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Introduction

In 1930 J. Karamata has developed the theory of regular varistion for
positive functions of a positive argument ([1{] and [1@]). The regularly

varying functions of exponent p form a class of functions which behave in

P

many respects like x° near infinity. Karamsta used his theory for an exten-

sion of certain Tauberian theorems.

Gradually it has become clear that the regularly varying functions play
an important role in probability theory. W. Feller for example has exploi~
ted Karamata's results in the theory of stable distributions and their do-
mains of attraction ([?] ch. XVII section 5; cf. [ﬁ] p. 175).

In the present work we use Karamata's ideas to derive well~known and
new results in extreme value theory. Whereas the theory of regular variation
as developed in [ﬁ1] amd.[ﬁé] 18 sufficient for the theory of stable distri-
butions,for extreme value theory we need a non-trivial extension of these
results.

Our first chapter starts with a complete exposition of the basic theorems
for regularly verying functions. After that several extensions are given
which are needed for extreme value theory. These ought to lead to interesting
results in other domains of application as well.

The second chapter deals with extreme value theory proper. We only con-
sider the simplest model: the sequence of the partial maxima of g sequence of
independent, identically distributed random variables. The possible non-
degenerate limit distributions for these maxima belong to one of three clas-
ses: ¢a’ Wa and A (see theorem 2.2.1). The first two classes were discovered
by M. Fréchet [4]; the third one by R.A. Fischer and L.H.C. Tippett (3] -
Sufficient conditions for the domains of attraction (see definition 2.2.1)
of the limit distributions were given by R. von Mises~£15]. B.V. Gnedenko
-[6] has established necessary and sufficient conditions for the domains
of attraction of Qa’ Wa and A. Our second chapter starts with an exposition
of these results, taken mainly from Gnedenko's work. As Gnedenko himself
states, in the case of A these conditions can neither be regarded as final
from a theoretical nor very satisfactory from a practical point of view.

The main goal of our research was to find other necessary and sufficient

conditions for the domain of attraction of A. To do so we had to develop



the extension of regular variation described in chapter I. Our main result
is contained in section 2.6 (theorems 2.6.1 and 2.6.2), where a unifying

approach is given to the domains of attraction of all limit distributions.



CHAPTER I REGULAR VARIATION AND RELATED CONCEPTS

1.0 INTRODUCTION

This chapter 1s of a purely analytic character and serves as an intro-
duction to chapter II where a problem in probability theory is considered.

First J. Karamata's theory of regularly varying functions is presented
(sections 1.1 and 1.2). Detailed proofs are given, which in essence are due
to Karamate. Different proofs of the main theorems can be found in W. Feller
[2] p. 268-276. In our opinion they lack the elegance and simplicity of
Karamata's method. We follow Karamata's second paper [12] but avoid an error
in his treatment, due to the application of an incorrect theorem of Cauchy.

Next, after presenting two extensions of Karamata's main theorem (sec-
tion 1.3),'we study & subclass of the class of regularly varying functions
with exponent 0 (section 1.4). By methods similar to those of Karamata we
show the equivalence of a number of properties. The results (to be applied
in chapter II) may be considered as a second order regular variation theory.
In the last section (1.5) a complementary theory is given for functions

which are inverses of those treated in section 1.k,
(added in proof) It should be noted that recently M. Marcus and

M. Pinsky (J. Math. Anal. and Appl. 28 (1969) 440-449) have published
results coinciding with the part a) « d) of theorem 1.4.1, corollary

1.4.1 &) and corollary 1.4.2 b) in the present work.



1.1 REGULAR, SLOW AND RAPID VARTIATION

For x > 0 we adopt the following convention

f

0 for x < 1
xm#-ﬁ 1 forx=1
b‘:m- for x > 1
[ for x < 1
-~
X =mq 1 for x = 1
0 for x> 1 .,

Definition 1.1.1 A function U : RY + R *) varies regularly et infinity
naclon t. i +
if there existg a p € R such that for all x € R

(1,1.1) limy—é%?lﬂxp.
g U

This number p is called the exponent of regular variation for U. In the
particular case p = 0, U is often called slowly varying at infinity.

Definition 1,1.2 A function U : R R varies rapidly at imfinity i1f for
all x ¢ B

lim -{—H :x = xp,

T

where p = +% Or p = wo,

For brevity we shall also use the expression p-verying (at infinity)
for functions satisfying definition 1.1.1 or definition 1.1.2 (hence p ¢ R).

Exampies For all real p the functions

xﬁ

¢
» X log(1+x), (x log(1+x) )p, x° loglog({e+x)

s =y

are p-varying at infinity. The function

hnedenl
EFT

®) &
"R is the set of positive r '
and B = Ru(+}u{-=} °%% numbers, W is the set of all real numbers



arctg x

is slowly varying at infinity and the functions

are repidly varying at infinity (p = +» and ~~ respectively).
The functions

2 + sin x, exp {{log x}}

(where [ﬁ]_is the largest integer < a) are not p-varying at infinity.
Karamata [ﬁé] and Feller [2] have remarked that for monotonic functions
and even for measurable functions definition 1.1.1 18 unnecessarily restric-

tive for applications. The following theorems provide some slternatives.

Theorem 1.1.1 A Lebesgue-measurable function U : R + R varies regularly
if there exists a function h : R - R such that for all positive x

45

(1.1.2) lim = h(x).

1,0

Proof Obviously h is measurable as a pointwise limit of measurable functions.

Writing

Ut _ Ultxy)  U(ty)
u(t ulty) ° u(t)

and using (1.1.2) we see that for x,y ¢ R

(1.1.3) h(xy) = h(x).h(y).

It is well-known (see e.g. [9] p.116-118) that the only measurable, positive

: : +
and finite-valued solutionsof (1.1.3) on R are
hix) = xP

for some real p. [



For monotone functions the conditions of definition 1.1.1 can be re-

placed by the apparently weaker conditions of the next theorem.

Theorem 1.1.2 A monotone function U

+ + . .
t: R +~ R wvaries regularly if there

exist two positive integers m, and m, for which log m1(log m.z)"1 is irra-

tional and

. . Ulnm) _ o
(1.11:)4) ii]:;. U(n) = m

for m = m, and m = m, where p is a real number; in (1.1.4) n runs through

the positive integers.

Proof Buppose U is non-decreasing, then p > 0.

It is not difficult to see that the assumptions of the theorem imply
that equation (1.1.4) holds for every integer m from the set

V= {ﬁfm% | p,q non-negative integers}.

Purther it is well-known (and essentially stated in Kronecker's theorem,
gsee [ﬁd] chapter XXIII) that if log m1(log~m2)"1 is irrstional, the set

8 .
{nﬁl‘m2 [ r,8 1ntegers}

is denge in.B+. This means that for any pair of positive numbers x end ¢
ve can find integers Vi Vs, and vy from V such that

v v
(1&115) X—E “1;’1‘:){4"1{ x+€¢
D Vo
a) First we prove
. Uln+1)

| g an)

Suppose (1.1,6) is false. Then we can select & sequence {k} of positive
integers tending to infinity such that



U(kr+1)
= @
U(kr)

lim
oo

1 and & < 01/p - 1 there

il

with 1 < ¢ < @, In virtue of (1,1.5) with x

exlist integers vy, and vs in V such that

Now take
n = [k .v"1:|
r r 5
(the largest integer not exceeding kr.VET), then for n, > v5
p r o

nvg <k < (n#1) v, <n (v +1) 2nv.

Since (1.1.4) holds for every element m ¢ V, we obtain the contradiction

v Uln v, ) U(k +1)
y P . r U . T
¢ > (=) = 1lim —r + > 1lim — — = ¢,
5 rosoo U(nrvs) oo UCkr)

hence (1.1.6) is true.
b) In order to prove the assertion of the theorem, we use (1.1.5) for ar-

bitrary x and e ¢ R+ and define for t > 0O

-1
(1.1.7) n, = [t.v]

For all positive x and e we have

U(nt) U(ntv1 U(nt+1) U{tx)
(1.1.8) UZnt+1) © U(n,) 'TJTE'nt+1)v2Yiu(%') al

U((nt+1)V') U(nt) U(nt+1)

h Ufnt+15 ) U(ntvéfi' U(nt)

Combining (1.1.4) (for arbitrary m e V), (1.1.6), (1.1.7) and {1.1.8) we
ffind

< lim sup E%E%) 5_(x+e)p.

too

Ultx
u(t

(JC-e,)p ilim inf
) AR

Hence (1.1.1) holds.



For non-increasing U the proof is completely analogous.[]
Theorem 1.1.2 can be applied to improve the formulation of a Tauberian
theorem for power series (see [2] p. 423). An application to sequences of

coefficients of attraction for partial sums of samples is given in [81.

In chapter 2 we shall need the following theorem on monotone functions

(which is mainly lemma 2 p.270 of [2]). This theorem provides a criterion

both for regular and for rapid variation.

Theorem 1.1.3 &) A monotone function U : R + R' varies regularly 1f and

only if there exist two sequences{kn} and {an} of positive numbers with

(1.1.9) <

lima = o
| 41
omac

\
such that for all positive x

(1.1.10) lim An U(anx) exists, is positive and finite.
n-ro

Moreover, if we define the function X by

(1.1.11) x{x) = 1lim An.U(anx) for x > 0,

N+

then we have

(1.1.12) -%%%%

where p is the exponent of regular varistion of U,

: +
b) A monotone function U : R + R' varies rapidly with p = » (or p = =)

H
74

1f and only if there exist two sequences {).n} and {an} of positive numbers
satisfying (1.1.9) emd & ¢ € R’ such that

(1.1.13) 1im An U(anx) = (*f)m (or (-ﬁ-)-m respectively).

-



Proof The assertions for a non-decreasing function U are equivalent to

the same assertions for the non-increasing function %n Hence we may restrict
ourselves to the case of a non-increasing U.

Furthermore we exclude the trivial case U(«) > 0 (then the assertions
under a) hold with p = 0, kn =1and a = n).
(i) We first prove both "if" statements of the theorem. Define for t > O

the integer n = n(t) by

n = min {m | > t}.

Bk 1

Then

+
and for all x,y € R

U(a_,.x) U(tx)  Ula x)
(1.1.14) U(B‘ny) ~ U(ty) ~ Uf&n—Hyj ‘

a) Suppose (1.1.10) holds. Using (1.1.9), (1.1.10) and (1.1.14) we see
. U(tx) X
lim =
- U(t) x(1§

for all positive x. Application of theorem 1.1.1 gives (1.1.12).

b) Suppose (1.1.13) holds. As U is non~increasing, we have p = -=, For

X > 1 we choose b and d such that

D <bhbh<c<d«< m

then by (1.1.9), (1.1.10) and (1.1.14)

-1
gatx ﬁlimy—(ib 'ﬂ)=limUt'(1 <
u(t) U(tb) —
00 troo

Aps A, Ula a) .

=0 = X .
1 u (-;n-i-'lgy

n-»o n )‘n-l-
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For 0 < x < 1 we proceed in an analogous way.
(ij) Next we prove both "only if'" statements. Suppose U is regularly or

rapidly varying at infinity. We define for positive y

V(y) = inf {x | U(x) <vyl,

then
(1.1.15) U(V(y)+0) <y < U(v(y)-0)
and
uviy)+o) . v _ U(V(y)-0)
(1.1.16) UV < TVEYY < UGy

Furthermore we have
(1.1.17) lim V(y) = =,
y+0

a) Suppose U varies regularly with exponent p. As U is non-increasing, we
have p < 0, For each € > 0 and x < 1 there exists a t(x,e) with for

t z_t(xsﬁ)
CU(t-0) | Uu(tx) 0
Ik fuk) < F tes
hence
1lim Ué%;?) = 1,
t-roo |

In an analogous way we see that

. ULE+0) _
llmu“éngl'— 1,

trroo
hence by (1.1.16) and (1.1.17)

lim Uviy)) . 1.
y+0O J
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Choosing

{
A = n
n
(1.1.18) <
1
% T v(n)
\
we get for x > O
U(anx) ;
llm.kn.U(anx) = llm.kn U(an)“ﬁ(a 7= X
r)+o0 -0 n

b) Suppose U varies rapidly, i.e. we now have p = -=, By (1.1.15) we find

for x - 1
2
lim inf wr > lim inf BE¥$¥)F?) > lim inf gExvyg§}l = o
y+0 XYy y+0 y y40 XVAY
and for 0 < x < 1
.. .. U(V(y)=0) . .. U2y
lim sup oL < lim sup : < lim sup = 0,
40 U(xv(y)) 40 U(xv(y)) 40 U(xVv(y

so0 that with the choice (1.1.18) we obtain for all positive x # 1

lim A X -,
n+§. 0 U(an ) = x 0
Remark 1.1.1 The proof shows that for non-increasing p~-varying functions

(1.1.10) holds with the special choice

et
H
=

(1.1.19) 4

a_ = inf {x | U(x) j_%& .
In this case
P

(1.1.20) X{x) = x .

Remark 1.1.2 The proof also shows that for non-increasing functions the

following weaker version of the "if" part of the theorem holds: A non-in-
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. : + . . .
cregsing function U @ R +-R+ varies regularly i1f for each e > 0 there exist
sequernces {An(a)} and {an(e)} of positive numbers with
/ Kn(ﬁ)

1lim inf > 1-¢
n-reo ln+1(E)

(1.1.21) <
lim a (g) = o
nie B ’

\

such that for all positive x the expression

ln(s).U(an(e).x)
tends for n > «® to a positive and finite value ¥(x) not depending on €.

1.2 KARAMATA'S THEOREM AND SOME CONSEQUENCES

In this section we shall assume all functions to be Lebesgue-summable
on finite intervals unless otherwise stated. For this class of functions
definition 1.71.1 can be put in two different but equivalent forms, due to

Karamata. To do gso, we first formulate three lemmas,

Lemma 1,2.1 a) Suppose that for positive functions f and g on R

t t
(1.2.1) lim J f(s)ds = lim [ z(s)ds =
t-r O Tt O
and
(1.2.2) lin e = ¢ with 0 < e < =
tom B
Ft
f{s)ds
Then lim 0: = c,
+ ft
g(s)ds
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b) Suppose that for positive functions f and g on R both

J f(t)dt and ng(t)dt
0 0

are finite and

1im-f—E£))-=c with 0 < ¢ < o,
foo B\T T

[ f(s)ds
Then 1im L — 2O,

e tjmg(S)ds

Proof a) Suppose first 0 £ ¢ < ©, For each € > 0 there exists a t_. such

0O
that for t > t
— 0
(c~€) g(t) < £(t) < (c+e) g(t).
Then for t > to
t t t
I (s)ds J f(s)ds J g(s)ds
e 50 5
(1.2.3) C=E = (c—E) T t < (c+€) " = o+¢g.
J g(s)ds J g(s)ds J g(s)ds
to 'b 't.o

From (1.2.1) and (1.2.3) the statement of the lemma follows easily. For

c = « we only have to interchange the roles of f and g.

b) This part is proved in a similar way as part a). [

. + . .
Lemma 1.2.2 Suppose the function U : R + R is p~varying (=w<p<e),
a) If p > -1, the function

X

X
(1.2.4) U (x) = .[ u(t)at
0

is {(p+1)-varying.

X3
bp) Ifp < -1o0rp=-1and } U(t)dt < e, the function
0
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(1.2.5) U™ (x) = J Ut )dt
X

18 well-defined and (p+1)-varying.

Proof a) First we prove that for p > -1

(1.2.6) lim U, (x) = <.
x-)'OO
By definition 1.1.1 there exists an 54 such that for s 2 s,
u(2s) > 2“”,I . U(s),
%o
hence for n > n, with 2 2 8,
2n+1 2n 2n
J U(s)ds = 2 J u(2s)ds > J U(s)ds.
2n 2nﬂ1 2n---1
And so
n +1
o - 2n+1 o o 0
J U(s)ds > X J U(s)ds > E J U(g)ds = o,
50 n=n0+ 1 21'1 n=n0+1 21‘10

which proves (1.2.6).

Using (1.2.6) and lemma 1.2.1 a) (with £(t) = x.U(tx) and g(t) = U(t))
we have for p > -1 and all x > O

tx
U*(tJC) | OJ U(S)dﬁ |
U*(t) = lim = 1lim

xU(tx) _ p+1

T .

toren J U(s)ds L
0

u(t)

1im
ot -pco

If p = -1 and (1.2.6) holds, the same proof applies:; if p = -1 and
(1.2.6) does not hold, the function U_ is a trivial example of a slowly

varying function and so the lemmsa holds in this case too.

b) We first prove for p <-1
(1.2.7) J U(t)at < =,
0

Choose e > 0 such that p+e < ~1. By definition 1.1.1 there exists an

84 such that for s 2 84



15

U(2s) < 277% y(s),
hence for n > n
-4 n+1 n

D o of

f U(s)ds = 2 J U(2s)ds < 27° J U(s)ds.

2n 2n-—1 ' 2n--1

We now have (1.2.7), as
1 Byt

Q0 e 2 o0 ...E:(n-.. ) 2
j U(s)ds < X J U(s)ds < z . % f U{s)ds < «,

81 n=n, 5n n=n, 2no

Thus U*(x) is well-defined.

Applying lemma 1.2.1 b) with £f(t) = x.U(tx) and g(t) = U(t) we see that
U* is (p+1)=-varying at infinity, Finally, if p = -1 and u” 18 well-defined,
application of lemma 1.2.1 b) gives the result of the lemma. []

Lemma, 1.2.3 If f is positive and absolutely continuous on [a,b] (0O<a<b<w)

then log f 1s absolutely continuous on [a,bl.

Proof For all a j_x1 <Y j_x2 < Yo S eee 2% < yn.j-b we have

n
y n 2(y.) - £(x,)|
i'Z-':'] |108 f(yl) - log f(xl)l o i£1 log {1 + min(f(yi),f(Xi))} <
n
£(y,) - £(x,)] iZ1If(yi) - £(x,)]

<

Pt

I e~188

12 min(f(yi),f(xi))f- min{f(x)] xela,bl} °

Now we are able to prove Karamata's msin theorem.

Theorem 1.2.1 &) Suppose U : RT > R is Lebesgue-summable on finite inter-

vals and varies regularly with exponent p. If p > ~1, then

(1.2.8) lim xx'U(*x) = p+1 3
* J U(t)dt
0 Qa0
if p < =1, or p = -1 and J U(t)dt < «, then
0
(1.2.9) 1im mx.U(x) = wpet,

Xre xJ U(t)dt
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+ + . . :
b) Suppose U : R * R 1s Lebesgue-summable on finite intervals. IT

(1-2-10) lim - J;'-I—J(K) = A
x—)—m
J u(t)at
0

with 0 < A < @  then U is (A-1)-varying st infinity; if

(1.2.11) lim

with 0 €< A < ® then U is (~A-1)=~varying at infinity.

