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For a class of semilinear diffusion problems from population genetics the linearized 
differential equation is studied in order to estimate the rate of exponential 
convergence to some stable stationary solution. Some monotonicity properties of 
the lowest eigenvalue with respect to the parameters of the problem are given. Two 
types of lower bounds for this eigenvalue are constructed and compared. For the 
Fisher non-linearity it turns out that the eigenvalue problem can be solved by an 
explicit representation of the eigenfunction as a hypergeometric polynomial. For the 
cubic non-linearity the eigenfunction can be represented by a Heun function. 

1. Introduction 

MANY PROBLEMS from population genetics are described by semilinear parabolic 
differential equations. If, for example, one studies the frequency u(x, t) of an allele A 
in a diploid population with zygotes AA, Aa and aa, where the carriers of the alleles 
are restricted to a half-bounded one-dimensional habitat, then one encounters the 
problem 

Ui = Uxx+f(u), (x, t) E Q = IR+ X ~+,} 
u(x, 0) = g(x), x ;;.: 0, 

u(O, t) = h(t), t ;;.: 0, 

(1.1) 

where f(u) represents some non-linearity depending on the relative fitnesses of the 
homozygotes AA and aa with respect to the heterozygote Aa. The following classes 
of non-linearities f e !F = ffi u ffi will be treated: 

ffi = {!If e C3([0, l]), f(O) = f(l) = 0, f'(O) < 0, f'(l) < 0, there exists a 
number a, 0 < a < l, such that f(u) < 0 on (0, a) and f(u) > 0 on 

11 (1.2) 
(a, 1), Jo f(u) du> O}, 

9i ={fife C3([0, 1]), f(O) =f(l) = 0, f'(O) > 0, 
f'(l) < 0, f(u) > 0 on (0, 1)}. (1.3) 
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The class ff represents the so-called heterozygote iriferior case, where the zygote AA 

is the mos/ viable, and the class !!;;, represents the heterozygote intermediate case, 

where again AA is the most viable genotype. Characteristic examples are 

f.(u) = u(l-u)(u-a), 0 <a<}, fa E ~' (1.4) 

J:(u)=u(l-u)(l+vu), v>-1, J,,E!!;;,. (1.5) 

.'!i'z is known as the class of the Fisher type non-linearity with characteristic 

representative lo (Fisher, 1937). 
If one specifies the initial and boundary conditions as follows 

h(t) is non-decreasing, t ~ 0, lim h(t) = e, e E [0, 1], 

( ) = {q(x), x E (a, b), 
gx --

0, X E (R+\(a, b), 
(1.6) 

with a > 0, q(a) = q(b), q" + f(q) = 0, 

then it is known (Aronson & Weinberger, 1975, Proposition 5.1) that 

lim u(x, t) = V(x), uniformly on bounded sets. V(x) satisfies 

From the expression 

with 

V"+f(V)=O, x>O, 1 = d~'} 
V(0)=8, V(co)=l, 8E[0,1]. 

!{V')2 + F(V) = F(l), x ~ 0, 

F(u) = f: f(v) dv, 

(1.7) 

( l.8) 

and from the properties off E ff it follows that V(x) is a strictly increasing function 
with the asymptotic behaviour 

1- V(x) = ce-bx[l +o(l)J, x --HXJ, b = J=!Tt), ( 1.9) 

for some positive constant C. We label this function as V0• For the study of this 

stationary solution by means of the principle of linearized stability it is necessary to 

consider in the Hilbert space 2 2(0, oo) the eigenvalue problem defined by (l.10) and 
(1.11) 

N[w] = -w"-f'(i-/i(x))w = A.w, x > 0, 

w(O) = 0, 

(1.10) 

(1.11) 

where N[w] is obtained by linearizing (1.7) around the stationary solution V0(x). In 

this paper we pay attention to this eigenvalue problem. 

The type of parabolic equations as (1.1) allows travelling wave solutions 
u(x, t) = U(z), where z = x- et, c E IR and U(z) satisfies 

U"+cU'+f(V)=O, zE!R, '=!!.__,} 
dz 

U(-co) = 1, U(oo) = 0. 
(l.12) 
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For f e ~ there exists a unique positive number c0 which depends on f and for 
f E ~ there exists a half-line [ c(f), oo) of possible velocities, such that for all 
c ;;;:i: c(f) there exists a solution Uc(z) of (1.12). See Aronson & Weinberger (1975), 
Fife (1979) and Fife & McLeod (1977) for more biological background, a detailed 
derivation of Equation (1.1) and more mathematical results, mostly concerning the 
corresponding Cauchy problem. The last paper treats the stability of the travelling 
wave. In Veling (1981, 1982a) problem (1.1) was considered for a broad class of 
initial and boundary conditions and it was proved that if h(t) tends exponentially to 
a limit e, e e [O, I], for t -i. oo, the solution converges for x e IR + to an asymptotic 
state which consists of a travelling wave U and the solution J1e. At this study interest 
arose in the eigenvalue problem (1.10), (l.11) as an independent problem. 

