INFINITE HORIZON OPTIMAL CONTROL ON MANIFOLDS
Jacques C. P. Bus

ABSTRACT. This paper gives a brief outline of a program of formulating
(infinite horizon) optimal control problems as restricted variational problems
on manifolds. Based on a generalized Lagrange multiplier theorem we shall
indicate how the formalism may be used to obtain results about optimal feedback
control of infinite horizon optimal control problems. Moreover, connections
with recent work about exterior differential systems and variational problems
are given.

INTRODUCTION. This paper is concerned with a variational approach to opti-
mal control. A variational problem can be given by a Lagrangian function
L(x,X,t), an end cost function h(x), a time interval I = [0,T] or [0,x),
an initial point and a target set S. Then one wants to minimize the action

300 = [ Lx(£),%(t),t)dt + h(x(T))
I

over all possible curves {x(t), t € I}, with x(0) = Xgs x(T) € S. The
problem is called restricted if the curves to be considered are restricted in
some sense. We shall use the following abbreviations:

CEFHVP:  clamped end point, finite horizon variational problem; here the
target set consists of one point and we have no end cost function; moreover we
have I=[0,T];

FEFHVP:  free end point, finite horizon variational problem; here the target
set is some, at least one-dimensional, connected subset of the state space of
I1=[0,T];

CEIHVP (FEIHVP): elamped end point (free end point) infinite horizon varia-
tional problem; I=[0,).

If certain properties are not specified we delete the indicating capitals.
Optimal control problems can be considered to be variational problems in the
space of states and inputs, with curves restricted to be state-input trajec-
tories of a given system. We shall use the same abbreviations as for varia-
tional problems except that the V is deleted (IHP means infinite horizon
optimal control problem).

m
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In section 1 we shall give definitions and results for finite horizon varia-
tional problems. We restrict attention to first order conditions, although
higher order conditions can be treated in a similar way. Curves satisfying the
first order conditions are called stationary. The Lagrange multiplier rule
given in this section relates stationary curves of a restricted problem, satis-
fying certain conditions, with stationary curves of an unrestricted problem on
a higher dimensional manifold. The latter can be solved using a well-known
Cartan characterization. In section 2 these results are extended to infinite
horizon problems. In section 3 we show that an optimal control problem can be
formulated as a variational problem. Application of the Lagrange multiplier
theorem then yields an intrinsic coordinate-free characterization of stationary
curves, which under certain regularity conditions comes down to the familiar
Euler-Lagrange or Hamiltonian formalism if written in local coordinates. The
general formalism can be used to analyze optimal feedback control of general
infinite horizon optimal control problems.

In this paper we deleted details and proofs of theorems, these can be found
in Bus [2] and [3]. For unexplained notations also see Bus [2,3] and Spivak

[5].

1. THE FINITE HORIZON VARIATIONAL PROBLEM. Let M be a smooth (Cm)
manifold of dimension n. Denote I=[0,T] (TE]R+) to be the time interval.
TEM (CEFHVP), or a
smooth connected submanifold of M of dimensjon s>1 (FEFHVP). Instead of
giving a Lagrangian L(x,X,t) we give, more generally, an action 1-form «a,
which is a smooth differential 1-form on M. h:S+R denotes the end cost
funetion and xOEM is the given initial point. The variational problem so
defined is denoted by VP(M,a,h,S).

Given a smooth injective curve ¢:I+M with ¢(0)= Xy o(T)ES, we can
give the following definitions.

The target set S 1is assumed to be either one point x

DEFINITION 1.1. 4n injective map $€C{(-6,8) x I,M) (&> 0) is called a
variation of ¢ for the FHVP iff

(1) 9(0,t) = o(t), wtel;

(1) ¢(e,0) = ¢(0), o¢(e,T) €S, vee (-8,6)

(We denote: ¢.(+) = 6(g,+).)

DEFINITION 1.2. 4n injective curve ¢ € C(I,M) is stationary for

VP(M,a,h,S) if ¢(0) = X O(T)ES and the first order condition holds:
& [regm + fom] =0 (1.1)
€=0 1

for all variations ¢€ of ¢.
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It appears that we can restrict attention to variations which satisfy
o(e,t) = ¢(t) on some neighborhood of t=0 (similar for CE conditions).

One might consider variations induced by vector fields along the curve ¢
and define stationarity in terms of Lie derivatives with respect to such vector
fields. Although such a definition is extremely useful, particularly to ease
many proofs, we shall avoid it here for the sake of brevity. For details we
refer to [2] and [3].