Proof We define for x > 0 the function b by

(1.2.12) b(x) = i-U(x)
J u(t)at
0

Integrating both sides of

b(x) _ U(x)
X X ?
J U(t)dt
0

we find by lemma 1.2.3 for some real cy and all positive x

X o X
J Eiﬁl-dt = log { J U(t)dt} + c
1 0

(as the derivatives of the two parts exist and are equal a.e.), hence

X : ps
{1.2.13) J U(t)dt = ¢, exp { J P—(-El-dt}
0 1
¢
where ¢ = e ' is a positive number. In view of (1.2.12) this yields
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X
(1.2.1L4) U(x) = ¢ . Eﬁél'. exp { J Eézl-dt } for all x > 0.
1

a) Let U be p-varying. First suppose p > -1, Using lemma 1.2.2 and the fact
that products and quotients of regularly varying functions are regularly
varying, we see that the function b varies slowly at infinity; we have to

prove

(1.2.15) lim bi{x) = p+1.
W00

By Fatou's lemma

U(xt)
U(x)

1
dt z_I lim inf U(xg) dt

1
(1.2.16) lim inf {b(x)}m1 = lim inf I
0 X0

plaa xro O

= (p+1)" 1,

For p = -1 this gives (1.2.15). For p > -1 we proceed as follows. From

(1.2.16) we see that there exists an x, such that b(x) is bounded on [x_,*).

0 0?

From the slow variation of D we have for t > O

lim-b(ﬁt)bfx?(xj =0

oo
and by the boundedness of b

1im { b(xt) =~ b(x)} = 0,

H=p00
Applying Lebesgue's theorem on dominated convergence we get

(% blxt) 5 p(xt)-b(x)

(1.2.17) 1im, f i dt -~ b(x).log s % = lim J E*Mﬁ dt = 0

x| X 1

for s > 0.

On the other hand we see from (1.2.13) and lemma 1.2.2, that
X

exp { J bit)

T At} is (p+1)—varying. Hence for s > 0
1
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gX
8 exp J E%El at )
(1.2.18) lim b(xt) dt = lim log { 1 —— } = (p+1).log s.
x>0 1 t XoHoo xb(t)
exp ( { " dt )

Combining (1.2.17) and (1.2.18), we obtain (1.2.15).

€0
Next suppose p < -1 {or p = -1 and f U(t)dt < ). Define for x > 0O
0

b (x) = x-U(}E)
1 .

rU(t)dt
X

In an analogous way as before we find

h1(x) X b1‘ﬁ)

(1.2.19) U(x) = c. exp { - J "y dt } for all x > 0.
1

The rest of the proof is practically the same as for p > -1.

b) Suppose (1.2.10) holds., For each ¢ > 0 and 8. > 0 there exists a t_ such

0 O
that for % 3ﬂt0 and s 3_30

(1.2.,20) r-g < b(ts) < Ate,

where b is defined by (1.2.12). Using the representation (1.2.14) we have
for x> 0

u(tx) _ bltx) * v{ts)
U(t) ~ }C-b?’t) exp {1I Ba dE}.

Using (1.2.20) we see that this quantity tends to xl"1.

Finally suppose (1.2.11) holds. With the aid of (1.2.19) we can prove
in a similar way that U is (-A-1)-varying. []

Remark 1.2.1 If U(x) is p-varying, theorem 1.2.1 can be applied to
U1(x) = x U(x) and we obtain assertions of the type
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o+ i
. X U
1im (_::-c) = a+p+] if o > ~p-1.

X
xe f +*U(t)at
0

Lemma 1.2.2 can also be rewritten in this way.

The proof of theorem 1.2.1 yields the following representation theorem,

due to Karamsata.,

: + + .
Theorem 1.2.2 a) If a function U : R + R is Lebesgue-summable on finite

intervals and regularly varying with exponent p, then there exist functions
+ .
a : R -a—{Ra.ndc:R*-a-[R‘Pwmth

1im c(x) = °h (0 < ¢ < w)

X0 0
(1.2.21) )

lim a(x) = p,

Mo
such that for all positive x

xagt!
(1.2.22) U(x) = e(x) exp { f * dt} .
| 1

b) Every function of the form (1.2.20) where the auxiliary functions ¢ and =

satisfy (1.2.19) with finite or infinite p, is p-varying.

Proof a) Using (1.2.14) we have for p > -1

U(x) = c.b{x) exp {rtb(té-d dt} for all x > 0,
1

which in connection with (1.2.15) gives the desired representation. For

p < -1 we use (1.2.19) to get

| X -b1(t)-1
U(x) = c.b1(x) exp { J -z at } for all x > 0,
1

If p = -1, xU(x) is a slowly varying function for which (1.2.22) holds.
Then



X X
c(x) exp {1J a(t) dt} = e(x) exp {1J a(tg—1 dt }

for all x > 0.

b)  Suppose (1.2.22) holds with (1.2.21). In a similar way as in the proof
of part b) of theorem 1.2.1, we can prove that U is p-varying. []

Remark 1.2.2 Theorem 1.2.2 is still true if we replace the condition that

U 1s summable on finite intervals by the condition that U is measurable
(see [1]). Theorem 1.2.1 then holds with (1.2.8) replaced by: "there exigts

an X, such that U is summable on finite subintervals of [xo,m) and
lim iU(x) - =p + 1",
xre J U(t)dt
*o

Remark 1.2.3 A slight adaption of the proof of theorem 1.2.1 shows that
in relation (1.2.20) we may take for p > 0 |

(x) = —2x)

f‘ u(t) .
0 t

a(x) = c..c

0 for all x > O

(provided the integral converges at t = 0) and for p < 0O

el{x) = Ulx)

- a{x) = ¢
0 00
U(t)
' +
XJ

for all x > 0.

t

We conclude this section by formulating 8 properties of regularly
varying functions, which are then proved in the same order. It will become
clear frpm.the proofs, that most of these properties are consequences of
theorem 1.2,2., Most of the properties are taken from Karamata's first paper

L11]. We recall that all functions are R+-+ B+ and summsble on finite inter—
valsg.,

Corollary 1.2.1

1. If U is p~varying at infinity (~w<p<x), then
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1lim lom = 0
P &
and hence
[ .
0 1f p < 0
lim U(x) = <
X Lm 1f p > 0.

2. If U is p-varying at infinity (~=<p<=), then for all sequences {anl

and {aé} of positive numbers with

1im a = 1im a' = « gnd
n—-)-nu n'-P'co n

a
1im -g-r;‘- = ¢ (0<c<w),
n> n
we have
8]
(an) P

lim,—T-TT-= c .
n>o v “n

If p # 0 (~w<p<o) the conclusion is 8lso true for ¢ = 0 and ¢ = =, If

p = =  the conclusion is true for monotone functions U and ¢ ® 1 (0<¢c<®),

3. If U1 and U2 vary regularly at infinity with exponents Py and Py

respectively and

lim U2(x) = o,
Y0

then
U(x) = U1(U2(x))

is (p1.p2)mvarying at infinity.
. If U is p-varying at infinity (~w<p<®), the relation

.. Ultx) _ _p
lim e = X

+-on
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holds uniformly on intervals of the form.(xo,x1) with 0 < x, < x, < . If

p < 0, the restriction x, < ® can be dropped. If ¢ > 0 and U 1is bounded on

1

bounded 1intervals, we may take Xq = 0.

5. If U is non-decreasing and p-varying at infinity (0<p<«) and if
*
U(®) = =, the function U defined by

(1.2.23) U (x) = inf {y | U(y) > x)

is (ﬂ"1)ﬂvarying at infinity. If U is non-increasing and p-~varying at infin-
: : i *k _
ity (-<<p<0)} and if U(>) = 0, the function U defined by

0" (x) = inf Gy | UG) <D

—

is (=-p )~varying at infinity.

6., Suppose U1 and U2 are non-decreasing and p-varying at infinity

(0<p<=)}, For 0 £ ¢ < ® we have

: \ U, (x)
1.2.24) lim = @
e Ue(x)
1f and only if
x
U, (x)
(1.2.25) lim ——— = /e
x>+ U _(x)
2
% *

where U, and U, are defined as in (1.2.23). For -» < p < 0 an analogous

result applies for non-increasing functions.

T. Every regularly varying function with exponent p %= O is asymptotic to

& strictly monotone regularly varying function with the same exponent.

8. Suppose that U is p-varying at infinity (-w<p<o) and that there exists
a monotone function u such that for all positive x

X
U(x) = J u(t) dt,
0



t.hen

coulx) _
xU(x) - P

lim
KB

Hence for p # O the function (sgn p).u(x) is (p-1)-varying at infinity.

Proof of corollary 1.2.1

1. Property 1 follows directly from the representation (1.2.22).

2. The statements concerning p-varying functions with finite p can be
verified directly with the aid of the representation (1.2.22). The assertion
concerning monotone rapidly varying functions is proved in the following way.

We consider only p = ® and 1 < ¢ < =, Tgke ¢4 such that 1 < ¢, < ¢, then for

1

n 2z n, wve have

.a',

a 2> ¢
— 1 "n

n

thus as U 1s non-~decreasing,

:
U(a_ ) U(a&.cﬁ)
lim inf > lim inf oo
pe  Ulal) — 7T U(al)
3. We have to prove that for each x » 0 and each sequence {tn} with t o
for n + =«
_ U1(U2(tnx)) . PP,
1im X .

Lin 5, )
.. : : . - \
This is easily done using property 2 with a Ug(tnx) and &, = Ug(tn)*

L, The statement to be proved is equivalent to the statement that for all

sequences t, > = and x> X (x. < x < x1)

O

Take first Xy > 0 and x, < . Application of property 2 (take a =t x

and &' = tn) provides the proof.

Next take p < 0, Xq > O and X, = =, As for p = 0 property 2 also holds
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with ¢ = =, the same proof goes through.

Finally tske p > O, Xy = 0 and Xq < o, We may assume that the sequence

{t_x } converges to some value a with 0 < a < . For a = = again application

of property 2 provides the proof. For a < © we have x = 0; in this case the

sequence { U(tnxn)} is bounded and hence by property 1

u(t x )
C < lim sup Ult

o

1)1 =D=xp.
n

* . . . .
5. ) We give the proof of the first statement concerning non-decreasing
functions U (0<p<=); the second assertion can easily be reduced to the first
ocne.,
Suppose the statement is not true. Then there exist a positive x (x#1)

and g sequence tn »+ @ guch that for a certain c # ::{1/'0 (O__«‘:_cim)

* .

U (t_x)

. n
1im = C.

x
.—)—
n+e U (tn)

From (1.2.23) we have for y > O
* *
U(U (y)-0) <y 2 U(U (y)+0),

hence
U(U*(tnx)-n { U(U*(tnx)-o) e U(U*(tnx)w) . U(U*(tn:x.)tll

U(U*(tn)ﬂ) "U(U*(tn)-f-())r - tn"U(U*(tn)-o) _U(U*(tn)-n

(1.2.26)

For any p we may apply property 2 with 8 = U*(tnx) + 1 and a} = U*(tn) - 1

U(t.x) -1 and a' =U(t ) +1 (asp = 0 leads to
Tl n I 1/{3

and also with an

L0 o

QO or « and hence 0 < ¢ < o, and p = » leads to x 1 and hence

c # 1). Doing so we find

U(U*(tnx)ﬂ) U™ (t x)=1) U(U" (b x))
lim —— = lim ——/—F = lim ———"— = ¢
n>e~ U(U (tn)-—1) n+o U(U (tn)+1) nre U(U (tn))

o

With the inequalities (1.2.26) this gives

* ) * .
W. Vervaat: personal communication.
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a contradiction.

6. We only consider non-decreasing functions U. and U,.

1
a) Suppose (1.2.2h) is true and (1.2.25) does not hold. Then there exists

a8 Seguence X, -+ o guch that
*
Uy (%)
lim " =1 # C
n--o Uz(xn)

-1/0

By property 2 then

*
U, (U, (x_))
lim 1_ 1 n" - =.bp z o',
v UL (UL (x_))
H 172

but on the other hand by assumption

U, (U] (x ) U, (U] (x )

lim " -= lim ¢ . " =
n->co U1(U2(xn)) N0 UE(Ue(xn))
*

lim U (U, {x })/x
21 pow 1" 71" n n R
= -. e *_ -

lim U2(U2(xn))/xn

10

(the last limits are equal to 1, see part 2a) of the proof of theorem 1.1.3).

Hence by contradiction the first part of the proof is complete.

b) The converse statement is proved in an analogous way using the fact
that

U(x) ~ inf {y | U (y) > x} for x » =,

T. This follows immediately from the representation (1.2.22), as a(x) is

positive for sufficiently large x.

8. This property will be proved in section 2.7 (theorem 2.7.1) in a more

convenient context. [
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1.3 RELATED RESULTS

In this section two extensions of the main theorem of the previous
section (theorem 1.2.1) are presented.

First we show that in the case of monotonic functions U the part of

theorem 1.2.1 with -» < p < -1 also holds for p -0, In view of an appli-

cation in chapter II (section 2.9) we prove the (now stronger) result of

remark 1.2.1.

: + . . .
Theorem 1,3.1 OSuppose the function U : E+ >+ R 1s non-~-lncreasing.

a) Let U be ~®-varying at infinity. Then for all real o
J t* U(t) dt < o
1

and

(1.3.1) im —= Ulx)

t*u(t)at

Bb) If for some real a the integral J & Uu(t) at converges and (1.3.1)
holds, U is ~eo—varying at infinity, 1

Proof &) It suffices to prove the statements for larger o, say o > -1

because

) F o Ultx)
1

U(x)

— s}
J t2u(t)at
=

is a non-decreasing function of o for fixed x > O.

—

Choose € » 0 and A{e) such that 1 < )\ <« 2a+1 and

: _Aa+1_1 ..
ot 1 1_%Aaﬂ

We write



n+

A X
J t U(t) dt <
Il

(1.3.2) J % ult) dt = )
X = « X

n=0 A

i z U(;\nx) (C¢+1)“1 xa+1 ){n(a'*"l) (A{I+1“.{)-
n=0

There exists an xO(A) such that for x > x,

1

U(ax) < 2~ . U(x)a

hence algso forn = 1, 2, ...

u(aPx) < 27"

and (by repeated application)

u(Ax) < 277 | Uu(x).

With the aid of this inequality, (1.3.2) takes the form (as 2_1 Aa+1 < 1)

8]

(Aa+1“1) X (2-1Aa+1)n _
n=0

o+ _1

J £* ult)at < x* U(x). (a+1)
X

)“1 k§f1f1.
1_p~ 1ot

= 27 Ulx) (a+1

So the convergence of the integral is ensured and

Jm £2U(t)at
X

{ L ]
a+ e

2 u(x)

b) Suppose that (1.3.1) holds for some real o and U is not -=-varying.
Then there exists a positive number x = 1, a sequence'{tn} with lim t = =

and a certain c (ingﬁ) with ¢ = x“m such that 0o

U(tnx)
U(tn) = Cs

lim -
n—)—m



we may take the sequence tn such that 1 < x < o, then 0 < ¢ < o,

By Fatou's lemma we have in view of the monotonicity of
U(tns). {U(tn)}“1 as a function of s

Uu(t s)
lim inf s i Qj
n+o tn

lim inf J g ds >
n- 1

Ut s) @
4] Il >
0t ) ds —-1J

X U(t_x)
> J su 1lim inf .+
1

X
> ds-'-‘-c.fsads?*O.
n-roe U(tn) 1

This contradicts (1.3.1). [J
For completeness sake we quote without proof the corresponding result

for «varying functions.

Theorem 1,3.2 bHuppose the function U : R+

+ . .
+ R 1s non-decreasing.

&) Let U be =-varying at infinity. Then for all real o for which the
1
integral I tu u(t) dt converges, we have
0

(60 o
(1.3.3) lip X —Ulx)

X
xe J £%U(t Yat
0

:
b) If for some real o the integral J t" U(t) dt is finite and (1.3.3)
holds, then U is w-varying at infinity.

Next we turn back to regularly varying functions and trest a property
which (as the properties of theorem 1.2.1 and theorem 1.2.2) is equivalent

to regular variation. An alternative formulation given afterwards, serves
as an introduction to the theory of section 1.h.

Theorem 1.2.1 states that (take e.g. p > ~1)

Ultx
ﬁ%t)) = x° for all x > 0

lim
o0

1f and only if

i

1 1
lim J g%§§) dx = J <P dx.
t-re 0
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The next theorem contains a similar property.

+ .
Theorem 1.3.3 Suppose U : R+'+ R 18 such that U and log U are summable on

finite intervals. U is p-varying at infinity (peR) if and only if

1 Ultx 1
1lim J log {U s } dx = J log x° dx.
troo () 0

" This theorem is contained in the next one. We only prove the latter

theorem.

. + .
Theorem 1.3.4 Suppose the function V : R + R is such that V and exp(V)

are summsable on finite intervals. Let p be a real constant. Then the follow-

ing assertions are equivalent.

a) For every x > O

(1.3.h4) lim {V(tx) - V{t)} = p.log x.
£-reo
b)
1 2L
(1.3.5) Lim {Vv(x) - - j v(t) dt} = p.
X-»co 1
c) There exist real functions ¢ and a and a real constant Cq with
{
lim c(x) = Ch
(1.3.6) - X
lim a(x) = p
x—)—ﬂ‘.‘l
\
such that
% alt
(1.3.7) Vix) = olx) + J alt) g
1

Proof Relation (1.3.4) holds if and only if the function U defined by

U(x) = exp {V(x)}
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is p-varying et infinity. Hence the equivalence of &) and c) is contained

in theorem 1.2.2.

c)=> b): Suppose c) is true, then

X X X
Vix) - J:E 1[ V(t) at = c(x) - -:; J c(t) at '*'J %ﬂ dt +

x t
_ 1 J J E'.(_E_lds at .
x.] 1 o

Using Fubini's theorem the last term becomes

Jx _&_é_s_)_ ds - - Jx a(s) ds.

1 X

As (1.3.6) implies

/ 1 X
1im p J c(t) dt = ¢,
X-+00 1
4 x
L 1
lim — J a(t) dt = p,
* 9

Lo

the asgsertion (1.3.5) follows easily.

b)=+ ¢): For pogitive x we define

1 b4
(1.3.8) g(x) = V(x) - " J v{t) dat.
1

Then

X X . X t
J'E'Eﬂdt j.mdt- J Jl(—s—ldsdt.
1 1 1

t 2

1 t

Using Fubini's theorem the latter term becomes

1 (X
“;J V(s) ds +

X
e,
|

18]



or
* g(t)
(1.3.9) V(x) = g(x) + J r - at.

As 1lim g(x) = p, the representation (1.3.7) is established. O
Yoo

Remarik 1.3.1 The transformations (1.3.8) and (1.3.9) provide a linear

one~to-one correspondence between functions V satisfying (1.3.4) and func-

tions g with a limit p for x > =,

1.4 A SUBCLASS OF THE SLOWLY VARYING FUNCTIONS

In the previous sections on the theory of regularly varying functions

we were interested in functions U for which the behaviour of U{tx) and
U(ty) (with finite positive x and y) for t+ + « does not differ too much,
i.e. for which U(tx) {U(t:,r)}"1 tends to a finite and positive limit.