In Section 2 we study the spectrum of the self-adjoint operator A associated with 
N and it is proved that u(A) c (0, oo ). Some additional infonnation about u(A) is 
gathered in Section 2. For this operator A there may exist points in the point 
spectrum: in that case m = inf {A. I A. E u(A)} is an isolated point of u(A) and is 
denoted by A. 1. To emphasize the dependence of A. 1 on the parameter{} and the non
linearity f we shall write also A.(8,f) = A. 1 where we suppress the index 1. 

In Section 3 some monotonicity properties are proved with respect to the 
parameter () for fixed f and with respect to different functions f for fixed e, namely 

(1.13) 

A.(8,fi) ;;;:i: A.((),f2), if f{(u) <f2(u), f{'(u) ::;;; 0 on [(), 1]. (1.14) 

In Section 4 we shall obtain the following lower bounds for 21. 

A.((),f) ;;;:i:j2(8)/{2[F(l)-F(())]}, if f"(u)::;;; 0 on [O, l], (1.15) 

,1.((),f) ;;;:i: -f'(l)-cpllqll~2 Pll< 2p-1)' p ~ 1, (1.16) 

with 

and 

= -(2p)/(2p- l)(p-1)(2p-2)/(2p- 1) [f(1)r(p)]- 2'(2p- l) (1 ) 
cP p r(p+!-) , p>l, .17 

q(x) = f'(l)-f'(V8(x)). (1.18) 

The condition!"::;;; 0 on [8, 1] we needed for (l.15) can be relaxed somewhat. 
In Section 5 we solve the eigenvalue problem for the Fisher non-linearity 

Jo(u) = u(l -u) explicitly by means of a quadratic transformation. It turns out that 
the eigenfunction can be written as a hypergeometric polynomial. The results of 
Sections 2 and 3 are illustrated by this example. 

In Section 6 we prove that the eigenvalue problem for the cubic 
fa(u) = u(1-u)(u-a) can be reduced to finding a zero for a Heun function. This 
knowledge can be used to calculate the eigenvalue numerically. 

In Section 7 numerical results are presented with respect to the calculation of the 
eigenvalue for fa(u) by means of the method of Section 6 and by a finite-element 
method. In this section we also compare the constructed lower bounds for this 
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calculated eigenvalue. It turns out that the bound (1.16) is superior to (1.15) as far as 
this example is concerned. It is possible to apply (l.16) to other problems of 
estimating the lowest eigenvalue from below. It applies to eigenvalue problems with 
a point spectrum and a continuous spectrum. 

2. The Spectrum <J(A) 

We consider the eigenvalue problem (1.10), (l.11). In order to be consistent with 
the usual setting for singular Sturm-Liouville problems we define the differential 
expression M 

M(w] = -w"+q(x)w, x > 0, q(x) =f'(l)-f'(Vg(x)). (2.1) 

The coefficient q is real-valued and by (1.9) q E 2'P(0, co) for all p ~ 1 {even for 
p > 0). By means of the following definition of ~(T) we introduce the operator T 
(see Naimark, 1968; Everitt, 1972): 

~( T) = { wlw E 2'2(0, oo ), w' absolutely continuous on (0, X] for all X > 0, 
w(O) = 0, M[w] E 2'2(0, oo)}, (2.2) 

Tw = M[w], w E ~(T). (2.3) 

Next we define the operator A as 

Aw= N[w], w E .@(A)= ~(T), (2.4) 

so this implies the identity A = T -f'( 1 ). Further, there exists a 1 - 1 correspondence 
between a(A) in the sense that 

A. E a(A)<=>A.+f'(l) E a(T). 

So all information about a(T) is easily translated into that for a(A). We introduce 
the following subsets of the complex plane C, where Rµ = (T - µI)- 1 and E is the 
linear manifold spanned by the eigenvectors for µ, µ 

Pa(T) = {µIµ E IC, Rµ is a bounded operator defined on the 
whole of 2'2(0, oo) 9 Eµ}, 

Ccr(T) = {µIµ E C, Rµ is an unbounded operator defined on a 
set which is dense in 2'2(0, oo )}, (2.5) 

PCcr(T) = {µIµ E IC, Rµ is an unbounded operator defined on a 
set which is dense in 2'2(0, oo) 9 Eµ}, 

(see Chaudhuri & Everitt, 1967). Now we formulate 

THEOREM 2.1 Let the operator T be defined by (2.1), (2.2), (2.3). Let f e !F, then the 
spectrum a( T) can be decomposed as 

u(T) = Pa(T) u Ca(T) u PCu(T) 

with the properties 

(i) (- rx>, 0) 11 Pa(T) is finite (possibly empty), 
(ii) PCu(T) = ~. 
(iii) Ea(T) = Ca(T) u PCa(T) = Ccr(T) = (0, oo ). 
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Proof See Naimark [(1968, §24.2, Theorem 5 and Example a)]. The fact that q as 
defined in (2.1) is element of 2' 1(0, oo) by (1.9) is sufficient for the proof. 
C11(T) = [O, oo) implies C11(A) = [-f'(l), oo). • 

The following two lemmas supply information as to whether or not the set P11(T) 
is empty. 

