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Preface

Diffusion is the spread of substances by the natural movement of their parti-
cles. It is a process so basic to the material world and so ubiquitous that it
touches every part of our daily lives. Our morning cup of tea, the delights
of gastronomy, the scent of a neighbour, even the oxygen that we breathe, all
these are brought to us by diffusion. It is not surprising that many mathematical
models of physical and chemical processes contain diffusion as a fundamental
element.

The classical way of incorporating diffusion into a mathematical model
results in a strong spreading phenomenon. One of the consequences is that
an increase in concentration at a certain point in space results, according to
such a model, in an increase of the concentration everywhere else, and imme-
diately. Although this increase may be very small, especially far away from
the original change, it is always present. We often use the term ‘infinite speed
of propagation’ to denote this property.

The word ‘degenerate’ in the title refers to a form of diffusion where the
driving force behind the process vanishes, resulting in ‘finite speed of prop-
agation’. In many situations a model based on degenerate diffusion is more
appropriate than a classical model. As an example, imagine an oil spill in the
ground which is spreading under diffusion. A model based on degenerate dif-
fusion will predict that the the patch of oil has a clear boundary outside of
which there is no oil, while under classical diffusion small amounts oil would
be present everywhere. Experiments clearly indicate that the predictions of the
degenerate diffusion model are more accurate. Other examples are the flow
of gas through rock and the spread of individuals of a biological population;
degenerate diffusion plays a role in the elimination of noise from digitised im-
ages, and it has even been mentioned in the context of the spread of galactic
civilisations.

In this thesis we focus on some mathematical problems that arise in de-
generate diffusion models. In the Introduction we illustrate the existing theory
with the Porous Medium Equation and derive the main model, which is con-
cerned with the spread of chemical substances in the soil due to the flow of
groundwater. We then give an overview of the rest of this thesis.
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Chapter 1

Introduction

1.1 On degenerate diffusion

A typical diffusion process, for instance the diffusion of molecules of type A
in a large quantity of other molecules, might be described by the equation

u; =div(DVu) for x e, t>0. (L.1)

The domain 2 C RY models the physical space that the molecules occupy,
and u(x, t) is the concentration of molecules of type A. Subscripts denote dif-
ferentiation, the gradient operator V is defined by

v du du \" ( )T
={—,..., — = (U ; 153 5 Ux ;
! 0x, 0x i How

and the divergence operator by

s
ax,"

div(fi, ..., )" =
i=1
The diffusion coefficient D may depend on x, 7, and any number of quan-
tities including u and its derivatives, but its sign is always non-negative. In
most physical situations the diffusion coefficient is bounded away from zero:
D(x,t,u,---) > Dy > 0 forall x,7,u,...,and in that case (1.1) is called
non-degenerate. ‘Degenerate diffusion’ refers to a diffusion process where the
diffusion coefficient D is not bounded away from zero, but can vanish in parts
of the domain'.
For the interpretation of this property it is useful to go back to the mod-
elling process that resulted in equation (1.1). We can write it as a conservation
law

U, +div =0 (1.2)

'Sometimes the term ‘degenerate diffusion’ is also used for unbounded diffusion coeffi-
cients. We shall encounter such a situation in Section 1.11. In this introduction, however, we
reserve the term ‘degenerate diffusion’ for a vanishing diffusion coefficient.



and a ‘constitutive equation’
J = —DVu. (1.3)

Equation (1.2) is called a conservation law because it is a differential form of
the integral equation

T
/u(x,T)dx—/u(x,O)dx:—// J v,
Q Q 0 JoQ

for every region 2 C RN and T > 0.

Here 92 denotes the boundary of the set €2, with outward normal vector v.
This equation describes that [ u is conserved; the only change in J u happens
at the boundary of the domain of integration, and is described by J, which
is called the flux. Conservation laws, also called balance equations, lie at the
basis of many physical models.

The constitutive equation (1.3) characterises the underlying physical model.
When D does not depend on the gradient Vu, equation (1.3) is often referred
to as Fick’s Law. Such a constitutive equation is typical for a diffusive pro-
cess. Intuitively, Fick’s Law states that molecules move in the direction of
decreasing concentration: they spread out, away from each other.

Against the background of this model the vanishing diffusion coefficient
represents a local disappearance of the driving force behind the spreading.

In many applications models incorporating degenerate diffusion arise in a
natural way. We illustrate this with three examples.

1. Spreading of biological populations. Fick’s law (1.3) is often employed
to model the spread of a biological species, where J is the flux and u
the concentration of individuals. Typically D = D(x, t) is a parameter
that models variations in the habitat, and this parameter can vanish in
regions where the mobility of the species is effectively reduced to zero.

2. Gas flow in porous rock [Mus37]. The mass density p of a gas flowing
through a porous medium satisfies the conservation law

¢p + div(pv) =0

where ¢ is the porosity, i.e. the fraction of total volume that is available
to the gas, and v is the velocity of the gas. Assuming Darcy’s Law,

k
v=——Vp, (1.4)
%



where  is the viscosity, k the permeability, and p the pressure, and the
equation of state

u=uyp’, (1.5)

in which y is a constant in (0, 1], we find by eliminating p and v the
equation for p

pr = c A(p™)

where m = (y + 1)/y > 1 and c is a positive constant. Note that if we
define J = pw in analogy with (1.2), then

J=—-mcp" 'Vp,

which is a nonlinear version of Fick’s Law (1.3). The diffusion coeffi-
cient D = D(p) = mc p™ " vanishes at the value p = 0.

3. The interface between fresh and salt water in underground aquifers.
Consider a horizontal aquifer (a layer of porous material) of uniform
thickness #, filled with a mixture of salt and fresh water. Under cer-
tain conditions we can suppose that the mixing zone between the salt
and the fresh water is relatively thin. Since the salt water is the more
dense, it will tend to lie underneath the fresh water, with a thin mixing
zone—called the interface—separating the two fluids. De Josselin de
Jong derived an equation for the movement of this interface [JdJ81]. In
simplified form it reads

u; = div(u(h — u)Vu),

where the height u of the interface above the bottom of the aquifer takes
values in [0, 2]. This equation is said to have two-point degeneration:
the diffusion coefficient u(h — u) vanishes at the values u = 0 and
u=h.