The definition of slow variation for s function U can be written as

lim U(tx)-U(t) = 0 for each positive x.
e UCE)

Now we confine our considerations to strictly jncreasing functions

and ask for properties of the class of functions for which the behaviour
of

U(tx)-U(t)
U(t)

U(ty)-U(t)
U(t)

(x,y > 1) does not differ too much for t + =, i.e. for which

Ultx)-UCt) [ uly)-u(e)l” _ ulex)-u(s)
u(t) u(t) U(ty)-u(t)




32

tends to a finite and positive limit ¢(x,y). Obviously ¥(x,y) is non-
decreasing in x and non-increasing in y.
We ask which functions ¢ can occur. In order to give a definite answer

we found it necessary to impose the restriction that ¢ is strictly increasing

in x and strictly decreasing in y.

Take X1s X55 ¥ > 1, then

U(tx1x2)—U(tx2) ,’U(tx1)-U(t)‘ -1
T Tley)-ule) [

U(tx1)~U(t)

U(tx1x2)-u(t) U(txg)—U(t)

U(ty)-U(t) =~ U(ty)-U(t)

Y

Taking the limit t + ® on both sides we obtain

o UGt x, )=U(tx,)  w(x,x,,7)-9(x,,¥)
(1.4.1) o TO(ex)-0(8) W(x,y)

oo

As the righthand member is positive and finite for all Xq5 Xns ¥ 1, by

theorem 1.1.1 it follows that the function f, (t) defined by
1

:E‘x1(t) = U(tx1) - U(t)

varies regularly at infinity for all X, > 1. Hence for some real p
(1.4.2) blxyx,,3) = x5 wlxg,y) + vix,.y).
Suppose first p # 0. For reasons of symmetry we also have

(1.4.3) P(xxs,y) = blx,y) + x5 v(x,,y).

From (1.%.2) and (1.4.3) we get that the function (1--:;;:‘:“)“1 ¢(x,y) does not

depend on x. As clearly
(1.4.4) blx,y) = {uly,x)17),

we have wix,y) = (1-x) (1-yp)-1, i.e.



_ . Ultx)-U(t) _ 1-x
(1.4.5) %ﬂ: Oty )=U(t) ~ yp for x, vy > 1.

It can be proved that for positive P (1.4.5) is equivalent to P-varia-
tion of U. For negative P (1.4.5) implies that U(x) tends to a finite limit
U(®) for x * <; then (1.4.5) is equivalent to p=variation of the function

U(®) - U(x). These observations show that under the present conditions we

are dealing with functions we have met bhefore.

Now suppose (1.4.2) holds with ¢ = 0, i.e. for Xis Xps ¥ > 1
(1.4.6) Vx,%5,5) = ¥(x ,y) + bx,,y).

It is not difficult to see that this relation holds for all positive X1 X,

and y (y%21). For each fixed y # 1 the only measurable and finite-valued
solution of (1.4.6) on R' is (see [9] p. 116-118)

YP(x,y) = c . log x

for some real constant ¢ depending on y. Using (1.4.4) we easily obtain

log x
log y °

w(x:y) =

For this function y we have the following theorem (see also theorem

1.3.4).

' . . . + .
Theorem 1.4.1 For & strictly increasing function U: B + R the following

assertions are equivalent.

a) For every positive x and y (y=1)

. Ulbtx)-U(t) _ log x

+—>00

b) The function

1 X
(1.4.8) U{x) - = J U(t)dat
1



1s slowly varying at infinity.

c) X X v
x J u(t)dat - 2 J ( J U(t)dt)dy
. 1 1 1 _ -
Lim — <
x> x2 u{x) - x . J U(t)dt
1

PJ—t

d) There exist s slowly varying function g and a real constant ¢ such
that

X
(1.4.9) U(x) = ¢ + g(x) + J Eé_‘ll dt.
1

e) TFor each positive x

(1.4,10) lim

Proof a) = b): Writing (y>0, O<x<1)

Uty )-U(txy) _ U(t)-U(txy)  U(t)-U(t
L 5 2]

ult)-0{tx) =~ U(t)-Ult = U()-U(t

and using (1.4.7) we see that the function

h{t)

il

U(t) - U(tx)

is slowly verying at infinity for each 0 < x < 1. By theorem 1.2.1 this

implies (we may take the integral from 1 instead of from 0)

t t
% J U(s)ds - 1 J B U{s)ds

‘ tx
iii U(t) - ultx) =1
hence , ¥ £x \
U(t) -% J U(s)ds U(tx) - %—}-{- J U(s)ds
. g Rk 1 _
(1.4.11) tii T(E) = 0(ex) - 0(8) = O(ex) > = 0,
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On the other hand as for t > 2

.b 1
U(t) -:l— J U(s)as 0(t) - / F U(ts)ds
_ 1/t |
U(t) - U(tx) - u(t) - u(ex) T
1 u(t) - U() 1
U(t) — U(ts) > 1 27 U(t) - U(ts)
* %J U(t) - Ultx) 98 =2 - ult) < Ultx) %J u(t) - U(t;ssc)

we find by (1.4.7) and Fatou's lemma

t
U(t) --1—1— I U(s)ds
1

1 1
1.4.1 lim inf > 1 0% 3 J 10g s =
( 2) s u(t) - U(tx) =2 Togx © ] log x OF

-1

= . >
2 log x

Dividing the appropriate fractions from (1.4.11) and {1.4.12) we get

tX 1
1im _ 1

—00 t
t U(t) - - j U(s)ds
1

1 t ’ tx
{U(t) - X J U{s)ds} ~ {U(tx) - — J U(s)ds}
1

= 0

t

As 1t suffices to verify definition 1.1.1 for 0 < x < 1, part b) is proved.

) +
b) «p c): Define the function h : B+ - R Dby

X
hix) = xU(x) - J u(t)at.
1

Property b) is equivalent with 1-variation of h at infinity. This by
theorem 1.2.1 is equivalent with

1im X __h_(x) = 2,

= X
x> J h(t)dt
1

As by partial integration

ds

2
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1Jx h(t)dt = 1Jx tU(t)at - 1Jx (1fy u(t)at)dy

= x 1Jx u(t)dt - 2 1Jx (1Jy U(t)dt)dy,

the equivalence of b) and c) is established.

¢) => d): Defining the function g : RT » RT by
S
{(1.4.13) g(x) = U(x) -7 J U(t)dt
| 1
we have (see (1.3.9))
X Lt
(1.4.14) Ulx) = g(x) + J E%Tl-dt.
1
d) =>e): By partial integration we have (using (1.%.9))

i [t 7 [t
U{t) -3 J U(s)ds = g(t) —-€-1J g(s)ds +
1

t t 8
' 1[ Eé&l'ds "'%'1J (1J E%fg'du)dg = &ls).

Hence for x > Q

g(t) ~ et

(1.4.15) Ultx) - UCt)  _ U(tx)-U(t) _ glex) JK
sl

t
U(t) “%'11 U(s)ds

Since the relation

. gﬁts! -
lim o (t) 1

troo

t
t

S
)

)

1

. — ds.

=

holds uniformly for all s between 1 and x (corollary 1.2.1 property 4}, we

obtain (1.4.10) letting t -+ = in (1.4.15).

e) = a): Trivial. [
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Now we give a formal definition.

. + .
Definition 1.h.1 A function U : R * R belongs to the class M (notation

U e ) if U is strictly increasing and satisfies one of the equivalent

properties a}, b), c), d) or e) of theorem 1.k4.1.

The next corollary gives a justification of the title of this section.

We write U(®) for the (finite or infinite) limit of U(x) for x - =,

Corollary 1.h,1 Suppose U belongs to the class I,

a) If U(=) = =, then U(x) is slowly varying at infinity.
b) If U(*) < =, then U(~) - U(x) is slowly varying at infinity.

Proof a) Using the representation (1.4.9) we write

Ulx) - ¢ _ ., g(x)

(1.4.16) - = \
t ; t

1

By theorem 1.2.1 a) the righthand member of (1.4.16) tends to 1 as x tends

to infinity. Hence

X
U(x) ~ [ E%ﬁl-dt for x * ®
1

and the latter function by lemma 1.2.2 &) is slowly varying at infinity.

b) If U(x) < o, then by (1.4.16)

) gt
U(=) = ¢ + 1J E{_'——ldt,

hence
U(e) - Ux) = - glx) + [ BLE) g
5
and r |
(1.5.17) Ule) = U(x) _ ) o 8(x) -

Jae | [
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By theorem 1.2.1 b) the righthand member of (1.4.17) tends to 1 as x tends

to 1nfinity. Hence
" glt)
{U(») -~ U(x)} ~ . dt for x - o
X
and the latter function by lemma 1.2.2 b) is slowly varying at infinity.

Corollary 1.hk.2

a) If U1 e T and U,

¢ I, then u, + U2 e I,

X
b) If I U(t)dt is 1-varying at infinity, then
0

X
J ,HQEL dt e II,
1 t

In particular: if U i1s slowly varying, the same conclusion holds.

¢) The transformations (1.4.13) and (1.4.14) provide a one-to-one corres-

pondence between the functions U in I and the slowly varying functions g.

d) Part d) of theorem 1.4.1 can be replaced by: there exist slowly vary-

.g(x) for x + ©» for a positive c, and

ing functions f and g with f(x) ~ ¢ 1

1
8 real constant ¢, such that

X
(1.4.18) U(x) = ¢ + glx) + J o) 4,
1

Proof &) As the sum of two slowly varying functions is slowly varying, by
theorem 1.4.1 b) the statement is proved.

b) If we define U, by
*Ut)
U1(x) = J dt ,
T
1
then (with Fubini's theorem)
1 (X . (X
U1(x) ~-§-1J U1(t)dt = = 1J U( t)at,

hence by theorem 1.4,1 b) we have u, e I.
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¢) Obvious (see theorem 1.4.1 b) and theorem 1.h.1 q)).

d) Suppose (1.4.18) holds, then

1 [* 1 [* 1 [*
U(x) - — f U(t)dt = g(x) - — J g(t)dt + — J f(t)dt
X X
J g(t)at I F(t)dt
1 £(x) 1
» — + . .
= g(x) {1 x g(x) z(x) x T{x) }
Hence
1 X
U(x) - J U(t)dt
1 - Q0
g(x) ¥ C.I for x —»
and by theorem 1.4.1 b) this gives U ¢ I,
The converse is trivial. U
Examples and counterexamples.
a) Define the sequence {er}r=1 by
e, = e
“r
€ 41 = € forr=1, 2, 3, ..
Then we may define the functions log: X by
{
+ 0 for x < 1
1031 X =4
h log x for x > 1
and for r = 1, 2, 3, ...
r
+ O for x < er
log 1 X =19 +
log(log_ x) for x > e .
r - r
Because of
a .+ + + + -1
ax logr x = {x 1031 x log, X ... 1ogr_1 x} for x > e.
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the function-%g log: x is ~l-varying. By corocllary 1.4.2 b) we then have
+
log, x € I forr=1, 2, 3,

b)  The converse of corollary 1.4.1 is not true: take
U(x) = 2 log x + sin(log x);

then U is strictly increasing without bound and slowly varying at infinity,
but U ¢ I (as (1.4.7) does not hold).

¢) In corollary 1.4.2 d) the condition f(x) ~ c1.g(x) may not be omit-
ted: taeke f(x) £ 1 and g{x) = log x + sin(log x), then f and g are slowly

varying but U defined by (1.4.18) with an arbitrary ¢ € R does not belong
to II.

The next theorem is a version of theorem 1.4.1 for monotone but not

necessarily strictly monotone functions.

Theorem 1.4.2 For a non-decreasing function U : E+ + R the following

assertions are eguivalent.

a) For all z > 1 the function
U(tz) - U(t)

is positive for sufficiently large t and for every positive x and y (y=1)

. Ultx)-U(t) _ log x
iiﬁ U(ty)-U(t) logy -

b) The function
1 X
U(x) - — J U(t)dt
£ 4

1s positive for sufficiently large x and slowly varying at infinity.

¢) The function

U(x) - + Jx U(t)at
X
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is positive for sufficiently large x and

X X Y
X [ u(t)dt - 2 J J U(t)dtdy
. 1 1 1 — %
lim -~ - X
X7 x© Ulx) - x J u(t)at
1

: + . i
d) There exist a real constant c and a function g : R - R which is
positive for x 2 X, > 0 and slowly varying at infinity, such that for all

+
x € R

X
U(x) = c + g(x) + J .Eéﬁl at .

*0

e} ‘The function

L[t
u(t) -t I U(s)ds
1

is positive for sufficiently large t and for all positive x

U(tx) ~ U(t)

lim —

T
B u(t) —%- j U(s)ds
:

= log x.

Proof The proof is similar to that of theorem 1.4.1. []

In theorem 1.4.1 the behaviour of functions U near infinity is studied.
Now we present a similar theorem concerning the behaviocur near zero. This

is the version which we shall apply in chapter II.

Theorem 1.4.3 For a strictly decreasing function U : B+ + R the following

asgsertions are equivalent.

a) For every positive x and y (y=1)

U(tx)-U(t) _ log x
U(ty)-U(t)  logy °

lim
t40

b) The function

1 X
> OJ u(t)at - U(x)
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is well-defined for x > 0 and slowly varying at x = O,

1
c) The integral J U{t)dt is finite and
0

X N X
2 J J U(t)dtdy - x J u(t)dt
lim 0 Q s O = %
" .
x+0 X [ u(t)dt - xg U(x)
Q

+ . . .
a) There exists a function g : R" - R which is slowly varying at x = 0

and a real constant ¢ such that
1
Ulx) = ¢ - g(x) + J Eﬁz-)-dt for all x € R .

1
e} The integral [ U(t)at is finite and for all x > O
0

1im g(tx) - Ut) = - log X.

40 U(s)ds - U(t)

1
®o

Remark  Here we use an obvious extension of definition 1.1.1: a function

+ + . .
f : R » R 18 slowly varying at zero i1f for all x> 0

1im TALX) o 1.
t+0

Proof a)=> b): First we prove
1
[ U(t)at < e,
0
By assumption the function V defined by
V(x) = U(<)
X

satisfies (1.L4.7) of theorem 1.4.1.. Hence by corollary 1.4.1 this function
1s slowly varying at infinity snd by lemma 1.2.2 b)

1 o0
J U(t)d‘b = J m dt < o,
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Further as in the proof of theorem 1.4.1 we can show that for fixed
x > 1 the function h defined by

h{t) = U(t) - U{tx)

2

. - -1, . . . e .
is slowly varying at t = 0. Then x “.h{x ') is -2-varying at infinity and

by theorem 1.2.1 a)

-1 -1
lim —= B(t) = 1ip —X hf_’f )= 4,
v
£¥0 nis)ds X h(sg L g
0 X S

Application of this relation gives the implication a) = b).

The rest of the proof is similar to that of theorem 1.4.1 and is
omitted. L]

1.5 A SUBCLASS OF THE RAPIDLY VARYING FUNCTIONS

L L ] & » + - | 3
According to definition 1.1.1 a function U : RY - R is p-varying at
infinity if for all positive x
. Ultx) D
lim - = X,

. . . . + +
To extend thlis notion we consider the class of functions U : R -+ R

. . . : + +
with the following property: there exists a function £ : R > R and a real
constant p such that

U(t.xfj_(_tu)) = P

(1.5.1) 1im 50

T >

for all positive x.

We confine our considerations to non-decreasing functions U (see section
2.11 for some remarks concerning this restriction) and ask for a character-
ization of the class of functions for which (1.5.1) holds with p > 0. With-
out loss of generality we may take p = 1 (this only involves a trivial
change in f). It turns out to be more convenient to start with the follow-

ing definition which is a mere transformation of the one just given,
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: . +
Definition 1.5.1 A non-decreasing function U : R > R belongs to the

: + +
class ' {notation U € I') if there exists a function f : R * R such that
for all x € R
. U(e+xf(t)) _ x
(1.5.2) lim G0e) e,

-t—)-OO

Examples The following functions satisfy (1.5.2) with the given auxiliary
functions f:

N 1 for t < 0
exp(x ) for fixed o > 0 with £(t) =< 1 -
& .t for t > 0,
1 for x < 1
exp(x log, x) with £(t) =4 _
Jlog t) for x > 1,
X . -t
exp(e™) with f(t) = e .

In chapter II we turn to our main object: the weak convergence of
semple extremes. There we need a number of theorems of a purely analytic
nature, which can be seen as a natural extension of the earlier sections
in this chapter. Therefore on the one hand we could continue the present
development but on the other hand later on we would have to derive afresh a
number of theorems formulsted somewhat differently. To round off the present
discussion end for reasons of reference we formulate in this section a
number of theorems of which we only prove those which do not reappear in
chapter IL. For the other ones detalled references to the proofs of the

analogous theorems in chapter 11 are given.

Lemma 1.5.1 IT U belongs to I'y, the function f of (1.5.2) satisfies

(1.5.3) 1im £ o

-0 X

Proof See corollary 2.4.2. [

A Justification of the title of this section is given in the next

theoremn.
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Theorem 1.5.1 If U belongs to I', U is «~-varying at infinity.

Proof For fixed x > 1 and M we choose to(x,M) such that for t > t

0
ftt) ix;d1 or tx > t + M.f(t)
and
U(t+M.f(t)) | _3M
u(t) ©
then

nak—

U{tx) o U(t+M. £(t))

M
ult) = Ult) e™. L

>

Theorem 1.5.2 If U belongs to I', then (1.5.2) holds for each f with

X
J U(t)dt
f(}C) ~ 0 U(}C) for x + w,

Proocf See theorem 2.5.1. 0

X
Lemma 1.5.2 a) If U belongs to I', then J U(t)at e T,
0
b) If U belongs to I' and U has a non-decreasing derivative U', then U' ¢ T,

Proof See lemma 2.5.1 and lemma 2.7.1. [

The next theorem provides a characterization of the class TI.

. ‘ + .
Theorem 1.5.3 For a non-decreasing function U : R - R the following

assertions are equivalent.
a) U belongs to T.

b) X t
, Uix) . ¢ J J U(s)asat)
(1.5.4) lim — Ox 0 = 1,
x> o J U(t)dt} >
0
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¢) 'There exist functions ¢, a and b : R ™ R and real constants c, and c,

with
/ '}
c(x) > 0, lim c(x) = c, > 0,
W oo
lim a(x) = 1,
(1.5.5) 4 =
c, + J b(t)dt > O for all x € R
1
and lim b(x) = 0,
\ Xroo

such that for all x € R
| X
(1.5.6) U(x) = c(x) . exp { J —
9
where
X
glx) = c, + J b(t)dt.
1

Proof See theorem 2.5.2. O

Remark 1.5.1 For functions of the form (1.5.6) (with (1.5.5)) relation
(1.5.2) holds with f(x) = g(x) (see the proof of ¢) = a) of theorem 2.5.2).

Remark 1.5.2 The condition b(x) = 0 for sufficiently large x in (1.5.5),

i8 egquivalent to the condition

U{t+x)
I(J(t) = exp (px) for all real x

lim
tooo

and some constant p > 0, i.e. U{log x) is p-varying at infinity (cf. theo-
rem 1.2.2).

Remark 1.5.3 A property connecting I with the class R of regularly varying

functions is the following: a non-decreasing function U belongs to ' U R if
and only i1if the function
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X -5 X t
{ J U(t)at} . Ulx) . J J U(s)dsdt
0 0 0

tends to a limit c¢ for x = «, Under these conditions we necessarily have
;

s <¢c 1. Ifc=1,thenUe T, If ¢ < 1 then U is {(1—0)_1-2}—varying at
infinity (see theorem 2.6.2).