LEMMA 2.1 If there exists a real-valued function p E C2([0, ro)) with the properties 

(i) p V8 E g(T), 
(ii) 11 = llp'V811~/llpV811~ < -f'(l), 

then # {µIµ E P11(T)} ( = # {21A. E P11(A)}) ~ 1. 

Proof Since p V8 E g(T) and V8(0) =I- 0 we need p(O) = 0. The lowest eigenvalue µ 1 or 
the infimum of C11(T) (if P11(T) is empty) can be characterized by 

µ1 = inf (l/J, M[l/l])/(l/J, 1/1). (2.6) 
Y,e~(T) 

Iffor some choice ijJ E g(T) (l/J, M[l/J])/(l/J, l/J) < 0, then Jt 1 < 0, and so there exists at 
least one point in the set P11(T). Making the choice ijJ = p V8 a calculation of 
(l/J, -l/1 11) reveals by partial integration 

(l/J, -1//') = t''" (p')2(V8)2 dx- t',, p2 V8 V8" dx, (2.7) 

and so, since by ( 1. 7) V1;'' + f'( Va)V8 = 0, we find 

(l/J, M[l/J ]) = lip' V811~ + f'(l)llP V811~. (2.8) 

This means that by (ii) (I/I, M[t/t])/(l/J, l/J) < 0, and thus µ 1 < 0. • 

In Section 7 results will be presented for some numerical calculations for the 
choice f =la E §,_ and p = e1x -1, y > 0. 

LEMMA 2.2 If one of the following conditions has been satisfied 

(i) dP L'° x 2p- l lq(x)IP dx < 1,for some p ~ 1, 

With dl = 1, dp = (p- l)P-l r(2p)/{pP(r(p))2}, p > 1, 

(ii) ~ f '° lq(x)lt dx < 1, q < 0, q monotonely increasing, 
1t 0 

then P11(T) = ~· 
Proof See Dunford & Schwartz (1963, Ch. 13, §9, H12) for (i), p = 1 or Reed & 
Simon (1978, Theorem XIII.9) for (i) and (ii). • 

In Section 5 condition (ii) will be used for f =lo E ~- In Section 7 results will be 
presented for some numerical calculations for f =la E §,_. 

The following information can be given about 11(A) when Pcr(A) i= ~· Let us 
introduce the hypotheses 

(HA.) 

(Hµ) 

3 A1 E P11(A), 

3 µ1 E P11(T), 
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which means that there exists an eigenvalue l E .@(A) = .@(T) such that Al = A. 1 l and 

TI= µ1 l. 

THEOREM 2.2 Let (W.) [or (Hµ)] be satisfied, then 

(i) }. 1 (or µ 1) is a simple eigenvalue, 
(ii) l(x) > 0, x > 0, 

(iii) I E BC2([0, oo )), 
(iv) A1 > 0 [or µ 1 > f'(l)]. 

Proof For (i) and (ii) we refer to Titchmarsh (1962, Ch. 5, §4) or Dunford & 
Schwartz (1963, Ch. 13, §7, Theorem 55) and for (iv) to Veling (1981, 1982a). Property 

(iii) follows from the fact that f'(u) is bounded on [O, 1], so !" E 2 2(0, oo ). Since 
f'{l1a(x)) is continuously differentiable, it follows by standard theory that l is two 
times continuously differentiable on (0, ro). Using an interpolation lemma in Adams 
(1975, Ch. 4.10) we find that also I' E 2 2(0, oo). By a well-known embedding 
theorem there holds l E BC 1((0, oo)) and by N[l] = A. 1, f E C 3([0, 1)]) also 
l" E BC 1((0, oo )). Together with l(O) = 0 this gives finally l E BC 2 ([O, oo )). Property 
(iv) implies u(A) c (0, oo) as was announced in the Introduction. Ill 

In the next two sections the following lemma will be used repeatedly. 

LEMMA 2.3 Let (HA) be satisfied. Suppose there exists a function w E BC2([0, oo )), 
w(x) > 0 on [O, oo) and a positive number o such that 

N[w] = -w"-f'(J1a(x))w ~ow, x > 0, 

then the lowest eigenvalue Ai E Pu(A) satisfies Ai ~ a. 
Proof From Protter & Weinberger (1966, 1967) it is known that 

A1 ~ inf(N[w(x)]/w(x)IO < x <co) 

from which the statement of the lemma follows easily. 111 

3. Monotonicity of the First Eigenvalue 

(2.9) 

Throughout this section we shall assume that (HA.) is satisfied. Two monotonicity 
properties of the first eigenvalue are proved: the first (Theorem 3.1) with respect to the 

parameter 8, the second (Theorem 3.2) with respect to the non-linearity f Let A.(8i,J;), 
18'· 1' denote respectively the first eigenvalue and eigenfunction for the operator A81·f•. 
In the sequel the indices are suppressed if there is no cause for confusion. 

THEOREM 3.1 Let (HA) be satisfied both for A= A81 , A82, then the following 
inequality holds 

Proof Define the positive number x as the shift such that 

V02(.X) = VO,(O) = 81. 

