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ON OSCILLATION PROPERTIES AND THE INTERVAL 
OF ORTHOGONALITY OF ORTHOGONAL POLYNOMIALS* 

ERIK A. VAN DOORNt 

Abstract. This paper is mainly concerned with the true interval of orthogonality for a sequence of 
orthogonal polynomials, which is the smallest closed interval containing the limit points of the set of zeros of 
the polynomials. We give bounds for the endpoints of this interval in terms of the coefficients in the three 
term recurrence formula and show them to be generalizations of most existing results. Similar findings are 
reported for the limit interval of orthogonality, which is defined as the smallest closed interval containing the 
derived set of the set of limit points. Our bounds are based upon an oscillation theorem for orthogonal 
polynomials which is of independent interest. 

AMS-MOS subject classification (1980). Primary 42 C 05 

1. Introduction. Let {cn}~=I and {A.n}~= 2 be sequences of real numbers and as­
sume that A.n is positive. Then it is a classical result that the polynomials Pn(x ), 
n = 0, 1,- · ., defined by the recurrence formula 

(1) Pn(x) = (x-cn)Pn-1(X )-A.nPn-2(X ), n=l,2,-··, 

P _ 1(x)=O, P0(x)= 1, 

where it is convenient for us to define A. 1 = 0, are orthogonal with respect to a (not 
necessarily unique) mass distribution dljl(x) on the real line. That is, there is a bounded, 
nondecreasing function \jl with an infinite spectrum (=support of d \jl) such that 

(2) 

Pn(x) has n real, distinct zeros xn1 <xn2 < · · · <xnn with the property 

(3) i=l,2,· .. ,n, 
so that 

(4) 

both exist in the extended real number system (see, e.g., [6, §1.5)). The interval [~ 1 , 11tl is 
called the true interval of orthogonality since it is the smallest closed interval in which 
the support of a distribution corresponding to {Pn} is concentrated. The spread of the 
true interval of orthogonality is defined as 11 1 - ~ 1, while its centre, defined only when 
g1 > - oo or 11 1 < oo, is given by ·t(g, +11 1). 

Regarding the finiteness of g1, we will have use for a criterion which is essentially 
due to Stieltjes [20] and elaborated by Chihara [l]. Namely, in order that g1 2'.:A > - .oo, 
it is necessary and sufficient that there exist numbers 'Yn such that 

(5) n>O, 
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where y0 2::0 and Yn>O for n>O. Here y0 2::0 may be replaced by y0 =0, since the 
existence of a sequence {Yn} satisfying (5) and y0>0 implies the existence of a sequence 
{Y~} satisfying (5) and y0=0 (or, in fact, any number between 0 and y0 ). When (5) 
holds one also has 71 1 = oo if and only if {Yn} is unbounded. 

From (3) and (4) we obviously have gis;gi+ 1 <11i+I $71i, so that 

(6) a= _lim g; and r= ~m 1Jj 
1-->00 J-->00 

exist, again allowing for ± oo. It is important to note at this point that 

(7) Ei+1 =g;=>o=~;. i=O,l, · · · 

and 

(8) 'llj+I =7J/='>T='IJj, j=O,l,.··, 

where Eo= - oo, 'IJo= oo (see, e.g., [6, Thm. II.4.6]). 
It can be shown [6, Thm. III.4.2] that the sets of orthogonal polynomials {P~k>(x)}n, 

k = O, 1, · · ·, which are determined through the recurrence formula ( 1) by the sequences 
{c~k>=cn+d~=t and {i\<:l=i\n+d~=i• have true intervals of orthogonality [~\k),71\k>] 
with the properties 

(9) t(k)< t(k+ ll<u and r<'l}<k+ I) <'l}(k) 
SJ -SJ - - I - I • k=O, 1, · · ·. 

Further, the next theorem is easily seen to hold as a consequence of [6, Thms. IV.2.1 
and IV.3.2]. 

THEOREM 1. 

