can conveniently be described
using negative premises. Pnueli [31] defines an operator in this way. Also the
put and get primitives of Bergstra [8] can be defined using negative premises.

Negative premises are also used quite a lot in timed proces algebras [11, 17,
19, 26]. Generally, they are used to avoid a time-stop, saying that if nothing can
happen time can proceed, or to force maximal progress, saying that if certain
actions can happen, then they must happen.

Often negative premises can be avoided. A typical example of this can be found
in [12]. Using additional labels, function names and rules an operational seman-
tics can be given with only positive premises. But then there are many auxiliary
transitions that do not correspond to positive activity. Moreover, definitions of
operational semantics become more complex than necessary. This means that an
important property of operational semantics in Plotkin style, namely simplicity,
is violated.

For these reasons we believe that it is useful to investigate how one can deal
with negative premises in TSS’s.

A format of rules that allows negative premises is the GSOS-format of Bloom,
Istrail and Meyer [10]. All operators mentioned above can be defined in this
format. The GSOS-format, however, is incompatible with the (pure) tyft/tyxt-
format [16] that allows lookahead and no negative premises. Many useful opera-
tors definable in the tyft/tyxt-format cannot be defined using the GSOS format.
The situation is described by the black arrows in figure 4.1. The positive GSOS-
format is the most general format that is below both the tyft/tyxt-format and the

4.1. Introduction 65

De Simone-format

positive GSOS

GSOSpure tyft/tyxt

pure ntyft/ntyxt

�
�
�
���

@
@
@

@@I

6

··
··
··
··
··
··
··
·

··
··
··
··
··
··
··
·

Figure 4.1: Pure ntyft/ntyxt extends both GSOS and pure tyft/tyxt

GSOS-format. Below the positive GSOS-format we find the De Simone-format
[14] which was already defined by R. de Simone in 1984. The De Simone-format
is powerful enough to define all the usual operators of CCS, SCCS, ACP and
Meije. All formats are explained more precisely in the last section of this paper.

The natural question arises whether a format exists that is more general than
both the pure tyft/tyxt-format and the GSOS-format. An obvious candidate for
such a format is obtained by adding negative premises to the tyft/tyxt-format,
obtaining the pure ntyft/ntyxt-format. The n in the name of the format is added
to indicate the possible presence of negative premises. We arrive at the situation
depicted by the dotted lines in figure 4.1.

Two problems arise when rules can be in pure ntyft/ntyxt-format:

• It is possible to give an inconsistent set of rules. This occurs if one can
derive using the rules that a process can perform an action if and only if it
cannot do so. In this case the rules do not define an operational semantics.

• Even if the rules are consistent, it is not immediately obvious how these
rules determine an operational semantics. The normal notion of provability
of transitions where the rules in a TSS are used as inference rules does not
work.

We deal with the first problem by formulating a method of checking whether a
transition relation is consistent. This method is based on the local stratifications
[2, 32] that are used in logic programming. The other problem is solved by
formulating an explicit definition of the transition relation.

66 4. Transition System Specifications with Negative Premises

Furthermore, general properties of the ntyft/ntyxt-format are studied. It is
shown that bisimulation is a congruence for this format. Then, in section 4.5
we define the sum of two TSS’s and we prove a theorem stating very general
conditions under which a TSS can be added conservatively to another TSS.

In [16] the completed trace congruences induced by the pure tyft/tyxt-format
and the GSOS format are characterised. It is interesting to know the impact of the
more powerful testing capabilities of the pure ntyft/ntyxt-format. Surprisingly, it
turns out that the (completed) trace congruence induced by the pure ntyft/ntyxt-
format is exactly strong bisimulation. This is shown by a small test system that
provides an alternative for the test systems of [1] and [10]. We do not need the
global testing operators like the ones used in these articles. The combination of
copying, lookahead and negative premises turns out to be powerful enough.

4.2 Transition system specifications and stratifi-
cations

This section describes a TSS as a general framework for defining an operational
semantics in Plotkin style. A condition is developed that guarantees the existence
of transition relations agreeing with a TSS. This condition is comparable to local
stratification as used in logic programming. Next, we define which transition
relation is associated with a TSS. Finally, some remarks are made about a class
of TSS’s which determine a transition relation in a unique way. We start off by
defining the basic notations that are used throughout the paper. We assume the
presence of an infinite set V of variables with typical elements x, y, z....

Definition 4.2.1. A (single sorted) signature is a structure Σ = (F, r) where:

– F is a set of function names disjoint with V ,

– r : F → NI is a rank function which gives the arity of a function name; if
f ∈ F and r(f) = 0 then f is called a constant name.

Let W ⊆ V be a set of variables. The set of Σ-terms over W , notation T (Σ,W),
is the least set satisfying:

– W ⊆ T (Σ,W),

– if f ∈ F and t1, ..., tr(f) ∈ T (Σ,W), then f(t1, ..., tr(f)) ∈ T (Σ,W).

T (Σ, ∅) is abbreviated by T (Σ); elements from T (Σ) are called ground or closed
terms. (Σ) is used to abbreviate T (Σ, V), the set of open terms. Clearly,
T (Σ) ⊂ (Σ). V ar(t) ⊆ V is the set of variables in a term t ∈ (Σ). A substitution
σ is a mapping in V → (Σ). A substitution σ is extended to a mapping σ :
(Σ)→ (Σ) in a standard way by the following definition:

– σ(f(t1, ..., tr(f))) = f(σ(t1), ..., σ(tr(f))) for f ∈ F and t1, ..., tr(f) ∈ (Σ).

A substitution is ground if it maps all variables onto ground terms.

4.2. Transition system specifications and stratifications 67

Definition 4.2.2. A TSS (Transition System Specification) is a triple P =
(Σ, A,R) with Σ = (F, r) a signature, A a set of labels and R a set of rules of
the form:

{tk
ak
−→ t′k | k ∈ K} ∪ {tl

bl−6→ | l ∈ L}

t
a
−→ t′

with K,L index sets, tk,t′k, tl, t, t
′ ∈ (Σ), ak, bl, a ∈ A (k ∈ K, l ∈ L). An

expression of the form t
a
−→ t′ is called a (positive) literal. Here t is called the

source and t′ the target of the literal. t a−6→ is called a negative literal. φ, ψ, χ are
used to range over literals. The literals above the line are called the premises
and the literal below the line is called the conclusion. A rule is called an axiom
if its set of premises is empty. An axiom

∅

t
a
−→ t′

is often written as t
a
−→ t′. The notions ‘substitution’, ‘Var’ and ‘ground’ extend

to literals and rules as expected.

Note that this definition differs from the definition of a TSS in [16] because it
allows an infinite number of premises and premises may now be negative. The
purpose of a TSS is to define a transition relation −→⊆ Tr(Σ, A) = T (Σ)×A×
T (Σ). A transition relation states under what actions ground terms over the
signature can evolve into one another. This expresses the operational behaviour
of these terms. Elements (t, a, t′) of a transition relation are written as t

a
−→ t′.

We say that a positive literal ψ holds in −→, notation −→|= ψ, if ψ ∈−→. A
negative literal t a−6→ holds in −→, notation −→|= t a−6→, if for no t′ ∈ T (Σ):

t
a
−→ t′ ∈−→.

For TSS’s without negative premises the notion of a transition relation that must
be associated with it is rather straightforward. All literals that can be proved
by a well founded proof tree where the rules of the TSS P are used as inference
rules, are in the transition relation associated with P . For TSS’s with negative
premises these proof trees cannot be used. It is not so obvious which transition
relation should be associated with such a TSS. In [10] Bloom, Istrail and
Meyer require that a transition relation agrees with a TSS. In terms of logic
programming this means that the transition relation is a supported model of the
TSS (see also definition 5.3.3, 5.3.4 and 5.3.5 in the next chapter).

Definition 4.2.3. Let P = (Σ, A,R) be a TSS. Let −→⊆ Tr(Σ, A) be a transi-
tion relation. −→ agrees with P iff:

ψ ∈−→ ⇔ ∃{χk | k ∈ K}χ ∈ R and ∃σ : V → T (Σ) such that :
σ(χ) = ψ and ∀k ∈ K : −→|= σ(χk).

68 4. Transition System Specifications with Negative Premises

Unfortunately, for a given TSS P it is not guaranteed that a transition relation
that agrees with P exists and if it exists it need not be unique. We give three
examples illustrating these points. The last example already occurred in [10].

Example 4.2.4. It is possible to give a TSS P such that there is no transition
relation that agrees with it. Let P consist of one constant f , one label a and the
rule

f a−6→

f
a
−→ f

.

For any transition relation −→ that agrees with P , f
a
−→ f ∈−→ iff f

a
−→ f /∈−→.

Clearly, such a transition relation does not exist.

Example 4.2.5. This example shows that if a transition relation that agrees
with a TSS exists, it need not be unique. Take for example a TSS with the only
rule:

f
a
−→ f

f
a
−→ f

.

Both the empty transition relation and the transition relation {f
a
−→ f} agree

with this TSS.

Example 4.2.6. If we only use variables in the premises, we can still have
that there is no transition relation agreeing with the rules. Suppose we have a
TSS which consists of constants a and δ and two unary function names f and g.
Furthermore, we have exactly one label a and the following rules:

x
a
−→ y y

a
−→ z

f(x)
a
−→ δ

,

x a−6→

g(x)
a
−→ δ

,

a
a
−→ g(f(a)).

No transition relation agrees with this TSS since if it would exist we would have
that f(a)

a
−→ δ is an element of this relation iff it is not.

In this section we develop a condition on TSS’s which guarantees the existence of
transition relations that agree with them. The idea is that a transition relation
is constructed in a stepwise manner. Whenever it is assumed that some literal
does not exist in a transition relation, it must be guaranteed that there is no way
to derive the opposite from this assumption. It can be visualised how literals can
be derived from each other in a literal dependency graph of a TSS P = (Σ, A,R).
In this graph it is recorded by directed edges how literals depend on each other.

4.2. Transition system specifications and stratifications 69

c g(f(a))
a
−→ δ

c f(a)
a
−→ δca

a
−→ g(f(a)) -p ?

p

6

n

Figure 4.2: The LDG belonging to example 4.2.6

An edge from literal φ to ψ is labeled by ‘p’ to express that ψ is the conclusion
and φ a positive premise of σ(r) for some ground substitution σ and rule r ∈ R.

An edge from t
a
−→ t′ to ψ is labeled with ‘n’ if ψ is the conclusion of σ(r) and

t a−6→ is a negative premise. If there is a cycle in the literal dependency graph
with a negative edge then one may derive from the assumption that for any t′′,
literal t

a
−→ t′′ is not an element of a transition relation −→ agreeing with P ,

that t
a
−→ t′ must be an element of −→, which is a contradiction. As an example

a part of the literal dependency graph of example 4.2.6 is depicted in figure 4.2.

Definition 4.2.7. Let P = (Σ, A,R) be a TSS. The (labeled) Literal Dependency
Graph (LDG) G related to P has as nodes the literals in Tr(Σ, A) and as labels
p and n. The edges of G are given by the triples:

– 〈σ(φ), p, σ(ψ)〉 where σ is a ground substitution such that there is a rule
r ∈ R with a positive premise φ and a conclusion ψ

combined with

– 〈φ, n, σ(ψ)〉 where σ is a ground substitution such that there is a rule r ∈ R
with a negative premise t b−6→ and a conclusion ψ such that for some t′ ∈
T (Σ) σ(t

b
−→ t′) = φ.

If there is a path between two literals φ and ψ of which all edges are labeled with
p, it is said that there is a positive dependency between φ and ψ. If this path
contains at least one edge with label n, we say that ψ depends negatively on φ.

In the next definition the notion of a stratifiable TSS is introduced. It is shown
that for stratifiable TSS’s there exists a transition relation that agrees with it.
As the adjective stratifiable suggests, it is possible to make a ‘stratification’. This
will be shown later.

Definition 4.2.8. Let P be a TSS. P is stratifiable iff there is no node in the
literal dependency graph G of P , such that a path ending in this node contains
an infinite number of negative edges.

The following definition assigns an ordinal to each positive literal φ. This ordinal
represents the number of negative edges in paths ending in φ.

70 4. Transition System Specifications with Negative Premises

Definition 4.2.9. Let P be a stratifiable TSS with a literal dependency graph
G. Nodes that have no incoming paths containing a negative edge are called LDG
basic nodes. Furthermore, ρ is the equivalence relation between literals such that
φ ρψ iff φ ≡ ψ or there is a path in G from φ to ψ and vice versa. Note that if
φ ρψ then φ is an LDG basic node iff ψ is an LDG basic node. Define rankP on
the equivalence classes of Tr(Σ, A)/ρ as follows:

– rankP (φ/ρ) = 0 if φ is an LDG basic node,

– rankP (φ/ρ) = sup({rankP (ψ/ρ) + 1 | (ψ, n, χ) is an edge in G and χ ∈
φ/ρ}∪ {rankP (ψ/ρ) | (ψ, p, χ) is an edge in G, χ ∈ φ/ρ and ψ /∈ φ/ρ})
otherwise.

Here sup(X) gives the least ordinal≥ all ordinals in the setX. Define rankP (φ) =
rankP (φ/ρ).

Example 4.2.10. Here we give an example of a TSS P for which the rankP
function uses infinite ordinals. Take the TSS P with one constant f and as labels
the natural numbers. Take as rules:

f n−6→
f −→ f

n ≥ 0,

f n−6→

f
0
−→ f

for n odd.

rankP : Tr(Σ, A)→ ω · 2 is defined by rankP (f
n
−→ f) = (n− 1)/2 if n odd and

rankP (f
n
−→ f) = ω + n/2 if n even.

Checking whether or not a literal dependency graph contains cycles with negative
edges is laborious and therefore not very useful to check the consistency of a set
of rules. The literal dependency graph can be used more fruitfully to construct
examples showing that a given TSS is inconsistent. Local stratifications [2, 32]
provide a more useful technique to show consistency. A stratification of a TSS is
given by the following definition.

Definition 4.2.11. Let P = (Σ, A,R) be a TSS. A function S : Tr(Σ, A)→ α,
for some ordinal α, is called a stratification of P iff for every rule

{tk
ak
−→ t′k | k ∈ K} ∪ {tl

bl−6→ | l ∈ L}

t
a
−→ t′

∈ R

and every substitution σ : V → T (Σ) it holds that:

for all k ∈ K : S(σ(tk
ak
−→ t′k)) ≤ S(σ(t

a
−→ t′))

for all l ∈ L and t′l ∈ T (Σ) : S(σ(tl
bl
−→ t′l)) < S(σ(t

a
−→ t′))

4.2. Transition system specifications and stratifications 71

If P has a stratification, we say that P is stratified. For β < α, Sβ = {φ | S(φ) =
β} is called a stratum. If all literals with the same label are in the same stratum
then we speak about a label independent stratification. In the same way we speak
about a source independent and a target independent stratification.

Lemma 4.2.12. Let P = (Σ, A,R) be a TSS. P is stratifiable iff P is stratified.

Proof. “⇒” As P is stratifiable, the function rankP : Tr(Σ, A) → α for some
ordinal α is defined. It is easy to check that rankP is a stratification of P .
“⇐” Suppose P is stratified by a stratification S : Tr(Σ, A)→ α. Construct the
literal dependency graph G of P . By transfinite induction on β it is shown that
if S(φ) = β then there is no path ending in φ in the literal dependency graph,
containing an infinite number of negative edges. Suppose the induction holds for
all β′ < β, S(φ) = β and there is a path ending in φ labeled with an infinite
number of n’s. Then this means that there is a tail of the path

...ψ, φn...φ2, φ1, φ

such that φ depends positively on φ1, φ1 depends positively on φ2 etc., while φn is
the first literal that depends negatively on a literal ψ. Hence, S(ψ) < S(φ) = β.
Using the induction hypothesis there is no path labeled with an infinite number
of n’s ending in ψ. But this contradicts the assumption that there was one from
φ. 2

As remarked in example 4.2.5 there is not always one unique transition relation
that agrees with P . Therefore, we define, given a TSS P with a stratification
S, a relation −→P,S which we call the transition relation associated with P (and
based on S). The construction of the transition relation −→P,S from a transition
system specification is as follows: a literal φ with S(φ) = 0 is in −→P,S if it
can be ‘derived’ using rules of P , which do not have negative premises, in the
ordinary sense. We now know which literals φ with S(φ) = 0 are not in −→P,S .
We use this information to ‘derive’ the literals φ with S(φ) = 1 are in −→P,S . In
this way we can continue for all strata.

The transition relation associated with P has two nice properties. When we
have a TSS P without negative premises, then the transition relation associated
with P exactly coincides with the transition relation containing all provable lit-
erals [16]. Moreover, the −→P,S is independent of the stratification S. This last
statement is proved in lemma 4.2.16.

First the degree(r) of a rule r in a TSS is defined. It is a cardinal that is greater
than the number of positive premises in r. Moreover, it is regular. This means
that if an ordinal αφ < degree(r) is assigned to each positive premise φ of r, then
there is still some ordinal β such that αφ < β < degree(r) for all premises φ. If
r has a finite number of premises, then degree(r) = ω. degree is introduced to
avoid taking the union over the class of all ordinals in definition 4.2.14. In the
proof of theorem 4.2.15 the regularity of degree(r) is crucial.

72 4. Transition System Specifications with Negative Premises

Definition 4.2.13. Let P = (Σ, A,R) be a TSS. Let r ∈ R be a rule in R.
degree(r) is the smallest regular cardinal greater than |K| where K is the index
set of positive premises of r. degree(P) is the smallest regular cardinal such that
degree(P) ≥ degree(r) for each r ∈ R.

Definition 4.2.14. Let P = (Σ, A,R) be a TSS. Let S : Tr(Σ, A)→ α for some
ordinal α be a stratification of P . The transition relation −→P,S associated with
P (and based on S) is defined as:

−→P,S=
⋃

0≤i<α

−→P

i .

where transition relations −→P

i ⊆ Tr(Σ, A) (0 ≤ i < α), −→P

ij⊆ Tr(Σ, A) (0 ≤
i < α, 0 ≤ j < degree(P)) are inductively defined by:

−→P

i =
⋃

0≤j<degree(P)

−→P

ij for 1 ≤ i < α

−→P

ij= {φ |S(φ) = i,

∃{χk | k ∈ K}
χ

∈ R, ∃σ : V → T (Σ) :

σ(χ) = φ and ∀k ∈ K
[χk is positive ⇒

⋃
0≤j′<j

−→P

ij′ ∪
⋃

0≤i′<i

−→P

i′ |= σ(χk)] and

[χk is negative ⇒
⋃

0≤i′<i

−→P

i′ |= σ(χk)]}

for 0 ≤ i < α and 0 ≤ j < degree(P).

Theorem 4.2.15. Let P = (Σ, A,R) be a TSS with the stratification S :
Tr(Σ, A) → α for some ordinal α. Then there is a transition relation, namely
−→P,S , that agrees with P .

Proof. We show that −→P,S agrees with P :

⇒) Suppose that for a rule

r =
{tk

ak
−→ t′k | k ∈ K} ∪ {tl

al−6→ | l ∈ L}

t
a
−→ t′

∈ R

and a ground substitution σ all premises hold in −→P,S . Define β =

S(σ(t
a
−→ t′)). For a negative premise tl

al−6→ it trivially holds that for

every t′′ ∈ T (Σ) tl
al
−→ t′′ /∈

⋃
0≤i<β −→

P

i . For a positive premise tk
ak
−→ t′k

it holds that either σ(tk
ak
−→ t′k) ∈

⋃
0≤i<β −→

P

i or σ(tk
ak
−→ t′k) ∈−→P

β .
Consider the set T = {j | j < degree(P) and for some k ∈ K j is the

4.2. Transition system specifications and stratifications 73

smallest ordinal such that σ(tk
ak
−→ t′k) ∈−→P

βj}. |T | ≤ |K| < degree(P).
As degree(P) is a regular cardinal, there is some 0 ≤ j′ ≤ degree(P)
such that j′′ < j′ < degree(P) for every j′′ ∈ T . Hence, for this j′:

σ(t
a
−→ t′) ∈−→P

βj′ by definition. Hence, σ(t
a
−→ t′) ∈−→P,S .

⇐) Suppose ψ ∈−→P,S . Then for some 0 ≤ i < α, 0 ≤ j < degree(P)
ψ ∈−→P

ij . According to the definition of −→P,S this means that there is a
ground substitution σ and a rule

r =
{χk | k ∈ K}

χ
∈ R

such that σ(χ) = ψ and if χk is positive

σ(χk) ∈
⋃

0≤j′<j

−→P

ij′ ∪
⋃

0≤i′<i

−→P

i′ .

But then σ(χk) ∈−→P,S . If χk ≡ t a−6→ then for every t′ ∈ T (Σ):

σ(t
a
−→ t′) /∈

⋃
0≤i′<i

−→P

i′ .

Due to the stratification S(σ(t
a
−→ t′)) < i. Hence, σ(t

a
−→ t′) /∈−→P

i′ for

i′ ≥ i and therefore σ(t
a
−→ t′) /∈−→P,S . So all premises of σ(r) hold in

−→P,S .

2

We show here that the particular stratification used in the construction of −→P,S

is not of any importance.

Lemma 4.2.16. Let P be a TSS which is stratified by stratifications S and
S′. The transition relation associated with P and based on S is equal to the
transition relation associated with P and based on S′.

Proof. Assume P = (Σ, A,R). Suppose −→P,S 6=−→P,S′ . This means that
there is some φ such that either φ ∈−→P,S − −→P,S′ or φ ∈−→P,S′ − −→P,S .
Assume that φ is minimal with respect to S, i.e. S(φ) ≤ S(ψ) for all ψ ∈ (−→P,S

− −→P,S′) ∪ (−→P,S′ − −→P,S). Define i = S(φ).

• Suppose φ ∈−→P,S − −→P,S′ . Then φ ∈−→P

ij for some 0 ≤ j < degree(P)

(see definition 4.2.2). Assume that φ is minimal with respect to −→P

ij , i.e.

for all ψ with S(ψ) = i and ψ ∈−→P,S − −→P,S′ : ψ /∈−→P

ij′ with j′ < j.
As −→P,S agrees with P there is a ground instantiated rule σ(r) with con-
clusion φ and premises χk (k ∈ K) such that −→P,S |= χk. As φ /∈−→P,S′ it

74 4. Transition System Specifications with Negative Premises

cannot be that all premises χk (k ∈ K) hold in −→P,S′ . Hence, −→P,S′ 6|=
χk′ for some k′ ∈ K. If χk′ is a positive literal then χk′ ∈

⋃
0≤j′′<j −→

P

ij′′

∪
⋃

0≤i′′<i −→
P

i′′ and χk′ /∈−→P,S′ . But this contradicts one of the assump-
tions that φ is minimal.
If χk′ ≡ t a−6→ then for some t′ ∈ T (Σ) t

a
−→ t′ ∈−→P,S′ − −→P,S and

S(t
a
−→ t′) < i. But this contradicts the minimality assumption with re-

spect to S.

• Considering φ ∈−→P,S′ − −→P,S leads to a contradiction in almost the
same way as the former case.

2

This last lemma allows us to drop the stratification as a subscript in the transi-
tion relation −→P,S associated to a stratifiable TSS P . Further, it provides the
following technique to give an operational semantics in Plotkin style when there
are negative premises around: define a TSS P and prove with a convenient strat-
ification that P is stratifiable. Then P alone determines the transition relation
−→P associated with P .

In this remainder of this section we show that if we strengthen the requirements
on stratifications, then the transition relation that agrees with P is unique.

Definition 4.2.17. Let P = (Σ, A,R) be a TSS and let S : Tr(Σ, A) → α for
some ordinal α be a stratification of P . S is a strict stratification of P if for every
substitution σ and every rule

r =
{tk

ak
−→ t′k | k ∈ K} ∪ {tl

al−6→ | l ∈ L}

t
a
−→ t′

∈ R

σ(t
a
−→ t′) is in a strictly higher stratum than σ(tk

ak
−→ t′k) for k ∈ K and in a

strictly higher stratum than σ(tl
al
−→ t′′) for l ∈ L and any t′′ ∈ T (Σ). In this

case we call P strictly stratifiable.

If P is strictly stratifiable then this is equivalent to stating that the literal de-
pendency graph of P contains no infinite path ending in some literal φ.

Theorem 4.2.18. Let P be a strictly stratifiable TSS. Then the transition
relation that is associated with P is the unique relation that agrees with P .

Proof. Let P = (Σ, A,R). Suppose −→1 is a transition relation that agrees with
P . P has a strict stratification S : T (Σ)→ α for some ordinal α. Let −→P,S be
the transition relation that is associated with P . Assume, in order to generate a
contradiction, that −→P,S 6=−→1. This implies that there is some literal φ such
that φ ∈−→P,S − −→1 or φ ∈−→1 − −→P,S . Assume furthermore that φ is

4.3. Examples showing the use of stratifications 75

minimal, i.e. for all ψ ∈ (−→P,S − −→1) ∪ (−→1 − −→P,S): S(φ) ≤ S(ψ). For
reasons of symmetry it is enough to consider only one case: φ ∈−→P,S − −→1.
The case where φ ∈−→1 − −→P,S goes in exactly the same way. As −→P,S

agrees with P there is a rule

{χk | k ∈ K}
χ

∈ R

and a substitution σ : V → T (Σ) such that φ = σ(χ), −→P,S |= σ(χk) for all
k ∈ K. Then for some k′ ∈ K −→1 6|= σ(χk′) because otherwise, as −→1 agrees
with P , φ ∈−→1 contradicting the assumption.
If σ(χk′) is a positive literal then σ(χ′k) ∈−→P,S , σ(χk′) /∈−→1 and S(χk′) <
S(φ). This contradicts the minimality of φ. If σ(χk′) ≡ t a−6→ then for some

t′ ∈ T (Σ) t
a
−→ t′ ∈−→1, but t

a
−→ t′ /∈−→P,S and S(t

a
−→ t′) < S(φ). This

contradicts the minimality of φ as well. 2

4.3 Examples showing the use of stratifications

The techniques of the previous section are introduced to show that specifications
using negative premises define a transition relation in a neat way. Here two
examples illustrate the use of these techniques.

Example 4.3.1. Here the GSOS-format is defined. It differs slightly from the
GSOS-format as given by Bloom, Istrail and Meyer [10] because we do not
consider a special rule for guarded recursion. Suppose we have a TSS P with
signature Σ = (F, r), labels A and rules of the form

{xk
akl
−→ ykl | k ∈ K1, l ∈ L1} ∪ {xk akl−6→ | k ∈ K2, l ∈ L2}

f(x1, ..., xr(f))
a
−→ t

with f ∈ F, x1, ..., xr(f), ykl pairwise different variables, K1,K2 ⊆ {1, ..., r(f)},
L1, L2 finite disjoint index sets and t ∈ (Σ). There is a unique transition relation
that agrees with the rules. This can be seen by giving the strict stratification
S : Tr(Σ, A)→ ω:

S(t
a
−→ t′) = n if t contains n function names.

S is strict as the source in the conclusion of any rule contains more function
names than any source in the premises.

Example 4.3.2. In [7] a priority operator is defined on process graphs. In
[16] an operational definition is given to the priority operator using rules with
negative premises. However, the combination of unguarded recursion, the priority
operator and renaming [5] gives rise to inconsistencies. Here we show that simple

76 4. Transition System Specifications with Negative Premises

conditions on either the relabeling operator or recursion can circumvent this
problem.

We base this example on the rules for BPAε
δ as given in [16] (see rules 1-6

in table 4.1). The TSS Pprio = (Σprio, Aprio, Rprio) with Σprio = (Fprio, rprio)
contains constant names a for all a ∈ Act where Act is a given set of atomic
actions. We suppose that there is a ‘backwardly’ well-founded ordering < on
Act, which is used to construct a stratification. The signature also contains
constant names ε for the empty process, and δ representing inaction, resembling
NIL in CCS [22].

There is a unary function name θ, the priority operator. If x can perform

several actions, say x
a
−→ x′ and x

b
−→ x′′ then θ(x) allows only those transitions

which are the highest in the ordering <. So if a > b then θ(x)
a
−→ θ(x′) is an

allowed transition while θ(x)
b
−→ θ(x′′) is not possible. We have another unary

function name ρf , the renaming operator. f is a renaming function from Act
to Act. ρf (x) renames the labels of the transitions of x by f . There are two
binary operators. Sequential composition is denoted by · (this symbol is usually
omitted). Alternative composition is denoted by +.

For recursion it is assumed that there is some given set Ξ with process names.
Each name in Ξ is a constant in the signature. E is a set of process declarations
of the form X ⇐ tX for all process names X ∈ Ξ (tX ∈ T (Σprio)). In X ⇐ tX ,
tX is the body of process name X.

The labels in Aprio are given by Act√ (= Act∪{
√
}).
√

is an auxiliary symbol
that is introduced to represent termination of a process. The rules are given in
table 4.1. Here a, b range over Act√. In rule 9 of table 4.1 we use the abbreviation
∀b > a x b−6→ in the premises. It means that for all b > a there is a premise x b−6→.
As an infinite number of negative premises are allowed in the premises of a rule,
rule scheme 9 generates proper rules. With these rules we have the following
inconsistency (cf. [6]). Define

X ⇐ θ(ρf (X) + b)

with f(b) = a, f(a) = c, f(d) = d for all d ∈ Act−{a, b} and a > b. Now X
b
−→ ε

iff X b−6→.

As a first solution for this problem we consider renaming functions satisfying
the requirement that if a > b then not f(b) = a for all a, b ∈ Act, i.e. we may
not rename actions to ones with higher priority. It is now easy to see that a
transition relation associated with Pprio exists using the following stratification
of Pprio. Define rk(a) for all a ∈ Aprio by:

rk(a) = sup({rk(b) + 1 | a < b}) for a ∈ Act

where sup(∅) = 0 and rk(
√

) = 0. Define S : Tr(Σprio, Aprio) → α for some
ordinal α by:

S(t
a
−→ t′) = rk(a)

4.3. Examples showing the use of stratifications 77

1. a
a
−→ ε a 6=

√
2. ε

√

−→ δ

3. x
a
−→ x′

x+ y
a
−→ x′

4. y
a
−→ y′

x+ y
a
−→ y′

5. x
a
−→ x′

x · y
a
−→ x′ · y

a 6=
√

6. x

√

−→ x′ y
a
−→ y′

x · y
a
−→ y′

7. x
a
−→ x′

ρf (x)
a
−→ ρf (x′)

a 6=
√

8. x

√

−→ x′

ρf (x)
√

−→ ρf (x′)

9. x
a
−→ x′ ∀b > a x b−6→
θ(x)

a
−→ θ(x′)

a, b 6=
√

10. x

√

−→ x′

θ(x)
√

−→ θ(x′)

11. t
a
−→ x′

Xt

a
−→ x′

for Xt ⇐ t ∈ E

Table 4.1: BPAε
δ with renaming and priorities

78 4. Transition System Specifications with Negative Premises

(it is straightforward to check that S is a stratification of Pprio).
Another solution is to disallow that the priority operator appear in the body

of a process name. In this case a stratification can be given by:

S(t
a
−→ t′) = n where n is the total number of occurrences of θ′s in t.

A last possibility is obtained by disallowing unguarded recursion in the bodies of
process definitions. A stratification can now be constructed as follows: Suppose
one has a literal t

a
−→ t′. Let n be the number of θ’s in t. Moreover, let m be the

number of the θ’s in the bodies t′′ of all process names X ′′ (X ′′ ⇐ tX′′ ∈ E) that
occur unguarded in t. Then we define a stratification S : Tr(Σprio, Aprio) → ω

by S(t
a
−→ t′) = n+m. One can check that S is a stratification of Pprio.

4.4 The ntyft/ntyxt-format and the congruence the-
orem

Often one considers bisimulation equivalence as the finest extensional equivalence
that one wants to impose. If bisimulation is not a congruence then one can dis-
tinguish bisimilar processes by putting them in appropriate contexts. Therefore,
it is a nice property of a format of rules if it guarantees that all operators defined
by this format respect bisimulation.

The notion of strong bisimulation equivalence as defined below is from Park
[27].

Definition 4.4.1. Let P = (Σ, A,R) be a stratifiable TSS. A relation R ⊆
T (Σ)× T (Σ) is a (strong) (P -) bisimulation relation if it satisfies:

1. whenever tR u and t
a
−→P t′ then, for some u′ ∈ T (Σ), we have u

a
−→P u′

and t′Ru′,

2. conversely, whenever tR u and u
a
−→P u′ then, for some t′ ∈ T (Σ), we

have t
a
−→P t′ and t′Ru′.

We say that two terms t, t′ ∈ T (Σ) are (P -)bisimilar, notation t↔––P t′, iff there
is a P -bisimulation relation R such that tR t′. We write t↔––t′ if P is clear from
the context. Note that ↔––P is an equivalence relation.

For TSS’s without negative premises, the tyft/tyxt-format [16] is the most gen-
eral format for which bisimulation is a congruence. Here we introduce the
ntyft/ntyxt-format as the most general extension of the tyft/tyxt-format with
negative premises such that for operators defined in this format bisimulation is
again a congruence.

4.4. The ntyft/ntyxt-format and the congruence theorem 79

Definition 4.4.2. Let Σ = (F, r) be a signature. Let P = (Σ, A,R) be a
stratifiable TSS. A rule r ∈ R is in ntyft-format if it has the form:

{tk
ak
−→ yk | k ∈ K} ∪ {tl bl−6→ | l ∈ L}

f(x1, ..., xr(f))
a
−→ t

with K and L index sets, yk, xi (1 ≤ i ≤ r(f)) all different variables, ak, bl, a ∈ A,
f ∈ F and tk, tl, t ∈ (Σ). A rule r ∈ R is in ntyxt-format if it fits:

{tk
ak
−→ yk | k ∈ K} ∪ {tl bl−6→ | l ∈ L}

x
a
−→ t

with K,L index sets, yk, x all different variables, ak, bl, a ∈ A, tk, tl and t ∈ (Σ).
P is in ntyft-format if all its rules are in ntyft-format and P is in ntyft/ntyxt-
format if all its rules are either in ntyft- or in ntyxt-format.

From examples given in [16] it follows that the tyft/tyxt-format cannot be gen-
eralised in any obvious way without endangering the congruence property of
bisimulation equivalence. This implies that for the ntyft/ntyxt-format, the posi-
tive premises cannot be generalised. Since the negative premises are already as
general as possible, the ntyft/ntyxt-format cannot be generalised in any obvious
way without losing the congruence property of strong bisimulation.

In the remainder of this section we show that the congruence theorem holds
for the ntyft/ntyxt-format. In order to do so, we need a same well-foundedness
restriction on the premises of the rules as was necessary to prove the congruence
theorem for the tyft/tyxt-format. It is an open question whether both congruence
theorems can be proved without this restriction.

Definition 4.4.3 (well-founded). Let P = (Σ, A,R) be a TSS. Let W = {tk
ak
−→

t′k | k ∈ K} ⊆ (Σ) × A × (Σ) be a set of positive literals over Σ and A. The
Variable Dependency Graph (VDG) of W is a directed (unlabeled) graph with:

– Nodes:
⋃
k∈K V ar(tk

ak
−→ t′k),

– Edges: {〈x, y〉 | x ∈ V ar(tk), y ∈ V ar(t′k) for some k ∈ K}.

W is called well-founded if any backward chain of edges in the variable depen-
dency graph is finite. A rule is called well-founded if its set of positive premises
is well-founded. A TSS is called well-founded if its rules are well-founded.

Note that it is not useful to include negative premises in this definition as they
do not have a target and therefore do not determine values of variables.

Example 4.4.4. The variable dependency graph of

{f(x′, y1)
a
−→ y2, g(x, y2)

a
−→ y1}

is given in figure 4.3. The set of rules is not well-founded because the graph
contains a cycle.

80 4. Transition System Specifications with Negative Premises

x y1 y2 x′- �

' $
?

& %
6

Figure 4.3: A VDG with a cycle

x0x1x2x3 -····························-··············-· · · · · · · ·-

Figure 4.4: A VDG that is not well-founded

Example 4.4.5. Consider the variable dependency graph G of {xn+1

an
−→ xn |

n ∈ NI }. G is not well-founded because for any variable xi (i ∈ NI) that acts as a
node in G, there is an infinite path ending in this node. A part of G is depicted
in figure 4.4.

The following lemma says that for well-founded TSS’s in ntyft/ntyxt-format, it is
sufficient to consider only target independent stratifications.

Lemma 4.4.6. Let P be a well-founded stratifiable TSS in ntyft/ntyxt-format.
Then P has a target independent stratification.

Proof. Let P = (Σ, A,R) with Σ = (F, r) and let S : Tr(Σ, A) → α for some
ordinal α be a stratification of P . Define a mapping S′ : Tr(Σ, A)→ α+ 1 by:

S′(t
a
−→ t′) = sup({S(t

a
−→ u) + 1 | u ∈ T (Σ)}).

We show that S′ is a stratification of P . As S′ is clearly target independent, this
is sufficient to finish the proof.

Consider a rule in ntyxt-format (the argument for a rule in ntyft-format is
exactly the same)

r =
{tk

ak
−→ yk | k ∈ K} ∪ {tl tl−6→ | l ∈ L}

x
a
−→ t

∈ R

and some ground substitution σ. For each positive premise tk
a
−→ yk we have

that for each term u ∈ T (Σ):

S(σ(tk)
a
−→ u)) = S(σ′(tk

ak
−→ yk))

≤ S(σ′(x
a
−→ t))

= S(σ(x)
a
−→ σ′(t)) (4.1)

4.4. The ntyft/ntyxt-format and the congruence theorem 81

where σ′ is a ground substitution defined by:

σ′(z) =
{
σ(z) if z 6≡ yk
u if z ≡ yk.

As P is well-founded and in ntyft/ntyxt-format, σ′(tk) = σ(tk) and σ′(x) = σ(x).
Now it is easy to see that S′ is a stratification:

S′(σ(tk
ak
−→ yk)) = sup({S(σ(tk)

ak
−→ u) + 1 | u ∈ T (Σ)})

(4.1)

≤ sup({S(σ(x)
a
−→ u′) + 1 | u′ ∈ T (Σ)})

= S′(σ(x
a
−→ t))

and
S′(σ(tl)

al
−→ u)) = sup({S(σ(tl)

al
−→ u′) + 1 | u′ ∈ T (Σ)})

≤ S(σ(x
a
−→ t))

< sup({S(σ(x)
a
−→ u′′) + 1 | u′′ ∈ T (Σ)})

= S′(σ(x
a
−→ t)).

2

Definition 4.4.7. Let W be a set of positive literals which is well-founded
and let G be the variable dependency graph of W . Let V ar(W) be the set of
variables occurring in literals in W . Define for each x ∈ V ar(W): nV DG(x) =
sup({nV DG(y) + 1 | 〈y, x〉 is an edge of G}) (sup(∅) = 0).

If W is a set of positive premises of a rule in ntyft/ntyxt-format then nV DG(x) ∈ NI
for each x ∈ V ar(W); every variable yk only occurs once in the right hand side
of a positive literal in the premises. As the term tk is finite, it contains only a
finite number of variables x. Therefore the set U = {nV DG(x) + 1 | 〈x, yk〉 is an
edge of G} is finite. Hence, nV DG(yk) = sup(U) is a natural number.

Definition 4.4.8. Two stratifiable TSS’s P and P ′ are transition equivalent if
−→P = −→P ′ .

Hence, two TSS’s are transition equivalent if they have the same signature, the
same set of labels and if the sets of rules determine the same associated transition
relation. The particular form of the rules is not of importance.

Lemma 4.4.9. Let P = (Σ, A,R) be a stratifiable TSS in ntyft/ntyxt-format.
Then there is a stratifiable TSS P ′ = (Σ, A,R′) in ntyft-format that is transition
equivalent with P .

Proof. Let Σ = (F, rank). Let R′ contain every rule r ∈ R that is in ntyft-
format together with the rules σf (r) for every rule r ∈ R in ntyxt-format and
every function name f ∈ F where σf is defined as:

82 4. Transition System Specifications with Negative Premises

σf (x) = f(z1, ..., zrank(f)) if x is the source in the conclusion of r.
z1, ..., zrank(f) are variables not occurring in r.

σf (x) = x otherwise

Note that R′ is in ntyft-format. As P is stratifiable, there is a stratification
S : Tr(Σ, A) → α of P . It is not hard to see that this stratification is also a
stratification for P ′. It is enough to show that −→P,S=−→P ′,S . In order to see

this we only need to prove that −→P

ij=−→
P ′

ij for all 0 ≤ i < α, 0 ≤ i < degree(P).
This is done by induction on i and within this induction, an induction on j.

⊆) Suppose φ ∈−→P

ij for some i and j. According to the definition of −→P

ij

this means that there is a ground instantiated rule σ(r) with conclusion φ
and premises χk (k ∈ K) such that⋃

0≤j′<j

−→P

ij′ ∪
⋃

0≤i′<i

−→P

i′ |= χk.

If χk is positive then, inductively,⋃
0≤j′<j

−→P ′

ij′ ∪
⋃

0≤i′<i

−→P ′

i′ |= χk.

If χk ≡ t a−6→ then for all t′ ∈ T (Σ): t
a
−→ t′ /∈

⋃
0≤i′<i −→

P

i′ and therefore

t
a
−→ t′ /∈

⋃
0≤i′<i −→

P ′

i′ . Hence, in both cases⋃
0≤j′<j

−→P ′

ij′ ∪
⋃

0≤i′<i

−→P ′

i′ |= χk

for all k ∈ K. If r is an ntyft-rule, one can apply σ(r) again to obtain

φ ∈−→P ′

ij . If r is in ntyxt-format and the left side of φ is f(t1, ..., trank(f)),
apply the instantiated rule σ′(σf (r)) where σ′(x) = tk for x = zk (1 ≤ k ≤
rank(f)) and σ′(x) = σ(x) otherwise. Hence, φ ∈−→P ′

ij .

⊇) The reverse implication can be shown in the same way.

2

Definition 4.4.10. Let P = (Σ, A,R) be a TSS. Let r ∈ R be a rule. A variable
x is called free in r if it occurs in r but not in the source of the conclusion or
in the target of a positive premise. The rule r is called pure if it is well-founded
and does not contain free variables. P is called pure if all rules in R are pure.

Lemma 4.4.11. Let P = (Σ, A,R) be a stratifiable and well-founded TSS in
ntyft/ntyxt-format. Then there is a stratifiable TSS P ′ = (Σ, A,R′) in pure
ntyft/ntyxt-format which is transition equivalent with P . If P is in ntyft-format
then P ′ is in pure ntyft-format.

4.4. The ntyft/ntyxt-format and the congruence theorem 83

Proof. R′ contains a rule σ(r) for every rule r ∈ R and substitution σ satisfying:

σ(x) = t ∈ T (Σ) if x is free in r,
σ(x) = x otherwise.

Note that P ′ constructed in this way is pure, if P is in ntyft-format then P ′ is
also in ntyft-format and any stratification for P is also a stratification for P ′. The
remainder of the proof proceeds in the same way as the proof of lemma 4.4.9. 2

Next, we state the congruence theorem.

Theorem 4.4.12. Let P be a well-founded stratifiable TSS in ntyft/ntyxt-
format. Then ↔––P is a congruence relation.

Proof. This proof closely resembles the proof of the same theorem in [16].
Assume P = (Σ, A,R0) with Σ = (F, r). According to lemma 4.4.9 and lemma
4.4.11 we may assume that P is in pure ntyft-format. As P is stratifiable, there
is a target independent stratification S : Tr(Σ, A) → α for some ordinal α of
P . Furthermore, there is a transition relation −→P associated with P . We must
show that for all f ∈ F , u1, ..., ur(f), v1, ..., vr(f) ∈ T (Σ):

∀1 ≤ k ≤ r(f) : uk↔––P vk ⇒ f(u1, ..., ur(f))↔––P f(v1, ..., vr(f)).

In order to do so, we define a relation R ⊆ T (Σ)× T (Σ) as the minimal relation
satisfying:

1. ↔––P ⊆ R,

and for all function names f ∈ F

2. ∀1 ≤ k ≤ r(f) : uk Rvk ⇒ f(u1, ..., ur(f))Rf(v1, ..., vr(f))

For the relation R we have the following useful fact.