In the first example the degeneration is known beforehand, while in the
other two examples the degeneration depends on the unknown function p or
u. This latter case is more interesting and in the next section we shall briefly
discuss some of the existing theory on this kind of degeneracy.

3



1.2 A primer on the Porous Medium Equation

The equation
u, = Au™ with m > 1, (1.6)

is often called the ‘porous medium equation’ or, mostly in the Russian lit-
erature, the ‘filtration equation’. Equation (1.6) is an example of (1.1) with
D = D(u) = mu™"". Historically and mathematically this equation stands
at the basis of the degenerate diffusion theory: many of the properties which
are now known to be typical for problems with degenerate diffusion were first
proved for equation (1.6). In this respect (1.6) serves as a model for a broad
class of equations.

There are a number of review articles [Pel81, Aro86, Kal87, Vaz92a] that
together give an excellent overview of the existing literature. Here we will
be content to explain some basic features of this equation which can serve as
stepping-stones towards the work that follows.

The Barenblatt-Pattle solution. A famous explicit solution of (1.6) was
found independently by Barenblatt [Bar52] and Pattle [Pat59]:

(1.7)

W am—1 xp 7YY
upp(x. ) =1 [V - zN—mtwL |
The number « equals (m — 1 + 2/N)‘l, N is the space dimension, and [-]+
stands for max{-, 0}. The parameter ¥ > 0 can be chosen freely, and charac-
terises the mass of the solution f]RN ugp(x,t)dx, which is conserved in time.
Since equation (1.6) is autonomous in space and time, a translated copy of ugp
is again a solution of (1.6). Note that ugp is a self-similar solution: there exist
constants &, B € R and a function f such that ugp can be written in the form

ugp(x . ) =t f (ltx—ﬁl) .

For such a solution equation (1.6) reduces to an ordinary differential equa-
tion, greatly simplifying the analysis. In many cases self-similar solutions
are known to give the characteristic asymptotic behaviour for general solu-
tions, and ugp is no exception: as t — 00, solutions of (1.6) with finite mass
( fRN u(x,t)dx < oo) converge to an appropriately scaled and translated ver-
sion of ugp [KK73, FK80, Vaz83]. We shall see other examples of behaviour
characterised by special solutions in Sections 1.5, 1.6 and 1.7.

4
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Figure 1.1: The Barenblatt-Pattle solution. The solution is drawn here for
N=1,m=2,andt =0.1, 2, 10, 40.

Lack of smoothing and weak solutions. A characteristic property of uni-
formly parabolic equations is a smoothing effect: if we solve the equation

u; = Au (1.8)

in a domain Q7 = © x (0, T'] with initial and boundary data on the parabolic
boundary Q2 x {0}Ud2x (0, T], then the solution u is differentiable any number
of times in the interior of Q7. This phenomenon is called the smoothing effect,
and it is a consequence of the specific form of the equation.

The Barenblatt-Pattle solution ugp of equation (1.6) is smooth on the pos-
itivity set P = {(x, 1) € Q7 : ugp(x,t) > 0}. On this set, the diffusion coeffi-
cient D(u) = mu™ " in (1.6) is strictly positive, and the smoothing properties
of (1.6) are similar to those of (1.8). At the boundary of the set P, where
ugp = 0, the smoothness of ugp, is limited, and this is a consequence of the
vanishing diffusion coefficient. This is what we call ‘lack of smoothing’.

Although from a physical point of view we would like to admit ugp as a
solution of equation (1.6), the function ugp does not have the regularity which
is implicitly assumed in the formulation (1.6), i.e. twice differentiable in x and
once in 7. In order to admit such functions as solutions we need to broaden the
definition of a solution. As an illustration, consider the following problem:

ue = Au™ in RY xR* (1.9a)
u(x,0) =ug(x)  for xeRY. (1.9b)
The corresponding definition of a ‘weak solution” would be

Definition 1.1 — A non-negative function u € L*(Qr) is a weak solution
of (1.9) with initial data u if

— [ (ug +u"Ap) = /

uop(0) (1.10)
or RN



forall p € C>'(Qr) such that p(T) = 0.

C?'(Qr) is the set of functions on Q7 that are twice continuously differen-
tiable in x and once in 7. C>'(Q7) is the set of functions in C*'(Q7) whose
support is compact in Q. For a function x defined on Q7 we shall often need
the value of that function on the time-section ¢ = 7; we denote this by x (7).
ie.

X (O &y, 0.

Therefore the integral on the right-hand side of (1.10) is a different way of
writing

/ ug(x)p(x, 0)dx.
RN

Equation (1.10) is obtained by multiplying equation (1.9a) by ¢ and inte-
grating by parts. Consequently any classical (C 21y solution of (1.9a) is also
a weak solution: by exchanging the classical notion of a solution for Defini-
tion 1.1, we extend the set of solutions.

Existence and uniqueness. The comparison principle for uniformly
parabolic equations can be generalised to equations of type (1.6): if of two so-
lutions the initial and boundary values are ordered, then the solutions are also
ordered in the interior of the domain. This result immediately implies unique-
ness and generally plays an important role throughout the theory of (1.6). As
an example we give an outline of the existence proof in [OKYL58] (see also
the description given in [Ole63]).

For given non-negative initial data u, define the approximate solutions u*
for ¢ > 0 as the solutions of the problem

u, = Au" in RY xRt (1.11a)
u(x,0) = uo(x) +¢ for x e RV. (1.11b)

Since u = ¢ is a solution of (1.11a), we have the a priori inequality u® >
e by the comparison principle. By changing the function ™ in (1.11a) for
values u < & we can render equation (1.11a) uniformly parabolic and apply
classical results to obtain the existence of the solution u® [Fri64, LSU68]. This
procedure yields a sequence of solutions u® such that u® > & and therefore
every u® satisfies (1.11a). We then pass to the limit ¢ — 0 and find a solution
of (1.9).



Other methods of proving existence include monotonicity methods [Lio69]
and semigroup theory [BC81].