We emphasize that a and r are determined only by the limiting behaviour of the 
parameter sequences {en} and {i\n}, so that any finite number of changes in the 
parameter values has no influence on the values of o and r. In view of this fact, we are 
justified in calling [u,T] the limit interval of orthogonality. The spread and the centre of 
the limit interval of orthogonality are defined as T - o and Ho+ r ), respectively, 
provided these quantities are meaningful. 

It is the purpose of this paper to give bounds on the true and limit intervals of 
orthogonality in terms of the parameters en and i\n. Our main tool will be the oscilla­
tion theorem for orthogonal polynomials given in §2, which is of independent interest. 
An extension of this result will be derived in the Appendix. 

We note that any result on g1 (or u), e.g., Stieltjes' criterion (5), may be trans­
formed into a result on '1}1 (or r) and vice versa by considering the polynomials 
i,,(x)=(-lrPn(-x), which satisfy the recurrence relation (1) with parameter se­
quences {en= -en} and {Xn=i\n}· Therefore, as far as the endpoints are concerned, we 
shall concentrate only on one side of the intervals of orthogonality. In fact, upper 
bounds on ~ 1 and u will be given in §3 and lower bounds in §4. Several known resuits 
will appear as corollaries to our theorems. We remark that some of these known results 
are given in the literature under the condition that the distribution diJ; with respect to 
which the polynomials Pn are orthogonal is unique. This is because they are stated (or 
derived) in terms of supporting points of diJ; instead of limit points of zeros of the 
polynomials Pn, while both points of view are equivalent only if diJ; is unique (cf. [3] 
and [6, Chap. II]). 
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In the final section, some bounds will be derived on spread and centre of the true 
and limit intervals of orthogonality and these will be compared with existing results. 

2. The basic oscillation theorem. We need some preliminary results and notation 
first. Let u={u0 ,u 1,· • ·,un, · · ·} be an infinite sequence of real numbers. The finite 
sequence consisting of the first n + 1 elements of u will be denoted by u<n)• i.e., 
u(n)={u0,u1,· · .,un}· By S(u(n)), we denote the number of sign changes in these­
quence u(n) by deleting all zero terms, with the special convention S(O<ni>= -1, O(nl 
denoting the sequence consisting of n+ 1 zeros. We let S(u)=limn_, 00 S(u(n)), which 
exists but, of course, may be infinite. 

Our next prerequisite concerns Sturmian sequences of polynomials. We recall the 
definition (see [17, pp. 7-8]). 

DEFINITION I. A sequence of n+ I polynomials {R 0 ,R1,. ·.,Rn}, n>O, is called a 
Sturmian sequence on the interval (a, b) if these four conditions are satisfied: 

(i) Rn(x):#=O for x=a, b, 
(ii) R0(x):#=O for all xE[a,b], 

(iii) R;(x)=O (O<i<n)&xE[a,b]=>R;_ 1(x)Ri+ 1(x)<O, 
(iv) Rn(x)=O&xE[a,b]=>Rn-i(x)R~(x)>O. 
This definition is justified by the following theorem [17, Satz 7]. 
THEOREM 2 (Sturm's theorem). If the sequence of polynomials {R 0 ,R1,. ··,Rn} is a 

Sturmian sequence on the interoal (a,b), then the number of zeros of Rn in the interval 
(a,b) equals S(R(a))-S(R(b)), where R(x)= {R 0(x),R 1(x),. · ·,Rn(x)}. 

The relevance of this theorem for this paper resides in the next lemma, which 
concerns the sequence of orthogonal polynomials {P0,P1,· • ·,Pn, · · ·} defined by the 
recurrence relation (1). 

LEMMA I. The sequence P(n)= {P0 ,P1,. • ·,Pn}, where n>O, is a Sturmian sequence 
on any interoal (a, b) where PnC a) =I= 0 and P.( b) + 0. 

