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ABSTRACT. This paper gives a brief outline of a program of formulating 
(infinite horizon) optimal control problems as restricted variational problems 
on manifolds. Based on a generalized Lagrange multiplier theorem we shall 
indicate how the formalism may be used to obtain results about optimal feedback 
control of infinite horizon optimal control problems. Moreover, connections 
with recent work about exterior differential systems and variational problems 
are given. 

INTRODUCTION. This paper is concerned with a variational approach to opti
mal control. A va!'iational problem can be given by a Lagrangian function 
L{x,x,t), an end cost function h(x), a time interval I= [O,T] or [O,•), 
an initial point and a target set S. Then one wants to minimize the action 

J{x) = j L(x(t),x(t),t)dt + h(x(T)) 
I 

over all possible curves {x{t), t € I}, with x(O) = x0, x(T) ES. The 
problem is called rest!'icted if the curves to be considered are restricted in 
some sense. We shal 1 use the following abbreviations: 

CEFHVP: clamped end point, finite horizon variational problem; here the 
target set consists of one point and we have no end cost function; moreover we 
have I = [ o, T]; 

FEFHVP: free end point, finite horizon variational problem; here the target 
set is some, at least one-dimensional, connected subset of the state space of 
I = [O, T]; 

CEIHVP {FEIHVP): clamped end point (free end point) infinite horizon varia

tional problem; I = [O ,•). 

If certain properties are not specified we delete the indicating capitals. 
Optimal control problems can be considered to be variational problems in the 
space of states and inputs, with curves restricted to be state-input trajec
tories of a given system. We shall use the same abbreviations as for varia
tional problems except that the V is deleted (IHP means infinite horizon 
optimal control problem). 
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In section l we shall give definitions and results for finite horizon varia

tional problems. We restrict attention to first order conditions, although 

higher order conditions can be treated in a similar way. Curves satisfying the 

first order conditions are called stationary. The Lagrange multiplier rule 

given in this section relates stationary curves of a restricted problem, satis

fying certain conditions, with stationary curves of an unrestricted problem on 

a higher dimensional manifold. The latter can be solved using a well-known 

Cartan characterization. In section 2 these results are extended to infinite 

horizon problems. In section 3 we show that an optimal control problem can be 

formulated as a variational problem. Application of the Lagrange multiplier 

theorem then yields an intrinsic coordinate-free characterization of stationary 

curves, which under certain regularity conditions comes down to the familiar 

Euler-Lagrange or Hamiltonian formalism if written in local coordinates. The 

general formalism can be used to analyze optimal feedback control of general 

infinite horizon optimal control problems. 

In this paper we deleted details and proofs of theorems, these can be found 

in Bus [2] and [3]. For unexplained notations also see Bus [2,3] and Spivak 

[5]. 

l. THE FINITE HORIZON VARIATIONAL PROBLEM. Let M be a smooth (C00
) 

manifold of dimension n. Denote I= [O,T] (TEII\) to be the time interval. 

The ta:t>get set S is assumed to be either one point xT EM (CEFHVP), or a 

smooth connected submanifold of M of dimension s 2'. l (FEFHVP). Instead of 

giving a Lagrangian L(x,x,t) we give, more generally, an action l-fom1 a., 
which is a smooth differential 1-form on M. h: S-+IR denotes the end coot 

funetion and x0E M is the given initial point. The variational problem so 

defined is denoted by VP(M,a.,h,S). 

Given a smooth injective curve cj>: I-+M with cj>(O)=x0, cj>(T)ES, we can 

give the following definitions. 

DEFINITION l.l. An injective map ~EC((-5,o) x I,M) (o> O) is called a 

va:riation of cj> for the FHVP iff 

(i) ~(0,t) = cj>(t), VtE I; 

(ii) ~(E,0) = cj>(O), ~(E,T) € s, VEE (-o,o) 

(We denote: <PE(·)= ~(E,·).) 

DEFINITION 1.2. An injective ou1'Ve <PE C00 (I,M) is stationary for 

VP(M,a,h,S) if cj>(O) = x0, cj>(T) ES and the first order condition holds: 

ddsls=O [h(cjJE(T)) + J<t>~a.] = 0 (l.l) 
I 

for a.U iiari-ations cj>E of cj>. 
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It appears that we can restrict attention to variations which satisfy 
$(e:, t) = cp{t) on some neighborhood of t = 0 (similar for CE conditions). 
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One might consider variations induced by vector fields along the curve cp 

and define stationarity in terms of Lie derivatives with respect to such vector 
fields. Although such a definition is extremely useful, particularly to ease 
many proofs, we shall avoid it here for the sake of brevity. For details we 
refer to [2] and [3]. 