(3.1) 

Since Vo is given by (1.8), it follows that V82(x + x) = VeJx), x ~ 0. Define 
w(x) = l82(x + x), then 
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{ -w"-f'CVe 2(x+x))w = A.(8 2,f)w, x > 0, 

w(x) = /82(x+x) > 0, x ~ 0, 

which is identical with 

{
-w" -f'CVe,(x))w = A.(82,f)w, x > 0, 

w(x) > 0, x ~ 0. 

So by Lemma 2.3, A(fJ 1,f) ~ A.(82,f). 11111 
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THEOREM 3.2 Letf1,f2 E ffe and let (HA.) be satisfied both for A= Ali, Ah. Suppose 

further 

(Hfl) 

(Hj2) 

then 

f{(u) <f~(u), on [8, 1], 

f{'(u) ~ 0, on [8, 1], 

(3.2) 

Proof From (Hfl) and the fact that f;(l) = 0, i = 1, 2, it follows that f 1(u) ~ f 2(u) on 

[8, 1]. Further, by defining 

F;(u) = I: f;(v) dv 

[see (1.8)] this inequality implies 

F 1(1)-F1(u) ~ F 2(1)-F2(u) on [8, 1], (3.3) 

and (3.3) together with (1.8) gives for the respective solutions Va, i. Va, 2 for f = f 1,f2 

of (1.7) 

v~. i(x) ~ v~.z(y), if 

Now define the function w(x) as 

w(x) = [8J 2(x + c:), 

(3.4) 

(3.5) 

where c: is a positive number to be specified later. By the pos1t1V1ty of the 

eigenfunction l (Theorem 2.2) w(O) > 0, and evaluation of N 1 [ w] gives 

N 1 [w] = -w"-f{(Va,i(x))w 
= A.(f2)w+ {!;(Vo, 2(x +c:))-f{(V9.l(x))}w 

~ 2(f2)w+ {f{(V6, 2(x+ e)) +b-f{(Va, 1(x))}w, 
(3.6) 

where b = min {f~(u)- f'1(u)\8 ~ u ~ l}. By (Hfl) 6 > 0 holds. Next, we define 

x = x(e) as the unique solution of Vo. 2(.X(c:) + e)) = Va. 1(x(e)). The uniqueness follows 

from (3.4). We remark that x(e)!O for e!O. By (3.4) we have V6, 1(x) ~ Va, 2(x+e) for 

x ~ x. This result, applied to (3.6) gives, using (Hj2), 

N 1[w] ~ A.(f2)w, x E [x, oo). (3.7) 

Now choose e so small that 

f{(Ve,1(x(e)))+6 ~f{(Vfi,1(0)) =f{(8), 
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then for 0 ::::; x ::::; x 
f{( V8, 2(x + e)) + o ); j{( Vo. 2(.X + e)) + o 

= f{(V0,1(x))+o); /{(Jl/u(O))); f{(Vo. i(x)). (3.8) 

Using (3.8) and (3.6) we also find 

N1(w]); },(f2)w, x E [0, x]. (3.9) 

So by Lemma 2.3, ),(0,fi)); )..(0,/2). 

Corollary 3.1 Consider fa,, i = 1, 2 E ~ as given by (1.4). Suppose (H),) is satisfied 
for f = f 0 ,, i = 1, 2, then Theorem 3.2 applies if a1 < a2 and B > t. 
Proof Explicit calculation of condition (Hj2) requires e ); (1 + a 1 )/3, but condition 
(Hj1) requires more, namely e > t and a 1 < a2 . 11111 

Corollarv 3.2 Consider!,,, i = 1, 2 E gz as given by (1.5). Suppose (H},) is satisfied 
for f =Iv,, i = l, 2, then T'heorem 3.2 applies if V1 > Vz and e > j. 
Proo/ Condition (H f2) is satisfied for 8 ;;;::: 0 if - t ,,; v 1 ,,; 1 and 8 ;;;::: ( v 1 - l )/(3v 1) if 
v1 ); 1, but condition (Hfl) requires more, namely 0 > j and v1 > v2. 111 

4. Positive Lower Bounds for J.(0,J) 

It was shown in Theorem 2.2 that Ai. whenever it exists, is positive. In this section 
we shall show how, at the expense of additional conditions on f and e, positive lower 
bounds can be found. 

THEOREM 4.1 Let (HA) be satisfied, then 

A(8,f)); min {J(u)!O,,; u ~ 1} 2 , 

where 

J(u) =f(u)/j2(F(l)-F(u)) on [O, I) and J(1) = b = ,/-f'(I) 
(see ( 1.9)). 

(4.1) 

Remark. Because J(u)--.. b, as ujl and F(l) > F(u), on (0, 1), f E C3([0, 1]) for f E ff 
we have J E C2([0, 1]) and bounded away from 0 on any interval [8, 1] provided 
e E (a, I) (a= 0 iffE ~).Thus for/E ffi and 0 < e::::; a, Theorem 4.1 does not give 
an improvement over the estimate .A. 1 > 0. 