Proof. See [21, p. 45]. 
We are now in a position to state our basic result. 
THEOREM 3 (basic oscillation theorem). For the polynomials {Pn}~=o defined by the 

recurrence relation ( 1) one has: 
(i) S(P(x))= k=11k+ 1 :5x<11k, k =O, 1,. · ·, 
(ii) S(~(x))= oo =x<r or x= r<111 for allj, 

(iii) S(P(x))=k=~k<x:5~k+I• k=O, I,··" 
(iv) S(P(x))= oo =x>O' or x=o>~Jor all i, 

where P(x)= {P0(x),P1(x), · · · }, P(x)= {P0(x),1\(x), ···}and Pn(x)=(- ItPnCx). 
Proof. It is evident that (ii) and (iv) are implied by (i) and (iii), respectively, while 

(iii) readily follows from (i) by considering the polynomials P,,( x) = ( - 1 )n Pn( - x) 
mentioned in the introduction. So it remains to prove (i). 

To this end, let x and n be such that P.(x):#=O. Choose 11 such that max(x,xnn)<11 
<11o=oo. By (3) we then have 71>x;; (i=l,2,··.,n), and (1) subsequently implies 
P;(11)>0 for i=O, l,· · .,n, whence S(P(n)(11))=0. Now applying Sturm's theorem to 
PcnJ in the interval (x,11), we get S(P(n)(x))-S(P(n)(TJ))=number of zeros of Pn in 
(x, 1)), i.e., 

(10) S(Pcn)(x )) =number of zeros of P,, in (x, oo). 

Letting n tend to infinity in (10), (i) emerges as a consequence of (3) and (4). D 
Aspects of the basic oscillation theorem may be found in the literature under 

various guises. Thus a special case of it was employed by Stieltjes [20, p. 564] in the 
context of continued fractions, while parts (ii) and (iv) of the theorem are essentially 
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contained in [23, Thm. 8(a)] in the context of difference equations. Further, by making 
the identification 

(11) 

where In is then X n identity matrix and 

(12) A= n 

0 

0 

our questions regarding (essentially) the zeros xnk may be put in terms of eigenvalues of 
symmetric tridiagonal matrices for which the Sturmian approach is well known (see, 
e.g., [16, Chap. 7]). Indeed, we shall repeatedly make use of this identification to obtain 
new results or point out alternative proofs. 

In closing this section, we remark that Chihara ([l], [4], see also [6]) has obtained 
characterizations for ~ 1 , 11 1, a and .,. which are in appearance quite different from the 
basic oscillation theorem. A third characterization, which may be conceived as a 
consequence of Chihara's results, has been stated and given an independent proof by 
Whitehurst [22, Chap. 4]. It is not very difficult to prove directly the equivalence of 
Chihara's or Whitehurst's results and the basic oscillation theorem. 

3. Upper bounds on ~1 and u. Our starting point in this section will be a lemma 
concerning the system of equations 

(13) n= 1,2, · · ·. 

LEMMA 2. If the system of equations (13), where bn>O, possesses a solution 
z_ 1,z0,z1, · · · satisfying znzn+I <0 for n<:=N"?.0, then 

M+k 

(14) aM+ ~ (am-2/b:)>O 
m=M+I 

for any two integers k<==O and M>N+ 1(M<==N+1 if zN-I =O). 
Proof. Assuming that a given solution has z m ::f= 0 for m = M - 1, M, · · ·, M + k- 1, 

we can write down the equalities 

and, form=M,M+l,· · ·,M+k-1, 
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Summing these k + 1 equalities yields 

aM+ Mik (am-2/b:)=-{ ZM+k +bMZM-2+M]-1 (zm+zm-1ib::::)2}• 

m=M+I ZM+k-1 ZM-1 m=M Zm-IZm 

from which the lemma follows at once. D 
Returning to the recurrence formula (1), we let x be any real number, 

(15) n=-1,0,1,···, 

and y={y0 ,y1, • • • }. Further, let {x1,x2 , • • ·} be any sequence of positive numbers 
and define 

(16) 

If we let b1 be positive but otherwise arbitrary, 

(17) an=(cn-x)/Xn and bn+ 1=Xn+ 1/(XnXn+ 1), n>O, 

then {zn}~=-i satisfies the recurrence relation (13) with bn>O, so that Lemma 2 applies. 
Translating this result in terms of y11 , en, An, Xn and x yields 