The next theorem provides another characterization gf T,

Theorem 1.5.4 a) If U € I', then for all positive o

b4
J {U(t)1?Y at
(1.5.7) 1im 0 - &u
X tu(x) ¢ J u(t)at
0

D) If a positive non-decreasing function U satisfies (1.5.7) for some

positive o # 1, then U ¢ T,

Proof See theorem 2.8.1. (I

The results of section 1.4 and the present section are strongly

connected. This is shown by the following theorem.

Theorem 1.5.5 a) If U belongs to I', the funection

U*(x) = inf {y | U(y) > x}

satisfies a), b), ¢), d) and e) of theorem 1.k4.2,

b) If U satisfies one of the equivalent conditions a), b), ¢), d) or e)
of theorem 1.4.2 and

lim U(x) = =,
x—)—m

the function

U (x) = inf {y | U(y) > x}
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Proof
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to T,

See theorem 2.4.1. O

For the construction of funetions U € I we can use the representation

given in theorem 1.5.3 ¢) and also the next theorem describing three rather

different constructions of functions in T,

Theorem

is monotone and p-varying at infinity (0<p<«) and

U, ¢ I',

belongs

helongs

c) If
with

belongs

Proof

b) Using the representation (1.5.6) (with (1.5.%)) for U

1.5.6 a) If U1
the function U with

U(x) = U1(U2(x)) for x > 0

to I,

U, €T and U, has a P-varying derivative (~1<p<=), then U with
U(x) = U1(U2(x)) for x > 0O

to [,

U1'belongs to I' and U, has a derivative belonging to I', then U

U(x) = U1(U2(x)) for x € R

to T.

a) By corollary 1.2.1 part 2 we have

UA{UE(t+x-£§El)} ' U2(t+x*£§El)q P
U1{U2(t)} =4 llm ‘AUE(‘E) r = a ,

tc0

lim
00

4

| e may write

U(x) = c(UE(x)) .

. exp {J -1 {a(Ue(t)) :

U, (0)

X Ué(t) 1
J e(s)ds} Ué(t)dt}.
0



By theorem 1.2.1 a)

Ué(x) = b (x) . (p+1) . L UE(x)

%*
where b (x) > 1 for x ~ «, Defining

f

c*(x) = c(Ue(x))
9 & (x) = a(u,(x)). b7 (x)}"
. N U,(x) -1
g (x) =a (x) . { J e{t)at}. x . {(p+1) . Ue(x)}
\ O

we get

x

" X
U(x) = ¢ (x) exp { J at 3,
0 g (t)

For almost all x we have

_@___FS*gxz U x . m.].._. * -1
Fel a*(xJJ}_ b (x) . E(UE(X)) + {p+1 - b (x)} {UE(X)} .
L

U, (x)
. j 2" e(t)dt.
0

w
As g€(x) - 0 and b (x) - 1 for x + =, the righthand side tends to zero for

x =+ o, By theorem 1.5.3 c) the proof is now complete.

¢) The proof is analogous to that of part b), this time using
" o x -1
ulx) = b (x) . {U.(x)}° . { U.(t)at}
2 2 0 2

% - m .
(where b (x) > 1 for x + «) and the auxiliary functions
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[ %

c*(x) = c(U,(x))

{ 8" (x) = a(U,(x)) o (x)}""

i

g (x) 5

Uy (x) . 2 [
S [ ewan) Ly L ([ u(edan)
O 0

\

Remark 1.5.4 In part ¢) of theorem 1.5.6 it is supposed that Ul € I'. By

lemma 1.5.2. then also U2 € ' It 18 not true that the latter condition is

sufficient, i.e. that the compound function of two functions from I neces-
: : X
sarily belongs to I' (a counterexample is given by U1(x) = e and

U2(:x:) = e~ + sin(e¥)).

Examples  As

U(x) = &F

satisfies (1.5.2) with f£(t) = 1, theorem 1.5.6 provides us with a set of
examples of functions belonging to I':

o o
exp x , explexp x )

, explexp(exp xa)), ... for all o > Q.
Froof Repeated application of part c¢) of theorem 1.5.6 gives the men-—

tioned functions with o = 1, Application of part b) of the theorem then
gives the functions for general positive a.[]
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CHAPTER 1II EXTREME VALUE THEORY

2.0 INTRODUCTION

This chapter deals with the classical subject of extreme value theory:
limit distributions of maxima of independent, identically distributed
(real-valued) random variables. Section 2.1 is of a more general character
and treats the problem of choosing sequences of stabilizing coefficients
for an arbitrary sequence of distribution funetions.

In section 2.2 the possible types of limit distributions tI:a, Y, and A
for sequences of maxims are derived. In section 2.3 the domains of sattrace
tion (see definition 2.2.1) for the types ¢, end ‘Pa are characterized. The
results of the sections 2.2 and 2.3 are due to Gnedenko [6]; the theory 1is
given with full proofs to preserve the continuity of the present work. The
sections 2.4 and 2.5 contain a new characterization of the domain of attrac—
tion of A, In section 2.6 a single criterion is obtained for the convergence
of a sequence of maxima to any of the possible limit distributions. In sec-
tion 2.7 a connection with von Mises' results [15] is given. Section 2.8
presents an intriguing alternative characterization of the domain of attrac-
tion of A. In section 2.9 the results of Gnedenko concerning the weak law
of large numbers and the relative stability of a sequence of maxima are
given, together with some new results. Section 2.10 contains two open

problems.
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2.1 DOMAINS OF ATTRACTION AND CHOICE OF COEFFICIENTS OF ATTRACTION
* )

Suppose we have a sequence of {one-~dimensional) distribution functions

{Fn} and a distribution function G. We say that {Fn} converges weakly to G

or
(2.1.1) F (x) > G(x),

1f

(2.1.2) lim F (x) = G(x) for all continuity points x of G.

n-}'m

A typical situation is that

lim F_(x) = 0 for all x € R.

pre
To avoid this uninteresting behaviour it is often sufficient to perform a
linear transformation of the argument, i.e. it is often possible to choose
sequences of real numbers {a.n} and {bn} with a > 0forn=1,2, ...,

such that for s non-degenerate distribution function ¢

' W
Fn(anx-i-bn) 5> G(x).

Definition 2.1.1 A sequence of distribution functions {Fn} 1s said to
belong to the domain of attraction of a non-degenerate distribution function
G (notation {Fn} e D(G)) when it is possible to choocse two sequences of

real numbers {a ] (an >0 forn=1, 2,3, ...) and {b_} such that

(2.1.3) F (e x+b ) ¥o(x).

The numbers {a } and {b } ere called stabilizing constants.
A well-known theorem of Gnedenko [6] states to which extent we may

change the sequence of stabilizing constants. We quote the theorem in its

Distribution functions are taken right continuous.
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extended form as given by Feller ([2], p. 246),

Theorem 2.1.1 Suppose (2.1.3) holds. We have

W x
(2.1.4) Fn(anx+8n) > G (x)

* L4
with non-degenerate G 1f and only if there exist real constants a and b

(a>0) such that

o] -
(2.1.5) 2 5 a and =21 (n>o)
a a
n n
and
X
G (x) = Glax+b) for all real X.

This theorem leads to the following definition.

Definition 2.1.2 The distribution function F1 i1s sald to be of the same

type as the distribution function F2, 1f there exist two constants a and b
(a>0), such that

Fg(x) = F1(ax+b) for all real x.

Clearly this relation between F1 and Fg is symmetric, reflexive and transi-
tive. Hence it gives rise to equivalence classes of distribution functions.
These classes are called types. Sometimes we shall indicate a type by one

representative of the equivalence class.

Theorem 2.1.1 states that the domains of attraction of distribution
functions of the same type are identical and that the domains of attraction

of distribution functions of different types are disjoint.

In this section we shall give sequences {&n} and {bn} defined in s
simple way in terms of quantiles of {Fn} which can be used as stabilizing

constants when the limit function G is continuous on the whole real line

and strictly increasing on {x | 0 < G(x) < 1}, In particular we shall con-
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sider the case F = Fn, the n-th power of a given distribution function F;
then Gnedenko's expression for stabilizing constants of a sequence of maxima
.is seen to be a special case of theorem 2.1.2 (cf. corollary 2.1.1). We
shall also give an application concerning stabilization by moments (corol-
lary 2.1.2 and corollary 2,1.3). A connection between quantiles and center-
ing constants used with the weak law of large numbers has been given by

J. Geffroy [5].

For a sequence of distribution functions {F_} satisfying (2.1.3) it is
not true in general that this relation holds with the standard deviation and

the mean as stabilizing constants, i.e. if for b we use U defined by

(2.1.6) 1

i

me xan(x)

and if for a, we take o defined by

2

(2.1.7) 2 = J CaF_(x) - 42

n n?

. 2 : : .
even if W and 0, ex18t for every n. This can be seen from the following

example: take * )
= 1 Al e
F (x) = (1= =) F(x) + — 1(x-n"),

0O and 02 = 1. We

i

~where F(x) is an arbitrary distribution function with u

have here

so (2.1.3) holds with a, = T and bn = Q0 for all n whereas un = n and

ai = (n3+1) (1-'%), hence for n -+ e

7

Here 1s

0 for x < 0

1({x)

-

1 for x > 0.
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u_-b
B0 _ L, .
a
n
¢
G N
= =VEn0-D -
\

Therefore by theorem 2.1.1 we can neither use Wy for bn nor g_ for a_.

In the next theorem we use gquantiles of distribution functions. For

each a (0<a<1) and distribution function F, we define the a-quantile gin)
by

(2.1.8) e = inflx | F_(x) > al.

Then we have

(2.1.9) r(el®o0) <o < r_(g{®)),

Theorem 2.1.2 Let the distribution function G be continuous on the whole

real line and strictly increasing on {x | 0 < G(x) < 1} *) and suppose

{Fn} e D(G). Take arbitrary o and B with 0 < a < B < 1. If we define

/

. _ .{n) oA
b =& 7, b=G (a)
(2.1.10) 4 :
_ (n) _ =1
| a = EB -b, a=@G (B) - b,
then
(2.1.11) F (2 x+b ) ¥ G(ax+b).

Remark The &in) and gén)

need only satisfy (2.1.6) in order that we can

prove theorem 2.1.2. Hence with any definition of a—-quantiles for which
(2.1.9) holds, theorem 2.1.2 is true.

*) Hence the inverse function G-1(y) 18 uniquely defined for 0 < y < 1,
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Proof By assumption there exist two sequences {aé} (a£>0) and {bﬁ} such
that

W
L ] |
(2.1.12) Fn(anx-i-bn) > G(x).

Hence for two arbitrary positive numbers €, and €, there exists an

~n

= E
n, no( 1,52) such that for n Z n,

Fn(aﬁ(b—81)+b1“1) < G(b-—-€1) + €,
(2.1.13) L

F (aI;(b+E1)+b;1) > G(b+€1) - E

n 2°

\

where b is defined by (2.1.10). Now if we take €, > 0 arbitrerily and if

we choose
e, = minl@(b) - G(b-e,), G(v+e,) - G(v)} > 0,
then we have
' - ' ' '
(2.1.1k) Fn(an('b 51)+bn) < @G(b) < Fn(an(b+e1)+bn) for n > no(e,l).

From (2.1.9) it follows that

(2.1.15) Fn(bn-o)_g_c(b) 5_Fn(bn) for n =1, 2, 3, «ee o

Combining (2.1.14) and (2.1.15) we obtain

"{ b= t < < gt !
a,n(b c.) + b! < b < an(b+€1) + B! for n > no(€1),
S0
bn-bﬁ
Y i b for n »> =,
n

Starting in (2.1.13) with a + b instead of b we obtain
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a bn"bﬁ
-E¥ + — +a+b for n + =,

a
n n

Application of theorem 2.1.1 glves the statement of the theorem. (]

In order to avoid cumbersome details theorem 2.1.2 is given in its
present form. However the same method of proof leads to theorem 2.1.2* and
theorem 2.1.2" ' in theorem 2.1.2" the a and B may depend on n, in theorem
2.1.2** the restrictions on G are weakened (the latter theorem is not used

in the sequel). We omit the details.

* . . . . i .
Theorem 2.1.2 Suppose that the distribution funetion ¢ is continuous on

the whole resl line and strictly increasing on {x I 0 < G(x) < 1} and sup=-
pose {F } ¢ D(G). Let {a } and {8 } be sequences of positive numbers

tending for n + ® to limits o and 8 respectively, where 0 < a < B < 1. If

we define
( _ (n) =1
bn - Ean ’ b=G (a)
J (n) 1
e n -
8 = gB -b,a=0 (B) - b,
[ n
then

W
Fn(anx+bn) + Glax+b).

Theorem 2.1.2 © Let o and 8 be real constants with 0 < o < B < 1, Suppose
that for the distribution function G the following conditions are fulfilled:

a) £, < gB (where EP = inf{x | G(x) > p} for 0 < p < 1).

b) For all ¢ > 0 we have G(£a+e) > G(Ea) and G(EB+E) > G(EB)-

Then (2.1.11) holds with a,» b , a and b defined by (2.1.10).
As an application we prove a well-known result due to Gnedenko [6]
(ef. Mezjler [1hk]).

Corollary 2.1.1 If for a distribution F the sequence {F"} is in the domsin
of attraction of G with
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exp (= ) for all x € R,

il

G(x)

then for all a > 1

Fia_x+b_) ¥ G(x log a)
n n
with
(b =inf{x‘F(x)2_1--1—}
n n
) | 1
& =inf{x I F(X) _::_1 -""""""} ""'b fDI‘l'l= 1, 2, 3’ s s
n na n
L
. . ko n 1\n
Proof Application of theorem 2.1.2 with P =F , a = (1= —)" and
1 \n I n - -
8= (1= )™

In the next two applications we consider stabilization by moments.

Corollary 2.1.2 Suppose that for a sequence of distribution functions
| {Fn} the integrals K, and 0 defined by (2.1.6) and (2.1.7) converge. If

G satisfies the conditions of theorem 2.1.2 and if for some sequence of

real constants.{dn}
W
(2.1.16) Fn(o'nx+dn) > o(x),
then there exists a real constant b such that

(2.1.17) - Fn(cnx-mn)ﬁc;(xq-b).

- Proof Let for sll n X, be & real-valued random variable with distribution
function Fn‘ Take arbitrary o and B satisfying 0 < o < 8 < 1 and put

where b and a are defined by (2.1.10). Then the expectation and standard
deviation of Y, are glven by



29

H —bn_ o}

= a oy ) =-2
n = an an

u(1;1)==

From (2.1.16), theorem 2.1,2 and theorem 2.1.1 it follows that for some
positive a

(2.1.18) G(zﬂ) > 8, for n + =,

In an analogous way as in Loéve ([13] 17.1.a p. 24k4) one can prove

n)
. H_~& 1
_(1_a)§in O ia—ﬁ.
Un

Hence the sequence u(zn) 1s bounded and by (2.1.18) the sequence p((xn)z)
is bounded as well. The latter is a well-known condition (see e.g. [2]

p. 245) for the convergence of the lefthand side of

H Il_bl'l

liﬁxn) ==

I

Applying the theorems 2.1.2 and 2.1.1 we now have proved (2.1.17). [

Corollary 2.1.3 Stabilization by moments (mean and variance) is possible

if and only if (in the notation of (2.1.7) and (2.1.8)) for some o and B
(0<a<B<1)

g

(2.1.19) [ 2 +> c for n + =
n) ,.(n)

where ¢ 18 some finite positive constant.

Proof By the theorems 2.1.1 and 2.1.2 the condition (2.1.19) is necessary

and sufficient for (2.1.16). Application of corollary 2.1.2 completes the
proof. []

2.2 THE POSSIBLE LIMIT DISTRIBUTIONS FOR MAXIMA

In this and the next sections we are concerned with the following
problem,

Suppose.§1, X ,.53, .+ are independent real-valued random variables
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with common distribution function F, We define
Y, = max(gcq,gg,...,x ), n=1,2, ...
It follows from the independence of thelgn that
P{Iﬂ.f.x} = P (x).

We ask for conditions in order that it is possible to choose sequences of

X . o0
real numbers {a.n}n=1 (an >0 form=1, 2, ...) and {bn}n=1 such that
, n
(2.q?1) F (anx+bn)

tends weakly to a non-degenerate distribution function for n -+ «. We first
investigate which types (see definition 2.1.2) of distribution functions
actually occur as the limit of a sequence (2.2.1).

In the sequel we shall frequently use the concept of domain of attrac-
tion which is introduced in section 2.1 (definition 2.1.1). According to
this definition an element of a domain of attraction is a sequence of dis-~
tribution functions., As in the following we only deal with sequences which
are powers F" of some given distribution function F, in the sequel we shall

use the more restrictive notion of domain of attraction given in the follow-

ing definition.

Definition 2.2.1 . A distribution function F is said to belong to the

domain of attraction of a non-degenerate distribution function G (notation

(al'.l > 0O,

F ¢ D(G)) if there exist sequences of real numbers'{an};“1
n=1,2,3,..) and {b} _. such that

(2.2.2) Fn(anx+bn) ¥ oa(x).

Our problem can thus be formulated in this way: find the types of
distribution functions with non-empty domains of attraction. In the remain-

der of this section we follow Gnedenko's paper [6] but give simplified

proofs.
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Lemma 2.2.1

A non-degenerate distribution function G has a non-empty

domain of attraction if and only if there exist two sequences of real numbers

(A} (A >0,m=1,2,3,...) and {13111};‘:=1 such that

(2.2.3) Gm(Amx+Bm) = G(x)

forallxeBandm=1: 2: 3:

Proof

If G 18 a non-degenerate distribution function for which (2.2.3)
holds, then by definition G € D(G), i.e. D(G) is non-empty .

Conversely, let D(G) be non—-empty. Then there exists a distribution

_ : o o0
function F and two sequences {an}n=1 (a.n >0, n=1, 2, ...) and {bn}n=1
of real numbers such that

(2.2.4) Fn(anx+bn) ¥ 6(x).

Let m be a fixed positive integer. It follows from (2.2.4) that
nm W
F (anm;+bnm) > G(x)
and hence that
(s x+b ) ¥ {a(x)}' /D
nm nm )

As {G(x)}1/m 1s also a non-degenerate distribution function, we may apply

theorem 2.1.1 with a_ =a , B8 =7b . This yields that there exist two
n nm® n nm

constants Am > 0 and Bm such that

G(x) = {G(Amx+Bm)}1/m

-

which proves the theorem. [

Corollery 2.2.1 Relation (2.1.5)
m=1, 2, 3, ...

of theorem 2.1.1 gives in addition for
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& m | bnm”bn
laim P Am and lim ~= = Bm
n7F e~ n n-ro an

and & slight extension of the argument (using e.g. lemma 2.2.2) shows that
for all real g > 1

. ns) b[ns]_bn
(2.2.5) lim —= = A | lim = BS
nre. &n S nro 8'n

(wvhere [x] is the largest integer not exceeding x) and
(2.2.6) GS(AS::HBS) = G(x) for all x € R,

The lemma suggests the following definition.