For a given 2-form w on M we define the Cartan system C(w) to be the
(Pfaffian) differential ideal generated by the set of 1-forms

0 wlX € x(M)}

(cf. [4], where X(M) denotes the set of smooth vector fields on M and _|
denotes contraction: (X —tw)(Y) = w(X,Y), WY € X(M)). Then we can give the
following crucial characterization of stationary curves due to Cartan (see [2]).

PROPOSITION 1.3. An injective curve ¢ € Cm(I,M) is stationary for
VP(M,a,h,S) Zif and only if

(i) o(I) <s an integral manifold of C(da);
(ii) ¢(0) = g ®(T) € S5
(ii1) (dh+a)|s(¢(T)) = 0 (transversality) .

We may introduce restrictions on curves in M via smooth (C7) codistri-
butions of fixed dimension on M. It is shown in [2] that the condition that
curves are trajectories of a given (nonlinear) system can easily be expressed
in such a way. MWe say that an injective curve ¢ € Cm(I,M) is admissible
under restriction codistribution E if ¢*8 =0 for all RE€E. Moreover, we
call ¢ stationary under restriction E if it is stationary with respect to
all admissible variations. However, the following more restrictive concept
appears to be more useful.

DEFINITION 1.4. A4n injective curve ¢ € ¢ (I,M) 4s formally stationary

under restriction codistribution E (smooth and of fixed dimension) for the
FHVP 2f ¢(0) = Xy o(T)€ES, ¢ 1is adnissible under E and

d _ d _
Ge| L, PB0 WD =g (n(o (T)) + [ora) =0, (1.2)

for all variations ¢€ of ¢.

It is easily seen that formal stationarity implies stationarity. However,
the converse is in general not true. We say that if stationarity implies



114 JACQUES C. P. BUS

formal stationarity for a certain variational problem, then this variational
problem is normal.

Now let m:T'M+M be natural projection. Then the canonical 1-form ©
on T*M is defined by

* * a 3)
8(z)(v) = z(myV), YCET M, vET:T Mo .
And the Cartan formon E associated with a 1-form o on M s defined by

— (1.4)
ea = mea + BE .

Note that E is a subbundle of T*M, the subscript E denotes restriction
to E. With these preliminaries we can state the Lagrange multiplier theorem.
Here it is not just a rule whose satisfaction is a necessary condition for
optimality, as it occurs usually in literature, but it gives necessary and
sufficient conditions for formal stationarity of a curve (which in turn is a
necessary condition for optimality).

THEOREM 1.5. (Lagrange multiplier theorem). A4n injective curve
¢ € CT(1,M) <s formally stationary for FHVP(M,a,h,S) under restriction codis-
tribution E, 1if and only if there exists an injective n € Cm(I,E) with
¢ = Teens which is stationary for the unrestricted FHVP(E,Ga,h . 'HE,)((S)),
where X denotes some section ¥ :M-E.

So a restricted VP can be "reduced" to an unrestricted VP on a higher
dimensional manifold. For the latter we can use the characterization of Propo-
sition 1.3. The fibre coordinates of the curve n 4n the vector subbundle

e E->M can be interpreted as the Lagrange multipliers in a given coordinate
neighborhood.

2. THE INFINITE HORIZON PROBLEM. 1In this section we shall extend the
results of section 1 to the IHVP. We have:

I=[0,0), hzo.

With an IH-variation of ¢: I+M we mean a FE-variation of ¢ according to
Definition 1.1 with S=M (i.e., no condition on the end point). To assure

finiteness of the cost integral we have to adapt the definition of stationarity
in the following sense.

DEFINITION 2.1. 4n injective curve o:I-M 1s

(1) stationary with respect to the INVP with action form o iff
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[le¥al <= (2.1
I

(mote that ¢*a is of the form ¢(t)dt, so that lc[)*ocl here means
lw(t}|dt) and for all IH-variations 6. of ¢:

LSRR (2.2)
e=0 1

4
de

(i1) formally stationary with respect to the restricted IHVP with action
form o and restriction codistribution E iff (2.1) is satisfied and for all
IH-variations ¢€ of ¢:

d * d *

- ¢ B =20, VSEE»—] ¢ a =20

de e=0 € delezg f €
With these definitions the Lagrange multiplier theorem 1.5 is valid for infi-
nite horizon problems without further restrictions, so that we do not reformu-
late it here.

3. THE OPTIMAL CONTROL PROBLEM. First we define the notion of a time-
jnvariant nonlinear control system as introduced in Brockett [1] and Willems

[6].

