
A 33326
cwr

Bibliotheek
Centrum voor
Wiskunde &
Informatica
Amsterdam

•

• •

CWI BIBLIOTHEEK

3 0054 00062 2838

•
I

ase

• •
I lOil

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor

aan de Universiteit van Amsterdam,

op gezag van de Rector Magnificus

prof. dr J .J.M. Franse

ten overstaan van een door het

college van dekanen ingestelde commissie

in het openbaar te verdedigen

in de Aula der Universiteit

op dinsdag 25 november 1997 te 13.00 uur

door Jan Pellenkoft
geboren te Sleen

Promotor:
Co-promotor:
Faculteit:

prof. dr. M.L. Kersten
dr. C.A. Galindo Legaria
Wiskunde en Informatica

I'm glad to express my appreciation here to everybody who has contributed
to the research described in this thesis. First of all, I want to thank Cesar
Galindo Legaria for introducing me to database research and especially to
the area of query optimization. The six months we shared an office at CWI
constituted the best start a Ph.D student could ever whish. Your patience
and cristal clear explanations of a large variety of subjects made a fruitful
research possible. After you left CWI our cooperation continued by e-mail
and was indescribably valuable to me. I have learned to know you and your
wife as warm and captivating personalitie.s. Cesar a.rid Zandra, Thanks.

I also thank Martin Kersten for offering me a position in his database
group at CWI and allowing me to change the subject of my research right
from the start. The trust and freedom you gave me made it possible for
me to explore the areas which I found most appealing. Together with your
enhousiasm it made the four years at CWI a very pleasant and stimulating
period.

Also thanks to my colleges - Johan van den Akker, Arno Siebes, Her
man Ehrenburg, Marcel Holzheimer, Frank van Dijk, Sunil Choenni, Fred
Kwakkel, Chris Thieme and Carel v'a!l den Berg - at the AA-department
/ INS-clust,er for their help and interest in my work. I'm particularly hon
oured that Yannis Ioannidis, Patrick Valduriez, Peter Apers, Peter van
Emde Boas, Arno Smeulders and Paul Klint aggreed to be committee mem
bers and refereed this thesis.

Verder wil ik mijn vrienden en familie bedanken voor hun steun en
belangstelling tijdens de afgelopen vier jaar_ In het bijzonder dank aan
mijn ouders die me altijd hebben gestimuleerd bij het aangaa.n van nieuwe
uitdagingen.

Alinde, ik weet dat onze eerste jaren in de Bijlmer niet eenvoudig zijn
geweest voor jou. Toch hen je me altijd blijven aanmoedigen om het onder
zoek voort te zetten. Ik hen er dan ook van overtuigd dat dit proefschrift
er niet was geweest zonder jouw liefde en doorzettingsvermogen.

1 Introduction 1
1.1 Query processing • 2

1.1.1 Query processing architecture . • • • • • • • • • • • • 2
1.1.2 Query evaluation plans • • • • • • • • • • • • • • • • 2

1.2 Query optimizer • • • • • • • • • • • - • • • • • • • • • • • • 5
1.3 Research problem and objectives • • • • • • • • • • • • • • • 6
1.4 Overview of this thesis • 7

2 Join reordering 9
2.1 Definitions . 9

2 .1.1 Query graphs and join trees 9
2 .1. 2 Join tree topologies 11
2.1.3 Structured query graphs 12

2.2 Join tree selection methods 14
2.2.1 Exhaustive search 14
2.2.2 Probabilistic algorithms 15
2.2.3 Non-exhaustive deterministic algorithm 15
2.2.4 Cost models . 16

I Theory 17

3 Complexity of transformation-based join enumeration 19
3.1 Optimizer Framework . 20

3 .1.1 MEM 0-structure . 20
3.1.2 Exploration process 21
3.1.3 Tuansformation rules 22

3.2 Size of the MEMO-structure 24
3.2.1 Bushy join evaluation orders 24
3.2.2 Left-linear join trees 25

•
1

••
11 CONTENTS

3.3 Duplicates - 28
3.3.1 Bushy join trees . 3,0
3.3.2 Linear join trees . 32

3.4 Summary . 35

4 Duplicate-fl·ee join enumeration 37
38
38
41
44
44
47
48
49
5,0

4.1 Bushy join trees
4.1.1 Completely connected queries
4.1. 2 Acyclic queries

4.2 Linear join trees
4.2.1 Completely connected que1·ies
4.2.2 Acyclic queries

4.3 Exp,erimeiltS
4.3.1 Bushy join trees
4 .. 3.2 L.inear join trees

4.4 Su1r1mary

5 Co,111ting join trees
5.1 Definitions . "

5-.1.1 Lists. - 0 • • • • • • •

5 .1.2 Ancbored-.list representation
5~2 Decomposition and construction of trees

5.2.1 Primitive operations
5.2.2 Standard decompositions

5.3 Co11nting bushy join trees
5.3.1 Recurrence equations
5.3.2 Counting standard decompositions

5. 4 Counting linear join trees
5.4.1 Recurrence equations
5.4.2 Standard decompositions

5 .. 5 Su1nmary .

6 (Un)ra.nki.ng and random generation
6.1 king and unranking .

6.1.1 Mapping trees to integers
6.1.2 ranking
6.1.3 Efficiency of r · g and unranking

6 .. 2 Generating random join trees
6.2.1 dom join txees
6.2.2 · •·... dom generation based on unranking

6 .. S Improved random generation of join trees
6.3.1 Efficiency of i,mproved random generation

51

53
t:..4
V"':lt

54
56
57
57
59
63
63
64
66
66
67
69

71
71
71
73
79
80
80
83
83
84

CONTENTS
111

6.4 Summary - . . - 85

II Experiments 87

7 Tra11sformation free opti11tization 89

8

7 .1 Definitions . 91
7 .2 Experimental setup . 92

7.2.1 Cost model . 92
7.2.2 Database schema, queries and catalogs 92
7. 2 .3 Cost metrics 93
7.2.4 Performance measure 95

7.3 Cost distribution in search spaces 95
7 .3.1 Small search spaces 96
7 .3.2 dom sainpling 99
7.3.3 Large search spaces 101

7 .4 Optimization algorithms 103
7.4.1 Iterative Improvement (II) 103
7.4.2 Simulated Annealing (SA) 104
7 .4.3 Transformation free algorithm (TF) 105

7 .5 Performance measurements 105
7. 6 Summary . 10 7

Hybrid algorithms 111
8.1 Experimental setup . • 112

8.1.1 Cost model • 112
8.1.2 Database schema, queries and catalogs . • • • • • • • 113
8.1.3 Transformations rules • • • • • • • • • • • • • • • • • 114
8.1.4 Factors Considered . • • • • • • • • • • • • • • • • • • 114
8.1.5 Performance Characteristics . • • • • • • • • • • • • • 114

8.2 Results. • • • • • • • • • • • • • • - • • • • • • • • • • • • • • 115
8.2.1 Original Catalogs . • • • • • • • • • • • • • • • • • • • 116
8.2.2 Enlarged Catalogs • • • • • • • • • • • • • • • • • • • 116
8.2.3 Multiple Join Algorithms • • • • • • • • • • • • • • • 119

8.3 Arbitrary set of Transformation rules . • • • • • • • • • • • • 120
8.3.1 Experimental results • • • • • • • • • • • • • • • • • • 121

8.4 Hybrid search algorithms • • • • • • • • • • • • • • • • • • • 121
8.4.1 Set Based Iterative Improvement • • • • • • • • • • • 122
8 .. 4.2 Experimental results • • • • • • • • • • • • • • • • • • 122

8.5 Summary • 125

•
lV

9 Concl11sions
9.1 Summary • • • • • • •

9.2 Future research • • •

A DBS3 Meas11rements

B Query graphs

• • •

• • •

CONTENTS

• • • • • • •

127
. . . . 127

. • • • • • 129

131

139

•

Nowadays, computers play an important role in all parts of life. Many of
these computers are used for storing and retrieving large a.mounts of data
in an efficient way. Such systems are called database systems and the soft
ware that manages the flow of data is called a database management system
(DB1fS). The DBMS facilitates concurrent access to a single database by
many users, limits access to data to authorised users only, and recovers
from systems failures without loss of data integrity (Ull89a, GV89, Ozk86].
In general, the primary interface to a DBMS is an easy to use high-level
query /data-manipulation language - e.g. SQL (Structured Query Lan
guage).

Statements in SQL can be issued by the user directly, using a command
line interface, or by an application progra.m. The statements specify what
answer is expected and not how it should be computed. The computa
tion order is generated by the DBMS, specified by a query evaluation plan
(QEP). In general there are many alternative QEPs that all compute the
result required. Each plan, however, has its own cost in terms of resource
use. It is typically expressed in the number of disk reads and writes and
the arnount of work for the CPU.

The DBMS's Query Optimizer component determines the QEP used for
answering a query. It uses a model of the underlying system to select from
the large set of candidates an efficient plan as quickly as possible.

This thesis is focused on the techniques employed by the optimizer sub
system to achieve its goal. In Section 1.1 a brief introduction to query
processing is given. In Section 1.2 the optimization process is described in
more detail. In Section 1.3 the problem statement is exemplified and the
research objectives are given. Finally, Section 1.4 provides an overview of
this thesis.

1

2 CHAPTER 1. Introduction

1.1 • uery processing

Most commercial DBMS systems are based on the relational data-model in
troduced by E.F. Codd in [Cod70]. An extensive description of this model
is beyond the s,cope of this thesis. We assume the reader is familiar with the
basic notions of the relational model and relational algebra. For more infor
mation on these topics see [Ull89a, Dat9,0]. To set the stage we will shortly
describe how a query is processed and show the potential cost savings by
using efficient QEPs.

1.1.1 Query processing architecture

The process of a query optimizer can be divided into several sub-tasks.
Here we follow [GV89] by splitting query processing into three phases, see
Figure 1.1.

In the query decomposition module, the calculus query - e.g. SQL -
is translated into an internal format expressed in relational algebra. The
algebraic expression, or operator tree, is the input to the query optimizer,
which searches for a. (quas.i) optimal ordering of the algebraic operators. It

.·· · . ·. . . · .. ·· · .· · ts an al.gorit.hm for · "-'>L, operator · ···e.g. a join operator can be
computed using a. hash-join, a sort-merge or a nested-lo,ops algorithm -
and detet mines .. · · ... · · .. ·. paths to retrieve data efficiently. The choices are

· .·. · . · .. d o,n .the database and system characteristics, like size of the relations,
available memory, etc.

This fully annotated operator tree, the QEP, consists of low level data
base operations and is p,assed on to the query execution engine where the
answer to the query is computed.

1.1.2 · ..•. uery e uati.on pla,11s

Figu,re 1.2 shows an exainple relational database which consists of three
relations, namely Person ID CityCode, Nrune, BirthDate),Ci ty(CityCo,de,
CityNa.tne, Population) and Car(Ow~erij), type, year). Assume that these

lions have the following cardinalities: ICityl = 3000 tuples, IPersonl =
15 * 106 tuples and lCarl .·· 2 * 106 tuples.

Consider the follow,ing query:

G,we me the name and citg informati.on. of car owners, ..

To illustrate the potentially big difference in cost we analyse two QEPs
for t:l1is quwy t1sing a sir:nple cost model In this exa1nple the cost of evaluat
·ing a QF;;J> is given by the sum ol all tuples read and/or written to compute

1.1. Query processing

User t

(

• • •

SQL

Decomposition

t
Operator tree

Optimizer

Query evaluation plan
t

Execution
• engine

)

Usern

4

t

Figure 1.1: Query processing architecture

3

the result. Furthermore, the cost of joining the information of two relations
consists of reading the two input relations and writing the result relation1 .

From the set of alternative we consider the two QEPs shown in Fig
ure 1.3, the symbol txJ represents the join-operator that combines the infor
mation of two relations. The QEPs compute the answer as follows.

QEP 1. First, the data from the relations Person and City is joined to
determine for each person the na.rne of the city he or she lives in. This inter
mediate result is then combined with the relation that holds the identities

1 For realistic cost models there are many other factors to be ta.ken into account -
e.g. availability of different join-algorithms, use of auxiliary access structures, data skew,
the effects of caching, etc.

4 CHAPTER 1. Introduction

Person:
ID CityCode Narne BirthDate
100.6738.678 3265 Jansen 10/12/56
817.6476.345 5897 Vries de 05/03/76
746.6745.634 2526 Pietersen 02/04/78
221.9047.230 7954 Jong de 28/06/95
929.0478.902 2002 Zeilstra 26/09/32
••• • •• • • •

City: Car:
CityCode CityName Population ... OwnerID Type Year
1000 Amsterdam 700,000 432.6544.601 V 1992
3000 Rotterda.rn 600,000 817.6476.345 p 1990
2500 Den Haag 400,000 221.9047.230 p 1997
. .. . ••• • •• 921.9403.017 V 1996 ...

• • • • • • • • •

Figure 1.2: Example relational database.

of all car owners to compute the final result ..
Evaluating QEP 1 requires 49,003,000 reads/writes. The first join re

quires the relations Person and City to be read, 15 * 106 + 3000 reads,
and the intermediate result to be written, 15 * 106 writes. The size of the
intermediate result is 15 * 106 , since everybody lives somewhere. Then this
intermediate result is read together with the Car relation, 15 * 106 + 2 * 106

reads. Since each car has one owner the final result contains 2 * 106 entries,
which are all written to disk.

QEP 2. By combining the relations Person and Car an intermediate
result containing all car owners is created. This is then subsequently joined
to the City relation to determine the name of the city for each car owner.

To evaluate QEP 2, 23, 003, 000 reads/writes have to be performed.
The first processing step requires 15 * 106 + 2 * 106 reads and 2 * 106 writes.
Computing the final result takes another 2 * 106 + 3000 reads and 2 * 106

writes.

This short analysis illustrates that the cost difference between two QEPs
can easily be a factor of 2 given a simple cost model. For more realistic
queries with more participating relations and an advanced cost model the
cost range of QEPs increases even further.

1.2. Query optimizer 5

QEP 1: QEP 2:

Car City

Person City Person Car

Figure 1.3: Two alternative QEPs

1.2 uery optiinizer

Typical optimization goals of an optimizer are fast response time and low
resource consumption. These optimization goals are often conflicting. For
example, a QEP which computes the result of a query quickly but requires
all available resources (e.g. memory and CPUs) is probably rejected because
it would virtually deprive other users from accessing the database.

It has been known for many years that finding good solutions is resource
(time) intensive, but can reduce evaluation cost considerably. Clearly, there
are trade-offs to be made. Therefore, important properties of a query opti
mizer are the quality of the solution and the optimization time - the time
it talces to find a good QEP.

As queries get more complex (in terms of the number of relations in
volved or alternative algorithms for computing an operator) the number of
alternative QEPs to consider explodes. The number of alternatives quickly
grows in the order of millions, while the difference between the cheapest
and most expensive QEP can easily be several orders of magnitude.

As a rule of thumb, for small queries with no more than 4 or 5 relations
all QEPs can be generated within a few seconds. In this case the optimiza
tion time is often only a fraction of the response time improvement gained.
For larger queries, till about 10 relations, an exhaustive search through the
alternatives is still feasible, but is often not desired since too much time is
spent in optimization.

One of the most time consuming tasks performed by the execution en
gine is the computation of the join of two relations. To compute the join of
N relations, N - 1 dyadic join operations have to be performed. Since the

6 CHAPTER 1. I11troduction

size of the relations joined have a big impact on the cost, the order in which
all N relations a.re joined has a big impact on the overall cost of computing
the join of N relations.

Unfortunately, finding the optimal join order is an NP-hard problem
[IK84, CM95, WM97], while at the same time it is one of the biggest sources
of optimization. Only for specific cases, exact and efficient solutions have
been found (IK84, KBZ86].

1.3 Research problem and objectives

This thesis is focused on the problem of finding the optimal, or a good, join
orde.r and considers several related complexity issue.s. First, a thorough
complexity analysis is given for extensible transformation based optimizers
proposed in literature [GD87, GM93, Gra95].

These transformation-based optimizers consist of generating all alterna
tives reachable from an initial QEP by a set of transformation rules; their
estimated cost can be used in choosing one of them. The common view
is that the tradeoff of extensible transformation-based optimizers is one of
efficiency and extensibility. Since this kind of optimizer is currently used to
implement commercial database systems it becomes important to answers
the following question:

• Is it possible to make transforrnation based optimization as efficient
as dynamic p mming ?

Second, although many optimization te·chniques have been proposed and
implemente,d, the fundamental question of how many alternatives exist for
a given join query is yet largely unresolved. Or stated differently:

·• How many join trees exist for a given join query ?

For combinatorial optimization problems where an exhaustive search
is infeasible, probabilistic transformation based algorithms are often used.
Two imp,ortant factors for the performance of these algorithms are ran
dom generation and the topology imposed upon the search space by the
transformation rules. To identify the impact of randomization on the
performance of an optimizer a pure random sainpling algorithm is com
pared to probabilistic transformation based algorithms as developed by
fIW87, IK90, SG88]. However, efficient random generation of join trees
with a uniform distribution has been a hard problem for many years. So,
the third and fourth question to answer are:

• How can oalid join trees be genera,ted efficiently at random with a
un,if or,n distribution f

1.4 .. Overview of this thesis 7

• How does a random sampling algorithm per/01,n compared to proba
bilistic tmnsf 01.,,nation-based algorithms ?

Each question raised is addressed in a separate Chapter. The next
section gives a more detailed overview of the out.line of this thesis.

1.4 Overview of this thesis

This thesis is structured as follows. Chapter 2 describes the primary op
timization te,chniques studied in the research arena and gives definitions
of general notions used in this thesis. In Chapter 3 complexity issues for
t,ransformation based exhaustive enumeration are derived and in Chapter 4
a technique to reduce the complexity is given, which makes transformation
based join enumeration as efficient as dynamic progra.1nming. These last
two chapters are based on results previously published i11 the proceedings
of DASFAA'97 and VLDB'97 [PGLK97b, PGLK97a].

Chapter 5 introduces an efficient counting technique for determining
the size of search spaces. Based on these results a ranking/un-ranking
metho,d for mapping join trees to integers, and visa versa, is developed in
Chapter 6. It allows efficient generation of join trees at random with a
uniform distribution. Parts of the material presented in Chapter 5 and 6
have been published in the proceedings of ICDT'95 [GLPK95].

In Chapter 7 the random generation of join trees is used to implement a
new optimization algorithm, called Transformation Free optimization. The
performance of TF is experimentally compared to probabilistic algorithms,
like Simulated Annealing an Iterative Improvement, as described in litera
ture. The results published in the proceedings of VLDB'94 [GLPK94] form
the basis of Chapter 7.

As a result of the experiments a hybrid algorithm has been implemented
and evaluated in Chapter 8. This hybrid algorithm combines the good char
acteristics of both TF and II. Finally, in Chapter 9 the results obtained in
this study are summarized and the directions for future research identified.

• •

With the introduction of System R [SAC+79] query optimizers became
an active research topic within the database community. The common
research subject is to improve the Select-Project-Join query. Applying the
simple heuristics of pushing down selections as much as possible and perform
projections as soon as possible reduces the problem of query optimization
to finding the right join order. However, it remains a hard combinatorial
problem [IK84].

Algorithms for selecting optimal join trees is the focus of this thesis.
There are other topics of concern in query optimization, but they are not
addressed. Before we describe what has been done with regard to join
reordering we will first give several definitions which will be used throughout
the rest of this thesis.

2.1.1 Query graphs and join trees

We represent a query by means of a query graph. Nodes of such a graph
are labeled by relation names, and edges are labeled by predicates. An
edge labeled p exists between the nodes of two relations, say Ri, Rj, if
p references attributes of Ri and RJ· The result of a query graph G =
(V, E) is defined as a Cartesian product followed by relational selection:
O'p1 A···APn (R1 x · · · x Rn.,,), where {P1, ... ,Pn} are the labels of edges E a.nd
{ R1, ... , Rm} are the labels of nodes V.

Join trees are used to evaluate queries, instead of the straight definition
of product followed by selection given above. A join tree is an operator

9

10 CHAPTER 2. Join reordering

D

p3

Pt
A--B

C

P2
C

A

P2
t><l

Pl
t><l

s
t><J

B

P2
t><l

C

D X

A

Figure 2.1: Query graph and operator trees.

B

D

tree whose inner nodes are labeled by join operators and whose leaves are
labeled by relations. The result of a join tree is computed bottom-up in
the usual way. Join trees also include annotations on the join-algorithm to
use • • e.g. nested loops, hash, sort merge, etc.- when several are available.
Not every binary tree on the relations of the query is an appropriate join
tree, because some may require the use of Cartesian products.

The two representations of queries - join trees and graphs - empha
size different aspects of the query. A query graph presents a collection of
relations and the predicates that connects them, but it does not impose an
evaluation order. A join tree specifies unambiguously the inputs to each
operator, and how it is evaluated.

Figure 2.1 shows a query graph, and two operator trees to answer
the query. The graph shown corresponds to the query { (a, b, c, d) I a E
A, b E B, c E C, d E D,p1 (a, b),P2(b, c),p3(b, d) }, where A, B, C, D are the
database relations and Pl, P2, p3 are the binary predicates.

The first operator tree requires only relational joins, while the alterna
tive req11ires a Cartesian product. For a description of relational operators
and query graphs, see, for example, [Ull89a, CP85, KRB85]. The reason for
using a Cartesian product in the second tree is that we start by combining
the information from relations A and D, for which there is no constraining
predicate - i.e. there is no edge between A and D in the query graph.
Figure 2.2 shows all 6 operator trees for this query involving only joins.

'

Definition 2.1 An unordered binary tree T is called a valid join tree of
query graph G = (V, E) when it satisfies the following recursive definition:

• The leaves of T correspond one-on-one with the nodes of G; and
• e11ery subtree of T is a join tree for a connected subgraph of G.

2 .1.. D1efinitions 11

.. 4 B A B B C

B C B D B D

Figure 2.2: All join trees of the query graph.

Operator trees which also contain Cartesian products are called invalid
join tree. If it is clear from the context then we will refer to valid join trees
simply by join trees. In general the use of Cartesian pro,ducts results in
operator trees which have a high cost, therefore those operator trees are
typically avoided to reduce the number of alternatives. However, special
cases exist in which the use of Cartesian products results in the cheapest
operator tree [Tay90, Mor92].

2.1.2 Join tre,e topologies

For join trees we distinguish between linear and bushy join trees. If for
each join operator at least one input is a base relation it is called linear,
otherwise it is called bushy. Accordingly, a set of join trees is called a bushy
search space if there is no restriction on the topology of the trees. In a linear
search space the topology of the trees is restricted to linear join trees. Note
that the space of linear join trees is a subset of the space of bushy join trees.

12 CHAPTER 2. Join reordering

From Definition 2.1 it follows that join trees are unordered -i.e. they
do not distinguish left from right subtrees. To change an unordered tree of
ri leaves into an ordered tree a binary choice for each of the n - 1 internal
nodes has to be made. Each unordered tree on n leaves then maps to 2n-l

ordered t1rees.
If there are several implementations available for each join operator -

i.e. hash-join, nested-loop or merge-scan, then the total number of trees
to be considered increases even further. Suppose we have a query graph in
which n relations participate, and there are m alternative implementations
a"v'ailable at ea.ch join. For each previously unordered tree we then have to
consider m n-l ordered trees.

2.1 .. 3 Structured query graphs

For arbitrary query graphs the number of valid join trees is difficult to
compute. If, however, the topology of the query graph is ''structured'', the
exact number of join trees can be computed using standard combinatorial
methods [LVZ93). In [Knu68, p. 389] the number of unlabeled binary
trees is derived, al.so known as the Catalan number. For the three query
graph topologies- string, completely connected and star [OL90] -the exact
number of unordered linear and bushy join trees is given in Figure 2.3.

s~ch Space String query Completely connected Star
. ., +

Linear join trees 2n- n! (n l)!
Bushy join trees 2n-2 ! 2n-2· ! (n 1)! n! n-1 ' n-1 ! •

Figure 2.3: Number of valid join trees for ''regular'' query graphs.

String Query. String queries are often used in foreign key traversal and
object--oriented environments. The query graph for a string query of n
relations has two nodes with degree 1 and n - 2 nodes with degree 2, see
Figure 2.4.

"" ---Rn-1---

Figure 2.4: A string query

2.1. Definitions 13

Completely connected Query. The completely connected query, or
clique, is not used in real-life applications often. However, it is often used
as a test case for its large number of evaluation orders. The query graph for
a completely connected query of n relations, has n nodes of degree n - I.
These types of graphs are called complete- or n - 1 regular graphs. See
Figure 2.5 for a completely connected graph on 4 nodes.

Figure 2.5: A completely connected query on 4 nodes

Star Query. The star query is often found in OLAP applications. The
query graph of a star query of n relations, has n - 1 nodes with degree
1 and one central node with degree n - 1. See Figure 2.6 for a star on
5 relations. For a star query all valid join trees consists of join operators
of which at least one operator is a base relation, therefore the number of
bushy and linear join trees are the same.

Rs

Figure 2.6: A star query

14 CHAPTER 2. Join reordering

2.2 Join tree selection Inethods

Finding the ''optimal'' join tree can be modelled as a search problem. It
consists of three components, the search space, the cost model and the search
strategy. The search space contains all valid join trees. The cost model is
used to annotate each of these trees with a cost and the search algorithm
describes how the join trees are explored.

2.2.1 Exhaustive search

ff search spaces are not too big (< 10 relations) an exhaustive search is fea
sible, with the advantage of returning the global optimal join tree according
to the cost model. For performing an exhaustive search, either a dynamic
programming [SAC+19] or an exhaustive application of transformation rules
is commonly used [McK93]. These two methods are also called the bottom
up and top-down approach. Top-down is actually a misnomer, since early
in the exploration process alternatives at the bottom of the operator trees
are generated as well, due to recursion.

Dynan1ic programming. In System R [SAC+79] and Starburst [OL90,
HCL+90, HP88] dynamic programming is used to find optimal access
paths and join trees. The bottom-up algorithm starts by considering
the individual relations and adds new relations until all relations are
joined. For each subset of joined tables only the cheapest alternative
is maintained.

In [VM96] Vance and Maier presented an efficient implementation
of an 0(3n) dynamic programming like exhaustive algorithm, which
generates all operator trees involving both Cartesian products and
join operators.

Transforn'\ation-based. Transformation-based exhaustive search can be
found in Volcano [Gra89, McK93] as well in Cascades [Gra95] and op
erates as follows. First, all available transformation rules are applied
on the initial operator recursively. Then, the transformation rules
are applied on all of the newly generated join trees. This process is
repeated until no new join trees are generated. To determine which
join trees have already been generated, an efficient structure is used
for storing the (partially) explored search space. See Section 3.1.2 for
a detailed description of the generation algorithm.

2.2. Join tree selection methods 15

2.2.2 Probabilistic algorithms

In very large search spaces, it is often infeasible to search for the globally
optimal join tree. Such spaces are typically the play ground of probabilis
tic algorithms. Instead of finding the best join tree, the goal is to avoid
the worst join trees. Probabilistic algorithms, like Iterative Improvement
(II) [SG88], Simulated Annealing (SA) [IW87] and their variations Toured
Simulated Annealing (TSA) [LVZ93] and Two Phase Optimization (2PO)
[IK90] rewrite join trees in order to generate alternatives. These rewrites
are based on the algebraic properties of the join operator, i.e. commutativ
ity and associativity.

The probabilistic algorithms start by generating an arbitrary initial join
tree. Then, transformation rules are applied to derive new join trees. De
pending on the cost of the new join tree and the characteristics of the search
algorithm, this new join tree is accepted as the current solution on which
transformation rules are applied again. This process is repeated until a

'

stopping condition is met. For exa.mple, the optimization can stop after a
fixed time, or if the cost improvement drops below a certain threshold.

The algorithm TSA performs SA several times, each time with a new
initial starting point. The 2PO algorithm first runs II for a short period,
the result of the first phase is the initial state for the second SA phase in
which the final result is fine tuned. In Chapter 7, the SA and II algorithms
are described in more detail.

In [SG88] the following variants were studied also: Perburtation Walk
(PW) and Quasi-random Sampling (QS). The PW algorithm fits within the
algorithm framework described above. However, while keeping track of the
join tree with the lowest cost, each join tree generated is unconditionally
accepted as the new current state. The QS algorithm is similar to PW,
but instead of moving to adjacent join trees a new ''random'' join tree is
generated. The join trees are not generated with a uniform distribution
and the algorithm is therefor called quasi-random.

2.2.3 Non-exhaustive deterministic algorith111

In [IK84], an efficient algorithm was presented which generates optimal
linear join trees for acyclic queries when block-wise nested-loop join algo
rithms are used. The algorithm presented in [KBZ86] relaxed the use of a
specific join algorithm. However, there are still some restrictions on the cost
function of the join algorithm. And unfortunately, not all join algorithms
comply to it - i.e sort-merge.