Definition 2.2.2 A non-degenerate distribution function G is called stable

if there exist sequences of real numbers {Am}:;=1 (Am >0 form=1, 2, ...)
and {Bm}:,__1 such that (2.2.3) is true form =1, 2, 3, ... .

Note that stability is a property of a type of distribution functions.
Our definition of stebility differs from the usual one (see e.g. Loéve [13]
p. 326},

Lemma 2.2.1 shows that the problem of identifying all limit laws for
sequences of maxima is identical with the problem of identifying all stable

distribution functions. To this purpose we start by proving two further

lemmasg.

Lemma 2.2.2 Suppose {a.n} and {bn} are sequences of real numbers and

a >0 forn =1, 2, 3, ... . For distribution functions F and G we have

for a fixed real x with 0 < G(x) < 1

(2.2.7) lim Fn(a.nx-i-bn) = G(,.x:)
i s
if and only if
(2.2.8) 1im n{1 - F(anx+'bn)} = -~ log G(x).

Yy—+oo

Proof As both (2.2.7) and (2.2.8) imply




F(a.nx+bn) < 1 for large n
and
lim F(a x+b ) = 1
oo n n ?
we have
~log Fn(anx+bn) ~T 103(1-{1-F(&n3{+bn)})
lim = Jim - T
oo n{1-F(anx+bn)} [oy0o n{1-F(anx+bn)}

Hence the equivalence of (2.2,7) and (2.2.8) is established. []

Lemma 2.2.3 Suppose G 1s a non-degenerate distribution function with

G(0~) = 0. If there exists a sequence of positive constants {Am} such that
(2.2.9) G'(A x) = G(x), xeR, m=1,2,3, ...,

then there exist positive constants a and ¢ such that

l

(2.2.10) G(x) = exp{-(x/c) %} for all positive x.

Proof First we remark that 0 < G(x) < 1 for all x > 0 because G(xo) =
o Would imply that Am 1 for

m=1, 2, 3, ... and G degenerate. By lemma 2.2.2 relation (2.2.9) implies

or G(xo) = 1 for some positive x

lim m{1 - G(A x)} = - log G(x) for all positive x.
-0 o

This is relation (1.1.10) of theorem 1.1.3 if we take U(x) = 1 = G(x),

A p = D and a = An. Hence by this theorem we have

-log G(x) _ p

3
Tlog G(1)-x for all x ¢ R

where p is a negative number as 1 - G is non-increasing and non-degenerate.

Now (2.2.10) is an easy consequence, []
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The next theorem gives a complete description of the class of stable
laws. The theorem has been formulated in this form for the first time in
1928 vy Fisher and Tippett [3]; the proof given here is essentially
Gnedenko's proof.

Theorem 2.2.1 Every stable distribution is of one of the following types:

4

0 for x < 0O
(2.2.11) ¢ (x) = <
-~
exp(-x ) for x > 0
\
!
expl~(-x)"} for x < 0
(2.2.12) v, (x) = «
1 for x > 0
(2.2.13) AMx) = exp(-e ),

In (2.2.11) and (2.2.12) o is a positive constant.

Proof We start with the identities (2.2.3) for a non-degenerate G and

distinguish three possibilities:

1}  Suppose A =1 for all m. We define

C, mtavn-rp(liam) form= 1, 2, 3, ...
and
{
0 for y < 0
H(y) =4
G(log y) for y > 0,

\

then for y » O and m= 1, 2, 3, ...

E™(c_y) = H(y),

hence by lemma 2.2.3 the function G is of type A.
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2) Suppose there exists an m, > 1 such that A < 1. We shall prove that

. s . )
G is of type ¥, Tor some positive o, The proof is given in four steps,

a) TFirst we prove

Emo
(2.2.14) G{x) = 1 for x 2 TE
o
Obviously
B
0 ( ) < a(x)
X > = A X+ B < x = G(A x+B < G(x).
1 Am n m, m, m,

O
With (2.2.3) this gives for these values of x
“o "o - "o
G (x) 2G(x) =G “(A_ xtB_ ) < G “(x).
m m
0 0
This 1s true only if G(x) = O or 1. As G is non-degenerate, we must have

(2.2.14).

b} Now we prove

Bmo
(2.2.15) 0 < G(x) < 1 for x < ———=— .
m
0
Suppose there exists an X4 < B (1-A )“1 with
m m
. 0 0
G(x) = 1 for x 2 Xq»
(2.2.16) 4 |
G{x) < 1 for all x < Xye
\
Take
B O-x0(1-gm0)
X915 % - 2 A ’
0O
then we have
X, < X~ < A x, + B
1 0 mo 1 mo

80 that
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mo . mo
G(x,) =G (A x.+B ) >0 Y(x.) =1
1 mo 1 mo — 0

which contradicts G(x1) < 1. Hence G(x) < 1 for x < Bm (1-Am')*1. In an

N . , O
analcegous way the positivity of G for all x 13 established.

c) Next we prove &m < 1 for all m. Suppose there exists an m, with

A = 1, then for all x
-

m
(2.2.17) ¢ V(x+B ) = a(x).
o

Take in (2.2.17) x = x

X

. with 0 < G(xe) < 1, then it follows that

+ BIll > x_ or B > 0. Substitution of

2 1 2 m1
B B
mo ) m,
1--4-1.m 2
0

m Bm Bm B Bm
M 0 1, _ o 1
] G (1-A + o ) - G(1'-A - ) ) < 1.
o "0
Hence.am = 1 is impossible.
. 1 : .
Finally suppose there exists an m, wlith &m > 1, then an analogous
2

reasoning as in a) and b) shows

G(x) = O for x <

0 < G(x) < 1 for x >
\ m

This contradicts (2.2.14).

a) As (2.2.14) and (2.2.15) hold not only for m, but for arbitrary m > 1,
we have




We def'ine
(
0 for 2 < 0
G(z)ﬁ)‘ B
2 1
—_ _ A >
G(1—A z) for 2 0,
\ 2
Take
B B
z = szﬁm - x}_1 for x « 1 i ,
D .

then we have for all z - O

B A
m

G (A 'z) = G“‘(,I__Am - =) = G(A x+B ) = G(x) =
Bm 1 ~
= (3 ('T-TA?_ — '"2""") = G(Z)-
m

Lemms 2.2.3 then shows that G is of type ¥, for some positive ¢,

3) Suppose there exists an M > 1 such that Am > 1. In an analogous way

as in 2) one finds that G is of type b for someopositive a, O

2.3 THE DOMATNS OF ATTRACTION OF @a.AND Wa

Necessary and sufficient conditions for a distribution function to
belong to the domain of attraction of Qa or that of Yﬂ have been given bg
Gnedenko [6]. We follow Gnedenko's proofs which however seem to contain an
error (take e.g. F(x) = 1-(x log x)_1 for sufficiently large x; then for
all B > 1 it is impossible to choose a sequence {a } such that both (L0)
and (43) of [6] are fulfilled though 1 - F is ~1-varying at infinity). We

need the following lemma to complement Gnedenko's proofs.

Lemms 2.3, For sequences {an} and {bn} of real numbers with a > 0 for

all n the following implications hold.



a) a + ﬁ

1im 21 = Y, 7

n+® a'1'.1 b

> SV ¢ S,
= lim = 0,
a,
b +1—b n*® n

1lim LELLI + y

) aIl /
D) 8 ) (

lim o+l YA, 0<Ys<] 1im b = b exists (—®<b<wm)

8 o 2 n
nr= n n—+o
P <
b +1~b b---'bn

1im —= LY and l1im — = 0.

n>x 8‘Il'l )] L N+ n
Proof
a) We define

C_l - b1’ Cn =bn - bn_,.' fOI' n = 2’ 3, .- ey

_ =1 _
d1 - 1 > dn — &n . &n_.l fOI‘ Ja 2, 3’ "+ =

We have to prove

o

Cc

(2.3.1)

> 0 for n + «,

H o~

k. v X
13"11 k=1ak

By assumption we have

k

c
(2.3.2) 1im -2

a
nr® n

B
O

Further, as d_n > 7;1 < 1 for n > «, it follows that

n n
(2.3.3) 1im sup z e lim sup ) dyyq dk+2 coe dn < o,
n+e k=1 "n e k=1

Now (2.3.1) is an easy consequence of (2.3.2) and (2.3.3).

b} We define

e
i
o
|

o

for n

of
i
O
||
o
o

for n

il
o
L
L)
v
[ |



We first have to prove

m c

(2.3.4) b -b = z+1ak';1i""0 for n, m + =,
=n

By assumption we have
°n
(2.3.5) 11 — = 0.

nr® n

Further, as dn +‘Y2 <1 for n**, 1t follows that

oo

o0
. 1 .
(2.3-6) l1im sup — X = lim Sup X . eses d < ®,

o ﬂ.n k=n ak n--° k=n dk- dk“1 Il

As & > 0 for n * =, we get from (2.3.6)

(2.3.7) lim ) = 0.
n, k=n+1 X

Now (2.3.4) is an easy consequence of (2.3.5) and (2.3.7). Finally we have

to prove

1 e &)
= — IZI a.k.""-l-{*-'-o for n + =,

This follows easily from (2.3.5) and (2.3.6). [

The next theorem characterizes the distribution functions which belong
to D(¢a).

Theorem 2.3.1 A distribution function F belongs to the domain of attraction

of ¢ if and only if 1 - F ig (~a)-varying at infinity.

Proof &) Suppose 1 - F is {-o)-varying at infinity. By theorem 1,1.3 and

remark 1.1.1

lim n{1 - F(anx)} = x

n->o

for all positive x with
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(2.3.8) a_ = inf{x | 1 - F(x) <-l}.
n — n
By lemma 2.2.2 this is equivalent to
. Il +
1lim F (anx) = ¢a(x) for x ¢ R .

T]-»o0

For non-positive x this relation is true because of the monotonicity of F,

hence F € D(Qa).

b) Suppose for some sequences'{an} (an > 0 for all n) andf{bn} we have

n W
F (anx+bn) 5 @a(x).

Corollary 2.2.1 states that for all real s > 1

/

8,
lim ins] = As
n*t~ n
(2.3.9) 4
lim [ a] L = BS,
n><° n
‘e
where As and Bs satisfTy
1/8 _
(2.3.10) {o,(x)} 77 = ¢ (A x+B_)

for all x. Relation (2.3.10) gives

1/

(2.3.11) A = s and B = 0,
For fixed s > 1 we define a sequence'{n(i)}§=1 of integers by
= -8_
n(1) = [575]
n(i+1) = [n(i).s] for i =1, 2, 3, +.. .

It is not difficult to see that
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(2.3.12) )

From (2.3.9), (2.3.11) and (2.3.12) we get

( 1im an(i+1) _

/o 3
iro  “n(i)

S

(2.3.13) £
b

. ~-b ,.
lim n(l-:l) n(i) _ 5
i n(i)

L]

.
Application of lemma 2.3.1 a) gives

. bn(i)
llma = 0
i “n(i)

3

hence by theorem 2.1.1
P ) T e (x)
n{i)"’ > “uo
or, by lemma 2.2.2,

(2.3.14) 1im n(i) {1 - F(an(i)x)} = x O

1 o0

for all positive x. By (2.3.13) we have

(2.3.15) 1im an(i) = oo

100
Application of theorem 1.1.3 and remark 1.1.2 completes the proof. []

Remark 2.3.1 The proof shows that if F e D( ¢a) , then

Fn(an:-E) 5 ¢ (x)

with
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1
& - iﬂf{x l 1 - F(X) i“}, n = 1, 2, 3, xa.
n I

Corollary 2.3.1 A distribution function F belongs to the domain of attrac-

. + .
tion of tila if and only if there exist a function a : R -+ R, a functlon

c R+-+ RY and a positive constant Ch with

/

1lim a(x) = a
X300

(2.3.16) )
lim ec{x) = o
K0

\

such that for all positive x

(2.3.17) F(lx) = 1 - c(x) exp{- J éﬁ%}_ dt}.
1

Proof Theorem 1.2.2. [

Remark 2.3.2 Remark 1.2.4 shows that in the representation (2.3.1T7) we

may take ( with ¢, a positive constant)

1

1-F(x)

rﬂ 1-F(t) g4,
X

a(x) = CO C(x) = for all x € R+.

t

The next theorem gives necessary and sufficient conditions for s
distribution function to belong to the domain of attraction of ‘i’a. In the

sequel we use the notation

x, = sup{x | P(x) < 1}.

If necessary we write xO(F) instead of x,. Note that X, < ®. The number x,
is called the endpoint of the distribution function F.

Theorem 2.3.2 A distribution function F belongs to the domain of attraction
0 and the function U defined
by Ulx) = 1 ~ F(xo-—-xﬂ) for all x € R’ is ~o-varying at infinity.

of ‘Pa if and only if F has a finite endpoint x
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Proof &) Suppose xO(F) < o and 1 - F(xoux“1) ig -O0-varying at infinity.
Define

0 for x <0
F,.(x) = 4

F(xo-x—1) for x > 0.

.

By theorem 2.3.1 we have F_ ¢ D(@a), i.e.

(2.3.18) Fo(a x) 5 ¢ (x)
with
(2.3.19) s = inflx | 1 - F,(x) 5_}]1-} = (xo-inf{x|‘|-F(x)f_-n1—})m1.

From (2.3.18) we see
n
F (xO - )
. -1
or (with y = ~x )

(2.3.20) Fn(a;1y+xo) E'wa(y)~

Hence F € D(Wa).

b) Suppose for sequences'{an} (a, > 0 for all n) and'{bn} we have
F'(a_x+b_) ¥ v (x).
n~ n o

Corollary 2.2.1 states that for all real s > 1

/

8-
lim gnﬂj = A = 8"1/OL
nre n
(2.3.21) <
b o=
1im [ns] n =B = 0.
a s
110 n
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With the sequence n(i) from the proof of theorem 2.3.1 we have

/

8 .
lim 2(1”) = s 1/% <y
(2.3.22) <
b ;. -b ,.
. +
lim n(1a1) n{i) _ 0.
1o n(i)
\
Application of lemma 2.3.1 b) gives
limb ,., = Db
1 oo n(l)
(~o<h<®) and
b-b ,.
lim = n(i) = 0,
i+ “n(i)
hence by theorem 2.1.1
(2.3.23) P (0 aen) Ty (x)
i n(i) o

for all x. By taking x = 0 in (2.3.23) we see

F(b) = 1,

On the other hand taking x = -1 in (2.3.23) we have

F(-&n(i)"'b) < 1

for sufficiently large i. Hence, as by (2.3.22)

lim 8 ,., =0
iw-)-m 1’1(1) ’

we have
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With lemma 2.2.2 relation (2.3.23) beconmes

a .
(2.3.24) :I._im n(i) {1 - F(XO - “n}(cll)} = x © for all x > O.

1+C!J

Application of theorem 1.1.3 and remark 1.1.2 completes the proof. U

Remark 2.3.3 Part a) of the proof shows that if F e D ‘Pu)
n W
F ({xo—an}x+xo) > ‘l’a(x)

with

: 1
a = infix | 1 - F(x) <oh on=1,2,3, ...

Corollary 2.3.2 A distribution function F belongs to the domain of attrac-~
tion of ‘Pu if and only if xO(F) < «© gnd there exist a function a : RT - R,

a Pfunetion ¢ : R+ > B+ and a positive constant CO with
/
lim a(x) = «
W-roo
(2.3.25) z
1im c(x) = C
| *
guch that for all x < Xq
* agtz
(2.3.26) F(x) = 1 = c(x) . expl- " dt}.
x0-1 0

Proof Theorem 1.2.2 and some obvious calculations. [

Remark 2.3.4 Remark 1.2.4 shows that in the representation (2.3.26) we

may take (with c, a positive constant )

1-F(x)

Jxo 1-F(t) ..
X

xomt

alx) = c, . c{x) = for all x < X,
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2.4 THE DOMAIN OF ATTRACTION OF A: PRELIMINARIES

In section 2.3 we have seen that 1f F ¢ D(cba), for the distribution

function F the endpoint x. defined by

0

x. = x (F) = suplx | P(x) < 1}
O 0
equals infinity and if F € D(‘i’u), the distribution function F has a finite

endpoint. For distribution functions from D(A) both possibilities can occur.

In this section we derive some preliminary results concerning the
domsin of attraction of A. First we state a result due to D. Mejzler ([ 14]
{(in a slightly different form). We also give the proof as the paper is not

easlily availlsable,

Theorem 2.4.1 A distribution function F belongs to the domain of attraction
of A if and only if

. U(tx)-U(t) _ log x
(2.4.1) i‘j‘c‘)‘ U(ty)-U(t) ~ log y

for all positive x and y (y#1), where U : R+ R is defined by
(2.4.2) U(x) = inf{y | 1 - P(y) < x}.

Proof &) Suppose F ¢ D(A). Take a, and a,. greaster than 1. Application of

1 2
corollary 2.1.1 and theorem 2.1.1 (with 8, = U(-ﬁ-j;—) - U(fl-l*) and
o T{—t. a1 : 2
a, = U(na1) - U(n)) glves
1 1
U(na.1)-U(n) log &,

(2.4,3) lim — = T

o U(——)-U(7) & &

rna
2 :
/

As U is non-increasing, we have for fixed a, > 1, a, > 1 and sufficiently
large n



0 < n+1 n- 1
u(=)-u() T u=)-ud)
~ ’ n
Hence for all a » 1
1 1
U(—) -U(-=)
(2.4.4) 1im - nj* 2= 0.
«}-00 e} e
n U(na) U(n)

For positive t we define n,_ = [(+™'] (the largest integer not exceeding 7).
For all € > 0 and sufficiently small t we have

a(n,+1) < (a+e)n,

and hence for all 0 < x < 1 (writing a = xﬂ)

1

1 1 1
U(nt+1 )-U('I'l:) U(E;E) ---U(nt+1 )
(2;14-5) 1 - 1 1 =" 1 1 o i
UC;;E) -U(E;) U(E;;)-UCE;)
V(=) =U()  U(——) =0 ()
. U(tx)-U(t) (ng+1)a Tt nt(?”) By
_ -1 -1, — 1 1 -~ ] 1 )
U(n,G X)—U(nt ) U(;l—;g)-U(“r'l:) U(E;g)—u('ﬁ;‘)

As by (2.4.h) the lefthend side of (2.h4.5) tends to 1 and by (2.h.3) the
righthand side tends to (log a)_1 log(ate) for t ¥+ 0, we have proved

1im U(’(;x)—U(tl1
£40 U(n; :sr.:)-U(nt )

= 1 for all 0 < x < 1,

Again with (2.4.3) we now have (2.4.1) for all x and y in (0,1). Now take

Q <X <1, vy > ‘la.ndy”xf: 1. Then with s = ty we have



Xy (8 _uls X
. U(sy) U(y) U(s) U(Sy)

— = ] -

U
Ulty)-Ult) ) -u(2) U(s)-U(B-iﬂ

As the righthand side tends to (log y)_1 log x for s * @ we have proved
(2.4.1) for 0 < x < 1 andy > 1. Hence (2.4.1) is true for all positive x

and v (y#1).

b) Next suppose (2.4.1) is true for all positive x and y (y#1). Take

[ _ 1
b = U(;)
(2.4.6) )
6 = U(l_. _ (lq .
Il ne 4l

\

We want to prove

Fn(anx+bn) W exp(-e™ ) for n + «,
Instead we shall prove the clearly equivalent statement: for each segquence
of integers n(i) - = and (possibly defective) distribution function ¢ for

which

(2.4.7) F
we have necessarily
(2.4.8) d(x) = exp(-e ™) for all x € R.