Since weak solutions are defined in terms of test functions ¢, the compar-
ison principle is proved by choosing appropriate test functions. We will come
back to this in Section 1.4 and Chapter 2.

Interfaces. The Barenblatt-Pattle solution demonstrates the existence of
interfaces: curves or surfaces in the x, z-plane that separate the regions {u > 0}
and {u = 0}. In general, if the initial datum u is non-negative but not strictly
positive, as in Figure 1.2(a), then the corresponding solution of (1.6) will have
interfaces. These are drawn schematically in Figure 1.2(b).

A A

(a) The initial datum (b) The x, t-plane

Figure 1.2: How interfaces develop from the initial datum

This behaviour is essentially different from the case of the linear heat equa-
tion (1.8). If we solve equation (1.8) with an initial datum as in Figure 1.2(a),
then the resulting solution will be strictly positive everywhere. This distinc-
tive behaviour of equation (1.6) is a consequence of the vanishing diffusion
coefficient.

Interfaces in the case of equation (1.6) t
always move outwards, into the region {u =
0}. They can remain stationary for a finite
time, but only initially, i.e. starting at t =
0: once the interface starts moving it never
stops. If there is a stationary period [0, #*] X
then t* is called a waiting time [Kal72]. Figure 1.3: Waiting times
An extensive research effort has resulted
in a complete determination of the regularity of the interface: in each of
the time slots [0, t*) and (¢*, 00) the location of the interface is an ana-
lytic function of time, while the junction at #* is at least Lipschitz continu-
ous [HK86, AV87, Angg88].




1.3 The adsorption-convection model

A large part of this thesis, Chapters 2-5, is devoted to a mathematical analysis
of a model that arises in the transport of a chemical substance by groundwater
flow. Since an understanding of the physical background can assist in the
interpretation of the mathematical results, we briefly sketch the derivation of
this model. More detailed derivations, especially emphasising the underlying
assumptions, can be found in [Bea72, Bea79, BV87, ZR94].

We investigate the spread of a chemical substance, or contaminant, in the
soil. We suppose that the soil is saturated with water, and that this water moves
with a known velocity, or more precisely discharge g.> We suppose that the
medium is rigid and the water incompressible, hence

divg = 0.

The chemical contaminant can be found in two states, or phases: dissolved
in the water or adsorbed on the soil surface. We introduce C as the scaled
dissolved concentration of the contaminant and S as the scaled adsorbed con-
centration. The total flux of contaminant is then given by the sum of convective
flux and diffusive/dispersive flux, i.e.

J=qC—-DVC.

where the tensor D combines the effects of molecular diffusion and mechanical
dispersion ([Bea79], Chapter 7, or [BV87], Chapter 6)3. Since the total scaled

2In hydrology it is common to use the discharge rather than the vaguely defined ‘flow’ or
‘velocity’. The discharge is the volume of water that passes through a given cross-section, per
unit area of this cross-section and per unit of time, and is expressed in the same physical units as
velocity. The relation between the discharge and what one could call “average water velocity’
involves the porosity. As an example to illustrate this, consider a (hypothetical) medium with
a porosity close to zero, i.e. relatively little pore space. For such a medium the ratio between
average velocity and discharge will be large, since of all the volume only a small fraction is
occupied by the moving water particles which contribute to the discharge. On the other hand, if
the porosity is close to one, then average velocity and discharge will not differ by much.

3A common expression for the dispersion tensor is

q®q
Iql

D= (a;, —ar) +arlqll,

which is equivalent to
Dg=o;|gqlg and Dr =oarl|q|riftr Lgq.

Here «; and o7 are the scaled dispersion lengths in the longitudinal and transversal direction
with respect to the flow g.



quantity of contaminant present in a unit volume is given by C+ S, the equation
of mass balance for the contaminant reads

(C+ 8); +div(gC — DVC) =0. (1.12)

We model the interaction between the dissolved and the adsorbed form of
the contaminant by the first-order differential equation

S, =kF(S,C), (1.13)

where the rate parameter k and the rate function F are usually determined
experimentally. It is common to assume that the equilibrium condition
F(S,C) = 0 is uniquely solvable in S for given values of C, thus defining
a function W such that

F(S,C) =0 & §="T(C) (1.14)

Since the function W is determined by experiments at constant temperature, it
is generally referred to as an isotherm.

The model described above is referred to in the literature as the non-
equilibrium adsorption model. Its name arises from the assumption, which
is implicitly present in (1.13), that the changes in solute concentration C due
to adsorption take place on the same time scale as those due to water flow and
dispersion. Alternatively, one can adopt the assumption of equilibrium adsorp-
tion by supposing that the adsorption kinetics are significantly faster than the
flow kinetics—which formally corresponds to* k = oo—and that therefore S
and C can be assumed to be constantly coupled by S = W(C). In this case the
system (1.12)-(1.13) reduces to

(C+w(C)), +div(gC —DVC) = 0. (1.15)

During the last ten years a generalisation of these two models has received
attention in the literature in which the porous matrix is assumed to have dif-
ferent types of adsorption sites characterised by different rate parameters k
and possibly different rate functions F (see [ZR94], p. 23-24 for a survey).
Typically, one type of adsorption site is assumed to satisfy the equilibrium as-
sumption, while at other sites the adsorption/desorption process is slow with
respect to the hydrodynamical processes. Such models, which we shall refer to
as multiple-rate models, appear to predict field tests with significantly higher
accuracy than the single-rate model.

4cf. Section 1.8



A different situation leading to the same mathematical formulation is that
of dual porosity. In this situation there are spatial variations in the porosity
which give rise to large fluctuations in the permeability (often of several or-
ders of magnitude). One could say that such a soil is physically heterogeneous
instead of chemically heterogeneous. The difference in permeability implies
that the flow is concentrated in the highly permeable regions, and the adsorp-
tion sites in the low-porosity regions are only accessible to the flow via molec-
ular diffusion. This results in a decreased effective adsorption rate for the sites
in the low-porosity regions.

To accommodate these differences, we shall assume throughout that the
total adsorbed concentration is given by

S=38+ 8.