For a given 2-form w on M we define the Cartan system C(w) to be the 
(Pfaffian) differential ideal generated by the set of 1-forms 

{X _JwlX E X(M)} 

(cf. [4], where X(M) denotes the set of smooth vector fields on M and ..J 

denotes contraction: (X -lw)(Y) = w{X,Y), VY E X(M)). Then we can give the 
following crucial characterization of stationary curves due to Cartan (see [2]). 

PROPOSITIOM 1.3. An injeative au:r>Ve <PE c"'(I,M) is stationary for 

VP{M,a,h,S) if and only if 

{i) <P(I) is an integral manifold of C(da); 
(ii) <j>{O) = x0, <j>(T) E S; 

(iii) {dh+ a) !5(cp(T)) = 0 (transversality) 

~~e may introduce restrictions on curves in M via smooth (C"') codistri
butions of fixed dimension on M. It is shown in [2] that the condition that 
curves are trajectories of a given (nonlinear) system can easily be expressed 
in such a way. We say that an injective curve <PE C00(I,M) is admissible 

under restriction codistribution E if <P*S = 0 for all SE E. Moreover, we 
call <P stationary under restriation E if it is stationary with respect to 
all admissible variations. However, the following more restrictive concept 
appears to be more useful. 

DEFINITION 1. 4. An injeative au:r>Ve cp E c "'(I ,M) is fomaUy stationary 

under restriction aodistribution E (smooth and of fixed dimension) for the 

FHVP if cp(O) = x0, cp(T) ES, <P is admissible under E and 

dde:I <P*i3=0, vse:o .. :e:/ (h(<Pe:(T)J+j<P~a)=O 
e:=O e: e:=O I 

(1.2) 

for all variations <Pe: of <j>. 

It is easily seen that formal stationarity implies stationarity. However, 
the converse is in general not true. He say that if stationarity implies 
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formal stationarity for a certain variational problem, then this variational 

problem is norn1al. 

Now let rr: T*M+M be natural projection. Then the canonical 1-fom El 

on T*M is defined by 

(1. 3) 

And the cm~ta:n for"n on E associated with a 1-form a on M is defined by 

(1.4) 

Note that E is a subbundle of r*M, the subscript E denotes restriction 
to E. With these preliminaries we can state the Lagrange multiplier theorem. 
Here it is not just a rule whose satisfaction is a necessary condition for 
optimality, as it occurs usually in literature, but it gives necessary and 
sufficient conditions for formal stationarity of a curve (which in turn is a 
necessary condition for optimality). 

THEOREM 1. 5. (Lagrange multiplier theorem). An injective cui>ve 

Gi E C00 (!,M) fo formally stationary for FHVP(M,a,h,S) under restriction codis

trib:.ition E, if and only if there exists an injective n E C00
( I, E) with 

\l = 11E°n' wh1"."h is stationaT')J for the uni>esti>icted FHVP(E,ea,h • 11E,x(S)), 
<' .. ihrere X denotes some section X : M-r E. 

So a restricted VP can t>e "reduced" to an unrestricted VP on a higher 
dimensional manifold. For the latter we can use the characterization of Propo
sition 1.3. The fibre coordinates of the curve n in the vector subbundle 
"E: E·>M can be interpreted as the Lagrange multipliers in a given coordinate 
neighborhood. 

2. THE INFINITE HORIZON PROBLEM. In this section we shall extend the 
results of section l to the IHVP. We have: 

= [0,ro), h c 0. 

With an IH-variation of q,: I+M we mean a FE-variation of q, according to 
Definition 1.1 with S = M (i.e., no condition on the end point). To assure 
finiteness of the cost integral we have to adapt the definition of stationarity 
in the following sense. 

DEFINITION 2 .1. An injective curoe q,: I+ M is 

(i) st,1tionart1 1Jit1' i>espect to the IHVP with action form a iff 



J l<1>*al < "" 
I 
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(note that <1>*a is of the for>m ~(t)dt, so that l<1>*al here mea:ns 

lv(t)ldt) and for aZZ IH-variations $£ of <jl: 

j_I 1 q,*£a = o 
dE E=O 

I 
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(2. l) 

(2.2) 

(ii) for>maZZy stationary UJith respeat to the restricted IHVP with aation 

form a and restriation codistribution E iff (2.1) is satisfied and for aZZ 

IH-variations <!>£ of <jl: 

JEI <1>;e = o, ve e: E • J I J <1>*a = o 
£=0 £ £=0 I £ 

With these definitions the Lagrange multiplier theorem 1.5 is valid for infi
nite horizon problems without further restrictions, so that we do not reformu
late it here. 

3. THE OPTIMAL CONTROL PROBLEM. First we define the notion of a time
invariant nonlinear control system as introduced in Brockett [l] and Willems 
[6]. 