Suppose (2.4.7) holds for some sequence {n(i)} and some ¢. Teke & Fixed
continuity point x # 0 of ¢. Then by (2.4.1) and theorem 2. 1.1 (this side
of the theorem goes through even for degenerate and defective distribution
functions) relation (2.4.7) is also true with

1 1
_ Ve V)

n(i) - X ‘
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Then (2.4.7) reduces to

1

. n{i) _
o B = e
and by lemma 2.2.2 we have
(2.4.9) %im.n(i)'{1 - F(U(n(i;.ex))} = -~ log ¢(x).

1-rc0

As Tor all € > O and sufficiently large i

1 [
U(n(i).eﬁ) < U(n(i).ex+g)’

we have (cf. (1.1.15))

ﬁ(il)lfilzﬁe: <n(i) {1 - F(U(n(i);xﬂ‘)-o)} <

1

<n(i) U = FUCmym)? < 2

n(i).eX

and thus from (2.4.9) it follows that

- log o{x) = e*

for all continuity points x # 0 of ¢. Hence (2.4.8) is true for all x. [

In the sequel'ﬁe need the following obvious extension of theorem 2.1.1.

Lemma, 2.4, 1 Suppose that for a f&mily'{Ft} of distribution functions
(with t € R and ~» < t < t, for some t, With =« < t,

tions a : R+ R and b : R~ R and = non-degenerste distribution function G
such that

< @) there exist func-

F, (a(t)x+b(t)) ¥ 6(x) for t + t,.

For functions o : R+ R and 8 : R > R and a non-degenerate distribution

function G* we have
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F, (a(t)x+8(t)) ¥ G (x) for t + t,

if and only if there exist resl constants A and B (A>0) with

a(t B(t)=b(t)
;}E%-+ A and a(t) + B fort t t

O

.
G (x) = G(Ax+B) for all x € R.

Corollary 2.4.1 A distribution function F is in the domain of attraction
of A if and only if there exist functions a : R =+ R and b : R+ R, such
that

(2.4.10) lim s{1 - F(a(s).x+b(g)} = e"* for all x ¢ R.
s-}-m
Moreover then (2.4.10) holds with (for the function U see (2.4.2))

" 1
b(s) = UC;)

(2.4.11) 4

1 1 +
U(Be) - U(B) for all 8 € R .

a(s)

\
Proof Suppose F ¢ D(A). Take a and b as in (2.4.11). By corollary 2.1.1

F'(a(n).x+b(n) ¥ exp(-e *).
By lemms 2.2.2 then it follows that

n . {1 - Fla(n).x+b(n))} > e™* for n + « and all x ¢ R,

and hence

8 . {1 -~ Pla([s])x+b([s1)} » e~ for s + « and all x € R.

As in part a) of the proof of theorem 2.4.1 we can prove
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a(s)

b(s)-b
a(ls]) - ! end talblle])

a(s)" + 0 for s + w,

Application of lemma 2.4.t1 gives (2.4.10).

The converse 1s simple. ]

The next theorem is due to Gnedenko.

Theorem 2.4.2 A distribution function F belongs to D(A) if and only if
there exists a function f : R + R' such that

. 1-F(t+x. T -
(2.#.12) 1lim ( (t)) = e x for all real x.
1-F(t)
t +x +
0
Here X is the endpoint of F.

Proof &) Suppose F € D(A). Then (2.4.10) holds with (2.4.11). If we sub-
stitute s(t) for s in (2.4.10) where

s(t) = T-F(t) for all t € R,
we obtailn
lim 1-F(b{s(t))+xa(s(t))) = e~ for all x € R.
1=-F(t)
t+x0

By the definition of b and s we have for all € > 0 and all t sufficiently

close to XO

6 < -b(s(t)) _ bls(t)(1+e))=b(s(t))
— als(t)) = a(s(t)) '

By theorem 2.4.1 the righthand side tends to log(1+e) for t 4+ x., hence

0?
. t=-b(s(t)) _

t+x0

. . ] . -1
Application of lemms 2.4.1 with Ft(x) = exp{~(1-F(t)) (1-F(x))} and
G(x) = exp(=~e™ ") gives (2.4.12) (the fact that Ft(_m) > 0 is immaterial),

b) Suppose (2.4.12) holds for some positive function f£. Substitution of
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t(s) = U(é‘)

for t in (2.4.12) with U defined by (2.4.2), gives

1-F(£(t(s))x¥t(8)) . =X o0 o011 real x.

lim 1-F(t(s)) - €

g

By the definition of t we have for all € > O {(cf. (1.1.15))

1 - F{t(s)) :i.“;'f.ﬂ - P(t(s)-0) < 1 = F(t(s)~-e £(t{(s)))

Qr

-F(e(s) )
TFE(a)-e t(e(a)y < 8+ {1 - Fle(ea))} < 1.

Hence by (2.4.12)

g . {1 -PF(s))} + 1 for g - ©

and (2.4.10) is true with b(s) = t(s) and a(s) = f(t(s)) for all = € RY.
By corollary 2.4.1 it now follows that F € D(A)., U

Corollary 2.4.2 If {2.4.12) holds for a distribution function with infi-

nite endpoint, then

(2.4.13) ﬁ-‘;—l-»- 0 for t - .

If (2.4.12) holds for a distribution function with finite endpoint x
then

0*

I
(2.L.14) ;g—f—tl—» 0 for ¢ + x,.
0

Proof By (2.4.12) for each ¢ > 0 and each real x there exists a
to(x,e) < X, such that for all t with ¢

0 T < X

(2.4,15) 1 -~ e < P(t+xf(1)) < 1.



If Xy = @, this yields
t + x.f(t) > 0,

hence for each negative x

4
¥ - X for a1l t > to.

This proves (2.4.13).
If x, < =, relation (2.4.15) yields

t + x £(t) < Xq s

hence for each positive x

1 :
ol B for all t with t,(x) < ¢ < x,.

This proves (2.4.14). [

- Corollary 2.4.3 a) Suppose that F1 and F2 are distribution functions with
infinite endpoint and the function U : R" > R' defined by

1-F1(x)

v =

is regularly varying at infinity. Then F, € D(A) if and only if F. € D(A).

2

b) Suppose F, and F, are distribution functions with a common finite end-

. . + + .
peint x. and the function V : R -+ R defined by

0

1—F1{;Ou1/x)
1—F2(x0—1/x)

vix) =

is regularly varying at infinity. Then F, € D(A) if and only if F,.. e D(A).

e

Proof a) Suppose U is p-~varying (peR) and F, € D(A). Then (2.4.12) holds

for F = F1 and some positive function f. By corollary 2.4.2 we have for all
real x



8k

t

By corollary 1.2.1 part 2) it follows that

(2.4.16) U(t+ﬁif§t))~+ 1 " for t - «

for all real x. Combining (2.4.12) with F = F, and (2.4.16) we get

I-F(t+x. £(8))

lim
't—Hn

Hence by theorem 2.4,2 we have F, € D(A).

b) Suppose V is p-varying (peR) and F, e D(A). Then (2.L4.12) holds for
P = F, and some positive function f. By corollary 2.4.2 we have for all

real x

~t=xF(t)
Xo;‘t -+ 1 for t + xo.

By corollary 1.2.1 property 2 it follows that

*0

1
v(xo—-t-xf(t ) )
~ + 1 for t + x
1 ) O

(2.4.17)

for all real x. Combining (2.4.12) with F = F, and (2.4.17) we get

1-Fo(tex.£(8))

1im 1-F2(f) = e for all real x.

4
txo

Hence by theorem 2.4.2 we have F, e D(A). O

Lemma 2.4.2 Suppose F € D(A), i.e. (2.4.12) holds for some positive
function f. Then if b is a real constant, we have

AR . et x e

1lim
4
*0

if and only if
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alt) B(t)-t
F(t + 1 and £(t) +~ b for t + Xqe

Proof Application of lemma 2.4.1 with Ft(x) = exp{-(1_F(t))"1(1+F(x))} and

G(x) = exp(-e™), a(t) = £(t) and b(t) = t. The fact that F (-=) > 0 is
again immaterial. [

Lemma 2.4.3 If F € D(A) with endpoint Xys there exists a continuous and

on (-m,xo) strictly increasing distribution function G (also with endpoint
xo), such that

(2.4.18) ::ggig + 1 for x + x,.

Proof &) Suppose first Xy = ©. We use theorem 2.4.2. As both sides of
(2.4.12) are monotone functions of x and as e ~ is a continuous function,

(2.4.12) holds uniformly on finite intervals. This means that for each
bounded real function x{t)

1-F(t+x(t).£(t)) -x(t)
1-F(t) - €

lim
+ o0

= 0.

Taking x(t) = —t-1'we obtain

1-F(t=t" "F(t))
1=-F(t)

(2.4%.19) 1im

00

= 1.

We now define a sequence {Fn}:=0 of distribution functions. Take =
constant ¢, > O such that F(co) > 0. Take for F
with

0 g distribution function

/

continuous and strictly incresasing for t < ¢y

Fo(t) = <

F(t)  for t > Coe

\
Let_{tn}:;1 be an enumeration of the discontinuity points of ¥ which exceed

Cqe Define F.I by
!
Fo(t) for t ¢ (t1,t,)
F.(t) =

linear for t ¢ [t;,t1],
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where t! = t, - t;1 f(t1). Then F, has no discontinuity point at t,. For
. . . _ . n-1
general n > 2 we define F_ by induction. Take t) =1t if t € g (tl'c’tk)'

-1
: | - < !
Otherwise we choose tn in such a way that tn tn f(tn) tn < tn and

n-1
(t),t ) n}gﬂ (t),t,) = 8.

Then Fn is defined by

F__,(t) for t ¢ (t),t,)
Fn(t) = )

linear for t € [tx'l,tn].

Clearly the intervals (t‘,t1), (t} ,t2) s+ +. are disjoint, hence for all t
the sequence Fn(t) has a limit H(t) for n + «=. Clearly H is a continuous

distribution function but not necessarily strictly increasing. We now prove

(2.4.20)

-+ 1 for t » o,

We need only prove (2.4.20) for those t for which H(t) # F(t). For such a

t we have t ¢ (tr'l,tn) for some n., From the construction of F it follows
that

1-F(tn)

1~F(tn-t;1f(tn))

Hence by (2.4.19) we have proved (2.4.20).

At this point we have proved lemma 2.h4.3 but for the "strictly in-—
creasing” if we take G = H, To construct the required strictly increasing
G we use H in the following manner. Suppose {u } is an enumeration of the

initiel points of the intervals where H is consta.nt and let {v } be the

corresponding endpoints, We define a sequence {H } of dlstrlbutlon func-

=
tions. Take W, € [u - u1 f'(u ), ) in such a wa.y that LE % (uk,'v ).

Define H1 by

rH(t) for t ¢ (w,,v.)
H () =4

linear for t e [w1,v‘1].
\
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Then H, is strictly increasing on (w,,v,). For general n > 2 we define H

n-1 (

by induction. Take wo=v_ if (un"’n) = wk,vk). Otherwise we choose

=1
- .
w_ € [un -u f(un), un) in such a way that
n-1
(Wn:un) N IE:J'[ (wk’vk) = @,

v, ¢ U (v ,v ).

k=n+1

These H tend weakly to some distribution function G which clearly is con-
tinuous and strictly increasing. In the same way as we proved (2.4.20) it
can be shown that

-

(2.4.21) 1-H(t) | 1 ~ for t =+ o,

From (2.4.20) and (2.4.21) we have (2.4.,18).

b) Suppose now x. < @, We take x(t) = t-x. in (2.4.12) and obtain

0 0

1-F(t-(:x:0-t) LE(t))
1-F(t)

lim
4
t KO

The rest of the proof is completely analogous to part a). [

= 1.

2.5 THE DOMAIN OF ATTRACTION OF A

In this section the results of section 1.4 are used to obtain neces-
sary and sufficient conditions for a distribution function to belong to
D(A). First we give a specification of the auxiliary function in Gnedenko's

characterization (theorem 2.4.2).

Theorem 2.5.1 A distribution function F belongs to the domain of attrac-
“t£ion of A if and only if

(2.5.1) 1im l:EL%thfgt)) = e*x for all x € R
4 -
t xo

with
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%0
J {1-F(s)}ds
t

for all real t < xo.

Here x, is the endpoint of F defined by

xo = suplx | Flx) < 1.

Proof a) Suppose (2.5.1) holds with (2.5.2). Then by theorem 2.4.2 we

have F ¢ D(A).

b) Suppose F e D(A). By lemma 2.4.3 there exists a continuous and on

(-m,xo) strictly increasing distribution function G with

(2.5.3) }:g%ig +> 1 for x + x,.

From theorem 2.4.2 it is clear that G ¢ D{(A). We first show that

(2.5.4) lim 1_G(?{§E%§t)) = e for all x € R

t+x0

with

*0
J {1-G(s)}ds
(2.5.5) g(t) = Lo 1-G(%) for all real t < x,.

'By theorem 2.4.1 we have for all positive x and y (y=1)

Ultx)-U(t) _ log x
U(ty)-U(t) logy’

1im
t+0

where
U(x) = inf{y | 1 - &(y) < x} for all x ¢ (0,1).

As U is continuous and strictly increasing, theorem 1.L4.3 gives

: U(E)-u(t)
(2.5.6) 1im € = 1,

t
40 1 ~
T OJ U(s)ds-U(t)
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As G € D(A), by corollary 2.4.1 we have equation (2.4.10) with the functions
a and b defined by (2.4.11). By (2.5.6) and lemma 2.h4.1 (for Gs(x) =
1 - g{1 - G(x)}) we obtain

lim 8{1 - G(a(s).x+b(s8))} = ¢~* for all x € R

g+

+
with for all 8 € R

r

b(s) = U(2)

1/8 ,
a(s) = 8 . J U(pldp - U(~).
5 8

\

If we regard s in this equation as a function of t given by

1
g(t) = TG(0) for all real t < x

0)

we obtain (2.5.k4) with (2.5.5) (it is not hard to see that a(s{t)) reduces

to g(t) as given in (2.5.5)). To prove the theorem for F we observe that by
lemma 1.2.1 b)

rX
0 (1-F(t)}at

-~ -+ 1 for x 4 xo

O (1-a(t)1at

and hence

f{t
Eé{%’* 1 for x t Xqe

With (2.5.3) and (2.5.4) we have

. ~F{t+x. .
1lim 1-F(t+x E%Ell = e x for all x ¢ R,

1-F(
t+x0

Application of lemma 2.4.2 gives (2.5.1). [

Corollary 2.5.1 If F ¢ D(A), then
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Fn(anx+bn) ¥ exp(-e™*)

with forn= 1, 2, 3, ...
{

b = inf{x | 1 = F(x) < 1/n)

n
X

) 0
an {1-F(t)}at

4

n 1-F(bn)

\

Proof By corollary 2.4.1 we have (use (2.4.10) with x = 0)

1im n{t - F(b )} = 1.
11

-0
Hence replacing t in (2.5.1) by b we obtain

1-F(a x+b )  _

1im n{1 - F(anx+bn)} = 1lim TRy - © for all x € R.

n-re n-—-° In

Application of lemma 2.2.2 gives the statement of the corollary. [

Lemme 2.5.1 Suppose F ¢ D(A), i.e. (2.5.1) holds with the function f
defined by (2.5.2). Then with the same function f we have

1—F1(t+x.f(t))

(2.5.7) lim — = e~  for all x € R,
t4x 1-F,(t)
0
where
}[O_
(2.5.8) F1(x) = 1 - J {1 - F(t)}at Ffor all x < X
X

Proof By (2.5.1) and corollary 2.4.2 we have t + x £(t) 4 Xq for t 4 X

‘and all x ¢ R. Hence in (2.5.1) we may replace t by t(u) = u + y £(u),

where y is an arbitrary resl number and u < x

0° to obtain

lim

u+x0

1~F(u&yf£;g::§f£?:§5f(u))) = o * for all x ¢ R.

In this relation we may replace 1 -~ F(uty.f(u)) by e V. {1 - F(u)} in virtue
of theorem 2.5.1. This leads to |
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. 1=-F(t+y. F{t)+x. f(t+y. F(t
ﬁfi Y 1_;5“3) y-F(t)))
0

Combining this equation with (2.5.1) we get by lemma 2.4.2

=e 9 for all x € R.

(2.5.9) lim.-f(t+¥zigt)) = 1 for ali y € R,
t+x0
As
1-F1(t)
f(t) = RTES for all t < Xy

we have by (2.5.9)

1-F1(t+y.f(t))
lim - .
t+x0 1-F1<t)

and hence by (2.5.1) the proof is complete. [

1-F(t)
1-F(t+y.f(t))

= 1

The next theorems provide necessary and sufficient conditions for
F e D(A). It is convenient to use the notation
{

1 1f xo = oo

| xo - 1 1f xo < oo,

where x, 1s the endpoint of F.

Theorem 2.5.2 For a distribution function F the following assertions are

equivalent.

a) F belongs to D(A).
*o (%o

b) The integral J I {1 - P(t)}atdy is finite and

X A4

(%o (%o

{1-P(x)} 4 J J {1~F(t)}dt¢y}
: , 5 \ A , . S

(2.5.10) iiiﬁ f X w = 1,

0 J {1-F(t)}at

\ X !

j .
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c) There exist real constants c, and c, and real-valued functions c, a

* )

and b defined on (wm,xo) with
(
e{x) > 0 for all x < Xq s Lim c(x) = c, > 0,
xtx
0
lim a{{x) = 1,
.1\
x*x,
. X
(2.5.11) 4 e, + J b(t)dt > 0 for all x € R ifx0=‘-"’°
1
4 xo
J b(t)d‘t > 0 for all x < xo 1f xo < @
X
\
and 1lim b(t) = 0,
\ x+x0
such that for x <« xo
* alt
(2.5.12) 1 - P(x) = c(x) . expt~ J -;TE% at & ,
' X
1
where for all x < X
{ X
+ b 1 =
e, J (t)at if x,
(2.5.13) (x) =.<
X
J O b(t)at if x < o,
x 0
\
Proof a) =3 b): Suppose F ¢ D(A). By theorem 2.5.1
(2.5.14) lim 1-F(tx, £(t)) = e &~ for all x ¢ R
| X
0
with
*0
J {1-F(s)}as
t
25,1 ‘ =
( 5 5) f(t) .I_F(_t) for all t <« }[0.