We suppose that the reaction rate is high at adsorption sites of type I (equilib-
rium adsorption), and low at those of type II. This yields for §;

S = ¥;(C),
and for Sy,
Siie = kit F11(Si1, €).

For §; = 0 we regain the non-equilibrium adsorption model and for S;; =0
the equilibrium adsorption model.

Remark 1.1 While experimental determination of an isotherm is relatively
straightforward, the rate function F itself and the rate parameter k are ex-
tremely difficult to measure accurately. Because of this difficulty it is common
practice to assume certain specific forms for ¥, such as

F(C,8$)=¥({C)-S (1.16)
or
F(C,S) =C—wv (). (1.17)

If W is monotonically increasing—which is the common situation in practice—
then these forms satisfy the additional monotonicity properties

aF d
— >0 and —j: < 0.
oC a8
We will show in Chapter 2 that such monotonicity implies uniqueness of solu-
tions of an associated problem as well as a comparison principle. °

10



Various choices are made in the literature for the isotherms W; and W,;.
We refer to [DK92a] for the derivation of the most important types, and to
[EHB76] for a comparison of the predictions of models based on different
isotherms. We shall only mention the two most common categories (the clas-
sification is from [GSH74]):

1. Isotherms of Langmuir type:

W is concave near C = 0 and ¥/ (0+) < oo

K]C

——— where «; and «; are posi-
1 4+ «C’

with the generic example W (C) =
tive constants;

2. Isotherms of Freundlich type:
W is concave near C = 0 and ¥/ (04) = o0

for which a typical example is W(C) = «C? for some 0 < p < | and
k > 0.

In order to simplify the notation we write
u=C, v=>5, pu)=V¥,(C), plu) =u+¢u)
and thus obtain
(Bu) +v), + diviqu — DVu) =0 (1.18a)
v, = kF(u, v). (1.18b)

Note that if D = D is a scalar, then by scaling time with a factor k and space
with a factor (kD)'/? we can render (1.18) in the form

Bu), + v, +div(qu — Vu) =0 (1.19a)
v, = F(u, v), (1.19b)

where q(kD)~'/? has been replaced by ¢. The equilibrium adsorption case
v = 0 can be written in the form

B(u), + diviqu — Vu) = 0. (1.20)

Problems (1.19) and (1.20) will be the starting point for our investiga-
tions. With this derivation in mind we shall sometimes call (1.19) the non-
equilibrium problem and (1.20) the equilibrium problem.

11



Remark 1.2 The assumption that the discharge field ¢ is known beforehand
is not without importance. It implies that the distribution of the contaminant
does not influence the water flow. For the modelling of the spread of tracer
elements, like pesticides and herbicides, concentrations are very low and the
contaminants do not interfere with the driving forces. When concentrations
are high enough to cause a noticeable density difference, like in the case of salt
and fresh water (a difference of & 2.5%) this can result in a considerable force
acting on the fluid. In such cases the flow can not be determined beforehand
but becomes part of the problem.

In supposing that ¢ is a given entity we also dismiss a host of problems that
arise in practical situations. Due to small-scale variations in the soil properties
there is a large degree of uncertainty in the measured values of (especially) the
permeability. Consequently the actual discharge field is extremely difficult to
determine to any reasonable accuracy. Nonetheless we feel that the mathemat-
ical investigation of these models can contribute to the general understanding
of the problem of ground water contamination. °

Remark 1.3 Isotherms of Freundlich type lead to degeneracy in equa-
tions (1.19) and (1.20). If for instance

v, (C)=«CP, with 0<p<l,
then B(u) = u + «xu”. If we set w = f(u) and write ¢ = ,8*1 then w satisfies
(w + v), + div(gp (w) — ¢'(w)DVw) = 0.

This equation is degenerate since ¢'(07) = 1/8(0%) = 0. With this remark
in mind we shall call the function B degenerate whenever S’ is unbounded.
A form of degeneracy that has not yet been mentioned occurs when W is

of Freundlich type. If F is given by (1.16) we find

oF

— (0%, 0") = ¥, (0") = oco. 1.21

3C ( ) 11(07) =00 (1.21)
Note that if F is given by (1.17) then 3F/9C is globally bounded. We will
show in Section 1.9 that degeneracy of type (1.21) can give rise to interfaces,
much like degeneracy of B. °

To conclude this introduction to the physical background of the problems
that we investigate we note that many other models lead to similar equations.
The reaction in a permeable catalyst particle is a typical example from the
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large field of chemical engineering. This leads to a system of equations closely
related to (1.19) where u models the concentration of a mobile reactant and v
the concentration of a reactant that is fixed to the particle [HHP96b, Ari75].
Other well-known examples are found in the theory of combustion ([BE89],
Chapter 4, or [Maj81, DS95]).

In Chapters 2, 3, 4, and 5 of this thesis we will study various aspects of
problems (1.19) and (1.20), such as the existence and uniqueness of general
solutions, the existence of special solutions, the stability properties of these
solutions, and the existence of interfaces. In the next part of this Introduction,
sections 1.4-1.9, we will give an overview of these results and their relation-
ship to previous work. Sections 1.10 and 1.11, corresponding to Chapters 6
and 7, are devoted to interfaces for an inhomogeneous version of (1.6) and
self-similar solutions for (1.6) with0 < m < 1.

1.4 Existence and uniqueness for system (1.19)

For results concerning existence for initial-boundary value problems related to
equation (1.20) the reader is referred to [AL83, BT84, DK87a, Gil77, Gilg9,
GP76, Gon89]; the papers cited above also give some results on uniqueness,
and some more general results are found in [ACP82, BKP85, Ott95a, Ott95b].
In Appendix 2.A we give an example of a uniqueness result for equation (1.20)
on an unbounded domain under weak conditions on the regularity of the solu-
tion. In Chapter 4 we give our own proof of existence of a solution for a radial
version of equation (1.20), since the subsequent developments make explicit
use of the approximating sequence.