(18) -K+ ~ __.!!!__2 m >x ~ -c M+k ( c ( A ) 1/2) M+k 1 

XM m=M+I Xm Xm-IXm m=M Xm 

for k;:::O and M>N+ 1(M;:::N+1 ifYN-t =O), whenever YnYn+ 1<0 for n;:::N;:::O. 
By the basic oscillation theorem one has x$~1 if and only if S(Y)=O. That is, 

x$~1 if and only if YnYn+i<O for n;:::O, since y11 =0 is clearly impossible when x:SE1• 

Further noting that y_ 1 =O, we conclude that the inequality x$E1 implies the inequali­
ties (18) for all k;:::O and M>O. From this result one easily deduces the following 
theorem. 

THEOREM 4. For any sequence of positive numbers {x1,x2, • · ·} and integers k;:::O 
and M>O one has 

(19) E < -K+ ~ ___!?!__ 2 m ~ -( c M+k (c ( A )1/2))(M+k 1 )-I 
1 XM m=M+I Xm Xm-lXm m=M Xm 

Taking k=O and x11 = 1 for all n, we obtain Corollary 4.1, which is also a direct 
consequence of Stieltjes' criterion (5) and therefore well known (see, e.g., [6, p. 109]). 

COROLLARY 4.1. 

n= 1,2,. · ·. 

Letting k= 1 and xn= 1 for all n, a result emerges which was first given (with an 
error) by Maki [11] and later improved by Chihara [5]. 

COROLLARY 4.2. 

n=l,2, · ··. 
We remark that the other part of the Maki-Chihara result to the effect that 

!(en +cn+ 1)-VAn+I is unbounded when E1 > -oo and 111 = oo, can also be generalized 
in the spirit of Theorem 4, at least when x11 = 1 for all n. One should simply use Maid's 
argument on the basis of which lies the result of Stieltjes mentioned in the introduction. 
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Assuming that inf{cn} >-oo, we can choose k= I and xn=cn -c in (19), where c 
is any number smaller than c11 for all n. After some rearranging, we then get 

(20) ~1<c+2 (cn-c)(c11+1-c)-(A.n+1(cn-c)(c11+1-c))112' 
c11 +c11 +1-2c 

n= 1,2, · · ·. 

In combination with Corollary 4.1, this result yields a useful third corollary. Namely, if 
there are values of f11 =:!(c11 +cn+J-((c11 -c11 +1)2 +4A. 11+dl2 ), n=l,2,· · ·, with the 
property fn <cm for all m, we can choose c equal to any of those f 11 , f 1 say, after which 
the choice n= I yields that E1 <~1 • Hence, in this case, ~ 1 <f11 for all n. If, on the other 
hand, f 11 >cm for some m and all n, Corollary 4.1 implies that the same conclusion 
holds. Thus, we have the following result, which is sharper than Corollary 4.2, while 
involving the same parameters. 

COROLLARY 4.3. 

n=l,2, · · ·. 

We note that upper bounds for ~ 1 can be obtained on the basis of the interpreta­
tion (11) for P11(x). Namely, considering that the eigenvalues of A 11 equal those of 
KnA 11 K 11 , where K11 is the nXn matrix consisting of elements k;j= 1 when i+j=n+ I 
(i ,j = I, 2, · · ·, n) and 0 elsewhere, one also has 

(21) P11(x)=det(K11 A11 K11 -x!J. 

Hence, we can identify P11(x) with the nth polynomial in an orthogonal sequence 
{Pm(x)} determined by the recurrence formula (1) through the parameters cm=cn+J-m 
(m:5n), cm=cm (m>n), ~m=A.n+i-m (m:5n+ I) and ~m=A.m (m>n+ I). It now 
follows from (3) and ( 4) that 

(22) k= 1,2,. · · ,n-1, 

where .Xm1 denotes the smallest zero of Pm(x). However, the only practical bounds 
obtained by this approach are ~ 1 <.x 11 , but this gives Corollary 4.1, and ~ 1 <.X 21, which 
amounts to Corollary 4.3. 