Fact 1. Let t ∈ (Σ) and let σ, σ′ : V → T (Σ) be substitutions such that for all
x in V ar(t) : σ(x)Rσ′(x). Then σ(t)Rσ′(t).

Proof of fact 1. Straightforward induction on the structure of t. 2

If we show that R is a bisimulation relation then it immediately follows that
R = ↔––P and consequently that ↔––P is a congruence relation. In order to see
that R is a bisimulation relation we must check that R has the transfer property:
if uR v and u

a
−→ u′ then there is a v′ with v

a
−→ v′ and u′Rv′ and vice versa.

If u↔––P v then this is trivial. So suppose u = f(u1, ..., ur(f)), v = f(v1, ..., vr(f))
and uk Rvk for 1 ≤ k ≤ r(f). We are ready if we have shown (by induction on
β) that the following holds for all β:

If L(f(u1, ..., ur(f)), a) + L(f(v1, ..., vr(f)), a) = β then

84 4. Transition System Specifications with Negative Premises

– f(u1, ..., ur(f))
a
−→ u′ ∈−→P and ukRvk for 1 ≤ k ≤ r(f) implies

∃v′ f(v1, ..., vr(f))
a
−→ v′ ∈−→P and u′Rv′

– vice versa.

Here we define L(t, a) = S(t, a, t′) for some t′ ∈ T (Σ). The definition of L(t, a) is
correct because S is target independent. As the induction hypothesis is symmet-
ric we need only check one halve of it. Suppose the induction hypothesis holds
for all β′ < β. The validity of the induction hypothesis for β follows immediately
if the following fact holds for all 1 ≤ i < α and 1 ≤ j ≤ degree(P):

If L(f(u1, ..., ur(f)), a) + L(f(v1, ..., vr(f)), a) = β,

f(u1, ..., ur(f))
a
−→ u′ ∈−→P

ij and ukRvk for 1 ≤ k ≤ r(f) then

∃v′ f(v1, ..., vr(f))
a
−→ v′ ∈−→P and u′Rv′

We prove this statement with induction on i and within that with induction on
j. So suppose the second induction hypothesis holds for i′ < i or for i′ = i if
j′ < j. Assume L(u, a) + L(v, a) = β and u

a
−→ u′ ∈−→P

ij . As −→P agrees with
P , there is a rule

r =
{tk

ak
−→ yk | k ∈ K} ∪ {tl al−6→ | l ∈ L}

f(x1, ..., xr(f))
a
−→ t

∈ R0

and a substitution σ such that:

• σ(f(x1, ..., xr(f))) = u,

• σ(xi) = ui for 1 ≤ i ≤ r(f),

• σ(t) = u′,

• −→P |= σ(tk
ak
−→ yk) and −→P |= σ(tl)

al−6→.

We will use rule r again in order to show that for some v′ v
a
−→ v′ ∈−→P and

u′Rv′. Consider the VDG G of the positive premises of r. With induction on n
we show that the following fact holds for all n:

Fact 2. There is a ground substitution σ′ such that for any x ∈ nodes(G) with

nV DG(x) < n σ(x)Rσ′(x), if x = yk for some k ∈ K then σ′(tk
a
−→ yk) ∈−→P

and if x = xi, then σ′(xi) = vi.

Proof of fact 2. Suppose x is a node of G with nV DG(x) = n and the claim
holds for n′ < n. As r is pure there are two cases.

• x = xi (1 ≤ i ≤ r(f)). The claim holds for n as σ(x) = uiRvi = σ′(x).

4.4. The ntyft/ntyxt-format and the congruence theorem 85

• x = yk (k ∈ K) and tk
a
−→ yk is a premise of r. By induction it holds that

there is a ground substitution σ′ such that for all y ∈ V ar(tk): σ(y)Rσ′(y).
By fact 1 σ(tk)Rσ′(tk). Now distinguish between two cases:

1. σ(tk) ↔––P σ′(tk). Hence there is a w ∈ T (Σ) such that σ′(tk)
ak
−→

w ∈−→P and σ(yk)Rw.
2. There is a function name g in F and there are terms wk′ , w′k′ for

1 ≤ k′ ≤ r(g) such that:

σ(tk) = g(w1, ..., wr(g)),

σ′(tk) = g(w′1, ..., w
′
r(g)) and

wj Rw
′
j for 1 ≤ j ≤ r(g).

Furthermore, we know that L(σ(tk), ak) + L(σ′(tk), ak) ≤ L(u, a) +

L(v, a). Also σ(tk
ak
−→ yk) ∈

⋃
i′<i −→

P

i′ ∪
⋃
j′<j −→

P

ij′ . Now we can
apply the first or second induction hypothesis which gives that there
is a w such that g(w′1, ..., w

′
r(g))

ak
−→ w ∈−→P and σ(yk)Rw.

So, for any x with nV DG(x) = n we can find a wx such that σ(x)Rwx.
Define a ground substitution σ′′ such that σ′′(x′) = σ′(x′) if nV DG(x′) 6= n
and σ′′(x′) = wx′ if nV DG(x′) = n. Clearly, all inductive properties hold
for σ′′.

2

Now the proof of the theorem can be finished. For all positive premises φ of r
it follows that we can prove that σ′(φ) ∈−→P for some ground substitution σ′

satisfying the properties of fact 2. We show that for each negative premise tl
al−6→

in r σ′(tl)
al−6→ also holds in −→P . We know using fact 1 that σ(tl)Rσ′(tl) because

σ(x)Rσ′(x) for all variables x in tl. By definition of R there are two possibilities.

• σ(tl)↔––P σ′(tl). In this case σ′(tl)
al−6→ clearly holds in −→P .

• σ(tl) = g(w1, ..., wr(g)) and σ′(tl) = g(w′1, ..., w
′
r(g)), g ∈ F and wiRw′i (1 ≤

i ≤ r(g)). In order to arrive at a contradiction we assume that for some w ∈
T (Σ) σ′(tl)

ak
−→ w. Clearly, L(σ(tl), al)+L(σ′(tl), al) < L(u, a)+L(v, a). So

by applying the first induction hypothesis we know that ∃w′ σ(tl)
al
−→ w′.

But this contradicts that σ(tl)
al−6→ holds in −→P . So for every negative

premise tl
al−6→ of r: −→P |= σ′(tl)

al−6→.

Now as all premises of σ′(r) hold, we may conclude that σ′(f(x1, ..., xr(f))
a
−→

t) ∈−→P . Define v′ = σ′(t). For all x ∈ V ar(t) : σ(x)Rσ′(x). By an application
of fact 1 it follows that σ(t)Rσ′(t) or equivalently, u′Rv′. This completes the
induction step for the second induction hypothesis. 2

86 4. Transition System Specifications with Negative Premises

4.5 Modular properties of TSS’s

Sometimes one wants to extend a TSS with new functions and constants. There-
fore the sum of two TSS’s is introduced [16]. The combination of two TSS’s P0

and P1 is denoted by P0⊕P1 where we generally assume that P1 is the extension
of P0. With negative premises care is needed to guarantee that P0 ⊕ P1 still
defines a transition relation.

If P1 is added to P0 it would be nice if all literals with source t ∈ T (Σ0) in
−→P0⊕P1 are exactly the literals in −→P0 . In this case we say that P0 ⊕ P1 is a
conservative extension of P0.

Definition 4.5.1. Let Σi = (Fi, ri) (i = 0, 1) be two signatures such that
f ∈ F0 ∩ F1 ⇒ r0(f) = r1(f). The sum of Σ0 and Σ1, notation Σ0 ⊕Σ1, is the
signature:

Σ0 ⊕ Σ1 = (F0 ⊕ F1, λf.if f ∈ F0 then r0(f) else r1(f)).

Definition 4.5.2. Let Pi = (Σi, Ai, Ri) (i = 0, 1) be two TSS’s with Σ0 ⊕ Σ1

defined. The sum of P0 and P1, notation P0 ⊕ P1, is the TSS:

P0 ⊕ P1 = (Σ0 ⊕ Σ1, A0 ∪A1, R0 ∪R1).

Definition 4.5.3. Let Pi = (Σi, Ai, Ri) (i = 0, 1) be two TSS’s with P = P0⊕P1

defined. Let P = (Σ, A,R). We say that P is a conservative extension of P0 and
that P1 can be added conservatively to P0 if P0 ⊕ P1 is stratifiable and for all
t ∈ T (Σ0), a ∈ A and t′ ∈ T (Σ):

t
a
−→ t′ ∈−→P ⇔ t

a
−→ t′ ∈−→P0 .

Remark 4.5.4. If P0 ⊕ P1 = (Σ, A,R) is a conservative extension of P0 =
(Σ0, A0, R0) then it follows immediately that for all t, u ∈ T (Σ0) : t↔––P0 u ⇔
t↔––P0⊕P1 u.

The following theorem gives conditions under which a TSS P1 can be added
conservatively to P2. The theorem is the same as the one that holds for TSS’s
without negative premises [16], except for the constraint that P0 ⊕ P1 is stratifi-
able. By an example it will be shown that this condition is necessary. That the
other conditions cannot be weakened, is shown in [16].

Theorem 4.5.5. Let P0 = (Σ0, A0, R0) be a TSS in pure ntyft/ntyxt-format
and let P1 = (Σ1, A1, R1) be a TSS in ntyft-format such that there is no rule
in R1 containing a function name from Σ0 in the source of its conclusion. Let
P = P0 ⊕ P1 be defined and stratifiable. Then P1 can be added conservatively
to P0.

Proof. Let P = (Σ, A,R). As P is stratifiable there is a stratification S :
Tr(Σ, A)→ α for some ordinal α for P . Define S0 : Tr(Σ0, A0)→ α by S0(φ) =

4.5. Modular properties of TSS’s 87

S(φ). It is not hard to check that S0 is a stratification of P0. Hence, −→P and
−→P0 are the transition relations associated to P and P0, respectively.

It is sufficient to prove that

t ∈ T (Σ0), a ∈ A0, t
a
−→ t′ ∈−→P ⇔ t

a
−→ t′ ∈−→P0 , t

′ ∈ T (Σ0).

This is done by induction on the ordinal β (0 ≤ β < α) with S(t
a
−→ t′) =

S0(t
a
−→ t′) = β.

Assume that the induction hypothesis holds for all β′ < β.
“⇒” Suppose t

a
−→ t′ ∈−→P

βj for some j. Here −→P

βj is the relation from
definition 4.2.14 to construct −→P . By induction on j it is shown that:

t ∈ T (Σ0), a ∈ A0, t
a
−→

P

βj t
′ ⇒ t

a
−→ t′ ∈−→P0 , t

′ ∈ T (Σ0).

As −→P agrees with P there is a rule r ∈ R with conclusion u
a
−→ u′ and a

substitution σ : V → T (Σ) such that σ(u) = t, σ(u′) = t′. r /∈ R1 as all rules in
R1 are in ntyft-format, containing function names not occurring in Σ0 in the left
hand side of their conclusions. So r ∈ R0. In the remainder we only deal with
the case that r is in ntyft-format. The case that r is in ntyxt-format goes in the
same way. So assume r is equal to (u = f(x1, ..., xr(f))):

{sk
ak
−→ yk | k ∈ K} ∪ {ul bl−6→ | l ∈ L}

f(x1, ..., xr(f))
a
−→ u′

Now we use induction on nV DG(x) of the variable dependency graph G of the
premises of r to prove that for all x ∈ V ar(r): σ(x) ∈ Σ0 and if x = yk (k ∈ K)

then σ(sk
ak
−→ yk) ∈−→P0 . Suppose nV DG(x) = n ∈ NI . As P0 is pure, we

distinguish two cases:

• x = xi (1 ≤ i ≤ r(f)). As t ∈ T (Σ0), σ(x) ∈ T (Σ0).

• x = yk (k ∈ K) and sk
ak
−→ yk is a positive premise of r. By induction we

know that for all y ∈ V ar(sk) σ(y) ∈ T (Σ0). As r ∈ R0, σ(sk) ∈ T (Σ0). By

induction and σ(sk
ak
−→ yk) ∈−→P0⊕P1 , we can derive σ(sk

ak
−→ yk) ∈−→P0

and σ(yk) ∈ T (Σ0).

As a consequence of this inductive proof it holds for all positive premises φ of r
that σ(φ) ∈−→P0 . For a negative premise ul

bl−6→ we assume, in order to generate

a contradiction that ∃ u′l ∈ T (Σ0) σ(ul
bl
−→ u′l) ∈−→P0 . As σ(ul

bl
−→ u′l) is

in a strictly lower stratum than t
a
−→ t′ in S0, it follows by induction that

σ(ul
bl
−→ u′l) ∈−→P . This contradicts σ(ul)

bl−6→.

88 4. Transition System Specifications with Negative Premises

As −→P0 agrees with P0 and all premises of σ(r) hold in −→P0 it follows that

σ(u
a
−→ u′) also holds in −→P0 . As for all variables in V ar(r), σ(r) ∈ T (Σ0), it

also holds that σ(u′) ∈ T (Σ0).

“⇐” This case has the same structure as the proof of “⇒” Take as intermediate
induction hypothesis:

t
a
−→ t′ ∈−→P0 ⇒ t

a
−→ t′ ∈−→P .

We skip the details but we remark that induction on nV DG is not necessary.
From the induction hypothesis it follows that :

t
a
−→ t′ ∈−→P0 ⇒ t

a
−→ t′ ∈−→P , t ∈ T (Σ0), a ∈ A0.

After the combination of this result with “⇒” the outermost induction step is
proved. From this the theorem follows immediately. 2

In the remainder of this section we study how we can combine stratifications
of two stratifiable TSS’s P0 and P1 to a stratification of P0 ⊕ P1. The following
examples show that in general the sum of two stratifiable TSS’s is not stratifiable.

Example 4.5.6. This example shows that under certain circumstances it can
even be dangerous to extend the signature of a TSS. Let P0 be a TSS with unary
function name f , a label a and a rule:

f(x) a−6→

f(x)
a
−→ f(x)

This TSS is stratifiable as there are no ground instances of literals. Adding a
TSS P1 that only contains the single constant c already leads to an inconsistency.
If −→ is a relation that agrees with P0⊕P1 then −→|= f(c)

a
−→ f(c) if and only

if −→|= f(c) a−6→.

Example 4.5.7. This is a less trivial example that shows a problem that can
occur when stratifying the sum of stratifiable TSS’s. Let P0 consist of a unary
function name g, a constant δ, labels a, b and a rule:

x b−6→

g(x)
a
−→ δ

.

P1 consists of unary function names g and f , constant δ, labels a, b and a rule:

g(f(x))
a
−→ y

f(x)
b
−→ δ

.

4.5. Modular properties of TSS’s 89

f(δ)
b
−→ δ

g(f(δ))
a
−→ δ
6

?

p n

Figure 4.5: The LDG belonging to example 4.5.7

Both P0 and P1 have an associated transition relation. P0 ⊕ P1, however, makes

it possible to show that f(δ)
b
−→ δ iff f(δ) b−6→ for any transition relation −→

agreeing with P0⊕P1. In figure 4.5 the dependency graph of P0⊕P1 is drawn. The
negative edge comes from P0 and the positive edge from P1, together constituting
a cycle with a negative edge.

Checking the stratifiability of the sum of two stratifiable TSS’s can be done by
giving a stratification for P0 ⊕ P1. Sometimes the following theorem is helpful.

Theorem 4.5.8. Let Σ0 = (F0, r̄0) and Σ1 = (F1, r̄1) be signatures such that
for some constants a0, a1: a0 ∈ F0 and a1 ∈ F1. Let P0 = (Σ0, A0, R0), P1 =
(Σ1, A1, R1) be stratifiable TSS’s. Let Σ0 ⊕ Σ1 be defined. If for all ground
substitutions σ0 and σ1 and rules r0 ∈ R0 and r1 ∈ R1 such that

– φ is the conclusion of r1,

– ψ is a positive premise of r0, or ψ = t
a
−→ t′ and t a−6→ is a negative premise

of r0 and

– σ0(ψ) 6= σ1(φ)

then P0 ⊕ P1 is a stratifiable TSS.

Proof. Assume that P0 has stratification S0 : Tr(Σ0, A0) → α0 and that P1

has stratification S1 : Tr(Σ1, A1)→ α1. Construct a stratification S for P0 ⊕ P1

as follows: define U ⊆ Tr(Σ0 ⊕ Σ1, A0 ∪ A1) as the set of all literals that fit a
premise of a rule r0 ∈ R0. If literal φ ∈ U then construct a literal φ̄ by replacing
all subterms f(ū) for f ∈ F1 in φ by a0. As the label of φ is in A0, φ̄ ∈ Tr(Σ0, A0)
and thus φ̄ occurs in a stratum β in S0. Define S(φ) = β.
Assume φ /∈ U . If the label of φ is not in A1 then S(φ) = α0. If the label of φ is
in A1 then construct φ̄ from φ by replacing every subterm f(ū) in φ with f ∈ Σ0

by a1. Now φ̄ ∈ Tr(Σ1, A1). So it must hold that φ̄ is in a stratum β in S1.
Define S(φ) = α0 + β. Now every literal φ ∈ Tr(Σ0 ⊕ Σ1, A0 ∪ A1) has a place
in S.

We now check that S is a stratification of P0 ⊕ P1. Take a rule r ∈ R0 ⊕ R1.
Suppose σ is a ground substitution and ψ is the conclusion, φ a positive premise
(if present in σ(r)) and t a−6→ a negative premise (also if present) of σ(r). We
proceed by case analysis.

90 4. Transition System Specifications with Negative Premises

• ψ ∈ U . By the condition in this theorem ψ is not an instance of a conclusion
in a rule R1 and thus r ∈ R0. Hence, for all t′ ∈ T (Σ0⊕Σ1) : φ, t

a
−→ t′ ∈ U .

φ, ψ and t
a
−→ t′ are related in S in the same way as φ̄, ψ̄ and t

a
−→ t′ are

related in S0. As φ̄, ψ̄ and t
a
−→ t′ are also instances of r for some σ′ they

satisfy the conditions for a proper stratification in S0 and therefore φ, ψ
and t

a
−→ t′ satisfy these conditions in S.

• ψ /∈ U .

– If ψ has a label a /∈ A1 then r cannot be a rule of R1 and so r ∈ R0.
As φ and t

a
−→ t′ (for all t′) are elements of U , ψ is in a strictly

higher stratum than all its premises. Hence r satisfies the stratification
condition in this case.

– If ψ has a label in A1 then ψ ∈ Sα0+β if ψ̄ is in stratum S1
β . If φ ∈ U

then φ is in a strictly lower stratum than ψ and if t
a
−→ t′ ∈ U then

t
a
−→ t′ is in a strictly lower stratum than ψ. If φ /∈ U and φ̄ ∈ S1

γ ,

then S(φ) = α0 + γ as the label of φ comes from A1. If t
a
−→ t′ /∈ U

and t
a
−→ t′ ∈ S1

γt′
then S(t

a
−→ t′) = α0 +γt′ because a ∈ A1. Now as

ψ̄, φ̄ and t
a
−→ t′ are all instances of r for some substitution σ′, γ ≤ β

and γt′ < β. Hence, ψ is in an equal or higher stratum than φ in S

and t
a
−→ t′ is in a strictly lower stratum than ψ. This shows that

also in the last case the stratifiability condition for r is satisfied.

2

4.6 Congruences induced by ntyft/ntyxt

In this section we show that if we define operators using the pure ntyft/ntyxt-
format, then for image finite processes the trace congruence and completed trace
congruence induced by this format are exactly (strong) bisimulation equivalence.
First we give the definition of a trace congruence induced by a format and the
definition of image finite processes. In figure 4.6 we show how we will then prove
our result. The arrows denote set inclusion and ‘IF’ indicates that we need image
finiteness.

Definition 4.6.1. Let P = (Σ, A,R) be a stratifiable TSS and let −→P be the
transition relation associated with P . Let t ∈ T (Σ). A sequence a1 ? ... ? an ∈ A?
is a (P-)trace from t iff there are terms t1, ..., tn ∈ T (Σ) for some n ∈ NI such that

t
a1
−→P t1

a2
−→P ...

an
−→P tn. Tr(t) is the set of all P -traces from t. Two process

terms t, t′ ∈ T (Σ) are trace equivalent with respect to P iff Tr(t) = Tr(t′). This
is also denoted as t ≡TP t′.

4.6. Congruences induced by ntyft/ntyxt 91

≡Tpure ntyft/ntyxt ↔––P

↔∼P

�

@
@
@
@
@
@
@@R �

�
�
�
�
�
���

IF

Figure 4.6: Inclusions among several process equivalences

Note that if two terms t and t′ are bisimilar, then they are also trace equivalent.

Definition 4.6.2. Let F be some format of TSS rules. Let P = (Σ, A,R) be
a stratifiable TSS in F format. Two terms t, t′ ∈ T (Σ) are trace congruent with
respect to F rules, notation t ≡TF t′, iff for every TSS P ′ = (Σ′, A′, R′) in F
format which can be added conservatively to P and for every Σ⊕Σ′-context C[]:
C[t] ≡TP⊕P ′ C[t′].

Definition 4.6.3. Let P = (Σ, A,R) be a stratifiable TSS. Let −→P be the
transition relation associated with P . −→P is called image finite iff for all t ∈
T (Σ) and a ∈ A the set {u | t

a
−→P u} is finite.

Definition 4.6.4. Let P = (Σ, A,R) be a stratifiable TSS with associated
transition relation −→P . A family of relations Rn ⊆ T (Σ)×T (Σ), for n ∈ NI , are
called an n-bounded bisimulation relations iff:

• R0 = T (Σ)× T (Σ),

• ∀t, u ∈ T (Σ) tRn+1 u and t
a
−→P t′ ⇒ ∃u′ u

a
−→P u′ and t′Rnu′,

• ∀t, u ∈ T (Σ) tRn+1 u and u
a
−→P u′ ⇒ ∃t′ t

a
−→P t′ and t′Rnu′.

Two process expressions t, t′ ∈ T (Σ) are n-bounded bisimilar (for P), notation
t↔∼nP t′ iff there is an n-bounded bisimulation relation Rn such that tRn t′. Two
terms t, t′ ∈ T (Σ) are bounded bisimilar for P , notation t↔∼P t′, iff for all n ∈ NI
t↔∼nP t′.

The following lemma gives a condition under which bounded bisimilar states are
bisimilar.

Lemma 4.6.5. Let P = (Σ, A,R) be a stratifiable TSS such that −→P is image
finite. Let t, u ∈ T (Σ). Then:

t↔∼P u ⇔ t↔––P u.

Proof. “⇐” is trivial. See for “⇒” [15]. 2

92 4. Transition System Specifications with Negative Premises

B0(x, y)
yes
−→ δ 1

y
a
−→ y′ Bn−1(x′, y′)

yes
−→ z

Qna(x′, y)
ok
−→ δ

for n > 0, a ∈ A 2

x
a
−→ x′ Qna(x′, y) ok−6→
Bn(x, y)

no
−→ δ

for n > 0, a ∈ A 3

Bn(x, y) no−6→ Bn(y, x) no−6→
Bn(x, y)

yes
−→ δ

for n > 0 4

Table 4.2: A bisimulation tester

We now give the basic definitions and lemmas to prove that ≡Tpure ntyft/ntyxt⊆
↔∼P . The main component is the following test system. We show that this test
system is stratifiable and that it can test equality between n-bounded bisimilar
processes.

Definition 4.6.6. Let P = (Σ, A,R) be a TSS. The bisimulation tester of P
PT = (ΣT , AT , RT) is a TSS with signature ΣT = (FT , rT) containing binary
function names Bn and Qna for all n ∈ NI , a ∈ A and a constant δ. The labels of
PT are AT = A ∪ {ok, yes, no}. The rules in RT are given in table 4.2.

The rules in table 4.2 are based on the following meaning of the transitions
yes
−→,

no
−→ and

ok
−→:

– Bn(x, y)
yes
−→ δ if x and y are n-bounded bisimilar.

– Bn(x, y)
no
−→ δ (n > 0) if x can perform a step that cannot be done by y

such that the results are (n− 1)-bounded bisimilar.

– Qna(x, y)
ok
−→ δ (n > 0) means that y can perform an a-step such that the

result is (n− 1)-bounded bisimilar with x.

The rules in table 4.2 just encode n-bounded bisimilarity. The negative premises
model the universal quantifiers in definition 4.6.4.

Remark 4.6.7. The test system PT is able to test equivalences between terms
t, u ∈ T (Σ). However, it cannot test processes over T (Σ ⊕ ΣT). The reason for

4.6. Congruences induced by ntyft/ntyxt 93

this is that in rule 2 and 3 of table 4.2 a 6= ok, yes, no. If a would be allowed
range over A ∪ {ok, yes, no}, then it is impossible to give a stratification as is
done in this paper.

Lemma 4.6.8. Let P = (Σ, A,R) be a TSS. Let PT be the bisimulation tester
of P . PT is stratifiable.

Proof. It is enough to show that P has a stratification. Construct a mapping
S : Tr(ΣT , AT)→ ω as follows:

• for all a ∈ A and t, t′ ∈ T (ΣT) S(t
a
−→ t′) = 1,

• for n ∈ NI and t, u, v ∈ T (ΣT) S(Bn(t, u)
yes
−→ v) = 2n+ 1,

• for n ∈ NI − {0}, a ∈ AT and t, u, v ∈ T (ΣT) S(Qna(t, u)
ok
−→ v) = 2n− 1,

• for n ∈ NI − {0} and t, u, v ∈ T (ΣT) S(Bn(t, u)
no
−→ v) = 2n.

It is straightforward to check that S is a stratification for PT . 2

Lemma 4.6.9. Let P = (Σ, A,R) be a stratifiable TSS in pure ntyft/ntyxt-
format containing at least one constant in its signature. Furthermore, A must
not contain the labels ok, no, yes and Σ must not contain function names Bn and
Qna for all a ∈ A,n ∈ NI . Let t, u ∈ T (Σ) then

Bn(t, u)
yes
−→ δ ∈−→P⊕PT ⇔ t↔∼nP u.

Proof. As yes, no, ok /∈ A, conclusions of rules in RT never fit a premise of rules
in R. Furthermore, P and PT are stratifiable and contain at least one constant
in their signatures. Hence by theorem 4.5.8, P ⊕PT is stratifiable. So P ⊕PT has
an associated transition relation −→P⊕PT . As a consequence of theorem 4.5.5
P ⊕ PT is a conservative extension of P .
“⇒” Use induction on n. Basis. For n = 0 t↔∼nP u for any t, u ∈ T (Σ). Hence,
the theorem holds in this case.
Induction. We have to show that (1):

If Bn+1(t, u)
yes
−→ δ ∈−→P⊕PT and t

a
−→ t′ ∈−→P then

∃u′ s.t. u
a
−→ u′ ∈−→P and t′↔∼nP u′,

and vice versa (2):

If Bn+1(t, u)
yes
−→ δ ∈−→P⊕PT and u

a
−→ u′ ∈−→P then

∃t′ s.t. t
a
−→ t′ ∈−→P and t′↔∼nP u′.

94 4. Transition System Specifications with Negative Premises

As Bn+1(t, u)
yes
−→ δ ∈−→P⊕PT and −→P⊕PT agrees with P ⊕ PT , it must be

the case that using rule 4 Bn+1(t, u) no−6→ and Bn+1(u, t) no−6→ hold in −→P⊕PT .
Therefore, it cannot be the case that the premises of rule 3 all hold with σ(x) =

t, σ(y) = u. But we know that t
a
−→ t′ ∈−→P and by conservativity also

t
a
−→ t′ ∈−→P⊕PT . Hence for some v Qn+1

a (t′, u)
ok
−→ v ∈−→P⊕PT . But then

the premises of rule 2 must be true with σ(y) = u and σ(x′) = t′. Hence for

some u′ u
a
−→ u′ ∈−→P⊕PT and Bn(t′, u′)

yes
−→ δ ∈−→P⊕PT . By conservativity

u
a
−→ u′ ∈−→P . With the induction hypothesis t′↔∼nP u′. We can show (2) in

the same way. Hence if Bn+1(t, u)
yes
−→ δ ∈−→P⊕PT then t↔∼n+1

P u.

“⇐” Again, we use induction on n. Basis. If n = 0, the theorem is trivial as

B0(t, u)
yes
−→ δ ∈−→P⊕PT for all t, u ∈ T (Σ).

Induction. Suppose t↔∼n+1
P u. We show that Bn+1(t, u)

yes
−→∈−→P⊕PT . By rule

4 it is sufficient to show that Bn+1(t, u) no−6→ and Bn+1(u, t) no−6→ hold in −→P⊕PT .
This means that we have to show that rule 3 can never be applied, i.e. either (3):

t
a
−→ t′ or Qn+1

a (t′, u) ok−6→ nor (4): u
a
−→ u′ or Qn+1

a (u′, t) ok−6→ for any a ∈ A holds
in −→P⊕PT . Suppose for some a ∈ A t a−6→ holds in −→P⊕PT . Then (3) trivially

does not hold. Now suppose t
a
−→ t′ ∈−→P⊕PT for some t′. As PT conservatively

extends P , t
a
−→ t′ ∈−→P . Then using t↔∼n+1

P u ∃u′ ∈ T (Σ) u
a
−→ u′ ∈−→P and

t′↔∼nP u′. By conservativity u
a
−→ u′ ∈−→P⊕PT . Using the induction hypothesis

Bn(t′, u′)
yes
−→ δ ∈−→P⊕PT . Applying rule 2 yields Qn+1

a (t′, u)
ok
−→ δ ∈−→P⊕PT

and hence Qn+1
a (t′, u) ok−6→ does not hold in −→P⊕PT . We can prove (4) in the

same way. 2

The following theorem relates all notions.

Theorem 4.6.10. Let P = (Σ, A,R) be a stratifiable TSS in pure ntyft/ntyxt-
format containing at least one constant in its signature. Furthermore, −→P is
image finite, A does not contain labels ok, no, yes and Σ does not contain function
names Bn, Qna for all a ∈ A,n ∈ NI .

t ≡Tpure ntyft/ntyxt u ⇔ t↔∼Pu ⇔ t↔––Pu

Proof. Suppose t↔––P u. Let P ′ = (Σ′, A′, R′) be a TSS in pure ntyft/ntyxt-
format such that P ⊕ P ′ is a conservative extension of P . Then t↔––P⊕P ′ u.
By the congruence theorem, for any Σ ⊕ Σ′-context C C[t]↔––P⊕P ′C[u]. Hence,
t ≡Tpure ntyft/ntyxt u.

Suppose t 6↔∼P u. This means that for some n ∈ NI t 6↔∼nP u. Construct the
context Bn(t, []). Now by lemma 4.6.9 Bn(t, u)yes−6→ holds in −→P⊕PT while

Bn(t, t)
yes
−→ δ ∈−→P⊕PT . Hence, t 6≡Tpure ntyft/ntyxt u or in other words:

t ≡Tpure ntyft/ntyxt u ⇒ t↔∼Pu.

4.6. Congruences induced by ntyft/ntyxt 95

The last case, t↔∼Pu⇒ t↔––Pu, follows directly from lemma 4.6.5. 2

The condition that ok, no, yes /∈ A and Bn, Qna are not in Σ is not a real restric-
tion. It can be circumvented by simply renaming labels and function names. The
requirement that Σ contains at least one constant is also natural: without such a
constant there are no terms t ∈ T (Σ) and hence a bisimulation tester would not
be useful.

The bisimulation tester uses an infinite number of function names. For every
n ∈ NI and a ∈ A there are binary operators Bn and Qna . It is natural to ask
whether a test system with a finite number of binary operators can be formulated.
Here such a test system is given. This test system has as additional property
that if the number of labels in a tested system is finite, then there are only a
finite number of rules necessary.

Definition 4.6.11. Let P = (Σ, A,R) be a TSS with a countable set of labels A.
Assume that there is a function n : A→ NI that gives a unique number for each
label, satisfying that if for a ∈ A n(a) = m > 0 then ∃b ∈ A n(b) = m− 1. The
finite bisimulation tester PFT = (ΣFT , AFT , RFT) contains constants 0, 1 and δ,
unary function names S and S0, a ternary function name B and a quaternary
function name Q. The labels in PFT are given by AFT = A∪Ā∪{ok, yes, no, 0, 1}.
Here Ā = {ā | a ∈ A}. The definition of n is extended to Ā by n(ā) = n(a).
The rules in RFT are given in table 4.3. Here, l, l′, n, n′, x, x′, y, y′ are variables.
a ranges over A and b, c range over Ā. S

n(a)
0 (1) is an abbreviation for n(a)

applications of S0 to 1.

The main difference between PT and PFT is that labels and numbers do not
occur any more as sub- and superscripts at Q and B, but they are coded by
zeroes and successor functions and included in the list of arguments. We have
the same results for PFT as for PT . We only give here the main lemmas and we
omit the proofs. With these results it can be shown in exactly the same way as
in the proof of theorem 4.6.10 that PFT is also powerful enough to distinguish
between non bisimilar processes.

Lemma 4.6.12. Let P = (Σ, A,R) be a TSS with a countable set of labels A.
The finite bisimulation tester PFT of P is stratifiable.

Lemma 4.6.13. Let P = (Σ, A,R) be a stratifiable TSS in pure ntyft/ntyxt-
format with a countable set of labels A not containing labels yes, no, ok, 0, 1 and
at least one constant in Σ. Function names 0, S, 1, S0, B, Q must not occur in
Σ. Let t, u ∈ T (Σ). Sn(0) is an abbreviation for n applications of S on 0. Then:

B(Sn(0), t, u)
yes
−→P⊕PFT δ ⇔ t↔––nP u.

96 4. Transition System Specifications with Negative Premises

0
0
−→ δ 1

S(x)
1
−→ x 2

1
b
−→ δ for n(b) = 0 3

x
b
−→ x′

S0(x)
c
−→ δ

if n(c) = n(b) + 1 4

n
0
−→ n′

B(n, x, y)
yes
−→ δ

5

l
ā
−→ l′ y

a
−→ y′ B(n, x′, y′)

yes
−→ z

Q(n, l, x′, y)
ok
−→ δ

for a ∈ A 6

n
1
−→ n′ x

a
−→ x′ Q(n′, Sn(a)

0 (1), x′, y) ok−6→
B(n, x, y)

no
−→ δ

for n > 0, a ∈ A 7

B(n, x, y) no−6→ B(n, y, x) no−6→
B(n, x, y)

yes
−→ δ

for n > 0 8

Table 4.3: A finite bisimulation tester

4.7. An overview of trace and completed trace congruences 97

trace congruence completed trace congruence

De Simone-format trace equivalence failure equivalence
positive GSOS-format simulation equivalence 2/3 bisimulation
GSOS-format 2/3 bisimulation 2/3 bisimulation
pure tyft/tyxt-format simulation equivalence 2-nested simulation equivalence
pure ntyft/ntyxt-format bisimulation bisimulation

Table 4.4: An overview of (completed) trace congruences

4.7 An overview of trace and completed trace
congruences

There are nowadays several different formats of rules for describing a Plotkin style
operational semantics. All these formats induce their own trace and completed
trace congruences. Below in table 4.4 we give an overview of the main results. We
do not explicitly define all equivalence notions, but we confine ourselves to giving
references. The first column describes the different formats for the rules. The
pure ntyft/ntyxt-format is the most extensive. All other formats are restricted
versions of the pure ntyft/ntyxt-format. The pure tyft/tyxt-format [16] can be
obtained from the pure ntyft/ntyxt-format by not allowing negative premises in
the rules. The GSOS-format [10] has been defined in example 4.3.1. It is a
simplification of the pure ntyft-format in the sense that rules in GSOS-format
only have conclusions of the form f(x1, ..., xr(f))

a
−→ t and premises of the form

xi
ai
−→ x′i for 1 ≤ i ≤ r(f) and xj

bj−6→ for 1 ≤ j ≤ r(f). In example 4.3.1 it
has been shown that a TSS in GSOS-format has a unique associated transition
relation.
The positive GSOS-format [16] is almost equal to the GSOS-format, the only
difference being that rules in the positive GSOS-format do not have negative
premises. A typical example of a rule in positive GSOS format is:

x
a
−→ x′1 x

b
−→ x′2

f(x)
c
−→ g(x, x′1, x

′
1)
.

One can clearly see that variables may be used more than once in the source
of the premises or the target of the conclusion. This is called copying [1]. The
positive GSOS-format is not only more restricted than the GSOS-format, but also
every rule satisfying the positive GSOS-format is in the pure tyft/tyxt-format (see
figure 4.1).
The oldest format is the De Simone-format [14]. It is equal to the positive GSOS-
format except that it does not allow copying. Every variable in the left hand side
of the conclusion may only occur once in the right hand side of the conclusion
or in the left hand side of a premise. Every variable in the right hand side of a
premise may appear only once in the right hand side of the conclusion.
The second and third column of table 4.4 give the trace and completed trace con-

98 4. Transition System Specifications with Negative Premises

gruences belonging to these formats. The notion of completed trace congruences
is:

Definition 4.7.1. Let P = (Σ, A,R) be a TSS with associated transition relation
−→P . Let t ∈ T (Σ). t is a deadlocked process, notation t−6→, iff there are no

u ∈ (Σ) and a ∈ A with t
a
−→P u. A sequence a1 ? ... ? an ∈ A? is a completed

trace of t iff there are process terms t1, ..., tn ∈ T (Σ) such that t
a1
−→P t1

a2
−→P

...
an
−→P tn−6→. CT (t) is the set of all completed traces of t. Two process terms

t, u ∈ T (Σ) are completed trace equivalent for P if CT (t) = CT (u). This is
denoted as t ≡CTP u.

The notion of completed trace congruence can be obtained by replacing ‘trace’ by
‘completed trace’, ≡TF by ≡CTF and ≡TP by ≡CTP in definition 4.6.2.

The trace and completed trace congruences for the De Simone-format follow
directly from an important result of R. de Simone [14]: All operators definable
in the De Simone-format can also be defined using architectural expressions over
Meije-SCCS. It is a well known result that trace equivalence is a congruence
in Meije-SCCS. From this it follows immediately that the trace congruence is
trace equivalence. Furthermore, an established result is that the completed trace
congruence is failure trace equivalence. For all other results, we refer to [16]
where all completed trace congruences, except for the pure ntyft/ntyxt-format, are
given. The notion of 2/3-bisimulation was first mentioned in [21] and simulation
equivalence and 2-nested simulation equivalence are defined in [16]. The trace
congruences for positive GSOS and GSOS are not published anywhere. However,
with the help of the lemmas in [16] one can prove the results. In [16] it is shown
that the trace congruence for the pure tyft/tyxt-format is simulation equivalence.

References

[1] S. Abramsky. Observation equivalence as a testing equivalence. Theoretical
Computer Science, 53:225–241, 1987.

[2] K.R. Apt. Logic programming. In J. van Leeuwen, editor, Handbook of
Theoretical Computer Science, Volume B, Formal Models and Semantics,
chapter 10, pages 495–574. North-Holland, 1990.

[3] E. Astesiano, C. Bendix Nielsen, N. Botta, A. Fantechi, A. Giovini, P. Inver-
ardi, E. Karlsen, F. Mazzanti, G. Reggio, and E. Zucca. The Trial Definition
of Ada, Deliverable 7 of the CEC MAP project: The Draft Formal Definition
of ANSI/MIL-STD 1815 Ada. 1986.

[4] D. Austry and G. Boudol. Algèbre de processus et synchronisations. Theo-
retical Computer Science, 30(1):91–131, 1984.

[5] J.C.M. Baeten and J.A. Bergstra. Global renaming operators in concrete
process algebra. Information and Computation, 78(3):205–245, 1988.

References 99

[6] J.C.M. Baeten and J.A. Bergstra. Processen en procesexpressies. Informatie,
30(3):177–248, 1988. In Dutch.

[7] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Syntax and defining equations
for an interrupt mechanism in process algebra. Fundamenta Informaticae,
IX(2):127–168, 1986.

[8] J.A. Bergstra. Put and get, primitives for synchronous unreliable message
passing. Logic Group Preprint Series Nr. 3, CIF, State University of Utrecht,
1985.

[9] G. Berry and G. Gonthier. The synchronous programming language ES-
TEREL: design, semantics, implementation. Report 842, INRIA, Centre
Sophia-Antipolis, Valbonne Cedex, 1988. To appear in Science of Computer
Programming.

[10] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t be traced: prelim-
inary report. In Proceedings 15th ACM Symposium on Principles of Pro-
gramming Languages, San Diego, California, pages 229–239, 1988.

[11] T. Bolognesi, F. Lucidi, and S. Trigila. From timed Petri nets to timed
LOTOS. In L. Logrippo, R.L. Probert, and H. Ural, editors, Proceedings
10th IFIP WG6.1 International Symposium on Protocol Specification, Test-
ing and Verification, Ottawa, pages 395–408, 1990.

[12] J. Camilleri and G. Winskel. CCS with priority choice. In Proceedings
6th Annual Symposium on Logic in Computer Science, Amsterdam, The
Netherlands, pages 246–255. IEEE Computer Society Press, 1991.

[13] R. Cleaveland and M. Hennessy. Priorities in process algebra. In Proceedings
3th Annual Symposium on Logic in Computer Science, Edinburgh, pages
193–202. IEEE Computer Society Press, 1988.

[14] R. De Simone. Higher-level synchronising devices in meije–SCCS. Theoret-
ical Computer Science, 37:245–267, 1985.

[15] R.J. van Glabbeek. Bounded nondeterminism and the approximation induc-
tion principle in process algebra. In F.J. Brandenburg, G. Vidal-Naquet, and
M. Wirsing, editors, Proceedings STACS 87, volume 247 of Lecture Notes in
Computer Science, pages 336–347. Springer-Verlag, 1987.

[16] J.F. Groote and F.W. Vaandrager. Structured operational semantics and
bisimulation as a congruence (extended abstract). In G. Ausiello, M. Dezani-
Ciancaglini, and S. Ronchi Della Rocca, editors, Proceedings 16th ICALP,
Stresa, volume 372 of Lecture Notes in Computer Science, pages 423–438.
Springer-Verlag, 1989. Full version to appear in Information and Computa-
tion.

100 4. Transition System Specifications with Negative Premises

[17] M. Hennessy and T. Regan. A temporal process algebra. Report 2/90,
Computer Science Department, University of Sussex, 1990.

[18] ISO. Information processing systems – open systems interconnection – LO-
TOS – a formal description technique based on the temporal ordering of
observational behaviour, 1987. ISO/TC97/SC21/N DIS8807.

[19] A.S. Klusener. Completeness in realtime process algebra. Technical Report
CS-R9106, CWI, Amsterdam, 1991.

[20] K.G. Larsen. Modal specifications. Technical Report R 89-09, Institute for
Electronic Systems, The University of Aalborg, February 1989.

[21] K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. In Pro-
ceedings 16th ACM Symposium on Principles of Programming Languages,
Austin, Texas, pages 344–352, 1989.

[22] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer-Verlag, 1980.

[23] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer
Science, 25:267–310, 1983.

[24] R. Milner. Communication and concurrency. Prentice Hall International,
1989.

[25] F. Moller. Axioms for concurrency. PhD thesis, Department of Computer
Science, University of Edinburgh, 1989. CST-59-89.

[26] X. Nicollin and J. Sifakis. The algebra of timed processes ATP: Theory and
application. Report RT - C26, IMAG, Laboratoire de Génie informatique,
Grenoble, 1990.

[27] D.M.R. Park. Concurrency and automata on infinite sequences. In
P. Deussen, editor, 5th GI Conference, volume 104 of Lecture Notes in Com-
puter Science, pages 167–183. Springer-Verlag, 1981.

[28] I.C.C. Phillips. CCS with broadcast stability. Unpublished manuscript.

[29] G.D. Plotkin. A structural approach to operational semantics. Report
DAIMI FN-19, Computer Science Department, Aarhus University, 1981.

[30] G.D. Plotkin. An operational semantics for CSP. In D. Bjørner, editor, Pro-
ceedings IFIP TC2 Working Conference on Formal Description of Program-
ming Concepts – II, Garmisch, pages 199–225, Amsterdam, 1983. North-
Holland.

[31] A. Pnueli. Linear and branching structures in the semantics and logics of
reactive systems. In W. Brauer, editor, Proceedings 12th ICALP, Nafplion,
volume 194 of Lecture Notes in Computer Science, pages 15–32. Springer-
Verlag, 1985.