Proof Set k = min {J(u)!O ~ u ~ l }. We observe that in view of (1.7) and (1.8) 
k = min { - V0'(x)/V0(x)lx); O}. Now define w(x) = ekxv;(x), then 

N[w] = w{ -k2 -2kVNVo'}, 

but since J(Vo) = - V0'/V0, we find 

N[w] = w{-k2 +2kJ(Vo)};;;::: w{-k2 +2k2} = k2w, 

from which by Lemma 2.3 the result follows. 11111 

Corollary 4.1 Let (HA) be satisfied and suppose J'(u)); 0 on [8, l], then 

},(8,f);;;::: f 2(8)/{2(F(l)-F(O))}. (4.2) 

Proo/ From the extra condition on J it follows that J is non-decreasing on [8, 1], so 
the minimum k is found for u = €J. 1111 
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Corollary 4.2 Let (H),) be satisfied and suppose f"(u) < O on [8, 1], the estimate (4.2) 
follows. 

Proof Suppose there exists a number u1, 8 < u1 < 1 such that J'(ui) < 0. 
Calculation gives J' = (f' + J2)/G and J" = (f" + J J')/G, where 

G(u) = j2(F(l)- F(u)), 

which means that also J"(u 1) < 0. But this fact implies that J'(u) < 0 on [u 1, 1]. 
However, explicit calculation of J'(l) reveals 

J'(l) = -f"(l)/(3j-/'(1)) > 0, 

which gives a contradiction. So J'(u 1) ? 0 on [8, 1] and hence Corollary 4.1 
applies. 111 

Corollary 4.3 Let (HA.) be satisfied and suppose for some c, 8 < c < 1, f"(u) < 0 on 

[c, l] and J'(u)? 0 on [8, c], then estimate (4.2) follows. 

Proof Combine the two former corollaries. Ill 

Corollary 4.4 Consider fa E ffi as given by (1.4). Suppose (H).) is satisfied, then 
estimate (4.2) holds if() > a. 

Proof Apply Corollary 4.2 with c = (1 +a)/3 if 8 >c. Remark that f"(c) = 0 and 

f"(u) < 0 on [c, 1]. Apply Corollary 4.3 if a< 8 <c. Because J' = (f' +12 )/G and 

f' > 0 on (d 1 , d2 ) with d1 <a< c < d2 , where 

d 1.2 = { 1 +a± J 1 - a + a2 } /3 

represent the zeros off~, we find J' > 0 on (d 1 , d2) :::i [8, c]. 

Corollary 4.5 Consider fv E ffi as given by (1.5). Suppose (H).) is satisfied, then 

estimate (4.2) holds if () > 0, v > -t. 
Proof Apply Corollary 4.2 for -± < v ~ 1 and Corollary 4.3 for v > 1 with 

c = (v-1)/(3v). Notef"(c) = 0. Ill 

Next we give another estimate in which an integral norm is involved. 

THEOREM 4.2 Let (HA.) be satisfied, then 

A.(8,f):;:: -f'(l)-cpllqll~2 Pl/( 2r 0, p:;:: 1, (4.3) 

where 

q(x) = f'(l)-f'(Vo(x)), 

p> 1} (4.4) 

and 
C1 = ±, 

[
r('Jf( l]-21(2p-1J = -(2p)/(2p- l)( -1)(2p- 2)/(2p- l) 2 p ' 

cP p p r(p+i) 

Proof See Veling (1982b). Of course (4.3) gives only new information if the right

hand side is positive. 11111 

Remark. For p = 1, 2, oo (4.3) gives respectively 

).(8,f)? -f'(l)-±llqllf, 
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).(0,f) ~ -f'(I)-(i36)213 llqlli13 , 

J.(O,f) ~ -f'(l)-sup Jq(x)J. 
x~O 

In Section 7 calculations of estimates (4.2) and (4.3) for p = 2 and f =la E &Z; are 
compared. Also the best possible result of (4.3) has been given by varying p with 
steps of 110 in the range [1, 3]. 

5. Explicit Solution of the Eigenvalue Problem for j(u) = u(l -u) 

In this section the eigenvalue problem Al= ).l for f(u) = u(l -u) will be solved 
explicitly. First we gather some information about f and the solution V8 of (1.7). It 
turns out to be appropriate to express the functions in terms of the variable 
z = 1-u. 

f(l -z) = z(l -z); 

f"(l-z) == -2; 

f'(l-z)=-1+2z; } 

2[F(l)-F(l-z)] = z2(1-tz), 

3 (2+0) Vo(x) = 1- h ( , x ~ 0, A = arccosh -1 0 . 
I +cos x+A) -

(5.1) 

(5.2) 

In the foregoing sections we had put the natural restriction 0 ~ fJ ~ 1. Extending the 
domain of Ve to IR, we note that the range of Ve is [ -t, 1]. Hence we allow 0 to lie in 
[ -t, I]. By the monotonicity of the transformation z = 1 - Ve(x) it is possible to 
write (1.10) as 

-2(F(l)-F(l-z))v"-f(l-z)v'-f'(l-z)v=J.v, O~z~ 1-0, '= :z' (5.3) 

where we have written v(z) = w(x). Putting).= 1-p2 and inserting (5.1) yields 

-z(l-fz)v"-(1-z)v'+(p2 -2z)v=0, O~z~ I-0. (5.4) 

Equation (5.4) represents a hypergeometric differential equation with regular 
singularities at z = 0, ~, oo and can be characterized with the aid of the Riemann's 
?-symbol (Abramowitz & Stegun, 1965, 15.6.1, 15.6.3) as 

{
o 1 oo } 

v(z) = P p ~ 2 
3 

fz . 