For system (1.19) the literature is much less extensive. We mention the
detailed treatment of Knabner [Kna91], as well as [DK87b, DS95, HHP96b,
HHP96a]. None of these studies, however, cover the simultaneous degenera-
tion of F and B (i.e., the situation when both F and g are non-Lipschitz con-
tinuous in «). In Chapter 2 we therefore present some well-posedness results
that explicitly allow for this case.

The major issue in well-posedness of system (1.19) is the question of
uniqueness. Formally, if F satisfies the monotonicity assumptions

izo and E50, (1.22)
ou av
then the system satisfies a comparison principle, which implies uniqueness.
This can be seen in two ways.
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The first comes from existing theory of parabolic systems. We can write
the system in the form

B(u); + div(qu — DVu) = g (u, v) (1.23a)
v = &(u, v) (1.23b)

with g (u,v) = —go(u,v) = —F(u,v). Since dg;/dv > 0 and dgr/du >
0, the right-hand side is a quasi-monotone reaction term (one also finds the
qualification ‘the system is cooperative’). If the left-hand side were uniformly
parabolic, the result would follow from standard theory [Pa092].

The second way is more technical but allows for a rigorous equivalent,
which is given in Section 2.2. Subtract equation (1.23a) for (u2, v;) from the
same for (u, vy), multiply by H(u; — u,), and integrate in space. Here H is
the Heaviside function (with H(0) = 0). Formally

j—z/[ﬂ(ul) — Bu)]y = /(ﬂ(ul) — B(uz)), H(uy — uy) (1.24)
and
/div(q(ul —up) — DV (uy — up))H(uy — up) > 0,
and therefore we find
%/[ﬂ(m) — Bl < /(gmul, 01) = g1 (2, v)) H(uy — wn).

By repeating the argument for equation (1.23b) and adding the two we find
d
- /([ﬂwl) —BuDls + o1 — valy) <
< / ((gl(ul, 1) — g1 (uz, 1)) H(u1 — uy)
+ (82(u1, v1) — g2(uz, v2)) H (v — vz))

= /(-7'_(141, v1) — F(uz, v2))(H (v —v2) — H(uy — u)).

From the monotonicity assumption (1.22) it follows that the right-hand side of
this expression is non-positive. Therefore

/([ﬂ(ul (1)) = Blua ()14 + [v1 (1) — v2(1)]4)

< / (181 (0)) — BuzON]s + [11(0) — v2(0)],)

14



for all ¢+ > 0, provided the term on the right-hand side is finite.
This result has two immediate consequences:

1. A comparison principle: if ug; > wup, and vg; > vy, then the corre-
sponding solutions satisfy u| > u; and v; > v, for all x and 7.

2. A contractionin L': if
|B(uo1) — Buoa)l + lvor — voa| € L',

then

/(Iﬂ(ul(t)) — Bluza()] + [vi () — va2(1)])

< /(lﬂ(um) — Bup)!| + lvor — vozl)

forall t > 0.

The reasoning given above is formal because equation (1.24) can only be
justified under additional assumptions on the regularity of the solution. This
well-known problem arises in many situations in degenerate diffusion and has
been approached in the past in different ways:

e By assuming additional regularity. If B(u), € L}, (Q)—supposing we
are solving system (1.19) on a domain Q = 2 x (0, T'|—then the argu-
ment given above can be made rigorous. During the last few years this
condition has been weakened to conditions of the form

Bw) € BV(0,T; L'(Q)), (1.25)

i.e. B(u), is a Radon measure ([Yin90] or [Pad95], Theorem I1.3.1).

This approach has two disadvantages: first, condition (1.25) does not
seem to have any sensible physical interpretation; second, the existence
of solutions satisfying (1.25) can often only be proved under additional
restrictions on the regularity of the initial data ([Pad95], Chapter 11.4,
or [GMT96], Proposition 3.4). For less regular data there may exist no
solution with the required regularity.
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e By adopting a different definition of a solution. A number of au-
thors [Bam77, BF91, DT94, Iva95, MT] (see also [Bre73], Chapter III)
consider weak solutions that are obtained as the pointwise limit of solu-
tions of approximate problems. The comparison principle that holds for
the approximate problems then transfers to the limit, implying unique-
ness.

Recently two novel approaches have appeared on the scene, both based
on the variable-doubling method that was originally introduced by Kruzkov
[Kru70] in the theory of hyperbolic conservation laws. The first approach
consists in proving that any solution implicitly satisfies an entropy condi-
tion [Car94, GMT94, Ott95a, Ott95b, KO96] which is related to the condi-
tion that is used in the original setup of Kruzkov (see also [GMT96], Sec-
tion 3.4). An alternative approach originated in the works of Plouvier and
Gagneux [P1095, PDG96, Urr96a, Urr96b] and introduces an equivalent for-
mulation of the problem in terms of renormalised solutions. For these solutions
the entropy condition can be bypassed.

Knabner and Otto have given a proof of L I_contraction and uniqueness for
this system, following the earlier work of Otto [KO96]. In Chapter 2 we do the
same, but for a specific case under less general conditions on the coefficients.
This has the advantage of allowing a simpler presentation while still providing
the basis for later results.

For system (1.19) in one space dimension with ¢ = 1, i.e.

Bu) + v + Uy —Uxx = 0 (1.26a)
vy = F(u,v) (1.26b)

on the spatial domain R, we prove the following theorem.

Theorem 1.2 — Let F be continuous and satisfy the monotonicity condition
(1.22), let F(0,0) = 0, and let B € C([0, 00)) N C*((0, 00)) such that " >
by > 0. For every ug, vo € L>(R) with ug, vo > 0, system (1.26) has exactly
one solution with initial data (ug, vo).

See Section 2.1 for the definition of a solution. In Chapter 2 we also prove a
number of properties of solutions, like a comparison principle and the conser-
vation of mass.
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1.5 Large-time behaviour in one space dimension

Chapters 3 and 4 of this thesis are concerned with the large-time behaviour of
solutions of equation (1.20) and system (1.19). In this section we give some
background information and explain the interdependencies between different
cases.