DEFINITION 3.1. 4 nonlinear (time-invariant) control system I = 5(Q,8,f)
is defined by smooth manifolds Q and B, a fibre bundle 1:B+Q and a
smooth map f:B+TQ such that the following diagram commites

We call I(Q,B,f) affine if B is a vector bundle and f, restricted to the
fibres of B, 1is an affine map into the fibres of TQ. I 1is analytic if B
and Q are analytic manifolds and f <s an analytic map. We say that
V:I1+Q <s a trajectory of L if U <s absolutely continuous and

0 (j—tt)e»f(r”(w(t))) ae. on 1 . (3.1)

With a trajectory we associated a state-input trajectory ¢ :1-B satisfying

HECIRNIOREN G ) R CUI R (3.2)
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Note that the fibres of B represent the state dependent input spaces. If
we choose local coordinates q for Q and u for the fibres T-](q), then
we obtain the familiar system equation q = f(q,u) (with abuse of notation
for f:(g,u)~>(q,f(q,u))). Then a trajectory ¢:I-Q 1is a solution of this
differential equation for some given initial point and some associated input.
The pair: trajectory with associated input, is the state-input trajectory and
is in these coordinates often denoted by z(t) = (v(t)v(t)). If I 1is affine
then we can give a representation by

m
fq,u) = fyla) + 1%uifi(q) , (3.3)

with us €R, fo, fi € X(Q) (i=1,...,m). In the sequel we shall always
assume that f s an injective immersion.

For brevity we shall only translate the infinite horizon stationary (optimal
up to first order) control problem into a variational problem. The finite
horizon problem is similar but requires some care with the target set. More-
over, the FHCEP does not always lead to a normal variational problem in the
sense of section 1. So let be given: a nonlinear control system £(Q,B,f),
1=[0,), h=0, S$=0 and initial state G- Let J](I,B) denote the
1-jet bundle of B, restricted to I <R. Note that, given coordinates (q,u)
on B, natural coordinatés on J](I,B) are (q,u,q,u,t) and, moreover,
J1(I,B) = TBxI. We assume that a cost function G is defined on J1(I,B).
(At this moment there is no theoretical reason to restrict G to BxI as is
usually done and we can imagine optimal control problems where the cost depends
also on the derivatives.)

With every curve z € CT(I,B) we can naturally associate a curve
Pe Cm(I,J](B,I)) according to

o (1))

(in coordinates: t ~ (z(t),z(t),t)). We consider the IHP of finding state-
input trajectories ¢ € CT(I,R) with - z(0) = 9 such that z is station-
ary for the cost

1) = [o(cPat . (3.5)
I
As admissible curves for the optimal control problem are state-input trajec-
tories of the nonlinear system we may restrict the problem to the submanifold

M= {(w,t) €9 (1B Femlwt) = 1 (W)} < (1,8) . (3.6)
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Moreover the restriction that curves considered in M should be naturally
associated to curves in B 1lead to a restriction codistribution E which is
simply the canonical codistribution on J](I,B) (see [4]) restricted to M.
E is Tocally spanned by the 1-forms:

8, = da; - f.(q.u)dt , i=l,...n

(3.7)

n

B.

du, - G,dt i=1,...,
5 uJ uJ N i=1 m

s

where coordinates (q,u) on B and the injective immersion f (locally given
by components fi’ i=1,...,n) induce natural coordinates (q,u,u,t) on M.
So the restricted variational problem associated with the given optimal control
problem is: VP(M,GMdt,E), where h =0 and S =10 are deleted and the sub-
script M denotes restriction to M. It can be proven that the variational
problem thus associated with an infinite horizon, free end point optimal con-
trol problem is normal. This will in general not hold for clamped end point
problems.

Application of the Lagrange multiplier rule yields the following result.

COROLLARY 3.2. Asswme that the variational problem associated with a given
IP is normal. Let ¢ € C(I,B) be injective and

[l

Then ¢ 1is stationary for the IHP 1if and oniy 1f there exists an injective
curve n € Cm(I,E) with 1 - meen = P suchk that n is an integral curve of
the Cartan system C(d@G), where BG = WE(GMdt) + GE is the Ctiz‘tan form asso-
ciated with GMdt, i: M- J1 (I,B) the natural embedding, 7:T M+M projec-

tion and the subscripts M and E denote restriction to M and E.

e

So we see that stationary curves of the optimal control problem can be
found as projections of integral curves of the exterior differential system
(C(deG),dt) on E. Note, moreover, that the distribution (C(deG))] which
annihilates the Cartan system is typically not of constant dimension.

Griffiths [4, I.e. 1] gives a construction procedure to reduce (C(deG),dt)
on E toa system (I,dt) on Y < E, such that:

(i) the projection on Y of the set of integral elements of (I.dt) is
surjective;

(ii) the integral manifolds of (C(ds
(1,dt) on V.