References 101

[32] T.C. Przymusinski. On the declarative semantics of deductive databases and
logic programs. In Jack Minker, editor, Foundations of Deductive Databases
and Logic Programming, pages 193–216. Morgan Kaufmann Publishers, Inc.,
Los Altos, California, 1987.

102 4. Transition System Specifications with Negative Premises

5

The Meaning of Negative Premises in
Transition System Specifications

(Roland Bol & Jan Friso Groote)

The stratification technique of the previous chapter is not always sat-
isfactory, because, as is shown in this paper, there are examples it
cannot deal with. In this paper we consider the problem of nega-
tive premises again, but put everything in a broader context1. We
present a general theory for the use of negative premises in the rules
of Transition System Specifications (TSS’s). We formulate a crite-
rion that should be satisfied by a TSS in order to be meaningful, i.e.
to unequivocally define a transition relation. We also propose vari-
ous techniques for proving that a TSS satisfies this criterion. Among
these is stratification, taken from the previous chapter, and a stronger
reduction technique. Both the criterion and the techniques originate
from logic programming [11, 10] to which TSS’s are close. In the last
section we provide an extensive comparison between them.

As in the article in the previous chapter, we show that the bisim-
ulation relation induced by a TSS is a congruence, provided that it
is in ntyft/ntyxt-format and can be proved meaningful using the re-
duction technique. We also extend the conservativity theorems of
[14] and the previous chapter considerably. As a running example,
we study the combined addition of priorities and abstraction to Basic
Process Algebra (BPA). Under some reasonable conditions we show
that this TSS is indeed meaningful, which could not be shown by the
techniques presented in the article in chapter 4. Finally, we provide
a sound and complete axiomatisation for this example.

1Although this paper extends the previous chapter in various aspects, it is completely self
contained and it can be read independently of it. But wherever appropriate, we have put
references to the last chapter, in order to ease a comparison

103

104 5. The Meaning of Negative Premises

5.1 Introduction

In the article in chapter 4 stratifiable TSS’s are studied. In this article we provide
a way to treat TSS’s with negative premises in general and we study some of the
consequences of this treatment. The fundamental problem of negative premises
in TSS’s is that they cannot be proved in the same way positive premises can.
In order to overcome this problem, we resort to a non-classical treatment of
negation, similar to default logic [3, 23] and logic programming [11]. Without
negative premises the notion of proof is standard. With negative premises we
may only use the rules of which the negative premises hold. A negative premise
holds by default, that is unless the opposite can be proved. Now suppose −→
contains all transitions that can be proved in this way. Then it must satisfy:

−→ is the set of transitions that are provable by those rules of which
the negative premises are consistent with −→.

Following [11], we call such a transition relation stable for the TSS.
It is possible that a TSS has zero, one or more stable transition relations. If

a TSS P has exactly one stable transition relation then we propose to define the
semantics of a TSS P as this relation and we say that this relation is associated
with P . If a TSS has zero or more than one stable transition relations, it is
hard to imagine that any specific transition relation can be associated with it
on reasonable grounds. That is, unless one is prepared to associate with a TSS
a transition relation that is not decisive about all transitions. But this is not
considered appropriate for the field of operational semantics.

In general it is difficult to show that a TSS has a unique stable transition
relation. However, some techniques have been developed to do so.

The first technique, called stratification, has been presented in the article in
the previous chapter. It is based on the notion of local stratification in logic
programming [21]. In this article we show that the transition relation associated
with a stratified TSS is indeed the unique stable transition relation for it. This
also implies the same fact for positive TSS’s and TSS’s in the so-called GSOS-
format [5], as they are stratified.

Stratification is an intuitively appealing technique, and quite easy to use, but it
is not always strong enough. Here, we introduce a more powerful technique, based
on well-founded models in logic programming [10, 22]. This technique, which we
call reduction, is more powerful than stratification, but also more difficult to
use. The two techniques can be amalgamated, using reduction when necessary
and stratification when possible. This is demonstrated on our running example
combining unguarded recursion, abstraction and priorities, showing that under
some reasonable conditions a transition relation can be associated with it.

A desirable property for a TSS is that the strong bisimulation equivalence
induced by it [17, 18] is a congruence. In [14] the tyft/tyxt-format was introduced,
as a syntactical condition on TSS’s that guarantees this property for positive
TSS’s. In the article in chapter 4 this condition has been generalised to the
ntyft/ntyxt-format for stratified TSS’s. Here we show that the same condition is

5.2. Preliminaries 105

sufficient for all TSS’s for which the reduction technique works. In contrast we
show that the condition is not sufficient for TSS’s having an associated transition
relation that is not produced by reduction.

It can be useful to enrich a given language with additional language constructs.
In order to do this in a systematic way, the sum of two TSS’s has been introduced
[14]. The sum of two TSS’s P0 and P1 is called a conservative extension of P0

if certain relevant properties of terms over the signature of P0 are preserved.
In chapter 4 syntactical conditions on stratified TSS’s were given ensuring that
their sum is conservative. Here we generalise these conditions considerably and
we extend them to TSS’s for which the reduction technique works.

Throughout the paper we use an example to illustrate these techniques: a TSS
specifying the operational semantics of Basic Process Algebra (BPA) extended
with priorities [1] and abstraction [12, 17]. We show using reduction and stratifi-
cation that this TSS is meaningful. In section 5.10 we give a sound and complete
axiomatisation of strong bisimulation equivalence induced by this TSS. It turns
out that most of the standard techniques for positive TSS’s can still be used.

5.2 Preliminaries

In this section we provide the basic concepts of this paper: transition relations
and Transition System Specifications (TSS’s). An example of a TSS is given in
which priorities and abstraction are integrated in BPA. This example will serve
as a running example throughout this paper.

We assume the presence of an infinite set V of variables with typical elements
x, y, z....

Definition 5.2.1. A (single sorted) signature is a structure Σ = (F, rank) where:

– F is a set of function names disjoint with V ,

– rank : F → NI is a rank function which gives the arity of a function name;
if f ∈ F and rank(f) = 0 then f is called a constant name.

Let W ⊆ V be a set of variables. The set of Σ-terms over W , notation T (Σ,W),
is the least set satisfying:

– W ⊆ T (Σ,W),

– if f ∈ F and t1, ..., trank(f) ∈ T (Σ,W), then f(t1, ..., trank(f)) ∈ T (Σ,W).

T (Σ, ∅) is abbreviated by T (Σ); elements from T (Σ) are called closed or ground
terms. (Σ) is used to abbreviate T (Σ, V), the set of open terms. Clearly,
T (Σ) ⊂ (Σ). V ar(t) ⊆ V is the set of variables in a term t ∈ (Σ). A substitution
σ is a mapping in V → (Σ). A substitution σ is extended to a mapping σ :
(Σ)→ (Σ) in a standard way (f ∈ F and t1, ..., trank(f) ∈ (Σ)):

– σ(f(t1, ..., trank(f))) = f(σ(t1), ..., σ(trank(f))).

A substitution is closed (or ground) if it maps all variables onto closed terms.

106 5. The Meaning of Negative Premises

A transition relation prescribes what activities, represented by labeled transi-
tions, can be performed by terms over some signature. Generally, the signature
represents a programming or a specification language and the terms are programs.
The transition relation models the operational behaviour of these terms.

Definition 5.2.2. Let Σ be a signature and A a set of labels. A (labeled)
transition relation is a subset −→ of Tr(Σ, A) where Tr(Σ, A) = T (Σ)×A×T (Σ).

Elements (t, a, t′) of a transition relation are written as t
a
−→ t′.

A transition relation is often defined by means of a Transition System Specifica-
tion (TSS). Plotkin [15, 19] defended the use of TSS’s to give an operational
semantics, and therefore a TSS is sometimes called an operational semantics in
Plotkin style. The term TSS was first coined in [14] for a system in which rules
had only positive premises. Negative premises were added in the paper in the
previous chapter.

Definition 5.2.3. A TSS (Transition System Specification) is a triple P =
(Σ, A,R) with Σ a signature, A a set of labels and R a set of rules of the form:

{tk
ak
−→ t′k | k ∈ K} ∪ {tl

bl−6→ | l ∈ L}

t
a
−→ t′

with K,L (possibly infinite) index sets, tk, t′k, tl, t, t
′ ∈ (Σ), ak, bl, a ∈ A (k ∈ K,

l ∈ L). An expression of the form t
a
−→ t′ is called a (positive) literal. t a−6→

is called a negative literal. ϕ,ψ, χ are used to range over literals. For a literal
ψ, source(ψ) denotes the term at the left hand side of ψ and, if ψ is positive,
target(ψ) denotes the term at the right hand side. For any rule r ∈ R the literals
above the line are called the premises of r, notation prem(r), and the literal
below the line is called the conclusion of r, denoted as conc(r). Furthermore,
we write pprem(r) for the set of positive premises of r and nprem(r) for the
set of negative premises of r. A rule r is called positive if there are no negative
premises, i.e. nprem(r) = ∅. A TSS is called positive if it has only positive rules.

A rule is called an axiom if its set of premises is empty. An axiom
∅

t
a
−→ t′

is

often written as t
a
−→ t′. The notions ‘substitution’, ‘Var’ and ‘closed’ extend to

literals and rules as expected.

Throughout this paper we use the following Transition System Specification
scheme to illustrate the techniques we introduce. It describes the semantics
of a small basic process language extended with priorities and abstraction. This
combination has not been studied before due to the technical complications that
are involved. Priorities are investigated in [1, 2, 7, 8]. We follow the line set
out by Baeten, Bergstra and Klop [1] who introduced a priority operator θ.
For abstraction we take observation equivalence as introduced by Milner [17]
although technically we follow van Glabbeek [12]. We base our example on

5.2. Preliminaries 107

ε : R1: ε

√

−→ δ

a : R2: a
a
−→ ε if a ∈ Actτ

+ : R3.1:
x

a
−→ x′

x+ y
a
−→ x′

R3.2:
y

a
−→ y′

x+ y
a
−→ y′

· : R4.1:
x

a
−→ x′

x · y
a
−→ x′ · y

if a ∈ Actτ R4.2:
x

√

−→ x′ y
a
−→ y′

x · y
a
−→ y′

θ : R5.1:
x

a
−→ x′ ∀b > a x b−6→

θ(x)
a
−→ θ(x′)

a ∈ Actτ R5.2:
x

√

−→ x′

θ(x)
√

−→ θ(x′)

/ : R6.1:
x

a
−→ x′ ∀b > a y b−6→

x / y
a
−→ x′

a ∈ Actτ R6.2:
x

√

−→ x′

x / y

√

−→ x′

τI : R7.1:
x

a
−→ x′

τI(x)
a
−→ τI(x′)

if a 6∈ I R7.2:
x

a
−→ x′

τI(x)
τ
−→ τI(x′)

a ∈ I

rec: R8:
tX

a
−→ y

X
a
−→ y

if X ⇐ tX ∈ E

τ : R9.1: a
a
−→ τ if a ∈ Actτ

R9.2:
x

τ
−→ y y

a
−→ z

x
a
−→ z

R9.3:
x

a
−→ y y

τ
−→ z

x
a
−→ z

Table 5.1: BPAδετ with priorities (a ∈ Actτ√, b ∈ Actτ)

108 5. The Meaning of Negative Premises

BPAδετ , Basic Process Algebra with τ , ε and δ as introduced in [14], and extend
it with recursion and priorities.

Example 5.2.4 (BPAδετ with priorities). We assume that we have a given set
Act of actions that represent the basic activities that can be performed by pro-
cesses. Actτ = Act∪ {τ} is a set of actions containing the symbol τ representing
internal or hidden activity. Moreover, we assume a partial ordering < on Actτ ,
which we call the priority relation: actions higher in the ordering have a higher
priority than actions lower in the ordering. We assume that < is backwardly
well-founded, i.e. the inverse of < constitutes a well-founded ordering.

Our signature contains a constant a for each action a ∈ Actτ . Moreover, we
have two special constants δ and ε. δ is called inaction (or deadlock) and it
represents the process that cannot do anything at all. In particular, δ cannot
terminate. ε is called the empty process which cannot do anything but terminate.

Two basic operators compose smaller into larger processes: sequential compo-
sition is written as ‘·’ and alternative composition is denoted by +. We often
leave out the ‘·’ and assume that ‘·’ binds stronger than +.

Actions can be abstracted away: for all I ⊆ Act the unary abstraction operator
τI performs this task by renaming all actions in I to τ .

For recursion it is assumed that there is some given set Ξ of process names.
Each process name X ∈ Ξ is treated as a constant in the signature. Furthermore,
we assume that a set E of process declarations is given. For each process name
X in Ξ there is a declaration X ⇐ tX ∈ E where tX is a closed term over the
signature. Terms that do not contain process names are called recursion free.

The remaining operators in the signature deal with priorities. The priority
operator θ acts as a sieve: θ(x) only allows those actions from x that have highest
priority. For the axiomatisation of BPAδετ with priorities, which is given in
section 5.10, we need the unless operator /, which was introduced in [1]. This
operator is applied on two operands and only allows an action in its left hand
side provided the right hand side cannot do any action with higher priority.

When (Actτ , <) and (Ξ, E) are fixed, we obtain a TSS which is an instance of
BPAδετ with priorities. Such an instance will be denoted as Pθ = (Σθ, Aθ, Rθ).
The signature Σθ = (Fθ, rankθ) is described above. The labels in Aθ are exactly
those in Actτ together with one special symbol

√
which is used to signal termi-

nation. If a process term t can perform a
√

-step, i.e. t
√

−→ t′, this means that t
has an option to terminate.

The rules in Rθ are given in table 5.1. Here, the action a ranges over Actτ√ =
Actτ ∪ {

√
} and b ranges over Actτ . In rules R5.1 and R6.1 we use the notation

∀b > a x b−6→ which means that for all b with higher priority than a, there is a
negative premise x b−6→. Rule R5.1 is intuitively appealing. It says that θ(x) may
do an a-action if x can do this action and x cannot do any action with higher
priority. But there is a snag in it. Due to the negative premises, it is not at all
straightforward to see that Pθ defines a transition relation. In fact, in example
5.4.8 we will present a case in which it does not make sense at all.

5.3. Transition relations for TSS’s 109

Rules R9.1-R9.3 model the properties of τ . R9.2 and R9.3 say that whenever
an action a is observed in some time interval, numerous unobservable τ -actions
can also happen during the same time, both before and after a. Rule R9.1 says
that if an action a is observed, some internal activity may exist before the next
action can take place.

We think that the remaining rules are self explanatory, although we like to point
out that rule R4.2 makes use of a process that explicitly signals termination.

5.3 Transition relations for TSS’s

We have introduced TSS’s as a formalism for specifying transition relations. Thus
a most fundamental question is which transition relation is actually defined by
a TSS. In this section we outline some answers proposed in the literature for
several classes of TSS’s. Then we show that these techniques are not capable of
handling our running example satisfactorily. In the next sections we show how
to solve this problem.

As a first step, a link between the transitions in a transition relation and the
literals in TSS’s is established.

Definition 5.3.1. Let −→ be a transition relation. A positive ground literal ψ
holds in −→ or ψ is valid in −→, notation −→|= ψ, if the transition ψ ∈−→. A
negative ground literal t a−6→ holds in −→, notation −→|= t a−6→, if for no t′ ∈ T (Σ)

the transition t
a
−→ t′ ∈−→. For a set of literals Ψ, we write −→|= Ψ iff ∀ψ ∈ Ψ:

−→|= ψ.

Remark 5.3.2. Suppose we have two transition relations −→1 and −→2 such
that −→1⊆−→2. For any set of positive literals Ψ it is clear that −→1|= Ψ
implies −→2|= Ψ. However, if Ψ is a set of negative literals, then −→2|= Ψ
implies −→1|= Ψ. We shall often use this kind of reasoning.

What is the transition relation defined by a TSS? At least one may require that
a transition relation associated with a TSS P obeys the rules of P , i.e. if the
premises of a ground instance of a rule in P are valid in −→, then the conclusion
is also valid in −→. (In terms of logic: the rules of P , interpreted as implications,
are true in −→).

Definition 5.3.3. Let P = (Σ, A,R) be a TSS and let −→⊆ Tr(Σ, A) be a
transition relation. −→ is a model of P if:

ψ ∈−→ ⇐ ∃r ∈ R and ∃σ : V → T (Σ) such that :
{
−→|= prem(σ(r)) and
conc(σ(r)) = ψ.

On the other hand, a transition ψ should not be incorporated in the transition
relation −→ of a TSS P unless there is a good reason to do so, namely a rule in
P with valid premises in −→ concluding ψ.

110 5. The Meaning of Negative Premises

Definition 5.3.4. Let P = (Σ, A,R) be a TSS. Let −→⊆ Tr(Σ, A) be a transi-
tion relation. −→ is supported by P if:

ψ ∈−→ ⇒ ∃r ∈ R and ∃σ : V → T (Σ) such that :
{
−→|= prem(σ(r)) and
conc(σ(r)) = ψ.

Combining the previous definitions, we get:

Definition 5.3.5. Let P = (Σ, A,R) be a TSS. Let −→⊆ Tr(Σ, A) be a transi-
tion relation. −→ is a supported model of P if −→ is supported by P and −→ is
a model of P .

The notion of −→ being a supported model of P was introduced in [5] as ‘−→
agrees with P ’ (see also definition 4.2.3. Although the transition relation asso-
ciated with a TSS should certainly be a supported model of it, the notion of
supportedness is generally not sufficient to exclude all superfluous transitions
from the transition relation. This is shown by the following example.

Example 5.3.6. Suppose we have a TSS P with one constant f , one label a
and the following rule:

f
a
−→ f

f
a
−→ f

.

We would like P to define the transition relation −→P= ∅. We feel that there is
not enough reason to add f

a
−→ f to −→P as it can only be ‘derived’ by assuming

that it is already in −→P .
However, both ∅ and {f

a
−→ f} are supported models of P .

For positive TSS’s this shortcoming is easily remedied by associating with a TSS
P the least transition relation (w.r.t. set inclusion) that is a model of P . The
existence of this least model follows from the model intersection property stated
below.

Lemma 5.3.7 (Model intersection property). Let P be a TSS and let C be a
collection of models of P . Then

⋂
C is a model of P .

Proof. Let r be a ground instance of a rule of P . If
⋂
C |= prem(r), then for

every −→∈ C : −→|= prem(r), thus for every −→∈ C : −→|= conc(r), as C is a
collection of models. Thus

⋂
C |= conc(r). 2

Thus we have the following definition.

Definition 5.3.8. The transition relation −→P associated with a positive TSS
P is the least model of P w.r.t. set inclusion.

Traditionally ([14, 15, 19]) a different definition of the transition relation associ-
ated with a positive TSS was given, based on the provability of transitions. We
show that these two characterisations are equivalent.

5.3. Transition relations for TSS’s 111

Definition 5.3.9. Let P = (Σ, A,R) be a positive TSS. A proof of a positive
literal ψ from P is a well-founded, upwardly branching tree of which the nodes
are labeled by literals t

a
−→ t′ with t, t′ ∈ (Σ) and a ∈ A, such that:

– the root is labeled with ψ,

– if χ is the label of a node q and {χi | i ∈ I} is the set of labels of the nodes

directly above q, then there is a rule
{ϕi | i ∈ I}

ϕ
in R and a substitution

σ:V → (Σ) such that χ = σ(ϕ) and χi = σ(ϕi) for i ∈ I.

A proof is closed if it only contains closed literals. A positive literal ψ is provable
in P , notation P ` ψ, if there exists a proof of ψ from P .

Theorem 5.3.10. Let P = (Σ, A,R) be a positive TSS, −→P the transition
relation associated with P and ψ ∈ Tr(Σ, A). Then

P ` ψ ⇔ ψ ∈−→P .

Proof.

⇒ By straightforward induction on the proof of ψ from P .

⇐ It is straightforward to show that {ψ | P ` ψ} is a model of P . As −→P is
the least model of P , it follows that −→P⊆ {ψ | P ` ψ}.

2

From this theorem it also follows that the least model of a positive TSS is sup-
ported by it.

For TSS’s with negative premises it is much more difficult to find an appropriate
associated transition relation as is shown by the following example.

Example 5.3.11. Suppose we have a TSS P with one constant f , two labels a
and b and the following rules:

f
a
−→ f

f
a
−→ f

f a−6→

f
b
−→ f

.

We would like P to define the transition relation −→P= {f
b
−→ f}. However,

P has exactly two minimal models, {f
a
−→ f} and {f

b
−→ f}, which are both

supported.

Thus in the presence of negative premises there may be several minimal models,
some of them may be supported. So other characterisations for associated tran-
sition relations must be sought. The notion of provability also needs a revision,
as it is not a priori clear how the negative premises of a rule must be proved.

112 5. The Meaning of Negative Premises

Similar problems concerning negative premises have been studied in the context
of logic programming. The correspondence between TSS’s and logic programs
is treated in section 5.11. As first solution in logic programming the notion of
(local) stratification was introduced. In the paper in chapter 4 this notion has
been tailored for TSS’s. We repeat the most important definitions and facts to
make this paper self-contained.

A TSS P is stratified if there exists a stratification of the transitions with
respect to the rules of P . The stratification guarantees that the validity of any
literal does not depend on the validity of its negation.

Definition 5.3.12. Let P = (Σ, A,R) be a TSS. A function S : Tr(Σ, A)→ α,
where α is an ordinal, is called a stratification of P if for every rule r ∈ R and
every substitution σ : V → T (Σ) it holds that:

for all ψ ∈ pprem(σ(r)) : S(ψ) ≤ S(conc(σ(r)) and

for all t a−6→ ∈ nprem(σ(r)) and t′ ∈ T (Σ) : S(t
a
−→ t′) < S(conc(σ(r))).

If P has a stratification, we say that P is stratified. For all ordinals β < α,
Sβ = {ϕ | S(ϕ) = β} is called a stratum.

Example 5.3.13. The TSS of example 5.3.11 can be stratified by a stratification
S as follows:

S(f
a
−→ f) = 0 and S(f

b
−→ f) = 1.

Each positive transition system specification is trivially stratified by putting all
positive literals in stratum 0.

We now define how a transition relation −→P,S is constructed from a TSS P with
stratification S, (see also definition 4.2.14 in the paper in chapter 4). The idea
of the construction is that one first considers the positive literals in stratum 0.
As each literal in stratum 0 can only fit the conclusion of a rule without negative
premises, one can determine which of these literals hold and which do not hold
in −→P,S in the same way as is done for positive transition system specifications.
If a literal in stratum 1 fits the conclusion of a rule, then this instance of that
rule can only have negative premises in stratum 0. If these negative premises
hold (which has already been determined), they can be discarded. If they do not
hold, the rule cannot be applied. Then we can prove the literals in stratum 1 in
the ordinary way and we proceed with stratum 2 etc.

Definition 5.3.14. Let P = (Σ, A,R) be a TSS with a stratification S :
Tr(Σ, A) → α for some ordinal α. The transition relation −→P,S associated
with P (and based on S) is defined as:

−→P,S=
⋃

0≤i<α

−→Pi .

5.3. Transition relations for TSS’s 113

where −→Pi is defined by the (positive) TSS Pi = (Σ, A,Ri) with Ri given by:

Ri = {r′ |∃r ∈ R and ∃σ : V → T (Σ) :⋃
0≤j<i

−→Pj |= nprem(σ(r)) ∪ {ϕ ∈ pprem(σ(r)) | S(ϕ) < i},

S(conc(σ(r))) = i and

r′ =
{ϕ ∈ pprem(σ(r)) | S(ϕ) = i}

conc(σ(r))
}.

Theorem 5.3.15 (See also lemma 4.2.16). Let P be a TSS which is stratified
by stratifications S and S′. Then −→P,S=−→P,S′ .

This theorem allows us to write −→P for the transition relation associated with
a stratified TSS P . Note that the definition of −→P based on the notion of
‘stratification’ extends the definition of −→P for positive TSS’s.

Theorem 5.3.16 (See also theorem 4.2.15 and theorem 4 in [21]). Let P be a
stratified TSS. Then −→P is a minimal and supported model of P .

Thus we have the scheme of characterisations depicted in figure 5.1, where A→ B
means that characterisation A implies characterisation B. For positive TSS’s, the
characterisations marked by a ∗ coincide.

@
@

@
@I

@
@
@
@I

@
@
@
@I

@
@
@
@I

@
@
@
@I

@
@
@
@I

�
�
�
��

�
�
�
��

�
�
�
��

Supported

Supported model

Model based on stratification

Least model

Minimal model

Model

Any transition relation

Supported and minimal model *

*

·

·

·

·

*

*

Figure 5.1: Relations among several models

Although the stratification technique is often applicable, there are examples
of TSS’s that have an intuitive meaning while not being stratified. One such
example is BPAδετ with priorities.

114 5. The Meaning of Negative Premises

Example 5.3.17. Suppose we have an instance Pθ of BPAδετ with priorities
based on a set of actions Act containing at least two elements a and b such that
a < b. Consider for arbitrary terms t and u the following instances of rules:

R5.1:
t

a
−→ u ∀b > a t b−6→

θ(t)
a
−→ θ(u)

,

R7.2:
θ(t)

a
−→ θ(u)

τ{a}(θ(t))
τ
−→ τ{a}(θ(u))

,

R9.3:
t

b
−→ τ{a}(θ(t)) τ{a}(θ(t))

τ
−→ τ{a}(θ(u))

t
b
−→ τ{a}(θ(u))

.

For any stratification S of Pθ it should thus hold that

S(t
b
−→ τ{a}(θ(u))) < (R5.1)

S(θ(t)
a
−→ θ(u)) ≤ (R7.2)

S(τ{a}(θ(t))
τ
−→ τ{a}(θ(u))) ≤ (R9.3)

S(t
b
−→ τ{a}(θ(u))).

Of course, such a stratification cannot exist.

Again, this problem has been recognised earlier in logic programming, and several
more powerful techniques were introduced there [20, 4, 11, 10]. In the following
two sections we adapt [11] and [10] for TSS’s.

5.4 TSS’s and their associated transition rela-
tions

So far no meaning has been given to TSS’s that are not stratified. There are
however TSS’s, like BPAδετ with priorities, that seem to be perfectly meaningful
while not being stratified. This brings us back to the fundamental question what
transition relation should be associated with a TSS. Our answer is essentially
that the transition relation must be the unique stable model in the sense of logic
programming [11]. We have not found any example of a TSS that has no unique
stable transition relation and yet has a plausible meaning.

The definition of a stable transition relation is motivated as follows. Our first
observation is that positive and negative premises in a rule of a TSS P have a

5.4. TSS’s and their associated transition relations 115

different status. In order to prove the conclusion of a rule, the positive premises
of the rule must be proved from P . However, as P contains only rules defining
which literals hold, but not which literals do not hold, negative premises must
be treated differently.

Conceptually, t a−6→ holds by default, i.e. if for no t′: t
a
−→ t′ can be proved.

But we are still trying to determine which literals can be proved. So instead
of an immediate characterisation of the set of provable literals −→, we have an
equation with this set both on the left and on the right side, namely:

−→ equals the set of literals that are provable by those rules of the
TSS of which the negative premises hold in −→.

This equation does not give us a means to compute the transition relation −→,
but we can easily check whether a given transition relation satisfies our criterion.

We now formalise these ideas. In section 5.4, 5.5 and 5.6 we use only ground
TSS’s, i.e. we identify a set of rules R with the set of ground instances of R.

Definition 5.4.1. Let P = (Σ, A,R) be a TSS. Let −→⊆ Tr(Σ, A).

Strip(P,−→) = (Σ, A,Strip(R,−→))

where

Strip(R,−→) = {r′ | ∃r ∈ R : −→|= nprem(r) and r′ =
pprem(r)
conc(r)

}.

Given a transition relation −→, the function Strip removes all rules in R that have
negative premises that do not hold in −→. Furthermore, it drops the negative
premises from the remaining rules. The following lemma is therefore obvious.

Lemma 5.4.2. Let P = (Σ, A,R) be a TSS and let −→⊆ Tr(Σ, A) be a transi-
tion relation. Then Strip(P,−→) is a positive TSS.

Using the fact that the notion of provability is already captured in the definition of
the transition relation associated with a positive TSS, we can now easily formalise
the previously stated equation.

Definition 5.4.3 (Stable transition relation). Let P = (Σ, A,R) be a TSS. A
transition relation −→⊆ Tr(Σ, A) is stable for P if −→=−→

Strip(P,−→)
.

Remark 5.4.4. In general, for a TSS P there may be 0, 1 or more transition

116 5. The Meaning of Negative Premises

relations that are stable for P , e.g.

0 :
f a−6→

f
a
−→ f

1 :
f a−6→ f

b
−→ f

f
a
−→ f

[−→= ∅]

2 :
f a−6→

f
b
−→ f

f b−6→

f
a
−→ f

[−→= {f
a
−→ f} or −→= {f

b
−→ f}]

We do not have any idea as to which transition relations should be associated
with the first TSS, nor do we know which one of the two transition relations of
the third TSS should be preferred. In fact we think that there are no satisfying
answers to those questions. Thus we propound the following definition.

Definition 5.4.5. Let P be a TSS. If there is a unique transition relation −→
stable for P , then −→ is the transition relation associated with P .

In order to avoid confusion, we do not again introduce the notation −→P : until
section 5.7 this notation remains reserved for stratified TSS’s.

Remark 5.4.6. If P is positive, then for every transition relation −→

Strip(P,−→) = P

and thus −→P is the unique transition relation that is stable for P . Hence, this
definition of ‘associated with’ coincides with the previously given definition for
positive TSS’s. In section 5.6 we show that our choice also extends the definition
of ‘associated with’ for stratified TSS’s.

The following lemma will be used implicitly in almost every proof to follow.
Moreover, it shows that our choice that a transition relation must be stable for
a TSS is also a refinement of the requirement that a transition relation must be
a supported and minimal model of it.

Lemma 5.4.7. Let P = (Σ, A,R) be a TSS and let −→⊆ Tr(Σ, A) be a transi-
tion relation. If −→ is stable for P , then

1. −→ is a model of P ,

2. −→ is supported by P ,

3. −→ is a minimal model of P (Cf. [11], theorem 1).

5.4. TSS’s and their associated transition relations 117

Proof. Let −→ be a transition relation that is stable for P .

1. Suppose r ∈ R and −→|= prem(r). Hence

pprem(r)
conc(r)

∈ Strip(R,−→).

As −→=−→
Strip(P,−→)

is a model of Strip(P,−→) and −→|= pprem(r),

−→|= conc(r).

2. Suppose ϕ ∈−→. Hence, −→|= ϕ and thus −→
Strip(P,−→)

|= ϕ. This means

that there is a proof for ϕ using the rules in Strip(R,−→). Assume rule r
is the last rule used. So conc(r) = ϕ. Hence Strip(P,−→) ` prem(r) and
thus −→|= prem(r). As r ∈ Strip(R,−→) there is a rule

r′ =
prem(r) ∪ nprem

conc(r)
∈ R

where nprem is a set of negative premises such that −→|= nprem. Hence,
for this rule r′ ∈ R it holds that ϕ = conc(r′) and −→|= prem(r′). Hence
−→ is supported by P .

3. We must show that −→ is minimal among the models of P . Suppose
−→∗⊆−→ is a model of P . We show that −→∗ is a model of Strip(P,−→).
Let r be a rule of Strip(P,−→). This means that there is some

r′ =
prem(r) ∪ nprem

conc(r)
∈ R

for some set nprem of negative premises. As −→∗⊆−→ and −→|= nprem,
−→∗|= nprem. As −→∗ is a model of P , we have

if −→∗|= prem(r) ∪ nprem, then −→∗|= conc(r).

Knowing that −→∗|= nprem, this reduces to

if −→∗|= prem(r), then −→∗|= conc(r).

Thus −→∗ is a model for every rule r in Strip(P,−→). As −→ is the least
model of Strip(P,−→), it follows that −→∗=−→.

2

We show how the notion is stable for can be applied to our running example.
What we in fact show is that in general there is no stable transition relation for
BPAδετ with priorities instantiated with a set of process declarations where the
abstraction operator τI is allowed in process terms.

118 5. The Meaning of Negative Premises

Example 5.4.8. Consider Pθ with at least two actions a and b such that a > b
and a process name X with the recursive definition

X ⇐ θ(τ{b}(X) · a+ b) ∈ E.

Now assume that there is a relation −→ that is stable for Pθ. We show that
this assumption leads to a contradiction. For a more convenient notation, we use
t

a
−→ as an abbreviation of ∃u ∈ T (Σθ) : −→|= t

a
−→ u (t ∈ T (Σθ), a ∈ Aθ). We

distinguish three cases but we do not present them in full detail. In particular
not all possible applications of R9.2 and R9.3 are considered explicitly.

– τ{b}(X)
√

−→. As −→ is a model of Pθ, we have that τ{b}(X) ·a
a
−→ (by rule

R4.2) and hence τ{b}(X)·a+b
a
−→ (by rule R3.1). Thus θ(τ{b}(X)·a+b)

a
−→

and −→|= θ(τ{b}(X)·a+b) b−6→ (by rule R5.1). So −→|= X b−6→. As obviously
−→|= X

√
−6→ (X must perform at least an a or b action), it follows that

−→|= τ{b}(X)
√
−6→. Contradiction.

– −→|= τ{b}(X)
√
−6→ and −→|= τ{b}(X) a−6→. Then obviously −→|= τ{b}(X) ·

a + b a−6→, so −→|= θ(τ{b}(X) · a + b)
b
−→ θ(ε) (using R2, R3.2 and R5.1).

Hence, −→|= X
b
−→ θ(ε), so −→|= τ{b}(X)

√

−→ τ{b}(θ(δ)) (using R8, R7.2,
R1, R5.2, R7.2 and R9.2). Contradiction.

– −→|= τ{b}(X)
√
−6→ and τ{b}(X)

a
−→ t for some t ∈ T (Σθ). This can also

not be the case as there is no proof for Strip(Pθ,−→) ` τ{b}(X)
a
−→ t. In

order to prove τ{b}(X)
a
−→ t, we must show that X

a
−→, in order to show

this we need τ{b}(X) · a
a
−→. In combination with the assumption that

τ{b}(X)
√
−6→, this requires τ{b}(X)

a
−→ again. Thus the most ‘reasonable’

attempt to construct the required proof loops. All other attempts to prove
τ{b}(X)

a
−→ t, e.g. via R9.3:

τ{b}(X)
a
−→ u u

τ
−→ t

τ{b}(X)
a
−→ t

,

also loop.

5.5 Reducing TSS’s

We now present a technique that can be useful for proving that a certain TSS has
a unique stable transition relation. This technique is inspired by the well-founded
models that are introduced in [10]. First we construct a 3-valued ‘interpretation’
for a TSS P , partitioning the set of transitions in three groups: those that are

5.5. Reducing TSS’s 119

certainly true, those of which the truth is unknown and those that are certainly
not true. We apply this information to reduce P to another TSS with exactly
the same stable transition relations as P . In this new TSS, the truth or falsity
of more literals may become certain. Repeated reduction may lead to complete
information: the unique stable transition relation.

If in the next definition −→true contains transitions that certainly hold and
−→pos contains all transitions that possibly hold, then rules with certainly wrong
premises are removed and in the remaining rules all premises that certainly hold
are dropped.

Definition 5.5.1. Let P = (Σ, A,R) be a TSS. Let −→true, −→pos⊆ Tr(Σ, A)
be transition relations.

Reduce(P,−→true,−→pos) = (Σ, A,Reduce(R,−→true,−→pos)),

where

Reduce(R,−→true,−→pos) =

{r′ | ∃r ∈ R :−→true|= nprem(r), −→pos|= pprem(r) and

r′ =
{ψ ∈ pprem(r) |−→true 6|= ψ} ∪ {ψ ∈ nprem(r) |−→pos 6|= ψ}

conc(r)
}.

Thus the reduction of a rule consists of two phases. First it is checked that the
premises are possibly true. For positive premises this is straightforward: t

a
−→ t′

is possibly true if t
a
−→ t′ ∈−→pos. Hence the condition −→pos|= pprem(r). A

negative premise t a−6→ is possibly true if it is not certain that t can perform an
a-step, i.e. for no t′ it is certain that t

a
−→ t′ holds. Thus t a−6→ is possibly true if

for no t′, t
a
−→ t′ ∈−→true. Hence the condition −→true|= nprem(r).

If indeed the premises of the rule are possibly true, then the premises that
are certainly true are removed. A positive premise t

a
−→ t′ is certainly true if

t
a
−→ t′ ∈−→true. A negative premise t a−6→ is certainly true if t cannot possibly

perform an a-step, i.e. for no t′: t
a
−→ t′ is possible. Thus t a−6→ is certainly true

if −→pos|= t a−6→.

Remark 5.5.2. Note that Reduce(R,−→,−→) differs from Strip(R,−→). In
Strip(R,−→) only negative premises are checked, yielding a positive TSS; in
Reduce(R,−→,−→) all premises are checked, resulting in a TSS consisting solely
of rules without premises.

The 3-valued interpretation required is obtained by means of two positive TSS’s:
True(P) and Pos(P). True(P) determines the transitions that are certainly true:
the transitions that can be proved with positive rules only. Pos(P) determines the
transitions that are possibly true, i.e. true or unknown. These are the transitions
that can be proved ignoring negative premises. Thus Pos(P) is obtained from P
by removing all negative premises of the rules.

120 5. The Meaning of Negative Premises

Definition 5.5.3. Let P = (Σ, A,R) be a TSS.

– True(P) = (Σ, A, True(R)) where True(R) = {r ∈ R | nprem(r) = ∅}.

– Pos(P) = (Σ, A, Pos(R)) where Pos(R) = {r′ | ∃r ∈ R : r′ =
pprem(r)
conc(r)

}.

Because after the reduction of P the truth or falsity of more literals may be-
come certain, it is worthwhile to iterate the reduction process; if necessary even
transfinitely many reduction steps may be considered.

Definition 5.5.4. Let P = (Σ, A,R) be a TSS. For every ordinal α, the α-
reduction of P , notation Redα(P), is recursively defined as follows:

– Red0(P) = (Σ, A,Rground) where Rground is the set of all ground instances
of rules in R,

– Redα(P) = Reduce(P,
⋃
β<α −→True(Redβ(P)),

⋂
β<α −→Pos(Redβ(P))).

Thus in contrast with [10] and general practice in logic programming, our op-
erator maps TSS’s to TSS’s rather than interpretations to interpretations; for
details see the last section. This allows us in section 5.6 to combine reduction
with stratification: as soon as the reduced TSS is stratified, no further reduction
is needed.

The following lemma plays an important role in a number of proofs to follow.
It shows that the reduction process can never make a certainly true (or false)
literal become unknown. Thus reduction is monotonic in this sense.

Lemma 5.5.5 (Monotonicity of reduction). Let P = (Σ, A,R) be a TSS. For all
ordinals β and α such that β < α and for every −→⊆ Tr(Σ, A):

−→True(Redβ(P))⊆−→True(Redα(P)) ⊆

−→
Strip(Redα(P),−→)

⊆

−→Pos(Redα(P)) ⊆−→Pos(Redβ(P)) .

Proof.

(1) First we show that

−→True(Redα(P))⊆−→Strip(Redα(P),−→)
⊆−→Pos(Redα(P)) .

For every TSS P ′ = (Σ, A,R′): True(R′) ⊆ Strip(R′,−→) ⊆ Pos(R′). As
these TSS’s are all positive, −→True(P ′)⊆−→Strip(P ′,−→)

⊆−→Pos(P ′). Now
taking P ′ = Redα(P) proves this case.

5.5. Reducing TSS’s 121

(2) Here it is shown that

−→Pos(Redα(P))⊆−→Pos(Redβ(P)) .

Suppose
Pos(Redα(P)) ` ϕ.

Then there is a rule r′ ∈ Pos(Redα(P)) such that conc(r′) = ϕ and
Pos(Redα(P)) ` prem(r′). Hence, there is a rule r ∈ R such that conc(r) =
ϕ and ⋃

γ<α

−→True(Redγ(P))|= nprem(r) and⋂
γ<α

−→Pos(Redγ(P))|= pprem(r).

Now ⋃
γ<β

−→True(Redγ(P))⊆
⋃
γ<α

−→True(Redγ(P)) and

⋂
γ<β

−→Pos(Redγ(P))⊇
⋂
γ<α

−→Pos(Redγ(P)) .

Hence, ⋃
γ<α

−→True(Redγ(P))|= nprem(r)

implies that ⋃
γ<β

−→True(Redγ(P))|= nprem(r).

Conversely, ⋂
γ<α

−→Pos(Redγ(P))|= pprem(r)

implies ⋂
γ<β

−→Pos(Redγ(P))|= pprem(r).

Hence Pos(Redβ(R)) contains a rule r′′ such that prem(r′′) ⊆ pprem(r)
and conc(r′′) = ϕ. As also

⋂
γ<α −→Pos(Redγ(P))|= pprem(r) implies

−→Pos(Redβ(P))|= pprem(r), it follows that −→Pos(Redβ(P))|= prem(r′′).
Thus Pos(Redβ(P)) ` ϕ.

(3) We are left to show −→True(Redβ(P))⊆−→True(Redα(P)). We show this by
induction on α. By induction we may assume that:

for all ζ ≤ γ < α : −→True(Redζ(P))⊆−→True(Redγ(P)) .

122 5. The Meaning of Negative Premises

Suppose True(Redβ(P)) ` ϕ. Then there is an instance r of a rule in R
such that conc(r) = ϕ,⋂

γ<β

−→Pos(Redγ(P))|= nprem(r)

(all negative premises of r must be removed by reduction) and⋃
γ≤β

−→True(Redγ(P))|= pprem(r)

(all positive premises of r must be removed by reduction or proved in
True(Redβ(P))). From this, using the induction hypothesis (i.h.) and
(1) and (2) above, we can infer the following two facts:

•
⋂
γ<β −→Pos(Redγ(P))|= nprem(r)⇒⋂
γ≤β −→Pos(Redγ(P))|= nprem(r)

(2)⇒

−→Pos(Redβ(P))|= nprem(r)
(2)⇒

∀γ (β ≤ γ < α): −→Pos(Redγ(P))|= nprem(r)
(1)⇒

∀γ (β ≤ γ < α) : −→True(Redγ(P))|= nprem(r)
(i.h.)⇒

∀γ < α :−→True(Redγ(P))|= nprem(r) ⇒⋃
γ<α −→True(Redγ(P))|= nprem(r). <5.1>

•
⋃
γ≤β −→True(Redγ(P))|= pprem(r)

(i.h.)⇒

−→True(Redβ(P))|= pprem(r)
(i.h.)⇒

∀γ (β ≤ γ < α): −→True(Redγ(P))|= pprem(r)
(1)⇒

∀γ (β ≤ γ < α): −→Pos(Redγ(P))|= pprem(r)
(2)⇒

∀γ < α: −→Pos(Redγ(P))|= pprem(r) ⇒⋂
γ<α −→Pos(Redγ(P))|= pprem(r). <5.2>

<5.1> and <5.2> imply ∃r′ =
prem(r)− ...

ϕ
∈ Redα(R).

Furthermore, ⋂
γ<β −→Pos(Redγ(P))|= nprem(r) ⇒⋂
γ<α −→Pos(Redγ(P))|= nprem(r) ⇒

nprem(r′) = ∅ ⇒

r′ ∈ True(Redα(R)).

As for every ψ ∈ prem(r), the proof of ψ in True(Redβ(P)) is less deep
than the proof of ϕ in True(Redβ(P)), we may conclude by induction

5.5. Reducing TSS’s 123

that prem(r) ⊆−→True(Redα(P)). As prem(r′) ⊆ prem(r), conc(r′) =
ϕ ∈−→True(Redα(P)).

2

In order to apply this reduction process, we also need the following lemma.

Lemma 5.5.6. Let P = (Σ, A,R) be a TSS and let −→⊆ Tr(Σ, A). For all
ordinals α ⋃

β<α

−→True(Redβ(P))⊆−→⊆
⋂
β<α

−→Pos(Redβ(P))

implies
−→

Strip(P,−→)
=−→

Strip(Redα(P),−→)
.

Proof.