-p 2 -2 

(5.5) 

By Abramowitz & Stegun (1965, 15.6.11, 15.6.5, 15.1.1) (5.5) can be written as a 
multiple of 

v(z)=zPP{ ~ ~ p:: tz}=zP2f 1(p+2,p-~;2p+l;tz), 
-2p 2 P-2 

= zP f (p + 2)n(p-~)n (l t 
n=O (2p+ l)nn ! 32 ' 

(5.6) 

where (a).= r(a+n)/f(a). The series is absolutely convergent for Jzl ~ l We remark 
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that for P = 1, which implies A.= 0, v(z) equals, by Abramowitz & Stegun (1965, 
15.1.8), 

v(z) = z 2F 1(3, -t; 3; fz) = z.jl-fz = j2[F(l)-F(l-z)], (5.7) 

thus by (1.8) v(z(x)) = V~(x) satisfies N[vn = 0. This fact follows easily by 

differentiation of (1.7). 

It is possible to obtain more information from (5.6). The value of the parameters 

of the 2F 1-function are such that there exists a quadratic transformation: v(z) can be 

written by Abramowitz & Stegun (1965, 15.4.13) in terms of a so-called associated 

Legendre function of the first kind P~ 

v(z) = zP22Pr(l +2p)(fz)-PP3 2P(~), 

which in turn can be written, using Abramowitz & Stegun (1965, 8.1.2) 

v(z) = 3P ( 1 +~)-p 2F1(-3, 4; 1 +2p; (1-jl=fzV2). 
1- l -3Z 

(5.8) 

(5.9) 

In fact this 2F 1-function is a polynomial (Abramowitz & Stegun, 1965, 15.4.1) in r(x). 

Since we can write by z = 1- Ve(x) and (5.2) 

( 1 +~)-p = e-p(x+AJ, (5.10) 

1-~ 

r(x) = (1-Jl-fz(x))/2 = (l-tgh((x+A)/2))/2, (5.11) 

the representation of w(x) becomes 

w(x) = v(z(x}) = 3P e-plx+AI I ( -3Jn(4). 1 [( 1- tgh((x + A)/2))/2]". (5.12) 
n=O (1 +2p)nn. 

Next we choose p so that w is an eigenfunction (w(O) = 0). Using (5.9) we require 

then 

2 F 1 ( - 3, 4; 1 + 2p; (1-j(l + 28)/3)/2) = 0. (5.13) 

After some calculation and by (5.12) this equation becomes 

Q(p) = p3 + 3j(l + 28)/3p2 +((1+108)/4)p + (58-2)j(l + 28)/3/4 = 0. (5.14) 

Thus the eigenvalue problem Al= J..l has been reduced to an algebraic one: to find a 

zero p E (0, 1] of the cubic Q. The value p = 0 is excluded since in that case 

w ~ 2'2(0, w). A further analysis of Q(p) = 0 reveals that for -t ~ e <~there exists 

a unique monotonely decreasing solution p E (0, 1] for increasing e (see Theorem 

3.1). For this range of e there exists thus just one point ). 1 = ).(8) E Pu(A8). For 

~ ~ e ~ 1 there is no solution and so Po'(A8) = ~· 
We collect the results of this section in the next theorem. 

THEOREM 5.1 The eigenfunction l(x) of A8l = ).[ when f(u) = u(l-u) and Ve(x) is 

given by (5.2) is represented by (5.12) where p = p(8) is the unique solution of the 

equation Q(p) = 0, in which Q is given by (5.14) and p E (0, 1], 8 E [ -!, t). The 

eigenvalue then equals A.(8) = 1-p 2(8). Fore E [~, 1] there does not exist a solution of 

A81 =A.I and so Pu(A8 ) = 0. 
II 
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We remark finally that the condition on e which insures that Pa(A 6) = ~ [(ii) in 
Lemma 2.1] can be evaluated quite easily. One finds 

2 f"' 2fi f l-O 1 4j3 
- Jif'(l)-f'(Vo(x))I dx =- Jz=Tz2 dz = -- arcsin (j2(1-8)/3), 
n o n o z-3z n 

(5.15) 
and so from Lemma 2.1 we learn that 

e > 80 = 1-~ sin2 C..~S) = 0·712 => Pa(A6) = ~· (5.16) 

This is in agreement with Theorem 5.1, where 80 , has to be compared with the exact 
value i 

6. The Eigenvalue Problem for f(u) = u(1-u)(u-a) 

In this section the eigenvalue problem Al= )J for the cubic non-linearity 
f(u) = u(l -u)(u- a) will be studied. Once again we gather some information about f 
expressed in the variable z = 1-u and the solution Vo of (1.7) 

f(l-z) = z{(l-a)-(2-a)z+z2 }, } 

f'(l-z) = {-(1-a)+2(2-a)z-3z2}, 

f"(l-z) = {-2(2-a)+6z}, 

2[F(l)-F(1-z)] = z2{(1-a)-i(2-a)z+tz2 }, 

Vo(x) = 1- 6(1-a) ' 
2(2-a)+j2-2a-4a2 sinh (~x+B) 

B . h [fi[3-3a-(1-8)(2-a)]J 
= arcsm . 