DEFINITION 3.1. A nonZinear (time-invariant) control system i: = E(Q,B,f) 
is defined by smooth manifolds Q and B, a fibre bundle T : B+ Q and a 

smooth map f: B + TQ suah that the following diagram commutes 

f 

We call E(Q,B,f) affine if B is a vector bundle and f, restricted to the 

fibres of B, is an affine map into the fibres of TQ. E is analytic if 

o:nd Q are analytic manifolds and f is an analytic map. We say that 

V : I+ Q is a tra,iectory of i: if 1jJ is absolutely continuous and 

(3.1) 

With a trajectory we associated a state-input trajectory i; : I.,. B satisfying 

T(1';(t)) = v(t), V* (ddtlt) = f(i;(t)), a.e. on l (3.2) 
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Note that the fibres of B represent the state dependent input spaces. If 
we choose local coordinates q for Q and u for the fibres ,-l (q), then 
we obtain the familiar system equation q = f(q,u) (with abuse of notation 
for f: (q,u)+(q,f(q,u))). Then a trajectory ljJ: I+Q is a solution of this 
differential equation for some given initial point and some associated input. 
The pair: trajectory with associated input, is the state-input trajectory and 
is in these coordinates often denoted by dt) = (ljJ{t)v(t)). If l: is affine 
then we can give a representation by 

with ui € JR, f0, fi € X(Q) (i = 1, ... ,m). In the sequel we shall always 
assume that f is an injective ir.mersion. 

(3.3) 

For brevity we shall only translate the infinite horizon stationary (optimal 
up to first order) control problem into a variational problem. The finite 
horizon problem is similar but requires some care with the target set. More
over, the FHCEP does not always lead to a normal variational problem in the 
sense of section 1. So let be given: a nonlinear control system l:(Q,B,f), 
I= [O,•), h ~ 0, S = Q and initial state q0. Let J1(I,B) denote the 
1-jet bundle of B, restricted to I c:JR. Note that, given coordinates (q,u) 
on B, natural coordinates on J1(I,B) are (q,u,q,u,t) and, moreover, 
J1 (I ,B) = TB x I. We assume that a cost function G is defined on J 1 (I ,B). 
(At this moment there is no theoretical reason to restrict G to Bx I as is 
usually done and we can imagine optimal control problems where the cost depends 
al so on the derivatives.) 

With every curve ~ € c•(I,B) we can naturally associate a curve 
~P € c'°(I,J1(B,I)) according to 

(in coordinates: t + (~(t).~(t),t)). ~le consider the IHP of finding state
input trajectories ~ € C00(l,R) with '· ~(O) = q0 such that ~ is station
ary for the cost 

(3.5) 

As admissible curves for the optimal control problem are state-input trajec
tories of the nonlinear system we may restrict the problem to the submanifold 

(3.6) 
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Moreover the restriction that curves considered in M should be naturally 
associated to curves in B lead to a restriction codistribution E which is 
simply the canonical codistribution on J1(1,B) (see [4]) restricted to M. 
E is 1oca11 y spanned by the 1-forms: 

Si dqi fi(q,u)dt 

sj duj ujdt 

i = 1, ... ,n 

j = 1, ... ,m 
(3.7} 

where coordinates (q,u) on B and the injective immersion f (locally given 
by components fi, i = 1, ... ,n) induce natural coordinates (q,u,u,t) on M. 
So the restricted variational problem associated 1~ith the given optimal control 

problem is: VP(M,GMdt,E}, where h = 0 and S = Q are deleted and the sub
script M denotes restriction to H. It can be proven that the variational 
problem thus associated with an infinite horizon, free end point optimal con
trol problem is normal. This will in general not hold for clamped end point 
problems. 

Application of the Lagrange multiplier rule yields the followin~ result. 

COROLLARY 3.2. Assume that the va'f'iational p't'oblem assooiated with a given 

!HP is normal. Let s E Cm(l,B) be injeotive and 

Then s is stationary for the !HP if and only if there ex~sts an injeot~ve 

ouPVe n E Cm(! ,E) with i • 11E • n = ~p such that n is an integral ouPVe of 

the Car"tan system C(de0 ), whe~e e0 = 1T~(GMdt) + eE is the Car'tan fom asso

oiated with GMdt, i:M+J1(I,B) the natural embedding, 11:T*M+M projeo

tion and the subscripts M and E denote rest'f'iotion to M and E. 

So we see that stationary curves of the optimal control problem can be 
found as projections of integral curves of the exterior differential system 
(C(de0),dt) on E. Note, moreover, that the distribution (C(de0)) 1 which 
annihilates the Cartan system is typically not of constant dimension. 