Using the KBZ algorithm as a basic building block, [SI92a] propose their
AB algorithm which relaxes most of the restrictions of the original KBZ

16 CHAPTER 2. Join reordering

algorithm by introducing randomness and spanning trees. This makes the
AB algorithm probabilistic and increases its complexity.

2.2.4 Cost models

All optimization algorithms need to estimate the cost of (partial) solutions
in order to determine which solutions are good. During the optimization
many solutions are considered and for all of them a cost is estimated. The
estimated cost must be as accurate as possible in order to obtain good
solutions. In the design of a cost model a tradeoff between accuracy and
speed has to be made.

Another issue related to query optimization and cost models is the fact
that a database changes over time and that there might be some time
between the optimization of a join tree and its evaluation. A join tree might
be ''optimal'' at optimization time while it can be sub-optimal at execution
time due to changes in the system's characteristics or the database contents.

The design of robust and accurate cost models is an important issue
and a research area by itself [Sha86, Ull89b]. In this thesis, the cost model
is considered to be a black box which, given an evaluation order, returns a
cost. The ''optimal'' solution found by an optimization algorithm is always
with respect to the cost model.

17

•

• •

l

To generate the complete space of alternatives using transformation rules,
the naive algorithm is to maintain a set of vi.sited join trees. All transfor
mation rules are applied on join trees visited, adding the results to the set
if they are new. When no new join trees can be generated, we have ex
plored the complete search space (provided the set of transformation rules
is complete). In general, the same join tree can be derived through differ
ent sequences of transformation rules, leading to duplicates. Every time a
duplicate is found, the time to generate it and then to find it in the set of
visited join trees is part of the overhead of a naive transformation-based
search algorithm ..

Duplicates are not an issue for optimization strategies that explore only
a small fr ent of the search space, especially if the join trees are generated
probabilistically, because it is unlikely that the same join tree be generate
twice {SG88, IK90, IK91, GLPK94] . However, for optimizers that generate
the complete space of alternatives, dealing with duplicates is crucial.

How frequently are we genera.ting duplicates? How expensive is the
overhead? Consider the following simple graph model to get a sense of the
magnitude of the problem. The number of duplicates generated depends
on the size of the search space, n, and the number of neighbors, bi, of each
state Si (a state s1 is a neighbor of Si if there is a transformation rule that
generates Sj from Si)- Trying each transformation results in generating:

1 Parts of this chapter have been published in the Proceedings of the lnte,11ational
Conference on Very Large Databases, Athens, 1997 (PGLK97a]

19

20 CHAPTER 3. Complexity of transformation-based join enumeration
t •

' '

E~=l bi states. Assuming the number of neighbors for each state is the
sa.me (b = b1 = ... = bn) we get b * n generated states. Since there are
only n states, the number of duplicates generated is n * (b - 1). Only 1
out of every b states generated is new, and 1 - ¼ of the states generated
- i.e. most of them as b increases - are duplicates. A considerable
efficiency improvement can be achieved by avoiding the generation of those
duplicates. We refine our analysis of duplicates later on, for a more realistic
optimization framework.

The remainder of this chapter is organized as follows. Section 3.1 de
scribes the relevant parts of the optimizer framework we adopted from the
Volcano system [GM93]. Then, Section 3.2 describes the complexity of
transformation based join enumeration and Section 3.3 identifies and quan
tifies the problem of duplicates. Section 3.4 concludes with a summary.

3.1 Optiinizer a111ework

Before the complexity of transformation based join enumeration is ad
dressed we will first explain the relevant parts of a Volcano-style opti
mizer. A key component in these optimizers is the MEMO-structure, intro
duced in [GM93], that efficiently stores information about all alternatives
explored.

3.1 .. 1 MEMO-structure

The main idea of the MEMO-structure is to avoid replication of subtrees
by using shared copies only [GCD+94]. It is organized as a network of
equivalence classes (or simply classes). Each class is a set of operators which
all generate the same (intermediate) result. The inputs for the operators
are classes which can be interpreted as ''any operator of that class can be
used as input''.

In Figure 3.1 a simplified MEMO-structure is shown which encodes two
alternatives for joining the tree relations A, B and C. The two alternative
join trees encoded are (A t><J B) t><1 C and (B 1><1 A) 1><1 C. Class ABC
consists of a single join operator whose left input is an operator of class AB
and whose right input is an operator of class C. For joining the relations
A and B there are two alternatives, A t><1 B or B C><J A, for Class C there is
only one alternative so the total number of join trees encoded is two.

In the sequel of this chapter a shorter representation of a MEMO
structure is used in which we omit the classes which reference a single
relation. Also the classes are labeled by the relations they combine and
instead of using arrows a class is referenced by its label. For example, the

3.1. Optimizer Framework 21

Class ABC - • •
JOlO

Class AB - - - - - - • •
JOlO

- - ♦ • JOtn

Class A
Get(A)

Class B
_, _________ _

Get(B)

Class C ----------- •

Get(C)

Figure 3.1: A simplified Memo-structure containing two alternatives for 'A
join B join C'.

MEMO-structure for the 12 alternatives of a query whose fully connected
graph is Q = { A - B, A - C, B - C} is shown in Figure 3.2. It has 4
equivalence classes, na.mely ''abc'', ''ab'', ''be'', ''ac'', with the first class
containing 6 join operators. The first join operator of class ''abc'' has as
input the classes ''ab'' and ''c'' ..

An operator tree is obtained from a MEMO-structure by choosing a
specific operator at each level. For example, the tree to solve query Q that
is shown in Figure 3.3, is extracted from the MEMO-structure in Figure 3.2
by always selecting the first operator from a class.

3.1.2 Exploration process

A complete MEMO-structure - encoding a complete space - is con
structed by recursively exploring the roots of operator trees, starting with
an initial join evaluation order. Exploring an operator is done by exhaus
tively applying all transformation rules to generate all alternatives. This

22 CHAPTER 3. Complexity of transformation-based join enumeration

abc =[ab] l><l [c]; [a] l><l [be]; [b] t><l [ac]; [c] t><J [ab]; [be] t><l [a]; [ac] t><l (b)
ab =[a] tx1 [b] ; [b] l><l [a]
be =[b] l><l [c] ; [c] l><l [b]
ac =[a] tx1 [c] ; [c] l><l [a]

Figure 3.2: The complete MEMO-structure for {A- B, A - C, B - C}

l><I txl

[abc]

[a]

Figure 3.3: Operator tree extraction from a MEMO-structure.

method is similar to the naive algorithm as described in the introduction
of this Chapter.

Figure 3.4 shows the exploration algorithm. The initial MEMO-struc
ture is created by walking down a join tree and creating a class for each join
operator. This join tree is selected arbitrarily from the space of valid join
trees. To start the exploration we call EXPLORE-CLASS (C), with C being
the root class of the initial MEMO-structure.

In general, the application of a transformation rule can generate an
operator which is already present in the MEMO-structure. For example,
applying the commutativity rule twice reproduces the original operator.
So, before inserting a new operator into the MEMO-structure we have to
make sure it is not already present. A hash table is used to speed-up the
detection of duplicates.

3.1.3 Transformation rules

To generate the two most commonly used search spaces, the space of bushy
join trees and the space of left-linear join trees, the following sets of trans
formation rules are used. For generating the space of bushy join trees one
may use the following rule set. This set was also used in [BMG93, IW87,
IK91, Kan91].

3.1. Q,ptiiniz~.r Framework

EXPLORE-CLASS(C) {
while not all operators in C have been explored {

pick an unexplored operator eE C
EXPLORE-OPERATOR(e);

}
}

mark e explored;

EXPLORE-OPERATOR(e) {
EIPLORE-CLASS(left-child(e));
EXPLORE-CLASS(right-child(e));
for each rule n {

}
}

for each partial tree e such that
e is extracted from the MEMO-structure;
the root of e is e; and
e matches the pattern of R

x := apply 7?.. on e;
if x ¢ MEMO-struct11re

add x to MEMO-struct11re;
(place the root of x in the same class as e)

Figure 3.4: Exploration algorithm

Rule set RS-BO:

• llight Asso,ciativity: (A t><1 B) t><1 C ~ A t><1 (B t><1 C).

• Left Associativity: A t><t (B t><1 C) ~ (A txl B) tx:1 C.

• Commutativity: A tx:1 B ~ B txJ A.

23

This set is redundant, because we can drop Right Associativity (or Left
Associativity) and still generate the same space. We use here the minimal
set RS-Bl, which contains only Left Associativity and Commutativity. As
will be shown later on, the addition of redundant transfor:µiation rules will
have an impact on the performance of the join enumerator.

For generating the space of left linear join trees for completely connected
queries a rule set based on [SG88} is used.

24 CHAPTER 3. Complexity of transformation-based join enumeration

Rule set RS-Ll:

• Swap: (A 1><a B) t><l C+ (A t:<1 C) l><l B.

• Bottom Commutativity: B1 t><J B2 '"'vi> B2 «xJ B1, for base tables B1, B2.

To determine the number of join operators needed to encode a complete
search space using the MEMO-structure a few "W"ell known query graph
topologies are considered, namely: string, star and completely connected
queries (See Sectio·n 2.1). For these topologies the size of the MEMO
structure is determi11ed for the cases that ordered bushy or left-linear join
tree.s are generated. Note that, since the number of join operators are
computed, the operators that load a base relation are not counted.

3.2.1 Bu.shy join e nation orders

Theorem 3.1 The maximum number of join operators needed to enco,de
all altern.ativ·e evaluation orders for a query of n relations is:
3" - 2n+l + l,n > 1

Proof. The upper bound on the size of the MEMO-structure is de
termined by considering a query topology with the largest number of
alternative evaluation orders: A completely connected query on n rela
tions. First, we compute the number of equivalence classes. Since each
p,ossible non-empty subset of base relations will occur as intermediate

n

An equivalence class fork base relations describes all p,ossible root opera
tors for these k relations. Every partition of the set of the k relations into
left/right non-empty subsets corresponds to an operator in this class, so
the number of operators in a class is 2As • .. 2, for k > 1. If k = 1 the class
contains no join operator, but a load-operator which access the base re
lation. Now the numb,er of join op,erators in the MEMO-structure is the
sum of all operators of all classes which contain join operators, which is:

n ·•• (2k - 2) = 3" - 2n+l + 1, n > 1. D

Theorem 3.2 The maximum number of join operators needed to encode all
ol,temQtive l,tJ,S.hy evaluation orders in case of acyclic queries of n relations
is: (n - 2) 2n + 2, n > 1

3 .. 2. Si~ of the MEMO-structure 25

Proof .. In case the query is a.cyclic, every sub query is also acyclic. The
number of operators in a class with k, k > 1, relations is 2(k -.. 1). If
k ... - 1 the class only contains a load-operat,or and no join opera.tors.
Since t.he exact topology of the acyclic query grapl1 is unknowr1 and
bushy join trees are allowed we assume that all sub graphs exists in
the ME~10-structure. This leads to the following sumrnation for the

~n fl (k) R 1 total numb·er of operators: L..,k= 2 k · 2 · - 1 . ewriting resu ts in:

(n - 2) * 2n + 2, n > 1 D

For a.cyclic queries with a ''structured'' topology the size of tl1e MEMO
structure c.an be made more precise. In the following Theorem we give the
size of the MEMO-structure for the number of operators needed to encode
all bushy trees for string queries.

Theorem 3.3 The complete space of bushy join trees for string queries can
be enco,ded in a MEMO-structure using (n3 - n)/3, n > I, join operato,~s.

Proof.
As in the proof of Theorem 3.2, a class with k relations contains 2(k- l)
operators, for k > 1. For a string query with n relations t.here are exactly
n -k + 1 possible substrings of size k. For each of these substrings there
is a class in the MEMO-structure.
So the total number of operators in the ME!\110-structure is 2 I:;=2 (n -
k + l)(k - 1). Rewriting results in: (n3 - n)/3, n > 1 D

In [OL90] these query graphs and join tree topologies were also consid
ered in the context of the Star burst join enumerator. Our results coincide
with their findings, however there is a difference which is caused by the fact
that we considered ordered join trees while they considered unordered join
trees. To map their results to ours their formulas have to be multiplied by
a factor two.

3.2.2 Left-linear join trees

Now we will determine the size of the MEMO-structure if only left-linear
join trees are generated. The query graph topologies considered are: com
pletely connected, string and star.

When counting the number of left-linear join trees we assume that the
join operators do not distinguish between the left and right input - i.e.
we count unordered linear trees. However, the join operat.or at the ''bot
tom" of a join tree does distinguish between its two inputs [LVZ93]. So,

26 CHAPTER 3. Complexity of transformation-based join enumeration

for a completely connected query on the relations a, b and c there are 6 dif
ferent left-linear join trees, namely: (c 1><1 b) f><l a, (b t><J c) l><l a, (a D<J c) i><l b,
(c 1><1 a) t><l b, (a l><l b) t><J c, (b r><I a) txl c.

To determine the number of join operators needed to represent all valid
left-linear join trees for acyclic query graphs, we use the following observa
tion. In each join operator of class C at least one of the inputs is a base
relation. Also this base relation has to be a ''terminal'' in the subgraph
associated with class C, otherwise the join operator can not be valid.

Theorem 3.4 The number of join operators needed to encode all left-linear
join trees for a completely connected join query on n relations is
n2n-l -n,n > 1.

Proof. A class contains operators such that the right hand operand
consists of a single base relation. So the number of operators in a class
which references k relations is k. The n classes referencing 1 relation
contain no join operators, but only a load-operator.
The number of classes with k relations in the fully explored MEMO-

structure table is n
k •

Summing the join operators in each class we get I:~=2

ing the summation results in: n2n-l - n, n > 1. □

n
k k. Rewrit-

Theore1r1 3.5 The number of join operators needed to encode all left-linear
join trees for a string query is n 2 - n, n > I.

Proof. In each complete class that references at least two relations
there are 2 operators, since the two terminal relations appear once as
right input of a join operator. If any other relation of the query is used
as right input, the resulting join tree would be invalid.
Each sub-string of the complete string query appears as the left input.
Summing the operators of each class gives the total number of operators.
The n11mber of possible sub-strings is n - k + 1 with k the number of
relations in the sub-string and n the number of relations in the complete
string. Summing, we get: I:;_2 2(n - k + 1) = n 2 - n, n > I. □

':f ~eorem 3.6 The number of join operators needed to encode all left-linear
Join trees for a star query is (n - 1) * 2n-2 + n - I, n > 2.

302. Size of the ?vlEM ◊-structure 27

Proof.. In a class which references k relations there are k - 1 possible
join operators, k > 2. Hence, each of the k - I ''terminal'' relations
is • once as the right input for a join operator. The cla.~ses which
reference two relations contain 2 operators, since the bottom operator
distinguishes between the left and right input. The classes that reference
one relation contain no join operator.

The number of classes which reference k relations is n-1
k - 1 . The

reason is that for each operator the right input is a "terminal'' relation
and the left input is formed by the remaining k - 1 relations which are
selected from then - 1 original relations. Note that the central relation
of the star query is always part of the left input. Summing the number of

operator in each class we get: k=S k _ 1 (k - 1) + 2
1

.

Rewriting results in (n - 1) * 2n-2 + ri - 1, n > 2. □

In [OL90) also the number of operators needed to encode all left linear
trees for string and star queries were derived. These results coincide with
our findings except for a minor deviation, caused by the fact that the ''bot
tom'' join operator we use, distinguishes between the left and right input
while [OL90] counted only one operator in those cases.

Bushy Left-linear
Rel. cc string cc string star

trees ops. trees ops. trees ops. trees ops. trees ops.
2 2 2· 2 2 2 2 2 2 2 2
3 12 12 8 8 6 9 4 6 4 6
4 120 50 40 20 24 28 8 12 12 15
5 1680 180 224 40 120 75 16 20 48 35
6 3.0240 602 1344 70 720 186 32 30 240 85
7 665280 1932 8448 112 5040 441 64. 42 1440 265

Figure 3.5: Number of join trees and operators for various query graphs
d ...

an Join trees ..

The table in Figure 3.5 shows how many operators are needed to encode
a specific search space u.sing a MEMO-structure. All the combinations of
query graphs and join trees discussed in this section are described. For
computing the size of the search space - number of join trees - the for
mulas of Figure 3.6 were used. Note that for star query graphs there are no
"real" bushy join trees. In the tables ''cc'1 is short for completely connected.

28 CHAPTER 3. Complexity of transformation-based join enumeration

Bushy Left-linear

cc 2n-2! n!
n-1 ! ..

.

string 2n-2 ! 2n-l 2n-l
n! n-1 ! ·

star - 2{n l)!

Figure 3.6: Formula's for the size of search spaces.

3.3 Duplicates

Before quantifying the effect of duplicate generation, we walk through the
construction of a MEMO-structure for a completely connected query, on
relations a, b and c. Even in this small exa:mple the number of duplicates
is relatively large.

Example 3.1 For the completely connected query on the relations ''a, b, c 1 "

Figure 3 .. 7 shows the MEMO-structures before and after exploring operator
[ab] t><1 [c]. In the "before" MEMO-structure all children, ''ab'' and ''c'',
have been fully explored. The transfo,mation rules RS-Bl (see Section 3.1)
generate the following new opemtors, when applied to operator [ab] pi<3 [c].

Commutativity: ([ab] t><J [c]) creates ([c] tx1 [ab]) which is added to the
class ''abc".

Associ.ativity: ([ab] 1XJ (c]) does not match, the left child is a class and
should be a tree. This is resolved by extracting partial trees for the
left class ''ab." · i.e. replacing the expression ''ab'' by one of the
operators of that class.

[aJ tx1 [b]: First tree (([a] t><2 [b]) C><J [c]) is extracted. Now the rule
matches and is applied. The new tree ([a] c,(I ([b] 1><1 [c])) is gen
erated., and added to the MEMO-structure in class ''abc''. The
su ·. ·• . ression ([bJ t><t [c]) starts a new class ''be'' since it didn't
appear in the earlier MEMO-structure.

{b} txt [a}: Secon.d tree (({b] ·txl {a]) •txl {c]) is extracted. It matches the
rule, so it is applied. The new tree ([b] .txl ([a] b<l [c])) is generated
and added to the MEMO-structure. The subexpression [a] f><1 [c]
starts a new class "ac''.

3.3. Duplicates 29

Before After
abc [ab] lX1 [c] abc [ab] txl [c]; [c] txl [ab]; [a] 1><1 [be];

[b] txl [ac]; [be] rxJ [a]; [ac] D<J [b].
ab [a] tx1 [b]; [b] l><l [a] ab [a] IXl [b]; [b] txl [a]

be [b] tx:J [c]; [c] 1><1 [b]
ac [a] l><l [c]; [c] txJ [a]

Figure 3.7: MEMO-structure before and after exploration.

The exploration process is continued by applying transformation rules
to the newly created operators. Now, duplicates are generated. Before the
new operators ([c] l><l [ab], [a] txl [be], and [b] t><l [ac]) of the root class ''abc ''
can be explored, all their children (''a'', ''b'', ''c'' ''ab'', ''be'' and ''ac'') must
be fully explored. This results in two new operators, [c] D<J [b] and [c] D<J [a],
which are added to the appropriate classes.

Commutativity on the new operators produces [ab] t><J [c], [be] txl [a] and
[ac] D<J [b], out of which [ab] l><l [c) already exists.. The new operators are
added to the MEMO-structure and explored. Both associativity and co1n
mutativity can be applied to the operators [be] txl [a] and [ac] D<J [b], which
results in 6 operators. All these operators were already stored in the MEMO
structure. So, during the exploration of class ''abc'', 5 new operators and
7 duplicates were generated. In Figure 3.8 the generation graph for class
''abc '' is shown. The bold operators are duplicates.

As illustrated by the previous example, the straight forward application
of transformation rules results in the generation of operators which a.re
already in the MEMO-structure -duplicates. The generation of duplicates
affects the efficiency of the join enumeration process considerably. For each
operator generated the MEMO-structure has to be searched to determine
if it already exists. The search and the time needed to generate duplicates
are part of the generation cost.

In the introduction, where a simple graph model was assumed, we de
rived a factor of b - I of duplicate elements over new elements. The naive
model used there, however, did not take into account the MEMO-structure
used by the Volcano-type optimizers. The next Theorems deal with the
details of the new structure.

30 CHAPTER 3. Complexity of transformation-based join enumeration

comm. comm.
[ab] 1XJ [c] -- [c] txl [ab] [ab) IXJ [c]

comm. comm.
[a] txl [be] -- [be] l><l [a] --

ass.
ass.

[b] txl [ac] comm.
[ac] l><l [b] --

comm.

ass.

Figure 3.8: Operator generation graph.

3.3.1 Bushy join trees

[a] l><J [be]

[b] [XJ [ac]
[c] txJ [ab]

[b] [XJ [ac]

[a] txJ [be]
[c] [XJ [ab]

The following theorems and lemmas quantify the number of duplicates gen
erated when exploring the search space of bushy join trees, for completely
connected and acyclic query graphs. It assumes a minimal set of unidi
rectional join associativity and commutativity rules, see Section 3.1. If
associativity is enabled in both direction, as is commonly suggested, we
simply end up generating even more duplicates.

Completely connected query

Lemma 3.1 The number of duplicates generated by RS-Bl during the ex
ploration of a class that combines k relations, on a completely connected
graph, is: 3k - 3 * 2k + 4.

Proof. In a class that combines k relations, take an operator [L] txl [R],
with l the number of relations in [L] and k - l the number of relations
in [R] (2 < k < n). Applying co1nmutativity and associativity on this
operator, we generate (21 - 2) + 1 alternatives.
To ensure that all operators are generated within a class, all transfor
mation rules are applied on each operator. Thus, the total number of

operators generated in the class is E7-1
1

(2l

summation becomes 3k - 2k+l + 1. But the number of unique operators

3.3. Duplicates 31

in such a class is 2k - 2 and of these operators the initial operator is
given instead of being generated. Therefore the number of duplicates
generated in the class is: 3k - 2k+l + 1 - (2k - 2 - 1) = 3k - 3 * 2k + 4 .
□

Theorem 3. 7 The number of duplicates generated by RS-Bl during the
construction of a MEMO-structure encoding all bushy join trees for a query
with n relations, on a completely connected graph, is:
4n - 3n+l + 2n+2 - n - 2.

Proof. The MEMO-structure consists of n
k classes that combine k

Acyclic query For acyclic queries the number of classes required for the
MEMO-structure to encode a fully explored search space depends on the
number or participating relations as well as on the topology of the acyclic
query. This makes it hard to give a formula for the general case of acyclic
queries. Therefore we consider a string query for which the exact number
of duplicates generated can be computed.

To determine the number of duplicates generated during the construc
tion of a MEMO-structure we use the following lemma which states the
number of duplicates generated during the exploration of a single class.

Lemma 3.2 The number of duplicates generated by RS-Bl during the ex
ploration of a class that combines k relations, on an acyclic query graph,
is: k 2 - 3k + 3, k > 1

Proof. In a fully explored class that combines k relations there are
2(k - 1) valid joins in case the query graph is acyclic and bushy threes
are generated. On all these joins the commutativity rule can be applied
and results in the generation of 2(k - 1) join operators.
ff the left associativity rule is applied on an operator [L] txl [R], with
l the number of operators in [L] and k - l the number of operators in
[R], then l - I operators are generated. The reason is that, although
class L consists of 2(l - l) operators only half of them will result in valid
operators, since the query graph is acyclic. If all operators would result
in valid operators both left and right inputs of operators in class L would

32 CHAPTER 3. Complexity of transformation-based join enumeration

share a predicate with R, which means that the query graph would have
to be cyclic.
When applied on the mirrored operator, [R] 1><1 [L], the number of oper
ators generated is: k- l - 1. In total, the number of operators generated
for each (non-mirrored) operator is k - 2.
The number of non-mirrored operators is k - 1 so (k - l)(k - 2) +
2(k - 1) = k(k - 1) operators are generated for a class that combines k
relations. The fully explored class consists of 2(k-1) operators of which
the initial one is already given, so the number of duplicates generated
is: k (k - I) - (2 (k - 1) - 1) = k 2 - 3k + 3, k > 1. D

Theorem 3.8 The number of duplicates generated by RS-Bl during the
construction of a MEMO-structure encoding all bushy join trees for a string
query with n relations is: 1

1
2 (n4 - 2n3 + 5n2 - 4n), n > 1

Proof. From Lemma 3.2 we know that the number of duplicates gener
ated per class of k relations is: k2 - 3k + 3, k > 1. For a string query of
n relations there are n - k + 1 of k relations so the number of duplicates
generated during the exploration of a MEMO-structure is: I:; 2 {n -
k + l)(k2

- 3k + 3). Rewriting results in: 1
1
2 (n

4 - 2n3 + 5n2 -4n), n > 1
□

3.3.2 Linear join trees

Co1npletely connected queries. The following lemma and theorem
show how many duplicate join operators are generated when constructing
the MEMO-structure for all left linear join trees ..

Le111ma 3.3 The number of duplicates generated by RS-Ll during the ex
ploration of a class that combines k relations, on a completely connected
graph, is k2 - 2k + 1.

Proof. In a class that combines k relations, take an operator [L] t,<J (R],
with k - I the number of relations in [L] and one relation in [R], 2 <
k < n.

For a class with more than two relations, k > 2, only the Swap rule
applies to the join operators. For each join operator this rule generates
k - 1 alternative operators. Since a class contains k unique operators,
k(k-1) operators are generated in a class. Of the k unique operators one
is already given, the initial one, so the number of duplicates generated
is: k(k - 1) - (k - 1) = k2 - 2k + 1.

3.3. Duplicates 33

For the class with exact.ly two relations, k = 2, only the Bottom Co1n
muta.tivity rule applies. This rule behaves the same as the Swap rule so
the formula k(k - 1) - (k - 1) = k2 - 2k + 1 also holds for k = 2. □

Theorem 3.9 The number of duplicates generated by RS-LI during the
constrocti.on of a MEMO-structure encoding the left linear join trees for
a quenJ with n relations., on a completely connected graph, is (n2 - 3n +
4)2"-2 - 1.

Proof. The MEMO-structure consists of
n
k

clas.ses that com-

bine k relations, 2 < k. Using Lemma 3.3, the total number of du
plic.a.tes generated during the construction of the ME?v10-structure is:

I:;=2 n (k2 - 2k + 1). Rewriting results in (n2 - 3n + 4)2n-2 - l.
k

□

Acyclic queries. Again it is not possible to compute the exact number
of duplicates generated for the general case of acyclic queries. Therefore,
we consider two acyclic query graphs, namely star and string queries.

Len1·111a 3.4 The number of duplicates generated by RS-Ll during the ex
ploratio,n of a class of a string query, is l.

Proof. If the Swap rule is applied on the initial operator [L] rxi [R] of a
class with k > 2 relations, with l = 2 the number of operators in class L
and R being a base relation, then two new join operators are considered
but due to the structure of the query graph only one of them is valid.
To this new operator the Swap rule is also applied, which will result in
the generation of the initial op·erator, so only one duplicate is generated.
For the class with two relations, k = 2, only the bottom commutativity
rule can be applied which behaves similarly to the swap rule and also
generates exactly one duplicate. □

Theorem 3.10 The number of duplicates genemted by RS-LI during the
construction of a MEMO-structure encoding the left linear join trees for a

query with n relations, on a string query, is n
2

2n .

Proof. A complete MEMO-structure for a string query consists of n
k + I classes which combine k relations. Using Lemma 3.4 the number of
duplicates generated during the creation of a complete MEMO-structure
is: I::~=2 (n - k + 1) == n

2

2n. □

34 CHAPTER 3. Complexity of transformation-based join enumeration

Len1ma 3.5 The number of duplicates generated by RS-Ll during the ex
ploration of a class that combines k relations, on a star query, is: (k -
2)2 ,k > 2.

Proof. In a class that contains all left linear join operators for a star
query, the number of join operators is k - 1, with k the number of
relations that are combined. Each of these operators, [L] IXl [R], results
in k - 2 valid join operators when the Swap rule is applied, since L
consists of k - 2 operators. So the number of join operators generated
is: (k- l)(k - 2),k > 2.
Since there are only k - 1 unique join operators and the initial operator
is already given the number of duplicates generated is: (k - l)(k - 2) -
(k - 1 - 1) = (k - 2)2 , k > 2. o

Theorem 3.11 The number of duplicates generated by RS-Ll during the
construction of a MEMO-structure encoding the left linear join trees for
a query with n relations, on a star query, is: (n - l)(n - 2)2n-3 - (n -
2}2n-2 + 2n-l - 1, n > 2.