* |
)'WE suppose that a and b are such that all integrals from (2.5.11) and

(2.5.12) exist.
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By lemma 2.5.1 we have {(with f as defined in (2.5.15))

1-F1(t+x.ftt))

(2.5.16) lim 1—F1(t) = e for all x € R

.1.
t xo

wilth

X
F1(x) = max{0, 1 - J 0 (1 - F(t)}lat} for all x < Xy
X

Hence by theorem 2.4.2 we have F, e D(A). But then by theorem 2.5.1 equation
, *
(2.5.16) also holds with f replaced by £ , where

x X
J 0 J O {1-F(g)}dsau

£ (g) = L “ﬁ for sll t < x,,.
J . {1-F(s)}ds

t

By lemma 2.4.2 then

(1) -+ for t + X5+

This gives (2.5.10).

b) =5 c): Suppoese (2.5.10) holds. Define the function b by

X A
{1-F(x)}{ J © J 0{1-F(t)}dtdy}
X A

5 for all x < x

(2.5.17) b(x) = - 1 + 0"

—
-

X
J {1-F(t)}dat
X
By assumption we have b(x) -+ 0 for x 4 X Obviously b is summable on finite

intervals and for some constant ¢, we have (as the two sides are absolutely
continuocus with the same derivative a.e.)

X b4
« J 0 J 0 {1-F(t)}dtay
(2‘5.18) 02 + J b(t)dt = = A4 - for 211 x < x..
| X, 0
Xy J {1-F(t)}dt
X
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We denote the (clearly positive and continuous) righthand side by f(x). For

xo < = we compute Cph» As

X X
Jxﬂ JXO {1 - P(t)}atdy < J 0 J O (1 - F(t)ratay =

' y X X

*0
= (xomx) . I {1 - P(t)}at,
X

we have

£(x)

]CO-*X

and hence f(x) +- 0 for x 4 Xy As b is bounded near x,, we may conclude

b4
C, Z - J 0 b(t)dt. So we find for all x < xo
x ]
1 X

e, + 1J b(t)dt if X, = @

P(x) = 4

*0
- J bt )dt if X, < =
X

\

Integrating {3‘:‘(1:)}"'1 ve get (by ordinary Riemann integration)

X X p'e
(2.5.19) j “@T= c, = log ! J 0 j o {1 -« F(t)}datdy
x1 X Yy

.

for all x < xo.

Taking exponentials on both sides in (2.5.19) and using the definitions of
f and b we obtaln

¢ ( x
(2.5.20) 1 = F(x) = e > . {1+0blx)} . (£(x)}"° . exp! - J ?’%’T’
X

\ 1 /

for all x < xo.

As

o’

X
_ t
log f{x) = log f(x1) + ] J :‘.-‘%t_} dt for all x < L

1
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we may replace (2.5.20) by

1 -~ F(x) = c(x)

(2.5.21) . exp 4

with for those x

( ¢
c{x) = e 3 {i‘(Ji.:1)}m2

(2.5.22) <
a{x) = 1 + 2 b(x).

\

X oa(t
T e

.

. {1+ b(x)}

for all x < Xq

This provides the representation as given in part c¢) of the theorem.

¢) = a): By theorem 2.4.,2 it is sufficient to prove that F satisfies

lim
1

t xo

with f defined by (2.5.13),

First we remark that by (2.5.13)

(2.5.23) 1-F(t)

( ~1
lim +t . f(t) =0
t-m
(2.5.24) 2
lim (xo-—t)-1 £(t) =
X t+x0

1-F(t+x.£(t)) _ 0%

1if x. = =

O 1t < o,
xo 0«

From this it follows that for each fixed real x

t +x ., f(t) < x

0
for all sufficiently large t < X4 and
t +x . f(t) » Xq

for t 4+ x

Suppose first x > 0. We start by proving

f(t)

(2.5.25) F(trye(t))

lim
+
t xo

for all x € R

0’
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uniformly for 0 < y < x. Choose € > 0 and to(e} such that for to(e:) <t < X,
-¢ < b(t) < g,

then for all y € [0,x]

t+y . £(t)
~E.y.P(t) < J b(s)ds = f(t+y.f(t)) - £(t) < e.y.£(%).

t

Hence we have

Flt+y . £(¢t))
£(t)

1 - y.€ < <1 + y.E

and (provided € < xf1)

| I B £¢6) 1 ]
T+x.e — 1+y.¢ fzt+y.f(t)) 1=-y.e — 1=X.€

This yields {2.5.25). Next we prove (2.5.23). Using (2.5.12) we have

1-Ft+x. £(t)) _

(2.5.26) e

)

Ce(ttx.f(t)) = £(t)
- S e - [ atern) griiy wp

)
As for t t+ x, the integrand in (2.5.26) tends to 1 uniformly for 0 <y < x,
relation (2.5.23) is proved.

For x < 0 and x, = @ we take to(e:) as before and t1(e) such that for
t > b, (e)

t + x £(t) = t{1 + x —f—(—E-l} > t4(e).

For x < 0 and Xy < @ we take to(e) as before and t1(e) such that for
t > t,(¢)

t+ x () = x,+t -~ x  +x F(t) =

0 0

= x, - (xy-t) {1 - xgé%%} > t4(e).
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These choices are possible by (2.5.24). In the same way as before we now

obtain (2.5.25) uniformly for x < y < 0. Using (2.5.12) as before we obtain
(2.5.23) for x < 0. [

Remark 2.5.1 From (2.5.21) we see that F can be expressed (apart from one

or two constants) in terms of the single auxiliary function b defined by

(2.5.17).

The next theorem gives an alternative formulation for part c) of theo-
rem 2.5.2.

Theorem 2.5.3 A distribution function F belongs to D(A) if and only if

there exist a resal constant ¢, and real valued functionsc, a and f defined

on (-m,xo) with

/
c(x) > 0 for all x < Xq» lim c(x) = c, > 0,
Xt
0
lim a(x) = 1,
x+x0
(2.5.27) ¢< f(x) positive and differentiable for all x < X
and lim f£'(x) = 0,
x+x0
moreovey lim f(x) = 0 if Xq < @
xtx
X C

such that (2.5.12) holds for all x < Xy

Proof a) Suppose (2.5.12) holds for all x < X together with (2.5.27).

By (2.5.27) there exists an X, < X, such that f' is bounded on (xz,xo). By

s well-known theorem on Lebesgue-integration (see {15] p. 368) we have for

x2 < X < xo )

i
8

b 4
f(xz) + J Fr{t)dt if x

%5

0
£(x)

i
N

0

*0
| f £1(t)dt if x,. < o,
L‘x
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so that by theorem 2.5.2 it follows that F € D(A).

b) Suppose F € D(A). If we define f on (-m,xo) by

X X X
J 0 J 0 J O {1-F(t)}dtdzdy

_ X Y Z
f(x) "0 xor 2
J J {1-F(t)}atdy
X y
then for all x < X f has a derivative f' given by
™ "y
X X, fX. (X.
{ J 0 {1-F(t)}c1t“;{ J 0 J 0 J,O {1-F(t)}dtazayl
f'(x)=—-1+ X —_ l X J Z . __24 .

{ X X
) J 0 J O {1-F(t)}atay ¢
X N )

\

By lemma 2.5.1 and theorem 2.5.2 b) we have

lim f'(x) = 0.
x+xo
Now a procedure analogous to that in the proof of b) = ¢) of theorem 2.5.2

gives the representation for F. [

The next theorem gives an alternative formulation for part b) of theo-

rem 2.5.2. We omit the proof which uses partial integration.

Theorem 2.5.4 The distribution function F belongs to D(A) if and only if

X
J 0 x?dF(x) < o gnd
% .

1
2

X > S
{1-F(x)1}. J 0 thF(t)~ J 0 tdr(t )
(2.5.28) 1im R X B
**xo ( Jxo tAF(t )-x{ )2
-x{1-F(x)}
X

!
Y
-

Condition ¢) of theorem 2.5.2 can be formulated in a somewhat sharper
form as is shown in the next lemma.

Lemma 2.5.2  For all x, with -o < Xo <~ and all functions a and b de-
fined on (—m,xo) and satisfying the appropriate conditions of (2.5.11),
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there exists a function c satisfying the appropriate conditions of (2.5.11)
such that the function F defined by (2.5.12) (via (2.5.13)) is a distribu-

tion function with endpoint X (which then by theorem 2.5.2 c) belongs to
D(n)).

Proof By (2.5.11) there exists an X, With X, £ X, < X, such that a(x) > O

for X, < X < X4 Define c by

min(x,xe)
c(x) = exp J ? tg dt for all x < x
1

0

and F by (2.5.12). Then F is continuous and non-decreasing with lim F(x) = O.
t¥—o
To show F(x) = 1 for x 4 X, We observe that (2.5.11) and (2.5.13) imply

4
[T 4 €9 R

, X 0
3
ﬁl:'i'.m -ﬂﬁ=0 1f x,. < o,
<ty xomx 0,
L 0
As forx<x0
X
a(t)/t :
e <3 - 0
log c(x) J (o) 7t ot if x,

- log{1-F(x)} =
X a(t)/(xo-—t)

- log C(X) + J f(tj/(xo___)'t dt if ZX.O < >

t

we have - log{1l - F(x)} » « for x ¢ X,- Hence F is a distribution function. [I

We conclude this section with two corollaries of theorem 2.5.2 concern-
1ng the behaviour of 1 - F near X
Corollary 2.5.2 If F € D(A), then

%0
log J {1-F(t)}at
X

(2.5.29) lim ——7i—r———= 1,

x4X log{1-F(x)}
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Proof Take b and f as in the proof of b) => c¢) of theorem 2.5.2. By

(2.5.19) we have for all x < X

I

X X X
(2.5.30) f O (1 - r(e)lat = {£(x)} . f 0 f ° {1 - F(t)}atay
Y

I
¢y
U
=
-
o
P
L
|
P4
ey
S
b P
P B
¢t
o
il

]
{ )
L
>
by
o~
e
Ny

[T 2+p(e) 3t
f(t )

x4
Now (2.5.29) is an easy consequence of (2.5.12), (2.5.30) and lemms
1.2.1 a). O

Corollary 2.5.3 If F € D(A), then

lim.105{1“ng)} C - ip y =

| = 9
E log x O

log{1-F(x)} _

1im = o if x . < o,
x+x0 log(xomx) 0
... - .«
(Hence if Xq = ©» lim x {1 - F(x)} = 0 for all a > 0 and thus

[ X dF(x) < o for all o > 0.)
0

Proof The result follows easily from the representation in part c¢) of
theorem 2.5.2. [

2.6. A UNIFYING APPROACH

For distribution functions with finite endpoint we now combine the
results with respect to the domains of attraction of the possible limit

distributions ¥ and A in the following theoren.

Theorem 2.6.1 Suppose F is a distribution function with finite endpoint

X4y- The distribution functions
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. j {1-F(x0-1/t)}g':'té*

(2.6.5) limu““x;“”T:f(;g:?7§7*“E“"m 0“1(1wc).

y«-avm

Larly varylng at

From theorem 1.2.1 b) it follows that 1 - F(xo-—-1/:x:) is regu

X = o with exponent 2 - (1—0)"1. Then by theorem 2.3.2 we have F ¢ D(‘Pa)

with o = (1«~-----c)m1 - 2.

b) Suppose first F € D(A). By theorem 2.5.2 we have (2.6.1) with ¢ = 1.
Next suppose F ¢ D(\Pa) for some & > 0. Then by theorem 2.3.2 the func-

tion 1 - F(xo—-‘I/x) is -a-varying at x = « and by theorem 1.2.1 a) the equa-

tions (2.6.5) and (2.6.4) hold with ¢ = 1 - (2+a)“1. By (2.6.5) the function

j {1~F(x0—1/t)}% is (=a=1)-varying at infinity and hence by theorem

J t
1.2.1 a) equation (2.6.3) holds. Combining (2.6.3) and (2.6.4) we get

(2.6.1). O

Remark 2.6.1 If for a distribution function F with X, < o the limit of

the function g defined in (2.6.2) exists for x + X,» then necessarily

3 < c < 1. To prove this we note that the derivation of (2.6.4) holds for

arbltrary c and that the left-hand side of (2.6.4) is between 0 and 1. In
theorem 2.6.1 we have excluded ¢ = 3. This case is equivalent with slow
variation of 1 - F(xo--1/x) at x = ® (the method of part a) of the proof of

theorem 2.6.1 actually covers this case as well). Using theorem 1.1.3 a),
remark 1.71.1 and lemma 2.2.2 we can show that (2.6.1) with ¢ = 3 is equl-
valent with the possibility of choosing positive numbers a_ such that

-1
& for x < 0

(2.6.6) 1im Fn(a.nx-l-xo) =

1->-c0
1 for x > 0.

It 1s now clear why ¢ = 3 had to be excluded in theorem 2.6.1.

Next we derive a similar theorem for distribution functions with end-

point at infinity. In this case the criterion of theorem 2.6.1 would not

work: if for example F ¢ U(Q% ), then g is not defined because here

J (1-F(£)}dt = .
0.
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Theorem 2.6.2 Suppose F is a distribution function with endpoint at infinity.
The distribution functions

o a X+b_ )

converge weakly to a non-degenerate distribution function for a proper choice

of the constants a_ > O and b_ 1f and only if for some value ¢ from [1,2)

(2.6.7) lim h(x) = c
x+00

where

{1-F(x)}. J f ‘ {1-F(t)}-§‘~% dy ,

(2.6.8) h(x) = , 2 J L ' for all real x.

xB.{ J {1.-F(t)}9%
X t
If c =1, then F € D(A). If ¢ > 1, then F ¢ D(tba) with o = (c:-----1)m1 - 1,

Remark The repeated use of x-‘?" {1-F(x)} in (2.6.8) (3 times) is not neces-
sary. Actually we may formulate a similar theorem using each time

x P {1-F(x)} for an arbitrary real p > 2.

Proof a) Suppose (2.6.7) holds with 1 < ¢ < 2. Suppose first ¢ = 1. Then

by theorem 2.5.2 and corollary 2.4.3 we have F € D(A). Next suppose
1 <c < 2. As in the part b) => ¢) of the proof of theorem 2.5.2 we obtain

for some constant c

X
x y ot c, + J {g(t)-1}dt for all real x
1

(2.6.9) x y Y e for x -+ o.
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sarily have 1 < ¢ < 2.

¢ = 2 1s excluded. This case 1s equivalent with slow varie

-

at infinity. This again 1s equivale

umbers a_ such that

for x > 0.

G2
—
O
e
i
gr

G2
o~
O
il
4

For these limit distributions we find it convenient to use the following

Miseg? Parmwetrization (aee E35]) d@p@ndi;

extension of wvon g O Ye




for x < =1/y

for x > -1/v.

for x < ~1/y

1/Y}

WW{WQ?+YKEM for x > m?iY@

function G is of type

'y for vy > 0. Clearly Gy(x) is for fixed
¢ function of y. The de

fective distributions

With this choice the limit distribution satisfies (2.6.12) i.e. we ged

distri

tribution f
with an infinite endpoint and all mass concentrated on (0,) in such a way
that either es
doms

bution fu

nction from the family {GH}.

It is possible to specify

unctions with an a

ictions belongs to the

ch of two corresponding distribution fw

in of attraction of some (not necessarily the same) stable law or both

This 1s the content of the next theoremn.

function with finite endpoint x, and y a non-
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ng. Suppose that X,, X5, X3, .-

tribution with

<B4 d 2 » 5 W ﬂt & YT, &4

a connection with

In the sections 2.L4

Mises' work [14]. We show that

Mises' sufficient

this section we give

mild conditions on the derivatives of F von

under rather

conditions for the domsins of attraction are conditions.

positive derivative




109

(2.7.1)

then F € D(@a).

b) If F' 1is non-increasing and F € D(¢ ), then (2.7.1)

QL

Proof &) Suppose (2.7.1) holds.
gration (cf. [15] p. 368) we have

By a well-known

1 - F(x) = I F'(t)dt
X

By theorem 1.2.1 b) it follows from (2.7.1) that F' ig

infinity. Hence 1 - F 1s -a-varying by lemma 1.2.2 b).
F € U(ﬂbu) by theorem 2.3.1.

b) Suppose F' is non-increasing and F e D( tba) . For al

and all t with tx > X, We have

{(1-F(tx)}=-{1-F(ty)} _ F’
1-F(t) -

t.F'(st) gs = Lo F
1-F(t)

si1de tends

As 1 -« F 1s —-a=varying by theorem 2.3.1, the lefthand

-0 -0 ¢ e - : : .
X =Y as t goes to infinity. The last integrand 1s at most 1 fo

1 < x <y and so

-0, -0l .
X -y < lim inf

0

L ., (y-x) for all x,y with 1 < x < y.

This implies

t.F'(t)

. t)
1im inf 1-F(t) = a.

1,00

On the other hand, starting with x < y < 1 we obtain

v (4
t.F'(t) a. O

lim sup F(t) =

1-»c0



m 2.7.1 and
en used to prove part

5 YT, b } ' Ont ai T © a8

293{?0) .

(2.7.2) 1lim

$3
X X

then F ¢ D(Wa).

b) If F' is non-increasing and F e D(¥_), then (2.7.2) holds.

Proof Using theorem 2.6.3 we can reduce the present theorem to theorem

2.6.1. 0

For distribution functions in D(A) we have an analogous result.

. 1.3 Suppose the distribution i

nction F has a positive measurable
derivative F' for all x in some interval (xg,xo) > Where X, 1s the endpoint

of F.
a) If

(2.7.3) lim g(}t) = 1,

Ax
s

where

_- . ¥
F'(x).{ J 0 {1-F(t)}dt
. X

(2.7.4) g{x) = —— 3 for all x < x,,
{1-F(x)}

then F ¢ D(A).
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b) If F' is non-increasing and F € D(A), then (2.7.3) holds,

Proof a) Define the function f by

%0
I {1-F(t) }at
X

(2.7.5) f(x) = T for all x < x,.

Then we have for X, < x < Xq

and by (2.7.3)

f'(x) > 0 for x * X

As in the part b) = c¢) of the proof of theorem 2.5.2 we get

C

X
1 -« F(x) = e 3 . {f(;srzg)}'m1 . exp4 - XJ %—%—%— dt

2

for x < X < X
o 0

and hence F € D(A) by theorem 2.5.3.

b) Suppose F' is non-increasing and F € D(A). We proceed as in the proof
of part b) of theorem 2.7.1. Take f as in (2.7.5). Then we have for all x

and v with x < y and all t with t + x.f(t) > X,

. - _ I e
{1_F(t+xf(t)3i;{;;F(t+ £E))Y _ (v XJ F ‘;':'E(‘*f;)t) ds.

. e N w— -
By theorem 2.5.1 the lefthand side tends to e = - e Y for t 4 x,. The inte-

grand in the righthand side 1s at most 1 for 0 < x <Y and so

e™* - eV < 1lim inf g(t) . (y-x) for 0 < x < ¥.

t+x0

This implies
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1lim inf g(t) > 1.
t+x0

On the other hand, starting with x < y < 0 we obtain

1im sup g(t) < 1. O

1.
txo

Now we give the connection with von Mises' result for U(A).

Theorem 2.7.4 Suppose the distribution function F has a negative second

derivative F" for all x in some interval (xz,xo) , where X, is the endpoint

of F.
a) (R. von Mises) If

(2.7.6) 1im F'(x) . {1-F(x)} _ -,

xfxo '{F'(X)}g

then F ¢ D(A).

b) If F" is non-decreasing and F € D(A), then (2.7.6) holds.