G),dt) on E coincide with those of
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In accordance with his terminology we call Y the momentum space and (1,dt)
the Euler-Lagrange differential system associated with the optimal control
problem. Then the following definition appears to be useful.
DEFINITION 3.3. The optimal control problem is nonsingular if
(i) dimY=2n+1 (dimQ=n)
. n
(i1) (eGIY) A (deGly) #0
If an optimal control problem is nonsingular then we know by Darboux '

theorem that we may choose local coordinates Q],...,Qn,P],...,Pn,T for Y
such that (with summation over i=1,...,n)

eG[y = -H(Q,P,T)dT + Piin ) (3.8)

for some H, which is called the Hamiltonian. Exterior differentiation and
contraction with a/aqi, a/aPi yields for (I,dt) on Y in this coordinates:

"

in - HPidT o

P+ HydT =0, (3.9)

1

Q
dt = FdT mod{in,dPi} , F#0

Hence optimal curves should satisfy the Hamiltonian equations:

=%

Qoo P
oW, @ E (3.10)

<

We shall work out the procedure in natural coordinates (q,u,u,t) for M to
illustrate the ideas. Choose coordinates (q,u,u,A,u,t) for E (e€E can
be written as Aiﬁi(q,u,&,t) + uj8n+j(q,u,ﬁ,t) with 8, as in (3.7) and sum-
mation over i and j). Then we have

GG = Hdt - Aidqi - ujduj ,
with
H(gous0u0,ut) = 6(q,u,F(a,u),0,t) + ATF(quu) + 1lu

Contracting deG with 3/3q, 3/0u, 3/30, 3/3X, 3/3u and equating to zero
gives respectively:



OPTIMAL CONTROL

119
Hdt+ @ =0
det -dg=20 N
Hydt +du=0 (3.11)

udt-du=0 |,
(G, +mu)dt =0
If we assume that Gﬁ =0 and Hu = 0 can be explicitly solved with respect

to u (this holds e.g. if G: = 0, the system is affine and det G * 0)
yielding u = U(q,A,t), then we can work out the reduction procedures yielding

Y = {e=(q,u,0,2,1,t) [u=0, u=U(g,),t), L3=adTU(cz, Lt}
Hdt +da=0

det - dq

"
o
-

with

H

H(q.u,hst) = 6(a,u,F(g,u),t) + ATF(q,u)
Clearly the problem is nonsingular if H # 0, because dim Y = 2n+1 and
n _
(6gly) A (d8gly)” = Hdgadrndt # 0

With the tools available now we might proceed in the following way to study
existence and uniqueness of optimal feedback controls for IHP. First define

DEFINITION 3.4. An equilibrium curve of an IHP is an integral curve of
the Euler-Lagrange system which has, in canonical coordinates, the form
t+ (Q,R,T(t)) with Q@ and P constant.

An equilibrium y(t) = (Q,P,T(t)) satisfies the equations:
Hply(t)) = HQ(y(t)) =0

Then the basin B < Y of an equilibrium y(t) of the IHP is the set of

all points in Y through which there goes an integral curve

t+ (Q(t),P(t),T(t)) of the Euler-Lagrange system with Q(t)-Q, P(t)-P for

t-w. Now let 7:Y+Q be natural projection. Then existence of a stationary

curve from qq € Q going to the equilibrium is assured if qy € 7(B).
Finally, we shall illustrate the ideas by working out the linear-quadratic

control problem.

"

f(q,u)
G(g,u)

Ag + Bu s

qTMq + uTRu s
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where M and R are s¥mmetric and R positive definite matrices. We as
moreover that (A,BR']B ) s stabilizable. Then we obtain

. - . - T
Y = ((quusiohapt)|u=0, u=-RTBIA, G=-RIB (Mg+ATA)}

and the equilibrium is obtained as the solution of
-1,.T

q A -BRT'B
H|| =0, with H= T
A M A

Hence q=X=0. The integral curves of the Euler-Lagrange system satisfy

e

As we have stabilizability, there exists a stabilizing solution K~ of th
algebraic Riccati equation

ATk + KA - KBRTTBTK + M = 0
I
The columns of _| span an H-invariant subspace. Curves (q(t),A(t),t)
K
satisfying
qg=(A- BR']BTK')q ,

A

K'g

are stable integral curves of the Eugler-Lagrange system on Y and the ba
Bc Y 1is given by

B = {(q.A,t)|A=Kq}

Hence (B) = Q and the optimal feedback, given the initial point q(0)=
is obtained by computing the solution curve through (qO,K'qO,O) and usin
the definition of Y to obtain u.
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