Proof. For a star query the fully explored MEMO-structure consists of
n-1
k _ 1 classes that combine k relations. Using Lemxna 3.5 the num-

ber of duplicates generated during the creation of a complete MEMO
structure is:

k-
- 2)2 • Rewriting results in: (n - l)(n - 2)2n-3 -

(n - 2)2n-2 + 2n-l - 1, n > 2 D

Bushy join trees Left-linear join trees
Relations Operators Duplicates Operators Duplicates

2 2 1 2 1
3 12 10 9 7
4 50 71 28 31
5 180 416 75 111
6 602 2157 186 351
7 1932 10326 441 1023

Figure 3.9: Number of duplicates generated during the exploration of a
MEMO-structure for a completely connected query.

3.4. Sumn1ary

Figure 3.9 shows concrete numb,ers for the size of the MEMO-structure
and the duplicates generated (both bushy and linear trees), as a function
of the number of relations joined, for fully connected graphs. The second
column gives the number of operators needed to encode all bushy trees
u.eing the MEMO-structure. The number of duplicate.s generated during
t,he exploration process is given in column 3. For li11ear join trees the size
of the MEMO-structure and the nun1ber of duplicates generated is given in
column 4 and 5.

When for c.ompletely connected queries the results from Theorem 3.1
and 3.7 a.re cornbined it shows that for bushy join trees the ratio of dupli
cates over new opera.tors is 0(2" 10g(4 / 3)). For left linear join trees, the ratio
of duplicates over new operators is O(n), as can be seen from Theorem 3.4
and 3.9.

Similarly we can determine the ratio of duplicates over new operators
in case string or star queries are used. For string queries combinir1g the
results from Theorem 3.3 and 3.8 shows that for bushy join trees the ratio
of duplicates over new operators is O(n). For left linear join trees the
ratio of duplicates over new operators is constant, as can be seen from
Theorem 3.5 and 3.10. For star queries no valid bushy join trees exist. The
ratio of duplicates over new operators is O(n), if left linear join trees are
generated, as can be seen from Theorem 3.6 and 3.11.

3.4 Surnniary

In this chapter we have analysed the problem of duplicate generation for
transformation-based optimizers that explore a space exhaustively. Despite
the exponential size ·of the space, exhaustive search is often used in prac
tice. We are aware of at least two commercial DBMSs under development
that are using a Volcano-type optimizer based on exhaustive search one at
Tandem in their NonStop SQL product and one at Microsoft in their SQL
Server product [Gra95].

We have shown that duplicates are a serious problem in transformation
based optimizers. Even for small queries the number of duplicates exceeds
the number of new operators, and it increases dramatically witl1 the size
of the query. In particular, for the Volcano-type optimizers the ratio of
duplicates over new operators can be up-to 0(2niog(4/ 3}). The detailed
complexity analysis developed here is the first that we are aware of, for this
type of optimizers.

• • •

In this chapter, we shO'\\," that it is possible to generate the space of alterna
tive join trees efficiently? - i.e. without generating duplicates - within the
frrunework of an extensible transformation-based optimizer. The technique
described is based on conditioning the application of rules on the derivation
hist,ory of an operator. Each join tree maintains a set of rules that can still
be applied on it without generating duplicates.

To determine by which rule a join operator l1as bee11 generated, a
''derivation history'' is recorded for each operator. This is done by keeping
track of rules that are still worth applying. For example, the application
of the commutativity rule will switch the commutativity rule off in the rule
set of the resulting operator.

Keepi.ng track of the derivation history requires only a few bits per
operator. The applicability of a rule can be encoded using a single bit.
Therefore, each operator needs as many bits as there are transformation
rules.

For each class of the MEMO-structure a generation graph describes for
each op,erator by which application of a transformatio11 rules is was gener
ated. The nodes in the generation graph represent the operators and the
directed edges the transformation rules.

The basic idea of the duplic.ate-free transformation rules described in
this chapter, is that the generation graph imposed on the space of operators
by the naive transformation rules is transformed into a spanning tree -

1 Parts of this chapter have been published in the Proceedings of the lnte1na~
tioruu Conference on Database Systems For Advanced Applications, Melbourne, 1997
[PGLK97b].

37

38 CHAPTER 4. Duplica.te-free join enumeration

i.e. from the root of the spanning tree there is exactly one path to every
node (operator) in the graph.

h1 the next sections, we present sets of duplicate-free transformation
rules, together with an application schema. The join trees generated are
either left-linear or bushy. The query graph top,ologies we consider are
acyclic and completely connected.

For bushy join trees, Section 4.1 describes duplicate-free sets of trans
format,ion rules for b,oth completely connect,ed and a.cyclic queries. For left
linear join trees, Section 4.2 describes duplicate-free rules for these queries.
Section 4.3 shows experimentally the performance improvement of avoiding
duplicates and a summary is given in Section 4.4.

4.1 Bushy join tre,es

The following two sections describe transformation rules which generate
bushy join trees foc completely connected and acyclic query graphs.

4.1.1 Complete.ly connected queries

•· : . . · era.ting all valid join trees for oomp}~ly connected queries is similar to
gen.era.ting all operato·r trees for arbitrary query graphs (cyclic or acyclic)
tha.t contain both Ca..rtesian products and j,oin operators. · · ·.: query graph
can be transformed into a completely connected query graph by adding
the ''missing» predicates. These added predicates are set to true, forcing
the join operators to compute a Cartesian pro.duct. The following rule
set generates all bushy join trees for completely connected queries without
duplicates.

Rule set RS-Bee

R1 : Comrnutativity x t><Jo y ➔ y t><:11 x
Add 1>C:11 to the class of t><lo.
Disable all rules R1 , R2, R3 , R.4 for application on tx:J1-

R2 : Right associativity (x t><Jo y) M 1 z ➔ x l><l2 (y tx13 z)
Add M2 to the class of l><l1 .

Disable rules R2, Rs,.&& for application on 1><!2.

Start new class with txJs (new operator) with a.II rules enabled.

R3 : Left ass1ociativity x t><Jo (y t><J1 z) ➔ (x t><J2 y) t><33 z
Add r><J3 to the class of t><Jo.
Disable rules R2, RaR.. for application on t><33 •

Start new class with tx.12 (new operator) with all rules enable·d.

4.1. Bushy join trees 39

R4 : Exchange (w 1><10 x) txJ1 (y 1><12 z) ➔ (w t><13 y) t><J4 (x l><ls z)
Add t><J4 to the class of txJ1 •

Disable all rules R 1 , R2 , R3, R4 for application on txl4.

Start new classes with t>c::13 and l><l5 (new operators) with all rules
enabled.

Each transformation rule generates a non-overlapping partition of the
space of join operators, and each rule generates each operator within such
a partition exactly once. Furthermore the complete space of join operators
is the conjunction of all partitions, see Figure 4.1 .

[wx] 1><1 [yz] Setl: [yz] txJ [wx]

Set2:

Set3:

Set4:

[w] txl [xyz]
[x] l><l [wyz]

[wxy] t><J [z] Ri
[wxz] l><l [y]

[wy] tx1 [xz]
[wz] t><1 [yz]
[xy] lXI [wz]
[xz] tx1 [wy]

Set5:

Set6:

Figure 4.1: Generation graph of rule set RS-Bee

[xyz] l><l [w]
[wyz] t><J [x]

[z] lXI [wxy]
[y] tx1 [wxz]

For an initial join operator, [L] tx1 [R], with L == wx and R == yz
rule R2 generates the join operators that combine each operator of class
L : { w 1><1 x, x t><J w} with R so the operators [w] 1><1 [xyz] and [x] tx1 [wyz]
are generated. Rule R3 and R4 work in a similar fashion. R 1 generates
the mirror images for the original operator and all operators generated by
rule R2 and Ra (since Land R contain all alternatives including the mirror
images, rule R4 automatically generates the mirror images).

Theore11, 4.1 If the transfor1nation rules of rule set RS-Bee are applied
to [L] t:><1 [R] then the newly generated operators will be duplicate free if the
child classes L and R are duplicate free.

40 CHAPTER 4. Duplicate-free join enumeration

Proof. Two operators can not be identical if they are both generated
by the same rule (operators of the san1e set). Namely, rule R 1 is used to
generate mirror images of operators; since the left and right opera11d will
never be identical, a duplicate can not be generated. Rule R2 combi11es
the unique operators of the left child with the right operand of the initial
operator resulting in only unique operators. The same holds for rule R3

and R4.
Also, no two derivation patl1s can result in the same operator (operators
of different sets). Suppose the application of rule R2 (Set 2) generat,ed
the same operator as rule Rs; R1 (Set 6), then [w] rxi [xyz] or [x] t><l [wyz]
has to be equal to [z] txJ [wxy] or [y] lX1 [wxz]. This can not be true since
w,x,y,z are disjunct non-empty sets of relations, so [w] f:. [z] i- [x] -f. [y]
and [xyz] f [wxy] #- [wyz] f:. [wxz]. A similar argument can be given
for any other combination of rules. D

Theorem 4.2 Given a MEMO-structure which encodes a single join tree,
the rules of role set RS-Bee generates all valid bushy joi11 orders for com
pletely connected qtJ..eries.

Proof. In a fully explored class that references n relations the number
of join operators is Bcc(n) = 2n - 2 (See proof of Theorem 3.1). From
the init.ial operator of a class, say [L] t><1 [R] the transformation rules gen
erate the following opera.tors. Rule R2 combines each operator of class
[L] with [R] resulting in Bcc(ILI) new operators, with ILi denoting the
ntimber of relations in class L. Similarly rule Rs generates Bcc(IRI) new
opera.tors. Rule Rt combines each operator of class L with each operator
of class R which results in Bcc(ILl)Bcc(IR}) new operators. Finally rule
R1 generates the mirror images for the initial operator and the operators
generated by rule R2 and R3. Adding all the newly created operators and
the initial op,erator we get: 2 + 2Bcc(ILJ) + 2Bcc(IRf) + Bcc(ILl)Bcc(IR().
Rewriting shows that 2 + 2Bcc(ILI) + 2Bcc(IRI) + Bcc(ILl)Bcc(IRI)
Bcc(ILI + JR(). From Theorem 4.1 we know tl1at no duplicates are gen
erated, so all valid bushy join trees are generated. □

Exampl,e 4.1 Figure ,/..2 shows a partial MEMO-structure for a completely
connected query on the five relations {a, b, c, d, e}, in which the children of
operator [ab] b<l [cc.le] have been fully explored. Applying the transformation
rules of role set RS-Bee results in the generation of the following operators.

Rule R2: Each operator of class ''ab'' is combined with the right subtree
[ct:le] to obtain [aJ t><1 [. ·.], [b] t><t [acde].

4.1. Bushy join trees

abcde
cde

ab
cd
ce
de

41

= [ab] 1><1 [ede]
= [c] [XJ [de] ; [de] txl [e] ; [d] txJ [ce] ;

[ce] tx1 [d]; [e] txJ [; [cd] tx1 (e]
= [a] txJ [b]; [b] t><J [a]
= [c] txJ [cl]; [d] l><l [e]
= [c] txl [e]; [e] t><J [c]
= [d] txJ [e]; [e] l><l [d]

Figure 4.2: Partial MEMO-structure with bushy trees for a completely
connected query on five relations.

Rule Ra: Each operator of class ''cde'' is combined with the left subtree [ab]
to obtain [abc] txJ [de], [abde] tx1 (c], [abd] t><l [ce], [abee] t><l [cl], [abe] [XJ

[ed] , [abed] t><J [e] .

Rule : The operators of the class of the left subtree are combined with
the operators of the class of the right subtree, resulting in the operators
[ae] IXl [bde], [ade] txl [be], [ad] txJ [bee], [ace] t><J [bd], [ae] tx1 [bed], [acd] lXl

[be] and the mirror images [bde] l><l [ac], [be] t><J [ade], [bee] IXl [ad],
[bd] tx1 [ace] , [bed] txl [ae] , [be] 1><1 [acd] .

Rule R1: The mirror images of the initial operator and the operators gen
erated by the rules R2 and R3 ..

During the exploration process 20 new classes were generated and, in
tuni, fully explored.. The completely explored class ''abcde '' contains 30 (=
Bcc(5)) operators.

4.1.2 Acyclic queries

To generate all alternative bushy join operators, without duplicates, for
acyclic query graphs the following transformation rules and application
schema is used:

Rule set RS-Bae

R1 : Com1nutativity x l><lo y --+ y txJ1 x
Disable all rules R1, R2, R3 for application on the new operator t><J1 •

42 CHAPTER 4. Duplicate-free join enumeration

R2 : Right associativity (x 1><tQ y) rx11 z ➔ x ~ (y t><l3 z)
Disable rules R2 , Rs for application on the new operator txJ2 •

St.art new class with new op,era.tor txJ,3 ., with all rules enabled.

Rs : Left associativity x t><1o (y e<t1 z} ➔ (x 1><J2 y) t><l3 z
Disable rules R2, R3 for application on the new op,erator t><Js.
Start new class with new op,erator M 2 , with all rules enabled.

For example, consider a query with predicates between relation.s (w, x),
(x, v), (y, z}. Using the initial operator [wx} .t><J. [yz} of a class and the fully
exp,lored classes of "wx" and 4'yz'', the three transformation rules generate
the following five sets of op,erat,ors (See Figure 4.3). Sets 1,2 and 3 are
generated using the initial op,erator. Sets 4 and 5 are generated using the
opera.tors of set 2 and 3. Join [wx] t><J [yz] must b,e a valid join tree (i.e. no
Cartesian products) of an acyclic query graph.

Set 2 is generated by the right associativity rule and contains only one
valid :resu.lt. Since the graph is connected and acyclic, tl1ere must be a
predicate between yz and either w or x, but not both; say it is b,etween yz
and x. A sub-query combining tables wtJZ would have to use a Cartesian
product, which is invalid. Therefore, R2 generates only one valid alterna
tive. The same argument applies for the left associativity rule used for S,et
3.

R1
[wx) M {yz] .- Set 1: [yz] D<J [wx]

R2 R1
Set 2: [wJ rx1 [xyz]

Set 3: [wxy] t><J [z]

Set 4: [xyz] t><l [w]
R1

Figure 4.3: Generation graph fo,r rule set RS-Bae

Theo,rem 4.3 No dup,licctes are generated. when role set RS-Bae
plied.

Proof ..
The proof is analogous to the proof of Theorem 4.1
o,

•
is ap-

4.1. Bushy join trees 43

Theorem 4.4 For acyclic query graphs rule set RS-Ba.c generates all valid
bushy join operators.

Proof. Since the query graph is acyclic, each join operator that can
serve as root for a valid join tree corresponds one-on-one to an edge of
the query graph. So for a query graph with n relations the number of
join operators in the root class is Bac(n) = 2(n - 1), when the mirror
images are included. Note that each explored class describes all valid
roots of the corresponding acyclic sub-graph.
Using the initial operator of a class, say [L] r><1 [R], the transformation
rules generate the following new operators. Rule R2 combines each op
erator of class L with R; of these new combinations only half are valid
since a class contains mirror images and only one can lead to a new valid
join operator. This means that rule R2 generates Bac(ILl)/2 new opera
tors, with ILi denoting the number of operators of class L. Similarly rule
Ra generates Bac(IRl)/2 new operators. Finally rule R 1 generates for
each new operator and the initial operator a mirror image which results
in 2(1 + Bac((Ll)/2 + Bac(IRl)/2) = 2 + Bac(ILI) + Bac(IRI) operators
for the fully explored class.
Now, 2 + Bac(ILI) + Bac(IRI) = Bac(ILI + IRI), which is the number of
join operators for the fully explored class with ILi + IRI relations. Since,
by Theorem 4.3, no duplicate operators were produced, all valid join
trees have been generated. □

Exa,nple 4.2 Consider a query G = { { a, b, c, d, e }, { a-b, b-c, c-d, c-e}}
and a MEMO-structure as shown in Figure 4.4, where the class ''abcde'' is
about to be explored. Further assume that the child classes of the initial
operator of the root class ''abcde'' have been explored exhaustively.

abcde
cde
ab
ce
cd

==[ab] t><1 [cde]
=[d] CXJ [ce] ; [e] CXJ [cdJ ; [ce] t><J [d] ; [cdJ t><J [e]
=[a] C><J [b] ; [b] C><l [a]
==[c] txl [e] ; [e] 1><1 [c]
=[c] t><J [d] ; [d] lXJ [c]

Figure 4.4: Partial MEMO-structure with bushy trees for an acyclic query.

Applying the transfo,.,,,nation rules of rule set RS-Bae to [ab] t><J [cde]
results in generating the following operators.

44 CHAPTER 4. Duplicate-free join en11meration

Rule R2: [a] t><J [bcde].
The operator [b] t><J [acde] is considered by the associativity rule, but
rejected, because there is no valid join tree for ''acde '' (we would be
force to introduce a Cartesian product because there is no predicate
between a and any of c, d, e).

Rule Rs: [abce] t><J [d], [abcdJ tx'l [e].
The operators [abd] t><J [ce] and [abe] txJ [cd] are considered but rejected
because there are no valid join trees for ''abd '' and ''abe ''.

Rule R 1 : [cde] t><J [ab], [bcde] tx'l [a], [d] rx:i [abce], [e] t><J [abed]

The fully explored class ''abcde'' contains all 8 (= Bac(5)) operators.
During the exploration process the new classes [bcde], [abce] and [abed] are
created and, in tum, fully explored.

4.2 Linear join trees

Some systems limit the join evaluation orders to linear trees. The following
two sections describe transformation rules which generate left-linear join
trees for completely connected and acyclic query graphs. As in Section 3.2.2
the left-linear join trees we consider have a ''bottom'' join operator which
distinguishes between its two inputs.

4.2.1 Completely connected queries

To generate all the left-linear join trees for completely connected queries
the following transformation rules are used.

Rule set RS-Lee

R1 : Swap (x t:><10 y) 1><11 z ➔ (x t><J2 z) t><J3 y.
Disable rule R 1 for application on operator t><J3.

x, y and z are classes which reference one or more relations.

R2 : Bottom Commutativity
(Table1 txJo Table2) ➔ (Table2 tx11 Table1).
Disable rule R2 for application on operator t><l1 .

Table1 and Table2 are base relation.

All valid join operators in the MEMO-structure have a single base re
lation as the right operand. For classes with more than two relations the
swap rule generates all valid join operators if the class of the left operand is

4.2. Linear join trees 45

fully explored. For a class which references two relations the bottom com
mutativity rule generates a mirror image. This is needed to ensure that
in larger classes all base relations appear once as the right input of a join
operator.

Alternatively the bottom commutativity rule could be omitted and an
exception for classes with two relations could be added to the swap rule,
which reduces the size of the MEMO-structure. However, priority is given
to clarity over efficiency in describing the generation process of join trees.
See Figure 4.5 for the generation graph which clearly shows the two distinct
derivation paths.

[wx] CX1 [y] Set 1: {[wy] txl [x], [xy] tx1 [w]}

Set 2: [Table2] l><l [Table 1]

Figure 4.5: Generation graph of rule set RS-Lee·

Theoren1 4.5 The transformation rules of rule set RS-Lee do not generate
duplicates if applied to an initial operator L t><J R, where R consists of a
single base relation and the class for L does not contain duplicates.

Proof. The application schema defines two distinct derivation paths.
Either L and R are both base relations and only rule R2 applies, or L
references more than one relation and R is a base relation so only rule
R 1 applies. For each case a proof similar to the proof for Theorem 4.1
can be given. □

Theorem 4.6 For completely connected queries the transfo17nation rules
of rule set RS-Lee generate all valid linear join operators.

Proof. For a class which references n relations, n > 2, there are
Lcc(n) = n join operators. Each of the n relations appears once as
the right operand of a join operator.
For the initial operator L txJ R class R is a base relation, IRI = 1.
Then rule R 1 generates Lcc(ILI) new operators. So the total number

46

alx-Jie
abed
bed
acd
a,bd
abc
cd
bd
be
ad
ac
ab

CHAPTER 4. Duplicate-free join e11umeration

= [a . · tx1 [e]
..... [bed] P<> [a]; [ac4} tXl [b]; [abdj tXl [c]; [abc] txJ [d]
~,- [cd} f)<l [b]; [bd] ~ [cJ; [be} ~ [d]
= [cd] l><l [a]; [.·. · tXl [c]; [ac] tXl [d]

[bd] ~ [a]; [ad] t><1 [b]; [ab] tXl [d]
.. ., .. [be] t>d [a]; [ac] tKJ [b]; [ab] r><1 [c]
= [c] tx1 [d]; [d] t><1 [cJ
,.,,,. [b] l><I [dJ; {d] M [b]
= [b] r><J [c]; [c] ~ [b]
~,~= [a] M [d]; [dj tXl [a]
= [a] ~ [c]; [c] t><1 [a]
= [a] tx:! [b]; [b] txl [a]

Figure 4.6: Partial MEMO-structure containing linear trees for a com
pletely connected query on five relations.

of operators in the class is 1 + Lcc(ILI). Rewriting results in Lcc(ILI +
IR}). Since no duplicates are generated all join operators must have been
generated. □

Exa1·nple 4 .. 8 Fi!Jtire -4.6 shows a partial MEMO-structure for a compl,etely
connected query on the flue relations a, b, c, d, e, in which the children of
the initial operator [a · ·. C<1 [e] have ~n fully e%1)lored. Applying the
trans/ 01mation rules of MJl,e set RB--Lcc to the initial o · · ·. . tor [a · · t<1 [e]
results in the generation af the following o ·

Rule R1: [·. ·.· .·] M [a], {acde] txJ [b], [abde] lXl [c] and [abce] t,<l [d].

Rule R2: This rnle u only active in classes that reference two base rela
tions. For instance when class ''ae'' is generated, role R 2 is applicable
and will generate a mir·,·-or image.

During the uplorntion process Jour new classes are created and, in tum,
fe.lly e:r:plored. After exploration the total number of operators in the root
clus is 5 (= Ccc{5)).

4.2. Linear join trees 47

4.2.2 Acyclic queries

The rule set used to generate all linear join trees for acyclic queries is simi
lar to rule set RS-Lee• The only difference is that the operators generated
by the swap rule are not necessarily valid so a test is added to the trans
formation rule.

Rule set RS-Lac

R1 : Swap (x l><lo y) t><11 z ➔ (x t><J2 z) txl3 y.
Disable rule R 1 for application on operator t:><33 .

x, y and z are classes which reference one or more relations.
Add tx:13 only to the class of t><l1 if it is a valid operator.

R2 : Bottom Comn1utativity
(Table1 t><Jo Table2) -+ (Table2 t><J1 Table 1).

Disable rule R2 for application on operator 1><11 .

Table1 and Table2 are base relation.

Theore1n 4. 7 The transformation rules of rule set RS-Lac do not generate
duplicates if applied on an initial operator L 1><1 R, where R consists of a
single base relation and the class for L does not contain duplicates.

Proof. The application schema defines two distinct derivation paths.
Either L and R are both base relations and only rule R2 applies, or L
references more than one relation and R is a base relation so only rule
R 1 applies. For each case a proof similar to the proof for Theorem 4.1
can be given. D

Theorem 4.8 The transformation rules of rule set RS-Lac generate all
valid linear join trees if applied on an initial operator L f><1 R, where R
references a single relation.

Proof. All valid root operators of a class have a single base relation as
right input. This base relation is a ''terminal'' in the associated query
graph -i.e. it shares exactly one edge with another relation, otherwise
the operator is not be valid.
Assume R is a single relation and class L has been explored completely.
Now rule R 1 will combine R with each operator of class L resulting a
number of new join operators. Only the operators that are valid will be
added to class that is being explored. D

48

abcde
bale
cde
bee
bed
be
ce
cd

CHAPTER 4. Duplir..at.e-free join enun1eration

~·-[] t><1 [a]
;:~;."[cde] .txt [b); [bee] P<J [d]; [

·. {ce] M [d]; [cd] E><J [e]
· · ·[ce) l><l [b]; [be] lXI [e]
· [cd] M [b]; [be] M [d]
· [b] tXJ [c]; {c] E><J [b]

F=•[e] t>d [e]; [e] .lXJ [cJ
, .. ,.,.[e] M {d]; [d] ~. [c]

~ [e]

Figure 4.7: Partial MEMO-structure with linear trees for acyclic queries

Example 4.4 Given a query G = { { a, b, c, d, e}, { a ··- b, b - c, c . d, c - e}}
and the MEMO•structure a.s shown in Figure ,I.. 7, where the class "abcde"
is about to be explored. Of the initial operator in class ''abcde" the child
ela.saes hat1e been explored eshaustively.

Appl¢ng the transformation roles of rule set RS-Lac results in generat
ing th.e following operators.

Rule R1: [a.ede] M [b], [abce] M [d], {a P<t [e].
The operator [acde] 1><1 [b] is discarded because there is no predicate
that corinects relation a to either c, d or e.

Rule R:2: Thu rule can not be applied for class ''abcde '' since is is only
active for classes with exactly two relations.

The fully t!3:plored class ''abcde" contains 9 operators. During the ex
ploration process the new classes [abl.-e] and {ab· .. · ·• are created arid, in turn,
fully explored.

4.3 Experiments

In this section we experimentally verify the efficiency improvement of the
duplicate-free join enumeration process. For con1pletely connec:ted queries,
from 3 to 8 relatio11s, we generated all bushy and lir1ear join trees lISing
the naive tran.sforn1ation rules (RS-Bl, RS-LI) and the duplicate-free rules
(RS-Bee, RS-Lee).

The mea.surement,s have been performed on a 90 1\1Hz Pentiun1 PC
runr1ing Windows NT. Its rnain me1nor1~ was 641\rlb, wl1icl1 was more than

4 .3. Experi1nents 49

enol1gh to co11tain the largest MEMO-structure ~···- all busl1y trees for a
query of 8 relations. The rneas1.1rer11ent.s have been perfor111e(i using the
Ca...~cades optimizer, which is a descendent of t,he Volcano opti1r1izer. How
e"~er no feature was used that wasn't alreatiy present ir·1 \'olcanc>. The 011e

n1odification on the domain-indepencierit, trar1sf<>rrr1atior1-rult~ kernel was t,o

add the ability to disable tra11sforn1atic)n rules. Tl1e remai11cler of the logic
is done completely witl1i11 the domain-specific set of transforxnation rules.

For each unique ''logical'' join operator we also generated a sir1gle ''phys
ical'' operator (Nested Loop). For each physical operator son1e cost esti1r1a
tion was done - i.e. cardinality estimate - which rr1akes tl1e ge11erat,ion of
a physical operator more exp,ensive than the generation of a logical opera
tor. However, the estimation cost is constant per physical operator and is
only performed for unique operators and not for duplicates. A voiding the
generation of physical operators would rnake the im prover11ent factor t~ven
bigger.

Each experiment has been performed several tin1es ru1d the graphs rep
resent the averages over these 1·uns. The variation amongst the runs was
very small, less then O .5 % ,

4.3.1 Bushy join trees

For the naive generation of bushy join trees in case of complet,ely connected
queries we used the commutativity and associativity rules (rule set RS-Bl)
as described in Section 3.1.3. In [GD87] it was already observed that the
performance of the join enumerator could be improved by applyi11g the
commutativity rule only once. This avoids all generation cycles of length
two - i.e. cycles like (a txl b) ➔ (b .txJ a) ➔ (a txl b). However the
improvement is very small, for 8 relations the improvement is no more than
1%. When generating all bushy trees using the naive set of rules, cycles of
length 2 were avoided.

Figure 4.8 shows the (scaled) time required to generate all bushy trees
for completely connected queries from 3 to 8 relations. The scaling of the
graphs is done using the time to generate all bushy trees for a query of
three relations, as a reference.

The experiments show that duplicate free generation of join trees is
always faster than generating and discarding duplicates. The performance
gain increases from a factor 1.22 for three relations to a factor 5.67 for eight
relations. Based on the complexity analysis of the generation algorithrns
the improvement factor will increase further as queries get larger.

CHAPTER 4. Duplicate-free join enumeration
' . "'

10

1

Figure 4 .. 8: Exhaustive generation of bushy trees for completely connected
queries.

4 ° 2 L. . . t, .. · . 1near Join · rees

The naive method for generating the complete space of linear join trees uses
for completely connected queries rule set RS-Ll, see Section 3.1.3. As in
the naive generation of bushy join trees the commutativity rule is applied
only once to avoid cycles of length 2.

Figure 4.9 shows the experimental results for generating all linear trees
using the naive method (rule set ·· LI), in which duplicates a.re generated,
and the efficient method that avoids the generation of d11plicates (rule set
RS ... Lcc)- The time for generating all linear join trees for a query of three
relations, usi11g the duplicate-free rules, was used as reference for scaling
the graphs. For linear trees, avoiding the generation of duplicates shows a
performance improvement .of a factor 1.33 to 3.67 for queries from three to
eight relations. Agai.n the improvement factor will keep increasing with the
number of relations.

4.4. Summary

.,,, ..