(1-8)jl-a-2a2 

(6.1) 

(6.2) 

In the same way as in Section 5 it is possible to rewrite (1.10) for the function 
v(z) = w(x), with z = 1- Vo(x). Putting A= (1-a)(l - p2) and using (6.1) we find 

-v"+P(z)v'+Q(z)v=O, O~z~l-8, 

P(z)=~+_L+_!_, } 
Z z-z 1 Z-Zz 

1 [ 2(1 -a)p 2 J (6.3) 
Q(z) = ( )( ) -6z+4(2-a)- . 

Z Z-Z1 Z-Z2 Z 

where z1, z2 represent the zeros of 1-a-i(2-a)z+tz2 : 

z1 , 2 = [2(2-a)±ij2-2a-4a2 ]/3. (6.4) 

Equation (6.3) represents a differential equation with four regular singularities 
(z = 0, z1, z2, co) and Riemann's P-symbol is given by 

(6.5) 
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The parameters cx, [3, cxi, [Ji, i = 1, 2, 3 are found by the identification [see Snow, 
1952, Ch. VII (1)] 

(6.6) 

Q(z) = ,,,1() (cxf3z+p+cxof3o l/J'(O) +cx1f31 l/J'(z1) +cx2f32 l/J'(z2))'} 
'I' Z Z Z-Zi Z-Z2 

l/J(z) = z(z-z1)(z-z2). 

(6.7) 

The so-called accessory parameter p needs to be given as well and here equals 

p = 4(2-a). (6.8) 

By the transformation z = z/z1, v(z) = v(z) = zPF(z) can be written as [see Snow, 
1952, Ch. VII (2), (3), (4)] 

0 0 - 003 -}· (6.9) ('/. = +p z 
fJ = -2+p 

v(z) = zPP { : 

1-y = -2p 

1 

y+b-ri-fi = ! 1-b = -l 
with 

p = 4(2 - a)(~ - p )(p + 2)/(3z i). 

The Riemann's P-symbol in the form (6.9) solves the differential equation 

F" {1-y y+b-fi;-{J 1-n F' { &.{Jz+p } F = 0. 
+ - + - 1 + - - + -(- 1)(- -) z z- z-a z z- z-a 

(6.10) 

The solution of (6.10) which is regular in the neighbourhood of z = 0 and belongs to 
the exponent zero is the Heun function denoted by [Snow, 1952, Ch. VII (6a), (7), 
(7')] 

F(a, p; fi, {J, y, b; z) = 1- !_ z+ f cnz", 
ycx n=2 

(6.11) 

and the coefficients satisfy 

c0 = 1, c1 = -p/(ya), } 
(n+2)(n+ 1 +)i)ac.+ 2 

={(n+ 1)2(ci+ l)+(n+ l)[y+<5-1 +(&.+ fi-<5)a]-p}cn+l -(n+ct)(n+ /J)cn. 

(6.12) 

So we find that, deleting insignificant factors, 

v(z) = zPF (z2, 4(2-a)(~-p)(p+2)/(3z 1 ); 3+p, -2+p, 1 +2p, !; !_)· 
z 1 Z1 

(6.13) 

The recurrence relation becomes, defining b. = z 1 "c. 

1
ho=1, b1 =(2-a)(p+2)(2p-3)/{3(1-a)(2p+1)}, } 

b.= (l-a)(n+ 2p)n {~2-a)(n+p+l)(n+p-~)b._ 1 - • (6.14) 

!(n+ p-4)(n+ p + l)b.- 2}. 
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We note that this recurrence relation is identical to the one which has been found by 

Greenberg (1981) if one changes a into 1-a. He studied the eigenvalue problem for 

the linearization of uxx + f(u) = 0 with respect to the function W(x) satisfying 

W" + W(l - W)(W-a) = 0, 

W( - oo) = W( oo) = 0. 

It is well known that the asymptotic behaviour of a recurrence relation 

where 
lim a. = A, lim c. = C, 
n-co 11-+0::1 

(6.15) 

can be found by determining the roots of t 2 +At+ C = 0 (see, e.g., Hunter, 1968). 
Here we find 

b. ~ C0 R" cos (n<P + r log n), n --.. oo, ( 6.16) 
where 

R = lt 1 1=lt21=1/~ < l,</> = arctan(pht 1) = arctan(J1=a-2a2 /[(2-a)j2J, 
C0 is a constant determined by the initial values and r is a constant which needs a 
higher-order asymptotic study. 