As an introduction to the results we examine Burgers’ equation without
diffusion,
12
Uy + i(u )x =)
which also can be written

(Vu) + 3u, =0,

by replacing u? by u. The latter form shows more clearly the relationship with
equation (1.20).
It is well known that the entropy solution of the Riemann problem

u,+%(u2)x =0 onR x RF
u(x,0) =u* forx <0

u(x,0) = uy for x > 0.

depends qualitatively on the sign of u* — u,. If u* > u,, then the solution is a
travelling (shock) wave; if u* < u,, then the entropy solution is a rarefaction
wave, i.e. u(x,t) = w(n) with n = x/t. Note that this sign condition is
connected with the convexity of the function u +— u?; with a concave function
the conclusion is reversed.

Us u

(@) u* > u, b)u* < u,

Figure 1.4: The two special solutions of Burgers’ equation

The important fact for our purposes is that these two types of solutions are
stable with respect to perturbations. In fact, any solution resembling initially
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(in some well-defined sense) one of these two ‘fundamental’ solutions con-
verges to it as 1 — 00. Thus we can turn the argument around: given ‘any’
initial datum o with limits #* and u, at minus and plus infinity, the corre-
sponding solution converges either to a travelling wave (if u* > uy) orto a
rarefaction wave (u* < uy).

For the problem of equation (1.20) in one space dimension,’

Bu) +uy —Uxx = 0, (1.27)

Van Duijn and De Graaf [DG87] proved similar statements to those about
Burgers’ equation: the large-time behaviour of solutions of (1.27) is either
of travelling-wave type or of rarefaction-wave type, depending on the signs
of u* — u, and B”. In Section 1.6 and Chapter 3 we extend the travelling
wave behaviour to system (1.19).6 The rarefaction wave situation introduces
an additional difficulty, and we will comment on this in Section 1.8.

There is a strong correspondence between the mathematical results on
large-time behaviour and experimental practice. For instance, column exper-
iments may show travelling wave profiles that are constant in time to a high
degree of accuracy, demonstrating that despite inhomogeneities and bound-
ary effects the travelling wave behaviour exhibits itself very strongly. This
observation is mirrored by the mathematical result—convergence to travelling
waves—that singles out the behaviour that will dominate, despite disturbances.

1.6 Large-time behaviour for system (1.19)

We place ourselves in one space dimension with constant coefficients, for
which system (1.19) can be written as

ﬂ(u)f + Uy + Uy — Uxx = O (12621)
vy = F(u,v), (1.26b)

5In one space dimension the flow field g and the diffusion/dispersion tensor D both reduce
to scalars. Under the incompressibility condition divg = 0 the flow becomes constant, and
if the medium is homogeneous this implies that D is constant, too (see footnote 3 on page 8).
Equation (1.27) follows by scaling.

oA priori the signs of u* —u, and v* —v, give rise to four distinct possibilities for the ordering
at infinity. However, the limit values at plus and minus infinity must satisfy the condition of
chemical equilibrium F (u, v) = 0. Together with the assumption of monotonicity M (page 47),
this reduces the number of alternatives to two.

18



after an appropriate scaling (see also footnote 5). Being interested in travelling
waves we consider these equations on the spatial domain R. For the exam-
ple that we give in this introduction we adopt a specific form for F (see also
Remark 1.1):

Fu,v) =v(u) —v.

The function v is continuous and strictly increasing.
We seek bounded travelling waves that tend to limit values (u«*, v*) and
(44, vy) at plus and minus infinity:

(f.g) — W*,v*) as n— —oo (upstream concentration)

(f,g) = (us,vy) as n— oo (downstream concentration).

Here n = x — ct is the travelling wave coordinate. A necessary condition for
convergence at infinity is the condition

o K//(u*) and v, = ¥ (u,),

which describes the assumption that (u,, v,) and (u*, v*) are states of chemical
equilibrium. We assume that u* > u, and v* > v, and for convenience we
set uy, = vy, = 0.

Van Duijn and Knabner [DK91] extensively studied travelling waves for
system (1.26) and characterised the conditions under which they are to be
found.

Theorem 1.3 (([DK91, DK92b]) — If the ‘total isotherm’ x(u) = PB(u) +
v (u) satisfies’

*

x(u

u*

x(s) > ) s forall0 <s < u*. (1.29)
then there exists a travelling wave solution (U, V)(x,t) = (f, g)(n) of system
(1.26) with limits (0, 0) and (u*, v*) at plus and minus infinity. The functions
f and g are strictly decreasing.

Again the convexity condition (1.29) and the signs of u* — u, and v* — v,
are linked. If we invert the sign of (1.29), then travelling waves exist if we

In fact the total isotherm is @(u) + ¥ (u), where B(u) = u + @(u) (see Section 1.3
and [DK91, DK92b]); however, for condition (1.29), as well as for other uses below, the added
linear term makes no difference. We use this definition of x to avoid introducing the additional
function ¢ into the formulation.
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invert either the direction of the convection (i.e. the sign of the term u,) or the
values at plus and minus infinity.

In Chapter 3 we use the technique of Osher and Ralston [OR82] to prove
that these travelling waves are stable with respect to perturbations:

Theorem 1.4 — Let (ug, vo) satisfy
0<up<u* and 0<vy =<V,

and
/R(lﬂ<uo)—ﬁ(f>1+|vo—g|)< 5. (130)

where (U, V)(x,1) = (f, g)(x —ct) is the travelling wave given by Theo-
rem 1.3. Let (u, v) be the corresponding solution. Then there exists a transla-
tion of (U, V), again denoted (U, V), such that

fR(Iﬂ(u(I) — U@+ lv(@®) = VD)) > 0
ast — oQ.