CD
E
i=:

Linear join trees
1000~--------------------------,

naive rules {RS-L 1 •
duplicate free rules (AS-Lee --t--·

3 4 5 6 7 8
Tables

51

Figure 4.9: Exhaustive generation of linear trees for completely connected
• queries.

4.4 S un1n1ary

In this chapter, we described in detail efficient sets of transformation rules,
for several classes of query topologies for both bushy and linear join trees.
Our approach to an efficient generation algorithm is to keep track of the
transformation rules that can still be applied without generating duplicates
at any point in the search space. The overhead of the method consists of a
few bits per operator.

The conditioned application of rules can be incorporated easily in the
existing framework of modern query optimizers, and preliminary tests cor
roborate that considerable performance improvements result from the large
reduction of generated operators. The performance improvement gained by
avoiding duplicate generation is significant in practice, and it should be used
whenever possible.

• • • 1

For a given query graph the number of valid join trees is, in general, not
easy to compute, because the topology of the query graph has to be taken
into account. For some query graphs the number· of valid join trees can be
computed easily, because they are ''structured''. Fortunately, the upper and
lower bounds on the number of join trees are given by such query graphs.
The lower bound is set by a string graph and the upper bound is set by a
completely connected graph (See Section 2.1.3).

This chapter answers the question of how to compute the exact size
of the space of join trees for acyclic queries. The number of join trees is
restricted by the relations that can be joined together, and counting them
does not reduce, in general, to the enumeration of familiar classes of trees -
e. g. binary trees, trees representing equivalent expressions on an associative
operator, etc. A variety of techniques is used to enumerate graphs and trees
[Knu68, HP73, RH77, VF90]. The scheme we use is similar to that used,
for example, in [GLW82], in the sense that an auxiliary structure serves to
guide the counting of elements of the space, instead of applying a closed
formula.

Previous work has identified restricted classes of queries for which valid
operator trees map one-on-one to permutations or unlabeled binary trees -
the first class known as star queries, and the second as string queries, see for
example [OL90, IK91]- thus solving the counting and random generation
problems for those classes. The work on acyclic queries described in this
chapter covers the star and chain queries as particular cases, and provides
polynomial time algorithms to count the number of operator trees for a

• given query.

1 Parts of this chapter have been published in the Proceedings of the Inte1 national
Conference on Database Theory:, Prague, 1995 [GLPK95]

53

54 CHAPTER 5. Counting join trees

This chapter is organized as follows. In Section 5.1 we introduce some
definitions. In Section 5.2 we describe a standard decomposition graph and
primitive operations for constructing join trees. Then in Section 5.3 a.nd 5.4
the recurrence equations for counting bushy and linear join trees are given.
A summary is given in Section 5.5.

5.1 efinitions

We assume that query graphs are connected and acyclic, i. e. we deal with
acyclic queries. With Ta we denote the set of join trees of a query graph G,
and with ·7~(k) C Ta we denote join trees in which a given leaf vis at level
k. For exa111ple, for the query graph of Figure 5.1, Figure 5.2 shows that

D

A B C

Figure 5.1: Query graph G.

5.1.1 Lists

We introduce some notation and properties of lists that are used later in
this chapter. Square brackets are used as lists delimiters, as well as the
list construction symbol ''l'' of Prolog -i.e. [xlL], denotes the list obtained
by inserting a new element x at the front of a list L. An array of values
xo, ... , Xn in which index i stores value Xi, for i = 0, ... n, is represented
as the list [xo, ... , XnJ-

We say that a list L 1 is the projection of a list L on some property P
of the elements, if L' contains all the elements of L satisfying P, while also
preserving the relative order of L -i. e. if x appears before y in L' then
x appears before y in L. We say L is a merge of two lists L 1 , L 2 without

5.1. Definitions 55

D C D

C D A

A B A B B C

I><) CXl

A C A !XI

D A C

B C B D B D

Figure 5.2: All join trees of query graph G.

common elements, if the length of L is the sum of lengths of £ 1 , L2 , and
both L1 , L 2 are projections of L.

Two list L 1 and L 2 of length 11 , l 2 , respectively, can be merged in many
ways. Each merging is specified by a merging sequence, a = [a:o, ... , 012].

Operationally the merging is as follows. To obtain a merged list L from L1
and L2 according the merge sequence a= [ao, ... , 0:12], start with the first
a0 elements of L 1 , then use the first element from L2; now use the next 0:1

elements of L1 , then one from L2 • The last az2 elements of L1 follow the
last element of L 2 in L. Now L is the result of merging L1, L2 using a.

There is a one-on-one mapping between the result of merging L1, L2 and
the problem of non-negative integer decomposition of l1 in l2 + 1 -that is,
a list of l2 + 1 non-negative integers [a:0 , .•• , az2] such that their sum is
equal to l1.

Since the decomposition of n ink can be solved in
n+k-1

k-1 ways

56 CHAPTER 5. Counting join trees

l1 + l2
l2

(NW78], there are M(l1, l2) = acceptable results of the merge

of lists £ 1 , £ 2 , each identified with a specific decomposition. Observe that
M(l1 ,l2) = M(l1 ,l2 -1) + M(l1 - 1,l2). A table of size N x N can be
constructed in O(N2) time so that M(l1 ,l2) is found by a simple lookup,
for l 1 , l2 < N.

Example 5.1

Given
2+3

3
sult L.

nr a L
1 (0, 0, 0, 2] [a, b, c, A, B]
2 (0,0,1,1] [a, b, A, c, B]
9 [O, 1, 0, 1] [a, A, b, c, B]
4 [1,0,0,1] [A, a, b, c, B]
5 [O, 0, 2, O] [a, b, A, B, c]
6 [O, 1, 1, O] [a, A, b, B, c]
7 [1, 0, 1, O] [A, a, b, B, c]
8 [O, 2, 0, O] [a, A, B, b, c]
9 [1, 1, O, O] [A, a, B, b, c]
10 [2, 0, 0, O] [A, B, a, b, c]

Figure 5.3: All mergings of lists [A, B] and [a, b, c]

two list [A, B] and [a, b, c], the table in Figure 5.3 shows all

= 10 merging sequences, o:, and the corresponding merging re-

5.1.2 Anchored-list representation

. Since our arguments and constructions often rely on paths from the root of
the join tree to a specific leaf, we introduce an anchored list representation
of trees. Elements of the anchored list are those subtrees observed while
traversing the path from the root to some anchor leaf.

Definition 5.1 Let T be a join tree and v be a leaf of T. The list anchored
on v of T, call it L, is constructed as follows:

• If T is a single leaf, namely v, then L = 0-
• Otherwise, let T = (Tz tx:l Tr) and assume, without loss of generality,

that v is a leaf of Tr. Let Lr be the list of Tr anchored on v. Then
L = [TzlLr].

5.2. Decomposition and coa.c;tructi<1n of trees 57

Then we say that T ... (L, v).

See Figure 5.4 for a11 anchored-list, represe11tatior1 of _join tree T 1 = T1 tx:i

(T2 M u1). Observe tl1at if T = (L, v) is ar1 element, of 7c;(h), t,hen tl1e length
of the anchored list L is k ..

5.2 Decoinposition and construction of trees

5.2.1 Primitive operations

We now describ·e procedures that relate a join tree of a query graph G
with some join trees of subgrapl1s of G. Applied in one direction, these
procedures construct a join tree based on smaller join trees; applied in the
other direction, they decomp,ose join trees.

Leaf insertion. Our first procedure is leaf insertion. The idea is that
two join trees are related by the insertion/removal of a leaf. The operation
is stated as the insertion/ removal of a one-leaf tree in the anc.hored list
:representation of join trees.

Definition 5.2 Let G = (V, E) be a query graph and T be a join tree of
G. Assume v E V is such that Glv-{v} is connected, and let (v, w) E E.

• LetT = ([T1, ... ,Tk-1,v,Tk+1, ... ,Tn],w).
• LetT' = ([T1, ... ,T1c-1,Tk+l,•·•,Tn],w).

We ca,ll (T', k) an insertion pair on v. We say that T is decomposed into
pair (T', k) on v 1 or, equivalently, that T is constructed from pair (T', k)
on v.

Example 5.2

T l

V

w w w w

T' (T', 1) (T', 2) (T', 3)

Figure 5.4: Construction by leaf insertion.

58 CHAPTER 5. Counting join trees

Figure 5.4 shows a join tree T' = ([T1, T2], w) and the join trees con
structed from insertion pairs (T', 1), (T', 2), and (T', 3) on v.

Tl
V

V

1
2

2
2

Tl

V

= [O, 0, 2]

V

= [O, 2, O]

1
2

2
2

1
2

2
2

Tl

Tl

Tf·--

V

= [0,1,1]

V

= [l, 1, O]

l
2 Tf

Tf

Tl

Tl

V

= [1, 0, 1]

V

= [2, 0, O]

Figure 5.5: All trees resulting from merging T1 and T2 .

1
2

2
2

1
2

2
2

Observation 1 Let G = (V, E) be a query graph with n nodes. Assume
v E Vis such that G' = Gfv-{v} is connected, and let (v,w) E E, and
1 < k < n. The leaf insertion operation defines a one-on-one mapping
between elements of ro(k) and insertion pairs on v.....,_ of the form (T'' k)'
where T' is an element of the disjoint union u;;f_1 G' (i).

Tree merging. Our second procedure is tree merging. The idea is that a
join tree can be obtained by merging two smaller join trees. The operation
is stated as the merge/projection of the anchored list representation of join
trees.

5.2. Decomposition and construction of trees 59

Definition 5.3 Let G == (V, E) be a query graph and T be a join tree of
G. Assume sets of nodes Vi,½ are such that GI v1 , Gl v2 are connected,
V1 U V2 = V, and V1 n V2 = { V}.

• Let T == ([T1, ... , Tn], v) ..
• Define property P1 (respectively P2) to be ''every leaf of the subtree is
in V1 (V'2). ''

• Let L1, L2 be the projection of L on properties P1 , P2 , respectively. Let
a be an integer composition such that L is the result of merging L 1 , L 2

• using a.
• LetT1 =(L1,w) andT2 =(L2,w).

We call (T1, T2, a) a merge triplet.. We say T is decomposed into triplet
(T1 , T2, a) on V1, V2, or, equivalently, that T is constructed from triplet
(T1, T2, a) on Vi, V2.

Observation 2 Let G == (V, E) be a query graph with n nodes. Assume
sets of nodes Vi, V2 are such that G1 = Glv1 , G2 = Glv2 are connected,
V1 U V2 = V, and V1 n V2 = {v}, and let 1 < k < n. The tree merging
operation defines a one-on-one mapping between elements of ra(k) and

i respectively.

Example 5.3 Figure 5.5 shows the six possible join trees that are the result
of merging T1 = ([Tl, Tt], v) and T2 = ([TJ, Tf], v).

5.2.2 Standard decompositions

Join trees can be decomposed into a sequence of leaf insertion and tree
merging operations, but these decompositions are not unique, in general.
A key structure for our algorithms is the standard decomposition graph,
which is obtained by selecting an arbitrary order of operations to construct
the join trees of some graph G. Join decompositions are then unique with
respect to the standard order defined.

A standard decomposition graph H of G can be viewed as a generic
program (or operator tree) to build join trees of a given query graph. Unary
nodes of H, labeled ''+x ,'' construct a join tree by inserting a leaf x on
its argument; binary nodes of H, labeled ''xx,'' construct a join tree by
merging two trees whose only common leaf is x.

Definition 5.4 A standard decomposition graph H of a query graph G =
(V, E) is obtained by modifying G as follows:

• Pick a node, say v E V, as root. Direct the edges in E from the root
v outwards to obtain G'. If there is a directed edge from u to w we say

60 CHAPTER 5. Counting join trees

CONVERT-TO-SDG(V)
Let x be the label of v.
Let { w1 , .•. , wn} be the children of v.
If n =0

Label v as '1x''.
If n = 1

Label v as ''+z'';

CONVERT-To-SDG(w1).

If n > 1
L b I

,, ,,
a e v as Xz ;

create new nodes l, r, with label x;
delete all edges (v, w1), ... , (v, Wn);
create new edges (v, l), (v, r), (l, w1), (r, w2), ... , (r, wn);
CONVERT-TO-SDG(l), CONVERT-TO-SDG(r).

Figure 5 .. 6: Algorithm to obtain a standard decomposition graph.

u is the parent of w. If there is a directed path (of length zero or more)
from u tow we say u is an ancestor of w. Child and descenda,nt are the
inverses of parent and ancestor, respectively.

• Transform G' using algorithm CONVERT-TO-SDG(r), where r is the root
chosen earlier. The result of this transformation is H. CONVERT-TO

SDG is shown in Figure 5.6.
The labels of descendants of a node v in H, denoted desc(v), is the set
of node labels {wi} of G that appear in the descendants of v in the form
''x . '' "+ '' or ''w · '' · W;: 1 Wi , t •

Exainple 5.4 Figure 5. 7 shows a query graph and a standard decomposi
tion graph obtained from it. In this case node e was selected as root. The
labels of descendants of the node v labeled ''+b '' in H is desc(v) = { a, b}.
The labels of descendants of ''+ e '' is { a, b, c, d, e}.

When an insertion level k is selected at each node labeled '' + x, '' and
a merge specification a: is selected at each node labeled ''xz,'' a standard
decomposition graph becomes a complete ''prograx11'' to construct a join
tree. The annotations in a graph H necessar·y to construct T is called the
standard decomposition of T in H.

Let r be the ro,ot of a standard decomposition graph Hof G, and let T
b,e a join tree of G. The standard decomposition of T in H is obtained by

5.2. Decomposition and construction of trees

•

+e
I

Xe
e

+c +c
I I

a b C d +b d
I
a

Query graph G
Standard decomposition graph H.

Figure 5.7: Query graph and standard decomposition graph.

applying the procedure DECOMPOSE(T,r), defined in Figure 5.8.

DECOMPOSE(T, v)
Let { w1, ... , wn} be the children of v in H.
If n = 1

Let +x be the label of v.
decompose T into an insertion pair, say (T1

, k), on x.
annotate v as insert-at k;
DECOMPOSE(T, w1).

If n > 1
Let V1 , V2 be the labels of desc(w1), desc(w2), respectively.
decompose T into a merge triplet, say (T1, T2, a), on V1, V2.
annotate v as merge-using o:;

DECOMPOSE(T1, w1), DECOMPOSE(T2, w2)-

61

Figure 5.8: Algorithm to obtain the standard decomposition of a tree in H.

Exan1ple 5.5 Figure 5.9 shows the process of obtaining a standard de
composition of a join tree T, using the standard decomposition graph of
Figure 5. 7. First, the insert-at annotation of the root ''+e '' is 2, because
the level of e is 2 after being inserted in a smaller tree. This is shown as
a label ''+e,2 '' in the first row of the figure. Then, the merge-using anno
tation of the node ''x c '' is [1, O], because the anchored list on c of the join
tree is [(a t><t b), dJ, which results from the merge of lists [(a tx1 b)], [d] using
[1, O]. This is shown as a label ''x c,[i,oJ '' in the second row of the figure.
The remanding annotations are obtained similarly.

62

a b e
C d

a b C d

C

a b C d

a b d

CHAPTER 5. Cour1ting join trees

+c
I

+b
I
a

+c
I

+b
I
a

+c,1

I
+1,
I
a

+c,1

I
+b,1

I
a

+e,2

I
X C

+e,2
I

X c,{1,0]

+e,'.2

I
X c,[1,0]

+c
I
d

+c
I
d

+c,l

I
d

. +c,l

I
d

Fi ·· · · 5.9: Obtaining the standard decomposition of a join tree.

5.3. Counting bushy join trees 63

5.3 Counting bushy join trees

Our counting scheme is based on the tree decompositions described in Sec
tion 5.2. We first derive recurrence equations relating the number of join
trees of a query graph G with the number of trees of subgraphs of G. Then
we apply these equations in the context of a standard decomposition graph.

5.3.1 Recurrence equations

Observation 3 The following equations serve as base cases for the com
putation of the number of join trees of a graph G = (V, E), namely I To I
Let n IV I and v E V.

• If the graph has only one node, then it has only one join tree T, and v
is at level O in T. That is,

ITal = = 1, for n = 1.

• ff the graph has more than one node, then it has no join tree in which
v is at level 0 .. That is,

= 0, for n > 1.

• There is no join tree in which v is at level greater than or equal to n.
That is,

rr-11G(i) 0 .r .
, /:! , 1or i > n.

• Since v appears at some unique level in any join tree of G, the total
number of join trees is

!Tai=
•

1,

,r11(i)
'G .

Now, the next two lemmas determine the number of join trees that
can be constructed using the primitive operations, leaf insertion and tree
merging, as described in Section 5.2.1.

Leron1a 5.1 Let G = (V, E) be a query graph with n nodes. Assume v E V
is such that Glv-{v} is connected, and let (v, w) EE, and 1 < k < n. Then

•

i>k-l -
Proof. The lemma follows from observation 1 in section 5.2.1. D

64 CHAPTER 5. Counting join trees

Le1111na 5.2 Let G = (V, E) be a query graph with n nodes. Assume sets
of edges V1 , V2 are such that Glv1 , Glv2 are connected, V1 U V2 = V, and
V1 nV2 = {v}, and let 1 < k < n. Then

k
• •
i

•
i

Proof. The lemma follows from observation 2 in section 5.2.1. D

5.3.2 Counting standard deco111positions

The standard decomposition graph defined in Section 5.2.2 is used as an
auxiliary structure in the computation of the number of join trees of a query
graph. Viewing the standard decomposition graph again as a program (or
operator tree), a bottom-up traversal is used to determine how many join
trees can be constructed by a given operation, based on the number of trees
that its children can construct. At each node we use either Lemma 5.1 for
leaf insertion or 5.2 for tree merging directly to determine the number of
trees that can be constructed, and the result is incorporated in the graph
as a count-array annotation of the node.

For a node u labeled 0v (with 0 E { +, x}), the count-array annotation
has the form [xo, ... , xn]- The interpretation is that node u can construct
Xi different trees in which leaf vis at level i. To determine the total number
of join trees for a query, just sum all entries of the count-array annotation
in the root of the standard decomposition graph.

Let r be the root of a standard decomposition graph H. To find the
count-array annotations of H apply the procedure COUNT-JT(r), defined in
Figure 5.10.

Exa1nple 5.6 Figure 5.11 shows the count-array annotations on the de
composition graph of Figure 5. 7. The total number of different join trees
for this query is 18.

Theore111 5.1 The number of join trees of a given acyclic query graph G
with n nodes can be computed in O(n3) time.

Proof. A standard decomposition graph H of G can be constructed
in linear time using algorithm CONVERT-TO-SDG in Figure 5.6. The
number of nodes of H is linear on n. The count-array annotations in H
are obtained using algorithm COUNT-JT in Figure 5.10 in O(n3) time,
since the computation required per node is quadratic at worst. Finally,
the number of join trees of G is the sum of the O(n) values in the count
array of the root of H. □

5.3. Counting bushy join trees

COUNT-JT(v)

Let { w1, ... , wn} be the children of v.
If n = 0

annotate v with count-array (1].
If n = 1

COUNT-JT(W1);
let X = [xo, ... , Xn 1] be the count-array of w 1 ;

annotate v with count-array Z = [O, z1 , ... , Zn 1 +1],

where Z =INSERT_B(X)

If n = 2
COUNT-JT(w1), COUNT-JT{w2);

let X = [xo, ... , Xn 1] be the count-array of w1 ;

let Y = [Yo, ... , Yn2] be the count-array of w2 ;

annotate v with count-array Z = [zo, ... , Zn1 +n2],

where Z =MERGE_B(X, Y).

Z=INSERT _B(X)

let Zk = E~1
k-l Xi, fork= 1, ... ,n1 + 1.

With Z = [O, Z1, .. •, Zn1 +1],

X = [xo, • • •, Xn1l•

Z=MERGE_B(X, Y)
k

•
1,

With Z = [zo, ... , Zn1 +n2],

X [xo,---,Xn1],
Y [Yo,· · · , Yn2l•

aTo simplify the description, we assume that Yi == 0 for i ~ {O, ... , n2}.

Figure 5.10: Algorithm to count the number of join trees.

65

66 CHAPTER 5. Counting join trees

+e (0, 5, 5, 5, 3]

Xe [O, 0, 2, 3]

+c (0, 1, 1] +c [O, 1]

+b [0, l] d [I]

a [1]

Figure 5.11: Standard decomposition graph with count-array annotations.

5.4 Counting linear join trees

The trees considered so-far are all bushy. Some systems reduce the search
space by only considering linear join trees in order to reduce the size of the
search space or due to limitation of the execution engine. In the next two
sections we show how the ''bushy'' counting algorithms can be modified in
order to count linear join trees.

5.4.1 Recurrence equations

The recurrence equations for linear join trees can be derived similarly as
for the bushy join trees. First, call CC T the space of linear join trees and
note that the base cases for the linear join trees are identical to the base
cases of the bushy join trees, observation 3 in Section 5.3.1. For the linear
trees, there are additional observations that limit the number of trees that
can be constructed by the leaf insertion and tree merging operations.

Observation 4 Let L be a linear join tree of G = (V, E) with w E V and
IVI = n. Then L can be represented as the anchored-list on w as follows:
L = ([L1, ... , Lk-1, Lk], w). Since Lis a linear tree L1 ... Lk-I are all leafs,
and if w is at level n - 1 - the bottom of the tree - then also Lk is a leaf,
otherwise Lk is a linear sub-tree of at least two leafs.

Observation 5 To construct a linear tree L by merging two linear trees
L1 and L2, the common leaf v of L1 and L2 has to be at the bottom of
either L1 or L2, otherwise the resulting tree Lis not linear.

5.4. Counting linear join trees 67

Now, the next two lemmas give the recurrence equations for determining
the number of linear join trees that can be constructed using the primitive
operations - leaf insertion and tree merging - of Section 5.2.1.

Len1ma 5.3 Let G = (V, E) be a query graph with n nodes. Assume v EV
is such that GI v -{ v} is connected, and let (v, w) E E. Then

£~!i) for 1 < k < n - 1
i>k -

And

£~!k-I) fork = n - 1

Proof. The lemma follows from observation 1 in Section 5.2.1 and
observation 4 in Section 5.4.1. □

Leroma 5.4 Let G = (V, E) be a query graph with n nodes. Assume sets of
edges V1, V2 are such that GI v1 , GI v2 are connected, V1 U V2 = V, ½ n V2 =
{v}, n1 = IV1 I, n2 = IV2I and nl < n2.

Then

And

c,v(k)
G

=0, for O<k<n1,

11'v(n1 -1} rv(k-n1 +l)
'-G1 . '-G2 .

c,v(n1 -1)
G1 - 1:,v(k-n1 +1)

G2

r,v(k n2+l)
G1 •

£v(n2-l)
G2

•

•

k-1
k-n1

k 1
k n1

k 1
k n2

+

' for n2 < k < n .

Proof. The lemma follows from observation 2 in Section 5.2.1 and
observation 5 in Section 5 .4.1. □

5.4.2 Sta11da rd deco111positions

Counting the number of linear join trees is similar to counting the num
ber of bushy join trees, except Lemma 5.3 and 5.4 are now used. These
lemmas compute the count-array annotations at the nodes of the standard
decomposition graph.

68 CHAPTER 5. Counting join trees

Z =INSERT _L(X)

Let Zk E~k Xi, for k = 1, ... , n1

and Zn1 +1 Xn1 ·

With X [xo, ... , Xn1],

Z [0, Z1 , ... , Zn 1 + 1] ·

Z =MERGE_L(X, Y)
Zi = 0, for i = 0, ... , n1 + n2;

n1 + i -1
Zn1+i = Zn1+i + Xn1Yi i-1 'for i = 1, ... ,n2;

n2 + i -1
Zn2+i = Zn2+i + XiYn2 i - 1 ' for i = 1, ... 'n1.

With X = [xo, ... , Xn1],

Y [Yo, · · · , Yn2],

Z [zo, · · ·, Zn1+n2]-

Figure 5.12: INSERT and MERGE functions for counting the number of
linear trees.

For the COUNT-JT algorithm of Figure 5.10 to count the number of
linear trees the functions INSERT _B and MERGE-13 have to be replaced by
their linear variants as defined in Figure 5.12. The number of linear trees
is computed by applying the modified COUNT-JT algorithm to the root of a
standard decomposition graph and sum the values of the root's count-array.

Example 5.7 Figure 5.19 shows the count-array annotations on the de
composition graph of Figure 5. 7 when only the linear trees are counted.
The total number of different linear join trees for this graph is 14.

Theoren1 5.2 The number of linear join trees of a given acyclic graph G
with n nodes can be computed in O(n2) time.

Proof. This proof is analogous to the proof of Theorem 5.1. However,
the count-array annotations at each node can now be computed in linear
time at worst. And the number of nodes in the standard decomposition
graph is linear on n, so the count-array annotations are computed in
O(n2) time. Finally the total number of trees is computed by summing
the O(n) values in the count-array of the root. □

5~5. Summary 69
-liofrill.U>

+e [O, 4, 4, 3, 3]

+c [O, 1, l] +c [O, 1]

+• [O, I] d [l]

a [l]

Figure 5.13: Standard decomposition graph witl1 count-array annotations
for linear trees.

5.5 Su1nm.ary

This chapter described techniques and proce,dures for COl1nting the nu1·nber
of bushy and linear join trees that can be used to evaluate an acyclic query.
The counting problem results from the fact. that there is no one-on-one
mapping between join trees and a simple combinatorial structure.

Our concept of a standard decomposition grapl1 provides a supporting
structure for counting, ,....~use it defines a canonical construction for each
tree. In addition, computing an array of values that characterizes the num
ber of canonical c.onstructions can be computed bottom up in an efficient
way.

Priority was given to clarity over efficiency when describing the algo
rit , and the reader must be aware that there are obvious optimizations.
None of thosce optimizations, however, seems to improve t,he time bounds
stated by the theorems.

• 1

This ch.apter shows how efficient ranking and unranking functions can be
made using the counting tech11iques of Chapter 5. Together with a source
of random bits, the unranking functio11 allows for efficient generation of join
trees at random with a unifor1n distribution.

Thi.a has a direct application to randon1ized query optimization, as selec
t.ion of a r&11dom item in these.arch space is a basic primitive for most ran
domized algorithms [S088, Swa89b, Swa.89a, IK90, IK91, Ka.n91, LVZ93].

This chapter is organized as follows. First in Section 6.1 the mapping
of trees to integers is described using the theory developed for counting
join trees. Then in Section 6.2 several a.lt,ernative methods for ge11erating
join trees at random are discussed and the straight forward method for
generating random join trees using unranking is described. In Section 6.3
an improved 111ethod for generating join trees at random is introduced.
Finally Section 6.4 concludes with a summary.

6.1.1 Mapping trees to integers

O·ur mapping betwee.n the N join trees of a query graph and the integers
1 through N is based on the recursive application of the following idea.
Assume we want to rank an element x E S, and S is partitioned into sets

. .

1 Parts of this chapter ha.ve been published in the P . .. ings of the Internotion.al
Conference on Database Theory, Prngue, 1995 [GLPK95]

71

72 CIIAPTER 6. (U11)ranking and randon1 generation
--------•-) ..,...... ... lil,J, J:ZJQ$ M , o,·,---. ,.--- • 4.l' < ,Rt, ·- ~ ; i I i 1 IIIJWiJllii $ j/f 7i ~\CO):Jtp(,, "ll Id I ,:a•~¼ntl'IU lll' 1rw,a, 111¢\/1, !R 1 m~n:wr ~ ,, lt;,nerm t , .i:Ulldlll' !'.'111':1~7 F l I ' ' tlfe.: ;I Qi 1 j I hi, l II JI ,, !!!l!IM '™'' Ill!", 1•~mur rn c_:irr 'ltjj,I -

+e [(), 5, 5, 5, 3]

x c [O, 0, 2, 3]

+c {0,1,1] +c [O, 1]

+, {O, l] d [l]

a [l]

Figure 6.1: Star1dard decomposition graph with count-array an11otations.

So, ... , Sm. If x E Sh:~ for some k ~ m, and we can find a local 1--ank of x in
S1c., then we c&J1 set the rank of x in S to be loca.l~rank(x, s.) + E~~d IS,j.
Conversely, to ur1rank so1ne number 11 under our sche1ne, first find th~ set S1e
f'l"lo·m w· ,h· 1~·.d'>h "'hlll1'1 .alll!ll·me· nt· m·· u(!!t be, retri~v·0 d w· , l1°re L cu. m1· n - 1, < ~, IS, I ..,,._·:· , __ _._ -~ -~- .,~- ~--·c_:; #- - _,, .. o·- ,ii ---~.- ·1\,;,.:;···~- ' . v· ·. fitJ J.a:iait ·_ :, ll - L-ri~1Jz·O - • it

Then find tl1e local rank y1
..... y- ··- z::~~ I Si i, and finally unrank--local(y', Sk).