Remark. A third proof of Corollary 4.3 may be given on the basis of Chihara's 
characterization for E1 (cf. (6, Thm. IV.2.1]). 

The arguments leading to Theorem 4 need only slight modification to obtain 
results on the limit interval of orthogonality. For by the basic oscillation theorem we 
have x<a only if S(y) is finite; that is, only if y11 y11+ 1 <O for n sufficiently large (by 
definition of a, y11 = 0 occurs for at most finitely many n if x <a). Hence the inequality 
x<a implies the inequality (18) for M sufficiently large and all k?:.0. From this it is 
easy to derive Theorem 5, which, however, also derives directly from the Theorems I 
and4. 

THEOREM 5. For any sequence of positive numbers {x 1,x2 , • • ·} and integer k?:.0, 
one has 

(23) a< lim inf ......M.+ ~ -.!!'!..-2 m ~ -{( c M+k ( c ( A. )1/2)) ( M+k l )-l} 
-M->oo XM m=M+I Xm Xm-lXm m=M Xm . 

Taking k=O and Xn arbitrary, we get the analogue of Corollary 4.1, which has 
been obtained previously by Wouk [23, last inequality of Thm. 8(e)] and Chihara [I, 
Thm. 6]; see also (6, Thm. IV.3.1]. 
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COROLLARY 5.1. 

a::5liminf {en}. 
n-> oo 

We also state as a corollary the analogue of Corollary 4.3, although its proof is 
most conveniently given via Theorem 1 and Corollary 4.3. 

COROLLARY 5.2. 

o::5~~f 1 {en +cn+1-((cn-cn+1>2+4i\n+1r12}. 

An interesting case arises when we let k tend to infinity in Theorem 5. However, 
we had better do this not in (23), but at at earlier stage in the reasoning leading to 
Theorem 5. Namely, from Theorem 4 we see that for all M>O 

~ 1 ::5 lim inf {!( M, k) } , 
k--->oo 

where/(M,k) denotes the expression between braces in (23). Hence, by Theorem 1, 

(24) a::5 lim inf{ lim inf{f(M,k)} }. 
M--->oo k->oo 

Now let us assume that ~x; 1 =00. Then, evidently, liminfk .... 00{/(M,k)}= 
liminfk ... 00{/(l,k)}, so that we obtain the next theorem. 

THEOREM 6. For any sequence of positive numbers {x 0,x1, ···}such that ~x; 1 = oo, 
one has 

Taking xn= I for all n, we obtain the important Corollary 6.1, which has been 
given previously by W ouk [23, Thm. 8(g)]. 

COROLLARY 6.1. 

4. Lower bounds on ~1 and u. As in the previous section we start our discussion by 
considering the system of equations (13). If we plot a solution z_ 1,z0 ,z 1, • • • of this 
system by joining successive coordinates (i,zi) by straight line segments, then the points 
where such a line segment meets the x-axis will be called a node of the solution. We can 
now cite the following classical result [14]. 

LEMMA 3 (Sturm's separation theorem for difference equations). For any system of 
equations (13) where bn>O, the nodes of any two linearly independent solutions separate 
each other. 

Suppose an+ 1 < -bn<O for n>N'?:.O and let two arbitrary numbers iN>iN-I ;:::Q 
determine a solution {in}~ 1 of (13). Then we have by induction 

in -in-I= -(an+ l)(Zn-1-in-2)-(an + bn + I)in-2>0 

for n> N. Lemma 3 now implies that any solution {zn} of (13) has at most one node in 
the interval [N-1, oo). Hence, also noting that znzn_ 2::50 if zn-l =O, we can state the 
following lemma, which is also essentially contained in [9]. 
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LEMMA 4. If an+ bn + 1<0 and bn > 0 for n > N, then any non trivial solution { z n} of 
(13) for which zm-lzm:SO for some m~N has the property that sign(zm+k) = sign(zm) if 
zm:;i==O, and =sign(-zm_ 1) if zm=O,for all k>O. 