• We show that −→
Strip(P,−→)

⊆−→
Strip(Redα(P),−→)

. Let ψ ∈−→
Strip(P,−→)

.

Hence, Strip(P,−→) ` ψ. We use induction on this proof. There is a rule
r′ in Strip(P,−→) such that conc(r′) = ψ and −→

Strip(P,−→)
|= prem(r′).

Hence, there is a rule r ∈ R such that

r′ =
pprem(r)
conc(r)

and −→|= nprem(r). By induction on α and lemma 5.5.5 it follows that

∀β < α : −→
Strip(P,−→)

=−→
Strip(Redβ(P),−→)

⊆−→Pos(Redβ(P))

and hence:

−→|= nprem(r)⋃
β<α

−→True(Redβ(P))⊆−→

⇒ ⋃
β<α

−→True(Redβ(P))|= nprem(r),

−→
Strip(P,−→)

|= pprem(r)

−→
Strip(P,−→)

⊆
⋂
β<α

−→Pos(Redβ(P))

⇒⋂
β<α

−→Pos(Redβ(P))|= pprem(r).

So there is a rule

r′′ =

{ψ′ ∈ pprem(r) |
⋃
β<α −→True(Redβ(P)) 6|= ψ′}∪

{ψ′ ∈ nprem(r) |
⋂
β<α −→Pos(Redβ(P)) 6|= ψ′}

conc(r)
∈ Redα(P).

Furthermore, −→|= nprem(r′′) ⊆ nprem(r). So

r′′′=
{ψ′ ∈ pprem(r) |

⋃
β<α−→True(Redβ(P)) 6|= ψ′}
conc(r)

∈Strip(Redα(P),−→).

124 5. The Meaning of Negative Premises

By induction on the depth of the proof of ψ from Strip(P,−→) we may
assume that prem(r′) ⊆−→

Strip(Redα(P),−→)
, so

−→
Strip(Redα(P),−→)

|= prem(r′) = pprem(r) ⊇ prem(r′′′).

Hence, it follows that

Strip(Redα(P),−→) |= conc(r′′′) = ψ.

• Here we show that −→
Strip(P,−→)

⊇−→
Strip(Redα(P,−→))

. So assume that

ψ ∈−→
Strip(Redα(P),−→)

. Hence, it must be that Strip(Redα(P),−→) ` ψ.

So there is a rule r′ in Strip(Redα(P),−→) such that conc(r′) = ψ and
−→

Strip(Redα(P),−→)
|= prem(r′). Then there is a rule r ∈ R such that

r′ =
{ψ′ ∈ pprem(r) |

⋃
β<α −→True(Redβ(P)) 6|= ψ′}
conc(r)

and −→|= {ψ ∈ nprem(r) |
⋂
β<α −→Pos(Redβ(P)) 6|= ψ′}.

−→|= nprem(r): Let ψ′ ∈ nprem(r). If
⋂
β<α −→Pos(Redβ(P)) 6|= ψ′ then

−→|= ψ′. If
⋂
β<α −→Pos(Redβ(P))|= ψ′ then also −→|= ψ′, as −→⊆⋂

β<α −→Pos(Redβ(P)).

So in Strip(P,−→) we have the rule

r′′ =
pprem(r)
conc(r)

.

By induction on the depth of the proof of ψ from Strip(Redα(P),−→) we
may conclude that

−→
Strip(P,−→)

|= prem(r′) = {ψ′ ∈ pprem(r) |
⋃
β<α

−→True(Redβ(P)) 6|= ψ′}.

By the induction on α and lemma 5.5.5,

∀β < α : −→True(Redβ(P))⊆−→Strip(Redβ(P),−→)
⊆−→

Strip(P,−→)
.

Hence, if
⋃
β<α −→True(Redβ(P))|= ψ′, then −→

Strip(P,−→)
|= ψ′. Thus

−→
Strip(P,−→)

|= prem(r′′) = prem(r′) ∪

{ψ′ ∈ pprem(r) |
⋃
β<α

−→True(Redβ(P))|= ψ′}.

So −→
Strip(P,−→)

|= conc(r′′) = ψ.

2

5.5. Reducing TSS’s 125

Our hope is that after sufficiently many reductions we obtain a positive TSS. If
this is the case, then our method has succeeded: the transition relation of this
positive TSS is the unique transition relation that is stable for the original one.
(Example 5.8.12 shows that the converse is not true: a TSS having a unique
stable transition relation need not reduce to a positive TSS.)

Theorem 5.5.7 (Soundness of reduction). Let P = (Σ, A,R) be a TSS and let
−→⊆ Tr(Σ, A). For all ordinals α we have:

−→ is stable for P ⇔ −→ is stable for Redα(P).

Proof.

⇒) Let −→=−→
Strip(P,−→)

.
We prove by induction that for all ordinals α:

−→=−→
Strip(Redα(P),−→)

, (5.1)

−→True(Redα(P))⊆−→⊆−→Pos(Redα(P)) . (5.2)

By lemma 5.5.5, always (5.1) ⇒ (5.2), so we must prove (5.1).
Basis. −→=−→

Strip(P,−→)
=−→

Strip(Red0(P),−→)
is given.

Induction. By induction it follows from (5.2) that for all β < α:

−→True(Redβ(P))⊆−→⊆−→Pos(Redβ(P)) .

So ⋃
β<α

−→True(Redβ(P))⊆−→⊆
⋂
β<α

−→Pos(Redβ(P)) .

So by lemma 5.5.6

−→=−→
Strip(P,−→)

=−→
Strip(Redα(P),−→)

.

⇐) Let −→=−→
Strip(Redα(P),−→)

.
Then by lemma 5.5.5 for all β < α:

−→True(Redβ(P))⊆−→⊆ −→Pos(Redβ(P)) .

So again ⋃
β<α

−→True(Redβ(P))⊆−→⊆
⋂
β<α

−→Pos(Redβ(P))

and by lemma 5.5.6 −→=−→
Strip(P,−→)

=−→
Strip(Redα(P),−→)

.

2

Corollary 5.5.8 (Cf. [10], corollary 6.2). If P reduces to a positive TSS, i.e.
Redα(P) is positive for some α, then −→Redα(P) is associated with P .

126 5. The Meaning of Negative Premises

5.6 Reduction and stratification

We now have two independent methods for associating a transition relation with
a TSS with negative premises: reduction and stratification. Three questions
arise:

– if both methods are applicable, is their result the same?

– is one method (strictly) stronger than the other?

– is it useful to combine the two methods?

In this section we shall answer these questions affirmatively. We show that for
a stratified TSS P , the relation −→P as defined in section 5.3 is stable for P .
Furthermore, we show that repeatedly reducing a stratified TSS yields a positive
TSS. Thus −→P is the unique transition relation that is stable for P . This is also
the answer to our second question: reduction is indeed stronger than stratification
(that it is strictly stronger is easily seen by the second TSS in remark 5.4.4).

So it seems that there is no point in combining the two methods: the result
could not be stronger than reduction alone. However, for practical purposes
the combination appears to be valuable, due to the fact that the existence of
a stratification is generally easier to demonstrate. Therefore, we show in this
section that the methods can be used cooperatively, rather than being alternatives
for each other.

Finally, we use this amalgamation to demonstrate that the TSS BPAδετ with
priorities has an associated transition relation under some conditions.

Theorem 5.6.1. If P is stratified, then −→P is stable for P .

Proof. Let P = (Σ, A,R) and let S : Tr(Σ, A)→ α be a stratification of P .

1. We show that −→
Strip(P,−→P)

⊆−→P . Suppose Strip(P,−→P) ` ψ. We

use induction on the structure of the proof of ψ. As Strip(P,−→P) ` ψ,
there exists a rule r′ ∈ Strip(R,−→P) such that prem(r′) ⊆−→

Strip(P,−→P)

and ψ = conc(r′). So ∃r ∈ R: pprem(r) = prem(r′), conc(r) = conc(r′)
and −→P |= nprem(r). By induction pprem(r) ⊆−→P . Hence, −→P |=
prem(r). As by theorem 5.3.16 −→P is a model of P , ψ = conc(r) ∈−→P .

2. Here we show that −→P⊆−→Strip(P,−→P)
. Recall that

−→P=
⋃

0≤i<α

−→Pi .

By induction it is shown that for every i, 0 ≤ i < α: −→Pi⊆−→Strip(P,−→P)
.

Let ψ ∈−→Pi , hence Pi ` ψ. With induction on the proof of ψ from Pi we
show that Strip(P,−→P) ` ψ.

5.6. Reduction and stratification 127

Suppose the last rule used to prove ψ from Pi is r′. This means according
definition 5.3.14 that there is a rule r ∈ R and a substitution σ : V → T (Σ)
such that⋃

0≤j<i

−→Pj |= nprem(σ(r)) ∪ {ϕ ∈ pprem(σ(r)) | S(ϕ) < i},

r′ =
{ϕ ∈ pprem(σ(r)) | S(ϕ) = i}

conc(σ(r))

and conc(r) = ψ. As P is stratified, for all t a−6→ ∈ nprem(σ(r)) and

t′ ∈ T (Σ): S(t
a
−→ t′) < S(ψ) = i. Thus

⋃
0≤j<i −→Pj |= nprem(σ(r))

implies −→P |= nprem(σ(r)) and therefore there is a rule

r′′ =
pprem(σ(r))
conc(σ(r))

∈ Strip(P,−→P).

For all χ ∈ prem(r′′) with S(χ) < i: −→PS(χ) |= χ, so by induction
−→

Strip(P,−→P)
|= χ. For all χ ∈ prem(r′′) with S(χ) = i, it follows with

induction on the proof tree that −→
Strip(P,−→P)

|= χ. So, Strip(P,−→P) `
prem(r′′) and hence, Strip(P,−→P) ` conc(r′′) = ψ.

2

Theorem 5.6.2. Let P = (Σ, A,R) be a TSS with stratification S : Tr(Σ, A)→
α. Then Redα(P) is a positive TSS.

Proof. We show that
⋃
β<α −→True(Redβ(P))=

⋂
β<α −→Pos(Redβ(P)). Accord-

ing to remark 5.5.2 this is sufficient.

⊆ . This implication follows immediately from lemma 5.5.5.

⊇ . We claim that for any ψ ∈ Tr(Σ, A):

ψ ∈−→Pos(RedS(ψ)(P)) ⇒ ψ ∈−→True(RedS(ψ)(P)) .

Using the claim, we can easily finish the proof: as S(ψ) < α, we have

ψ ∈
⋂
β<α −→Pos(Redβ(P)) ⇒

ψ ∈−→Pos(RedS(ψ)(P)) ⇒
ψ ∈−→True(RedS(ψ)(P)) ⇒
ψ ∈

⋃
β<α −→True(RedS(ψ)(P)) .

We prove our claim by transfinite induction on S(ψ). Assume the in-
duction hypothesis holds for all γ < β. Take some ψ ∈ Tr(Σ, A) with
S(ψ) = β. Furthermore, assume ψ ∈−→Pos(Redβ(P)). Hence, there is a

128 5. The Meaning of Negative Premises

proof of ψ from Pos(Redβ(P)). With induction on this proof, we show
that True(Redβ(P)) ` ψ. As Pos(Redβ(P)) ` ψ, there is a rule r ∈
Pos(Redβ(R)) such that conc(r)=ψ and Pos(Redβ(P)) ` prem(r). Hence,
there is some rule r′ ∈ Redβ(R) such that conc(r′) = conc(r) = ψ and
pprem(r′) = prem(r). We show that nprem(r′) = ∅. In order to obtain a
contradiction, assume t a−6→ ∈ nprem(r′). As r′ ∈ Redβ(P), we know:⋃

ζ<β

−→True(Redζ(P))|= t a−6→.

So for every t′ ∈ T (Σ): t
a
−→ t′ 6∈

⋃
ζ<β −→True(Redζ(P)). In particular,

as S(t
a
−→ t′) = γ′ < S(ψ) = β, t

a
−→ t′ 6∈−→True(Redγ′ (P)). By induc-

tion, t
a
−→ t′ 6∈−→Pos(Redγ′ (P)) and so t

a
−→ t′ 6∈

⋂
ζ<β −→Pos(Redζ(P)).

Therefore, ⋂
ζ<β

−→Pos(Redζ(P))|= t a−6→.

Hence, t a−6→ 6∈ nprem(r′). As nprem(r′) = ∅, r = r′ ∈ True(Redβ(R)). By
induction (on the depth of the proof tree of Pos(Redβ(P)) ` ψ) we know
that True(Redβ(P)) ` prem(r) and thus True(Redβ(P)) ` ψ. So we can
conclude ψ ∈−→True(Redβ(P)).

2

Corollary 5.6.3 (Cf. [11], corollary 1 and [10], theorem 6.3). Let P = (Σ, A,R)
be a TSS with stratification S : Tr(Σ, A) → α. Then −→P=−→Redα(P) is
associated with P .

Proof. Directly using theorem 5.6.1, theorem 5.6.2 and corollary 5.5.8. 2

Lemma 5.6.4. Let P be a TSS.

Redα(Redβ(P)) = Redα+β(P).

Proof. Straightforward with induction on α, using lemma 5.5.5. 2

Corollary 5.6.5 (Combining reduction and stratification). Let P = (Σ, A,R) be
a TSS and suppose that for ordinals α and β, S : Tr(Σ, A)→ α is a stratification
of Redβ(P). Then Redα+β(P) is a positive TSS and −→Redα+β(P)=−→Redβ(P)

is associated with P .

Proof. By theorem 5.6.2 and lemma 5.6.4 it follows that Redα(Redβ(P)) =
Redα+β(P) is a positive TSS. Using corollary 5.6.3 and lemma 5.6.4 we have
that

−→Redβ(P)=−→Redα(Redβ(P))=−→Redα+β(P)

is the transition relation associated with Redβ(P). By theorem 5.5.7 −→Redβ(P)

is associated with P . 2

5.6. Reduction and stratification 129

In the remainder of this section we apply this corollary to show that a transition
relation is associated with an instance Pθ of BPAδετ with priorities, provided
that two conditions hold:

1. The abstraction operator τI does not occur in the process terms in the right
hand side of a recursive equation. The reason for this condition was already
shown in example 5.4.8. This conforms to the standard practise in process
algebra.

2. There is no a ∈ Act such that τ < a. The motivation for this second
condition is threefold (cf. [26] where it is argued that τ > a for all actions
a seems the most ‘intuitive’ choice).

– It is essential that τ -actions are not observable. Thus between two
observable actions, any number of τ -actions can take place, and must
be possible in any process specification. Indeed, the τ -rules R9.1-
R9.3 ensure that (in BPAδετ) every specification satisfies this property.
However, allowing τ < a would destroy this property, as in this case
e.g. θ(a · a) specifies a process performing two a-actions, with no τ -
actions in between (assuming there is no b > a):

True(Pθ) ` θ(a · a)
a
−→ θ(ε · a)

a
−→ θ(ε),

but for no t, t′ ∈ T (Σθ):

Pos(Red1(Pθ)) ` θ(a · a)
a
−→ t

τ
−→ t′.

(If θ(a · a)
a
−→ t ∈−→Pos(Red1(Pθ)), then t ≡ θ(u) for some u such that

True(Pθ) ` u
a
−→ ε; every rule in Pθ with a conclusion of the form

θ(u)
τ
−→ t′ has a premise θ(u)

τ
−→ u′ (R9.2 and R9.3) or u a−6→ (R5.1)).

– As a consequence, the axiom θ(a · x) = a · θ(x), which is part of the
complete axiomatisation of BPAεδ with priorities (without τ , Cf. [1]
axiom TH1 and TH2), is no longer valid: when τ < a, θ(a · a) cannot
perform τ after a although a · θ(a) can.

– We conjecture that there is only one transition relation stable for Pθ,
even for instances with τ < a. However, we have no proof for this. In
particular, we do not know whether such an instance of BPAδετ with
priorities always reduces to a stratified TSS. The problem is caused
by the fact that we do not reduce one TSS (with (Act,<) and (Ξ, E)
fixed), but try to reduce the whole class of instances of BPAδετ with
priorities (satisfying condition 1) at once.

Theorem 5.6.6. If for all (X ⇐ tX) ∈ E: τI(·) does not occur in tX and for all
a ∈ Act it does not hold that τ < a, then there is a transition relation associated
with Pθ.

130 5. The Meaning of Negative Premises

Proof. We show that Pθ is stratified after one reduction step. To this end we
formulate a useful property of Red1(Pθ). Define N : T (Σθ)→ NI by:

N(a) = N(ε) = N(δ) = N(τ) = N(X) = 0 (X ∈ Ξ and a ∈ Act),
N(x+ y) = N(x · y) = N(x / y) = max(N(x), N(y)),
N(θ(x)) = N(x),
N(τI(x)) = N(x) + 1.

We show that it is not possible to prove in Pθ a literal t
a
−→ u when N(t) < N(u)

(i.e. the ‘N -complexity’ of a process, the depth of nestings of τI(·)’s in it, cannot
increase by performing an action).

Fact 1. For all a ∈ Aθ we have:

t
a
−→ u ∈−→Pos(Pθ) ⇒ N(t) ≥ N(u)

Proof of fact 1. It can be shown for every ground instance r of a rule in Pθ that
if for every literal t

a
−→ u ∈ pprem(r) N(t) ≥ N(u) holds, then N(t′) ≥ N(u′)

holds, where conc(r) = t′
b
−→ u′. Instead of giving a detailed treatment of each

rule, we only prove the most important ones here:

R4.1 N(x · y) = max(N(x), N(y)) ≥ N(x) ≥ N(x′) and max(N(x), N(y)) ≥
N(y). This implies that max(N(x), N(y)) ≥ max(N(x′), N(y)) = N(x′ ·y).

R8 N(X) = 0. So we must prove N(y) = 0. Indeed N(y) ≤ N(tX) = 0 as by
assumption tX does not contain τI -operators.

2

For example, the literal t
b
−→ τ{a}(θ(t)) that is used in example 5.3.17 to make

t
b
−→ τ{a}(θ(u)) depend negatively on itself, is not possible. Based on this defi-

nition of N we define the preorder ≤ on pairs of literals by:

(t
a
−→ u) ≤ (t′

b
−→ u′) iff

{
N(t) < N(t′) or
N(t) = N(t′) and (a = τ,

√
), a > b, or a = b.

For some ordinal α we can now define a function S : Tr(Σθ, Aθ) → α obtained
by transforming the preorder ≤ into a complete well-founded ordering:

ϕ ≈ ψ iff ϕ ≤ ψ and ψ ≤ ϕ,
ϕ ≈ ψ ⇒ S(ϕ) = S(ψ),
ϕ ≤ ψ and not ϕ ≈ ψ ⇒ S(ϕ) < S(ψ).

(We do not need a more precise definition of S; since such a definition necessarily
depends on the size of the set Act, we omit it).

Fact 2. S is a stratification of Reduce(Pθ,−→True(Pθ),−→Pos(Pθ)).

5.7. Bisimulation relations 131

Proof of fact 2. Let r be a ground instance of a rule in

Reduce(Pθ,−→True(Pθ),−→Pos(Pθ)).

We must show that for every ψ ∈ pprem(r): S(ψ) ≤ S(conc(r)). Furthermore,
it must hold that for every ψ = t a−6→ ∈ nprem(r) and for every t′ ∈ T (Σ):

S(t
a
−→ t′) < S(conc(r)). For most rules this is trivial, as the unreduced instances

of the rule already satisfy the requirement. We only consider the most interesting
cases:

R5.1 N(θ(x)) = N(x) implies that S(θ(x)
a
−→ θ(x′)) = S(x

a
−→ x′).

For each b > a it holds that S(x
b
−→ t′) < S(x

a
−→ x′) for any

t′ ∈ T (Σθ).

R6.1 N(x) ≤ N(x / y), so S(x
a
−→ x′) ≤ S(x / y

a
−→ x′). Also

N(y) ≤ N(x/y), so for each b > a and t′ ∈ T (Σθ): S(y
b
−→ t′) <

S(x / y
a
−→ x′).

R7.2 N(τI(x)) = N(x) + 1 > N(x). So S(x
a
−→ x′) < S(τI(x)

τ
−→

τI(x′)).

R9.2 and R9.3 By the first fact Reduce(Pθ,−→True(Pθ),−→Pos(Pθ)) contains only
those instances of these rules for which N(x) ≥ N(y) ≥ N(z).

We need N(x) ≥ N(y) to prove e.g. (y
τ
−→ z) ≤ (x

a
−→ z), hence

S(y
τ
−→ z) ≤ S(x

a
−→ z).

2

Using corollary 5.6.5 −→
Reduce(Pθ,−→True(Pθ)

,−→Pos(Pθ)
)
=−→Red1(Pθ) is associated

with Pθ. 2

5.7 Bisimulation relations

We have defined the meaning of a TSS as its associated transition relation and
shown how to arrive at this transition relation. Now we switch to the study of
properties of transition relations as consequences of properties of their defining
TSS’s.

An important question (e.g. in process verification) is whether two terms denote
the ‘same’ process. Many process equivalences based on transition relations have
been proposed ([13]), of which strong bisimulation equivalence is most often used
[17, 18]. In this and the subsequent sections some relations between TSS’s and
strong bisimulation equivalence are studied.

132 5. The Meaning of Negative Premises

Definition 5.7.1. Let P be a TSS with associated transition relation −→P . A
relation R is a strong bisimulation relation based on P if it satisfies:

– whenever tRu and t
a
−→P t′ then, for some u′ ∈ T (Σ), we have u

a
−→P u′

and t′Ru′,

– whenever tRu and u
a
−→P u′ then, for some t′ ∈ T (Σ), we have t

a
−→P t′

and t′Ru′.

Two terms t, u ∈ T (Σ) are (P -)bisimilar, notation t↔––Pu, if there is a strong
bisimulation relation R based on P such that tRu. Note that ↔––P , the strong
bisimulation equivalence induced by P , is an equivalence relation.

Thus t↔––Pu means that if t can do some step, u can do a ‘similar’ step (and
vice versa, hence the name bisimulation). In the next section we prove that
under specific conditions on P , ↔––P is a congruence relation. To this end we
shall approximate −→P by other transition relations −→Q, and use the notion
of P⇒Q-bisimulation, meaning that if t can do some step in −→P , u can do
a ‘similar’ step in −→Q (and vice versa, i.e. if u can do a step in −→P , t can
do a ‘similar’ step in −→Q). In the end, the approximation −→Q will be equal
to −→P . It may be readily checked that in this case, P ⇒Q-bisimulation is
exactly P -bisimulation. Thus showing that for every approximation −→Q P⇒
Q-bisimulation is a congruence is sufficient to show that P -bisimulation is a
congruence.

Formally, we have the following definition.

Definition 5.7.2. Let P = (Σ, A,RP) and Q = (Σ, A,RQ) be TSS’s with
associated transition relations −→P and −→Q. A relation R is a strong P⇒Q-
bisimulation relation if it satisfies:

– whenever tRu and t
a
−→P t′ then, for some u′ ∈ T (Σ), we have u

a
−→Q u′

and t′Ru′,

– whenever tRu and u
a
−→P u′ then, for some t′ ∈ T (Σ), we have t

a
−→Q t′

and t′Ru′.

We say that two terms t, u ∈ T (Σ) are P⇒Q-bisimilar, notation t↔––P⇒Qu, if
there is a strong P⇒Q-bisimulation relation R such that tRu. Note that like
↔––P , ↔––P⇒Q is symmetric. In contrast with ↔––P , ↔––P⇒Q need not be reflexive or
transitive.

5.8 The ntyft/ntyxt-format and the congruence the-
orem

A desirable property for TSS’s is that the induced strong bisimulation equivalence
is a congruence. In [14] this led to the observation that if a (positive) TSS is in

5.8. The ntyft/ntyxt-format and the congruence theorem 133

the so-called tyft/tyxt-format then this is the case. In the paper in chapter 4 this
result was extended to stratified TSS’s. In order to express the fact that negative
premises are allowed, n’s were added to the name of the format, obtaining the
ntyft/ntyxt-format. In this section we show that even for TSS’s that are positive
after reduction, bisimulation is a congruence if the TSS is in ntyft/ntyxt-format.
In the end of this section we show that ‘positive after reduction’ is a necessary
requirement for the congruence theorem: we give a TSS in ntyft/ntyxt-format
with a unique stable transition relation for which strong bisimulation is not a
congruence.

Definition 5.8.1. Let Σ = (F, rank) be a signature. Let P = (Σ, A,R) be a
TSS. A rule r ∈ R is in ntyft-format if it has the form:

{tk
ak
−→ yk | k ∈ K} ∪ {tl bl−6→ | l ∈ L}

f(x1, ..., xrank(f))
a
−→ t

with K and L (possibly infinite) index sets, yk, xi (1 ≤ i ≤ rank(f)) all different
variables, ak, bl, a ∈ A, f ∈ F and tk, tl, t ∈ (Σ). A rule r ∈ R is in ntyxt-format
if it fits:

{tk
ak
−→ yk | k ∈ K} ∪ {tl bl−6→ | l ∈ L}

x
a
−→ t

with K,L (possibly infinite) index sets, yk, x all different variables, ak, bl, a ∈ A,
tk, tl and t ∈ (Σ). P is in ntyft-format if all its rules are in ntyft-format and P
is in ntyft/ntyxt-format if all its rules are either in ntyft- or in ntyxt-format.

It may be useful to point out why this format is called the ntyft/ntyxt-format. As
stated above, the ‘n’ was added to indicate the possibility of negative premises.
The letters tyft can be found if one reads first the (positive) premises and then
the conclusion from left to right: t represents a term in the left hand side of a
premise, y the variable in the right hand side; f is the function name in the left
hand side of the conclusion and t the term in the right hand side. Similarly, the
other format is called ntyxt.

As in [14] and theorem 4.4.12 in the paper in chapter 4, we need the following
well-foundedness condition in order to prove the congruence theorem.

Definition 5.8.2 (Well-foundedness). Let P = (Σ, A,R) be a TSS. Let W =

{tk
ak
−→ t′k | k ∈ K} ⊆ (Σ)×A× (Σ) be a set of positive literals over Σ and A.

The variable dependency graph of W is a directed (unlabeled) graph V DG with:

– Nodes:
⋃
k∈K V ar(tk

ak
−→ t′k),

– Edges: {< x, y >| x ∈ V ar(tk), y ∈ V ar(t′k) for some k ∈ K}.

W is called well-founded if any backward chain of edges in the variable depen-
dency graph is finite. A rule is called well-founded if its set of positive premises
is well-founded. A TSS is called well-founded if all its rules are well-founded.

134 5. The Meaning of Negative Premises

Definition 5.8.3. Let P = (Σ, A,R) be a TSS. Let r ∈ R be a rule. A variable
x is called free in r if it occurs in r but not in the source of the conclusion or
in the target of a positive premise. The rule r is called pure if it is well-founded
and does not contain free variables. P is called pure if all rules in R are pure.

In what follows we state a number of technicalities needed for the proof of theorem
5.8.11. At first reading it is advised to skip the remainder of this section except
for this theorem.

Definition 5.8.4. Let W be a set of positive literals which is well-founded and
let V DG be the variable dependency graph of W . Let V ar(W) be the set of
variables occurring in literals in W . Define for each x ∈ V ar(W): nV DG(x) =
sup({nV DG(y) + 1 |< y, x > is an edge of V DG}) (sup(∅) = 0).

Remark 5.8.5. If W is a set of positive premises of a rule in ntyft/ntyxt-
format then nV DG(x) ∈ NI for each x ∈ V ar(W): Every variable yk occurs only
once in the right hand side of a positive literal in the premises. As the term
tk is finite, it contains only a finite number of variables x. Therefore the set
U = {nV DG(x) + 1 |< x, yk > is an edge of V DG} is finite. Hence, nV DG(yk) =
sup(U) is a natural number.

The following lemma states that any TSS in ntyft/ntyxt-format is ‘equivalent’ to
a pure TSS in ntyft-format. This allows us to only study ntyft-rules.

Lemma 5.8.6. Let P be a well-founded TSS in ntyft/ntyxt-format and let −→
be the transition relation associated with P . Then there is a pure TSS P ′ in
ntyft-format such that −→ is also associated with P ′. Moreover, P ′ is positive
after reduction iff P is positive after reduction.

Proof. Assume P = (Σ, A,R) and Σ = (F, rank). First we construct a TSS
P ′′ = (Σ, A,R′′) which is pure and in ntyft/ntyxt-format. R′′ contains a rule
σ(r) iff r is a rule in R and σ : V → (Σ) is a substitution such that for each
variable that is free in r: σ(x) ∈ T (Σ) and for each variable x that is not free in
r σ(x) = x. From P ′′ we construct P ′ as follows: P ′ = (Σ, A,R′) where for each
f ∈ F , a rule σf (r) ∈ R′ iff r is a rule in R′′ and σf : V → (Σ) is a substitution
satisfying:

if r is in ntyft-format, then σf (z) = z for all z ∈ V,
if r is in ntyxt-format, then σf (z) = z for all z ∈ V − {x}

and σf (x) = f(z1, ..., zrank(f)).

Here zi (1 ≤ i ≤ rank(f)) are variables that do not occur in r. It is easy to
see that P ′ is a pure TSS in ntyft-format. Observe that the ground instances of
the rules in R, R′ and R′′ are the same. Also note that ‘stable for’ and ‘positive
after reduction’ are defined w.r.t. these ground instances. Therefore, −→ is also
the unique transition relation stable for P ′ and P ′′. Furthermore P ′ and P ′′ are
positive after reduction iff P is positive after reduction. 2

5.8. The ntyft/ntyxt-format and the congruence theorem 135

The relation RP that is defined now forms the backbone of all remaining proofs
in this section.

Definition 5.8.7. Let Σ = (F, rank) be a signature and let P = (Σ, A,R) be a
TSS with an associated transition relation. The relation RP ⊆ T (Σ) × T (Σ) is
the minimal relation satisfying:

– ↔––P ⊆ RP ,

– for all function names f ∈ F :

∀1 ≤ k ≤ rank(f) : ukRP vk ⇒ f(u1, ..., urank(f))RP f(v1, ..., vrank(f)).

Note that this definition is in fact saying that RP is the minimal congruence
relation that includes↔––P . This explains the following lemma, which is a standard
fact about congruence relations.

Lemma 5.8.8. Let P = (Σ, A,R) be a TSS with an associated transition rela-
tion. Let t ∈ (Σ) and let σ, σ′ : V → T (Σ) be substitutions such that for all x
in V ar(t) σ(x)RPσ′(x). Then σ(t)RPσ′(t).

Proof. Straightforward with induction on the structure of t. 2

Lemma 5.8.9. Let P be a pure TSS in ntyft-format. Suppose that −→P is the
transition relation that is associated with P . Then for all ordinals α ≥ 0: RP is
a

1. P⇒Pos(Redα(P))-bisimulation relation.

2. True(Redα(P))⇒P -bisimulation relation.

Proof. Assume P = (Σ, A,R) and Σ = (F, rank). We show the two statements
in the lemma by mutual transfinite induction on α.

1. For reasons of symmetry it is enough to show that:

if uRP v and −→P |= u
a
−→ u′,

then ∃v′ ∈ T (Σ) such that −→Pos(Redα(P))|= v
a
−→ v′ and u′RP v

′.

We prove this by induction on the proof of u
a
−→ u′ from Strip(P,−→P).

As uRP v, two cases arise:

– u↔––P v. Then −→P |= u
a
−→ u′ implies ∃v′ ∈ T (Σ): −→P |= v

a
−→ v′

and u′↔––P v′. By lemma 5.5.5 and theorem 5.5.7−→P⊆−→Pos(Redα(P)).

So −→Pos(Redα(P))|= v
a
−→ v′. Furthermore, u′↔––P v′ implies u′RP v′.

136 5. The Meaning of Negative Premises

– For some f ∈ F , u = f(u1, ..., urank(f)), v = f(v1, ..., vrank(f)) and
uiRP vi for 1 ≤ i ≤ rank(f). Then there is a rule:

r =
{tk

ak
−→ yk | k ∈ K} ∪ {tl al−6→ | l ∈ L}

f(x1, ..., xrank(f))
a
−→ t

∈ R

and a substitution σ such that σ(xi) = ui (1 ≤ i ≤ rank(f)), σ(t) =
u′, −→P |= prem(σ(r)) and

pprem(σ(r))
conc(σ(r))

is the last rule of the proof of u
a
−→ u′ from Strip(P,−→P). Thus the

proof of σ(tk
ak
−→ yk) (k ∈ K) from Strip(P,−→P) is less deep. As P

is pure, {x1, .., xrank(f)} ∪ {yk | k ∈ K} = V ar(r).

Claim 1. There is a closed substitution σ′ such that for all x ∈
V ar(r):

(a) σ(x)RPσ′(x),
(b) if x = xi then σ′(x) = vi,

(c) if x = yk (k ∈ K) then σ′(tk
ak
−→ yk) ∈−→Pos(Redα(P)),

(d) for all l ∈ L and for all β < α: −→True(Redβ(P))|= σ′(tl)
al−6→.

Proof of claim 1. We prove the first three points of the claim by
inductively constructing σ′(x) for every x ∈ V ar(r), using induction
on the degree of x in the VDG of pprem(r).
For x ∈ {x1, ..., xrank(f)}, σ′(xi) = vi is prescribed. Also σ(xi) =
uiRP vi = σ′(xi) is satisfied.

For x = yk (k ∈ K), we have tk
ak
−→ yk ∈ pprem(r). For all y ∈

V ar(tk), nV DG(y) < nV DG(x), so by induction σ(y)RPσ′(y). As RP
is a congruence, σ(tk)RPσ′(tk). Since the proof of σ(tk

ak
−→ yk) is less

deep than the proof of u −→a u
′ from Strip(P,−→P), by induction

∃w ∈ T (Σ):σ′(tk)
ak
−→ w ∈−→Pos(Redα(P)) and σ(yk)RPw. Thus we

take σ′(yk) = w. Note that the first three points of claim 1 are satisfied
which finishes the first part of the proof.
It remains to be shown that ∀β < α: −→True(Redβ(P))|= σ′(tl)

al−6→
(l ∈ L). Again σ(tl)RPσ′(tl). Assume to generate a contradiction that

∃β < α: −→True(Redβ(P))|= σ′(tl)
al
−→ s for some s. By simultaneous

induction ∀β < α: σ(tl)↔––True(Redβ(P))⇒P σ
′(tl). So we have that

−→P |= σ(tl)
al
−→ s′ for some s′. This contradicts the fact that −→P |=

prem(σ(r)). Hence, for all l ∈ L and for all β < α: −→True(Redβ(P))|=
σ′(tl)

al−6→. 2

5.8. The ntyft/ntyxt-format and the congruence theorem 137

According to claim 1 there is a substitution σ′ with the properties
(a),(b),(c) and (d). Consider

V=Pos(Redα({σ′(r)})
=Pos(Reduce({σ′(r)},

⋃
β<α

−→True(Redβ(P)),
⋂
β<α

−→Pos(Redβ(P)))).

First we show that ∃r′ ∈ V . It follows immediately from clause (d) in
the claim that ⋃

β<α

−→True(Redβ(P))|= nprem(σ′(r)).

Furthermore, by clause (c) and lemma 5.5.5:⋂
β<α

−→Pos(Redβ(P))|= pprem(σ′(r)).

Hence, there is some r′ ∈ V . It follows from clause (c) in claim
1 that −→Pos(Redα(P))|= pprem(σ′(r)) and therefore, we have that
−→Pos(Redα(P))|= pprem(r′) = prem(r′). Thus −→Pos(Redα(P))|=
conc(r′) = conc(σ′(r)) = v

a
−→ σ′(t) and u′ = σ(t)RPσ′(t) = v′.

2. For reasons of symmetry it is enough to show that:

If uRP v and −→True(Redα(P))|= u
a
−→ u′,

then ∃v′ ∈ T (Σ) such that −→P |= v
a
−→ v′ and u′RP v

′.

As −→True(Redα(P))|=u
a
−→u′, u

a
−→u′ can be proved from True(Redα(P)).

We use induction on the depth of this proof. As uRP v we can distinguish
two cases:

– u↔––P v. As by lemma 5.5.5 and theorem 5.5.7 −→True(Redα(P))⊆−→P ,

P |= u
a
−→ u′. So, ∃v′ ∈ T (Σ) such that −→P |= v

a
−→ v′ and u′↔––P v′.

Hence, u′RP v′.

– For some f ∈ F , u = f(u1, ..., urank(f)), v = f(v1, ..., vrank(f)) and
uiRP vi for 1 ≤ i ≤ rank(f). In this case the final (ground) rule

r ∈ True(Redα(R)) of the proof of u
a
−→ u′ from True(Redα(P)) is

also present in Redα(R) and has no negative premises.

Redα(R) =


Reduce(Rground,

⋃
β<α −→True(Redβ(P)),⋂

β<α −→Pos(Redβ(P))) if α > 0,
Rground if α = 0.

Thus there is a rule r′ ∈ R and a substitution σ : V → T (Σ) such
that σ(r′) is reduced to r. This means that conc(r) = conc(σ(r′)) and

138 5. The Meaning of Negative Premises

prem(r) ⊆ pprem(σ(r′)). Moreover, all negative premises of σ(r′)
and all premises in pprem(σ(r′))− pprem(r), which are removed, are
redundant:⋃

β<α −→True(Redβ(P))|= pprem(σ(r′))− pprem(r),⋂
β<α −→Pos(Redβ(P))|= nprem(σ(r′)).

As P is in ntyft-format, r′ is of the form

{tk
ak
−→ yk | k ∈ K} ∪ {tl al−6→ | l ∈ L}

f(x1, ..., xrank(f))
a
−→ t

and σ(xi) = ui (1 ≤ i ≤ rank(f)), hence σ(f(x1, ..., xrank(f))) = u,
and σ(t) = u′. As P is pure, {x1, ..., xrank(f)} ∪ {yk | k ∈ K} =
V ar(r′).

Claim 2. There is a closed substitution σ′ such that for all x ∈
V ar(r′):

(a) σ(x)RPσ′(x),
(b) if x = xi then σ′(x) = vi,

(c) if x = yk (k ∈ K) then σ′(tk)
ak
−→ σ′(yk) ∈−→P ,

(d) for all l ∈ L: −→P |= σ′(tl)
al−6→.

Proof of claim 2. We prove the first three points of the claim by
giving a construction of σ′(x) for every x ∈ V ar(r′), using induction
on the degree of x in the VDG of pprem(r′).
For x ∈ {x1, ..., xrank(f)}, σ′(xi) = vi is prescribed. Also σ(xi) =
uiRP vi = σ′(xi) is satisfied.

For x = yk (k ∈ K), we have tk
ak
−→ yk ∈ pprem(r′). For all y ∈

V ar(tk), nV DG(y) < nV DG(x), so by induction σ(y)RPσ′(y). As RP
is a congruence, σ(tk)RPσ′(tk). Two cases arise.

i. σ(tk
ak
−→ yk) ∈ pprem(r). Then there is a proof of σ(tk

ak
−→ yk)

from True(Redα(P)) that is less deep than the proof of u
a
−→ u′.

As σ(tk
ak
−→ yk) ∈−→True(Redα(P)) and σ(tk)RPσ′(tk), it fol-

lows by induction that ∃w ∈ T (Σ): σ′(tk)
ak
−→ w ∈−→P and

σ(yk)RPw.

ii. σ(tk
ak
−→ yk) 6∈ pprem(r). Hence ∃β < α: −→True(Redβ(P))|=

σ(tk
ak
−→ yk). As also σ(tk)RPσ′(tk), it follows by induction that

∃w ∈ T (Σ) : σ′(tk)
ak
−→ w ∈−→P and σ(yk)RPw.

In both cases, we take σ′(yk) = w. Note that the first three points of
claim 2 are satisfied, which finishes the first part of this proof.

5.8. The ntyft/ntyxt-format and the congruence theorem 139

We are left to show that −→P |= σ′(tl)
al−6→ (l ∈ L). As σ(tl)RPσ′(tl),

it follows from point 1 of this lemma that σ(tl)↔––P⇒Pos(Redα(P))σ
′(tl).

In order to obtain a contradiction, assume that −→P |= σ′(tl)
al
−→ s′

for some s′. Then −→Pos(Redα(P))|= σ(tl)
al
−→ s for some s. So by

lemma 5.5.5 for all β < α: −→Pos(Redβ(P))|= σ(tl)
al
−→ s. This cannot

be the case, as
⋂
β<α −→Pos(Redβ(P))|= σ(tl)

al−6→. 2

From claim 2 it follows that there is a substitution σ′ such that −→P |=
prem(σ′(r′)). Hence −→P |= conc(σ′(r′)) = v

a
−→ σ′(t). Finally, as

for all x ∈ V ar(r′): σ(x)RPσ′(x), u′ = σ(t)RPσ′(t) = v′.

2

Lemma 5.8.10. Let P be a pure TSS in ntyft-format that is positive after
reduction. Then RP =↔––P .

Proof. As P is positive after reduction for some ordinal α, Redα(P) is positive.
It follows using corollary 5.5.8 that:

−→P=−→Redα(P)=−→Pos(Redα(P)) .

Now, it follows using lemma 5.8.9, the introduction of definition 5.7.2 and the
definition of RP that:

RP ⊆ ↔––P⇒Pos(Redα(P)) =↔––P ⊆ RP .

2

Theorem 5.8.11 (Congruence theorem). Let P be a well-founded TSS in
ntyft/ntyxt-format that is positive after reduction. Then ↔––P is a congruence.

Proof. Assume P = (Σ, A,R). According to lemma 5.8.6 there is a pure
TSS P ′ = (Σ, A,R′) in ntyft-format that is positive after reduction such that
−→P=−→P ′ . Hence, ↔––P = ↔––P ′ . By lemma 5.8.10 ↔––P ′ = RP ′ . As RP ′ is a
congruence w.r.t. Σ, ↔––P is also a congruence w.r.t. Σ. 2

The next example shows that the requirement in the congruence theorem 5.8.11
that the TSS P must be positive after reduction is really needed. We give a TSS
in ntyft/ntyxt-format that has a unique stable transition relation but that is not
positive after reduction and for which bisimulation is not a congruence.

140 5. The Meaning of Negative Premises

Example 5.8.12. Let P = (Σ, A,R) be a TSS where Σ contains constants c1
and c2 and a unary function f . The actions in A are a, b1, b2 and the rules are
the following:

E1: c1
a
−→ c1 E2: c2

a
−→ c2

E3:
x

a
−→ y f(x) b1−6→ f(c1) b2−6→

f(x)
b2
−→ c2

E4:
x

a
−→ y f(x) b2−6→ f(c2) b1−6→

f(x)
b1
−→ c1

.

Note that P is pure and in ntyft-format. Red1(P) is a TSS with the following
rules:

E1′ : c1
a
−→ c1 E2′ : c2

a
−→ c2

E3′ :
f(c1) b1−6→ f(c1) b2−6→

f(c1)
b2
−→ c2

E3′′ :
f(c2) b1−6→ f(c1) b2−6→

f(c2)
b2
−→ c2

E4′ :
f(c1) b2−6→ f(c2) b1−6→

f(c1)
b1
−→ c1

E4′′ :
f(c2) b2−6→ f(c2) b1−6→

f(c2)
b1
−→ c1

.

Further reduction of P is not possible. However, we observe that both in E3′ and
E4′′ the conclusion denies the second premise. Therefore, a transition relation
that is stable for P must deny the first premise of E3′ and of E4′′, i.e. it must

contain f(c1)
b1
−→ t1 and f(c2)

b2
−→ t2 for some t1 and t2. The only candidates that

might be provable are f(c1)
b1
−→ c1 and f(c2)

b2
−→ c2. Indeed they are provable

from E3′′ and E4′ (as blocking E3′ and E4′′ implies f(c1) b2−6→ and f(c2) b1−6→), so

{c1
a
−→ c1, c2

a
−→ c2, f(c1)

b1
−→ c1, f(c2)

b2
−→ c2} is the unique transition relation

that is stable for P . Now it is obvious that c1↔––P c2, but not f(c1)↔––P f(c2), so
↔––P is not a congruence.

5.9 Conservative extensions of TSS’s

It can be useful to enrich a given language with additional language constructs
(like in our running example, where BPAδετ is enriched with the priority and
unless operator). For these new constructs operational rules are devised which
are added to the operational semantics of the basic language. In this section we
study how an operational semantics can be extended and especially how we can
guarantee that transitions between terms in the basic language are not effected
by the extension.