RANK(T)
let v be th·e root of the standard decompositio•n graph.
DECOMPOSE(T, v).
LOCAL-RANK(v).

Let (r, k) ·l)e th-e local .. rank of v.
Let [.to, ... , Zn] be the courit-array of t1.

R 'C""'k-1 etur·n r + £,,.,,:o Zi.

In the case of join trees of a query of rt relations, the set Ta is parti-
t . -.J • .· ·. ~(O) ~(n-1) ~ • l _,: v . . l c 1onffl.J. into sets , G , .•• , , G 11 lOr any g1ve11 e& v. ror examp e, ,or
the annotated standard deco,mpositio-11 graph of Figure 6.1, the r1umbers l
through 5 are assigned to joi.n trees in which leaf e is at level 1; 11umbers
6 through 10 are assigned to those in whi<11 e is at level 2; 11umbers 11
through 15 are assig11ed to those in whic:b e is at level 3; and finally 16
through 18 are assigned to those in which e is at level 4.

Figures 6.2 and 6.3 shows algorithms to rax1k arid ur1rank tirees, based

UNRANK(r)

let v be the root of th,e standard decomposition graph.
let [zo, ... , Zn] be the count-array of 11.

'

let k be min3 r $ E~=o Zi.

l . 1 b ~k-1 et r . ,e r - Li=O Zi.

LOCAL-UNRANK(v, r', k).
The resulting ann,otations ir?,Sert-at and rnerge-11.sirig define
th·e tree whose rank is r.

Figure 6.3: U nranking algorith1n.

on a new annotation local-ra11k in the standard decon1position grapl1, as
well as pro,cedures LOCAL-RANK and LOCAL-UNRANK describec.l below.

The procedure LOCAL-RANK works 011 a standard dlx:on1position grapl1
H of a query graph G, with annotations insert-at arid rnerge-usirig that
define a tree T. In addition, H must also have an11otations cour,t-array.
The procedure creates annotations local-rank on the nodes of the graph.
The int,e.rpretation of a l · -rank annotation of the f orrn (r, k) in tl1e root

.· f H . h · T 1 l - 1 k · h .,-v(k) 0ti! o·· . is t • at 11as o,c<M ran. r 1n t e set , a .
For the same graph H of G, but without insert-at a11d merge-using

annot,ations, the procedure LOCAL-UNRANK finds (the insert-at and merge-

using annotations that define) a tree ,vitl1 rank r in T;;(k), given r, k as
input.

6.1.2 Local ra11king

For the local ranking of a tree, we again use the standard decompositio11
graph and the primitive tree construction operations of section 5.2.1. The

summands used to compute ,,;(k) in Lemmas 5.1 and 5.2 correspond to

well-defined subsets of ·7;(k). The partition defined by those subsets is
appropriate for our needs.

Observation 6 Let G = (lf, E) be a query graph with n nodes. Assume
v E V is such that G' --- Glv-{v} is connected, arid let (v, w) E E, and

.-rtt(k),n-2 h T ...-rV(k),i ·r T ...,-'V(k) h . . . f T . , G , w ere . · E , 0 · 1 · E , 0 , t e 1nsert1on pair on v o 1s

74 CHAPTER 6. (Un)ranking and random generation

(T1 ,k), and T' E 0 ,(i)_ The size of each partition is

(i)
GI •

Observation 7 Let G = (V, E) be a query graph with n nodes. Assume
sets of edges Vi, V2 are such that G1 = Glv1 , G2 = Glv2 are connected,

(k) ½ U ½ = V, and V1 n V2 = {v}, and let 1 < k < n. The set G can
b . . d . t t .,,.v(k},O ,..,-v(k},l ...,-v(k),k h T E rr-V(k),i "f e part1t1one 1n o se s , G , , 0 , ... , , 0 , w ere , 0 1

The size of each partition is

.,..,-v(i) ,..,-v(k-i)
1 G1 . I G2 .

k
•

i
•

Just as the annotations count-array provide the necessary set partition
information in the RANK and UNRANK procedures of Figures 6.2 and 6.3, we
use a new annotation summands to store information about the partitions
introduced in observations 6 a.nd 7.

The summands annotation is an array a-= [a-0 , ••• , un], whose elements
in turn are arrays of the form uk = [ako, ... , O"km]- Hu is the summands
annotation of a node whose count-array annotation is [x0 , ••• , xm], then it
holds that Xk = E:o <1'ki, for k = 0, ... , n.

Let r be the root of a standard decomposition graph H. To find the
summands annotations of H apply the procedure SUMMANDS(r), defined in
Figure 6.4.

Algorithms LOCAL-RANK and LOCAL-UNRANK are shown in Figures 6.5
and 6.6, respectively. They implement recursively the idea of ranking in
terms of set partitions, whose one-level version is the basis of RANK and
UNRANK. The necessary information is stored in the count-a, .. ray and sum
mands annotations.

The relatively straightforward procedures RANK-DECOMPOSITION and
UNRANK-DECOMPOSITION can be implemented efficiently using the lookup
table that stores the number of possible mergings of two lists, see Sec
tion 5.1.1. The procedures are shown in Figure 6.7 and 6.8.

The procedure RANK-TRIPLET(a, b, c; A, B, C) computes the rank r of
a triplet (a, b, c) from the set { (x, y, z) I 1 < x < A, 1 < y < B, 1 <
z < C}, and its inverse is UNRANK-TRIPLET(r; A, B, C). These are also
straightforward.

6.1. king and unranking

SUMMANDS(v)

Let { W1, ... , Wn} be the children of v.
If n = 0

there is no summands annotation in v.
If n = 1

SUMMANDS(W1);
let [xo, ... , Xn1] be the count-array of w 1 ;

annotate v with summands (ao, a1, ... , O"n 1 +1],
where O"k = [ako, O"k1, ••• , O"kni]1 fork= 1, ... , n1 + 1,

Xi if O < k and k - 1 < i;
and O"ki ==

0 otherwise.
If n = 2

SUMMANDS(w1), SUMMANDS(w2);

let [xo, ... , Xn1] be the count-array of w1;

let [Yo, ... , Yn2] be the count-array of w2;

annotate v with summands [ao, a1, - .. , O"n1 +n2],

where ak = [ako, ak1, ••• , O"kn 1], for k = 1, ... , n1 + n2,
k

and <Yki = • z
if O < k - i < n2;

0 otherwise.

Figure 6.4: Algorithm to compute set partition information.

75

76 CHAPTER 6. (Un)ranking and random generation

LOCAL-RANK(v)

Let { w1 , ... , Wn} be the children of v.
If n = 0

annotate v with local-rank (1, 0).
If n = 1

LOCAL-RANK{ W1);
let (r 1 , k1) be the local-rank of w1 ;

let k be the insert-at of v;
let [ao, ... , un] be the summands of v;

(k) h "'°'k1 -1 annotate v with local-rank r, , w ere r = r1 + Lti=O D"ki ·

If n = 2
LOCAL-RANK(w1), LOCAL-RANK{w2);
let (r1 , k1) be the local-rank of w1 ;

let (r2, k2) be the local-rank of w2;

let [xo, ... , Xn1] be the count-array of W1;

let [Yo, ... , Yn2] be the count-array of w2;
let k be k1 + k2 ;
let a be the merge-using of v;
let q be RANK-TRIPLET (r1, r2,RANK-DECOMPOSITION(o:),

k
). Xk1, Yk2, ·

i

annotate v with local-rank (r, k), where r = q + ~:=1 ~ 1 u ki.

Figure 6.5: Algorithm for local ranking.

6.1. king and unranking

LOCAL-UNRANK(v, r, k)
Let { w1 , ... , wn} be the children of v.
If n = 0

arguments are consistent if r = 1, k = 0;
there is no additional annotation on v.

If n = 1
let [zo, ... , Zn] be the count-array of v;
let [uo, ... , un] be the summands of v;
arguments are consistent if k < n, r < Zk;

let k1 be mini r < '1:i=o CTki;

I b '°'k1-l et r1 e r - L.Ji=O ;

annotate v with insert-at k;
LOCAL-UNRANK(w1, r1, k1)-

lf n = 2
let [zo, ... , Zn] be the count-array of v;
let [uo, ... , o-n] be the summands of v;
let [xo, ... , Xn1] be the count-array of w1;

let [Yo, ... , Yn2] be the count-array of w2;
arguments are consistent if k < n, r < Zk;

•

let k1 be mini r < Ei=o O"ki;

let k2 be k - k1;
let q be r - ""ki-l.

L.ii-O '

let (r1, r2, a) be UNRANK-TRIPLET{q; Xl1, Yl2,

let a be UNRANK-DECOMPOSITION{a, n1, n2);

annotate v with merge-using a;

k
•

i
).

LOCAL-UNRANK(w1, r1, k1), LOCAL-UNRANK{w2, r2, k2).

Figure 6.6: Algorithm for local unranking.

77

78 CHAPTER 6. (Un)ranking and random generation

RANK-DECOMPOSITION(a)

Let a be [ao, 01, ... , an]
Let l1 = I:a; Let l2 = lal - 1;
Let rank= 1;
For i = 0 ... n do

Hai ::/=O
rank= rank+ M(l1, l2) - M(l1 - ai, l2);
l1 = l1 - ai;

l2 = l2 -1;

Figure 6.7: Algorithm for RANK-DECOMPOSITION.

UNRANK-DECOMPOSITION(r, l1, l2)
Let ai · 0 for i = 0, ... , n;
Let i = O;
While (r > 1) and (11 > 0) do

C = M(l1, l2 - 1);
If r > c

r r c;
O:i a·+ 1·

1, '

l1 l1 1·
' Else

• •

i + 1; i

l2 l2 1
On l1;

Figure 6.8: Algorithm for UNRANK-DECOMPOSITION.

6.1. .·· .·.· . ·.• ... king and unra.nki.ng 79
~~! Ya: ill I -er•'oll\lii'"•'Pli i .,,,,. .. '"" ~ I I' rr ,, ;%bk(lrrm 7 - -

(1, 2) +e.,2 {O., 5, 5, 5, 3] u2 ·-.. [0, 0, 2, 3]

(1, l)+c,1 [0, 1, l] a1=[0, l] (1, 1) + C' 1 [O ' l] CJ l = (1]

.

(1, 1) +~~l [O, l] U1 ~[1] (1,0) d [I]

•

(1, O) a [l]

Figure 6.9: Local ranking of (the standard decomposition of) a join tree.

Exan1ple 6.1 Figure 6. 9 shows the results of the local ranking for the tree
T of ~aniple 5.5. The graph contains the annotations of the standard
deoompo.si,tion of T shotJJn in Figure 5. 9, the count-array annotations of
Figt1;re 5.11, and the summands annotations computed by SUMMANDS. Pro
cedure LOCAL-RANK is used to compute annotations local-rank. The anrao
tatiom of a node "011 " of the decomposition graph are shown i11 the fifJtire
in the f or·,1iat

where p is the insert-at annotation if 0 = +, or else the merge-using anno
tation if 0 ~ ... x; [xo, ... , Xn] is the count-array annotation; a = [uo, ... , ui]
ia the surnmands annotation, but only u1c is shown. Finally, (k, l) is tlie
local mnk computed at the node; that is, the subtree computed at the given
n.ode ho.s rank k in set rc;,<t).

At node Xe the merge-using annotation is [l, O]. For the purposes of
thill example we assume that RANK-DECOMPOSITION{[l,O)) = 1 and RANK

TRIPLET(l, 1, 1; 1, 1, 2) = 1.
Now, applying RANK on the graph resulting from LOCAL-RANK, we de

tennine that the rank of T is 6.

6.1.3 Efficiency of ra11,king a,·11d u11ra.nking

Once the count-army and summands annotations of a graph are available,
ranking and unranking of join trees is based on traversing arrays, for the

80 .
.

CIIAPTER 6~ (Un)rankir1g and random gene1~ation I l'I< 1:; 1~,-it,lil'1,1w1i.•------------......,_-------------J;-:.u_, ,.,,._1""""'"1

m(l8t pa.rt. ..~ctually, the "bottleneck,, of tl1e process is tl1e ranking ax1d
k. f . dL d ·t· . l u11ra.n 1ng o integer ecornpos1t1ons, since ea(:.1.1 econ·1pos1 10n n1ay 1ave

as mar1y as O(n) eletnt~nts~ The relat,ively simple alg(>rit.l1ms wt~ use nclw
ta.kt~ O(n) tin1e to rank and O(ri log ri) tirne to unrank.

Theorem 6.1 Let G be a query gmph on 11 relations. After a preprocess
ing .step of O(ri3) timt, join tree4, of G ca11 be ranked in 0(112) time and
unranked in ()(n2 log r·i) time.

Proof. By Tbet)rern 5.1, the standard decor11position graph Hof G and
its count-am,,y annotations can be computed in O(n3) time_ To co1r1put,e
the 11umr1iands az1nota.tion we use algorithm SUMMANDS, which takes also
O(n3) tin1e, because it req11ires O(n2) per 11ode. This t:ompletes the
preprocessing step of O(n3 } time.
To rai1k a tree, t.he moot expensive procedure is tl1at of LOCAL-RANK.

In the worst case, t}1e time taken per node is O(n) due to the rw:1kix1g
of integer decompositions. The t.otal ranking tin1e, then, is boundecl by
O(n2). To unrank a tree" the mo.qt expe11sive procedure is that, of LOCAL

tJNRANK. In the worst, case, the ti111e taken per node is ()(n log n) due
to the unranking of integer decon1posit,ions. The total unranking time,
then, is b,ounded by O(n2 logn) □

6.2 Generating random join trees

One of the basic operations used in probabilistic: transformation based querjr
optin1izers is the random generation of a join tree. So far the efficient ge11-
eration of such a join tree with a. 11niform distribution has beer1 a ha.rd open
problem [SG88]. One of the reasons is that tl1ere is no orte-on-one n1ap1)ing
between join trees and simple combinatc>rial structures --,-~-e. g. a pern111-
tation of graph eciges·,,~ ~ except for query graphs with a very '"'struct\1red''
topology such as star, string, or completely co11nected.

With ar1 efficient un.ranking algorithm available, tl1is problerr1 car1 be
solved in a straigl1t forward way as will be shown in Sectio11 6.2.2. First,
the random generation algorithms used so far are discussed.

6.2.1 · · · ·• ndom join trees

The following two procedures generate quas;..ran<ion1 join t,rees. They are
easy to implement!I but either do not guarantee uniform probability over
the space, or else take a ver)r long time.

6.2. Generating random join trees 81

Generate and test. A straight forward method is to generate binary
trees at random, like proposed in [RH77] and permute the relations to the
leaves. Since this method generates all valid and invalid join trees we need
to check if the resulting join tree is either valid or invalid. If it is an invalid
join tree it must be discarded, and an other join tree must be generated
until a valid join tree is detected.

Number of relations
5
10
15
20

All join trees
40320

6.4x1Q15

3.0x1029

5.2x1044

Valid join trees
576

l.3x1011

7.6xl021

1.5x1034

Figure 6.10: Fraction of valid join trees

Fraction
0.014

2.lxlo-5

2.5x10-s
2.8x10- 11

The efficiency of this method depends on both the fraction of valid join
trees over the total number of invalid trees and on how fast the type (valid
or invalid) can be detected. Using the definition of join trees in Section 2.1
an efficient recursive algorithm for labeling a tree valid or invalid can be
implemented.

The fraction of join trees over the total number of trees decreases fast
as the number of relations, n, participating in the query increases. Let us
consider a star query on n relations. The number of join trees for this graph
is { n - I)! and on n leaves one can construct 2;;~1

2
! ! labeled binary trees.

Table 6.10 the fraction of join trees is computed for several n. From the
formula and the table we can see that we have to generate many binary
trees before a join tree is generated. This method is therefore only feasible
for very small queries.

Random walk. This procedure is based on transformation rules to move
from one valid join tree to another. ff we start at some join tree in the space
and successfully apply transformation rules at random, we get a sa.1nple
from the space being explored.

dom walks in graphs have been widely studied -see, for example,
[GJ74, Ald89, Rag90). In particular, if all nodes in a graph have equal
degree, as is the case in the search space for acyclic queries [Kan91], then
we are equally likely to be at any node of the graph after k steps, for a
sufficiently large k, regardless of the starting point. In practice, however,

82
tl$1lllli ! , i , ill

the length of the walk seems too large to be used to ge11erat.e a single
uniform}y ... distributed join tree. Instead, all join trees visited in a random
walk are c;onsidered as a random sample of the space, resulting in a non
uniforrn distribution.

Random-edge selection. Instead of generating complete trees, as done
by the previous two methods, ra11dorn-edge selection builds join trees in
cren1entally. The algorithm us,es tl1e relation b·etween join trees and query
graphs to generate valid join trees for acyclic query graphs.

The algorithm split~ the query graph by selecting an edge at rando1n.
This edge 1naps one-011-one to a join operator and the inputs to the join
operator are formed by the two sub-query graphs that result from the split.
Since 1\'e deal with acyclic query graphs both resulting query graphs are also
acyclic and connected. By recursively applying the random edge selection
on each sub-graph until each graph consists of a single base relation a valid
random join tree is generated.

1rst choice 2nd choice . . t Join ree probability.
(b, c) - (a t><1 b) D<J (c ·1><3 d) 1/3
(a, b) (c,d) :a ax1 (d ·txl (b t><J c))) 1/6

(b,c) (a IX! (b rxt (c t><1 d))) 1/6
(c,d) (a, b) (d rx, (a tx1 (b t><J c)) · 1/6

(b, c) (d lX1 (c txJ (a ext b))) 1/6

Figure 6.11: Generation of quasi random join trees by edge selection.

However, this effici,ent random generation scheme does not produce equi
proba.ble join trees. Consider the query graph { (a, b), (b, c), (c, d) }. If we
select (b, c) as the first edge to split the graph, then the join tree is already
completely specified · assuming that left and right children are not distin
guished. If, instead, the first edge selected is either (a, b) or (c, d) we must
make a second choice. If choices are made uniformly from the available op
tions, the table in Figure 6.11 shows the probability of generation of each
join tree. In principle, it seems that the procedure can be modified to use
weighted ins ... ·. ·. of uniform selection at each step, so that the resulting join
trees ar·e all equi-probable. But computation of the appropriate weights is
difficult, and an efficient solution has not been found yet ..

6.3. Improved random generation of join trees 83

6.2.2 llandon1 generation based on unranking

Uniformly distributed random generation of join trees follows from our
results on counting and unranking. To generate random join trees for a
given query graph G, first count the number of join trees in the space as
described in Chapter 5; say there are N join trees. Now, simply generate
a random number r between 1 and N, and unrank the join tree of r as
described in Section 6.1, which can be done efficiently.

Theorexn 6.2 Let G be a query graph on n relations. Assuming a source
of random bits, join trees for G can be generated at random with unifonn
distribution in time O(n2 Iogn)_per tree, after a preprocessing step of O(n3)

time.

Proof. To generate random join trees follow the procedure outlined
above. Time bounds follow from Theorem 6.1. D

6.3 Improved randon1 generation of join trees

The algorithm for generating join trees at random can be improved by
moving the randomization deeper into the algorithm. Instead of generating
a single random number and unrank the appropriate tree, we can bias
the random generation of subtrees such that complete join trees are still
generated with equal probability.

Given a standard decomposition graph with the count-array and sum
mands annotations in place, the random generation starts at the root of
this graph, computing insert-at x or merge using a annotations for each
node. The annotations are computed as follows.

If the node in the standard decomposition graph is a leaf insertion +v
with the count array [x0 , x 1 , .•. , xn], a random number is generated in the
range 1, ... , ~;=O Xk· This random number corresponds to some element
of the count array, say Xi, and determines that leaf v will be at level i
of the random tree that is being generated. The annotation insert-at i is
generated. To be able to insert leaf vat level i, the child leaf w has to be at
level i - 1, i, i + 1, ... , n. These levels form a sub-count array of the count
array of leaf w and identify a set of trees from which one has to be chosen
at random.

In case the node of the standard decomposition graph is a tree merging
operator, xv, the level i at which leaf v should end up is determined in
the same way as if the operator was a leaf insertion operator. For the two
children in the standard decomposition graph, 0w1 and 0w2 , this means

84 CHAPTER 6. (Un)ranking and random generation

that if w1 is at level j then w2 has to be at level i - j otherwise v can not
be at level i. The levels for w1 and w2 are selected at random together
with a merge specification a. The annotation merge-using a is generated.
In Figure 6.12 and 6.13, the algorithms for generating join trees at random
• •
1s given.

RANDOM-TREE(V)
let v be the root of the standard decomposition graph.
let [zo, ... , Zn] be the count-array of v.
let Llow be 0.
let Lhigh be n.
RANDOM-SUBTREE(v, L1ow, Lhigh).

The resulting insert-at and merge-using annotations
define a random join tree.

Figure 6.12: Improved algorithm for generating join trees at random.

6.3.1 Efficiency of improved random generation

Once the preprocessing is done and the summands and count-arrays an
notations are available, the random generation process only consists of
traversing arrays. The most expensive operation while unranking a tree
was unranking integer decomposition. In the improved random join tree
generation algorithm this has been replaced by computing a random integer
decomposition which can be done in O(n) [NW78] and therefore speeds up
the random generation of join trees.

Theore111 6.3 Let G be a query graph on n relations. After a preprocessing
phase of O(n3) time, join trees can be generated at random with a uniform
distribution in O (n 2) time.

Proof. By Theorem 5.1, the standard decomposition graph Hof G and
its count-array annotations can be computed in O(n3) time. To compute
the summands annotation we use algorithm SUMMANDS, which takes also
O(n3

) time, because it requires O(n2) per node. This completes the
preprocessing step of O(n3) time.
To generate a random join tree the processing per node is O (n) in the
worst case. The total generation time, then, is bounded by O(n2). □

6.4. Summary

RANDOM-SUBTREE(V ,Llow ,Lhigh)

let { W1, •.. , wn} be the children of v;

If n = 0
there is no additional annotation on v;

If n = I
let [zo, ... , Zn] be the count-array of v

let k = mini r < 'Ei=o zi;
annotate v with insert-at k;
RANDOM-SUBTREE(w1, k -1, n - I);

If n = 2
let [zo, ... , Zn] be the count-array of v
let [ao, ... , an] be the summands of v;

let [xo, ... , Xn 1] be the count-array of w1 ;

let [Yo, ... , Yn2] be the count-array of w2;

•

let k1 = mini r1 < Ei-o zi;
select r2 at random such that 1 S r2 < :E~=O O'k1 i;

•

let k2 = minj r2 < Ei=o O'k1i;

let a be RANDOM-DECOMPOSITION(n1,n2);

annotate v with merge using a;
RANDOM-SUBTREE(Wt, k1, k1);

RANDOM-SUBTREE(w2, k2, k2);

Figure 6.13: dom subtree algorithm.

6.4 Surnniary

85

In this chapter we have described how the one-on-one mapping between
integers and valid join trees can be done using the RANK and UNRANK

procedures. These algorithm are built on the join tree counting theory and
techniques developed in Chapter 5.

The UNRANK procedure makes it possible to construct and efficient al
gorithm which generates join trees at random with a uniform distribution.
Also, an improved algorithm for generating join trees at random has been
described that reduces the time complexity from O(n2 logn) to O(n2).

The integers required by our algorithms described in this chapter, as well
as the ones in Chapter 5, can become quite large, as is the case with other

86 CHAPTER 6. (Un}ran.king and random generation

graph counting/generation problems [vL90],section 10.1.5. This eventually
limits the applicability of our current results. Nevertheless, the algorithms
can be used to a good extent on practical database queries. Using 64
bit integers, queries of about 20 relations can be processed, while 128 bit
integers would extend it to queries of about 35 relations.

To extend the applicability of the current result, reals could be used
instead of integers. This makes it possible to deal with bigger numbers
at the cost of precision which is acceptable when generating join trees at
random.

87

•
• • 1

Query optimizers must find an ''optimal'' join tree from a space of many
sen1antically equivalent alternatives. For join queries, the space of feasi
ble evaluation orders grows very quickly, and to find an optimal joi11 tree,
known deterministic search algorithms take exponential time on the num
ber of relations of the query [OL90]. This combinatorial explosion makes
heuristics and probabilistic algorithms the prime vehicle for query opti
mization. Simulated Annea.ling (SA) and Iterative Improvement {II) are
commonly used as reference points for research in this area [IW87, SG88,
Swa89b, Swa89a, IK90, IK91, LVZ93].

The probabilistic search algorithms SA, II, and tl1eir variations rely
heavily on t.ransformation rules for generating candidate join trees. These
transformation.a are b on properties of the underlying algebra., such as
commutativity and associativity of the relational join. The performance of
these algorithms depends, in addition to the cost distribution in the search
spac.e, on the set of transformations being used. In particular, a complete
set of transformations -i. e. one that is sufficient to transform an initial
j•oin tree into any other join tree in the space , does not guarantee good
behaviour, and it is sometimes necessary to add redundant transformations
to improve the performance of algorithms [IK90].

Several sets of transformation rules have been studied, but the extent
to which they allow rigorous analysis and prediction of the behaviour of
transformation-based algorithms is somewhat limited -rather, they serve
to provide qualitative insight (IK91]. A question that motivates the work
in this chapter is the following:

1 Parts of this chapter have been published in the P •. · ings of the International
Conference on Very Large Databases, So.ntiag,o, 1914 [GLPK94]

89

CHAPTER 7. Transformation free optimization

if we are allowed to explore only a limited, fixed number of join trees,
then what is more likely to produce good join trees, the application of
transformations or a random selection from the complete space?

The distribution of cost in the search-space of join queries is the focus of
[Swa91], which concludes that the proportion of good join trees decreases
quickly as the number of relations in the query increases. But even if good
join trees were only 1 % of the space, random selection of 70 join trees will
produce a good one with 50% probability -i. e. a coin toss. The results
in [IK91] show that the proportion of good join trees also depends on the
relative size of relations, and they give evidence that this proportion is
significant.

Then, since there is evidence of a considerable number of good join trees
in the space, and given the difficulties in analyzing how transformations
lead to them, we study the behaviour of a transformation-free optimization
algorithm. This algorithm generates a sequence of random join trees and
applies a calibrated cost-evaluator to estimate their cost. Then the join
tree with minimal cost becomes the preferred join tree of execution.

We start our experiments by exploring exhaustively the search space of
small queries, to check the ratio of good join trees -i. e. those within a
given factor times the optimal join tree. This CPU-intensive exercise shows
the cost distribution over the search space. The results coincide with those
of other, similar studies [Swa91].

In order to explore large search space we use the techniques and algo
rithms as described in Chapter 5 and 6 which make it possible to generate
valid join-orders at random with uniform distribution in an efficient way.

Results of our experiments favour. a transformation-free optimization
algorithm in a direct comparison with the transformation-based SA and II,
for the problem of join-order selection. The surprising observation is that
our algorithm converges after exploring fewer join trees than the others,
finding join trees of comparable cost.

This chapter is organized as follows. Section 7 .1 presents basic defini
tions. Section 7 .2 describes the experi111ental test bed and Section 7 .3 shows
the cost distribution over search spaces. The optimization algorithms are
described in Section 7.4 and the performance measurement are described
in Section 7.5. finally, in Section 7.6 presents the conclusions, a comparison
with related work, and some directions for future research.

7 .. 1. Definitions 91

7.1 efinitions

Tree transformations. Our implementation of the traditional trans
formation-based algorithms uses the tree transformations of [IK90, IK91]
for bushy trees, except for algorithm selection, because in our experiments
we used one join algorithm within a single tree. The algorithms used are
hash-join and nested loops. Only the transformations that lead to a valid
join tree can actually be applied on a given tree. The transformation rules
are:

Commutativity:
Associativity:
Left join exchange:
Right join exchange:

At><1B++BtxJA
(A tx1 B) C><l C ++ A l><l (B tx3 C)
(A tx1 B) t><J C ++ (A tx1 C) t><1 B
A tx1 (B lXJ C) ++ B t><J (A t><1 C)

Kang showed in [Kan91] that for these transformation rules each join
tree with n join operators has 2n - 1 neighbors.

SP-arch space. The set of all join trees from which the optimizer can
choose is called the search space. In transformation based optimization
algorithms the search space is mostly modelled by a graph G = (V, E)
with nodes V and edges E. The nodes represent join trees and the edges
represent transformations between join trees.

A search space can be seen as a ''landscape'' if we associate the cost of a
join tree to its ''hight''. Ioannidis and Kang (IK91] divided these landscapes
into three categories; cliff, bumpy or smooth and analysed the performance
of Simulated Annealing, Iterative Improvement and Two-Phase Optimiza
tion in these landscapes.