Back to our orthogonal system (1) we let x be any real number and define the 
quantities Yn as in (15). Further, we let {x0,x1, · · ·} be any sequence of positive 
numbers and define 

(26) n>O. 

Finally, we let b1 be positive, 

(27) an=-(en-x)/Xn and bn+i=An+1/(XnXn+1), n>O. 

Then {zn} satisfies the recurrence relation (13) with bn>O, so that the second condition 
in Lemma 4 is satisfied for n>O. In terms of en, ;\n, Xn and x, the first condition in this 
lemma reads 

(28) 

provided n > 1. Supposing (28) to be valid for n > 0, we can choose b 1 > 0 so small that 
an+ bn + l < 0 for n > 0. Hence, Lemma 4 applies and we have sign( ( - l )k y k) =sign( z k) 
=sign(z0)= 1, since z_ 1z0 =0. Thus, by the basic oscillation theorem, x:S~ 1 • A trivial 
argument subsequently leads to our next theorem. 

THEOREM 7. For any sequence of positive numbers {Xo.X1> · · · }, one has 

(29) 

Remark. This theorem may also be obtained via the identification ( 11) for Pn( x ). 
Namely, the zeros xn1,xnz> · ·,xnn of Pn(x) are the eigenvalues of An; and therefore, 
also of the matrix <J)n-'An<l>n, where <Pn = diag( q> 1,<t>2 , • • • ,<f>n) and <t>i>O. With Gershgorin's 
theorem (see [12, p. 146]), one may subsequently prove that 

(30) > · { _</Ji-I .f\ _ <f>i+t ·~} 
Xn1-IIlID ei ,/.. Vf\; ,/.. V(\i+I ' 

1Sn 'Yi 't'f 

where <Po= l, say. Taking { <PJ such that <Pi+ 1 = X;<I>/ J>i.i+ 1 and letting n tend to infinity 
yields (29). 

Various consequences of Theorem 7 suggest themselves; e.g., one could take xn= I 
for al~ n, or •. x.o= 1 and xn=;\n+t (n>O), the latter result beif implicit in Maki [11]. 
We will explicitly state as a corollary the case xo= land xn= An+t (n>O), since this 
result-improves directly upon Lemma 3 of Nevai [15, p. 21]. 

COROLLARY 7.1. 

By choosingx0 =1 and xn=;\n+ 1/(en+t-<t>n+i) (n>O), where <Pn<cn (n>l), we 
obtain the following useful, alternative formulation of Theorem 7. 

THEOREM 7'. For any sequence { <t> 1,<t>2, • • • }, with cp 1 :Se1 and <Pn <en (n> 1), one has 

(31) inf {<Pn-;\n+1/{cn+1-<Pn+1)}:5~1· 
n2: I 
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Thus formulated, Theorem 7 is seen to improve upon a result of Leopold [10], 
specified for the present context, which amounts to (31) with a fixed value cp ( :5 c n for 
all n) for all 4>n· 

As a final lower bound for ~ 1 , we mention a theorem of Chihara. Actually, Chihara 
gives the corresponding result for a, but his argument applies equally well here (cf. [2], 
[4] and [6, Thm. IV.3.3]). 

THEOREM 8 (Chihara). For any chain sequence {,Bn}~=I• one has 

(32) . 1{ (( 2 )l/2} ~~~ 2 cn+cn+l- Cn+l-cn) +4A.n+1/,Bn ::;~,. 

Remark. {.Bn}~= 1 is a chain sequence if there exists a sequence {gdk'=o with 
O:s;g0 < 1 and O<gk < l (k>O), such that Pn=(l -gn-l )gn; {gd is called a parameter 
sequence for { ,Bn}. For instance, { i} is a chain sequence for which { ! } is a parameter 
sequence. 