Griffiths [4, I .e. 1] gives a construction procedure to reduce (C(de0) ,dt) 
on E to a system (I,dt) on Y c E, such that: 

(i) the projection on Y of the set of integral elements of (I,dt) is 
surjective; 

(ii) the integral manifolds of (C(de0),dt) on E coincide with those of 
(I,dt) on Y. 
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In accordance with his terminology we call Y the momentum space and (I,dt) 

the EuleY'-Laer>anJe differ>ential system associated with the optimal control 

problem. Then the following definition appears to be useful. 

DEFINITION 3. 3. The optimal eontr>ol p1'oblem is nonsinqular> ·if 

(i) dimY=2n+l (dimQ=n) 

(ii) (eGlvl 11 (deGlvln -f o 

If an optimal control problem is nonsingular then we know by Darboux' 

theorem that we may choose local coordinates Q1 , ... ,Qn,Pl , ... ,Pn,T for Y 

such that (with summation over i = l,. .. ,n) 

for some H, which is called the Hamiltonian. Exterior differentiation and 

contraction with a/aQi, a/aP; yields for (I,dt) on Y in this coordinates: 

dQ. - Hp dT = 0 
1 i 

dP. + HQ dT = 0 ( 3. 9) 
1 i 

Hence optimal curves should satisfy the Hamiltonian equations: 

dQi - 3H dPi = ~lH 
dT - aP i ' dT - 3Qj ( 3. l 0) 

We shall work out the procedure in natural coordinates (q,u,u,t) for M to 

illustrate the ideas. Choose coordinates (q,u,u,>,,µ,t) for E (eE E can 

be written as \r\{q,u,u,t) + 11jBn+j(q,u,u,t) with Bk as in (3.7) and sum

mation over i and j). Then we have 

with 

H{q,u,u,:>c,11,t) = G{q,u,f{q,u),u,t) + 1.Tf(q,u) + 11Tu 

Contracting d8G with a/aq, :i/au, a/au, a/al., a/aµ and equating to zero 

gives respectively: 
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H dt + dA 0 
q 

H;i.dt-dq 0 

Hudt + dµ = 0 

u dt - du = 0 

(3.11) 

(Gu + µ)dt = 0 

If we assume that Gu 

to u (this holds e.g. 

yielding u = U(q,\,t), 

0 and Hu= 0 can be explicitly solved with respect 

if G· = 0, the system is affine and det G I O) 
q uu 

then we can work out the reduction procedures yielding 

Y = {e= (q,u,u,A,µ,t)lu=O, u=U(q,A,t), 

I : {Hqdt + d\ 0 

H\dt - dq 0 

• d 
u=atU(q, ,t)) 

with 

H = H(q,U,A,t) = G(q,u,f(q,u),t) + \Tf(q,u) 

Clearly the problem is nonsingular if H "f 0, because dim Y 2n + 1 and 

With the tools available now we might proceed in the following way to study 

existence and uniqueness of optimal feedback controls for !HP. First define 

DEFINITION 3.4. An equilibriwn eul"ve of an !HP is an integrut "''"~" o/ 
the E'uler-Lagrange syatern 1.Jh-ieh has) in canorrieaZ eoord-£n.'.itesj the f'orm 

t.,. (Q,R,T(t)) 1,1ith Q and P constant. 

An equilibrium y(t) (Q,P,T(t)) satisfies the equations: 

Then the ba.sin B c Y of an equilibrium y(t) of the !HP is the set of 

all points in Y through which there goes an integral curve 

t.,. (Q(t),P(t),T(t)) of the Euler-Lagrange system with Q(t)·•Q, P(t).,.p for 

t+oo. Now let ii: Y-rQ be natural projection. Then existence of a stationary 

curve from q0 E Q going to the equilibrium is assured if q0 E n(S). 

Finally, we shall illustrate the ideas by working out the linear-quadratic 

control problem. 

f(q,u) = Aq + Bu 

G(q,u) = qTMq + uTRu 
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where M and R are symmetric and R positive definite matrices. l•Je as 
moreover that (A,BR-lBT) is stabilizable. Then we obtain 

Y = {(q,u,u,>.,µ,t)Iµ= 0, u= -R-lB\, u= -R-lBT(Mq+AT!.)} 

and the equilibrium is obtained as the solution of 

[
A -BR-lBT} 

, with H = T 
-M -A 

Hence q = A = 0. The integral curves of the Euler-Lagrange system satisfy 

[~} = H [:} 

As we have stabilizability, there exists a stabilizing solution K of th 
algebraic Riccati equation 

The columns of [Kl-] span an H-invariant subspace. 

satisfying 

q = (A - BR-lBTK-)q 

A = K-q 

Curves (q(t),il(t),t) 

are stable integral curves of the Eugler-Lagrange system on Y and the ba 
B c Y is given by 

Hence rr(B) = Q and the optimal feedback, given the initial point q(O) = 
is obtained by computing the solution curve through (q0,K-q0,o) and usin 
the definition of Y to obtain u. 
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