Proof As F" is negative, there exists an x 3 with X, 2 X 3 < X5 such that

F'(x) is continuous and strictly decreasing with
0 < F'(x) < 1

for all x with x_ < x < X,. Hence the function F,. defined by

3 — 0
0 forx<x3
(2.7.7) Fo(x) = *
1 - F'(x) for x > x_

1s a distribution function.

a) By theorem 2.7.3 a) we have F_ € D(A). By lemma 2.5.1 it follows that

F e D(A).

O

b) By theorem 2.7.3 b) we have (2.7.3). Hence by theorem 2.5.2 it follows
that Fj e D(A). Again applying theorem 2.7.3 b) we get (2.7.6). O
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ERIZATION OF D(A)

In section 2.5 we have derived several (closely related) characteriza-

tions of the domain of attraction of A. In this section we give a characte

T° e

tion of a somewhat different character.

i%ﬂ

m 2.8.1 &} If F ¢ N(A)w then for all positive

EHERRE
& AT g . h M
el N Eleh % Ll -
rinamadt ! H i
SR - e g g
| ] i L U TPERRLU L e e

: ﬁ 1
(2.8.1) lim r (x) = o,
Xt

rX
O (1-F(£))° at
S

r (x) = ——

> N
{1wF(x)}a"1. J Y {1-F(t)}dt
X

for all x < X,.

b) If for some positive o = 1 equation (2.8.1) holds, then F ¢ D(A).

Proof a) Suppose F ¢ D(A). By theorem 2.5.1

lim = e for all x ¢ R

t4X

O
by the

= QIrenl 2 " h .2 the d.i st ribUt iUn un Q‘timn F(]. de fimed by

F (x) = 1 - {1-F(x)}" for all x < Xg,
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belongs to D(A). But then by theorem 2.5.1

1_Fa(t+xf*(t))

lim ———m-)———' = e--x for all x € R
t+x o
0
with
J{O ol
f {1-F(s) } 'ds
f*(t) = E“““““"“““—"am for all t < xo.
{1-F(t)}
Hence . by lemma 2.4.2
f*(t) ~-£§El for t + Xy

This proves (2.8.1)

b) Suppose (2.8.1) holds for some positive o # 1. Then

1-F(x)
(2.8.4) 1wG(x)'+ 1 for x + X,
with
1
5 L
1 f O {1-F(t)}%t |
(2.8.5) 6(x) =1 - %! ) e for all x < x,.
J 0 {1-F(t)}at
X
By (2.8.5) log(T:a%;T) 1s differentiable for almost all x < xorwith for
those x
xo
. 1 1 xf {1-F(t)}at (1=F(x)1°
(2.8.6) — log(———)
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I 6 55 690 Ml

o1 o
J {1-F(t)}%at
X

Define the function g by

(1-G(x) H1-F(x)} {1-r_(x))
(2.8.7) g(x) = —mm——————— for all x < x

(a=1). JXO {1-F(t)} at
D 4

ngi

From (2.8.6) we see that for almost all x < X,

51__: G(x).

g(x) = e

Hence, as by (2.8.5) G is absolutely continuous, we must have (cf. [16]
p. 362)

X
(2.8.8) 1 - G(x) = f O g(t)dat.
X

From the definition of g and (2.8.1) it follows that

a
.———-(—l—-———-““FX} for x + XA.

(2.8.9) -
[ O (1-F(£)}%t
X

By (2.8.5) we have g(x) > 0 for all x in some interval (xe,xo). Hence for
X > X, the function G coincides with a distribution function. By corollary

2.4.3, theorem 2.7.3 and remark 2.7.2 it is then sufficient to show

X
g(x).{ J 0 {1-G(t)}dt}
X

(2.8.10) . —> + 1 for x + x,.
{1-G(x)}
1.2.1 b) we get from (2.8.3)
X _
[ (1-F(t)}dt
(2.8.11) X > 1 for x + X,-.

xo*
J {1-G(t) }dt
X



RS) if there exists a sequence {an} of

Definition 2. able

g et
3 b i

(notation F €

auch thnat

wmﬂitive constar

for x < 1
{2»9«.1}

for x > 1.

In the following only distribution functions with endpoint at infinity
are considered: It is not difficult to see that (2.9.1) cannot hold if
xO(F),i.O and that (2.9.1) holds with a = X5 forn =1, 2, ... if
0 < xO(F) < o, So both cases are

uninteresting.

2.9.1 For a distribution fun
following assertions are equlvalent.

a) F e RS.

ction F with endpoint at infinity the

Theorem

b) (Gnedenko) 1 - F is ~»~varying at infinity.

:;?::- ' m

| {1-F(t)}dt is finite and
0 ]

c) The integral

(2*932} lim - z'{1”F*x-}

X J {1-F(t)}at
x

2.2.2 relation (2.9.1) is equivalent with

e

(2.9.3) lim n . {1~F(anx)} = x for x = 1.

Cmas
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As F has its endpoint at infinity, (2.9.3) for x = 2 implies

(2.9.4h4) 1im a = .

00

Now by theorem 1.1.3 b) and remark 1.1.1 relation (2.9.3) is equivalent to

~o~ygriation of 1 - F at infinity.

b) <> c¢): This equivalence is a trivial consequence of theorem 1.3.2 for

the particular case o = 0. [

Remark 2.9.1 According ro remark 1.1.1 under the conditions of theorem
2.9.1 relation (2.9.1) holds if we take

anminf{xl 1 - F(x) <1/n} forn=1, 2, ...

Remark 2.9.2 By partial integration it can be shown that (2.9.1) is

equivalent to

1im x.LL—FQx)} a 1

X J tdF(t)

Corollary 2.9.1 (Gnedenko) If F € D(A) and F has its endpoint at infinity,
then F ¢ ROS.

Proof By theorem 2.5.1 we have

1im 1=Flodx. 1AL = e for all x € R

1-F(t) -

too

with o
[ {1-F(s)l}as
T

f(t) = W for all t € ©

By corollary 2.4.2 then

i%l_,.o for t > o,
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Proof a) Define the

function b by

all x > x_.

for .

tec

ng of the proof of theorem 1.2.1 we get for some positive

1 x X A

constan

2

As b(t) = = for t =+ =, tl and side of (2.9.6) tends to x  for all

m 2.9.1 we have F ¢ RS.

positive x

and hence by theore

b) Suppose F' is non-increasing and F € RS. For all x > 1 and all

we have
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{(1-F(£)}-{1-F(tx)} _ Jx tF' (st) .
1

1-F(t 1-F(t)

_t.F'(t) * Fr(st)
== —F(t) .1J F'?t) ds.

By theorem 2.9.1 the function 1 - F 1s -®*-varying, hence the lefthand side

tends to 1 as t goes to infinity. The last integrand is at most 1 and so
for all x > 1

v
lim inf %ﬂ% > “1-:"';]* .
t-c0 N -

This proves (2.9.5). [

Now we turn to the weak law of large numbers. First we give the defi-

nition of this law for sequences of partial maxima.

Definition 2.9.2 A distribution function F 1s said to satisfy the weak
O

law of large numbers (notation F e WLLN) if there exists a sequence {bn}nﬂ

of real numbers such thsat

0 for x < 0
(2.9.T7) lim Fn(x+bn) =

n>ee 1 for x > 0.

In the following we only consider distribution functions with endpoint

at infinity: For distribution functions with finite endpoint X equation
(2.9.7) holds with b_

]

X, forn=1, 2, «¢. =

0O

Theorem 2.9.3 For a distribution function F with endpoint at infinity the
following assertions are equivalent.
a) F e WLLN.

b) (Gnedenko) For all positive x

1-F(t+x) _

>0

c) The integral J {1=-F(t)}dt is finite and
O

(2.9.9) lim————l:ﬂ—}gl———= co

x> J {1-F(t)}at
X

*
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1d only 1f the

for x £ 0

| F(log x) for x > 0

is relatively stable. Then the equival

ence of the parts a) an f th
blished by noting that F satisfies (2.9.8) if and

Sd Y i NnE « TO prﬂ ve t h@ e ._ val

present theorem 1s ests

_ ence of b} and C) note

This relation is equivalent with (2.9.9). [

Rema According to rema

'k 2.9.3 'k 2.9.1 under the conditions of theorem
2.9.3 relation (2.9.7) holds if we take

infinity

and a posltive derivative F' for all x larger thar

With F ) ““; on ( X 2 am:.:n) .
a) (Geffroy [5]) If

(2.9.11)

then F ¢ WLLN

b) If F' is non-increasing and F ¢ WLLN, then (2.9.11) holds.

Proof Define G by (2.9.10). Then (2.9.11) holds for F if and only if
(2.9.5) holds for G. Using this fact we can reduce the present theorem

2.9.2. [

to

distribution func-
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2.10. TWO OPEN PROBLEMS

The results of thils work give rise to two problems, one of them being

of 1nterest from an analytic and the other one from a probabilistic point

of view. First we mention the problem suggested by the results of chapter I.

a . If we look at the three relations which can serve as definitions of
regular variation (definition 1.1.1, theorem 1.2.1 and theorem 1.2.2), we
see that for functions U which are summable on finite intervals the three

statements are equivalent.

Even -~ as 1s shown in L1] - 1if we only suppose the functions U to be

measurable, we have three equivalent statements (cf. remark 1.2.2). If U is

p~varying with 0 < p < «, there exists by corollary 1.2.1 part 7 a non-de-
creasing U such that

K
(2.10.1) U(x) ~ U (x) for x - o,
The extension of regular variation described in section 1.5 also con-

tains three relations (definition 1.5.1, theorem 1.5.3 b) and theorem

1.5.3 ¢)) which are parallel to the three relations for regu

larly varying
functions. However here the perfect symmetry of the previous statements 1is
lacking. To deduce (1.5.3) and (1.5.5) of theorem 1.5.3 from definition
1.5.71 we used the monotonicity of U. On the other hand the relations (1.5.3)
and (1.5.5) may be fulfilled for functions U which are not monotonej; for
such functions (1.5.1) also holds and there 1s a non-decreasing function U*
such that (2.10.1) holds. This leads to the question whether theorem 1.5.3
also holds for every function U which is summable on finite intervals (and
eventually not monotone). Maybe some extra conditions have to be lmposed on
the function f. It might even be possible to replace the monotonicity
condition on U by the condition that U i1s measurable.

The application in chapter II only concerns monotone functions, so this

question is only of interest from an analytic point of view.

An analogous question can be put concerning the auxiliary function f.

In section 2.5 it is proved that (relation (2.5.25))
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f(t+x.f(t))

(2.10.2) 1lim ) = 1 for all x € R

1 ~>o0

and (relation (2.5.13) and lemma 2.4.2)

X
(2.10.3) f(x) ~ J b(t)dt for x + ®
0
where
(2.10.4) 1im b(x) = O.
x—)-m

. . . : 1 .
The question is whether for functions f which are such that T 1s summable

on finite intervals (or simply measurable), (2.10.2) and (2.10.3) (together
with (2.10.4)) are equivalent. It was shown in section 2.5 that (2.10.3)

(with (2.10.4)) implies (2.10.2).

b. For distribution functions in the domain of attraction of one of the
stable distributions <I>a, ¥, or A, there 1is a representation in terms of
auxiliary functions tending to certain limits for x +t Xq It 1s even
possible to construct a representation of F with the aid of a single
auxiliary function (remark 2.3.2, remark 2.3.4 and remark 2.5.1). It seems
plausible that the speed of convergence if Fn(anx+bn) to the stable law
G(x) is connected with the speed of convergence of this auxiliary function
to i1ts limit for x ¢ X4 It 1s not even clear how one should start investi-

gating this matter.
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SAMENVATTING

Sinds de Moivre en Laplace is de aandacht van waarschijnlijkheids-
rekenaars voor een belangrijk deel gericht geweest op het limietgedrag van
parti€le sommen van een rij stochastische grootheden. Dit heeft enerzijds
een boelende wiskundige theorie opgeleverd en anderzijds tal van resultaten
die van praktisch belang zijn in de statistiek.

Pas 1n deze eeuw heeft Fréchet [4] ontdekt dat een in verschillende
opzlichten verwante theorie af te leiden is als men in plaats van partiéle
sommen partiéle maxima van een rij stochastische grootheden bestudeert. Ook
het gedrag van maxima (of minima) is behalve interessant vanuit theoretisch
oogpunt van praktisch nut (b.v. in verband met extreme waterstanden).

Voor de klassieke situatie - waarbi] uitgegaan wordt van een rij onaf-
hankeliljke reé€le stochastische grootheden alle met dezelfde kansverdeling -
1s de theorie voor een belangrijk deel ontwikkeld door Gnedenko [6]. De
kansverdelingen dilie als limietverdeling voor een rij maxima kunnen optreden,
worden door Gnedenko aangegeven met <I>a, ‘Pa en A waarblj o een positieve
parameter is (zie stelling 2.2.1 van dit proefschrift). Hij geeft noodzake-
lijke en voldoende voorwaarden opdat een rij partiéle maxima @a, ‘Pa of A
tot limietverdeling heeft. Gnedenko merkt op dat zijn voorwaarden met be-
trekking tot @a' en ¥ als definitief te beschouwen zijn, maar niet die in

o
het geval van A.

Een opmerking bij Feller [2] bracht ons op het i1dee het door Gnedenko
gesuggereerde probleem aan te pakken met behulp van technieken die Karamata
[12] gebruikt heeft in zijn theorie van regulier varierende funkties. In
feite blijkt een uitbreiding van Karamata's theorie nodig. Die ultbreiding
wordt in hoofdstuk I gegeven na een gedetailleerde behandeling van Karamata's
theorie. Dit hoofdstuk is zulver analytisch van aard. In hoofdstuk II leiden
we dan na een uiteenzetting van Gnedenko's resultaten de nieuwe noodzakelljke
en voldoende voorwaarden af opdat een rij maxima A als limietverdeling heeft .

De parasgrafen 3, 4 en 5 van hoofdstuk I en 1, 5, 6, T en 8 van hoofdstuk
TI bestaan voor het overgrote deel uit nieuwe resultaten. In de overige para—
grafen is veel bekende theorie verwerkt. Dit heeft tot gevolg dat voor het
lezen van dit proefschrift geen specialistische kennis vereist is (als men
het boek van Titchmarsh [16] en de eerste hoofdstukken van Feller's tweede

boek [2] niet tot de specialistische kennis rekent).
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A.L. Cauchy heeft de volgende stelling geformuleerd: "Als voor een funktie

c : B >R en een p € R

lim {c(x+1) - c(x)} = o,
x—ycn

dan 1is

limnsiél-m p."
D, GEghand

Deze stelling 1s onjuist. Onder een kleine extra aanname voor de funktie

c 1s de stelling korrekt.

A.L. Cauchy, Cours d'Analyse, deel 1, hoofdstuk 2, 83.

I1

Met het oog op een toepassing in de vervangingstheorie bewijst W. Feller
de volgende bewering. 'Laat U een mastfunktie zijn op (0,») en u een posi-

tieve konstante. Als voor elke funktie z : R > R van de vornm

1 voor O < x < h
z({x) =
O elders
L
waarin h een positieve konstante is, de relatie
X ; co
(*) 1lim J z(x-y) du(y) = " j z(y)dy
X+ (O 0,

vervuld is, dan geldt (*) voor elke "direkt Riemann-integreerbare'" funktie
z (voor definitie zie Feller)." Deze zelfde konklusie kan ook getrokken
worden als alleen gegeven is dat (*) geldt voor de funktie

z(x) = e ~.

W. Feller, An introduction to probability theory and its
applications II, hoofdstuk XI, §1.
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van hoofdstuk 5 van Lehmann's boek over toetsingstheorie wordt een

ing afgeleid over permutatietoetsen. De 1n deze paragraaf

18 overbodig.

E.L. Lehmann, Testing statistical hypotheses, New York 1959,

IV

Laten Xis X5s Xgs oo onafhankelijke gelijkverdeelde reéle stochastische

grootheden zijn met verdelingsfunktie F. We definiéren
)r_nmmax(51,§2,...,§m) voor n = 1, 2, ... .

Veronderstel dat F op R tweemaal differentieerbaar is. Als de funktie

(__ , - FM(x) {1-F(x)}

1
. loglog{——<1}
(F'(x)}° ) 1-Flx)

een eindige limiet ¢ heeft voor x + «, dan is noodzakelijk ¢ > 0 en voor
, o N - . an oo

geschikt gekozen rijen reéle konstanten {an}nm en {bn}nm1 (an > 0 voor

n=1, 2, ...) geldt bijna zeker

A Y -, eC-1

lim 1nfwﬁo en lim SHPWM it

Y)-ro0

L. de Haan en A. Hordijk, Paper presented at the I.M.S.

European regional meeting, Hannover 1970.

V

De bewijsvoering die door J. Pickands III is gegeven voor het speciale

geval ¢ = 0 van stelling IV, is onjuist.

J. Pickands III, Ann. Math. Stat. 38 (196T), 15T0-15Tk.
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. »w 1 7 ) t *TTiEd |
Laat (541),5(2), 5%2n+1)) een geordende steekproef zijn uit een no

verdeling met parameters p = 0 en 0 = 1. We definié€ren

X
.....+

B Xone1) E(q)

Voor n = 1 enn =2 is de verdelingsdichtheid van h_ in elementalire funk-
ties ulit te drukken. Voor n + « 1is h asymptotisch normaal verdeeld met
parameters u_ = 0 en o = (8vn log n)"1.

L. de Haan en J.Th. Runnenburg, Stat. Neerl. 23 (1969),
22T-234.

VIl

Een door W. Feller bewezen Tauberstelling voor machtreeksen heeft de vol-
gende variant: Veronderstel dat de machtreeks Q(s) = z qnsn waarin qnbz_o
k=1

voor n = 1, 2, ..., een convergentiestraal > 1 heeft. Als voor niet-nega-

tieve p
Izlm
d
. k=1 K p
(1) llm";mmm Voor m = 1, 2,5 «ussy
) a
k=1 =&
dan geldt
)
. k=1 L
(2) lim ————— = ———
v Q(1--l) F'(p+1)
n
en
Q(1“%¥ +
(3) limm*w“m—TH—-# xP voor alle x € R .
n->oo Q(1-’gﬂ

Omgekeerd volgen (1) en (2) uit (3).

W. Feller, An introduction to probability theory and 1its
applications 1I, hoofdstuk XIII, §5.



VIII

In de situatie en met de notatie van definitie 2.2.1 van dit proefschrift
geldt: a) Als de verdelingsfunktie F in het aantrekkingsgebied van de ver-
delingsfunktie G ligt, dan bestaat er bij elke ri] {a.n} een meetbare regu-

lier variérende funktie U zodanig dat a = U(n) voor n =1, 2, ... .
b) Omgekeerd zijn bij elke meetbare regulier variérende funktie U niet-

ontaarde verdelingsfunkties F en G te vinden zodanig dat F in het aantrek-

kingsgebied van G ligt waarbij de rij {U(n)} als ri] {an} gebruikt kan

worden.

IX

Het zou om verschillende redenen aanbeveling verdienen in Amsterdam behalve

beschermde tramroutes ook (tegen automobielen) beschermde fietsroutes in te

stellen.