The size of the search space can be limited by imposing rules on the
type or shape of the join trees. Such a smaller search space can speed
up the optimization process, but could at the same time result in finding
less optimal join trees. A common way of reducing the search space is by
considering only the valid join trees. This search space reduction is based on
the assumption that join trees which incorporate a Cartesian Product are
not likely to result in a low cost join tree (SAC+79]. However, in specific
cases, an operator tree which allows Cartesian products can be of lower
cost.

The search space can be reduced even further by only considering linear
join trees, but studies presented by [IK91] suggest that the space of bushy
join trees has a higher percentage of good join trees. Therefore, in our
experiments, we consider the search space of valid bushy join trees.

92 CHAPTER 7. Transformation free optimization

7.2 Experimental setup

This section describes the conditions in which the experiments were per
formed. It describes the cost model, schema, catalogs, queries and our
measure for good join trees.

7.2.1 Cost model

For all our experiments we used the cost function provided by the Analyt
ical Performance Evaluator which provides accurate costs for query plan
execution on the DBS3 prototype [ACV91]. The initial set of experiments
were conducted using nested-loop joins. Since this is a conservative im
plementation of a join operator we changed it to hash-join. For the cost
function of the hash-join we assumed that the hash-join algorithm sorts its
inputs, such that it builds the hash tables on the smallest relation [Gra93].

The cost function used for the hash-join was adopted from [Kan91]:

(1RI + ISi) *hash+ IRI *move+ ISi *comp* F

With I RI and ISi denoting the sizes of the two inputs and hash, move,
comp and F are constants. It is assumed that fRI < ISi.

7 .2.2 Database schema, queries and catalogs

The experiments foreseen require care in the design and population of the
test databases. Traditional benchmark databases, such as Wisconsin and
AS3AP, are primarily geared towards performance assessment of the algo
rithms in relation to the architecture. Moreover, their database statistics do
not necessarily reflect real-world applications, which make them less suit
able for assessing the quality of an optimizer. On the other hand, designing
a new benchmark database complicates comparison with published results.

As in [LVZ93], we run our experiments against the Portfolio Club Exper
imental Model (PEM) fACV91]. The database schema, the queries and the
catalogs used in [LVZ93] constitute the starting point of our experiments.

Database schen1a The Portfolio Experimental Model was designed to
provide a realistic experimental application base for complex query def
inition, evaluation, and benchmarking in the EDS project (Val92). The
PEM schema contains several relations join-able through foreign keys, see
Figure 7.1 for the database schema.

7 .2. Experimental setup 93

mkt-sector (ms) (mkt-sect-id# , mkt-sector)
'

port-holding ,ph) (investr-id#, portfolio-id#, share-id#, port-
holding, low-limit,high-limit)

dividend {dv) (share-id#, dividend, divd-date, divd~type, yield,

'

p-e-ratio}
mkt-x-act (mx) (investr-id #, portfolio-id, share-id, IDX-t.}rpe,

'

mx-volume, • n1x-log-date, n1x-log-txn, mx-price,
mx-comm, mx-tax)

mkt-notify (mn) (share-id# , mktn-date, mktn-code, mktn-note)
'

inv-prefs (ip) (investr-id# , mk-sect-id, portfolio-id, cap-ratio)
investor (in) (. t .d# . ' . invers or-1 , 1nvestor-cap1 1nvestr-name,

investr-init, investr-add 1, investr-add2, investr-
add3, investr-city, investr-pmk, investr-ctry)

share (sh) (share-id#, share-title, mkt-sect-id#, share-
public, share-market, share-high, sl1a.re-low, share-
price, float-date)

mkt-movement (mv) (share-id#, mkt-log-date, mkt-log-txn, mkt-buy,
mkt-sell)

portfolio (pf) (portfolio-id#, investr-id, portf-date)
nominalvalue (nv) (share-id#, nom-note, • nom-co1n, notn-currency,

nom-country)
investorzoom (iz) (investr-id#, investr-na.1ne, investr-ctry)

Figure 7.1: Relations and their attributes

Queries Within the database schema described, several acyclic queries
containing from 4 to 12 relations are considered. Figure 7.2 shows the
query graphs for the queries used. Except for query 4, the topology of the
query graphs is neither a star nor a string .

•

Catalogs The experiments were done for three different catalogs, the sizes
are given in Figure 7.3. The catalogs have been chosen such that there is a
catalog with low, middle and high variance in their relation sizes.

7.2.S Cost metrics

The purpose of the first set of experiments (Section 7.3) is to investigate
the distribution of cost over the search space, and especially the ratio of
good join trees. Like Swa1ni and Gupta {Swa89b, Swa91) we classify queries
as g,ood, acceptable and bad according the following criteria, in which join
tree is abbreviated to JT.:

94

4:

6:

8:

10:

12:

CHAPTER 7. 'lransforma.tion free optimizat,ion

5:
pl1- sh- nv- dv ph- sh - nv- dv

I
ms

7:
in -ph-sh-nv-dv

l
ip -in - ph- sh - nv- dv

I
ms ms

mv
9: " mx-ip - in - ph- sh- nv- dv

I
mx-ip -in - ph- sh- nv- dv

I
ms ms

mv mn mv mn
11:

mx-ip - in - ph- sh- nv- dv
I

mx-ip -in - ph- sh- nv- dv
I I

ms pf IIlS

mv mn

mx-ip - in - ph- sh- nv- dv
I I I

iz pf ms

Figure 7 .2: Queries used in the experiments

good:
acceptable:
bad:

cost(p) < 2 * cost(cheapest JT)
2 * cost(cheapest JT) < cost(p) < 10 * (cheapest JT)
10 * oost(cheapest JT) < cost(JT)

The number of join trees explored is used as a measure for optimization
cost [LVZ93]. Although the number of join trees explored does not account
for all the resources required by an algorithm, it provides an approximation
of an imple,nentation-independent measure for optimization cost.

7.3. · t distribution in search spaces 95. .

Relation catl cat,2 cat3
1 ms 22 22 22
2 ph 5015 107407 25032
3dv 728 744 6686
4mx 5015 107407 505
5 n1n 1000 1000 1000
6 ip 22249 69632 22249
7 in 505 5000 505
8 sh 1100 1100 10000
9mv 1100 1100 10000

10 pf 1000 49965 5,001
11 nv 1100 1100 10000
12 iz 500 500 500

Figure 7 .3: sizes of tl1e relations

7 .2.4 Performance measure

The behaviour of an optimiz.ation strategy can be represented by a function
mapping the number n of join trees explored, to the estimated cost of the
best join tree found so-far. For a given algorithm A, we call t,his cost the
solution after n, and de11ote it by s:. Formally, using U;; as the set of the
first n join trees visited by A, the solution after 11 is:

s: = min{cost(p) Ip E ir:}.

Since the algorithms are probabilistic, U f is a random subset of size
n from the search space, and therefore s: is a random variable. Based
on this, we measure the success of these algorithms using the 1nean and
standard deviation of the solution. As n increases, the mean of s: should
approach the minimum cost in the search space; while a.t the same time the
standard deviation of s: approaches zero. The seco11d conditio11 ensures
that the algorithrr1, though prob,abilistic, behaves in a stable way.

7 .3 Cost distribution in search spaces

Before the p,erforma.nce of the three optimization algorithrns are compared
we first perform several experiments to verify the observations of Ioanni
dis, Kang and Swami [IK91, Swa89a], that a considerable fraction of the

OR .i:N
11•,o~,

join trees in the search space is good, which is an important factor for the
transformation free t)ptin1ization strategy.

First the search spaces for queries from 4 to 8 relations are complt:~tely
generated so the exact cost distribut,ion can be deterrnined. For queries
of 8 t-o 12 relations an exhaustive exploration of t,he search space is not
feasible, to approximate the cost distributions f<.)r these queries a sampli11g
technique is used.

7.3.1 Small search spaces

To generate the complete search space for a give11 query we used the follow
ing algorithm. We consider connect.ed queries with ac)pclic query graphs.
Removing an edge from sucl1 a. graph disco11nects it, leaving two connected
graphs. This makes it possible to enu1nerate the set of all valid joir1 trees
efficiently, by recursively splitting a q11ery graph G as follows.

If the graph has one node, then the only joi11 tree is t,he relation that
lab,els such node; otherwise remove an edge, say labeled p, to discor1nect
the graph, tihen find join trees JT1 , JT2 for the two connected graphs that
remain, and finally return (JT1 ~ JT2) as a join tree for G.

When at each recursion level all possible splittings of the graph are
considered, all valid join trees are generated. Using the backtracking facility
of Prolog, the algorithm takes only a few lines of code.

Experimental results Figures 7 .. 4, 7.5 and 7.6 show the cost distribution
of valid join trees for queries havi11g 4 to 8 relations for the three different
catalogs. One ca.n observe that as the number of relations increases t,he
number of good join trees decrea.~es. This coincides with observations made
by [IK91, Swa.89a]. The queries of 6 and 7 relations have fewer good join
trees than q1.1ery 8 under catalog 1, so the shape of the query also has an
imp,&et on the cost. The cost distribution is. further effected by the type
of catalog, catalog 3 (with man)r big relations) has relatively few good join
trees compared to catalog 1 and 2.

7 .3. Cost distribution in search spaces

80.00 -

70.00 -

60.00 -

50.00 -

40.00 -

30.00 -

20.00 -

10.00 -

0.00 -

I

I

4

I

I
s

Catalog 1

I

I

6

I

I

7

I

I

8

good

-

-

-

-

-
Number of relations

Figure 7 .4: Histogram of cost distribution for catalog 1.

Perceruage of space

90.00 -

80.00 -

70.00 -

60.00 -

50.00 -

40.00 -

30.00 -

20.00 -

10.00 -

0.00 -

I

I

4

I

I
5

Catalogl

I

I
6

I

I
7

I

I
8

good
- aci:ertaie-·-

-

-

-

-

-
Number of relations

Figure 7.5: Histogram of cost distribution for catalog 2.

97

98

90.00 -

80.00 -

70.00 -

60.00 -

S0.00 -

40.00 -

30.00 -

20.00 -

10.00 -

0.00 -
I

4

CHAPTER 7. Transformation free optimization

I

I
5

Catalog3

I

I

6

I

I

7

I

- oaa--------·

-

-

-

-

-

-

-
-

-
I

8 Number of relations

Figure 7.6: Histogram of cost distribution for catalog 3.

For all spaces explored exhaustively the number of good join trees is
sufficiently large that a sample of several tens of randomly selected join
trees will hit a good one with high probability. Given the fraction of good
join trees and the required probability of hitting a good join tree the sample
size can be computed as follows.

Lemma 7.1 Given the ratio of good join trees, Pgood, and the required
probability of hitting a good join tree, Preq, the number of join trees n that
must be explored is :

log(l - Preq)
n=-------

log(l Pgood)

Proof. Given that the ratio of good join trees is Pgood, the chance of
selecting a wrong join tree is 1-Pgood. The chance of selecting a sequence
of n wrong join trees is therefore (1 - Pgood)n. Since the probability of
selecting a good join tree has to be Preq, the probability of selecting a
wrong join tree must be 1 - Preq· Given the two expressions that tell
the probability of selecting a wrong join tree we can write the following
equation : 1 - Preq = (1 - Pgood)n. Rewriting this equation leads to the

. log 1-Pre • □ expression: n = -:-----r.::---:==--
log 1-Pgood

Fig11re 7. 7 shows the probability of hitting a good join tree for several
ratios of good join trees at increasing sample size. The ratios of good join
trees are those for the queries with 4 to 7 relations in combination with
catalog 1.

7o3. Cost distribution in search spaces 99
<Jt"241!%til~4•¥; 11 /-1 I •WMI¼<' il•l~/.1.1141 ,,,,_,:;.::;.,,, :11,1•vr••·· 1!1111,,,.,/$,::,; d,rlal:, Ir~ I Hf'rt=-rre: I, . T _ II '. ... ,10\lt;;!tctoz .. :1.o;,1111.,...1111 ...,..,,,,,w,y ,-~,,,.....,t,1•1:w.~• ... f;; I ¥, ~-•l••iil-;ILU;;-;-.~---'"'~ -----~ _,,-.,,"ll-• -· ,11~

IM·

@.~ -·

(t.7$,

G.lili --,
(),to

j I

• • ! •
'

11.Ge le.00

!

-·

-, "

l 1·--

' ~--
JG.00 40.oe Si.00

Figure 7. 7: Probability of finding a good join tree ir1 a random sarnple.

7.3.2 · ndom sampling

To determine the cost distributions of large search spaces a sampling tech
niques has to be used. To generate a random sample, several algorithn1s
a.re available; however, only the 011es that generate joi11 trees with a uni
form distribution are tisable if the results should be representative for the
complete space.

The t • ... random sampling algorithms we considered are random-walk,
random-edge and unifo, .. ,n-mndom. These algorithms are described in Sec
tion 6.2. Before we start sampling large searcl:1 spaces we first verify the
correctness of the sampling algorithms.

Quality of ran.dom sampling To evaluate experimentally the quality
of a random sampling algo.rithm, i.e. whether or not the san1ples are fair,
we compare the cost distributions of S,ec·t,ion 7.3.1 to the cost distribution
of the samples. Basically, the idea is that a fair sample from a spa~e should
preserve the cost distribution in that space. Note that we are not e\.ra.luating
if the saxnple cor1tains many good join trees, just how fair is the sampling
procedure.

We use the accumulated cost distribution as the basis of our analysis.
· .··· · distribution can be soon as a functi,on on cost c, which gives the per
centage of j,oin trees havir1g a cost less or equal to c. Forn1ally, in a space

100 CHAPTER 7. Transformation free optimization

S the accumulated cost distribution is
'

As samples become larger, they are expected to approximate the real
cost distribution function of the space. For spaces of up to eight relations,
we obtained the exact accumulated cost distribution in section 7 .3.1, which
allows us to compute the accuracy of the samples taken. Therefore, we
compute the correlation coefficient of the function Fs(c) with Fs, (c), where
S is the complete search space and S' is a random sample obtained by one
of our methods. Figure 7.8 shows the correlation coefficients found for a
query of eight relations, for increasing sample sizes.

Accuracy of estimation of known cost distribution

I I I I
-•....-,----;7;~----1.00 - ---------- - wu10ffll-ra__,noo111,

------~;r--. ~--~-
,,..,,,,..,.. #, , - raftck)ffl~e- - - - - - -

I •
0.99 -

, .
*. t '

, .. , # '
#, ... ,, '

0.91- It ·- # \.
tt " ' -- ' ... -- , .. --,•

• • 0.97 - , :

0.96 -

0.95 -

0.94 -

0.93 -

0.92 -

• • • _,, • f . . ,

\

'

• • . , . , • • • • ' . ' . • • • • • f ••
"

0.91 - '
\
\
\

-

-

-

-

-
0.90 - ', ,,. .. ,- .. ,... -

\ - -.... -· , ~- #--\ , ----....... , ' ,, ,-
0.119 - ,... , ... -

I I I I I
2.000 4,000 6,000 8,000 10.000

Fig11re 7.8: Correlation of approximations to cost distribution using random
sampling.

The random-edge sampling method does not approach the exact cost
distribution, because it favors certain join trees. Since we do not know the
quality of the join trees that are favored, the effect of using this method in
an optimization strategy is not clear.

The random-walk and uniformly-random method give a more accurate
sa1-nple and improved their approximation as the sample size increased, but

7.3. Cost distribution in search spaces 101

the uniform-random method converges faster to the known cost distribu
tion.

7.3.3 Large search spaces

The previous sections showed that the uniform-random method is the most
appropriate method for sa111pling large search spaces. Using this method
we sampled the search spaces for queries from 9 to 12 relations for catalogs
1, 2 and 3.

Experimental results For each search space a sainple of 10.000 join
trees was generated and the fraction of good, acceptable and bad join trees
was determined. The results are shown in Figure 7.9, 7.10 and 7.11.

100.00 -

90.00 -

80.00 -

70.00 -

60.00 -

50.00 -

40.00 -

30.00 -

20.00 -

10.00 -

0.00 -

I

I

9

I

I

10

Catalog 1

I

I
11

!

' I
12

good '

bia. _______ _

-

-

-

-

-

-

-

-

Figure 7.9: Histogram of approximate cost distribution for catalog 1.

These big spaces still show some good join trees but the percentage of
good join trees decreased. This is in line with the observations of [Swa89a]
for the spaces of linear join trees and with our results of Section 7.3.1. The
decreasing number of good join trees implies an increase in the number of
join trees required by a transformation-free optimization strategy. But also
other optimization strategies need to explore more join trees as the search

• space increases.

102 CHAPTER 7. Transformation free optimization

Percentage of space

100.00 -

90.00 -

80.00 -

70.00 -

60.00 -

S0.00 -

40.00 -

30.00 -

20.00 -

10.00 -

0.00-

9

I

I

10

Catalog2

11

I

!
12

good •

-······· --.. - acceptable
bi.a-· -- .

-

-

-

-

-

-

-

-

-

Figure 7.10: Histogra.m of approximate cost distribution for catalog 2.

I

100.00 -

90.00 -

80.00 -

70.00 -

60.00 -

S0.00 -

40.00 -

30.00 -

20.00 -

10.00 -

o.oo- m
l
9

I

I
10

Catalog3

I

I
11

I

I
12

good

f.ii'J-. -........ -'

-

-

-

-

-

-

-

-

-

-

Fig11re 7.11: Histogram of approximate cost distribution for catalog 3.

103

7 .4 Optimization algorithn1s

Since the fraction of the search space containing good join t,rees is suffi
cienttly large, a rar1dorr1 saxnpling algorith1:r1 is likely to b,e efficient,. 1b ver-
ify this we compare the perfor1nar1ce of the Thansformation Free algorith1n
with the performance of two transformation-based optimi7~t.ion algorithms,
Simulated-annealing and Iterotive-improveme11t.

7.4 .. 1 Iterative Improvement II

Iterative Improveinent(II) performs a large number of local optimizations.
A local local optimization starts at a random join tree, accepting only moves
which improve the solution. When a local minimum has been reached, the
process is rep,eated until a stopping condition is met. The output :returned
is the local minimum with the lowest cost [IK90, SG88].

Na.bar et. al. [NSS86] sl1ow that as time approaches infinity, the prob
ability that II visits the global minimum approaches 1. However, given a
finite amount of time, the perf orn1ance of II depends on the characteristics
of the cost functio•n over the search space and its connectivity. The stop
ping condition can both depend on the quality of the output and the effort
invested. Figure 7.12 shows the pseudo-code of the II algorithm.

minS = infinite;
WHILE not (stopping_condition) DO {

S = random state;
WHILE not (local_minima(S)) o,o {

S' = :random state in neighbors(S);
if cost($')< cost($) THENS= S';}

IF cost(S)<cost(minS) then minS = S;}
ret111~n(minS) ;}

Figure 7.12: Iterative Improvement

In our experiments we compared the quality of algorithms after explor
ing a fixed number of join trees. For the II algorithm, this fixed number of
j,oin trees is used as the stopping condition. To obtain a random starting
point for a local optimization, we used our orithm that generates join
trees at random in a uniform way, (S,ee Chapter 6).

Instead of searching all neighbors of a join tree to detect whether or
not it is a local minimum, we used the definition of an r-local minimum

104 CHAPTER 7. Transformation free optimization

[Kan91]. This method classifies a join tree as local minimum if none of
r randomly selected (with repetition) neighbors has a lower cost, with r
b,eing equal to the number of neighbors of the join tree. Note that sir1ce the
join trees are selected at random, and repetitions a.re therefore possible, an
r-local mini1num is not guaranteed to test all neighbors.

7 .4.2 Simulated Annealing . SA·.

Simulated Annealing (SA) starts at a random join tree and ra.ndon1ly gener
ates moves to neighboringj,oin trees. If the next join tree is an improvement,
the move is accepted; if the move leads to a join tree with higher cost, it
is accepted with a certain probability. As time progresses, this probabil
ity decreases until it is zero, which ends the optimization sequence. The
output is the join tree with the lowest cost. It can be shown that the al
gorithm converges to the global minimum as temperature approaches zero
[IK90, SG88].

Again, given finite a.mo1.1nt of time to reduce tl1e temperat11re, the per
forrnance of SA depends on the characteristics of the cost function over the
search space and its connectivity, which make it sensitive to the starting
point. Figure 7.13 shows the pseudo-code of the SA algorithm. For more
detailed descriptions of the SA and II algorithms see [IW87, IK90, S088,
NSS8.6].

PROCEDU'RE SA(){
S = SO;
T = TO;
minS = S;
WHILE not(frozen) DO {

WHILE not (equilibri,1m) DO {
S' = Tandom state in neighbors(S);
deltaC = cost(C') - cost(S);
IF (deltaC <=O) THENS= S';
IF (deltaC > 0) THEN s_= S' with probability e-(-deltaC/T);
IF cost(S)<cost·(minS) THEN minS = S;}

T = reduce(T);}
ret11rn (minS)}

Figure 7.13: Simulated Annealing

Like II, the Simulated Annealing algorithm starts at a random state.
In our imple.mentation we used our algorithm that generates join trees at

7.5. Performance measurements 105

random in a uniform way, see Chapter 6. For SA-specific parameters, we
used the parameters given by [Kan91].

parameter value
initial temperature To 2* cost of initial join tree
frozen T < I and cost unchanged for 4 stages
equilibrium 16 * J visited states in current stage
temperature reduction Tnew Told* 0.95

As extra stopping condition, (the frozen condition), we added the num
ber of join trees explored. The equilibrium condition means that the inner
loop finishes if n join trees have been explored, with n = I6*Number of
joins in the tree.

7.4.3 ansformation free algorithn1 TF

Transformation Free (TF) generates join trees at random, with replacement,
and keeps track of the one with the lowest cost. The algorithm terminates
after it has visited n join trees or when the cost of the best join tree found
so far is low enough. Like II and SA, if TF is given infinite time it will find
the global minimum. Unlike SA and II, if time is finite TFs performance
only depends on the cost distribution over the search space and not on its
connectivity. Figure 7.14 shows the pseudo-code of the TF algorithm.

PROCEDUM TF(){
minS = infinite;
WHILE not(stop_condition) DO {

S = random state;
IF cost(S)<cost(minS) THEN minS = S}

return(minS)}

Figure 7.14: Transformation Free

In the experiments the number of join trees explored is used as stopping
condition.

7 .5 Perforinance 1neasure111ents

In the experiments, we measured the values of s: for various queries and
catalogs, for algorithms II, SA, and TF. In each run, we let each algorithm
explore 5, 000 join trees. The number of repetitions for each experiment

106 CHAPTER 7. 'Iransformation free optimization

was 15, each leading to a different observation of the random variables s:.
At the end of the exp,eriments, costs were sea.led to the best found; fo.r
example, a cost of 2 corresponds to a.join tree tl1at is twice as expensive as
the best found by any met.ho·d.

Average over 20 runs. Query twewe1 on cat1.
10 -. ---------------------1 . • ! ;

' .
I I
1 ~

a I \
. I •

• • • • • •
• • • • •

s I :
I • . ., ...

• • • • • • •
i t ••• l • ., •

4 1 • •• • • •
' •

2

I
I

' • •
'• • • "~ I l , "' -. :

'1 •
• 1-

1......., •
~ : . • I • ""',_"'

--
t;f ----·

t ___ ,.,. :
- ·

19
rw""" -----"T' .. ~"': 'f''~"'t":. .,.': ;t'" .!'\"": ':° f'iA "t; ~ :' r,,n:'°="A"ll1ri7,":l""ft T:rft."'l:'ffl'1!'1" ... -m'!Z' r,rr.'$ 'fll'l"-#'"'..-"'S'lr~A"'l''IMP'~-'11' ~4'\"!f'#f~""m-V·~~W'•~ V -

0 __ ...___-L.. _ __,, ______________ ---1. ___ __

0 500 1000 1500 2000 2500 3000 4500 5000
Plans explored

Figure 7.15: Average of cost of solution found ..

To analyse the results, we computed the average and standard deviation
of the solutions 8~1, S;,A and s:_F, for 1 < n < 5,000. The result of this
analysis, for a query of 12 relations on catalog 1, is shown in figure 7.15
and 7.16. See appendix A for the remaining performance graphs of queries
from 9 to 12 relations in combination with catalogs 1,2 and 3.

The average of the solutions found after 5,000 join trees by ea.ch al
gorithm were avg(Sic1oo) = 4.049, avg(Sl1oc,) . 1.000, and avg(Sl,:00) =
1 .. 048. The standard deviations were std(Si:&o) = 4.177, std(Sl1oc,)
·o o···oo· · d td(sTF) = o os·o . • . ' an s ·. s,ooo . •. .

On the average, SA is not able to find a good join tree within 5000 join
trees; it finds these only after exploring a few thousand more join trees.
On the average, TF finds good join trees faster than II • e. g. TF finds
join trees with a sea.led cost of 2 after exploring about 500 join trees while
II needs about a 1000. When II and TF keep exploring more join trees II
will find slightly better join trees t.han TF. The maximum difference occurs

7 .6. Summary 107

Standard deviation over 20 runs. Query twelve1 on ca11.
10 --, --..---- ----------,

I :
I •
I •
I ,
I •
f :
I •
I •
I •
I •
I :
I '

8 I '
I ' I I

I :
I '
I •
I • I ,
I ;
I ' I •
I '
I •
I :
I •

6 I •
l •

2

' ' I • t ~-
l ' •
l '
I •
I
l
I
I

\
-~ I

I ~-I . ,
I
I

• • • • •
' • • • . ,
•• •• • • ·--• •• •

.... -·----· • • .. -,

I
I ------. t

I
I
I
I -,

I
I
I
I
I
I
I '-----~

• • • ••
' • • • -... - ...

' • • • • • • • • •

0 L.....----'----==-= =::.

sa-
tt ----·
ii

~- - - - - -- - ---- - ---- =-........,-,
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Plans explored

Fig11re 7.16: Standard deviation of cost of solution found.

after exploring 1800 join trees but is very small (1.01 v.s. 1.08).
Figure 7.16 shows that TF not only finds good join trees fast, on average,

but that the quality of the join trees found in different runs are also close
together. After about 750 join trees the standard deviation of TF is already
0.19 while that of II is only about 3.11. This leads to consider the time of
convergence, defined as the number of join trees required to reach a given
maximum standard deviation. Setting the threshold to 0.1, SA doesn't
reach the threshold within the first 5000 join trees. II converges after 1524
join trees, finding a solution of cost 1.01; and TF converges after 1056 join
trees, finding a solution of cost 1.10.

7. 6 Sun1II1ary

In abstract terms, a set of transformation rules imposes a topology on
the search space, but it is difficult to determine how a specific topology
affects the performance of search algorithms. For the problem of join-order
selection, the thorough studies of Ioannidis and Kang provide an empirical
basis to understand the search space [IK90, IK91, Kan91] .. Close analysis
reveals that our results are not only consistent with their studies, but in

108 CHAPTER 7. Transformation free optimization

fact complement them. They observe that '' ... starting at a random state,
many downhill moves are needed [by II] to reach a local minimum'' [Kan91,
p. 65]. In the spaces we considered, II had to explore well over a 100 join
trees to reach a local minimum, on average -yet we point out that the
expected length of a sequence of random join trees that finds one in the
best 1% is 100.

Ioannidis and Kang conclude that SA finds very good solutions but takes
a long time, compared with II. Their two-phase optimization algorithm uses
II to find several local minima that are then used as starting points for SA.
A similar multi-phased approach is taken in the toured simulated annealing
of Lanzelotte, Valduriez, and Zait [LVZ93], where starting points of SA are
obtained using a greedy deterministic algorithm. In this context, our result
is that transfor1nation-based optimizers find very good solutions, but take a
long time, compared with our transformation-free algorithm.

A pure transformation-free algorithm has some specific advantages that
should not be casually ignored. In our view, a key property of trans
formation-free optimization is that it has no ''knobs to tune.'' For other
algorithms, the setting of parameters for optimum performance is not ob
vious; results on the sensitivity of the algorithm to these settings are not
available; and both optimum setting and sensitivity may depend on the spe
cific cost model and database. Also, in parallel systems, transformation-free
optimization can easily take advantage of available processors, achieving
nearly optimal speedup -simply replicate the original algorithm in vari
ous processors, and add a final phase to determine the best solution found.
Transformation-based ''walks,'' on the other hand, are inherently sequen
tial.

The prime novelty presented in this chapter is the transformation-free
query optimization scheme, which provides a cheap and effective alterna
tive to transformation-based algorithms. The mechanism relies on both an
accurate estimation of query evaluation cost and an efficient mechanism to
generate query join trees uniformly distributed over the search space. This
leads to a strategy where a random sequence of valid join trees is generated
and analysed on their perceived cost. The best join tree within the run is
selected for execution.

Exhaustive exploration or sainpling of the search space of a class of
queries provides a precise measure of the run length required to hit a good
join tree. Our results then provide a natural baseline against which the
added value of applying transformations and heuristics can be quantified.