Remark 1.4 An important question in the study of convergence of general so-
lutions towards travelling waves is the following: given the initial data (u¢, vo),
to which translation of the travelling wave (U, V) does the solution converge?
In the course of the proof of Theorem 1.4 it is shown that it follows from hy-
pothesis (1.30) that there is exactly one translation of (f, g) that satisfies

/R(ﬁ(uo)—ﬂ(f)vao—g):O. (1.31)

Condition (1.31) characterises in a unique way the travelling wave to which
the solution converges. °

Remark 1.5 A common method of proving convergence to travelling waves
consists of linearising the problem around the travelling wave solution. Es-
timates for the decay of solutions of this linear problem are obtained by
a spectral analysis, and convert into convergence estimates for the solution
of the nonlinear problem in a neighbourhood of the travelling wave solu-
tion [Pel69, Eva72a, Eva72b, Sat76, CLS, Log]. This technique can only be
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applied when the nonlinear problem admits a meaningful linearisation. In the
case of degenerate diffusion problems, for instance, the linearised problem is
not well-posed in a reasonable sense. By contrast, the technique of Osher and
Ralston contains no linearisation and can be applied to situations of classical,
degenerate, and singular diffusion alike (see for instance [COR93]). Another
advantage of this method is that it provides an explicit domain of attraction
of the travelling wave, something which is usually not the case when proving
stability by linearisation. °

1.7 Injection from a well: stability of self-similar solu-
tions

Sections 1.5 and 1.6 were concerned with the large-time behaviour in one space
dimension of solutions of equation (1.20) and system (1.19). Here we con-
sider a situation in two dimensions where the large-time behaviour for equation
(1.20) is given by a self-similar solution.

One of the methods of cleaning a polluted soil in situ, without removing it,
is to pump water through it, possibly containing surface reactants or bacteria.
A common technique is to drill wells in the soil, and inject water through some
wells and recover it from others. Here we investigate the model problem of one
injection well in a homogeneous two-dimensional medium.

The flow domain is modelled by the set 2, = R?> \ {r < ¢}, ¢ > 0, and
the boundary r = ¢ corresponds to the surface of the well. The flow field g is

Figure 1.5: The injection well
a two-dimensional radial field caused by injection into the soil:

A
q(r) = —e;,
r

in which r = |x| and A is the Peclet number characterising the ratio of the
pump velocity and the diffusion coefficient.
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We assume a radially symmetric initial condition u and expect it to give
rise to radial symmetry in the solution. With the postulate u = u(r, t) equation
(1.20) reads

1
pu): + ;(ku —ruy)y =0

or

Bu): + u, — urr = 0. (1.32)

We seek solutions of (1.32) on the spatial domain {¢ < r < oo}. The region
{r < &} models the well by which water is injected, and we obtain the boundary
condition on r = & by assuming continuity of the flux at the boundary:

A A
—u(e, t) —u(e,t) = —ue fort > 0, (1.33)
€ €

where u, is the concentration of contaminant in the injected fluid. We study

two cases:

Contamination event: u, = 1, ug =0 (1.34)

Remedial event: u, =0, up = 1. (1.35)

Self-similar solutions

Equation (1.32) admits self-similar solutions of the kind
B = f (L)
] = ﬁ ’

where the function f = f(n) satisfies the ordinary differential equation
I BHOY + (f = 1f) =0 for 0<n<oco. (1.36)

Here primes denote differentiation with respect to the variable n. The two
events described above correspond to boundary conditions on the solution f
of (1.36):
Contamination event:  f(0) =1, f(00) =0 (1.37)
Remedial event:  f(0) =0, f(o0) = I. (1.38)
In section 4.3 phase plane techniques and approximation arguments are used to
prove the existence and uniqueness of solutions of (1.36) with boundary con-
ditions (1.37) and (1.38). The qualitative behaviour of these solutions shows a
marked difference between the cases 0 < A < l and A > 1, as can be expected
from the sign of the singular convection term (A — )r~'u, in (1.32). This is
shown in Figure 1.6.
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A>1

n n

(@ f(0) =1, f(c0) =0 (b) f(0) =0, f(o0) =1

Figure 1.6: The self-similar solutions of equation (1.20), with nonlinearity

Bu) =u+ u.
Stability of self-similar solutions

Our aim is to prove that general solutions of (1.32) with boundary conditions
(1.33) converge to self-similar solutions as either ¢ — 0 or t — 00, showing
that in some sense the self-similar solutions are the generic behaviour.

In order to compare solutions u* of (1.32) for different values of ¢ we trans-
form the equation to a fixed domain by introducing the following variables:

1
x:f, T=—, and w(x, ) =u’(r1). (1.39)
€ &

In the variables w, x, and 7, equation (1.32) with boundary condition (1.33)
reads

ﬂ(w)r+k—;lwx—w“:0 l<x<oo,7>0 (1.40a)
wx(l,r):k(w(l,t)—ue) >0 (1.40b)
Using this formulation the two limit processes
e — 0, fixed
and

t — oo, ¢ fixed

1/2 —1/2

both correspond to T — oo. Remark that since rt™ /< = xt , the transfor-
mation (1.39) leaves self-similar solutions of (1.32) invariant, and if f is a solu-
tion of (1.36) then the function w(x, 7) = f(x/4/7) is a (self-similar) solution
of (1.40a). Combining these two facts we conclude that to prove the conver-

gence (in some sense) of a solution u(r, t) to a self-similar solution f(r/ V1)
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when either ¢ — 0 or t — oo it is sufficient to prove that the corresponding
function w(x, ) converges to f(x//T) when 7 tends to infinity.

We prove the following theorem.

Theorem 1.5 — Ler w = w(x, 1) be the solution of

A—1
Bw) + —— wy — wy, =0 l<x<oo, >0
X

wx(l,t)=k(w(1,r)—ue) >0
wx,0) =upeR x> 1
where the pair (u., u) is either (1,0) or (0, 1). Let f be the solution of (1.36)

with corresponding values at n = 0 and at n = 0o. Then

sup |w(x, 1) — f(x/s/T)| <Ct™™

l<x <00
for some constant C where m is given by

A3 ifa<]
113 A=l

By the remarks above we conclude

Corollary 1.6 — Let the pair (u., ug) be either (1,0) or (0, 1), and let u® be

the solution of

A—1
Bu), + ul —~ur, =0 e<r<oo,t>0
r
us(e, 1) = A(ue(s, t) — ue) t>0
uf(r, 0) = ug r>e,

and let f be the solution of (1.36) with corresponding values at n = 0 and at

n = oo. Then

2\ m
sup [u(r,t) — f(r//1)] §C<87> :

EL<r<oo
where C and m are as in Theorem 1.5.
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Remark 1.6 For the limit process ¢ — o0 it is possible to extend Theorem 1.5
to the case of non-constant initial data, and we do so in Chapter 4. For instance,
instead of the condition uy = 0 in (1.34) one can allow up € L> (g, 00) subject
to the condition

/ rB(ug) dr < 00. (1.41)

Since B(u) = C+W¥;(C), condition (1.41) can be interpreted as stating that the
total amount of contaminant initially present should be finite. An analogous
extension can be done for (1.35).