In this section we assume that the operational semantics of the basic language
is given by a TSS P0. All extensions, i.e. the added signature, label set and
operational rules are given in a TSS P1. The extension of P0 with P1 is written

5.9. Conservative extensions of TSS’s 141

as P0 ⊕ P1 [14]. Due to the symmetric nature – we could as well extend P1 with
P0 – this is called the sum of P0 and P1.

Definition 5.9.1. Let Σi = (Fi, ranki) (i = 0, 1) be two signatures such that for
all f ∈ F0 ∩F1: rank0(f) = rank1(f). The sum of Σ0 and Σ1, notation Σ0⊕Σ1,
is the signature:

Σ0 ⊕ Σ1 = (F0 ∪ F1, λf.if f ∈ F0 then rank0(f) else rank1(f)).

Definition 5.9.2. Let Pi = (Σi, Ai, Ri) (i = 0, 1) be two TSS’s with Σ0 ⊕ Σ1

defined. The sum of P0 and P1, notation P0 ⊕ P1, is the TSS:

P0 ⊕ P1 = (Σ0 ⊕ Σ1, A0 ∪A1, R0 ∪R1).

If P0 is extended with P1 such that ‘the properties’ of P0 are maintained, P0⊕P1

is said to be a conservative extension of P0. With ‘properties’ of P0 we mean
transitions that can be performed by terms over the signature of P0. To be more
precise:

Definition 5.9.3. Let Pi = (Σi, Ai, Ri) (i = 0, 1) be two TSS’s such that P0

has associated transition relation −→P0 . Let P0 ⊕ P1 with associated transition
relation −→P0⊕P1 be defined. We say that P0 ⊕P1 is a conservative extension of
P0 and that P1 can be added conservatively to P0 if

−→P0⊕P1 ∩(T (Σ0)× (A0 ∪A1)× T (Σ0 ⊕ Σ1)) =−→P0 .

An alternative definition has been given in [14]. Adapting that definition to
our terminology, it says that P = P0 ⊕ P1 = (Σ, A,R) with associated transition
relation −→P is a conservative extension of P0 = (Σ0, A0, R0) if for all t ∈ T (Σ0),
a ∈ A and t′ ∈ T (Σ):

−→P |= t
a
−→ t′ ⇔ −→P0 |= t

a
−→ t′.

where −→P0 is associated with P0.
We now head for a theorem that gives conditions under which P1 can be added

conservatively to P0. It turns out that this is the case if P0 is pure and each
rule in P1 contains a function name in the source of its conclusion that does not
appear in the signature of P0. This theorem considerably extends the results
in the previous chapter in which a comparable theorem was proved for TSS’s in
ntyft/ntyxt-format. If our result is restricted to this format, both results coincide,
except that here, we deal with TSS’s that are positive after reduction while in
chapter 4 only stratified TSS’s were considered.

Lemma 5.9.4. Let Σ0 = (F0, rank0) be a signature. Let P0 = (Σ0, A0, R0) be
a pure TSS and let P1 = (Σ1, A1, R1) be a TSS such that P0 ⊕ P1 is defined and
for each rule r ∈ R1: source(conc(r)) 6∈ (Σ0). Then, for each ordinal α:

−→Pos(Redα(P0⊕P1)) ∩(T (Σ0)×(A0∪A1)×T (Σ0⊕Σ1)) =−→Pos(Redα(P0)) (5.1)

−→True(Redα(P0⊕P1)) ∩(T (Σ0)× (A0 ∪A1)× T (Σ0 ⊕ Σ1)) =−→True(Redα(P0))

(5.2)

142 5. The Meaning of Negative Premises

Proof. We prove clauses (5.1) and (5.2) by simultaneous induction on α.

(5.1) ⊆ For this case it is sufficient to show the following:

Pos(Redα(P0 ⊕ P1)) ` t
a
−→ t′ and t ∈ T (Σ0) implies

Pos(Redα(P0)) ` t
a
−→ t′, a ∈ A0 and t′ ∈ T (Σ0).

So assume that Pos(Redα(P0 ⊕ P1)) ` t
a
−→ t′ and t ∈ T (Σ0). We use

induction on the depth of this proof. Let the last rule of this proof be
r ∈ Pos(Redα(R0 ⊕ R1)). Then conc(r) = t

a
−→ t′. Hence, as t ∈ T (Σ0)

and all rules in R1 contain a function name f 6∈ Σ0 in the source of their
conclusions, r is derived from a rule σ(r′) with r′ ∈ R0. So a ∈ A0.

Claim 1. For all x ∈ V ar(r′): σ(x) ∈ T (Σ0).

Proof of claim 1. As r′ is pure, it is well-founded, so pprem(r′) has
a variable dependency graph VDG. We prove the claim by induction on
nV DG(x). Consider some x with nV DG(x) = γ and assume the claim holds
for all x′ such that nV DG(x′) < γ. As r′ does not contain free variables,
one of the following two cases must hold:

1. x ∈ V ar(source(conc(r′)). As σ(source(conc(r′)) ∈ T (Σ0), σ(x) ∈
T (Σ0).

2. x ∈ V ar(u′) and u
a
−→ u′ ∈ pprem(r′). For all x′ ∈ V ar(u):

nV DG(x′) < nV DG(x) and therefore σ(x′) ∈ T (Σ0). Hence, σ(u) ∈
T (Σ0). Distinguish the following two cases:
(a) ⋃

β<α

−→True(Redβ(P0⊕P1))|= σ(u)
a
−→ σ(u′).

Then by (5.2),⋃
β<α

−→True(Redβ(P0))|= σ(u)
a
−→ σ(u′)

and this means that σ(u′) ∈ T (Σ0). Therefore, as x ∈ V ar(u′),
σ(x) ∈ T (Σ0).

(b) ⋃
β<α

−→True(Redβ(P0⊕P1)) 6|= σ(u)
a
−→ σ(u′).

Then σ(u)
a
−→ σ(u′) ∈ pprem(r) and therefore,

Pos(Redα(P0 ⊕ P1)) ` σ(u)
a
−→ σ(u′).

5.9. Conservative extensions of TSS’s 143

By induction (on the proof tree) it follows that:

Pos(Redα(P0)) ` σ(u)
a
−→ σ(u′)

and σ(u′) ∈ T (Σ0). Hence, σ(x) ∈ T (Σ0).

2

As r is derived from reducing σ(r′) we have the following:⋂
β<α −→Pos(Redβ(P0⊕P1))|= pprem(σ(r′)),⋃
β<α −→True(Redβ(P0⊕P1))|= nprem(σ(r′)),⋃
β<α −→True(Redβ(P0⊕P1))|= pprem(σ(r′))− prem(r).

As by claim 1 σ : V ar(r′)→ T (Σ0) it follows using the outermost induction
hypothesis that:⋂

β<α −→Pos(Redβ(P0))|= pprem(σ(r′)),⋃
β<α −→True(Redβ(P0))|= nprem(σ(r′)),⋃
β<α −→True(Redβ(P0))|= pprem(σ(r′))− prem(r).

Or in other words r ∈ Pos(Redα(R0)). By induction on the proof tree and
claim 1 it follows that Pos(Redα(P0)) ` prem(r) and therefore

Pos(Redα(P0)) ` t
a
−→ t′ = σ(conc(r′)) ∈ Tr(Σ0, A0).

(5.1) ⊇ For this case it is sufficient to prove (using induction on the proof tree

for Pos(Redα(P0)) ` t
a
−→ t′) that:

Pos(Redα(P0)) ` t
a
−→ t′ ⇒ Pos(Redα(P0 ⊕ P1)) ` t

a
−→ t′.

So assume r ∈ Pos(Redα(R0)) is the last rule used in the proof for t
a
−→ t′.

Hence there is a rule r′ ∈ R0 and a substitution σ : V ar(r′)→ T (Σ0) with
conc(σ(r′)) = conc(r), prem(r) ⊆ pprem(σ(r′)). Moreover:⋂

β<α −→Pos(Redβ(P0))|= pprem(σ(r′)),⋃
β<α −→True(Redβ(P0))|= nprem(σ(r′)),⋃
β<α −→True(Redβ(P0))|= pprem(σ(r′))− prem(r).

As for each premise ψ ∈ prem(σ(r′)), source(ψ) ∈ T (Σ0), we have by
induction:⋂

β<α −→Pos(Redβ(P0⊕P1))|= pprem(σ(r′)),⋃
β<α −→True(Redβ(P0⊕P1))|= nprem(σ(r′)),⋃
β<α −→True(Redβ(P0⊕P1))|= pprem(σ(r′))− prem(r).

Hence, r ∈ Pos(Redα(R0⊕R1)). As Pos(Redα(P0)) ` t
a
−→ t′, it holds that

Pos(Redα(P0)) ` ψ for each ψ ∈ prem(r). By induction Pos(Redα(P0 ⊕
P1)) ` ψ and hence, Pos(Redα(P0 ⊕ P1)) ` t

a
−→ t′.

144 5. The Meaning of Negative Premises

(5.2) This case can be shown in the same way as (5.1).

2

Theorem 5.9.5 (Conservativity). Let Σ0 = (F0, rank0) be a signature. Let
P0 = (Σ0, A0, R0) be a pure TSS and let P1 = (Σ1, A1, R1) be a TSS such that
each rule r ∈ R1 contains at least one function name f 6∈ F0 in the source of
its conclusion. Furthermore, assume that P0 ⊕ P1 exists and is positive after
reduction. Then P0 ⊕ P1 is a conservative extension of P0.

Proof. As P0 ⊕ P1 is positive after reduction, there is some ordinal α such that
Redα(P0 ⊕ P1) is a positive TSS. Hence, P0 ⊕ P1 has an associated transition
relation −→P0⊕P1 . Let A = A0 ∪A1 and Σ = Σ0⊕Σ1. By lemma 5.9.4 we have:

−→Pos(Redα(P0))=
−→Pos(Redα(P0⊕P1)) ∩(T (Σ0)×A× T (Σ)) =
−→True(Redα(P0⊕P1)) ∩(T (Σ0)×A× T (Σ)) =
−→True(Redα(P0)) .

Hence by remark 5.5.2, Redα+1(P0) is a positive TSS. Therefore P0 also has an
associated transition relation −→P0 . Moreover, using corollary 5.5.8 and lemma
5.9.4 we have:

−→P0=
−→True(Redα+1(P0))=
−→True(Redα+1(P0⊕P1)) ∩(T (Σ0)×A× T (Σ)) =
−→P0⊕P1 ∩(T (Σ0)×A× T (Σ)).

2

Remark 5.9.6. From the alternative definition of conservativity it is immedi-
ately obvious that if P0⊕P1 is a conservative extension of P0 = (Σ0, A0, R0) then
for all t, u ∈ T (Σ0) : t↔––P0u ⇔ t↔––P0⊕P1u.

Example 5.9.7. We can apply the conservativity theorem to show that the pri-
ority operator and the unless operator form a conservative extension of BPAδετ .
We can also conservatively add the parallel operator which is characterised by
the following rules

10.1
x

a
−→ x′

x ‖ y
a
−→ x′ ‖ y

10.2
y

a
−→ y′

x ‖ y
a
−→ x ‖ y′

to BPAδετ with priorities. In fact in almost all cases the addition of new operators
to an existing TSS turns out to be conservative.

5.10. An axiomatisation of priorities with abstraction 145

x+ (y + z) = (x+ y) + z A1 aτ = a T1
x+ y = y + x A2 τx+ x = τx T2
x+ x = x A3 a(τx+ y) = a(τx+ y) + ax T3
(x+ y)z = xz + yz A4
(xy)z = x(yz) A5
x+ δ = x A6 θ(ε) = ε THE
δx = δ A7 θ(δ) = δ THD
εx = x A8 θ(ax) = aθ(x) TH1
xε = x A9 θ(x+ y) = θ(x) / y + θ(y) / x TH2

ε / x = ε PE1 τI(ε) = ε TIE
x / ε = x PE2 τI(δ) = δ TID
δ / x = δ PD1 τI(a) = a if a 6∈ I TI1
x / δ = x PD2 τI(a) = τ if a ∈ I TI2
ax / by = δ if (a < b) P1 τI(x+ y) = τI(x) + τI(y) TI3
ax / cy = ax if ¬(a < c) P2 τI(xy) = τI(x)τI(y) TI4
ax / τy = ax / y if ¬(a < τ) P3
x / (y + z) = (x / y) / z P4
(x+ y) / z = x / z + y / z P5

Table 5.2: The axiom set BPAθ
δετ (a, b ∈ Actτ and c ∈ Act)

5.10 An axiomatisation of priorities with abstrac-
tion

This last section is devoted to our running example. We consider an instance
Pθ = (Σθ, Aθ, Rθ) of BPAδετ with priorities such that for all (X ⇐ tX) ∈ E:
τI(·) does not occur in tX and for all a ∈ Act it does not hold that τ < a. By
theorem 5.6.6 Pθ has an associated transition relation −→Pθ .

In table 5.2 we list the axiom set BPAθ
δετ for strong bisimulation equivalence

induced by Pθ. This axiom system consists of a straightforward assembly of
existing axioms [1, 17], adding only the axiom P3 showing the interaction between
/ and τ . Nevertheless, as far as we know, this straightforward compilation has
not been justified in bisimulation semantics. Only in [26] τ and θ have been
combined using an isomorphic embedding.

This section is added to show how an axiom system can be proved sound
and complete with respect to an operational semantics, even if this semantics is
defined using negative premises. We give all essential lemmas and theorems but
only some insightful parts of the proofs. Most proofs apply induction on proof
trees (standard for positive TSS’s) of the ‘stripped’ TSS. This leads to a more
general observation: induction on proof trees derived from a ‘stripped’ TSS is a
powerful proof tool for TSS’s with negative premises.

146 5. The Meaning of Negative Premises

Definition 5.10.1. Let Σ = (F, rank) be a signature and let Eq be a set of
axioms over Σ. Let REq ⊆ T (Σ) × T (Σ) be the smallest congruence relation
satisfying that tREqu if t = u is a ground instance of an axiom in Eq. For terms
t, u ∈ T (Σ), we say that Eq proves t = u, notation Eq ` t = u, if tREqu.

The following lemma says how behaviour of a complex term can be explained in
terms of necessary behaviour of its components. This lemma is first used in [25]
to prove the soundness of the axioms. Due to the rules R9.2 and R9.3, the proof
of this lemma is lengthy.

Lemma 5.10.2 (Structuring lemma). Let t, u, v ∈ T (Σθ) and a ∈ Aθ.
If t+ u

a
−→ v then one of the following must hold:

1. t
a
−→ v,

2. u
a
−→ v.

If t · u
a
−→ v then one of the following must hold:

1. t
a
−→ t′, v ≡ t′ · u and a 6≡

√
for some t′ ∈ T (Σθ),

2. t

√

−→ t′ and u
a
−→ v for some t′ ∈ T (Σθ),

3. t
a
−→ t′, t′

√

−→ t′′, u
τ
−→ v and a 6≡

√
for some t′, t′′ ∈ T (Σθ).

If θ(t)
a
−→ u then one of the following must hold:

1. t
a
−→ t′, u ≡ θ(t′), a 6≡

√
and ∀b > a t b−6→ for some t′ ∈ T (Σθ),

2. t
τ
−→ t′, t′

a
−→ t′′, u ≡ θ(t′′), a 6≡

√
and ∀b > a t′ b−6→ for some t′, t′′ ∈

T (Σθ),

3. t

√

−→ t′, u ≡ θ(t′) and a ≡
√

for some t′ ∈ T (Σθ).

If t / u
a
−→ v then one of the following must hold:

1. t
a
−→ v, a 6≡

√
and ∀b > a u b−6→,

2. t
τ
−→ t′, t′

a
−→ v and a 6≡

√
for some t′ ∈ T (Σθ),

3. t

√

−→ v and a ≡
√

.

If τI(t)
a
−→ u then one of the following must hold:

1. t
a1
−→ t1

a2
−→ ...

an
−→ tn

a
−→ tn+1

an+2−→ ...
am
−→ tm, a 6∈ I and u ≡ τI(tm) for

some a1, .., an, an+2, .., am ∈ I, t1, .., tm ∈ T (Σθ), n ≥ 0 and m ≥ 1.

2. t
a1
−→ t1

a2
−→ ...

an
−→ tn, a ≡ τ and u ≡ τI(tn) for some a1, .., an ∈ I,

t1, .., tn ∈ T (Σθ) and n ≥ 1.

5.10. An axiomatisation of priorities with abstraction 147

Proof. As an illustration, we give the proof for θ(t)
a
−→ u in case a 6≡

√
. All

other proofs can be given in the same way.
If θ(t)

a
−→ u then this is equivalent to saying that Strip(Pθ,−→Pθ) ` θ(t)

a
−→ u.

We show with induction on the proof tree that Strip(Pθ,−→Pθ) ` θ(t)
a
−→ u

implies that one of the following holds:

1. t
a
−→ t′, u ≡ θ(t′) and ∀b > a t b−6→ for some t′ ∈ T (Σθ),

2. t
τ
−→ t′, t′

a
−→ t′′, u ≡ θ(t′′) and ∀b > a t′ b−6→ for some t′, t′′ ∈ T (Σθ).

Suppose Strip(Pθ,−→Pθ) ` θ(t)
a
−→ u. The last rule that is used in this proof

must either be R9.2, R9.3 or a stripped version of R5.1. Suppose a simplified
version of rule R5.1 has been used. In this case the premises of R5.1, t

a
−→ t′

and ∀b > a t b−6→, hold in −→Pθ . Furthermore, u ≡ θ(t′). So case 1 of θ in the
structuring lemma must hold.

If rule R9.2 has been used, we know that Strip(Pθ,−→Pθ) ` θ(t)
τ
−→ u′ and

Strip(Pθ,−→Pθ) ` u′
a
−→ u. By induction one of the following four cases must

hold:

1. t
τ
−→ t′, t′

a
−→ t′′, ∀b > a t′ b−6→ and u ≡ θ(t′′),

2. t
τ
−→ t′, t′

τ
−→ t′′, t′′

a
−→ t′′′, ∀b > a t′′ b−6→ and u ≡ θ(t′′′),

3. t
τ
−→ t′, t′

τ
−→ t′′, t′′

a
−→ t′′′, ∀b > a t′′ b−6→ and u ≡ θ(t′′′),

4. t
τ
−→ t′, t′

τ
−→ t′′, t′′

τ
−→ t′′′, t′′′

a
−→ t′′′′, ∀b > a t′′′ b−6→ and u ≡ θ(t′′′′).

In all cases it must hold that for some v and v′:

t
τ
−→ v, v

a
−→ v′, ∀b > a v b−6→ and u ≡ θ(v′).

Suppose rule R9.3 has been used as last step in the proof. As the premises of
R9.3 are derivable, we have:

Strip(Pθ,−→Pθ) ` θ(t)
a
−→ u′, Strip(Pθ,−→Pθ) ` u′

τ
−→ u.

By induction one of the following four cases must hold.

1. t
a
−→ t′, t′

τ
−→ t′′, ∀b > a t b−6→ and u ≡ θ(t′′),

2. t
a
−→ t′, t′

τ
−→ t′′, t′′

τ
−→ t′′′, ∀b > a t b−6→ and u ≡ θ(t′′′),

3. t
τ
−→ t′, t′

a
−→ t′′, t′′

τ
−→ t′′′, ∀b > a t′ b−6→ and u ≡ θ(t′′′),

4. t
τ
−→ t′, t′

a
−→ t′′, t′′

τ
−→ t′′′, t′′′

τ
−→ t′′′′, ∀b > a t′ b−6→ and u ≡ θ(t′′′′).

148 5. The Meaning of Negative Premises

From cases 1 or 2 it follows that (for appropriate v ∈ T (Σθ)):

t
a
−→ v, ∀b > a t b−6→ and u ≡ θ(v)

which is case 1 for θ in the structuring lemma. From cases 3 or 4 it follows that
(for appropriate v, v′ ∈ T (Σθ)):

t
τ
−→ v

a
−→ v′, ∀b > a v b−6→ and u ≡ θ(v′)

which is case 2 for θ in the structuring lemma. 2

With the structuring lemma it is rather straightforward, but unpleasantly lengthy,
to prove the soundness of the axioms.

Theorem 5.10.3 (Soundness of BPAθ
δετ). Let t, u ∈ T (Σθ):

BPAθ
δετ ` t = u ⇒ t↔––Pθu.

Proof. We must show that RBPAθ
δετ
⊆ ↔––Pθ . As RBPAθ

δετ
is the smallest congru-

ence relation containing (t, u) if t = u is an instance of an axiom in BPAθ
δετ , and

as by theorem 5.8.11 ↔––Pθ is also a congruence relation, it is sufficient to show
that

t = u is an instance of an axiom in BPAθ
δετ ⇒ t↔––Pθu.

Suppose t = u is an instance of an axiom. We will only consider axiom P3. All
other axioms can be dealt with in the same way. Hence, t ≡ at′ / τu′, u ≡ at′ /u′
(t′, u′ ∈ T (Σθ)) and ¬(a < τ). In order to show that at′ / τu′↔––Pθat′ / u′, it

suffices to show that if at′ / τu′
b
−→ v, (b ∈ Aθ) then at′ / u′

b
−→ v and vice

versa, at′ / u′
b
−→ v implies at′ / τu′

b
−→ v. So suppose at′ / τu′

b
−→ v. By the

structuring lemma one of the following cases must hold:

1. at′
b
−→ v, b 6≡

√
and ∀c > b τu′ c−6→,

2. at′
τ
−→ t′′, t′′

b
−→ v and b 6≡

√
for some t′′ ∈ T (Σθ),

3. at′
√

−→ v and b ≡
√

.

Note that case 3 is impossible. So either case 1 or case 2 must hold. If case

2 holds, it is immediately clear that at′ / u′
τ
−→ t′′ and t′′

b
−→ v. Therefore,

at′ / u′
b
−→ v. If case 1 holds, then ∀c > b u′ c−6→. If this were not the case,

i.e. ∃c > b u′
c
−→ u′′, then τu′

c
−→ u′′ contradicting that ∀c > b τu′ c−6→. Hence

at′ / u′
b
−→ v.

The other implication can be proved likewise. 2

5.10. An axiomatisation of priorities with abstraction 149

We now show completeness of the axioms. This is done in three stages. First the
class of basic terms is introduced. This class is a subset of all closed Σθ-terms,
but it is still powerful enough to denote all recursion free processes. This is in
fact shown in lemma 5.10.6.

Then operational characteristics are linked to the syntactic forms of terms
using the operational soundness and completeness lemmas. In the last lemma all
results are gathered together and completeness is shown.

Definition 5.10.4. The set of basic terms is the smallest subset of T (Σθ) satis-
fying:

• δ and ε are basic terms,

• if t is a basic term, then at (a ∈ Actτ) is a basic term,

• if t, t′ are basic terms, then t+ t′ is a basic term.

Note that aε and aε+ bδ are basic terms but a and (a+ b)c are not.

Lemma 5.10.5. Let t, t′ be basic terms. Then there is a basic term u such that:

1. BPAθ
δετ ` t2t′ = u (2 = +, ·, /),

2. BPAθ
δετ ` 2(t) = u (2 = τI , θ).

Proof. As an example we show the proof for /. For a basic term t define #t
as the number of function names in t. Define the depth of a term t / t′ with t, t′

basic terms by (ω is the first infinite ordinal):

D(t / t′) = ω ·#t′ + #t.

We prove this case with induction on D(t / t′). Distinguish the following cases:

t = ε, δ Apply PE1 or PD1.

t′ = ε, δ Apply PE2 or PD2.

t = au1, t
′ = bu2, (b 6≡ τ) Apply P1 or P2.

t = au1, t
′ = τu2 Apply P1 if a < τ . If ¬(a < τ) then BPAθ

δετ ` au1 /

τu2
P3= au1 / u2. As D(au1 / u2) < D(au1 / τu2), it

follows with induction that BPAθ
δετ ` au1 / u2 = v for

some basic term v.

t′ = u1 + u2 We have that t/t′ ≡ t/(u1+u2) P4= (t/u1)/u2. As D(t/
u1) < D(t/(u1 +u2)) it follows that BPAθ

δετ ` t/u1 = v
for some basic term v. As D(v / u2) < D(t / (u1 + u2))
it follows that BPAθ

δετ ` (t / u1) / u2 = v / u2 = v′ for
some basic term v′.

150 5. The Meaning of Negative Premises

t = u1 + u2 It follows that t / t′ ≡ (u1 + u2) / t′ P5= u1 / t
′ + u2 / t

′.
As D(u1 / t

′) < D((u1 + u2) / t′) and D(u2 / t
′) <

D((u1 + u2) / t′), there are basic terms v, v′ such that
BPAθ

δετ ` u1 / t
′ = v and BPAθ

δετ ` u2 / t
′ = v′. Hence,

BPAθ
δετ ` t / t′ = v + v′.

2

Lemma 5.10.6. Let t ∈ T (Σθ) be a recursion free term. Then there is a basic
term u such that:

BPAθ
δετ ` t = u.

Proof. Apply induction on the structure of t. If t ≡ ε, δ, a(∈ Actτ) then the
basic terms are respectively: ε, δ and aε. If t ≡ t12t2 (2 ≡ +, ·, /), it follows with
induction that t1 and t2 are provably equal to basic terms u1, u2. Then lemma
5.10.5 yields BPAθ

δετ ` u12u2 = u with u a basic term. For the unary operators
θ and τI a similar argument can be applied. 2

The following notation is an abbreviation that turns out to be useful.

Notation 5.10.7 (Summand inclusion). We write t ⊆ t′ for t+ t′ = t′.

The following lemmas relate summand inclusion to the operational rules in table
5.1. They state that if a process t can perform an a-step (t

a
−→ t′) then it is

provable that at′ is a summand of t. A weak variant of the converse also holds.

Lemma 5.10.8 (Operational soundness). Let t, t′ ∈ T (Σθ) be recursion free
terms and let a ∈ Actτ :

BPAθ
δετ ` a · t′ ⊆ t ⇒ ∃t′′ : t

a
−→ t′′ and t′′↔––Pθ t′,

BPAθ
δετ ` ε ⊆ t ⇒ ∃t′ : t

√

−→ t′.

Proof. Directly using the soundness theorem 5.10.3. 2

Lemma 5.10.9 (Operational completeness). Let t, t′ ∈ T (Σθ) be recursion-free
and θ, /-free terms and let a ∈ Actτ :

t
a
−→ t′ ⇒ BPAθ

δετ ` at′ ⊆ t,

t

√

−→ t′ ⇒ BPAθ
δετ ` ε ⊆ t.

Proof. By induction on the proof of t
a
−→ t′ and t

√

−→ t′ from Strip(Pθ,−→Pθ).
2

5.10. An axiomatisation of priorities with abstraction 151

Lemma 5.10.10. Let t be a basic term. If t
a
−→ t′ (a ∈ Actτ), then t′ ≡ ε · u or

t′ ≡ τ · u for some basic term u. Moreover, t′ contains at most as many function
names as t.

Proof. Use induction on the proof of t
a
−→ t′ from Strip(Pθ,−→Pθ). 2

Notation 5.10.11. Let t, u ∈ T (Σθ) be recursion free. t→––Pθu stands for: t
a
−→ t′

implies ∃u′ u
a
−→ u′ and t′↔––Pθu′. Note that this condition resembles clause 1 in

the definition of bisimulation.

Lemma 5.10.12. Let t and u be basic terms over BPAθ
δετ . Then:

1. If t→––Pθu then BPAθ
δετ ` t ⊆ u,

2. If t↔––Pθu then BPAθ
δετ ` t = u.

Proof. We use induction on the number of function names in t and u, i.e.
#t+#u. The proof employs the operational soundness and completeness lemmas.
Basis. First 1 is proved. Suppose that t ≡ ε and u ∈ T (Σθ). We have that

ε→––Pθu ⇒ u

√

−→ u′ ⇒ BPAθ
δετ ` ε ⊆ u.

Suppose t ≡ δ. This case is trivial using axiom A6. In case 2 t↔––Pθu implies
t→––Pθu and u→––Pθ t, so it follows by 1 that BPAθ

δετ ` t ⊆ u and BPAθ
δετ ` u ⊆ t.

Hence BPAθ
δετ ` t = t+ u = u+ t = u.

Induction. First consider 1. Suppose t ≡ (t1+t2)→––Pθu. This implies that t1→––Pθu
and t2→––Pθu. Using 1 inductively yields: BPAθ

δετ ` t1 ⊆ u and BPAθ
δετ ` t2 ⊆ u.

Now using axiom A1 leads to BPAθ
δετ ` t1 + t2 ⊆ u.

Now suppose that t ≡ at1→––Pθu. Note that #t1 < #t. There is a t2 (e.g.

εt1) such that t
a
−→ t2↔––Pθ t1. As t→––Pθu, it follows that there is a u1 such that

u
a
−→ u1, t1↔––Pθ t2↔––Pθu1. By lemma 5.10.10 u1 is a basic term and #u1 ≤ #u.

With the induction hypothesis conclude that BPAθ
δετ ` t1 = u1. By operational

completeness it follows that BPAθ
δετ ` au1 ⊆ u. Therefore, BPAθ

δετ ` at1 ⊆ u.
In case 2 t↔––Pθu implies t→––Pθu and u→––Pθ t, so it follows by 1 that BPAθ

δετ `
t ⊆ u and BPAθ

δετ ` u ⊆ t. Hence BPAθ
δετ ` t = t+ u = u+ t = u. 2

Theorem 5.10.13 (Completeness of BPAθ
δετ). Let t, u ∈ T (Σθ) be recursion

free. It holds that:
t↔––Pθu ⇒ BPAθ

δετ ` t = u.

Proof. Suppose t↔––Pθu. Then there are basic terms t′ and u′ that are provably
equivalent to t and u. With soundness it follows that t′↔––Pθu′. An application
of lemma 5.10.12 yields BPAθ

δετ ` t′ = u′ and thus BPAθ
δετ ` t = u. 2

152 5. The Meaning of Negative Premises

5.11 Appendix: the relation between TSS’s and
logic programs

Throughout this paper techniques from logic programming are applied to TSS’s.
This raises the question whether TSS’s can be viewed as logic programs. It
appears that there exists indeed a straightforward translation from TSS’s to
logic programs.

Definition 5.11.1. Let P = (Σ, A,R) be a TSS. We define the translation L as:

for every positive literal t
a
−→ t′, L(t

a
−→ t′) = transition(t, a, t′),

for every negative literal t a−6→, L(t a−6→) = ¬possible(t, a),
for every rule r ∈ R: L(r) = L(conc(r))← L(prem(r))1,

and finally

L(P) = L(R)1 ∪ {possible(T,A)← transition(T,A,U)}

where T , A and U are variables.

For an introduction in logic programming we refer to [16]. We must point out
some small differences between the two formalisms.

First of all, logic programs are usually untyped, whereas a TSS P = (Σ, A,R)
has clearly two types, namely terms (from T (Σ)) and labels (from A). Thus the
translation L(P) must also be treated as a typed program, its Herbrand base
being

HBP = {transition(t, a, t′) | t, t′ ∈ T (Σ), a ∈ A} ∪
{possible(t, a) | t ∈ T (Σ), a ∈ A}.

Secondly, a traditional logic program consists of a finite set of finite clauses. A
TSS may have an infinite number of rules and each rule may have infinitely many
premises. The main reason for this is that in TSS’s only variables ranging over
terms are used, and no variables ranging over labels. Thus instead of one rule
like

x
z
−→ x′

x+ y
z
−→ x′

,

this rule must be incorporated for every action z separately. Usually rule schemes
with meta-variables ranging over A are given, like in this case rule R3.1 of the
running example. Translating a TSS yields a possibly infinite set of possibly
infinite clauses. Of course having an infinite number of clauses is not a problem:
the set of ground instances of clauses from a traditional logic program is normally
infinite as well. Having infinitely many premises seems harmless too.

In order to formulate the intended correspondencies between the TSS P and
the logic program L(P), we also need a translation on the semantical level, i.e.
between transitions relations and (well-typed) Herbrand interpretations.

1As usual L(X) abbreviates {L(x) | x ∈ X}

5.11. Appendix: the relation between TSS’s and logic programs 153

Definition 5.11.2. Let −→ be a transition relation.

M(−→) = {transition(t, a, t′) | t
a
−→ t′ ∈−→} ∪

{possible(t, a) | ∃t′ : t
a
−→ t′ ∈−→}.

According to this definition only interpretations M satisfying for all t and a:

possible(t, a) ∈M iff ∃t′ : transition(t, a, t′) ∈M

are translations of a transition relation. The clause

possible(T,A)← transition(T,A,U)

is obviously incorporated in the translation of every TSS to enforce this property.
As long as only supported models of the resulting logic programs are considered,
the addition of this clause in indeed sufficient. The following example shows that
a weaker choice of semantics (in this case minimal models) can produce certain
anomalous models.

Example 5.11.3. Consider the TSS P with one constant c and one unary
function f , one action a and the following rules:

c a−6→

c
a
−→ c

c
a
−→ x

c
a
−→ f(x)

.

For all n ≥ 0, the transition relation {c
a
−→ f i(c) | i ≥ n} is a model of P ; P has

no other models. As n increases, the model decreases (w.r.t. ⊆), thus P has no
minimal model. Now consider

L(P) = {transition(c, a, c)← ¬possible(c, a)
transition(c, a, f(X))← transition(c, a,X)
possible(T,A)← transition(T,A,U)}.

The corresponding models are (for all n ≥ 0):

{transition(c, a, f i(c)) | i ≥ n} ∪ {possible(c, a)}.

But L(P) has one more model, namely just {possible(c, a)}, which is the least
model of L(P), but not supported by L(P).

As we concentrate on the stable and well-founded model semantics, which gen-
erate only supported models, anomalous models will no more arise.

In the rest of this section we establish the relationships between TSS’s and their
translations into logic programs. For the definitions regarding logic programming
we refer to the literature. As these definitions are always similar to the definitions
regarding TSS’s as presented in this paper, it is straightforward to prove the
following propositions.

154 5. The Meaning of Negative Premises

??

� -

� -

−→P M(−→P)

L(P) (a logic program)P (a TSS)

M

L

associated
transition

relation

associated
Herbrand
interpretation

Figure 5.2: The relation between TSS’s and logic programs

Proposition 5.11.4. Let P be a TSS.

– P is positive iff L(P) is positive.

– P is stratified iff L(P) is locally stratified (see [21]).

For a positive logic program P , MP denotes its least Herbrand model.

Proposition 5.11.5. Let P be a TSS and −→ be a transition relation.
−→ is stable for P iff M(−→) is a stable model of L(P) (see [11]).

In particular, if P is positive, then M(−→P) = ML(P) and
if P is stratified, then M(−→P) is the unique perfect model
of L(P) (see [21]).

Two slightly different, but equivalent, definitions of well-founded models for logic
programs have been given ([10] and WP in [24] versus [22] and VP in [24]). Here
we follow [22].

Definition 5.11.6 (well-founded model). Let P be a logic program.

– A 3-valued interpretation for P is a pair I =< T,F >, where T and F are
subsets of the Herbrand base HBP (but not necessarily T ∩ F = ∅).

– Let A be a ground atom. Then < T,F >|= A iff A ∈ T and < T,F >|= ¬A
iff A ∈ F .

– TP (I) = {A ∈ HBP | there exists a clause A← L1, ..., Ln ∈ ground(P)
such that I |= L1 and ... and I |= Ln}.

FP (I) = {A ∈ HBP | for every clause A ← L1, ..., Ln ∈ ground(P): I |=
¬L1 or ... or I |= ¬Ln}. (If L is a negative literal ¬B, then ¬L denotes B.)

TP (I) defines the ground atoms that are immediately true given P and I,
FP (I) defines the ground atoms that are immediately false.

5.11. Appendix: the relation between TSS’s and logic programs 155

– Let T, F ⊆ HBP and let I be a 3-valued interpretation for P .

TI(T) = TP (I ∪ < T, ∅ >).
FI(F) = FP (I ∪ < ∅, F >).
IP (I) = I ∪ <

⋃
n<ω T nI (∅),

⋂
n<ω FnI (HBP) >.

(Note: ∪ denotes pointwise union.)

IP (I) defines the ground atoms that are certainly true respectively false
given P and I.

– For a limit ordinal α: Iα =
⋃
β<α Iβ (in particular: I0 =< ∅, ∅ >).

For a successor ordinal α+ 1: Iα+1 = IP (Iα).

– Let δ be the smallest countable ordinal such that Iδ = I(Iδ). Then Iδ is
the well-founded (partial) model of P . If Iδ is 2-valued, i.e. Iδ =< T,F >
is a partitioning of HBP , then Iδ is the well-founded (complete) model of
P .

An alternative definition of the well-founded model, based on the reduction of
logic programs, can also be given.

Definition 5.11.7. Let P be a logic program and I a 3-valued interpretation
for P . Then:

Reduce(P, I) =
⋃
C∈ground(P)Reduce(C, I), where

Reduce(A← S, I) =
{
∅ if for some literal L ∈ S : I |= ¬L
{A← S′} otherwise, where S′ = {L ∈ S | I 6|= L}.

Furthermore:

True(P) = {A← S ∈ P | S contains only positive literals} and
Pos(P) = {A← S′ |there is a clause A← S ∈ P such that

S′ is the set of positive literals in S}.

Lemma 5.11.8. Let P be a logic program and I a 3-valued interpretation for
P . ⋃

n<ω

T nI (∅) = MTrue(Reduce(P,I)),⋂
n<ω

FnI (HBP) = HBP −MPos(Reduce(P,I)).

Thus an alternative definition of the well-founded (partial) model of a logic pro-
gram is obtained by replacing⋃

n<ω

T nI (∅) by MTrue(Reduce(P,I)) and⋂
n<ω

FnI (HBP) by HBP −MPos(Reduce(P,I))

156 5. The Meaning of Negative Premises

in definition 5.11.6. The proof of lemma 5.11.8 is beyond the scope of this paper.
Using this alternative definition, it is straightforward to link the reduction of a

TSS P and the sequence of interpretations leading to the well-founded (partial)
model of L(P).

Lemma 5.11.9. Let P = (Σ, A,R) be a TSS and let −→true, −→pos⊆ Tr(Σ, A).
Then:

– L(True(P)) = True(L(P)),

– L(Pos(P)) = Pos(L(P)),

– L(Reduce(P,−→true,−→pos)) =
Reduce(L(P), <M(−→true),HBP −M(−→pos) >).

Theorem 5.11.10. Let P be a TSS. Let for all ordinals α, Iα be defined w.r.t.
L(P) as in definition 5.11.6. Then:

L(Redα(P)) = Reduce(L(P), Iα),

Iα =<
⋃
β<α

M(−→True(Redβ(P))),
⋃
β<α

HBP −M(−→Pos(Redβ(P))) > .

Proof. Straightforward. 2

Corollary 5.11.11. Let P be a TSS. If L(P) has a well-founded com-
plete model Iα, then Redα(P) is a positive TSS and Iα = M(−→Redα(P)).
If Redα(P) is a positive TSS then L(P) has a well-founded complete model
Iα+1 =M(−→Redα(P)).

The change from α to α+ 1 in the second implication is caused by the fact that
it is possible that at the end of the iteration first the interpretation Iα becomes
2-valued (making Reduce(L(P), Iα) positive), but also that a partial Iα results
in a positive Reduce(L(P), Iα), in which case only Iα+1 is 2-valued.

Apart from its theoretical merits, the translation of TSS’s into logic programs has
also more practical implications. For logic programs interpreters and compilers
are available. Thus in order to find out whether a term t can perform an a-step
according to −→P , the TSS P is translated into the logic program L(P), and the
query ← transition(t, a,X) is presented to it.

For positive TSS’s this poses only one problem: the depth-first strategy of most
programming systems tends to result in non-termination of the program without
finding all solutions. The rules R9.2 and R9.3 of the running example are typically
rules leading to non-termination. Incorporating certain forms of loop-checking
([6, 27]) might partly solve the problem, but as even for positive TSS’s −→P need
not be recursive, non-termination can never be ruled out completely.

References 157

In the presence of negation −→P is in general not even recursive enumerable
and the execution of the logic program becomes even more involved (but see
[22, 24], where ‘ideal’ mechanisms are proposed for computing the well-founded
model, abstracting away from non-termination). Thus the translation into logic
programming cannot be expected to produce the associated transition relation as
a whole. But in our opinion the interactive use of a logic programming environ-
ment for proving that a certain transition holds (or does not hold) is an attractive
alternative to generating this proof by hand, especially for larger TSS’s.

On the bright side is that for pure TSS’s (see definition 5.8.3) the problem
of floundering (the necessity to resolve a non-ground negative literal, see e.g.
[16]) does not occur for queries of the form ← transition(t, a,X) (with t ∈ T (Σ)
and a ∈ A). This can be shown by annotating the program (in the sense of
[9]) by transition(↓, ↓, ↑) and possible(↓, ↓), meaning that the first and second
argument of both predicates are considered to be input, and the third argument
of transition is output. (Due to the fact that TSS’s have no variables ranging
over labels, the annotations of the second (label) arguments are inessential.)

Proposition 5.11.12. Let P = (Σ, A,R) be a TSS. Let t ∈ T (Σ) and a ∈ A.
If P is pure then L(P) ∪ {← transition(t, a,X)} is well-formed (see [9]) w.r.t.
the above annotation.

The well-formedness of a logic program and a query implies that during the
computation every predicate is called with ground terms on its input arguments.
In particular, every call ¬possible(t, a) will be ground. In a more general setting,
this annotation gives insight in the data-flow of the act of proving transitions
from pure TSS’s.

References

[1] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Syntax and defining equations
for an interrupt mechanism in process algebra. Fund. Inf., XI(2):127–168,
1986.

[2] E. Best and M. Koutny. Partial order semantics of priority systems. Tech-
nical Report 6/90, Universität Hildesheim, Institut für Informatik, 1990.

[3] N. Bidoit and C. Froidevaux. Minimalism subsumes default logic and circum-
scription. In Proceedings IEEE Conference on Logic in Computer Science
(LICS87), New York, pages 89–97, 1987.

[4] N. Bidoit and C. Froidevaux. Negation by default and non stratifiable logic
programs. Technical Report 437, L.R.I. France, 1988.

[5] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t be traced: prelim-
inary report. In Conference Record of the 15th ACM Symposium on Prin-
ciples of Programming Languages, San Diego, California, pages 229–239,
1988.

158 5. The Meaning of Negative Premises

[6] R.N. Bol, K.R. Apt, and J.W. Klop. An analysis of loop checking mecha-
nisms for logic programs. Technical Report CS-R8947, CWI, Amsterdam,
1989. To appear in Theoretical Computer Science.

[7] J. Camilleri. An operational semantics for OCCAM. International Journal
of Parallel Programming, 18(5):149–167, October 1989.

[8] R. Cleaveland and M. Hennessy. Priorities in process algebra. In Proceedings
third Annual Symposium on Logic in Computer Science (LICS), Edinburgh,
pages 193–202, 1988.

[9] P. Dembinski and J. Ma luszynski. And-parallelism with intelligent back-
tracking for annotated logic programs. In Symposion on Logic Programming,
Boston, pages 29–38, 1985.

[10] A. van Gelder, K. Ross, and J.S. Schlipf. Unfounded sets and well-founded
semantics for general logic programs. In Proceedings of the Seventh Sym-
posium on Principles of Database Systems, pages 221–230. ACM SIGACT-
SIGMOD, 1988.

[11] M. Gelfond and V. Lifschitz. The stable model semantics for logic program-
ming. In R. Kowalski and K. Bowen, editors, Proceedings of the Fifth Inter-
national Conference on Logic Programming, pages 1070–1080. MIT press,
1988.

[12] R.J. van Glabbeek. Bounded nondeterminism and the approximation in-
duction principle in process algebra. In F.J. Brandenburg, G. Vidal-Naquet,
and M. Wirsing, editors, Proceedings STACS 87, LNCS 247, pages 336–347.
Springer-Verlag, 1987.

[13] R.J. van Glabbeek. The linear time - branching time spectrum. In J.C.M.
Baeten and J.W. Klop, editors, Proceedings Concur90, Amsterdam, LNCS
458, pages 278–297. Springer Verlag, 1990.