Related work. Transformation-based optimization is a general and pow
erful techniques with applications beyond join-order selection; see, for ex-

7.6. Summary 109

a.rnple, [FMV94]. More related to our present work, research on random
ized optimization of join queries has been performed by Swami and Gupta
[SG88, Swa89b, Swa89a, SI92b], Ioannidis and Kang [IK90, IK91, Kan91],
and Lanzelotte, Valduriez, and Zait [LVZ93]. In contrast to our work, their
approach is based mostly on tree transformations. In terms of search space,
Swami and Gupta, and Ioannidis and Kang study very large queries (up
to 100 relations); Swami and Gupta, and Lanzelotte, Valduriez, and Zalt
allow cyclic query graphs; but Swami and Gupta only explore linear join
trees. Finally, the cost model of Lanzelotte, Valduriez, and Zait is that of
a parallel database.

• •

In the previous chapter we exa.mined a transformation free (TF) optimiza
tion scheme that generates join trees uniformly at random and keeps the
best solution generated as prime candidate for execution. Our finding was
that transformations tend to improve solutions ''slowly'', while the TF
scheme converges faster and finds join trees comparable to those found
by transformation based optimizers ..

The experiments described in Chapter 7 were based on a calibrated cost
model for the DBS3 system [ACV91] -a main memory database whose cost
model accounts for CPU only- and considered join trees with hash-joins
only. In this chapter we report on experiments to assess the stability of
the phenomenon observed. We use the I/0-dominated cost model of the
University of Wisconsin1 , which was used in their randomized optimization
work [IK90, Kan91]. We examine the impact of changes on the statistical
profiles of the catalogs, and the use of different join algorithms.

To study the effect of the search space topology on the behaviour of
the transformation based optimization algorithms we considered a set of
arbitrary transformation rules -i.e. rules that do not use properties of the
join evaluation order. It showed that even the topology of the search space
imposed by arbitrary transformations can help the search process.

For the problem of selecting a join-order, the size of the space is expo
nential in the number of relations (see Chapter 5 for the exact size). When,
in addition, a join algorithm is selected the resulting search space is the
product of two exponentially large spaces. The prime observation is that
including the selection of join algorithms has a different effect on the prob-

1We are grateful to Yannis Ioannidis for kindly providing us with a copy of their
software, and allowing us to modify it for our experiments

111

112 CHAPTER 8. Hybrid a.lgorithxns

len1 than changing the cost model or the catalog profiles. In fact, the current
experiments show a qualitative difference in the relative performance of op
timization algorithms when different join algorithms are allowed. The ''high
proportion'' of good solutions in the space of evalua.tio11 orders is for the
most part preserved on different catalogs and cost models, but it decreases
in the product space of evaluation orders with method selection. At the
saxne time, the transforn1ations used in this product space seem particularly
appropriate and lead to good solutions.

We then study a tw·o-pha,e approach similar to those of [IK90, LVZ93],
using TF in the first phase and then transformations. The behaviour of
this algorithm combines the fast convergence of random picking with the
high quality of solutions of transformation-based search, and it is superior
to the other algorithn1s in all the spaces considered. Fron1 the behaviour of
this hybrid algorithm, it appears that the neighborhood structure around
a given join tree, from the point of view of the transformation-induced
topology, depends mostly on the cost of such a join tree.

This chapter is organized as follows. In Section 8.1 the testbed for the
experiments is describ,ed. Section 8.2 extend our previous work and com
pares TF directly with II and SA. Section 8.3 explores the use of arbitrary
rules and Section 8.4 contains experimental results on the hybrid algorithm.
A summary is given in Section 8.5.

8.1 Experimental setup

This section describes under which conditions the experiments were per
formed. It describes the cost model, the database schema, catalogs, queries,
the factors considered and a characterization of the performance graphs.

8.1.1 Cost model

The cost model called CM2 in [Kan91) is the basis for our experiments.
This cost model assumes a disk-based database system. Since the cost of
evaluating a join tree is dominated by the I/ 0, the number of pages that are
read or written during the evaluation of a join tree is used as cost metric.
A large buffer is assumed in the cost model.

The CM2 cost model is able to handle three join algorithms, namely
nested-loop, merge-scan and hash-join. The cost functions for the nested
loops algorithm are page-lev,el nested-lo,ops join and index-scan nested-loop.
The cost of the cheapest alternative is returned as cost for a nested-loop
join. The cost of the merge-scan join consist of sorting the inputs, if they

8.1. Experimental setup 113

are not already sorted, and by merging the two input streams. The hash
join also has two alternatives of which the one with the cheapest cost is
returned. These two alternatives are simple hash-join and hybrid hash
join. In the computation of the cost for the hash-join it is assumed that
the hash table is build on the smallest input.

8.1.2 Database schen1a, queries and catalogs

The database schema, queries and catalogs used in [IK91] constitute the
starting point of our experiments.

Database scheina. The database schema consists of 110 relations which
all have four attributes. A join predicate can be defined between any two
attributes as long as they do not belong to the sa.me relation.

Queries. The queries used in the experiments are generated at random
and are acyclic. They range from 4 to 20 joins and all join predicates are
equalitY-_joins. For each query size, a query is generated and stored for later
use. See Appendix B for the query graph topologies.

Catalogs. The queries were optimized for three catalogs with different
variance in attribute values and relation size. The catalogs used in (IK9 l]
form our starting point and in the sequel of this chapter these catalogs will
be referred to as the original catalogs.

The catalogs are generated at random from a profile that specifies an
allowed range for relation sizes and uniqueness of attributes. Figure 8.1
gives the profiles for the three types of catalogs used. For example, a
catalog of type 2 (or simply catalog 2) uses relation sizes ranging from 1,000
to 100,000 tuples and the uniqueness of the attribute values range from 90%
to 100%. This percentage of unique values is used for the computation of
the join selectivity in the cost estimation. The ranges are chosen such that
the variance in catalog 1 is small, and it is increased in catalogs 2 and 3.

Catalog Cardinality Percentage of unique values in attribute
catalog 1 1000 [0.9,1.0]
catalog 2 (1000,100000] [0.9,1.0]
catalog 3 [1000, 100000] [0.1,1.0]

Figure 8.1: Sizes and selectivities of the original catalogs

114 CHAPTER 8. Hybrid algorithms

8.1.3 Transformations rules

The transformations used to generate new join tr~.s are the same as t}1e ones
used in the experiments of Chapter 7, see 7 .1. For join method selection the
following transformation rule was added, A t'>Clmethod11 B ++ A D<lmethod, B.
Since these transformation rules are based on the algebraic properties of
the join ... operator, they are domain-dependent. In Section 8.3 we also define
a set of domain-independent transformation rules.

8.1.4 Factors Considered

The factors considered in our study are the following:

• Catalog variance (the difference in relation size and join selectivity).

• Relation sizes (original catalogs or enlarged catalogs).

• Join algorithms (nested-loop, hash-join, merge-scan).

Tl1e enlarged catalogs are constructed by multiplying the relation sizes
in the original catalog (Figure 8.1) by a hundred. These enlarged catalogs
were used to study the impact of the large I/0 buffer in the cost model and
possible non-linear behaviour of the cost functions.

In the experiments dis.cussed in Section 8.2.1 and 8.2.2 there is only one
join method available for a single join tree. So all join operators in a join
tree are either nested-loop, merge-scan or hash-join. Section 8.2.3 and 8.4
describe experiments in which the join trees considered combine different
join algorithms. Each experiment was repeated 20 times.

8.1.5 Performance Characteristics

The graphs shown present the average of solutions found by the various al
gorithms after exploring a given number of join trees. The y-axis is a linear
measure of scaled cost, with a scaled cost of 1 for the cl1eapest individual
join tree found by any algorithm, in the given search space.

These graph.s have some properties useful for the comparison of search
algorithms. A general description of the graph of TF and II is as follows, see
Figure 8.2 for skeleton performance graph. Up to a crossover point the TF
algorithm generates better join trees, and after that the II algorithm finds
better join trees. This crossover point marks the solution that is found by
both algorithms after exploring the same number of join trees. Note that
even if two join trees have the same (estimated) cost, their topology could
very well be quite different.

8.2. Results 115

· cost

Sample size

Figure 8.2: Skeleton performance graph

.. ~fter exploring many join trees, the cost of solutions found by proba
bilistic algorithms improves very slowly. We could say that at some p,oint
the optimizer becomes stable and call the quality of the join tree at that
point the final cost. The difference in final cost is used to compare algo
rithms-

Another imp,ortant characteristic of the graph is the cost range. If the
difference between the best solution and the worst solution in t.he search
space is small, the optimization has a relatively smaller impact on the
execution time of the query. If, on the other hand, the cost range is large,
the optimizer can produce a dramatic improvement on q11ery performance.

These three aspects -crossover point, final cost (difference) and cost
mnge , ... of a performance graph are helpful in analyzing the performance
of the search strategies.

8.2 esults

This section discusses the experiments done to verify the performance of the
TF algorithm. In · iculac, we present t.he behaviour of TF, II and SA for
various catalogs and join methods. All graphs shown are a representative
sample of a much larger set explored~

116 CHAPTER 8 .. Hybrid algorithms

8.2.1 Original Catalogs

The original catalogs are used for our first experiment. As mentioned in
Section 8.1 the optimizers only consider join trees in which all join algo
rithms are either nested-loop, merge-scan or hash-join.

We observed that as the catalogs changed, from low variance to high
variance, the cost range of the graphs increased and the crossover point
shifts to the right with the variance. The final cost of the II and TF
algorithm are similar for catalogs 2 and 3. Only for the low-variance catalog
1 the II algorithm is consistently better.

For the high-variance catalog the II algorithm needs to explore many
more join trees to find a join tree that outperforms the join trees found
by the 'Iransformation Free algorithm. Figure 8 .3 is prototypical for the
results obtained. It shows the results for a query of 20 joins when only
hash-joins are considered (the results for nested-loops and merge-join are
similar).

The behaviour of the TF algorithm for the three different catalogs is
explained by the increasing ratio of good join trees, but the behaviour of
the transformation based algorithms is harder to grasp.· For catalog 1 the
imposed topology helps the II algorithm finding good join trees, although
the ratio of good join trees is small. This topology has changed for the
worse in catalog 2 and also for catalog 3 the II algorithm converges slowly.

8.2.2 Enlarged Catalogs

To examine the impact of the large buffer on the performance of the search
algorithms, we enlarged the relation sizes of the original catalogs. For
these big relations, the join trees with only hash-joins were consistently
cheaper than join trees with only merge scan or nested loop. This search
space of join trees, with only hash joins, also showed the biggest change in
performance as the catalogs change. Since all relations of catalog 1 have the
same size, the performance graphs of the original and enlarged catalogs are
very similar. For catalog 2 the TF algorithm finds join trees much faster
than II and also the distance between the graphs has grown in comparison
to the original catalog 2. For catalog 3 the TF algorithm improves faster
before the crossover point, but this crossover point has a high cost.

With the enlarged catalogs 2 and 3 both the cost range and the difference
between final costs has grown. In Figure 8.4 the performance graphs of the
search algorithms are given for the tree catalogs when only hash-joins are
used.. To make the performance graphs of the search algorithms visible, the
scale of the y-axis have been enlarged.

8.2. Results

s
4.5

4

3.5

3

2.S

2

1.5

I

0.5

....... ,. -..

Caralog 1. 20 hash joins

SA-
~

II ·· · · · ..

_____ ,.._ .. __ ,. .. _.., ____ _

................ ., .. -....... --~ .. ,. ,. ,.._ ""'' ".

0 ------"----L.---.L..---'---.,1._,--...i----'----'
0 soo 1000 1500 2000 2SOO 3000 3500 4000

Sample size

Catalog 2, 20 hash joins
• • • • I • •

SA
- Tf -.. --·--

II
.. •

•

• -
•

• -
... • ... '

5

4.5

4

3.5

3

2.5

2

1.5

I

0.5

0

' "" 'I,, "-
• --------... ,:.v..:,;-;.1•'".,t~•••a.•11•••• - -- - -

.. •

• • • • • .

0 500 1000 1500 2000 2500 3000 3$00 4000
Sample size

Catalog 3. 20 hash joins s r-,--r--.----.---- ----,-----,r-----,----,------,
• ' • • •

4.5 l
• • • • •

4 :
• • • • •

3.5 :
•
' • • •
\
•

' • • • • • • • • • •

3

2.5

2 ' • • •

SA-
TF
II ·······

1.5

1

0.5

• •,.

,~.~-;._ -----.. ----... ••f• --.-....... --.... _____ ,.,. "" __ ,. _______ ,.._.., _______ , ___ ...,_.,._.,.,.. _______ _ _ __ _
.......... -· -...... -~-- ... -· ~ ~ ------~ -...... ~· ~

0 .__ _ __.i __ __._ ___ ___ __ ..._ _ __,1 __ --L.--

0 500 1000 1500 2000 2500 3000 3500 4000
Sample size

Figure 8.3: Space of hash join trees for the original catalogs

117

118 CHAPTER 8. Hybrid algorithms

Enlarged catalog 1, 20 hash joins s----r----r-----r---,---,-----,---~--

4.5

4

3.5

3

2.S

2

SA-
TF ---... -·
II ·· ·

1.S ·~·-. ::::.:::._::::_~--==--=------------------i ..
•• ••

1
..... - -- "*, • _ - __ ,.., "" ·- -

0.5

0 --..J....--Ji...--....L.----___ _ ___,....._ _ __,

0 1000 ISOO 2000 2500 3000 3500 4000
Sample size

Enlarged catalog 2. 20 hash joins
so ,T------.---...-----r----r---,-----,---.,..,---

I •

4S

40

35

30

20

15

10

5

I
I
I •

' ' \ •
' I I ' t
'

• • • • • • • • • • • • • • • • •
' • • • • • • • • • • •
\ ..

•• • . , •• •
\ • .. :

1 :

\, t
• .. , \

I ' \ :
L. ··-:

• •• ..,
\ .
~ ~---, 1 : .. ._ , :

SA
TF -----·
II • ••••

l "" -:
0 "---_.._1._. ______ -_--.... ·-_-·-_--_-_-·-------·-:::.· = ===-·--==== =:.:.:· =·:=:i:::· =·::=:::J·

0 500 1000 1500 2000 2SOO 3000 3500 4000
Sample siu

Enlarged catalog 3, 20 hash joins
500 --~---,----r----r----,---~--r----

• • • • •
450 :

400

350

300

• • • • • • • • • • • • • • • • • ;
• • • • • • • • • •

250 : •
l : •

200 \
• •

150 l ';
\ ··,

SA-
1'F --~-
Il ·······

100 \ ·
~\
~ :;i,.. __ _ ... , ____ _ ,....,,_.,.._ ····---------....... _________ .._ __ ..,_.., __ _ ______ .,.__

••• ... 0 L----J...--..L.-.....:::..:···.:.:;· ··:.:r..:.:.:···.:.:.:·•-:.:.;••.;:.·•·a::1• =··=-··=··r.o.:··-=·· _-..i. ___ __

0 500 1000 1500 2000 2500 3000 3500 4000
Samplc11.iu

Figure 8.4: Space of hash join trees for the enlarged catalogs

8.2. Results 119

8.2.3 Multiple Join Algorithms

We now consider the use of multiple join algorithms in join trees. To
deal with this case in transformation based strategies, a rule is added that
changes the algorithm at a specific join operator. Such addition leads to a
dramatic growth of the search space. If m join algorithms are considered
and the join trees joins n relations, each join tree in the original search space
is mapped to mn-l join trees with join selection. This big search space
seems to contain cheaper join trees e. g. a hash-join whose inputs are
sorted can be replaced by a merge-scan- but it also introduces many join
trees with higher cost. Important for the performance of all three search
algorithms is how the cost distribution changes, and for transformation
based optimizers also the modified connectivity of the search space.

Uniformly random generation of elements from the product space is
easy. Simply generate a join tree at random and select independently and
uniformly a join algorithm for each join in the join tree.

5

4.5

4

3.5

: I • •
: i : \
: \ • •
: i
: i
\ \ • •

. \
•

Catalog 3, 20 joins

TF-all -
TF-hash -----·

II-hash -······
II-all ······· ···

~ ~
3 I :. \--....._...__,........._

\ \ \ '---....,, __ '--___________ _J
2 5 -. \ \ . \ ·~ -...

~-1 \ ----~ 2

1.5

1

0.5

..... ·\'-,. ... ___ ,
._ .. __ ·-~ .. ¾ --..__

~ -~--, ..:!.• ___ ... ____________________ ..,. __________ ,. __ ""_ - - ----

..... ~ ... '5 -----------~--.. ,-....... -.. -"' ---..... ,. ... '"' -... -,. -. -------,. -----.... -.. -. -... -.... --.. --.. ---... ---"' -.. -.. -........... "' u--~~·--·---·-........ _ .•.
---.. ~ ... •~-u -~••--•--•-••••••-•• •· -~ ,_ - - ..,.,n .. ,.,_.., •. ~.,,~,.,.,.~,~-• .. ••-• .. ••••••-•-•--•n•••••••- I.,•-••••-••

0 '------'---__ _,_ __ ,a.__ __

0 500 I 000 1500 2000 2500 3000 3500 4000
Sample size

Figure 8.5: Multiple join methods

Figure 8.5 shows the performance graphs for II and TF using all join
algorithms. As a reference, also the result of II and TF on the restricted
space of join trees that use hash-joins only are shown. The effect of the
product space is clear from this graph. Initially, both TF and II progress

120 CHAPTER 8. H;,brid algorithms

about as quickly in the space restricted to hash-joins as in the more general
space, butt.hen TF · ·.·.· mes stable i11 more costly solutioris.

We can conclude that tl1e reduced percentage of good join trees in the
bigger space has a negative effect on the performance of tl1e TF algorithm.
However, the topology imp ·.· .. · . by the ''change-join-a.lgori thm" tranaforrna
tion rule seems particularly appropriate for a transformation-based search.

In Section 8.4, we show experiments in which random ge11eration and
the use of transformation rules are mixed. Ideally these methods should
incorporate the good behaviou.r of both the TF and II algorithm, fast con-
vergence and g final join trees.

8.3 Arbitrary set of · · ansformation rules

The set of transformation rules used by II and SA are based on algebraic
properties of the join evaluation order, like commutativity and associativity,
see Section 7 .1. The search spaces that II and SA search can be viewed as
graphs in which the nodes represent the join trees and the transformations
are represented by the edges. These search graphs are regular graphs -
each 11ode has the same number of neighbors. A partial characterization of
these regular graphs is given h," the number of neighbors of each node and
the inter node distance ··· the maximu1l'.1 length of a path that connects any
two nodes.

In [Kan91] it is shown that for the set of transformation rules we use for
II and SA, the number of neighbors is 2J - 1 - commutativity pro,.i·ides
J transformations and ass.ociativity J - 1. The inter node distance was
proven to be no more than {{J2+:~l., with J the number of joins of the query.

To study the effect of transformation rules 011 the performance of the II
algorithm we, used rules that impose an arbitrary topology on the search
space. This new set of rules is chosen such that the imposed topology is
similar to tl1at of the original search space - same number of r1eighhors
and the same inter node distance.

Our transformation rules are not based on the algebraic properties of the
join-operator, but use the rank of a tree to compute its neighbors. Ranking
is an arbitrary mapping of a set of n elements (trees) to the integers 1
through n, and is not related to the estimated cost of the elements. An
unranking function determines the element T that corresponds to a given
rank r, see Chapter 6.

The transformation function used computes rank k for the i-th neighbor
of a tree with rank r. To select a random neighbor a number between 1
and the total number of neighbors is generated at random. This allows

8.4. Hybrid search algorithms 121

the transformation function to compute the rank of the neighbor and the
unrank function determines the corresponding tree. The transformation
function we used is:

J(i,r) = (r + mi) MOD N, with base m = a. N, d the total
number of neighbors and N the size of the search space.

The unranking function generates unordered trees, so to obtain a search
space that has the same partial characterization as the original search space
we use the transformation function as follows. The total number of neigh
bors is set to 2J - 1, of which J - 1 are generated by the transformation
function. The other J neighbors are obtained by commuting the j-th join
operator.

An upper bound for the size of the search space is given by J!, in which
case m = J-i J! = O(J). It can be shown that the inter node distance of
this new search space is J * (m -1) = O(J2), as in the original search space
that is based on the commutativity and associativity properties of the join
operator.

8.3.1 Experi111ental results

The experiments of Section 8.2.1, 8.2.2 and 8.2.3 show that transformations
are effective towards the end of the optimization process. An experiment
has been setup to determine if this behaviour is specific for the chosen set
of transformation rules, or if it is a more general property of transformation
based search.

For the II algorithm an alternative set of transformations was used. This
alternative set of rules was chosen arbitrarily as described in the previous
section. The algorithm explored up to 4000 join trees and each experiment
has been repeated 20 times. A representative performance graph is given in
Figure 8.6. It shows the graphs of TF, II with original transformations and
II with the arbitrary transformations (ARB) on a high variance catalog.

The search space with an arbitrary topology imposed upon it still aids
the II algorithm in finding good join trees. Towards the end of the opti
mization these arbitrary rules perform better than the TF algorithm, but
the original set of rules still finds the best join trees.

8.4 ybrid search algorithms

Considering all experiments performed, an improvement of transformation
based optimizers seems feasible by balancing the generation of random join

122 CHAPTER 8. Hybrid algorith1ns

Catalog 3, 20 hash joins
3 ~. -~--

l ;
I '
I • I • I •
I •
I ~

2.5 1
1 l

• ' .
I •

I i
\ :i
' .

2 I ~ • • • •
l ~

'

1.5

1

o.s

TF
ARB -----

II · · · · ·· ·

~ ---------- ----... ---- ~----------------------......
•••••-••~-•-•••~--•••••-••·-•••••••••·••·•••••••••••••••••••-•••W••••••-·~··•

0 '-----'----------'-------
0 500 1000 1500 2000 2500 3000 3500 4000

Sample size

Figure 8.6: Space of hash join trees for the original high variance catalog

trees with the application of transformations. Other multi-phase optimiza
tion schemes have been proposed in [Kan91, LVZ93], but they still rely
mainly on transformations to generate alternatives.

8.4.1 Set Based Iterative lmprove111ent

It is reasonable to consider starting the search by generating a predefined
number of join trees (TF-phase), followed by one transformation-based local
optimization. During this local optimization phase no new random starting
points are generated. A generalization of this idea is what we call the Set
based Iterative Improvement (SIIn) algorithm. This hybrid algorithm is an
II algorithm that uses the best join tree of a randomly generated set as
starting state for a local optimization. The n represents the size of the
randomly generated start set. Figure 8. 7 shows the pseudo-code of the
algorithm.

8.4.2 Experimental results

Figure 8.8 shows the performance of S11100 , as well as TF and II for the
space of join trees, when using the enlarged catalog 3, the original set of

8.4. Hybrid ·. ·.·

PROC'EOORB SII (n) {
minS =infinite;// with cost(infinite) = infinite
WHILE not (stopping_condition) DO {

S = random state;
FOR i = 1 TO n - 1 DO {

S' = random state;
IF cost(S') < cost(S) THENS= S';}

WHILE not (local..minima(S)) DO {
S' = random state in neighbors(S);
IF cost (S') < cost (S) THEN S = S' ; }

IF cost(S) < cost(minS) THEN minS m S;}
ret11rn(minS);}

Figure 8.7: Set-Based Iterative Improvement

123

transformation rules and only hash-joins were allowed. The graph of t}1e

SII100 algorithm reflects the behaviour of both the TF and II algorithm. It
converges as fa.st as the TF graph in the first pa.rt of the graph and then
picks up the b,ehaviour of the II algorithm, resulting in very good quality
join trees. Figure 8.8 is typical for the behaviour of the Sil algc,rithm.

Figure 8.9 shows the performance of S11100 on the space of join trees
plus join-algorithm selection, also in combination with enlarged cat,alog 3.
Although the TF algorithm has a weak performance for this search space,
the SII1oo algorithm maintains its good behaviour.

Kang showed in [Kan91] that the l .·. ... optim.ization runs of the II algo
rithm can be quite long. From our experiment.a with the hybrid algorithm
it shows that if tt1e local opt,imizatio11 ru11s are started with "better'' joi11
trees the runs are shorter, so more run,s can be done. The SIIn algorithm
uses this observation to find good join trees faster.

124 CHAPTER 8. Hybrid algorithms

100-,--,.------..,,._----
'

20

,
:t· t
; II
' ' . : \
, ft

'. \ "
' ' .
' 1 ' I ; ~
' l : \
' ' ' •
' ' ' • i . ff
•
' • • • • • •
\ t

: \ . \ : .

~ \
~ .
: l
'\ "-~
\ "i.
··~ ,

,, '-
~ ~" .., ___,~ '---~ "' ~ ... _

. -~ ,_,, __ --, ---.......... __ ,.,,.,..,,. -..,..,. --................ -

TF-
11 ---···

SIi ·· ·· · · ·

•• " "1.
~ .. ,. ---·-----,.,. ... _____ . ..,_

~ ~,.- ,..., "',..,. .. ,.111-..,, .,,.-•.,fl-111••1;1•.. ••*fll"'•"•••-e ""'"'"~'"''"""'~•u;, "'"*q"'-"""ia"•• 0 ------"----,,,_,.,,1.---
0 1000 1500 2000 2SOO 3000 3500 4000

Sample size

Figure 8 .. 8: Hybrid search on the restricted space of hash-joins

''l'f...al.l -

8

6

4.

2

o--------"----L---~-------------
0 soo 1000 1500 2000 2500 3500

Sample size

Figure 8.9: Hybrid search using all available join algorithms

125

8. 5 S utnrnary

In this chapter we examined the irnpact of several factors on t,he perf<)r ...
ma.nee of probabilistic query optimization algorithrns, in particular tl1e
relative behaviour of rando111 pi(~king of solutions with respect to t.ra11s
forma.tion-ba,sed search. The results of randon1 i>icking give a direct i11-

dication of the proportion of good solution in the sea.1·ch space, while the
transforma.tio.n-based search also depends or1 the topology in1 .· · l,y the
specific set of transformations used.

The experiments show that the results obtained in Chapter 7 for a main
memory database remain valid, for the most part, wl1en the I/0-ba..~ed cOBt
model of [IK90, Kan91] is used instead. A tra.nsformatio11-free algoritt1m
finds g · join trees faster than a transformation-b , a.pproacl1, but the
transformation-based search finds the best join trees in the end. This hap-
p,ens becatL.<Je the ratio of good join trees is substantial a.n(i the topology im
posed by asso,ciativity/commutativity/e.xchange transforn1ations does not
seern to aid the search significantly at the beginning of the process. But as
the search process progresses the imposed topology starts to aid tht.~ search
process. Experiments showed that this also l1olds for a set, of arbitrary
t.ra11sf orm.ations.

We then studied the effect of selecting a. join algorithm, in additior1 to
a join evaluation order. In this case the search apact1 becomes the product
of two exponentially large spaces, and its prop,erties tt1rn out to be qualita
tively different from those of selection of a join tree alone. The proportio11
of good join trees decreases in this combined space, and at the same ti1ne
the topology induced by the change-algorithm rule seems to favour the
transformation-based s.earch.

When the cost of successive candidates is highly c.orrelated with the for
mer on,es, the s.earch process in1proves slowly, bt1t can find go{)d solutions
at the end. The transforma.tion-b .. · · .··· local search is therefore effective
towards the end of the search, to refine solutions c,btained quickly by less
l ... methods. To verify this we described and tested a two-pl1ase optimiza
tion approach that starts with random picking to g,enerate good joi11 trees
quickly, and then applies transformations for further refinement. The re ...
sult is a combination of the best of both search strategies: fast co11vergence
to solutions of very high quality.. We believe this hybrid approach is ba.si-
--1·1 ·th be l . .. "bl" d'' b b"l" . h . d · . u:I.J.. y . e • .. · · s:t a ternat1ve in a · .· 1n pro a 11st1c sea.re - 1. e .. omain ...
independent and without using heuristics .. M .. probably with aJl additional
Simulated Annealing phase at tl1e end as suggested in [IK90J.

•

This final chapter summarizes the research described in this thesis and
discuss its contributions to the area of query optimization. Also, directions
for future research are given.

9 .1 S Ullllllary

For database systems we have addressed the problem of finding an opti
mal, or near optimal, join tree. In Chapter 1 the research problems and
objectives were stated after a brief introduction of databases and query
optimization problems. The general definitions used throughout the thesis
were given in Chapter 2 as well as a discussion of existing join tree selection
algorithms.

In Part I, the complexity issues related to the repeated generation of
elements and the number of join trees for acyclic queries is addressed, as
well as the random generation of join trees.