By the knowledge of a possible candidate l(x) of Al = )J we solve the eigenvalue 

problem by determining p such that v(l -13) = 0 which amounts to locating the 
zeros p E (0, 1) of 

F(22,4(2-a){t-p)(p+2)/(3z1); 3+p, -2+p, 1+2p,-1;; l-l3) =0. (6.17) 
Z1 Z1 

The number of zeros is equal to the number of points in Pa(A). The series 
representation (6.11) with (6.14) offers a suitable tool to perform these calculations 

numerically. In Section 7 we determined the eigenvalue A for different choices of 13 
and the zero a of f(u) by this technique. 

We collect the result of this section in the next theorem. 

THEOREM 6.1 The eigenfunction l(x) of Al = Al for fa(u) = u(l - u)(u-a) and vo(x) 

given by (6.2) is represented, if it exists, by l(x) = v(l - Vo(x)), where v(z) is given in 
(6.13) and p is a solution of(6.17), p E (0, 1). The corresponding eigenvalue then equals 
.l. = (I - a)(l - p2). 

7. Numerical Results 

As was announced in the previous sections the numerical calculations involving 

some of the equations will be summarized in this section. In all the calculations 
below we have taken the non-linearity 

f(u) =fa(u) = u(l-u)(u-a) E ~ 

as an example. We have made three choices of a (0· 1, 0·25, 0·4) and eleven choices of 
e (0, O·l, 0·2, .. ., 0·8, 0·9, and 0·95). 

In Table 1 the results of calculations based on Lemmas 1 and 2 are shown. 
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TABLE 1 

Po-(A) 

a \ {} 0 0-1 0·2 0·3 0·4 0·5 0·6 0·7 0·8 0·9 0·95 
--------·-------- ----- --~-- ------- -

0·1 + + + + + + + x 
0·25 + + + + + + + + x 
0·4 + + + + + + + + x 

+: PO'(A) !s not empty according to Lemma 2.1 with p(x) = eyx -1. y > 0. 
-: PO'(A) 1s empty according to Lemma 2.2, (i) for p = 1. 
x: Both methods above failed to give information; calculation of :i: 1 = llP V,)11~/llp' V.1113 revealed: 
a= 0·1, e = 0·7, for y = 0·9050 :i:! = 0·9035 > 0·9 = -J;(I), 
a = 0·25, I! = 0-8, for y = 0·8400 :J: 1 = 0·7605 > o-75 = -f;(I), 
a= 0-4, I!= 0·8, for y = 0·7440 :i: 1 = 0·6071 > 0·6 = -J;(l). 

In Table 2 we show: 

(A) The eigenvalues ). 1 calculated up to three significant digits by the method of 
Theorem 6.1. A finite-element method gave the same results up to the 
required precision. For the entry with the '-' symbol, there does not exist a 
solution of (6.17), so Pcr(A) = 9. The same conclusion holds for a = 0·25, 
() = 0·8 and a= 0-4, () = 0·8 (compare Table 1). For the entry a= 0·4, () = 0 
there exists a second eigenvalue ).2 = 0·598. 

(B) The lower bounds of Theorem 4.2 for p = 2. 
(C) By varying p in the interval [1, 3] with stepsize /0 it is possible to improve 

the bound under (B). 

TABLE 2 
Eigenvalue Jc (see text) 

a \ {} 0 0·1 0·2 0·3 0·4 0·5 0·6 0·7 
----------------------·------------~-----------·-

0·1 (A) 0·459 0·540 0·625 o-708 0·783 0·841 0·885 
(B) 0·206 0·2396 0·287 0·349 0-421 0·501 0·587 
(C) 0·209 0·2397 0·288 0·354 0·433 0·523 0·618 

p= 2-2 2·1 1·9 1·8 1·7 1·6 1·5 

(D) x x 0·0019 0·0139 0·0450 0·1021 0·1901 

0·25 (A) 0·305 0·375 0-454 0·535 0·612 0·677 0·725 0·749 

(B) 0·135 0·156 0·192 0·243 0·306 0·378 0·456 0·539 

(C) 0·142 0·159 0·192 0·244 0·311 0·391 0-479 0·568 

p= 2·3 2-2 2·0 1·9 1·8 1·6 1-5 1·4 

(D) x x x 0·0012 0·0156 0·0535 0·1213 0·2229 

0·4 (A) 0·137 0·193 0·267 0·348 0-429 0·502 0·559 0·593 

(B) 0·0503 0·0606 0·0870 0·1292 Q-184 0·250 0-323 0·400 

(C) 0·0669 0·0722 0·0914 0·1294 0·185 0·256 0·337 0-421 

p= 2·6 2·5 2-3 2·1 1·9 1·7 1·6 1·4 

(D) x x x x x 0-0130 0·0568 0·1356 
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(D) The lower bound of Corollary 4.4. For the entries with the' x' symbol, the 
bound given by (4.2) is not applicable. 

It turns out that (D) is inferior to (C). 
We remark that the results are in agreement with Theorem 3.1 (monotonicity in 8) 

and Corollary 3.1 (monotonicity in a). 

The author thanks M. Bakker and R. Montijn for performing some calculations for 
Tables 1 and 2. He would also like to express his gratitude to Prof. L. A. Peletier for 
reading the manuscript and suggesting many improvements. 
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