[14] J.F. Groote and F.W. Vaandrager. Structured operational semantics and
bisimulation as a congruence. Technical Report CS-R8845, CWI, Amster-
dam, 1988. An extended abstract appeared in G. Ausiello, M. Dezani-
Ciancaglini and, S. Ronchi Della Rocca, editors, Proceedings ICALP 89,
Stresa, LNCS 372, pages 423–438. Springer-Verlag, 1989.

[15] M. Hennessy and G.D. Plotkin. Full abstraction for a simple programming
language. In J. Bečvář, editor, Proceedings Eighth Symposium on Mathemat-
ical Foundations of Computer Science (MFCS), LNCS 74, pages 108–120.
Springer-Verlag, 1979.

[16] J.W. Lloyd. Foundations of Logic Programming, Second Edition. Springer-
Verlag, 1987.

References 159

[17] R. Milner. A Calculus of Communicating Systems. LNCS 92. Springer-
Verlag, 1980.

[18] D.M.R. Park. Concurrency and automata on infinite sequences. In
P. Deussen, editor, Proceedings Fifth GI Conference, LNCS 104, pages 167–
183. Springer-Verlag, 1981.

[19] G.D. Plotkin. A structural approach to operational semantics. Technical
Report DAIMI FN-19, Computer Science Department, Aarhus University,
1981.

[20] H. Przymusinska and T.C. Przymusinski. Weakly perfect model semantics
for logic programs. In R. Kowalski and K. Bowen, editors, Proceedings of the
Fifth Logic Programming Symposium, pages 1106–1120. MIT press, 1988.

[21] T.C. Przymusinski. On the declarative semantics of deductive databases and
logic programs. In J. Minker, editor, Foundations of Deductive Databases
and Logic Programming, pages 193–216. Morgan Kaufmann Publishers Inc.,
Los Altos, California, 1987.

[22] T.C. Przymusinski. Every logic program has a natural stratification and an
iterated least fixed point model. In Proceedings of the Eighth Symposium
on Principles of Database Systems, pages 11–21. ACM SIGACT-SIGMOD,
1989.

[23] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132,
1980.

[24] K. Ross. A procedural semantics for well founded negation in logic programs.
In Proceedings of the Eighth Symposium on Principles of Database Systems,
pages 22–33. ACM SIGACT-SIGMOD, 1989.

[25] F.W. Vaandrager. Specificatie en verificatie van communicatieprotocollen
met procesalgebra. Unpublished, in Dutch.

[26] F.W. Vaandrager. Algebraic Techniques for Concurrency and their Applica-
tion. PhD thesis, University of Amsterdam, 1990.

[27] L. Vieille. Recursive query processing: the power of logic. Theoretical Com-
puter Science, 69(1):1–53, 1989.

160 5. The Meaning of Negative Premises

6

ACP with Real-Time Steps

(Jan Friso Groote)

An extension of ACP (Algebra of Communicating Processes) is pro-
posed to describe and verify real time systems using a discrete time
scale. This language is called ACPtτε. ACPτε is the timeless vari-
ant of ACPtτε. ACPtτε unifies real time, abstraction, parallelism and
communication in one algebraic framework.

We give a set of axioms describing the properties of ACPtτε, together
with a corresponding operational semantics. Furthermore, we define
an interpretation of ACPτε in ACPtτε, thereby fixing an intuition be-
hind time in ACPτε. Some examples show the use of ACPtτε.

6.1 Introduction

Distributed computer systems working on a real time basis find an increasing
number of applications. Therefore, it is worthwhile to develop formal techniques
in order to construct reliable and correct real time computer systems. We call any
system a real time system if its interactions with the environment must satisfy
certain time constraints. These constraints can be of various kinds, e.g. maximal
reaction times, minimal delay times etc.

The importance of real time is illustrated by the huge amount of papers that
have been published in recent years. We mention just a few [1, 12, 19, 26, 29],
most of them introducing real time into process algebra in different ways. It is our
feeling that most of these approaches are complicated, which makes it difficult to
apply these. Therefore, we start from a simple idea, namely that the proceeding
of some fixed amount of time is represented by an action, which we denote by t
and which we call a time step, and elaborate on it in the well developed setting
of ACP [3, 4, 5] obtaining ACPtτε. The same basic idea underlies the work in
[18, 23, 24, 27] but the exact interpretation of t differs in all of these. Technically,
our approach is closest to the work of Richier, Sifakis and Voiron [27].

The idea turns out to work well, both for the development of theory and in ex-
amples. Because we can use the techniques available in ACP we have parallelism

161

162 6. ACP with Real-Time Steps

and abstraction almost for free in our framework. We present an operational
model in Plotkin style together with a complete axiom system for weak bisimu-
lation semantics [22]. Weak bisimulation is arbitrarily chosen. The theory could
as well be developed using for instance branching bisimulation [16], ready trace
semantics, failure semantics etc. (see [14]). We introduce several delay operators
and we illustrate their use by an example. Finally, we show how ACPτε pro-
cesses can be interpreted in ACPtτε. This interpretation makes the notion of time
underlying ACPτε explicit.

6.2 The language and its axioms

We first present ACPτε which is a slight modification of ACPτ [5]. ACPτε does
not contain explicit constructs for time. As usual it has two parameters, a set
Act and a function γ. The possibly infinite set Act contains atomic actions
representing the different basic activities of these processes. The function γ :
Act×Act→ Act is called the communication function. It is a partial, associative
and commutative function that defines how actions in Act can synchronise in
order to obtain interactions between processes. The signature of ACPτε is given
in table 6.1, except for the constant t which is not part of it.

The elementary identities that a process algebra over the signature of ACPτε
should satisfy are those listed in table 6.2 (again except those referring to t). In
this table a, b range over Actδ = Act ∪ {δ} and x, y, z are variables. The axioms
differ from the axioms given in [5, 6] because we have an ε that allows us to
formulate the equations a little bit more efficiently. Moreover, we have adapted
the axioms for the communication merge in combination with internal actions.
Especially we have replaced the axiom τx | y = x | y by EM11, EM12 and EM13.
This has no influence on the main operators, as is shown by the operational
model. The effect of this change is that an interesting relation between ACPτε
with and without time steps holds (see theorem 6.6.6). At the end of this article
the example is given that shows why τx | y = x | y does not hold.

Equalities between process terms can be calculated using the normal inference
rules of equational logic. For completeness’ sake, these rules are summarised in
table 6.3. O1 stands for ∂H or τI and O2 may be replaced by +, ·, ‖, ‖ or |. A
set T of axioms proves an equation p = q, notation T ` p = q, if there is an
equational logic proof tree with root p = q from the axioms in T in the usual
sense.

The extension ACPτε with time steps is called ACPtτε. In ACPtτε actions
are considered to be pointwise in time, i.e. their execution does not take time.
Especially, τ is time-less. It is also assumed that the execution of the operators
is time-less, for instance the execution of the sequential composition operator is
instantaneous.

Time is modelled by a constant t, the time step, that represents the progress
of exactly one time unit and not more than that. Intuitively we think of t as a
fixed physical amount of time, such as for instance a millisecond or a minute. We

6.2. The language and its axioms 163

Σ(ACPtτε): constants a for any atomic action a ∈ Act
δ inaction
τ silent action
ε empty process
t time step

unary operators: ∂H encapsulation, for any H ⊆ Act
τI hiding, for any I ⊆ Act

binary operators: + alternative composition
· sequential composition
‖ parallel composition
‖ left-merge
| communication-merge

Table 6.1: The signature of ACPtτε

also assume that only t allows time to go on. A consequence of this view is that
inaction (δ) cannot let time go on. Therefore, it can be called time-deadlock or
time-stop. This means that time can be blocked, which is impossible in reality.
However, we think that blocking time is rather useful for analysis of real time
systems. For instance, when two systems are composed in parallel in such a way
that one system must synchronise at times the other is not available, analysis will
reveal that time cannot proceed from a certain point onwards without violating
the behaviour of one of the subsystems. In this case a time-stop indicates the
time inconsistency in the composition. It is of course clear that only systems
without time-stop can be implemented.

Example 6.2.1. We will try to give the reader some idea about the properties
of the language ACPtτε. Consider the ACPtτε-expressions:

1. a · t · b+ c · t · t · d,

2. a · b,

3. aω = a · a · a ·

The first process must immediately perform either an a or a c action. If it starts
with an a action, then after exactly one time unit it must perform a b. If it
initially selects a c action, then two time units later, it must do a d. The second
process must perform an a, instantaneously followed by a b; a and b happen at
the same time, only b depends causally on a. The last process illustrates an
imperfection in the current approach. Here aω is the process that can do an
infinite number of a actions in no time. Later we will give constructs that enable
us to define aω precisely. Intuitively, such processes are not very appealing but we
do not feel that they will yield any problem when using our algebra. However, if
this turns out not be the case, we can easily get rid of them by a time guardedness
constraint on processes (cf. [25]).

164 6. ACP with Real-Time Steps

The set of axioms of ACPtτε in table 6.2 characterises the basic properties of the
function symbols in the signature. The axioms about time only state that time
must proceed synchronously in parallel processes (TIM1–TIM5).

One can ask why there is no axiom tx + ty = t(x + y) (Time Determinism
(DT)) which is explicitly present in [18, 23] and implicitly in [24]. The reason
lies in the interaction with the sequential composition operator. Consider the
term

(t t+ t) t t t a.

It would be somewhat strange if at time 3 it is not determined whether a will
happen at time 4 or at time 5 because the tail of the process seems completely
deterministic. But with DT and A4 we can derive:

(t t+ t) t t t a =
t t t t t a+ t t t t a =
t t t (t t a+ t a).

This last term suggests that at time 3 the choice still has to be made. If we
want to avoid such examples, the moment of choice for t actions is important.
If one insists on having DT then one must drop A4. But A4 is so fundamental
for sequential composition, that without A4, it is better to drop the sequential
composition operator altogether. This approach is chosen in [18, 23, 24] where
action prefix operators are used. As we want to stay in the realm of ACP, we
retain the sequential composition operator and do not have DT.

Note that with time nondeterminism, time deterministic processes can easily be
described. But with time determinism, time nondeterministic processes cannot
be described in a straightforward way. Consider a process where at time 1 the
choice is determined between two actions a and b that should happen at time 2.
This can be described by t(ta+ tb). With time determinism this process is equal
to t t(a + b) where the choice is made at time 2. In [1] internal actions must be
used explicitly to indicate such an early choice.

An additional advantage of time nondeterminism is that the theory stays closer
to existing theory. This means that it is in general straightforward to combine
real-time steps with other features. For instance, the current setting can easily
be extended with priorities (see the article in chapter 5 of this thesis). Such an
extension may be a good basis for relating the present work to other real-time
step proposals.

As usual in ACP, we introduce a guarded recursive specification as a set of guarded
recursive equations, used to specify infinite processes.

Definition 6.2.2. Let p be an open term over the signature ACPtτε. An occur-
rence of a variable x in p is guarded if it occurs in a subterm a · p′ of p (a ∈ Aδt)
and p does not contain the τI operator. p is guarded if all variables occur guarded
in p.

6.2. The language and its axioms 165

x+ (y + z) = (x+ y) + z A1 aτ = a T1a
x+ y = y + x A2 ττ = τ T1b
x+ x = x A3 tτ = t T1t
(x+ y)z = xz + yz A4 τ · x+ x = τ · x T2
(xy)z = x(yz) A5 a(τx+ y) = a(τx+ y) + ax T3
x+ δ = x A6 t(τx+ y) = t(τx+ y) + tx T3t
δx = δ A7
εx = x A8 a | b = γ(a, b) if γ(a, b) defined
xε = x A9 a | b = δ if γ(a, b) undefined

x ‖ y = x ‖ y + y ‖ x+ x | y EM1 τx ‖ y = τ(x ‖ y) EM10
ε ‖ x = δ EM2 tx ‖ y = δ TIM1
ax ‖ y = a(x ‖ y) EM3 ε | tx = δ TIM2
(x+ y) ‖ z = x ‖ z + y ‖ z EM4 ε | τx = ε | x EM11
x | y = y | x EM5 τx | ay = x | ay EM12
ε | ε = ε EM6 τx | τy = τ(x ‖ y) EM13
ε | ax = δ EM7 tx | ty = t(x ‖ y) TIM3
ax | by = (a | b)(x ‖ y) EM8 tx | ay = δ TIM4
(x+ y) | z = x | z + y | z EM9 tx | τy = tx | y TIM5

∂H(τ) = τ DT τI(τ) = τ TI1
∂H(t) = t TID τI(t) = t TIT
∂H(ε) = ε DE τI(ε) = ε TE
∂H(a) = a if a 6∈ H D1 τI(a) = a if a 6∈ I TI2
∂H(a) = δ if a ∈ H D2 τI(a) = τ if a ∈ I TI3
∂H(x+ y) = ∂H(x) + ∂H(y) D3 τI(x+ y) = τI(x) + τI(y) TI4
∂H(xy) = ∂H(x)∂H(y) D4 τI(xy) = τI(x)τI(y) TI5

Table 6.2: Axioms for ACPtτε

x = x
x = y

y = x

x = y y = z

x = z
p = q if p = q is an axiom

x = y

O1(x) = O1(y)
x1 = y1 x2 = y2

O2(x1, x2) = O2(y1, y2)

Table 6.3: Rules of equational logic

166 6. ACP with Real-Time Steps

Definition 6.2.3. A set E of equations of the form {xi = pi|i ∈ I} over the
signature ACPtτε, with I an index set, is called a recursive specification over
ACPtτε if for every variable x in pi (i ∈ I), x ≡ xj for some j ∈ I. E is called a
guarded recursive specification over ACPtτε if E is a recursive specification and if
every pi (i ∈ I) is guarded.

Notation 6.2.4. Let E be a guarded recursive specification in which a variable
x occurs. The (unique) solution for x in E is written as 〈x|E〉.

The construct 〈x|E〉may occur as a process term. It will be treated as a constant.
So the process term a · a · 〈x|x = a x〉 is a valid term, representing of course aω.
Any term not containing these constants is called recursion free. The fact that
〈x|E〉 is the solution of x in E is expressed by the following axiom:

REC: 〈x|E〉 = 〈px|E〉 if x = px ∈ E.

〈px|E〉 is an abbreviation for the term px where every occurrence of a variable
Y in px is replaced by 〈Y |E〉. If REC is used in a proof, then this is written as
...+ REC ` p = q.

The principle RSP (Recursive Specification Principle) makes it explicit that
each guarded recursive equation has exactly one solution. Using the notation for
the solution of a guarded recursive specification, we can state RSP as follows (see
[15]):

Principle 6.2.5. Let E be a guarded recursive specification containing the
variable x.

RSP:
E

x = 〈x|E〉

This rule must be read as follows. Suppose we can prove the equations in σ(E)
with σ a substitution. Here σ(E) is an abbreviation for {σ(x) = σ(px)|x = px ∈
E}. This means that we can show that σ(x) is a solution for x in E. Then,
RSP says that σ(x) is equal to the unique solution 〈x|E〉 for x in E. Hence, each
solution for x in E is the same.

Inference rules generated by RSP can occur in proofs, besides the normal rules
of equational logic. If this is the case, this is written as ...+ RSP ` p = q.

Example 6.2.6. A typical real time device is a stopwatch. It can be used
to measure time durations. Suppose the stopwatch has as visible actions go,
stop, reset and readn for all time values n ∈ NI with their obvious meanings. The
stopwatch is given by the following infinite system of guarded recursive equations.
Here Stopwatch(i) and Stopwatch(i) are variables for every i ∈ NI . The process
that we are interested in is 〈Stopwatch(0)|E〉 where E is defined by:

E = {Stopwatch(i) = stop · Stopwatch(i) +
readi · Stopwatch(i) +
t · Stopwatch(i+ 1),

6.3. Delays 167

Stopwatch(i) = go · Stopwatch(i) +
reset · Stopwatch(0) +
readi · Stopwatch(i) +
t · Stopwatch(i)|i ∈ NI }.

The stopwatch can either be measuring time (represented by Stopwatch(i)), in
which case its internal counter is incremented every time unit, or its internal
counter can be stopped, which is indicated by the barred variant of the stopwatch.
Note that it is not possible that the action go and reset take place when the
internal counter is counting, while stop cannot happen when the internal counter
is stopped. The counter contains also other internal design choices. One of them
is that go and stop can succeed each other infinitely fast, which may be hard to
build in a real system.

6.3 Delays

In this section we introduce several delay processes and study some of their
properties. Delay processes can wait an indefinite (but sometimes bounded)
amount of time before terminating. They can be used to specify that actions
must happen in certain time intervals.

The (general) delay, which we denote by ∆, is defined as follows:

∆ = 〈x|x = t · x+ ε〉.

The process ∆ can always terminate or wait one more time unit.
The general delay must not be confused with delays that occur elsewhere in the

literature. In synchronous calculi [21, 28] ∆ (also used as operator and written as
δ(p) or ∆(p)) is the process that can do an arbitrary number of 1 actions before
terminating (or performing p). In [3, 8, 9] ∆ is used to represent divergence, i.e.
the possibility to perform unbounded internal activity.

The general delay immediately suggests a variant, the bounded delay ∆n. The
process ∆n can wait a maximal number of n time units before terminating. It is
defined by:

∆n = 〈xn|E〉

where E is a recursive specification containing the equations (n ∈ NI):

x0 = ε,

xn+1 = t · xn + ε.

Example 6.3.1. We can now specify the following processes

1. ∆a∆b∆,

2. ∆a∆15b∆.

168 6. ACP with Real-Time Steps

The first process can once do an action a and then time can pass. Possibly, after
some time action b can happen, but this is not necessary. In the second case
action b must happen after the occurrence of a within at most 15 time units.

Lemma 6.3.2. We have the following identities concerning ∆ and ∆n, provable
using the axioms ACPtτε, REC and RSP:

1. ∆ = ∆ + ε,

2. ∆∆ = ∆,

3. τ∆ = ∆τ∆,

4. ∆n∆ = ∆.

Proof.

1. ∆ = t∆ + ε = t∆ + ε+ ε = ∆ + ε.

2. Take as an equation: X = tX + ∆ + ε. Then ∆∆ and ∆ are both solutions
of this equation.

∆∆ = (t∆ + ε)∆ = t∆∆ + ∆ = t∆∆ + ∆ + ε

∆ = ∆ + ∆ = t∆ + ε+ ∆

Hence, with RSP, ∆∆ = ∆.

3. We show that τ∆ and ∆τ∆ are both solutions of X = tX + τ∆.

τ∆ = ∆ + τ∆ = t∆ + ε+ τ∆ = t∆ + τ∆ = tτ∆ + τ∆

∆τ∆ = (t∆ + ε)τ∆ = t∆τ∆ + τ∆

4. By induction on n. (n = 0) ∆n∆ = ε∆ = ∆.
(n ≥ 0) ∆n+1∆ = (t∆n + ε)∆ = t∆n∆ + ∆ = t∆ + ∆ =

t∆ + ε+ ∆ = ∆ + ∆ = ∆.

2

We remark that the identity ∆n · ∆m = ∆n+m is not derivable. Consider for
instance the case where m = n = 1. Then ∆m · ∆n = t(t + ε) + t + ε. On the
other hand ∆2 = t(t+ ε) + ε. These two processes are not equal as in the former
case a t can be done after which termination must take place, while in the latter
case this option is absent.

6.3. Delays 169

Lemma 6.3.3. With the axioms in ACPtτε and REC we can show that ∆
distributes over +, prefixed actions and the empty process.

1. (x+ y) ‖ ∆ = x ‖ ∆ + y ‖ ∆,

2. ax ‖ ∆ = a(x ‖ ∆) (a ∈ Actτtδ),

3. ε ‖ ∆ = ε.

Proof.

1. First note that ∆ ‖ x = t∆ ‖ x+ ε ‖ x = δ. Now we have
(x+ y) ‖ ∆ = (x+ y) ‖ ∆ + ∆ ‖ (x+ y) + (x+ y) | ∆ =
x ‖ ∆ + y ‖ ∆ + t∆ ‖ (x+ y) + ε ‖ (x+ y) + x | ∆ + y | ∆ =
x ‖ ∆ + x | ∆ + y ‖ ∆ + y | ∆ =
x ‖ ∆ + ∆ ‖ x+ x | ∆ + ∆ ‖ y + y ‖ ∆ + x | ∆ = x ‖ ∆ + y ‖ ∆.

2. ax ‖ ∆ = ax ‖ ∆ + ∆ ‖ ax+ ax | t∆ + ax | ε =
a(x ‖ ∆) = a(x ‖ ∆) for a ∈ Act,

tx ‖ ∆ = tx ‖ ∆ + ∆ ‖ tx+ tx | t∆ + tx | ε = tx | t∆ = t(x ‖ ∆),

δx ‖ ∆ = δ ‖ ∆ + ∆ ‖ δ + δ | ∆ = δ | t∆ + δ | ε = δ = δ(x ‖ ∆),

τx ‖ ∆ = τx ‖ ∆ + ∆ ‖ τx+ ∆ | τx = τ(x ‖ ∆) + t∆ | τx+ ε | τx =

τ(x ‖ ∆) + t∆ | x+ ε | x = τ(x ‖ ∆) + ∆ | x T2,EM1
= τ(x ‖ ∆).

3. ε ‖ ∆ = ε ‖ ∆ + ε ‖ ε+ t∆ ‖ ε+ ε | t∆ + ε | ε = ε | ε = ε.

2

∆ can always be delayed or terminated, controlled by its environment. For
instance, ∆a in ∂{a,ā}(∆a ‖ ā) with γ(a, ā) = a∗ behaves as a and therefore, the
delay in ∆a is forced to terminate immediately. Sometimes, one wants to describe
delays that can independently of the context decide to wait or to terminate. The
context has to adapt itself in this case. For this purpose autonomous delays
Γ0,Γ1 and Γ2 are introduced:

Γ0 = 〈x|x = τtx+ τ〉
Γ1 = 〈x|x = τtx+ ε〉
Γ2 = 〈x|x = tx+ τ〉

The τ ’s in Γi (i = 0, 1, 2) indicate that by some internal activity, options to
terminate or to proceed can be lost. In Γ1, for instance, executing an internal
τ -step makes immediate termination impossible.

The following theorem gives a number of derivable facts about the autonomous
delays.

170 6. ACP with Real-Time Steps

Lemma 6.3.4. ACPtτε + REC + RSP `

Γ0 = Γ0 + τ Γ1 = Γ1 + ε Γ2 = Γ2 + τ
Γ0Γ0 = τΓ0 Γ1Γ1 = Γ1 Γ2Γ2 = τΓ2

τΓ0 = Γ0τΓ0 τΓ1 = Γ1τΓ1 τΓ2 = Γ2τΓ2

∆ ‖ Γ0 = Γ0 ∆ ‖ Γ1 = Γ1 ∆ ‖ Γ2 = Γ2

Proof. The proofs have the same structure as the proof of lemma 6.3.2 2

It is possible to give the finite versions of the autonomous delays also. Here, we
only define Γn0 as the finite variant of Γ0 which will be used in the next example.

Γn0 = 〈xn|E〉

where E consists of the equations (i ∈ NI):

x0 = ε,

xi+1 = τt xi + τ.

6.4 Example

In this section a manufacturing workcell is presented that shows how time can
be used to describe and verify timed systems. In [20] some workcells have been
verified in the setting of process algebra without time steps. In our system it is
important that certain actions happen just because time has passed. Further,
there are actions that cannot be guaranteed to happen at predefined times. In
the system a datalink can deliver messages within a certain time bound, but the
time the delivery takes is not exactly determined.

The workcell is structured as described in [10]. It consists of two work stations,
called W1 and W2, which produce products, and a transport system, TS, that
transports products from work station W1 to W2. In this case TS is thought
of as a simple conveyor belt which can only carry one product at a time. The
last component of the workcell is a workcell controller (WC) that coordinates all
activities in the workcell.

Workcell W1 needs one time unit to produce a product. Then the transport
system takes exactly three time units to transfer this product to workcell W2.
Products that arrive at W2 can enter W2 by a small gate that can be opened
and closed by W2. Whenever a product arrives, it should always be open. It
is assumed that this gate closes automatically when a product has entered W2.
This is not explicitly specified. The workcell controller is connected to the work
stations by two asynchronous point to point datalinks D1 and D2 through which
it can send coordinating messages to the workcells. D1 connects WC with W1

and D2 connects WC with W2. Datalink D2 delivers its messages exactly in one

6.4. Example 171

TSinTS outTS

W1

outW1

W2

inW2

WC
�

�
�

�
�
�

��	

?
enterTS 6leaveTSopen

@
@
@
@
@
@
@@R

1 2

3 4

D1 D2

Figure 6.1: A manufacturing workcell

time unit. Datalink D1 autonomously decides to do it in in 0,1 or 2 time units.
The workcell controller first sends a message to W1 to say that it must send a
product to W2 using the transport system. After some time it sends a message
to W2 saying that it must open its gate because a product is arriving. This is
done in such a way that the gate is only open for the smallest possible amount
of time. As the control system of this workcell is fairly primitive and there are
uncertainties in the delivery time of datalink D1, the transport system is not
used in an optimal way.

The system is given as the solution of the following equations. See also figure
6.1. Variables are denoted by capital letters and actions by lower case letters for
readability.

S = ∂H(W1 ‖W2 ‖WC ‖ TS ‖ D1 ‖ D2)

with H = {ri, si|i = 1, 2, 3, 4} ∪ {outW1 , inW2 , inTS , outTS} and γ(ri, si) = ci,
γ(outW1 , inTS) = enterTS , γ(outTS , inW2) = leaveTS . The actions ri, si and ci
describe respectively a receive, a send and a resulting communication at port i
(see the numbers in figure 6.1). The other action names are self-explanatory.

W1 = ∆r1t outW1W1

W2 = ∆r2t open∆inW2W2

WC = s3t
2s4t

4WC

TS = ∆inTSt3outTSTS
D1 = ∆r3Γ2

0s1D1

172 6. ACP with Real-Time Steps

D2 = ∆r4t s2D2

The behaviour of the whole system is expected to be the following: The workcell
controller sends a message to W1. After receipt of this message a product is
put on the conveyor belt. While it is being transported to W2 the workcell
controller sends a message to W2 saying that it must open the gate. Then, the
product arrives at W2 and the whole process starts over again. We are especially
interested in how long the gate is open before the arrival of a product. This can
be studied by hiding all actions in S except open and leaveTS . Hence, we are
interested in the behaviour of

τI(S)

where I = {ci|i = 1, 2, 3, 4} ∪ {enterTS}. We will only write down the result of
the verification. The verification itself is straightforward (cf. [3, 15, 20]). τI(S)
is a solution for U1 in the following set of guarded equations.

U1 = τ · (τ · U3 + τ · U4),
U2 = leaveTS · U1 + τ · leaveTS · U3 + τ · leaveTS · U4,

U3 = t · (τt3 · open · t2 · U2 + τ · t3 · open · t · leaveTS · t · U1),
U4 = t4 · open · leaveTS · t2 · U1.

We see that the system does not contain any deadlocks or time-stops and the
gate is open for at most two time units. But the behaviour of the system is more
complicated than expected. Close inspection of the specification reveals that
there is a good reason for this. Consider the case where delivery of a message in
D1 takes two time units. Then the system arrives at U2 via U3. In U2 the situation
is that a product is ready to enter W2 and WC has just issued a new message via
D1 to W1. Now there are three actions that can happen. The product can enter
W2 or D1 can decide to deliver the message in 0 or in more than 0 time units. In
the last case it is known that the next product will arrive after more than four
time units (second option in U2) or after exactly four time units (third option)
when leaveTS takes place. Therefore, U2 cannot be identified with leaveTS · U1

and thus all equations are necessary. We need the axiom abx+ aby = a(bx+ by)
(a, b ∈ Aδτt) valid in ready trace semantics [14] to prove τI(S) equal to S2, defined
by the equation:

S2 = τ(t4open leaveTSt2 + t4open t leaveTSt+ t4open t2leaveTS)S2.

The ready trace axiom is not valid in weak bisimulation semantics which will be
introduced in the next section, but it respects deadlock behaviour.

We can try to improve the performance of the workcell by letting the workcell
controller issue its commands faster. Define a new workcell controller and a
workcell S′ by:

S′ = ∂H(W1 ‖W2 ‖WC ′ ‖ TS ‖ D1 ‖ D2),
WC ′ = s3t

2s4t
2WC ′.

6.5. An operational semantics for ACPtτε 173

H, γ are the same as above. We are now only interested in the time consistency
of WC ′. Therefore all actions are hidden. It turns out that τJ(WC ′) (J =
I ∪ {leaveTS , open}) is the solution for X of the following equations (again the
law abx+ aby = a(bx+ by) is used).

X = τ · t4 · (X + Y),
Y = τ · (t · δ + t4 ·X).

A time-stop occurs in Y . This means that the time constraints of the compo-
nents of S′ were incompatible. And indeed, in S′ it is possible that W1 must
put a product on the conveyor belt, while the transport system TS still needs
one time unit before it is capable to accept this product from W1. As in any
implementation time cannot be blocked, the new workcell cannot be built.

6.5 An operational semantics for ACPt
τε

We give an operational semantics to ACPtτε which corresponds to a way ACPtτε-
terms can be executed. In this way we show directly how ACPtτε-terms can
be seen as processes. The axioms are complete with respect to the operational
semantics. Thus, there is a direct correspondence between the two. This means
that the axioms indeed capture the idea of processes.

The semantics of an ACPtτε-term is given using a transition relation −→ that
defines the behaviour of terms. If process p can perform action a then this is
denoted by a transition p

a
−→ q. The action a is called the label of the transition

and the term q represents the resulting behaviour. The transition relation is
defined by the Transition System Specification (TSS) [17] in table 6.4. The rules
R1-R12.3 are inference rules. All transitions between closed ACPtτε-terms that
are derivable using these rules are in the transition relation −→.

Labels in the transition relation are chosen from Acttτ√ = Act∪{t, τ,
√
}. The

label
√

denotes termination, t represents the proceeding of a time unit and τ
the occurrence of an internal action. In table 6.4 a and b range over Acttτ√ and
c ranges over Act unless explicitly stated otherwise. H and I are sets of actions
not containing

√
, t, τ and x, y, z are variables.

Only some rules are explained here. For the others we refer to [13, 17] in
particular for rules 12.2 and 12.3. Rule 7.2 is introduced to allow p | q to terminate
if both p and q can terminate, and to make it possible that if τ ’s can occur as
initial steps in both p and q, then p | q can perform an initial τ -step. This
is introduced for the proof of lemma 6.6.6. Note that this only influences the
behaviour of the communication merge, which is just an auxiliary operator. Rule
5.4 indicates that t-actions in both sides of the parallel operator can communicate.

The behaviour of a term is now given by the transitions it can perform, whereby
we consider strong bisimulation equivalent process terms as equal. Strong bisim-
ulation equivalence is chosen as it is the coarsest relation that does not alter
the operational behaviour of a transition system. Due to the rules 12.1-12.3 this
captures exactly what is known as weak bisimulation.

174 6. ACP with Real-Time Steps

R1: ε

√

−→ δ

R2: a
a
−→ ε

R3.1:
x

a
−→ x′

x+ y
a
−→ x′

R3.2:
y

a
−→ y′

x+ y
a
−→ y′

R4.1:
x

a
−→ x′

xy
a
−→ x′y

if a ∈ Acttτ R4.2:
x

√

−→ x′ y
a
−→ y′

xy
a
−→ y′

R5.1:
x

a
−→ x′

x ‖ y
a
−→ x′ ‖ y

if a ∈ Actτ R5.2:
y

a
−→ y′

x ‖ y
a
−→ x ‖ y′

if a ∈ Actτ

R5.3:
x

a
−→ x′ y

b
−→ y′

x ‖ y
c
−→ x′ ‖ y′

if γ(a, b) = c R5.4:
x

a
−→ x′ y

a
−→ y′

x ‖ y
a
−→ x′ ‖ y′

if a = t,
√

R6:
x

a
−→ x′

x ‖ y
a
−→ x′ ‖ y

if a ∈ Actτ

R7.1:
x

a
−→ x′ y

b
−→ y′

x | y
c
−→ x′ ‖ y′

if γ(a, b) = c R7.2:
x

a
−→ x′ y

a
−→ y′

x | y
a
−→ x′ ‖ y′

if a = t, τ,
√

R9:
x

a
−→ x′

∂H(x)
a
−→ ∂H(x′)

if a 6∈ H

R10.1
x

a
−→ x′

τI(x)
a
−→ τI(x′)

if a 6∈ I R10.2:
x

a
−→ x′

τI(x)
τ
−→ τI(x′)

if a ∈ I

R11:
〈px|E〉

a
−→ y

〈x|E〉
a
−→ y

if x = px ∈ E

R12.1: a
a
−→ τ if a ∈ Acttτ R12.2:

x
τ
−→ y y

a
−→ z

x
a
−→ z

R12.3:
x

a
−→ y y

τ
−→ z

x
a
−→ z

Table 6.4: The operational rules for ACPtτε

6.6. Relating ACPτε to ACPtτε 175

Definition 6.5.1. A relation R ⊆ between ACPtτε-terms is called a bisimulation
relation if it satisfies the transfer property, i.e.:

1. if pR q and p
a
−→ p′ for a ∈ Acttτ√ then ∃q′ such that q

a
−→ q′ and p′Rq′,

2. if pR q and q
a
−→ q′ for a ∈ Acttτ√ then ∃p′ such that p

a
−→ p′ and p′Rq′.

We say that two terms p and q are bisimilar, notation p↔––q, if there exists a
bisimulation relation containing the pair (p, q).

The transition system specification in table 6.4 is in tyft/tyxt-format [17]. This
immediately implies that ↔–– is a congruence relation.

It is standard to prove soundness and completeness of the axioms. Therefore,
we omit all the proofs (cf. [3] and section 5.10 where it is outlined how to prove
soundness and completeness).

Lemma 6.5.2.(Soundness of ACPtτε) Let p and q be closed ACPtτε-expressions.

ACPtτε + RSP + REC ` p = q ⇒ p↔––q.

Theorem 6.5.3.(Completeness) Let p and q be recursion free closed ACPtτε-
expressions. It holds that:

p↔––q ⇔ ACPtτε ` p = q

6.6 Relating ACPτε to ACPt
τε

Real time specifications contain more information than specifications in ACPτε.
One is not always interested in the timing information and therefore, one some-
times likes to work in the setting of ACPτε. However, it is interesting to know
what an ACPτε process means in terms of the timing of ACPtτε, for instance when
specifications where time does not play a role are combined with specifications
where time is important. Here we give a translation of ACPτε processes into
ACPtτε, thereby fixing an intuition about time in ACPτε.

The sequential composition in ACPτε describes that its left argument must
happen before its right argument with an arbitrary delay in between. We use ∆
to model this delay. Moreover, a general delay is put in front and after every
process to indicate that it may start after an undefined amount of time and that
time can proceed after the process has been terminated. E.g. a is translated to
∆a∆ and a ·b is translated to ∆a∆b∆. Note that somehow this intuition conflicts
with the intuition adopted when testing processes [11] where the delay between
actions that are not blocked, is bounded.

For more complex processes the translation is slightly more complicated. The
translation of a + b is ∆(a∆ + b∆) as the choice between a and b is externally
determinable. In order to achieve this, we first define a function T that translates
a non-timed process to a timed process without initial delay. The translation is

176 6. ACP with Real-Time Steps

finished by putting an initial ∆ in front of the translated process, e.g. p translates
to ∆ · T (p).

The function T is defined by:

Definition 6.6.1. The real time translation T from ACPτε-expressions to closed
ACPtτε-expressions is defined by:

T (a) = a∆ (a ∈ Actτ),
T (δ) = δ,
T (ε) = ε,
T (p+ q) = T (p) + T (q),
T (p · q) = T (p) · T (q),
T (p ‖ q) = T (p ‖ q + q ‖ p+ p | q),
T (p ‖ q) = T (p) ‖ ∆ · T (q),
T (p | q) = T (p) | T (q),
T (∂H(p)) = ∂H(T (p)),
T (τI(p)) = τI(T (p)),
T (〈x|E〉) = 〈x|T (E)〉,
T (x) = x.

For a guarded recursive specification E, T (E) is defined as:

T (E) = {x = T (px)|x = px ∈ E}

The following lemmas are used to prove that identities derivable in ACPτε are
also valid and derivable after translation into ACPtτε.

Definition 6.6.2. Let σ be a substitution, mapping variables to ACPtτε-terms.
We define the substitution σT by:

σT (x) = T (σ(x)).

Lemma 6.6.3. Let p be an ACPtτε-expression and let σ be a substitution. Then:

T (σ(p)) = σT (T (p)).

Proof. Use induction on the structure of p. 2

Lemma 6.6.4. We have the following fact:

ACPtτε + REC + RSP ` ∆ · T (p) ‖ ∆ · T (q) = ∆T (p ‖ q)

Proof. It is shown that both sides satisfy the equation X = tX + T (p ‖ q).
∆T (p) ‖ ∆T (q) =
∆T (p) ‖ ∆T (q) + ∆T (q) ‖ ∆T (p) + ∆T (p) | ∆T (q) =
T (p) ‖ ∆T (q) + T (q) ‖ ∆T (p) + t(∆T (p) ‖ ∆T (q)) + T (p) | T (q) =
T (p ‖ q) + t(∆T (p) ‖ ∆T (q))

∆T (p ‖ q) = t∆T (p ‖ q) + T (p ‖ q) 2

6.6. Relating ACPτε to ACPtτε 177

Lemma 6.6.5. Let p, p′ be ACPτε-expressions. Then:

ACPτε + REC + RSP ` p = p′ ⇒ ACPtτε + REC + RSP ` T (p) = T (p′).

Proof. This lemma is proved with induction on the depth of the proof of p = p′.
As a basic case p = p′ can be an instantiation of REC or an axiom ACPτε or
it can be an equational inference rule without premisses. Checking the axioms
A1,..,A9 is completely trivial and therefore left out. Checking the reflexivity rule
(p = p) of equational reasoning is also straightforward.

T1 T (aτ) = T (a)T (τ) = a∆τ∆ = aτ∆ = a∆ = T (a),

T2 T (τ + ε) = T (τ) + T (ε) = τ∆ + ε = (τ + ε)(∆ + ε) + ε =
τ(∆ + ε) + ∆ + ε+ ε = τ∆ = T (τ),

T3 T (a(τp+ q)) = a∆(τ∆T (p) + T (q)) =
a(t∆(τ∆T (p) + T (q)) + τ∆T (p) + T (q)) =
T (a(τp+ q)) + a∆T (p) = T (a(τp+ q) + ap),

EM1 trivial,

EM2 T (ε ‖ p) = T (ε) ‖ ∆T (p) = ε ‖ ∆T (p) = δ = T (δ),

EM3 T (ap ‖ q) = a∆T (p) ‖ ∆T (q) = a(∆T (p) ‖ ∆T (q)) =
a(∆T (p) ‖ ∆T (q)) = a∆T (p ‖ q) = T (a(p ‖ q)),

EM4 T ((p+ q) ‖ r) = (T (p) + T (q)) ‖ ∆T (r) =
T (p) ‖ ∆T (r) + T (q) ‖ ∆T (r) = T (p ‖ r + q ‖ r),

EM5 trivial,

EM6 T (ε | ε) = ε | ε = ε = T (ε),

EM7 T (ε | ap) = ε | T (ap) = δ = T (δ),

EM8 T (ap | bq) = a∆T (p) | b∆T (q) = (a | b)(∆T (p) ‖ ∆T (q)) =
(a | b)∆T (p ‖ q) = T (γ(a, b)(p ‖ q)) if γ(a, b) defined. Otherwise, δ = T (δ)
results.,

EM9 trivial,

EM10 T (τp ‖ q) = τ∆T (p) ‖ ∆T (q) = τ(∆T (p) ‖ ∆T (q)) = τ∆T (p ‖ q) =
T (τ(p ‖ q)),

EM11 T (ε | τp) = ε | τ∆T (p) = ε | (t∆T (p) + T (p)) = ε | T (p) = T (ε | p),

EM12 T (τp | aq) = τ∆T (p) | a∆T (q) = ∆T (p) | a∆T (q) =
T (p) | T (aq) + tT (p) | a∆T (q) = T (p) | T (aq) = T (p | aq),

EM13 T (τp | τq) = τ∆T (p) | τ∆T (q) = τ(∆T (p) | ∆T (q)) =
τ∆T (p ‖ q) = T (τ(p ‖ q)).

178 6. ACP with Real-Time Steps

Checking D1-D4,DT,DE,TE,TI1-TI5 goes in the same way.,

REC T (〈x|E〉) = 〈x|T (E)〉 = 〈T (px)|T (E)〉 = T (〈px|E〉).

Now we check the inference rules. As they all go in the same way we only consider
RSP and the congruence rule for the parallel operator.

Suppose RSP is the last inference rule used to conclude that σ(x) = 〈x|E〉.
We must show that we can find a proof for T (σ(x)) = T (〈x|E〉), which is by
definition equal to σT (x) = 〈x|T (E)〉. By induction there is a proof for T (σ(E))
which is, using lemma 6.6.3, the same as σT (T (E)). By applying RSP it follows
that σT (x) = 〈x|T (E)〉, which is exactly what we had to prove.

Suppose the last (instantiated) inference rule used is

p1 = q1 p2 = q2

p1 ‖ p2 = q1 ‖ q2
.

By induction we have a proof for T (p1) = T (q1) and T (p2) = T (q2). From this we
can derive T (p1) ‖ ∆T (p2) +T (p2) ‖ ∆T (p1) +T (p1) | T (p2) = T (q1) ‖ ∆T (q2) +
T (q2) ‖ ∆T (q1) + T (q1) | T (q2). This is exactly equal to T (p1 ‖ p2) = T (q1 ‖ q2),
which we had to prove. 2

The following lemma says that the transition from ACP to ACP with time steps
preserves derivable facts.

Theorem 6.6.6. Let p, p′ be ACPτε-expressions. Then:

ACPτε + REC + RSP ` p = p′ ⇒ ACPtτε + REC + RSP ` ∆ · T (p) = ∆ · T (p′).

Proof. Direct by lemma 6.6.5. 2

We are now able to explain why theorem 6.6.6 requires an unusual approach to
the axioms for the communication merge together with τ . The reason can be
found in the T -translation of the term (τa | τb) which is (τ∆a∆ | τ∆b∆). If we
adopt the traditional law for τ and |, i.e. τx | y = x | y [6], which holds when
dropping τ in rule 7.2 in table 6.4, we would be able to prove (τa | τb) = a | b.
But T (a | b) 6= T (τa | τb), as the right hand side can do a t step while the left
hand side cannot. So, without modification of the axioms for the communication
merge, theorem 6.6.6 would not hold.

References

[1] J.C.M. Baeten and J.A. Bergstra. Real time process algebra. J.C.M. Baeten
and J.A. Bergstra. Real time process algebra. Formal Aspects of Computing,
3(2):142–188, 1991.

References 179

[2] J.C.M. Baeten and R.J. van Glabbeek. Abstraction and empty process in
process algebra. Fundamenta Informaticae, XII:221–242, 1989.

[3] J.C.M. Baeten and W.P. Weijland. Process algebra. Cambridge Tracts in
Theoretical Computer Science 18. Cambridge University Press, 1990.

[4] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communica-
tion. Information and Computation, 60(1/3):109–137, 1984.

[5] J.A. Bergstra and J.W. Klop. Algebra of communicating processes with
abstraction. Theoretical Computer Science, 37(1):77–121, 1985.

[6] J.A. Bergstra and J.W. Klop. Process algebra: specification and verification
in bisimulation semantics. In M. Hazewinkel, J.K. Lenstra, and L.G.L.T.
Meertens, editors, Mathematics and Computer Science II, CWI Monograph
4, pages 61–94. North-Holland, Amsterdam, 1986.

[7] J.A. Bergstra and J.W. Klop. A complete inference system for regular pro-
cesses with silent moves. In F.R. Drake and J.K. Truss, editors, Proceedings
Logic Colloquium 1986, pages 21–81, Hull, 1988. North-Holland. First ap-
peared as: Report CS-R8420, CWI, Amsterdam, 1984.