In Chapter 3 we have analysed the problem of duplicate generation for
transformation based optimizers that explore a space exhaustively. For sev
eral query graph topologies the space of either linear or bushy join trees was
considered. For transformation based optimizers the generation of dupli
cates is a serious problem. Even for small queries the number of duplicates
exceeds the number of new operators, and it increases dramatically with the
size of the query. In particular, for the Volcano-type optimizers the ratio
of duplicates over new operators can be up-to 0(2nlog(4 / 3)). The detailed
complexity analysis developed is the first that we are aware of for this type
of optimizers.

127

128 CHAPTER 9. Conclusions

In Chapter 4 we described in detail efficient sets of transformation rules,
for several classes of query graph topologies for both bushy and linear join
trees. Our approach to an efficient transformation-based generation algo
rithm is to keep track of the transformation rules that can still be applied
without generating duplicates at any point in the search space. The over
head of the method consists of a few bits per operator. The conditioned
application of rules can be incorporated easily in the existing framework of
modern query optimizers, and tests corroborate that considerable perfor
mance improvements result from the large reduction of generated operators.
The performance improvement gained by avoiding the generation of dupli
cates is significant in practice.

Subsequently, in Chapter 5 we described techniques and procedures for
counting the number of bushy or linear join trees to evaluate an acyclic
query. The difficulty of the counting problem results from the fact that
there is no one-on-one mapping between join trees and a simple combinato
rial structure. Our concept of a standard decomposition graph provides a
supporting structure for counting, because it defines a canonical construc
tion for each tree. In addition, computing an array of values that charac
terizes the number of canonical constructions can be computed bottom up
in an efficient way.

In Chapter 6 we have described how the one-on-one mapping between
integers and join trees can be done using the RANK and UNRANK procedures.
These algorithms are built on the join tree counting theory and techniques
developed in Chapter 5. The UNRANK procedure makes it possible to con
struct an efficient algorithm which generates join trees at random with a
uniform distribution. Also an improved algorithm for generating join trees
at random has been described which reduced the time complexity from
O(n2 logn) to O(n2).

The theory of Part I is supported by empirical evaluation in Part II.
Experiments with optimization algorithms were described, which heavily
depend on the random generation of join trees.

In Chapter 7 the transformation-free (TF) optimization algorithm was
introduced. This algorithm selects join trees at random from the space
of alternatives while keeping track of the tree with the lowest esti1r1ated
cost. The performance of TF has been compared to Simulated Annealing
and Iterative Improvement for various database catalogs and queries. The
result is that transformation-based optimizers find very good solutions, but
take a long time, compared with the trans/ ormation-free algorithm.

Exhaustive exploration or sampling of the search space of a class of
queries provides a precise measure of the run length required to hit a good
join tree. Our results then provide a natural baseline against which the

9.2. Future r • 129

added value of applying transformations and heuristics caz1 be quantified.
In Chapter 8 we examined the imp.act of several factors on the per

formance of probabilistic query optin1ization algoritl1ms .. In pa.rticu.lar tl1e
relative behaviour of random picking of solutions with respect to trans
formation-b search. The experiments show that the result.s obtained
in Chapter 7 for a. main-memory database remain valid, for the u1ost p.art,
when the I/0- cost model of fIK90, Kan91] is used instead. A trans
formation-free algorithm finds good join trees faster than a transforrnatior1-
based approach, but the tra.n.sformation-based search finds tl1e best joir1
trees in the end. This happens because the rat,io of good join trees is
substantial and the to•pology imp .. -.·· by associativity / commutativity /
exchange transformations does not seem to aid tl1e search significantly at
the beginnin.g of the process. But as the search process progresses, the im
p .. · · topology starts to aid tl1e search process. Experiments showed that
this also holds for a set of arbitrary transformation rules.

~"e then studied the effect of selecting a joir1 algorithm, in addition to
a join evaluation order. In this case the search space becon1es the product
of two exponentially large spaces, and its properties turn out to be quali
tatively different from those of selection a join tree alone. The proportion
of good join trees decreases in thi.s combined space, and at the srune time
the topology induced by the change-algorithm rule seems to favo11r the
tra,11sformation-b ··. ·. ·· ··. searcl1.

The incremental transformation-based, local search ia effective towards
t.he end of the search, while random selection is more effective at the begin
ning of the optimization pro,cess. To stud)r the combination of both effects,
we described a.nd tested a two-phase optimization approach that starts with
random picking to generate good join trees quickly, and t,hen applies trans
formations for further refinement. The result is a combination of tl·1e best
of both search strategies: fast convergence to solutions of very }1igh qual
ity. We believe this hybrid approach is basically the best alt,ernative in a
~'blind" probabilistic search . ·--~ i. e. domain-independent and without. usir1g
heuristics- probably with an additional Si1nulated Annealing phase at the
end as suggested in [IK90].

9.2 t ure research

Design of an appropriate set of transformatio11 rules is an im porta.nt task
seldom emphasized in the rule-b .· , ·. · optimization lit1erature. For sev
eral classes of query graph topologies duplicate-free sets of transformation
rules have been shown. However, no methodology exists for creating sucl1
duplicate-free sets. Moreover, it is not likely that for every set of trans-

130 CHAPTER 9. Conclusions

formation rules a duplicate-free alternative exists.
Future research could be directed at determining for which conditions

a set of transformation rules can be converted into a duplicate free one.
Also the interaction between duplicate-free rules and other rules of a trans
formation based system is a.n open area of research.

For acyclic queries both the counting problem has been solved and the
random generation of join trees with a uniform distribution. Although
acyclic queries cover perhaps most of the queries posed in practice, cyclic
queries are frequent enough to deserve attention. Therefore, a second track
for future research could be focused on studying the class of cyclic queries,
but the problem is more difficult. Many database problems become sig
nificantly more complex when cyclic structures are allowed (see for exa1n
ple [BFMY83]), and so-far the techniques we use for the acyclic case do not
seem to extend easily to cyclic queries.

For the experimental part there are several open issues to be addressed.
First, as soon as the random generation of join trees for cyclic queries is
solved the experiments should be extended accordingly. Second, by allow
ing operator trees to contain both join operators and Cartesian products,
cheaper solutions can be found than allowing only join trees. However, these
operator trees also introduce solutions which are much more expensive. It
is unclear yet how the cost distribution over this space of operator trees is
and how the Transformation Free optimization algorithm would perform.
Finally, the incorporation of heuristics in probabilistic query optimizers in
a robust manner should be studied. This should be done by ''rigging the
odds'' in favour of the better join trees - e.g. if, in general, bushy join
trees are known to be cheaper than linear trees they should get a higher
chance of being generated.

Also exploring the possibilities of 2-phase algorithms is a direction for
future research. A first step is to obtain indicators which are easy to com
pute and give a good characterization of the search space. This would make
it possible to use specific optimizers for specific types of search spaces.

•
I

The graphs contained in this appendix show the results of the experiments
as described in chapter 7. For each combination of query and catalog a
graph with the ''average'' performance over 20 runs of the three optimiza
tion algorithms is given.

For the graph in figure A.8 a graph at a larger scale is given in A.9. At
a larger scale the general behaviour of the TF algorithm, when compared
to II, still holds. However the II finds acceptable and good plans after
exploring only 783 alternatives while TF needs to explore another 546 plans.

131

132

-!

10

CHAPTER A. DBS3 Measurements

Average over 20 runs. Query eleven1 on cat1.
'P'"P'------------ ---------- ---""I
I •
I •
I : • • t •
I • • •
l !
t •
I •
I •
t :
I •

sa--
tf ----·
ii ,

8 I :
I •
I !
I •
I • t •
I •
I !
I •
I •
I •
I •
I :

6 :
I •

l :
I :
I •
I :
t •
t •
I •
I •
I :
I • • • t •
I !
I •
I •
I •
I •
t •
I :
I ♦

\ : •
I •••

2 \ ~-••
•- . "1 •• - • •

I ••••••• ' ----·· ~..... =:i..----------..... _ -... ---............ -.. -------------·-----~----·--------·----------- - --·--
0 .__ __ ,__ __ ----'"-------------------------

0 500 1000 1500 2000 2500 3000 3500 4500 5000

10

8

6

4

2

Plans explored

Figtire A .. l: Average of cost of solution found.

' •
' ' ' ' • • • • • • • • • •
' • • • • • •
' • • • •
' • •
' • • • • •

I •

\~ !

Average over 20 runs. Query ten3 on cat1.

sa--tf ___ ,... .
• • II

" --.. .
. :;;:;:;,;,;~==--------------------------'-• ,.

----------.&LLl'.l-.&.:s:.-.-

0 .__ __ -------___ ..,_ __ __,_ __ __. ______ ..._ ___ ----
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Plans explored

Figure A.2: Average of cost of solution found.

DBS3 Measurements

10
I •
I :
I •
I •
I • • • I •
I :
I •
I •
I •
I •
j :

8 :
I •

6

I :
I •
I •
I •
I • ' .
I :
I •
I •
I •
I •
I :

0
0

10

8

6

4

2

Average over 20 runs. Query nine1 on cat1.

sa --tf _.,., __ ,
ii

500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Plans explored

Figure A.3: Average of cost of solution found.

Average over 20 runs. Query twetve1 on cat2.

' • • I • I • sa I •
I • tf ----~ I •
I • ii I • • I •
I •
I •
I • • I • I •
l • •
I • •
I • •
I •
I •
I • • I • I •
I •
I •
I • • I • I • I •
I • -~ •

I -.......... -.
I •
I • • I • I • I •
I •
I • • I • I • I •
I •
I •
I • • I • I •
I •
' • • • •
' •
' •
I •
I • • I •
' • I •
I •
I • • I • I • I •
L--- • •

I • ,.., _____ :_. --·-·--·----- ___ ._ ... P'I••--·--··-··· -···•-•..rT11"1 _-r l -- ___ .,,.

0 ---
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Plans explored

Figure A.4: Average of cost of solution found.

133

134

~

•

CHAPTER A. DBS3 Measurements

Average over 20 runs. Query eleven 1 on cat2.
10 ,..,...---,i------- ---------. :

I •

' :
I l.
I • •

8 \ i • • • • •
'- --.

• • • I •
I •

' ' I •

6 \ ~
• ti

4

2

0
0

10
I
I
I
I

I
I
I
I
I
I
I
I

8
I
I
I
I • I
I
I
I
I
I
I
I

6
I
I
I
I

I
I
I
I
I
I
I
I

4
I
I
I
I
I

l
I
I • ' 2

• • I • • I • ' . I •
I •
I •
I •
I :
'i •
i -- ••• --• I •
I •
I •
I •
I •

I :

t i --
I '
I •
I :
I •
I '
I
I
I
I

• • • • •
..._ _________ ,. _____ ..,.;,. __ ,__ ----------------------

500 1000 1500 2000 2500 3000
Plans explored

3500

Fig11re A.5: Average of cost of solution found.

Average over 20 runs. Query ten3 on cat2-
• • • • • • •
' • • •
' • •
' • • • • • • • • • • •
' ' • •
' •

I : ·-\ ·-~ ..
• ---·- , - -

sa-
tf ----· -II

4500

sa

5000

tf ----·
ii --·--·

0 ---___ ..._ __ "----__, __, _______ ___ ---..J.
0 ~ 1000 1~ 2~ 2~ ~ ~ ~ 5000

Plana explored

Figure A.6: Average of cost of solution found .

DBS3 Measurements

•

Average over 20 runs. Query nine1 on cat2.
10 __,. _____ ---- ------------

I •
I ;
I •
I •
I •
I •
I !
I •
I •
I •
I •
I •
I :

8 :
I •

6

I :
I • • • I •
I •
I • . :
I •
I •
I •
I •
I :

• •
I •
I •
I !
I •
I •

I :
I !
I •
I •
I •
I •
I :

4 :
• • • I !

r • : :
I • . :
I • • • • • I •
I :

2 :
I • • ! ,, .
t ~

. I •

sa --
tf ----·
••
II • .. • • •

... ~"----------------------------------'--&_..

0
0

10

8

6

4

2

0
0

500 1000 1500 2000 2500 3000
Plans explored

3500 4000 4500 5000

Figure A.7: Average of cost of solution found.

Average over 20 ru1 IS. Query ty.,,alve 1 on cat3.
• I
: I
• I sa--
• I . • tf ----~ • I : . ..
, I tf •••••
♦ I

: : • • I
• I
• I
• I
: I
• I
• I
• I
• • • I
: I
• • ' .
• I
• I
: I
• I
• I
• I
: I
• I
• I
• I
• I
: I
• I
: :
• I
: I
• I
• I
• I
• • • •
: I
• • • I
• I
• I
; I
• l
• I • t
: I
• I
• • • I : ; • • I • t
• I . ; . --,,_
•.-.., • •.,., ., •., _.,,..., ,. ,. ,. .~':".:":0:..""ft'VTrAM'rl'r',N...-•~•--• .. .,._•.,_,..••~.--•-••---••• •a1 • 11 ••-•----11 -••-•-,-•-!

500 1000 1500 2000 2500 3000
Plans explored

3500 4000

Figure A.8: Average of cost of solution found .

4500 5000

135

136 CHAPTER A. DBS3 Measurements

Average over 20 runs. Query twelve1 on cat3.
-----,.--- ----,--....---· . -----------i

1500 .

1000

500

0
0

• • • • •,
•

l ~
) :
I • ' : I •
I :
I • .. .
I •
I •
I •
I • . :
I : ...
I ' I •
I -,

!... :
' : • • •• • • l :
\ :
\ :
\ !
I I • • I •
\... :

I ' ·;
~
: I
: t __ '"'
: I . .,
1 ...
' I • • :. _._ I . ,. __ l ...

• •

1 ----1
~ t

' I

' ·---•
'

500 1000 1500 2000 2500 3000 3500
Plans explored

Figure A.9: Average of cost of solution found.

sa-
tt ----·
ii -.

5000

Average over 20 runs. Query ele:ven1 on cat3.
10 ·------"'· · ---+----__, _......,_ -------------1 • . :

8

8

4.

2

• • I •
l ' • • I •
f : . '
I •
I •
I !
I • • • • • I •
I •

: :
I •
I •
I : ' .
l- :
I •
I •
' :
I ' i •
I • . ' . : • • l '
f_ :
I •
I • t •
I •
I •
I :
I •
I •
I •
I •
I •
I :
l •
I •
I •
I •
I :
I • t •
I •
I •
I :
I '
I • t •
I •
I !

sa-
tf ----~
••
II · · • · • ·

I •
I • ,

t,, 0 -----·-·----- --- --- --·-·-- --- ---

0 --------. -----.. "--------------------------
0 ~ 1000 1500 ~ 2500 ~ ~ ~ ~ ~

Plans explored

Figure A.10: Average of cost of solution found.

DBS3 Measurements

10 ••• I •

Average over 20 runs. Query ten3 on cat3.

I • I •
I •
I • • I • I •
f •
' •
I • • I •

sa--tf __ ... __
•• IJ • ,. ,. • •

I •
I •

8 I •
I • • I • I •
I •
I •
I • • I • I •
I •
I •
'• • •
I •
I •
I •

6 • I ♦ -, • - •

~
., •

I • I ••• '" •• .. - •
I • • 1 • I • I •
I •
I • • I • I • I •

4 I •
I • • I • I •
I •
I •
I • • • I •
I •
I •
I • • I • I • I •

2 I •
I • • I • I •
I •
I •
I • • I • ·-------------·---

----- _ _.._..,_..________________ _ __ ... ____________ ,_

0
0

10 i
t
I
I
I
I
I
I
I
I
I
I
I

8 ...
I
I
I
I
I
I
I
I
I
I
I
I
f
I

6 ,_I
I • I
I
I
I
I
I
I
I
I
I
I
I

4 I -,
I
I
I
I
I
I
I
I
I
I

' I I
2 -:

500 1000 1500 2000 2500 3000 3500
Plans explored

Figure A.11: Average of cost of solution found.

A"llerage over 20 runs. Query nine1 on cat3.
• I • ...
• ...
• .., • •

l. •
' • • •-, . • l. __ -- - -

0 I • • • '
0 500 1000 1500 2000 2500 3000 3500 4000

Plans explored

Figure A.12: Average of cost of solution found.
,,

4500 5000

•
sa
tf ----·
••
II ... ··-'

•

-

•
4500 5000

137

•
I

The query graphs shown in this appendix were used in the experiments of
Chapter 8. The queries were generated at random for a database schema
that consists of 110 relations. With each relation 4 attributes .

•

139

140

4:
107-36-81--32--63

5:
107

6:
107 36 81 32 63

I
64 7:

107
8

8: I
107 36 81 32 63

I I
64 31 9:

107 ·

10: 8
I

107 36 81 32 63
I I I

15 64 31
I 11:

22
107

12: 59 8
I i

107 · 36 81 32 63
I I I

15 64 31
I I

22 75 13:

107

CHAPTER B. Query graphs

36 81 32 63
I

64

55

36 81 32 63 55
I I

64 31
55

8
I

36 81 32 63 55
I I I

15 64 31

55

59 8
I I

36 81 32 63 - 55
I I I

15 64 31
I

22
55

59 40 8
I I I

36 81 32 63 55
I I I

15 64 31
I I

22 75

Query graphs 141
11
l

14: 59 40 8
I I I

107 36 81 32 63-55
I I I 11 15 64 31 I I I 15: 59 40 8

22 75 I I I
107 36- 81 32 63 - 55 - 71

I I I
11 15 64 31
I I I

16: 59 40 8 22 75
I I I •

107 36 81 32 63 - 55 - 71
I I I I

15 64 31 70 14 11
I I I I

22 75 17: 59 40 8
I I I

107 36-81 32 63 - 55 - 71

14 11 I I I I
I I 15 64 31 70

I I 18: 59 40 8
22 I I I 75

107 36 81 32 63-55 71
I I I I

15 64 31 70 14 11
I I I I

22 75 19: 59 40-93 8
I I I I

54 107 36 81 32 63 - 55 - 71
I I I I

14 11 15 64 31 70
l I I I

75 22 20: 59 40 93 8 89 I I I I
54 107 36 81 32 63-55 71

I I l I
15 64 31 70
I I

22 75
I

54

[ACV91] F. Andres, M. Couprie, and Y. Viemont. A multi-environment
cost evaluator for parallel database systems. Procedings of the
2nd Int. DASFAA Japan, 1991.

[Ald89] D. Aldous. An introduction to covering problems for random
walks on graphs. Journal of Theoretical Probability, 2(1):87-
89, 1989.

[BFMY83] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the
desirability of acyclic database schemes. Journal of the ACM,
30(3):479-513, July 1983.

(BMG93] J.A. Blakeley, W. J. McKenna, and G. Graefe. Experiences
bulding the open oodb query optimizer. Proceedings of the
ACM SIGMOD Con/ on Management of Data, Washington
DC, 1993.

[CM95] S. Cluet and G. Moerkotte. On the complexity of generating
optimal left-deep processing trees with cartesian products. In
Proceedings of the International Conference on Database The
ory, Prague, 1995.

[Cod70] E. F. Codd. A relational model for large shared data banks.
Communications of the ACM, 13(6):377-387, June 1970.

[CP85] S. Ceri and G. Pelagatti. Distributed Databases: Principles
and Systems. McGraw-Hill, New York, 1985.

[Dat90] · C.J. Date. An Introduction to Database Systems, volume 1.
Addison Wesley Publishing Company, 5th edition, 1990.

[FMV94] J. C. Freytag, D. Maier, and G. Vossen, editors. Query Pro
cessing for Advanced Database Systems. Morgan Kaufmann,
San Mateo, California, 1994 .

•

143

144 BIBLIOGRAPHY

(GCD+94] G. Graefe, R. L. Cole, D . L. Davison, W. J. McKenna, and
R. H. Wolniewicz. Query Processing for Advanced Database
Systems. Morgan Kaufmann, 1994.

[GD87] G. Graefe and D. J. DeWitt. The exodus optimizer generator.
Proc. of the ACM-SIGMOD Conference on Management of
Data, pages 160-172, 1987.

[GJ74] F. Gobel and A.A. Jagers. dom walks on graphs. Stochastic
Processes and their Applications, 2(1):311-336, 1974.

[GLPK94] C. A. Galindo-Legaria, A. Pellenkoft, and M. L. Kersten. Fast,
randomized join-order selection -Why use transformations?
In Proceedings of the 20th Inte1·11ational Conference on Very
Large Databases, Santiago, 1994. Also CWI Technical Report
CS-R9416.

[GLPK95] C. A. Galindo-Legaria, A. Pellenkoft, and M. L. Kersten.
Uniformly-distributed random generation of join orders. In
Proceedings of the Inteniational Conference on Database The
ory, Prague, pages 280-293, 1995. Also CWI Technical Report
CS-R9431.

[GLW82] U. Gupta, D. T. Lee, and C. K. Wong. king and unranking
of 2-3 trees. SIAM Journal of Computation, pages 582-590,
August 1982.

[GM93] G. Graefe and W. J. McKenna. The Volcano optimizer gener
ator: Extensibility and efficient search. Procedings of the 9th
International Conference on Data En9ineering, Vienna, A us
tria, pages 209-218, 1993.

[Gra89] G. Graefe. Volcano: An extensible and parallel dataflow query
processing system. Technical report, Oregon Graduate Center,
1989.

[Gra93] G. Graefe. Query evaluation techniques for large databases.
ACM Computing Surveys, 25(2):73-170, June 1993.

[Gra95] G. Graefe. The cascades framework for query optimization.

[GV89]

IEEE Data Engineering Bulletin, 18(3):19 - 29, September
1995.

G. Gardarin and P. Valduriez. Relational Databases and
Knowledge Bases. Addison-Wesley, 1989.

BIBLIOGRAPHY 145

[HCL+90] L. M. Ha.as, W. Chang, G. M. Lohman, J. McPherson, P. F.
Wilms, G. Lapis, B. Lindsay, H. Pirahesh, M. Carey, and
E. Shekita. Starburst mid-flight: As the dust clears. Technical
Report RJ 7278, IBM Research Division, Almaden Research
Center, 1990.

[HP73] F. Harary and E. M. Palmer. Graphical Enumemtion. Aca
demic Press, 1973.

[HP88] W. Hasan and H. Pirahesh. Query rewrite optimization in
starburst. Technical Report RJ 6367, IBM Research Division,
Almaden Research Center, 1988.

[IK84] T. Ibaraki and T. Kameda. On the optimal nesting order for
computing n-relational joins. ACM Transactions on Database
Systems, 9(3):482-502, September 1984.

[IK90] Y. E .. Ioannidis and Y. C. Kang. domized algorithms for
optimizing largejoin queries. Proc. of the ACM-SIG MOD Con
ference on Management of Data, pages 312-321, 1990.

(IK91] Y. E. Ioannidis and Y. C. Kang. Left-deep vs. bushy trees:
An analysis of strategy spaces and its implications for query
optimization. Proc. of the ACM-SIG MOD Conference on Man
agement of Data, pages 168-177, 1991.

[IW87] Y. E. Ioannidis and E. Wong. Query optimization by simu
lated annealing. Proc. of the ACM-SIGMOD Conference on
Management of Data, pages 9-22, 1987.

[Kan91] Y. C. Kang. Randomized Algorithms for Query Optimization.
PhD thesis, University of Wisconsin-Madison, 1991. Technical
report #1053.

[KBZ86] R. Krishnamurthy, H. Boral, and C. Zaniolo. Optimization
of nonrecursive queries. Proceedings of the 12th Inter,iational
Conference on Very Large Databases, Kyoto, pages 128-137,
1986.

[Knu68]

[KRB85]

D. E. Knuth. The Art of Computer Programming, volume
1: Fundamental Algorithms. Addison-Wesley, 1968. Second
edition, 1973.

W. Kim, D. S. Reiner, and D. S. Batory, editors. Query pro
cessing in database systems. Springer, Berlin, 1985.

146

[LVZ93]

[McK93]

[Mor92]

(NSS86]

78]

[OL90]

[Ozk86]

[PGLK97a]

BIBLIOGRAPHY

R. S. G. Lanzelotte, P. Valduriez, and M. Zait. On the effec
tiveness of optimization search strategies for parallel execution
spaces. Proc. of the 19th VLDB Conference, Dublin, Ireland,
pages 493-504, 1993.

W. J. McKenna. Efficient Search in Extensible Database Query
Optimization: The Volcano Optimizer Generator. PhD thesis,
University of Colorado, Boulder, 1993.

S. Morishita. A voiding cartesian products in programs for mul
tiple joins. Proc. ACM SIGACT-SIGMOD-SIGART Symp. on
Principles of Database Systems, pages 368-379, 1992.

S. Nahar, S. Sahni, and E. Shragowitz. Simulated anneal
ing and combinatorial optimization. 23rd Design Automation
Conference, pages 293-299, 1986.

A. Nijenhuis and H. S. Wilf. Combinatorial algorithms. Aca
demic Press, New York, 2nd edition, 1978.

K. Ono and G. M. Lohman. Measuring the complexity of join
enumeration in query optimization. Proc. of the 16th VLDB
Conference, Brisbane, Australia, pages 314-325, 1990.

E. Ozkarahan. Database Machines and Database Management.
Prentice-Hall, 1986.

A. Pellenkoft, G.A. Galindo-Legaria, and M.L. Kersten. The
complexity of transformation-based join enumeration. Pro-
ceedings of the 23st Inte1"1iational Conference on Very Large
Databases, Athens, pages 306-315, August 1997.

[PGLK97b] A. Pellenkoft, G .. A. Galindo-Legaria, and M.L. Kersten.

[Rag90]

[RH77]

•

Duplicate-free generation of alternatives in transformation
based optimizers. Proceedings of the fifth international con
ference on database systems for advanced applications, Mel
bourne, Australia, pages 117 -123, April 1997.

P. Raghavan. Lecture notes on randomized algorithms. Tech
nical Report RC 15340, IBM Research Division, T. J. Watson,
1990.

F. Ruskey and T. C. Hu. Generating binary trees lexicograph
ically. SIAM jour'1-,,al of Computation, 6(4):745,-758, December
1977 .

147

[SAC+79] P. G. Selinger, M. M. Astrahan, D. D. Chainberlin, R. A. Lorie,
and T. G. Price. Access path selection in a relational database
management system. Proc. of the 1979 ACM-SIGMOD Con
ference on the Management of Data, pages 23-34, 1979.

[SG88] A. N. Swami and A. Gupta. Optimization of large join queries.
Proc. of the ACM-SIGMOD Conference on Management of
Data, pages 8-17, 1988.

[Sha86] L. Shapiro. Join processing in database systems with large
main memories. ACM Transactions on Database Systems,
11(3):239-264, September 1986.

[SI92a] A. N. Swami and B. R. Iyer. A polynomial time algorithm for
optimizing join queries. Proc. of the 9th International Con
ference on Data Engineering, Vienna, Austria, pages 345-354,
1992.

[SI92b] A. N. Swami and B. R. Iyer. A polynomial time algorithm
for optimizing join queries. Technical Report RJ 8812, IBM
Research Division, Almaden, 1992.

[Swa89a] A. N. Swami. Optimization of Large Join Queries. PhD thesis,
Stanford University, 1989. Technical report STAN-CS-89-1262.

[Swa89b] A. N. Swami. Optimization of large join queries: Combining
heuristics and combinatorial techniques. Proc. of the ACM
SIGMOD Conference on Management of Data, pages 367-376,
1989.

[Swa91] A. N. Swami. Distribution of query plan costs for large join
queries. Technical Report RJ 7908, IBM Research Division,
Almaden, 1991.

[Tay90] Y. C. Tay. On the optimality of strategies for multiple joins.
Proc. ACM SIGACT-SIGMOD-SIGART Symp. on Principles
of Database Systems, pages 124-131, 1990.

[Ull89a] J. D. Ullman. Principles of Database and Knowledge-Base
Systems, volume l. Computer Science Press, New York, USA,
1989.

[Ull89b] J. D. Ullman. Principles of Database and Knowledge-Base
Systems, volume 2. Computer Science Press, New York, USA,
1989.

148

[Va192]

[VF90]

[vL90]

[VM96]

[WM97]

BIBLIOGRAPHY

P. Valduriez, editor. Parallel Processing and Data Manage
ment. Chapman and Hall, London, 1992.

J. S. Vitter and Ph. Flajolet. Analysis of algorithms and data
structures. In J. van Leeuwen, editor, Handbook of Theoreti
cal Computer Science, volume A: Algorithms and Complexity,
chapter 9, pages 431-524. North Holland, 1990.

J. van Leeuwen. Graph algorithms. In J. van Leeuwen, editor,
Handbook of Theoretical Computer Science, volume A: Algo
rithms and Complexity. North Holland, 1990.

B. Vance and D. Maier. Rapid bushy join-order optimization
with cartesian products. In Proceedings of the ACM SIGMOD
Con/ on Management of Data, Montreal, pages 35-46, 1996.

W.Scheufele and G. Moerkotte. On the complexity of gen
erating optimal plans with cross products. In Proceedings of
the 29st International Conference on Very Large Databases,
Athens, 1997.