Remark. Theorems 7 and 8 are in a sense best possible since equality may be 
obtained in (29) and (32). To this end, one should take .Bn=an(~ 1 )=A.,,+ 1 /((c,,+ 1 -
~1)(cn -~ 1 )) (which is a chain sequence according to [6, Tum. IV.2.1]) in (32) and 
x,,=(cn-~ 1 )(1-g11 _ 1 ), with {gd a parameter sequence for {a,,(~ 1 )}, in (29). Thus we 
have actually obtained new characterizations for the true interval of orthogonality. 

Using an argument similar to that for Theorem 7 or, alternatively, exploiting 
Theorems 1 and 7, one easily produces the following general lower bound for a. 

THEOREM 9. For any sequence of positive numbers {x 0,x1, ···},one has 

(33) lim inf{c11 -~-x11} :511. 
n--.oo Xn-1 

We will explicitly state as a corollary of Theorem 9 the case where x 11 = /A. 11 + 1 for 
n>O. 

COROLLARY 9.1. 

The latter result has been given by Wouk [23, Thm. 8(f)], while it is a slight 
generalization of a result of Chihara [2, p. 704); see also Nevai [15, p. 22]. 

In this context we remark that the proof and subsequent formulation of another 
one of Wouk's results [23, Thm. 8(h)] contains an error. The corrected version of this 
theorem is an easy consequence of the above corollary. 

For completeness' sake we finally mention the analogue to Theorem 8, Chihara's 
lower bound for a. 

THEOREM 10 (Chihara [2], [4], see also [6, Thro. IV.3.3)). For any chain sequence 
{/3.} 

(34) ,,~1! inf 1 { c,, +cn+i -( (c,,+ 1-c,,)2 +4A.n+t/Pn)112 } :So. 

Remark. It can be shown that the left-hand sides of (33) and (34) can be made 
arbitrarily close to CJ by a suitable choice of {Xn} and {/311 }, respectively. 

5. Bounds on spread and centre. As mentioned in the introduction, we can 
straightforwardly produce lower (upper) bounds for '1] 1 (or T) on the basis of upper 
(lower) bounds for ~ 1 (or a) by considering the polynomials P,,( x) = ( - I)" Pi - x) 
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which are determined by the recurrence formula (1) via the parameters en= -en and 
Xn=A.n, and thus have [-'IJ 1, -~i] ([-r, -0']) as their true (limit) interval of ortho­
gonality. Then various upper (lower) bounds on the spread of the true (or limit) interval 
of orthogonality may be obtained by combining upper (lower) bounds for ~ 1 (or O') with 
lower (upper) bounds for 'lJi (or r). Similarly, we should combine upper (lower) bounds 
for ~ 1 (or O') with upper (lower) bounds for 'lJi (or T) to obtain upper (lower) bounds on 
the centre of the true (or limit) interval of orthogonality. We will not pursue this 
approach in any detail except that we show how known results on the spread of the true 
interval of orthogonality may be reproduced in this way. Also, we show that additional 
information on the centre of the true (or limit) interval of orthogonality may be 
obtained by exploiting Stieltjes' criterion (5). 

Let us first note that as a consequence of Corollary 4.3 and its dual result for '1] 1, 

we have the following theorem, which is essentially due to Mirsky [13], who states it in 
a finite eigenvalue context (the term spread is taken from Mirsky). 

THEOREM 11. 

n=l,2, · · ·. 

This is the simplest result combining parameters en and An- A bound involving 
only en's, which is not necessarily worse than Theorem 11, is 

(35) n,m= 1,2,- · ·, 

which follows from Corollary 4.1. However, Theorem 11 does improve upon a result 
involving only A./s which, together with (35), was given already by Shohat [18], [19], 
viz., 

(36) n=2,3,· ··. 

But then, the latter inequality can be sharpened in another direction on the basis of (19) 
(with Xn= 1) as follows. 

(37) 

THEOREM 12. For any two integers k>O and M?=.0, one has 

4 M+k 

111 -~I> k+ 1 ~ {>:;. · 
m=M+I 

In particular, it follows that '111 -~I ?=.4,/'A when xm~x as m~ 00. 