[8] J.A. Bergstra, J.W. Klop, and E.-R. Olderog. Failure semantics with fair
abstraction. Report CS-R8609, CWI, Amsterdam, 1986.

[9] J.A. Bergstra, J.W. Klop, and E.-R. Olderog. Failures without chaos: a
new process semantics for fair abstraction. In M. Wirsing, editor, Formal
Description of Programming Concepts – III, Proceedings of the 3th IFIP WG
2.2 working conference, Ebberup 1986, pages 77–103, Amsterdam, 1987.
North-Holland.

[10] F. Biemans and P. Blonk. On the formal specification and verification of CIM
architectures using LOTOS. Computers in Industry, 7(6):491–504, 1986.

[11] E. Brinksma. A theory for the derivation of tests. In S. Aggarwal, editor,
Proceedings of the Eighth International Conference on Protocol Specification,
Testing and Verification. North-Holland, 1987.

[12] R.T. Gerth and A. Boucher. A timed failures model for extended com-
municating processes. In Th. Ottmann, editor, Proceedings 14th ICALP,
Karlsruhe, volume 267 of Lecture Notes in Computer Science, pages 95–114.
Springer-Verlag, 1987.

[13] R.J. van Glabbeek. Bounded nondeterminism and the approximation induc-
tion principle in process algebra. In F.J. Brandenburg, G. Vidal-Naquet, and
M. Wirsing, editors, Proceedings STACS 87, volume 247 of Lecture Notes in
Computer Science, pages 336–347. Springer-Verlag, 1987.

180 6. ACP with Real-Time Steps

[14] R.J. van Glabbeek. The linear time – branching time spectrum. In J.C.M.
Baeten and J.W. Klop, editors, Proceedings CONCUR 90, Amsterdam, vol-
ume 458 of Lecture Notes in Computer Science, pages 278–297. Springer-
Verlag, 1990.

[15] R.J. van Glabbeek and F.W. Vaandrager. Modular specifications in pro-
cess algebra – with curious queues (extended abstract). In M. Wirsing and
J.A. Bergstra, editors, Algebraic Methods: Theory, Tools and Applications,
Workshop Passau 1987, volume 394 of Lecture Notes in Computer Science,
pages 465–506. Springer-Verlag, 1989.

[16] R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in
bisimulation semantics (extended abstract). In G.X. Ritter, editor, Infor-
mation Processing 89, pages 613–618. North-Holland, 1989.

[17] J.F. Groote and F.W. Vaandrager. Structured operational semantics and
bisimulation as a congruence (extended abstract). In G. Ausiello, M. Dezani-
Ciancaglini, and S. Ronchi Della Rocca, editors, Proceedings 16th ICALP,
Stresa, volume 372 of Lecture Notes in Computer Science, pages 423–438.
Springer-Verlag, 1989. Full version to appear in Information and Computa-
tion.

[18] M. Hennessy and T. Regan. A temporal process algebra. Report 2/90,
Computer Science Department, University of Sussex, 1990.

[19] R. Koymans, R.K. Shyamasundar, W.P. de Roever, R. Gerth, and S. Arun-
Kumar. Compositional semantics for real-time distributed computing. In-
formation and Computation, 79:210–256, 1988.

[20] S. Mauw. Process algebra as a tool for the specification and verification
of CIM–architectures. In J.C.M. Baeten, editor, Applications of process
algebra, Cambridge Tracts in Theoretical Computer Science 17, pages 53–
80. Cambridge University Press, 1990.

[21] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer
Science, 25:267–310, 1983.

[22] R. Milner. Communication and concurrency. Prentice Hall International,
1989.

[23] F. Moller and C. Tofts. A temporal calculus of communicating systems.
In J.C.M. Baeten and J.W. Klop, editors, Proceedings CONCUR 90, Ams-
terdam, volume 458 of Lecture Notes in Computer Science, pages 401–415.
Springer-Verlag, 1990.

[24] X. Nicollin, J.-L. Richier, J. Sifakis, and J. Voiron. ATP: An algebra for
timed processes. Technical Report RT-C16, IMAG, Laboratoire de Génie
informatique, Grenoble, 1990. Also appeared in M. Broy and C.B. Jones,

References 181

editors, Proceedings IFIP Working Conference on Programming Concepts
and Methods, Sea of Gallilea, Israel. North-Holland, 1990.

[25] X. Nicollin and J. Sifakis. The algebra of timed processes ATP: Theory and
applications. Report RT-C26, IMAG, Laboratoire de Génie informatique,
Grenoble, 1990.

[26] R. Reed and A.W. Roscoe. A timed model for communicating sequential
processes. Theoretical Computer Science, 58:249–261, 1988.

[27] J.L. Richier, J. Sifakis, and J. Voiron. Une algèbre des processus temporisés,
1987. In A. Arnold, editor, Actes du deuxième colloque C3, Angouléme, 1987.

[28] W.P. Weijland. Synchrony and asynchrony in process algebra. PhD thesis,
University of Amsterdam, 1989.

[29] W. Yi. Real-time behaviour of asynchronous agents. In J.C.M. Baeten and
J.W. Klop, editors, Proceedings CONCUR’90, Amsterdam, volume 458 of
Lecture Notes in Computer Science, pages 502–520. Springer-Verlag, 1990.

182 6. ACP with Real-Time Steps

7

The Syntax and Semantics of µCRL

(Jan Friso Groote & Alban Ponse)

A simple specification language based on CRL (Common Representation Lan-

guage) and therefore called µCRL (micro CRL) is proposed. It has been devel-

oped to study processes with data. So the language contains only basic constructs

with an easy semantics. To obtain executability, effective µCRL has been defined.

In effective µCRL equivalence between closed data-terms is decidable and the op-

erational behaviour is finitely branching and computable. This makes effective

µCRL a good platform for tooling activities.

7.1 Introduction

In telecommunication applications the necessity of the use of formal methods has
been observed several times. For that purpose several specification languages
have been developed (SDL [6], LOTOS [15], PSF [18] and CRL [22]). These lan-
guages are designed to optimise their usability for specification purposes. This
means that they contain non-fundamental constructs to enhance the expressibil-
ity of the language.

In this paper we define a language called µCRL (micro CRL, where CRL stands
for Common Representation Language [22]) as it consists of the essence of CRL.
It has been developed under the assumption that an extensive study of the basic
constructs of specification languages will yield fundamental insights that are hard
to obtain via the languages mentioned above. These insights may assist further
development of these languages. So our language is indeed very small although
its definition still requires quite some pages. But, as µCRL only contains core
constructs, it may not be so well suited as an actual specification language.

We believe that an advantage of our ‘simple’ approach is that when in the future
several constructs that are not included in the language will be well understood
and will have a concise and natural semantics, we can add them to the language
without a time and manpower consuming redesign of existing but not optimally
devised features.

The language µCRL consists of data and processes. The data part contains
equational specifications: one can declare sorts and functions working upon these

183

184 7. The Syntax and Semantics of µCRL

sorts, and describe the meaning of these functions by equational axioms. The
process part contains processes described in the style of CCS [19], CSP [12] or
ACP [2, 3], where the particular process syntax has been taken from ACP. It
basically consists of a set of uninterpreted actions that may be parameterised by
data. These actions can represent various kinds of activities, depending on the
usage of the language. There are sequential, alternative and parallel composition
operators. Furthermore, recursive processes are specified in a simple way.

An important feature is executability. To obtain this, we define effective µCRL.
In effective µCRL it is required that the equations specifying data constitute a
semi-complete term rewriting system. This implies that data equivalence is decid-
able. Moreover, the specification of recursive processes must be guarded and sums
over data sorts must be finite. This guarantees that the operational behaviour
of every effective µCRL specification is finitely branching and computable. We
believe that effective µCRL is an excellent base for building tools.

7.2 The syntax of µCRL

In this section we present the syntax of µCRL. It contains two major com-
ponents, namely data specified by a many sorted term rewriting system and
processes which are based on process algebra [3]. The syntax is defined in the
BNF formalism. Syntactical categories are written in italics and we use a ‘.’ to
end each BNF clause. In reasoning about the syntax of µCRL we use the symbol
≡ to denote syntactic equivalence.

7.2.1 Names

We assume the existence of a set N of names that are used to denote sorts, vari-
ables, functions, processes and labels of actions. The names in N are sequences
over an alphabet not containing

⊥,+, ‖, ‖ , |, /, ., ·, δ, τ, ∂, ρ,Σ,
√
,×,→, :,=, (,), {, }, ‘,’, a space and a newline.

The space and the newline serve as separators between names and are used to
lay out specifications. The symbol ⊥ is used in the description of the semantics
and the other symbols have special functions. Moreover, N does not contain the
reserved keywords sort, proc, var, act, func, comm, rew and from.

7.2.2 Lists

In the sequel X-list , ×-X-list , and space-X-list for any syntactical category X
are defined by the following BNF syntax:

X-list ::= X | X-list , X.
×-X-list ::= X | ×-X-list ×X.

space-X-list ::= X | space-X-list X.

7.2. The syntax of µCRL 185

Lists are often described by the (informal) use of dots, e.g. b1 × ... × bm with
m ≥ 1 is a ×-X-list where b1, ..., bm are expressions in the syntactical category
X . Note that lists cannot be empty.

7.2.3 Sort specifications

A sort-specification consists of a list of names representing sorts, preceded by the
keyword sort.

sort-specification ::= sort space-name-list .

7.2.4 Function specifications

A function-specification consists of a list of function declarations. A function-
declaration consists of a name-list (the names play the role of constant and
function names), the sorts of their parameters and their target sort:

function-specification ::= func space-function-declaration-list .
function-declaration ::= name-list :→ name

| name-list : ×-name-list → name.

7.2.5 Rewrite specifications

A rewrite-specification is given by a many sorted term rewriting system. Its
syntax is given by the following BNF grammar:

rewrite-specification ::= variable-declaration-section
rewrite-rules-section.

In a variable-declaration-section all variables that are used in a rewrite-rules-
section must be declared. In such a declaration, it is also stated what the sort of
a variable is. A variable declaration section may be empty.

variable-declaration-section ::= var space-variable-declaration-list
| .

In a variable-declaration, the name-list contains the declared variables and the
name denotes their sort:

variable-declaration ::= name-list : name.

Data-terms are defined in the standard way. The name without brackets in the
syntax represents a variable or a constant.

data-term ::= name
| name(data-term-list).

186 7. The Syntax and Semantics of µCRL

The equations in a rewrite-rules-section define the meaning of functions operating
on data. The syntax of a rewrite-rules-section is given by:

rewrite-rules-section ::= rew space-rewrite-rule-list .
rewrite-rule ::= name = data-term

| name(data-term-list) = data-term.

7.2.6 Process expressions and process specifications

In this section we first define what process-expressions look like. Then we define
how these expressions can be used to construct process-specifications.

Process-expressions are defined via the following syntax explicitly taking care
of the precedence among operators:

process-expression ::= parallel-expression
| parallel-expression + process-expression.

parallel-expression ::= merge-parallel-expression
| comm-parallel-expression
| cond-expression
| cond-expression ‖ cond-expression.

merge-parallel-expression ::= cond-expression ‖ merge-parallel-expression
| cond-expression ‖ cond-expression.

comm-parallel-expression ::= cond-expression|comm-parallel-expression
| cond-expression|cond-expression.

cond-expression ::= dot-expression
| dot-expression / data-term . dot-expression.

dot-expression ::= basic-expression
| basic-expression · dot-expression.

basic-expression ::= δ

| τ

| ∂({name-list}, process-expression)
| τ({name-list}, process-expression)
| ρ({renaming-declaration-list}, process-expression)

7.2. The syntax of µCRL 187

| Σ(single-variable-declaration, process-expression)
| name
| name(data-term-list)
| (process-expression).

The + is the alternative composition. A process-expression p+q behaves exactly
as the argument that performs the first step.

The merge or parallel composition operator (‖) interleaves the behaviour of
both arguments except that some actions in the arguments may communicate,
which means that they happen at exactly the same moment and result in a
communication action. In a communication-specification it can be declared which
actions may communicate. The left merge (‖) behaves exactly as the parallel
operator, except that its first step must originate from its left argument only.
The communication merge (|) also behaves as the parallel operator, but now
the first action must be a communication between both components. The left
merge and the communication merge are added to allow proof theoretic reasoning.
It is not expected that they will be used in specifications. In the sequel the
syntactical category parallel-expression also refers to merge-parallel-expression
and comm-parallel-expression.

The conditional construct dot-expression / data-term . dot-expression is an al-
ternative way to write an if - then - else-expression and is introduced by Hoare
cs. [13] (see also [1]). The data-term is supposed to be of the standard sort of
the Booleans (Bool). The /-part is executed if the data-term evaluates to true
(T) and the .-part is executed if the data-term evaluates to false (F).

The sequential composition operator ‘·’ says that first its left hand side can
perform actions, and if it terminates then the second argument continues.

The constant δ describes the process that cannot do anything, especially, it
cannot terminate. For instance, the process δ · p can never perform an action of
p. We also expect that δ is not used in specifications, but in reasoning δ is very
handy to indicate that at a certain place a deadlock occurs.

The constant τ represents some internal activity that cannot be observed by
the environment. It is therefore called the internal action.

The encapsulation operator ∂ is used to prevent actions of which the name
is mentioned in its first argument from happening. This enables one to force
actions into a communication.

The hiding operator, also denoted by a τ , is used to rename actions of which
the name is mentioned into an internal action.

The renaming operator ρ is more general. It renames the names of actions
according to the scheme in its first argument. A renaming-declaration is given
by the following syntax:

renaming-declaration ::= name → name.

188 7. The Syntax and Semantics of µCRL

The first mentioned name is renamed to the second one.
The sum operator is used to declare a variable of a specific sort for use in a

process-expression. A single-variable-declaration is defined by:

single-variable-declaration ::= name : name.

The scope of the variable is exactly the process-expression mentioned in the sum
operator. The behaviour of this construct is a choice between the behaviours
of process-expression in which each value of the sort of the variable has been
substituted for the variable.

The constructs name and name(data-term-list) are either process instanti-
ations or actions: name refers to a declared process (or to an action) and
data-term-list contains the arguments of the process identifier (or the action).

The syntax of process-expressions says that · binds strongest, the conditional
construct binds stronger than the parallel operators which in turn bind stronger
than +.

A process-specification is a list of (parameterised) names, which are used as
process identifiers, that are declared together with their bodies.

process-specification ::= proc space-process-declaration-list .
process-declaration ::= name = process-expression

| name(single-variable-declaration-list) =
process-expression.

7.2.7 Action specification

In an action-specification all actions that are used are declared. Actions may be
parameterised by data, and in that case we must declare on which sorts an action
depends. An action-specification has the following form:

action-specification ::= act space-action-declaration-list .
action-declaration ::= name

| name-list : ×-name-list .

7.2.8 Communication specification

A communication-specification prescribes how actions may communicate. It only
describes communication on the level of names of actions, e.g. if it is specified that
in|out = com then each action in(t1, ..., tk) can communicate with out(t′1, ..., t

′
m)

to com(t1, ..., tk) provided k = m and ti and t′i denote the same data-element for
i = 1, ..., k.

communication-specification ::= comm space-communication-declaration-list .
communication-declaration ::= name|name = name.

In the last rule the | is a language symbol and should not be confused with the
| used in sets and the BNF-syntax.

7.2. The syntax of µCRL 189

7.2.9 Specifications

Specifications are entities in which data, processes, actions etc. can be declared.
The syntax of a specification is:

specification ::= sort-specification
| function-specification
| rewrite-specification
| action-specification
| communication-specification
| process-specification
| specification specification.

7.2.10 The standard sort Bool

In every specification the following function and sort declarations must be in-
cluded. The reason for this special treatment of the sort Bool is that we want to
guarantee that true and false as booleans are different. This can only be achieved
if the names for true, false and the sort of booleans are predetermined.

sort Bool
func T :→ Bool

F :→ Bool

7.2.11 An example

As an example we give a specification of a data transfer process. Data-elements
of sort D are transferred from in to out.

sort Bool
func T, F :→ Bool
sort D
func d1, d2, d3 :→ D
act in, out : D
proc TR =

∑
(x : D, in(x) · out(x) · TR)

7.2.12 The from construct

For a process-expression or a data-term t, we write t from E for a specification
E where we mean the process-expression or data-term t as defined in E. Often,
it is clear from the context to which specification E the item t belongs. In this
case we generally write t without explicit reference to E.

190 7. The Syntax and Semantics of µCRL

7.3 Static semantics

Not every specification is necessarily correctly defined. It may be that objects are
not declared, that they are declared at several places or are not used in a proper
way. In this section we define under which circumstances a specification does
not have these problems and hence has a correct static semantics. Furthermore,
we define some functions that will be used in the definition of the semantics of
µCRL.

7.3.1 The signature of a specification

The signature of a specification is an important ingredient in defining the static
semantics. It consists of a five-tuple of which each component is a set containing
all elements of a main syntactical category declared in a specification E.

Definition 7.3.1. Let E be a specification. The signature Sig(E) = (Sort, Fun,
Act, Comm,Proc) of E is defined as follows:

• If E ≡ sort n1 ... nm with m ≥ 1, then Sig(E) def= ({n1, ..., nm}, ∅, ∅, ∅, ∅).

• If E ≡ func fd1 ... fdm with m ≥ 1, then Sig(E) def= (∅, Fun, ∅, ∅, ∅), where

Fun
def= {nij :→ Si | fd i ≡ ni1, ..., nili :→ Si, 1 ≤ i ≤ m, 1 ≤ j ≤ li}
∪ {nij : Si1 × ...× Siki → Si | fd i ≡ ni1, ..., nili :

Si1 × ...× Siki → Si, 1 ≤ i ≤ m, 1 ≤ j ≤ li}.

• If E is a rewrite-specification, then Sig(E) def= (∅, ∅, ∅, ∅, ∅).

• If E ≡ act ad1 ... adm with m ≥ 1, then Sig(E) def= (∅, ∅, Act, ∅, ∅), where

Act
def= {ni | adi ≡ ni, 1 ≤ i ≤ m}
∪ {nij : Si1 × ...× Siki |

adi ≡ ni1, ..., nili : Si1 × ...× Siki , 1 ≤ i ≤ m, 1 ≤ j ≤ li}.

• If E ≡ comm cd1 ... cdm with m ≥ 1, then
Sig(E) def= (∅, ∅, ∅, {cdi | 1 ≤ i ≤ m}, ∅).

• If E ≡ proc pd1 ... pdm with m ≥ 1, then Sig(E) def= (∅, ∅, ∅, ∅, {pdi | 1 ≤
i ≤ m}).

• If E ≡ E1 E2 with Sig(Ei) = (Sorti, Funi, Acti, Commi, P roci) for i =
1, 2, then

Sig(E) def= (Sort1 ∪ Sort2, Fun1 ∪ Fun2,
Act1 ∪Act2, Comm1 ∪ Comm2, P roc1 ∪ Proc2).

7.3. Static semantics 191

Definition 7.3.2. Let Sig = (Sort, Fun,Act, Comm,Proc) be a signature. We
write

Sig.Sort for Sort,
Sig.Fun for Fun,
Sig.Act for Act,
Sig.Comm for Comm,
Sig.Proc for Proc.

7.3.2 Variables

Variables play an important role in specifications. The next definition says which
names can play the role of a variable without confusion with defined constants.
Moreover, variables must have an unambiguous and declared sort.

Definition 7.3.3. Let Sig be a signature. A set V containing elements 〈x : S〉
with x and S names, is called a set of variables over Sig iff for each 〈x : S〉 ∈ V:

• for each name S′ and process-expression p it holds that x :→ S′ /∈ Sig.Fun,
x /∈ Sig.Act and x = p /∈ Sig.Proc,

• S ∈ Sig.Sort,

• for each name S′ such that S′ 6≡ S it holds that 〈x : S′〉 6∈ V.

Definition 7.3.4. Let var-dec be a variable-declaration-section. The function
Vars is defined by:

Vars(var-dec) def=


∅ if var-dec is empty,
{〈xij : Si〉 | 1 ≤ i ≤ m,

1 ≤ j ≤ li} if for some m ≥ 1 var-dec ≡
var x11, ..., x1l1 :

S1 ... xm1, ..., xmlm : Sm.

In the following definitions we give functions yielding the sort and the variables
in a data-term t. If for some reason no answer can be obtained, for instance
because an undeclared name appears in t, a ⊥ results. Of course this only works
properly if ⊥ does not occur in names.

Definition 7.3.5. Let t be a data-term and Sig a signature. Let V be a set of
variables over Sig. We define:

sortSig,V(t) def=



S if t ≡ x and 〈x : S〉 ∈ V,
S if t ≡ n, n :→ S ∈ Sig.Fun and for no

S′ 6≡ S n :→ S′ ∈ Sig.Fun,
S if t ≡ n(t1, ..., tm),

n : sortSig,V(t1)× ...× sortSig,V(tm)→ S ∈ Sig.Fun
and for no S′ 6≡ S
n : sortSig,V(t1)× ...× sortSig,V(tm)→ S′ ∈ Sig.Fun,

⊥ otherwise.

192 7. The Syntax and Semantics of µCRL

Definition 7.3.6. Let Sig be a signature, V a set of variables over Sig and let
t be a data-term.

VarSig,V(t) def=


{〈x : S〉} if t ≡ x and 〈x : S〉 ∈ V,
∅ if t ≡ n and n :→ S ∈ Sig.Fun,⋃

1≤i≤m VarSig,V(ti) if t ≡ n(t1, ..., tm),
{⊥} otherwise.

We call a data-term t closed w.r.t. a signature Sig and a set of variables V iff
VarSig,V(t) = ∅. Note that VarSig,V(t) ⊆ V ∪ {⊥} for any data-term t.

7.3.3 Static semantics

A specification must be internally consistent. This means that all objects that are
used must be declared exactly once and are used such that the sorts are correct. It
also means that action, process, constant and variable names cannot be confused.
Furthermore, it means that communications are specified in a functional way
and that it is guaranteed that the rewrite rules satisfy a usual condition that the
variables that are used at the right hand side of a equality sign must also occur
at the left hand side. Because all these properties can be statically decided, a
specification that is internally consistent is called SSC (Statically Semantically
Correct). For a better understanding of the next definition, it may be helpful to
read definition 7.3.8 first.

Definition 7.3.7. Let Sig be a signature and V be a set of variables over
Sig. We define the predicate ‘is SSC w.r.t. Sig’ inductively over the syntax of a
specification.

• A specification sort n1 ... nm with m ≥ 1 is SSC w.r.t. Sig iff all names
n1, ..., nm are pairwise different.

• A specification func n11, ..., n1l1 : S11 × ...× S1k1 → S1

...
nm1, ..., nmlm : Sm1 × ...× Smkm → Sm

with m ≥ 1, li ≥ 1, ki ≥ 0 for 1 ≤ i ≤ m is SSC w.r.t. Sig iff

– for all 1 ≤ i ≤ m the names ni1, ..., nili are pairwise different,

– for all 1 ≤ i < j ≤ m it holds that if nik ≡ njk′ for some 1 ≤ k ≤ li
and 1 ≤ k′ ≤ lj , then either ki 6= kj , or Sil 6≡ Sjl for some 1 ≤ l ≤ ki,

– for all 1 ≤ i ≤ m and 1 ≤ j ≤ ki it holds that Sij ∈ Sig.Sort and
Si ∈ Sig.Sort.

• A specification of the form: var-dec
rew-rul

where var-dec is a variable-declaration-section and rew-rul is a rewrite-
rules-section is SSC w.r.t. Sig iff

7.3. Static semantics 193

– var-dec is SSC w.r.t. Sig,

– rew-rul is SSC w.r.t. Sig and Vars(var-dec).

? The empty variable-declaration-section is SSC w.r.t. Sig.

A variable-declaration-section var n11, ..., n1k1 : S1

...
nm1, ..., nmkm : Sm

with m ≥ 1, ki ≥ 1 for 1 ≤ i ≤ m is SSC w.r.t. Sig iff

– nij 6≡ ni′j′ whenever i 6= i′ or j 6= j′ for 1 ≤ i ≤ m, 1 ≤ i′ ≤ m,
1 ≤ j ≤ ki and 1 ≤ j′ ≤ ki′ ,

– the set Vars(var n11, ..., n1k1 : S1 ... nm1, ..., nmkm : Sm) is a set of
variables over Sig.

? A rewrite-rules-section rew rw1 ... rwm with m ≥ 1 is SSC w.r.t. Sig
and V iff

– if rwi ≡ n = t for some 1 ≤ i ≤ m, then

∗ n :→ sortSig,∅(t) ∈ Sig.Fun,
∗ t is SSC w.r.t. Sig and ∅,

– if rwi ≡ n(t1, ..., tki) = t for some 1 ≤ i ≤ m and ki ≥ 1, then

∗ n : sortSig,V(t1)× ...× sortSig,V(tki)→ sortSig,V(t) ∈ Sig.Fun,
∗ t, tj (1 ≤ j ≤ ki) are SSC w.r.t. Sig and V,
∗ VarSig,V(t) ⊆

⋃
1≤j≤ki VarSig,V(tj).

? A data-term n with n a name is SSC w.r.t. Sig and V iff 〈n : S〉 ∈ V for
some S, or n :→ sortSig,V(n) ∈ Sig.Fun.

A data-term n(t1, ..., tm) (m ≥ 1) is SSC w.r.t. Sig and V iff
n : sortSig,V(t1) × ... × sortSig,V(tm) → sortSig,V(n(t1, ..., tm)) ∈ Sig.Fun
and all ti (1 ≤ i ≤ m) are SSC w.r.t. Sig and V.

• A specification act ad1 ... adm with m ≥ 1 is SSC w.r.t. Sig iff

– for all 1 ≤ i ≤ m the action-declaration adi is SSC w.r.t. Sig,

– for all 1≤ i<j≤ m it holds that Sig(act adi).Act∩Sig(act adj).Act =
∅.

? An action-declaration n is SSC w.r.t. Sig iff for each name S′ it holds that
n :→ S′ /∈ Sig.Fun.

An action-declaration n1, ..., nm : S1 × ...× Sk with k,m ≥ 1 is SSC w.r.t.
Sig iff

– for all 1 ≤ i < j ≤ m it holds that ni 6≡ nj ,

194 7. The Syntax and Semantics of µCRL

– for all 1 ≤ i ≤ k it holds that Si ∈ Sig.Sort,
– for all 1 ≤ i ≤ m and for each name S′ it holds that ni : S1×...×Sk →
S′ /∈ Sig.Fun.

• A specification comm n11|n12 = n13 ... nm1|nm2 = nm3 with m ≥ 1 is
SSC w.r.t. Sig iff

– for each 1 ≤ i < j ≤ m it is not the case that ni1 ≡ nj1 and ni2 ≡ nj2,
or ni1 ≡ nj2 and ni2 ≡ nj1,

– for each 1 ≤ i ≤ m either ni1 ∈ Sig.Act or there is a k ≥ 1 such that
ni1 : S1 × ...× Sk ∈ Sig.Act,

– for each 1 ≤ i ≤ m, k ≥ 1 and names S1, ..., Sk it holds that if
ni1 : S1 × ... × Sk ∈ Sig.Act then ni2 : S1 × ... × Sk ∈ Sig.Act and
ni3 : S1 × ...× Sk ∈ Sig.Act,

– for each 1 ≤ i ≤ m, k ≥ 1 and names S1, ..., Sk it holds that if
ni2 : S1 × ... × Sk ∈ Sig.Act then ni1 : S1 × ... × Sk ∈ Sig.Act and
ni3 : S1 × ...× Sk ∈ Sig.Act,

– for each 1 ≤ i ≤ m it holds that if ni1 ∈ Sig.Act then ni2 ∈ Sig.Act
and ni3 ∈ Sig.Act,

– for each 1 ≤ i ≤ m it holds that if ni2 ∈ Sig.Act then ni1 ∈ Sig.Act
and ni3 ∈ Sig.Act.

• A specification proc pd1 ... pdm with m ≥ 1 is SSC w.r.t. Sig iff

– for each 1 ≤ i < j ≤ m:

∗ if pdi ≡ ni = pi and pdj ≡ nj = pj then ni 6≡ nj ,
∗ if for some k ≥ 1 it holds that pdi ≡ ni(x1 : S1, ..., xk : Sk) = pi

and pdj ≡ nj(x′1 : S1, ..., x
′
k : Sk) = pj then ni 6≡ nj ,

∗ for all names S′ it holds that ni :→ Si /∈ Sig.Fun,

– if pdi ≡ ni = pi (1 ≤ i ≤ m), then ni 6∈ Sig.Act and pi is SSC w.r.t.
Sig and ∅,

– if pdi ≡ ni(xi1 : Si1, ..., xiki : Siki) = pi (1 ≤ i ≤ m), then

∗ ni : Si1 × ...× Siki 6∈ Sig.Act,
∗ for all names S′ it holds that ni : Si1× ...×Siki → S′ /∈ Sig.Fun,
∗ the names xi1, ..., xiki are pairwise different and {〈xij : Sij〉 | 1 ≤
j ≤ ki} is a set of variables over Sig,

∗ pi is SSC w.r.t. Sig and {〈xij : Sij〉 | 1 ≤ j ≤ ki}.

? A process-expression p1 + p2, parallel-expressions p1 ‖ p2, p1 ‖ p2, p1 | p2, a
dot-expression p1 · p2 are SSC w.r.t. Sig and V iff

– p1 is SSC w.r.t. Sig and V,

– p2 is SSC w.r.t. Sig and V.

7.3. Static semantics 195

A cond-expression p1 / t . p2 is SSC w.r.t. Sig and V iff

– p1 is SSC w.r.t. Sig and V,

– p2 is SSC w.r.t. Sig and V,

– t is SSC w.r.t. Sig and V and sortSig,V(t) = Bool.

The basic-expressions δ and τ are SSC w.r.t. Sig and V.

The basic-expressions ∂({n1, ..., nm}, p) and τ({n1, ..., nm}, p) with m ≥ 1
are SSC w.r.t. Sig and V iff

– for all 1 ≤ i < j ≤ m ni 6≡ nj ,
– for 1 ≤ i ≤ m either ni ∈ Sig.Act or ni : S1 × ... × Sk ∈ Sig.Act for

some k ≥ 1 and names S1, ..., Sk,

– p is SSC w.r.t. Sig and V.

The basic-expression ρ({n1 → n′1, ..., nm → n′m}, p) is SSC w.r.t. Sig and
V iff

– for 1 ≤ i ≤ m either ni ∈ Sig.Act or ni : S1 × ... × Sk ∈ Sig.Act for
some k ≥ 1 and names S1, ..., Sk,

– for each 1 ≤ i < j ≤ m it holds that ni 6≡ nj ,
– for 1 ≤ i ≤ m, k ≥ 1 and names S1, .., Sk it holds that if ni : S1× ...×
Sk ∈ Sig.Act, then also n′i : S1 × ...× Sk ∈ Sig.Act,

– for 1 ≤ i ≤ m it holds that if ni ∈ Sig.Act, then also n′i ∈ Sig.Act,
– p is SSC w.r.t. Sig and V.

A basic-expression Σ(x : S, p) is SSC w.r.t. Sig and V iff

– V\{〈x : S′〉 | S′ a name} ∪ {〈x : S〉} is a set of variables over Sig,

– p is SSC w.r.t. Sig and V\{〈x : S′〉 | S′ a name} ∪ {〈x : S〉}.

A basic-expression n is SSC w.r.t. Sig and V iff n = p ∈ Sig.Proc for some
process-expression p or n ∈ Sig.Act.
A basic-expression n(t1, ..., tm) with m ≥ 1 is SSC w.r.t. Sig and V iff

– n(x1 : sortSig,V(t1), ..., xm : sortSig,V(tm)) = p ∈ Sig.Proc for some
names x1, ..., xm and process-expression p, or
n : sortSig,V(t1)× ...× sortSig,V(tm) ∈ Sig.Act,

– for 1 ≤ i ≤ m the data-term ti is SSC w.r.t. Sig and V.

A basic-expression (p) is SSC w.r.t. Sig and V iff p is SSC w.r.t. Sig and
V.

• A specification E1 E2 is SSC w.r.t. Sig iff

196 7. The Syntax and Semantics of µCRL

– E1 and E2 are SSC w.r.t. Sig,

– Sig(E1).Sort ∩ Sig(E2).Sort = ∅,

– if n : S1 × ... × Sm → S ∈ Sig(E1).Fun for some m ≥ 0 then n :
S1 × ...× Sm → S′ /∈ Sig(E2).Fun for any name S′,

– Sig(E1).Act ∩ Sig(E2).Act = ∅,

– if n1|n2 = n3 ∈ Sig(E1).Comm then for any names n′3 and n′′3
n1|n2 = n′3 /∈ Sig(E2).Comm and n2|n1 = n′′3 /∈ Sig(E2).Comm,

– if pd1 ∈ Sig(E1).P roc and pd2 ∈ Sig(E2).P roc, then

∗ if pd1 ≡ n1 = p1 and pd2 ≡ n2 = p2, then n1 6≡ n2,
∗ if for some m ≥ 1 pd1 ≡ n1(x1 : S1, ..., xm : Sm) = p1 and
pd2 ≡ n2(x′1 : S1, ..., x

′
m : Sm) = p2, then n1 6≡ n2.

Definition 7.3.8. Let E be a specification. We say that E is SSC iff E is SSC
w.r.t. Sig(E).

The following lemma is helpful in checking that the predicate ‘is SSC’ is correctly
defined.

Lemma 7.3.9. Let Sig be a signature and V be a set of variables over Sig.
Let t be a data-term that is SSC w.r.t. Sig and V. Then sortSig,V(t) 6=⊥ and
⊥/∈ VarSig,V(t).

7.3.4 The communication function

The following definition helps us in guaranteeing that the communication function
is commutative and associative. This implies that the merge is also commutative
and associative which allows us to write parallel processes without brackets as is
done in the syntax (cf. LOTOS [15] where this is not the case).

Definition 7.3.10. Let Sig be a signature. The set Sig.Comm∗ is defined by:

Sig.Comm∗
def= {n1|n2 = n3, n2|n1 = n3 | n1|n2 = n3 ∈ Sig.Comm}.

So, in Sig.Comm∗ communication is always commutative. We say that a speci-
fication E is communication-associative iff

n1|n2 = n, n|n3 = n′ ∈ Sig(E).Comm∗ ⇒
∃n′′ : n2|n3 = n′′, n1|n′′ = n′ ∈ Sig(E).Comm∗.

With the condition that E is SSC this exactly implies that communication is
associative.

7.4. Well-formed µCRL specifications 197

7.4 Well-formed µCRL specifications

We define what well-formed specifications are. We only provide well-formed
specifications with a semantics. Well-formedness is a decidable property.

Definition 7.4.1. Let E be a specification that is SSC. We say that E has no
empty sorts iff for all S ∈ Sig(E).Sort there is a data-term t that is SSC w.r.t.
Sig(E) and ∅ such that sortSig(E),∅(t) ≡ S.

Definition 7.4.2. Let E be a specification. E is called well-formed iff

• E is SSC,

• E is communication-associative,

• E has no empty sorts,

• Bool ∈ Sig(E).Sort,

• T :→ Bool ∈ Sig(E).Fun and

• F :→ Bool ∈ Sig(E).Fun.

7.5 Algebraic semantics

In this section we present the semantics of well-formed µCRL specifications.
Given a signature Sig we introduce the class of Sig-algebras. Then for a well-
formed specification E with Sig(E) = Sig, we define the subclass of Sig-algebras
that form a model for the data part of E and in which the terms T and F of sort
Bool are interpreted different. Then given such a model, we give an operational
semantics for process-expressions in E.

7.5.1 Algebras

First we adapt the standard definitions of algebras etc. to µCRL (see e.g. [8] for
these definitions).

Definition 7.5.1. Let E be a well-formed specification. A Sig(E)-algebra AA is
a structure containing

• for each S ∈ Sig(E).Sort a non-empty domain D(AA,S),

• for each n :→ S ∈ Sig(E).Fun a constant C(AA,n) ∈ D(AA,S),

• for each n : S1×...×Sm → S ∈ Sig(E).Fun a function F (AA,n : S1×...×Sm)
from
D(AA,S1)× ...×D(AA,Sm) to D(AA,S).

For two elements a1 ∈ D(AA,S1) and a2 ∈ D(AA,S2), we write a1 = a2 iff S1 ≡ S2

and a1 and a2 represent exactly the same element.

198 7. The Syntax and Semantics of µCRL

Definition 7.5.2. Let E be a well-formed specification and let AA be a Sig(E)-
algebra. We define the interpretation [[·]]AA from data-terms that are SSC w.r.t.
Sig(E) and ∅ into the domains of AA as follows:

• if t ≡ n, then [[t]]AA
def= C(AA,n),

• if t ≡ n(t1, ..., tm) for some m ≥ 1, then [[t]]AA
def= F (AA,n : sortSig(E),∅(t1)×

...× sortSig(E),∅(tm))([[t1]]AA, ..., [[tm]]AA).

We say that a Sig(E)-algebra AA is minimal iff for each a ∈ D(AA,S) and S ∈
Sig(E).Sort, there is some data-term t that is SSC w.r.t. Sig(E) and ∅ such
that [[t]]AA = a. For data-terms t1, t2 that are SSC w.r.t. Sig(E) and ∅ we write
AA |= t1 = t2 iff [[t1]]AA = [[t2]]AA.

Definition 7.5.3. Let E be a well-formed specification and let AA be a minimal
Sig(E)-algebra. A function r mapping pairs of a sort S and an element from
D(AA,S) to data-terms that are SSC w.r.t. to Sig(E) and ∅ is called a represen-
tation function of E and AA iff AA |= t = r(sortSig(E),∅(t), [[t]]AA) for each data-term
t that is SSC w.r.t. Sig(E) and ∅.

7.5.2 Substitutions

We define substitutions on data-terms. These substitutions are immediately ex-
tended to process-expressions because this is required for the definition of the
operational semantics.

Definition 7.5.4. Let E be a well-formed specification and V a set of variables
over Sig(E). Let Term be the set of data-terms that are SSC w.r.t. Sig(E) and
V. A substitution σ over Sig(E) and V is a mapping

σ : V → Term

such that for each 〈x : S〉 ∈ V it holds that sortSig(E),V(σ(〈x : S〉)) = S.
Substitutions are extended to data-terms by:

σ(x) def= σ(〈x : S〉) if 〈x : S〉 ∈ V for some name S,
σ(n) def= n if n :→ S ∈ Sig(E).Fun,
σ(n(t1, ..., tm)) def= n(σ(t1), ..., σ(tm)).

Definition 7.5.5. Let E be a well-formed specification and V a set of variables
over Sig(E). Let σ be a substitution over Sig(E) and V. We extend σ to
process-expressions that are SSC w.r.t. Sig(E) and V as follows:

• If p12p2 is a process-expression, a parallel-expression or a dot-expression
(2 ∈ {+, ‖, ‖ , |, ·}), then σ(p12p2) def= σ(p1)2σ(p2),

• σ(p1 / t . p2) def= σ(p1) / σ(t) . σ(p2) for a cond-expression p1 / t . p2,

7.5. Algebraic semantics 199

• σ(δ) def= δ and σ(τ) def= τ for basic-expressions δ and τ ,

• if 2(gl, p) is a basic-expression (2 ∈ {∂, τ, ρ}), then
σ(2(gl, p)) def= 2(gl, σ(p)),

• σ(Σ(x : S, p)) def= Σ(x : S, σ′(p)) where σ′ is defined by

σ′(〈x′ : S′〉) def=
{
〈x : S〉 if x′ ≡ x
σ(〈x′ : S′〉) otherwise,

for a basic-expression Σ(x : S, p),

• σ(n(t1, ..., tm)) def= n(σ(t1), ..., σ(tm)) for a basic-expression n(t1, ..., tm),

• σ(n) def= n for a basic-expression n,

• σ((p)) def= (σ(p)) for a basic-expression (p).

The validity of the following lemma gives us confidence that substitutions are
indeed correctly defined.

Lemma 7.5.6. Let E be a well-formed specification and V a set of variables
over Sig(E). Let σ be a substitution over Sig(E) and V.

• For any data-term t that is SSC w.r.t. Sig(E) and V, σ(t) is also a data-term
that is SSC w.r.t. Sig(E) and V. Moreover,

sortSig(E),V(t) ≡ sortSig(E),V(σ(t)).

• For any process-expression p that is SSC w.r.t. Sig(E) and V, σ(p) is a
process-expression that is SSC w.r.t. Sig(E) and V.

7.5.3 Boolean preserving models

A Sig(E)-algebra AA is a model of a well-formed specification E iff the equations
defining the data in E hold in AA. Moreover, we say that AA is boolean preserving iff
T and F of sort Bool represent exactly the two different elements of D(AA,Bool).
Note that there are specifications which have no boolean preserving models of
E, for instance a specification containing the equation T = F . For µCRL we are
only interested in the minimal Sig(E)-algebras that are boolean preserving.

First we define the function rewrites that extracts the rewrite clauses together
with declared variables from a specification.

Definition 7.5.7. We define the function rewrites on a specification E induc-
tively as follows:

• If E ≡ sort-spec with sort-spec a sort-specification, then rewrites(E) def= ∅.

200 7. The Syntax and Semantics of µCRL

• If E ≡ func-spec with func-spec a function-specification,
then rewrites(E) def= ∅.

• If E ≡ V R with V a variable-declaration-section and R a rewrite-rules-
section with R ≡ rew rd1 ... rdm for some m ≥ 1, then

rewrites(E) def= {〈{rdi | 1 ≤ i ≤ m},Vars(V)〉}.

• If E ≡ act-spec with act-spec an action-specification, then rewrites(E) def=
∅.

• If E ≡ comm-spec with comm-spec a communication-specification, then
rewrites(E) def= ∅.

• If E ≡ proc-spec with proc-spec a process-specification, then rewrites(E) def=
∅.

• If E ≡ E1 E2 where E1 and E2 are specifications, then rewrites(E) def=
rewrites(E1) ∪ rewrites(E2).

Definition 7.5.8. Let E be a well-formed specification. A Sig(E)-algebra AA is a
model of E, notation AA |=D E, iff whenever t = t′ ∈ R with 〈R,V〉 ∈ rewrites(E),
then for any substitution σ over Sig(E) and V such that VarSig(E),V(σ(t)) =
VarSig(E),V(σ(t′)) = ∅ it holds that AA |= σ(t) = σ(t′).

We write AA |=D E with a subscript D because the model only concerns the data
in E.

Definition 7.5.9. Let E be a well-formed specification. A Sig(E)-algebra AA is
called boolean preserving w.r.t. E iff

• it is not the case that AA |= T = F ,

• |D(AA,Bool)| = 2, i.e. T and F are exactly the two elements of sort Bool.

7.5.4 The process part

In this section we define for each process-expression p that is SSC w.r.t. Sig(E)
and ∅, and each minimal model AA of E that preserves the booleans and where E
is some well-formed specification, a meaning in terms of a referential transition
system (cf. the operational semantics in [2, 21, 22]).

Definition 7.5.10. A transition system A is a quadruple (S,L,−→, s) where

– S is a set of states,

– L is a set of labels,

7.5. Algebraic semantics 201

– −→⊆ S × L× S is a transition relation,

– s ∈ S is the initial state.

Elements (s′, l, s′′) ∈−→ are generally written as s′
l
−→ s′′.

Definition 7.5.11. Let E be a well-formed specification, AA be a minimal model
of E that is boolean preserving and r be a representation function of E and AA.
Let p be a process-expression that is SSC w.r.t. Sig(E) and ∅. The meaning of
p from E in AA with representation function r is the referential transition system
A(AA, r, p from E) defined by

(S,L,−→, s)

where

– S
def= {q | where q is a process-expression that is SSC w.r.t. Sig(E) and

∅} ∪ {
√
},

– L
def= {n(t1, ..., tm) | m ≥ 0, n ∈ Sig(E).Act and for 1 ≤ i ≤ m it holds that

ti ≡ r(Si, a) for some a ∈ D(AA,Si) where Si ≡ sortSig(E),∅(ti)} ∪
{τ,
√
},

– s
def= p,

– −→ is the transition relation that contains exactly all transitions provable
using the rules below (see for provability e.g. [9]). Let p, p′, q, q′ range over
the set S \ {

√
}, P is a process-expression that is SSC w.r.t. Sig(E) and

some set of variables over Sig(E), l ranges over the set L of labels, n, n1, n2

are names, m ≥ 0 and t1, ..., tm, u1, ..., um are data-terms (note that there
is no rule for δ):

•
√ √

−→ δ.