So much for the spread. 
Regarding the centre of the true interval of orthogonality, let us assume 71 1 < ao. 

Then, by Stieltjes' criterion (in dual form), we have 

for n>O, where y0=0 and Yn>O for n>O. For convenience, we define y_ 1=1. By (29) 
we then get 

(38) 

Subsequently, substituting Xn = y2n- I for n ?=.0 yields 

(39) 

Combining this inequality and its dual result, we obtain the next theorem. 
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THEOREM 13. If ~I> - 00 or 'T/1 < oo, then 

(40) 

Similarly, we obtain the corresponding result for the centre of the limit interval of 
orthogonality. 

THEOREM 14. If o> - oo or T< oo, then 

(41) 

Appendix. A second order oscillation theorem. In this appendix, we shall assume 
E1 > -oo. We define 

(Al) n=O, l,· · ·, 

where { Pn} is given by (1 ), and wish to study the behaviour of the sequence Q( x) = 
{Q0(x), Q1(x), · · · }. To this end, we define the polynomials Pn*(x), n=O, l, · · ·, by 

(A2) 

i.e., {Pn*} is the set of kernel polynomials with parameter ~ 1 which is associated with our 
original system {Pn} (see [6, §1.7]). These kernel polynomials form an orthogonal 
system. The zeros of Pn*(x) will be denoted by x;k, k= 1,2,· · ·,n, and in an obvious 
manner we define the numbers Et and 'T/k, k = 0, 1, · · · . The following lemma holds. 

LEMMA Al. For all k>O, one has EZ =~k+ 1 and Tlk =Tlk· 
Proof. There is a separation theorem saying that 

(A3) 

[6, Thm. 1.7.2], whence the second statement holds. 
Regarding ~Z we can only conclude from (A3) that 

(A4) k=l,2, .... 

However, there exists a distribution dl/;(x) with respect to which the polynomials Pn are 
orthogonal whose support contains the points Ek, k= 1,2,· · ·, but no other points 
smaller than o [6, Thm. II.4.5]. The polynomials Pn* are then orthogonal with respect to 
the distribution dl/;*(x)=(x-E 1)dl/;(x) [21, Thm. 3.1.4]. Assuming that di/;* is the 
only distribution with respect to which the Pn* are orthogonal, we subsequently obtain 
from [6, Thm. II.4.5] that ~k =~k+ 1 (k= 1, 2, · · · ). 

Now suppose that dt[;* is not uniquely determined by {Pn*}. We see from (A4) that 
Ej:SE2 • But Ei<E2 would be contradictory to the fact that the support of di/;* contains 
at least one point in (-oo,~j] (see [6, Tum. II.4.4(i)]). Consequently, ~j =E2 • Invoking 
[3, Tum. 5], we conclude that di/;* is the unique distribution corresponding to {Pn*} 
whose support is contained in [E2 , oo), and that EZ =~k+i fork> 1 too. D 

The following second order oscillation theorem is the main result of this appendix. 
THEOREM Al. The polynomials Qn defined by (Al) and (1) satisfy 

(A5) S(Q(x )) =S( .:\Q(x )) =k 

if/ ~k<x:S~k+I (k=O,l,···). Here Q(x)={Q0(x),Q1(x),.··} and .:\Q(x)= 
{Q0(x), Q1(x)-Q0(x), Q2(x)-Q1(x), · · · }. 
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Proof. The fact that S(Q(x))=k iff ~k<x:s;~k+I is a restatement of the basic 
oscillation theorem. The second part follows by application of the basic oscillation 
theorem to the polynomials P,,* and observing that, by Corollary 4.1, Q0(x)(Q 1(x)-
Q0(x))<O when x>~ 1 • D 

When 1/ 1 < oo a similar theorem may be obtained for the polynomials 

(A6) n=O, 1, · · ·. 

In closing, we remark that a finite version of Theorem A 1 is stated in [7] in the 
context of birth-death processes. Indeed, the results of this paper apply to these 
stochastic processes as is shown in [8]. 
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