• τ
τ
−→
√

.

• n
n()
−→
√

if n ∈ Sig(E).Act,

- n(u1, ..., um)
n(t1,...,tm)
−→

√
with m ≥ 1 if

∗ n : sortSig(E),∅(u1)× ...× sortSig(E),∅(um) ∈ Sig(E).Act,
∗ ti ≡ r(sortSig(E),∅(ui), [[ui]]AA).

•
p

l
−→ p′

n
l
−→ p′

if n = p ∈ Sig(E).P roc,

-
p

l
−→
√

n
l
−→
√ if n = p ∈ Sig(E).P roc,

202 7. The Syntax and Semantics of µCRL

-
σ(P)

l
−→ p′

n(u1, ..., um)
l
−→ p′

with m ≥ 1 if

∗ n(x1 : S1, ..., xm : Sm) = P ∈ Sig(E).P roc
where Si = sortSig(E),∅(ui) for all 1 ≤ i ≤ m,

∗ there is a substitution σ over Sig(E) and the set of variables
{〈x1 : S1〉, ..., 〈xm : Sm〉} such that σ(〈xi : Si〉) ≡ ui for 1 ≤ i ≤ m
where Si = sortSig(E),∅(ui),

-
σ(P)

l
−→
√

n(u1, ..., um)
l
−→
√ with m ≥ 1 if

∗ n(x1 : S1, ..., xm : Sm) = P ∈ Sig(E).P roc
where Si = sortSig(E),∅(ui) for all 1 ≤ i ≤ m,

∗ there is a substitution σ over Sig(E) and the set of variables
{〈x1 : S1〉, ..., 〈xm : Sm〉} such that σ(〈xi : Si〉) ≡ ui for 1 ≤ i ≤ m
where Si = sortSig(E),∅(ui).

•
p

l
−→ p′

p+ q
l
−→ p′

,

-
p

l
−→
√

p+ q
l
−→
√ ,

-
q

l
−→ q′

p+ q
l
−→ q′

,

-
q

l
−→
√

p+ q
l
−→
√ .

•
p

l
−→ p′

p · q
l
−→ p′ · q

,

-
p

l
−→
√

p · q
l
−→ q

.

•
p

l
−→ p′

p / t . q
l
−→ p′

if AA |= t = T ,

-
p

l
−→
√

p / t . q
l
−→
√ if AA |= t = T ,

-
q

l
−→ q′

p / t . q
l
−→ q′

if AA |= t = F ,

7.5. Algebraic semantics 203

-
q

l
−→
√

p / t . q
l
−→
√ if AA |= t = F .

•
p

l
−→ p′

p ‖ q
l
−→ p′ ‖ q

,

-
q

l
−→ q′

p ‖ q
l
−→ p ‖ q′

,

-
p

l
−→
√

p ‖ q
l
−→ q

,

-
q

l
−→
√

p ‖ q
l
−→ p

,

-
p
n1(t1,...,tm)
−→ p′ q

n2(t1,...,tm)
−→ q′

p ‖ q
n(t1,...,tm)
−→ p′ ‖ q′

if n1|n2 = n ∈ Sig(E).Comm∗,

-
p
n1(t1,...,tm)
−→

√
q
n2(t1,...,tm)
−→ q′

p ‖ q
n(t1,...,tm)
−→ q′

if n1|n2 = n ∈ Sig(E).Comm∗,

-
p
n1(t1,...,tm)
−→ p′ q

n2(t1,...,tm)
−→

√

p ‖ q
n(t1,...,tm)
−→ p′

if n1|n2 = n ∈ Sig(E).Comm∗,

-
p
n1(t1,...,tm)
−→

√
q
n2(t1,...,tm)
−→

√

p ‖ q
n(t1,...,tm)
−→

√ if n1|n2 = n ∈ Sig(E).Comm∗.

•
p

l
−→ p′

p ‖ q
l
−→ p′ ‖ q

,

-
p

l
−→
√

p ‖ q
l
−→ q

.

•
p
n1(t1,...,tm)
−→ p′ q

n2(t1,...,tm)
−→ q′

p|q
n(t1,...,tm)
−→ p′ ‖ q′

if n1|n2 = n ∈ Sig(E).Comm∗,

-
p
n1(t1,...,tm)
−→

√
q
n2(t1,...,tm)
−→ q′

p|q
n(t1,...,tm)
−→ q′

if n1|n2 = n ∈ Sig(E).Comm∗,

204 7. The Syntax and Semantics of µCRL

-
p
n1(t1,...,tm)
−→ p′ q

n2(t1,...,tm)
−→

√

p|q
n(t1,...,tm)
−→ p′

if n1|n2 = n ∈ Sig(E).Comm∗,

-
p
n1(t1,...,tm)
−→

√
q
n2(t1,...,tm)
−→

√

p|q
n(t1,...,tm)
−→

√ if n1|n2 = n ∈ Sig(E).Comm∗.

•
p

l
−→ p′

τ({n1, ..., nk}, p)
l
−→ τ({n1, ..., nk}, p′)

if l ≡ n(t1, ..., tm) and n 6≡ ni for all 1 ≤ i ≤ k, or l ≡ τ ,

-
p

l
−→
√

τ({n1, ..., nk}, p)
l
−→
√

if l ≡ n(t1, ..., tm) and n 6≡ ni for all 1 ≤ i ≤ k, or l ≡ τ ,

-
p
n(t1,...,tm)
−→ p′

τ({n1, ..., nk}, p)
τ
−→ τ({n1, ..., nk}, p′)

if n ≡ ni for some 1 ≤ i ≤

k,

-
p
n(t1,...,tm)
−→

√

τ({n1, ..., nk}, p)
τ
−→
√ if n ≡ ni for some 1 ≤ i ≤ k.

•
p

l
−→ p′

ρ({n1 → n′1, ..., nk → n′k}, p)
l
−→ ρ({n1 → n′1, ..., nk → n′k}, p′)

if l ≡ n(t1, ..., tm) and n 6≡ ni for all 1 ≤ i ≤ k, or l ≡ τ ,

-
p

l
−→
√

ρ({n1 → n′1, ..., nk → n′k}, p)
l
−→
√

if l ≡ n(t1, ..., tm) and n 6≡ ni for all 1 ≤ i ≤ k, or l ≡ τ ,

-
p
n(t1,...,tm)
−→ p′

ρ({n1 → n′1, ..., nk → n′k}, p)
n′(t1,...,tm)
−→ ρ({n1 → n′1, ..., nk → n′k}, p′)

if n ≡ ni and n′ ≡ n′i for some 1 ≤ i ≤ k,

-
p
n(t1,...,tm)
−→

√

ρ({n1 → n′1, ..., nk → n′k}, p)
n′(t1,...,tm)
−→

√

if n ≡ ni and n′ ≡ n′i for some 1 ≤ i ≤ k.

•
p

l
−→ p′

∂({n1, ..., nk}, p)
l
−→ ∂({n1, ..., nk}, p′)

7.5. Algebraic semantics 205

if l ≡ n(t1, ..., tm) and n 6≡ ni for all 1 ≤ i ≤ k, or l ≡ τ ,

-
p

l
−→
√

∂({n1, ..., nk}, p)
l
−→
√

if l ≡ n(t1, ..., tm) and n 6≡ ni for all 1 ≤ i ≤ k, or l ≡ τ .

•
σ(P)

l
−→ p′

Σ(x : S, P)
l
−→ p′

where σ is a substitution over Sig(E) and {〈x : S〉} such that
σ(〈x : S〉) = t for some data-term t that is SSC w.r.t. Sig(E) and ∅,

-
σ(P)

l
−→
√

Σ(x : S, P)
l
−→
√

where σ is a substitution over Sig(E) and {〈x : S〉} such that
σ(〈x : S〉) = t for some data-term t that is SSC w.r.t. Sig(E) and ∅.

According to the convention in 7.2.12 A(AA, r, p from E) is often abbreviated as
A(AA, r, p). Note that the rules are not in tyft/tyxt-format. This turned out to be
technically convenient. Again, the following lemma serves as a justification for
our definition.

Lemma 7.5.12. Let E be a well-formed specification, AA be a minimal model of E
that is boolean preserving and r a representation function of E and AA. Consider

a process-expression p that is SSC w.r.t. Sig(E) and ∅ and let (S,L,−→, s) def=

A(AA, r, p). If for some sequence of labels l1, ..., lm it holds that p
l1
−→ ...

lm
−→ p′,

then either p′ ≡
√

or p′ is SSC w.r.t. Sig(E) and ∅.

We feel that our operational semantics is somewhat ad hoc; we can easily pro-
vide an alternative that is also satisfactory in the sense that for each process-
expression the generated transition system is strongly bisimilar with that gen-
erated by the rules above. Therefore, we generally consider transition systems
modulo strong bisimulation equivalence. This means that the operational seman-
tics for µCRL as given in this document has only a referential meaning, and any
generated transition system is therefore called a referential transition system. A
consequence of this view is that for the generation of transition systems for a
µCRL-process-expression an operational semantics generating a smaller number
of states can be used.

Definition 7.5.13. Let A1 = (S1, L1,−→1, s1) and A2 = (S2, L2,−→2, s2) be
two transition systems. We say that A1 and A2 are bisimilar, notation A1↔––A2,
iff there is a relation R ⊆ S1 × S2 such that

• (s1, s2) ∈ R,

• for each pair (t1, t2) ∈ R:

206 7. The Syntax and Semantics of µCRL

– t1
a
−→1 t

′
1 ⇒ ∃t′2 t2

a
−→2 t

′
2 and (t′1, t

′
2) ∈ R,

– t2
a
−→2 t

′
2 ⇒ ∃t′1 t1

a
−→1 t

′
1 and (t′1, t

′
2) ∈ R.

Let E be a well-formed specification, AA a minimal boolean preserving model of E,
and r a representation function of E and AA. For two µCRL-process-expressions
p and q that are SSC w.r.t. Sig(E) and ∅, we write

p from E ↔––AA,r q from E

iff A(AA, r, p from E)↔––A(AA, r, q from E).

The following lemma allows us to write ↔––AA instead of ↔––AA,r. Moreover, it gives
us a useful property of bisimulation, i.e. that it is a congruence for all process
operators. Note that according to our own convention we do not explicitly say
where p and q stem from as they can only come from E.

Lemma 7.5.14. Let E be a specification, AA a minimal, boolean preserving
model of E and p, q process-expressions that are SSC w.r.t. E and ∅.

• If p↔––AA,rq for some representation function r of E and AA, then p↔––AA,r′q for
each representation function r′ of E and AA.

• For all representation functions of E and AA, ↔––AA,r is a congruence for all
µCRL operators working on process-expressions.

7.6 Effective µCRL-specifications

In order to provide a process language with tools, such as for instance a simulator,
it is very important that the language has a computable operational semantics,
i.e. it is decidable what the next (finite number of) steps of a process are. This
is not at all the case for µCRL. Due to the undecidability of data equivalence,
the use of possibly unguarded recursion and infinite sums, the next step relation
need not be enumerable. We deal with this situation by restricting µCRL to
effective µCRL. In effective µCRL data equivalence is decidable, only finite sums
are allowed and recursion must be guarded. For effective µCRL the next step
relation is indeed decidable.

7.6.1 Semi complete rewriting systems

For the data we require that the rewriting system is semi-complete (= weakly
terminating and confluent) [16]. This implies that data equivalence between
closed terms is decidable. Moreover, this is (in some sense) not too restrictive:
every data type for which data equivalence is decidable, can be specified by a
complete (= strongly terminating and confluent) term rewriting system [5]. As
a complete term rewriting system is also semi-complete, all decidable data types
can be expressed in effective µCRL.

We first define all required rewrite relations.

7.6. Effective µCRL-specifications 207

Definition 7.6.1. Let E be a well-formed specification. We define the elemen-
tary rewrite relation −→e

E by:

−→e
E

def= {σ(u) −→ σ(u′) |
u = u′ ∈ R with 〈R,V〉 ∈ rewrites(E),
σ is a substitution over Sig(E) and V

such that VarSig(E),V(σ(u)) = ∅}.

The one-step reduction relation −→E is inductively defined by:

• u −→ u′ ∈−→E if u −→ u′ ∈−→e
E .

• n(t1, ..., tm) −→ n(t′1, ..., t
′
m) ∈−→E if for some 1 ≤ i ≤ m

– ti −→ t′i ∈−→E ,
– for j 6= i it holds that tj ≡ t′j and n(t1, ..., tm) is SSC w.r.t. Sig(E)

and ∅.

The reduction relation →→E is the reflexive and transitive closure of −→E . We
write t −→E u and t→→E u for t −→ u ∈−→E and t→→ u ∈→→E , respectively.

The following lemma is meant to reassure ourselves that the definitions of the
rewrite relations are correct. Moreover, it gives a basic but useful property.

Lemma 7.6.2. Let E be a well-formed specification. Let t be a data-term that
is SSC w.r.t. Sig(E) and ∅. If t→→E t′, then t′ is also SSC w.r.t. Sig(E) and ∅.

With these rewrite relations it is easy to define confluence and termination.

Definition 7.6.3. Let E be a well-formed specification. E is data-confluent iff
for data-terms t, t′ and t′′ that are SSC w.r.t. Sig(E) and ∅ it holds that:

t→→E t′

t→→E t′′

}
implies that there is a data-term t′′′ such that

{
t′ →→E t′′′

t′′ →→E t′′′.

A data-term t that is SSC w.r.t. Sig(E) and ∅ is a normal form if for no data-term
u it holds that t −→E u. E is data-terminating if for each data-term t that is
SSC w.r.t. Sig(E) and ∅ there is some normal form t′′ such that t →→E t′′. E is
data-semi-complete if E is data-confluent and data-terminating.

The following lemma states that in µCRL we can find a unique normal form for
each data-term that can be obtained from a well-formed specification.

Lemma 7.6.4. Let E be a well-formed specification that is data-semi-complete.
For any data-term t that is SSC with respect to Sig(E) and ∅, there is a unique
data-term NE(t) satisfying

t→→E NE(t) and NE(t) is a normal form.

NE(t) is called the normal form of t and there is an algorithm to find NE(t) for
each data-term t that is SSC w.r.t. Sig(E) and ∅.

208 7. The Syntax and Semantics of µCRL

Effective µCRL is based on the following algebra of normal forms.

Definition 7.6.5. Let E be a well-formed data-semi-complete specification. The
Sig(E)-algebra AANE of normal forms is defined by:

• for each name S ∈ Sig(E).Sort there is a domain D(AANE , S) def= {NE(t) |
sortSig(E),∅(t) = S and t is a data-term that is SSC w.r.t. Sig(E) and ∅},

• C(AANE , n) def= NE(n) provided n :→ S ∈ Sig(E).Fun,

• F (AANE , n : S1 × ...× Sm) = f where the function f is defined by:

f(t1, ..., tm) = NE(n(t1, ..., tm))

with ti ∈ D(AANE , Si) for 1 ≤ i ≤ m provided n : S1 × ... × Sm → S ∈
Sig(E).Fun.

Note that in AANE it is easy to determine that T 6= F . It is however undecidable
that the sort Bool has at most two elements. We must use the finite sort tool
of section 7.6.5 to determine this. Often the algebra AANE is called the canonical
term algebra of E.

7.6.2 Finite sums

If a µCRL specification contains infinite sums, then the operational behaviour
is not finitely branching anymore. Consider for instance the behaviour of the
following process:

X from sort Bool
func T, F :→ Bool
sort Nat
func 0 : Nat

succ : Nat → Nat
act a : Nat
proc X =

∑
(x : Nat , a(x))

The process X can perform an a(m) step for each natural number m. We judge
an infinitely branching operational behaviour undesirable and therefore exclude
sums over infinite sorts from effective µCRL.

Definition 7.6.6. Let E be a well-formed specification and let AA be a model of
E. We say that E has finite sums w.r.t. AA iff for each occurrence Σ(x : S, p) in
E the set D(AA,S) is finite.

7.6. Effective µCRL-specifications 209

7.6.3 Guarded recursive specifications

Also unguarded recursion may lead to an infinitely branching operational be-
haviour. Consider for instance the following example:

X from sort Bool
func T, F :→ Bool
act a
proc X = X · a+ a

The process-expression X · a can perform an a step to any process-expression am

(m ≥ 1) where am is the sequential composition of m a’s. Therefore, we also
exclude unguarded recursion from effective µCRL.

In the next definition it is said what a guarded µCRL specification is in very
general terms.

Definition 7.6.7. Let E be a well-formed specification and AA be a model of
E that is boolean preserving. Let p be a process-expression of the form n or
n(t1, ..., tm) for some name n that is SSC w.r.t. Sig(E) and ∅. Let q be a
process-expression that is SSC w.r.t. Sig(E) and ∅. We say that p is guarded
w.r.t. AA in q iff

• q ≡ q1 + q2, q ≡ q1 ‖ q2 or q ≡ q1 | q2, and p is guarded w.r.t. AA in q1 and
q2,

• q ≡ q1 / c . q2 and either AA |= c = T and p is guarded w.r.t. AA in q1, or
AA |= c = F and p is guarded w.r.t. AA in q2,

• q ≡ q1 · q2, q ≡ q1 ‖ q2, q ≡ ∂({n1, ..., nm}, q1), q ≡ τ({n1, ..., nm}, q1),
q ≡ ρ({n1 → n′1, ..., nm → n′m}, q1) or q ≡ (q1) and p is guarded w.r.t. AA in
q1,

• q ≡ Σ(x : S, q1) and p is guarded w.r.t. AA in σ(q1) for any substitution σ
over Sig(E) and {〈x : S〉},

• q ≡ τ or q ≡ δ,

• q ≡ n′ for a name n′ and p 6≡ n′ or

• q ≡ n′(u1, ..., um′) for a basic-expression n′(u1, ..., um′) and n 6≡ n′, m 6= m′

or [[ui]]AA 6= [[ti]]AA for some 1 ≤ i ≤ m.

If p is not guarded w.r.t. AA in q we say that p appears unguarded w.r.t. AA in q.

Definition 7.6.8. Let E be a well-formed specification and AA be a model of E
that is boolean preserving. The Process Name Dependency Graph of E and AA,
notation PNDG(E,AA), is constructed as follows:

• for each n = p ∈ Sig(E).P roc, n is a node of PNDG(E,AA),

210 7. The Syntax and Semantics of µCRL

• for each n(x1 : S1, ..., xm : Sm) = p ∈ Sig(E).P roc and data-terms t1, ..., tm
that are SSC w.r.t. Sig(E) and ∅ such that sortSig(E),∅(ti) = Si (1 ≤ i ≤
m), n(t1, ..., tm) is a node of PNDG(E,AA),

• if n is a node of PNDG(E,AA) and n = p ∈ Sig(E).P roc, then there is an
edge

n −→ q

for a node q ∈ PNDG(E,AA) iff q is unguarded w.r.t. AA in p,

• if n(x1 : sortSig(E),∅(t1), ..., xm : sortSig(E),∅(tm)) = p ∈ Sig(E).P roc and
n(t1, ..., tm) is a node of PNDG(E,AA), then there is an edge

n(t1, ..., tm) −→ q

for a node q ∈ PNDG(E,AA) iff q is unguarded w.r.t. AA in σ(p) where σ
is the substitution over Sig(E) and {〈xi : sortSig(E),∅(ti)〉 | 1 ≤ i ≤ m}
defined by

σ(〈xi : sortSig(E),∅(ti)〉) = ti.

Definition 7.6.9. Let E be a well-formed specification and AA be a model of E
that is boolean preserving. We say that E is guarded w.r.t. AA iff PNDG(E,AA)
is well founded, i.e. does not contain an infinite path.

7.6.4 Effective µCRL-specifications

Here we define the operational semantics of effective µCRL by combining all
definitions given above.

Definition 7.6.10. Let E be a specification. We call E an effective µCRL
specification or for short an effective specification iff

• E is well-formed,

• E is data-semi-complete,

• E has finite sums w.r.t. AANE ,

• E is guarded w.r.t. AANE .

Definition 7.6.11. Let E be an effective µCRL specification. Let p be a
process-expression that is SSC w.r.t. Sig(E) and ∅. The behaviour of p is the
transition system

A(AANE , r, p from E)

where the representation function r of E and AANE is the identity.

In effective µCRL data equivalence is indeed decidable and the operational be-
haviour is finitely branching and computable:

7.6. Effective µCRL-specifications 211

Theorem 7.6.12. Let E be an effective µCRL specification and let (S,L,−→
, s) = A(AANE , r, p) for some data-term p that is SSC w.r.t. Sig(E) and ∅ and let
r be the identity. Then

• for each pair of data-terms t1, t2 that are SSC w.r.t. Sig(E) and ∅:

t1 =E t2 is decidable,

• for each process-expression p′ that is SSC w.r.t. Sig(E) and ∅:

{〈a, p′′〉 | p′
a
−→ p′′}

is finite and effectively computable. Moreover, its cardinality is also effec-
tively computable from E and p.

The second point of the previous theorem says that A(AANE , r, p from E) is a
computable transition system. In a recursion theoretic setting a computable tran-
sition system is defined as follows: let A = (S,L,−→, s0) be a transition system
with S and L sets of natural numbers and s0 ∈ S is represented by 0. We say
that A is a computable transition system iff −→ is represented by a total recur-
sive function φ that maps each number in S to (a coding of) a finite set of pairs

{〈l, s′〉 | s
l
−→ s′}.

7.6.5 Proving µCRL-specifications effective

In general it is not decidable whether a µCRL specification is effective. But there
are many tools available that can prove the effectiveness for quite large classes
of specifications. These tools provide, given a specification, a ‘yes’ or a ‘don’t
know’ answer.

Definition 7.6.13. Let E be the set of all well-formed specifications. A data-
semi-completeness tool, notation DC, a finite-sort tool, notation FS, and a guard-
edness tool, notation GD, are all decidable predicates over E , i.e. DC ⊆ E , FS ⊆
N × E , GD ⊆ E .

A tool is called sound if each claim of a certain property it makes about a well-
formed specification is correct. In the definition of a sound finite-sort tool and
a sound guardedness tool we assume that specifications are data-semi-complete
because we expect that this is a minimal requirement for these tools to operate.

Definition 7.6.14. A data-semi-completeness tool DC is called sound iff for
each specification E that is well-formed:

if DC(E) holds, then E is data-semi-complete.

A finite-sort tool FS is called sound iff for each name n and specification E that
is well-formed and data-semi-complete:

212 7. The Syntax and Semantics of µCRL

if FS(n,E) holds, then n ∈ Sig(E).Sort and D(AANE , n) is a finite
set.

A guardedness tool GD is called sound iff for each specification E that is well-
formed and data-semi-complete:

if GD(E) holds, then E is guarded w.r.t. AANE .

Sometimes a tool needs auxiliary information per specification to perform its task.
In this case such a tool may work on a tuple containing a specification and a finite
amount of such information. There is no prescribed format for this information,
and it may vary from tool to tool. If a tool requires auxiliary information, then
the soundness of the tool may not depend on this information. In this case the
definition of soundness is modified as follows (the definition is only given for DC,
the other cases can be defined likewise):

Definition 7.6.15. A data-semi-completeness tool DC requiring auxiliary infor-
mation, is called sound iff for each well-formed specification E and each instance
of auxiliary information I:

if DC(E, I) holds, then E is data-semi-complete.

This definition guarantees that even with incorrect auxiliary information DC
always produces correct answers. DC has to be robust.

Below we describe some techniques for constructing sound tools, except in
those cases where techniques are provided in the literature. As time proceeds,
more and more powerful techniques will appear. In order to incorporate these
technological advancements in µCRL, the techniques mentioned here are only
possible candidates for sound tools. They may be replaced by others, as long as
these also lead to sound tools.

There are many techniques for proving termination and confluence (see Huet
and Oppen [14] and Dershowitz [7] for termination, Newman [20] for conflu-
ence if termination has been shown and Klop [16] for an overview). Therefore
we will not go into details here.

The problem whether a sort has a finite number of elements [4] is undecidable
and as far as we know no general techniques have been developed to prove that
a sort has only a finite number of elements in a minimal algebra.

We present a possible approach that can only be applied to a restricted case: let
E be a specification in E such thatDC(E) for some sound data-semi-completeness
tool DC and assume that we are interested in the finiteness of sorts S1, ..., Sk
occurring in E. Let F be the set of all functions specified in E that have as
target sort one of the sorts Si (1 ≤ i ≤ k). We assume that their parameter sorts
also originate from S1, ..., Sk. As auxiliary information we use finite sets Ii of
(closed) data-terms that ought to represent all elements of sort Si.

We compute for each function f ∈ F (with target sort Sj) and for all arguments
in the sets Ii of appropriate sorts, whether application of f leads to a data-term
equivalent to one of the elements of Ij . This can be done as we assume that

7.6. Effective µCRL-specifications 213

DC(E) holds. If this is successful, then obviously the sorts S1, ..., Sk have a
finite number of elements.

Also the question whether a specification is guarded is undecidable. Still very
good results can be obtained when guardedness is checked abstracting from the
data parameters of process names. This is done by the following function HV .
Its first argument contains the process-expression that is being searched for un-
guarded occurrences of names of processes and its second argument guarantees
that the bodies of process-declarations are not searched twice.

Definition 7.6.16. Let E be a well-formed specification and let V be a set of
variables over Sig(E). A process-type is an expression 〈n : S1× ...×Sm〉 for some
m ≥ 0 with n a name and S1, ..., Sm names. The function HV maps pairs of a
process-expression and a set of process-types to sets of process-types.

• HV (δ, PT) def= ∅.

• HV (p1 + p2, PT) = HV (p1 / c . p2, PT) = HV (p1 ‖ p2, PT) =
HV (p1 | p2, PT) def= HV (p1, PT) ∪HV (p2, PT).

• HV (p1 · p2, PT) = HV (p1 ‖ p2, PT) = HV (∂({n1, ..., nm}, p1), PT) =
HV (τ({n1, ..., nm}, p1), PT) = HV (ρ({n1 → n′1, ..., nm → n′m}, p1), PT) =

HV (Σ(x : S, p1), PT) def= HV (p1, PT).

• HV (n(t1, ..., tm), PT) def=

– {〈n : sortSig(E),V(t1)× ...× sortSig(E),V(tm)〉}
if 〈n : sortSig(E),V(t1)× ...× sortSig(E),V(tm)〉 ∈ PT .

– HV (p, PT ∪ {〈n : sortSig(E),V(t1)× ...× sortSig(E),V(tm)〉}) ∪
{〈n : sortSig(E),V(t1)× ...× sortSig(E),V(tm)〉}
if 〈n : sortSig(E),V(t1)× ...× sortSig(E),V(tm)〉 6∈ PT and
n(x1 : sortSig(E),V(t1), ..., xm : sortSig(E),V(tm)) = p ∈ Sig(E).P roc
for some names x1, ..., xm.

• HV (n, PT) def=

– {〈n :〉} if 〈n :〉 ∈ PT ,

– HV (p, PT ∪ {〈n :〉}) ∪ {〈n :〉} if 〈n :〉 6∈ PT and n = p ∈ Sig(E).P roc.

• HV ((p), PT) def= HV (p, PT).

Theorem 7.6.17. Let E be a well-formed specification. If for each process-
declaration n(x1 : S1, ..., xm : Sm) = p ∈ Sig(E).P roc it holds that 〈n : S1 ×
... × Sm〉 /∈ HV (p, ∅) and for each process-declaration n = p ∈ Sig(E).P roc
n /∈ HV (p, ∅), then E is guarded.

214 7. The Syntax and Semantics of µCRL

7.7 Appendix An SDF-syntax for µCRL

We present an SDF-syntax for µCRL [10] which serves two purposes. It provides
a syntax that does not employ special characters and, using it as input for the
ASF+SDF-system, it yields an interactive editor for µCRL-specifications (see eg.
[11]). The ASF+SDF system is also used to provide a well-formedness checker
[17].

According to the convention in SDF we write syntactical categories with a
capital and keywords with small letters. The first LAYOUT rule says that spaces
(‘ ’), tabs (\t) and newlines (\n) may be used to generate some attractive layout
and are not part of the µCRL specification itself. The second LAYOUT rule says
that lines starting with a %-sign followed by zero or more non-newline characters
(~[\n]*) followed by a newline (\n) must be taken as comments and are therefore
also not a part of the µCRL syntax.

In this syntax names are arbitrary strings over a-z, A-Z and 0-9 except
that keywords are not names. In the context free syntax most items are self-
explanatory. The symbol + stands for one or more and * for zero or more occur-
rences. For instance { Name ","}+ is a list of one or more names separated by
commas.

The phrase right means that an operator is right-associative and assoc means
that an operator is associative. The phrase bracket says that the defined con-
struct is not an operator, but just a way to disambiguate the construction of
a syntax tree. Instead of δ, ∂, τ and ρ we write delta, encap, tau, hide and
rename. These keywords are taken from PSF [18].

The priorities say that ‘.’ has highest and + has lowest priority on process-
expressions.

exports

sorts

Name

Name-list

X-name-list

Space-name-list

Sort-specification

Function-specification

Function-declaration

Rewrite-specification

Variable-declaration-section

Variable-declaration

Data-term

Rewrite-rules-section

Rewrite-rule

Process-expression

Renaming-declaration

Single-variable-declaration

Process-specification

Process-declaration

Action-specification

Action-declaration

Communication-specification

Communication-declaration

7.7. Appendix An SDF-syntax for µCRL 215

Specification

lexical syntax

[\t\n] -> LAYOUT

"%" ~[\n]* "\n" -> LAYOUT

[a-zA-Z0-9]* -> Name

context-free syntax

{ Name ","}+ -> Name-list

{ Name "#"}+ -> X-name-list

Name+ -> Space-name-list

sort Space-name-list -> Sort-specification

func Function-declaration+ -> Function-specification

Name-list ":" X-name-list "->" Name -> Function-declaration

Name-list ":" "->" Name -> Function-declaration

Variable-declaration-section

Rewrite-rules-section -> Rewrite-specification

var Variable-declaration+ -> Variable-declaration-section

-> Variable-declaration-section

Name-list ":" Name -> Variable-declaration

Name -> Data-term

Name "(" { Data-term "," }+ ")" -> Data-term

rew Rewrite-rule+ -> Rewrite-rules-section

Name "(" { Data-term "," }+ ")" "=" Data-term -> Rewrite-rule

Name "=" Data-term -> Rewrite-rule

Process-expression "+" Process-expression -> Process-expression right

Process-expression "||" Process-expression -> Process-expression right

Process-expression "||_" Process-expression -> Process-expression

Process-expression "|" Process-expression -> Process-expression right

Process-expression "<|" Data-term "|>"

Process-expression -> Process-expression

Process-expression "." Process-expression -> Process-expression right

delta -> Process-expression

tau -> Process-expression

encap "(" "{" Name-list "}" ","

Process-expression ")" -> Process-expression

hide "(" "{" Name-list "}" ","

Process-expression ")" -> Process-expression

rename "(" "{" { Renaming-declaration "," }+

"}" "," Process-expression ")" -> Process-expression

sum "(" Single-variable-declaration ","

Process-expression ")" -> Process-expression

Name "(" { Data-term "," }+ ")" -> Process-expression

Name -> Process-expression

"(" Process-expression ")" -> Process-expression bracket

Name "->" Name -> Renaming-declaration

Name ":" Name -> Single-variable-declaration

proc Process-declaration+ -> Process-specification

Name "(" { Single-variable-declaration "," }+ ")"

"=" Process-expression -> Process-declaration

Name "=" Process-expression -> Process-declaration

act Action-declaration+ -> Action-specification

Name-list ":" X-name-list -> Action-declaration

216 7. The Syntax and Semantics of µCRL

Name -> Action-declaration

comm Communication-declaration+ -> Communication-specification

Name "|" Name "=" Name -> Communication-declaration

Sort-specification -> Specification

Function-specification -> Specification

Rewrite-specification -> Specification

Action-specification -> Specification

Communication-specification -> Specification

Process-specification -> Specification

Specification Specification -> Specification assoc

priorities

"+" < { "||", "|", "||_"} < "<|" "|>" < "."

As an example we provide a µCRL-specification of an alternating bit protocol.
This is almost exactly the protocol as described in [2] to which we also refer for
an explanation.

sort Bool

func T,F:->Bool

sort D

func d1,d2,d3 : -> D

sort error

func e : -> error

sort bit

func 0,1 : -> bit

invert : bit -> bit

rew invert(1)=0

invert(0)=1

act r1,s4 : D

s2,r2,c2 : D#bit

s3,r3,c3 : D#bit

s3,r3,c3 : error

s5,r5,c5 : bit

s6,r6,c6 : bit

s6,r6,c6 : error

comm r2|s2 = c2

r3|s3 = c3

r5|s5 = c5

r6|s6 = c6

proc S = S(0).S(1).S

S(n:bit) = sum(d:D,r1(d).S(d,n))

S(d:D,n:bit) = s2(d,n).((R6(invert(n))+r6(e)).S(d,n)+r6(n))

R = R(1).R(0).R

R(n:bit) = (sum(d:D,r3(d,n))+r3(e)).s5(n).R(n)+

sum(d:D,r3(d,invert(n)).s4(d).s5(invert(n)))

References 217

K = sum(d:D,sum(n:bit,r2(d,n).(tau.s3(d,n)+tau.s3(e)))).K

L = sum(n:bit,r5(n).(tau.s6(n)+tau.s6(e))).L

ABP = hide({c2,c3,c5,c6},

encap({r2,r3,r5,r6,s2,s3,s5,s6},S||R||K||L))

References

[1] J.C.M. Baeten and J.A. Bergstra. Process algebra with signals and condi-
tions. Report P9008, University of Amsterdam, Amsterdam, 1990. To appear
in Proceedings NATO Summer School, Marktoberdorf, pages 407–419, 1990.

[2] J.C.M. Baeten and W.P. Weijland. Process algebra. Cambridge Tracts in
Theoretical Computer Science 18. Cambridge University Press, 1990.

[3] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communica-
tion. Information and Computation, 60(1/3):109–137, 1984.

[4] J.A. Bergstra and J.V. Tucker. A characterisation of computable data types
by means of a finite equational specification method. In J.W. de Bakker and
J. van Leeuwen, editors, Proceedings 7th ICALP, volume 85 of Lecture Notes
in Computer Science, pages 76–90. Springer-Verlag, 1980.

[5] J.A. Bergstra and J.V. Tucker. The completeness of the algebraic specifica-
tion methods for computable data types. Information and Control, 12:186–
200, 1982.

[6] CCITT Working Party X/1. Recommendation Z.100 (SDL), 1987.

[7] N. Dershowitz. Computing with rewrite systems. Information and Control,
65:122–157, 1985.

[8] H. Ehrig and B. Mahr. Fundamentals of algebraic specifications I, volume 6
of EATCS Monographs on Theoretical Computer Science. Springer-Verlag,
1985.

[9] J.F. Groote and F.W. Vaandrager. Structured operational semantics and
bisimulation as a congruence (extended abstract). In G. Ausiello, M. Dezani-
Ciancaglini, and S. Ronchi Della Rocca, editors, Proceedings 16th ICALP,
Stresa, volume 372 of Lecture Notes in Computer Science, pages 423–438.
Springer-Verlag, 1989. Full version to appear in Information and Computa-
tion.

[10] J. Heering, P.R.H. Hendriks, P. Klint, and J. Rekers. The syntax definition
formalism SDF – reference manual –. ACM SIGPLAN Notices, 24(11):43–
75, 1989.

218 7. The Syntax and Semantics of µCRL

[11] P.R.H. Hendriks. Implementation of Modular Algebraic Specifications. PhD
thesis, University of Amsterdam, 1991.

[12] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall Interna-
tional, 1985.

[13] C.A.R. Hoare, I.J. Hayes, He Jifeng, C.C. Morgan, A.W. Roscoe, J.W.
Sanders, I.H. Sorensen, J.M. Spivey, and B.A. Sufrin. Laws of program-
ming. Communications of the ACM, 30(8):672–686, August 1987.

[14] G. Huet and D.D. Oppen. Equations and rewrite rules: A survey. In R. Book,
editor, Formal Language Theory: Perspectives and Open Problems, pages
349–405. Academic Press, 1980.

[15] ISO. Information processing systems – open systems interconnection – LO-
TOS – a formal description technique based on the temporal ordering of
observational behaviour ISO/TC97/SC21/N DIS8807, 1987.

[16] J.W. Klop. Term rewriting systems. In Handbook of Logic in Computer
Science, volume 1. Oxford University Press, 1991. To appear.

[17] H. Korver, 1991. Private communications.

[18] S. Mauw and G.J. Veltink. A process specification formalism. Fundamenta
Informaticae, XIII:85–139, 1990.

[19] R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture
Notes in Computer Science. Springer-Verlag, 1980.

[20] M.H.A. Newman. On theories with a combinatorial definition of equivalence.
Annals of Mathematics, 43(2):223–243, 1942.

[21] G.D. Plotkin. An operational semantics for CSP. In D. Bjørner, editor, Pro-
ceedings IFIP TC2 Working Conference on Formal Description of Program-
ming Concepts – II, Garmisch, pages 199–225, Amsterdam, 1983. North-
Holland.

[22] SPECS-semantics. Definition of MR and CRL Version 2.1, 1990.

8

Samenvatting: Procesalgebra en
Operationele Semantiek

In de procesalgebra wordt het gedrag van systemen bestudeerd. Het begrip sys-
teem kan daarbij ruim worden opgevat. Te denken valt aan mensen, robots
en computers. Er wordt verondersteld dat systemen een aantal elementaire ac-
tiviteiten kunnen verichten. Deze activiteiten heten atomaire acties. Zij worden
meestal aangeduid met letters a, b, c, Het gedrag van een systeem wordt
beschreven aan de hand van deze atomaire acties, de ‘gevolgd door’ operatie (·),
de keuze operatie (+) en de parallel operatie (‖). Het proces

(a · (b+ c)) ‖ (d · e)

is opgebouwd uit de atomaire acties a, b, c, d en e en kan eerst een a gevolgd door
een b of een c, met daaraan parallel een d gevolgd door een e uitvoeren.

Sommige processen gedragen zich precies zo als andere. Het proces a+ a kan
kiezen tussen het uitvoeren van twee identieke a’s. Omdat de a’s gelijk zijn, heeft
het maken van de keuze geen zin en gedraagt het proces zich precies zoals het
proces a. Om dit aan te geven kunnen we een procesequivalentie definieren waarin
a en a + a gelijk zijn. Er zijn veel verschillende procesequivalenties bestudeerd.
Deze equivalenties worden op allerlei manieren gekarakteriseerd. Vaak wordt een
beperkt aantal gelijkheden (axioma’s) gebruikt, waaruit alle andere gelijkheden
tussen processen via de eigenschappen van ‘=’ bewezen kunnen worden. Zie
tabel 5.2 voor een aantal van zulke axiomastelsels.

Gelijkheden kunnen variabelen bevatten. In x+y = y+x staan de variabelen x
en y voor willekeurige processen. Een axiomastelsel heet ω-compleet als ook alle
geldige gelijkheden met variabelen bewezen kunnen worden. Hoofdstuk 2 van dit
proefschrift gaat over de vraag of verschillende axiomastelsels, geformuleerd in
het proefschrift van Rob van Glabbeek, ω-compleet zijn. Om in te zien dat deze
stelsels inderdaad ω-compleet zijn, wordt in hoofdstuk 2 een tot nu toe onbekende
bewijstechniek gepresenteerd en toegepast.

219

220 8. Samenvatting

In het proefschrift van Rob van Glabbeek wordt ook een procesequivalentie,
met de naam branching bisimulatie, geintroduceerd. Van deze procesequivalen-
tie wordt beweerd dat zij voordelen biedt boven de populaire en al veel langer
bestaande zwakke bisimulatie. Iemand kan nu, gegeven twee processen, de vraag
stellen of deze processen branching bisimulair zijn. In hoofdstuk 3 wordt een
algoritme gegeven om dit in bepaalde gevallen uit te rekenen. Dit algoritme is al
in een aantal gevallen toegepast waar andere algoritmes tekort schoten.

In hoofdstuk 6 komt de vraag aan de orde hoe procesalgebra moet worden
aangepast om er tijdsafhankelijke processen mee te beschrijven. Er wordt een
voorstel gedaan waarbij tijd op een zo simpel mogelijke wijze in de procesalgebra
wordt geintroduceerd. Met dit voorstel zijn enkele real-time systemen beschreven
en worden enkele real-time fenomenen bestudeerd.

In het laatste hoofdstuk wordt een eenvoudige taal gedefinieerd waarin pro-
cessen met data worden gecombineerd. Het is de bedoeling dat met deze taal de
relatie tussen data en processen op een gestructureerde manier wordt bestudeerd.
Hopelijk leidt dit tot inzichten die kunnen bijdragen tot de verdere ontwikkeling
van bestaande (en veel omvangrijkere) programmeer- en specificatietalen.

De hoofdstukken 4 en 5 zijn gewijd aan de (gestructureerde) operationele
semantiek. Semantiek is het onderdeel van de informatica dat de betekenis
van programmeer- en specificatietalen bestudeert. De operationale semantiek
is daarvan een belangrijke categorie. Hierin wordt de betekenis van een proces
beschreven aan de hand van een stap-functie die dikwijls wordt genoteerd door
een −→. De stap-functie beschrijft de stappen die een proces tijdens uitvoering
zet. Als p en p′ processen zijn, dan betekent

p
a
−→ p′

dat p onder uitvoering van de atomaire actie a een stap zet naar p′. Bijvoorbeeld

(a · (b+ c)) ‖ (d · e)
a
−→ (b+ c) ‖ (d · e).

In de gestructureerde operationele semantiek wordt de stap-functie gedefinieerd
met regels van de vorm

q1

b1
−→ q′1 ... qn

bn
−→ q′n

p
a
−→ p′

.

Dit betekent dat wanneer de stappen q1

b1
−→ q′1 ... qn

bn
−→ q′n kunnen plaatsvin-

den, dan kan p
a
−→ p′ ook plaatsvinden. Zo wordt de keuze operatie gedefinieerd

door de twee regels:

x
a
−→ x′

x+ y
a
−→ x′

,
y

a
−→ y′

x+ y
a
−→ y′

.

De linker regel zegt dat x + y ervoor kan kiezen zich te gedragen als x en de
rechter regel zegt dat x + y zich kan gedragen als y. Tabel 5.1 geeft de regels
voor een procesalgebra.

221

In sommige regels in tabel 5.1 worden ook regels gebruikt met negatieve pre-
missen. Deze zien er als volgt uit:

q1

b1
−→ q′1 ... qn

bn
−→ q′n r1

c1−6→ ... rm
cm−6→

p
a
−→ p′

.

Deze regel betekent dat indien qi
bi
−→ q′i voor alle 1 ≤ i ≤ n kan plaatsvinden

en rj geen cj-stap (1 ≤ j ≤ m) kan doen, we mogen concluderen dat p
a
−→ p′

kan plaatsvinden. Dit kan soms tot problemen leiden. Stel namelijk dat we de
volgende regel hebben:

p a−6→

p
a
−→ p

.

Dit betekent dat p een a-stap kan doen, indien p die a-stap niet kan doen. Dit is
met zichzelf in tegenspraak. Een dergelijke regel kan daarom geen stap-functie
definieren. In hoofdstuk 4 wordt een methode voorgesteld om aan te tonen
dat voor bepaalde verzamelingen regels dergelijke problemen zich niet voordoen.
Deze verzamelingen regels karakteriseren op nette wijze een stap-functie. De me-
thode uit hoofdstuk 4 is erg praktisch, maar niet voldoende krachtig voor een
aantal interessante gevallen. In hoofdstuk 5 worden aanzienlijk krachtiger me-
thodiek voorgesteld die echter niet zo praktisch is. Combinatie van de methoden
uit beide hoofdstukken blijkt echter krachtig en praktisch.

R.J. van Glabbeek. Comparative Concurrency Semantics and Refinement of Ac-
tions. Proefschrift, Vrije Universiteit, Amsterdam, 1990.