It is not difficult to see why such an extension is not possible when we let &
tend to zero while keeping  fixed. For fixed finite time, the concentration pro-
file is strongly determined by the initial condition, especially for small times.
We can therefore not expect a limit behaviour that is given by f, and therefore
is independent of the initial distribution. °

1.8 The ‘fast reaction limit’ and large-time behaviour

We can organise the results on large-time behaviour that are mentioned in the
Sections above in Table 1.1. In this diagram we take the function 8 and the

(1.20) (1.19)

1-d, const

2 COMUE W DG87] | TW [Sec. 1.6]
u* > u,
I«

d,constq | o (DGET] %

u* < uy

2-d. radial | sss [Sec. 1.7] §

Table 1.1: The different types of large-time behaviour: Travelling Waves,
Rarefaction Waves, and Self-Similar Solutions (i.e. functions of the variable

n=x/V1).

total isotherm x = B+ to be concave as in the previous sections. In this sec-
tion we will briefly discuss the two entries marked by “x’. As an introduction
we first comment on what is often called the ‘fast reaction limit’.

The parameter k in equation (1.13) governs the rate of the adsorptiondesor-
ption reaction, the exchange between the adsorbed chemical and the dissolved
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chemical. If we do not scale out this parameter then system (1.19) becomes

(Bw) +v), + diviqu — Vu) =0 (1.42a)
vy = kF(u,v). (1.42b)
The fast reaction limit is the limit k — o0, corresponding to an adsorp-
tion/desorption process whose dynamics are substantially faster than those of

the convection and diffusion processes.
Equation (1.42b) when written in the form

1
Fu,v) = Ev,

suggests that in the limit k = oo the functions u and v satisfy F(u, v) = 0.
We can add to the credibility of this formal result, and gain some insight in the
process, by considering the two-dimensional ordinary differential equation
), = —kF(u,v)
v = kF(u, v),
which is essentially (1.42) with the non-local terms left out. If F(u,v) =

Y (1) — v, for instance, where ¥ is an increasing function, then the phase plane
is similar to Figure 1.7. For this dynamical system the parameter k simply

v - v=Y(u)

u

Figure 1.7: A typical phase plane

determines how fast the orbit converges to the equilibrium set {v = ¥ (u)}.
Obviously, in system (1.42) the ‘pull’ towards the set {v = v (u)} will be
stronger when k is larger. Consequently we expect that in the limit we have
v = v (u) and the single equation for u

X +uy —uxx = 0,

where x (u) = B(u) + ¥ (u) as in Section 1.6.
This formal result has been made rigorous by Knabner [Kna91] and Hil-
horst, Van der Hout, and L. A. Peletier [HHP96a]. Knabner considers very
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general systems with weak hypotheses on the coefficients, and proves a con-
vergence result in L7-spaces over Q7. Hilhorst et al. consider more specific
systems and boundary and initial data and prove a stronger result, uniform
convergence on compact subsets of Q7.

With these results in mind we now take a look at the limit case t — oo for
a simple system of type (1.19) with constant reaction rate coefficient k,

ﬂ(u)t + Ut + ux — Uxxy = O (1433)
vy =vY(Wu)—v (1.43b)

with rarefaction-wave conditions at infinity:
u* <u, and V" < v,

This is one of the entries in Table 1.1 that is marked with a star. Supposing that
the limit behaviour of the solution is of rarefaction-wave type, i.e.

u(x,t)~ f(x/t) and wv(x, 1)~ g(x/t),
then it makes sense to set
w, (x,t) =u(ix, At) and v, (x,t) = v(ix, Af). (1.44)

Under this transformation the system becomes

1
Buy) + Vi + tpy — Xu)\xx =1

v = AW () — va).

The limit process t — oo has transformed into A — o0, and the limit profile
is given by limy _, oo (113, v3)|1=1-

When A — oo we see two degeneracies appearing in these equations.
The first, that of the parameter multiplying u;,,, is a well-known one—the
vanishing of the diffusion term makes the solution converge to a solution (in
some sense) of the rest of the equation. This is the basis of the theorem proved
by Van Duijn and De Graaf. The second degeneration is new, and comparable
to the limit k — oo that we discussed above.

We now give a sketch of how these features could be combined to give a
result on the large-time behaviour of solutions of system (1.43). We start by
splitting the limit behaviour: let v, kK > 0 and consider the system

k k & k
:B(uu)t “t Uy, + Uy = VU = 0

vﬁ, = k(xﬁ(uﬁ) — v";)

27



and the intermediate equation
X(Wy)r + Uyy — Vidyyy = 0
where we again set x (u) = B(u) + ¥ (u). We now need two results:

1. Convergence as k — oo. For every ¢ > 0 there exists kg = ko(¢) > 0
and vy = vo(g) > 0 such that

[ (D) = s D) | ooy + 00D = Y (D) | oy = €
forall k > kg and 0 < v < vy.

2. Convergence as v — 0. For every ¢ > 0 there exists u = u(e) > 0
such that

o (1) = ugw (D | ooy < €
forall 0 < v < p. Here ugyy is the rarefaction wave solution of
X +uxy=0

with limits «* and u, and minus and plus infinity. (Note that upy, 1s
invariant under the scaling (1.44)).

By combining these two results we find Ag = Ao(g) > 0 such that

[ =t ., =

if L > A¢, and using the uniform continuity of ¥,

0= vl ., =
This tells us that ugy, is the limit profile for u in system (1.19), and that v
converges to ¥ (Ugy)-

Of the two hypothetical convergence results mentioned above the second
is in fact an alternative formulation of the theorem proved by Van Duijn and
De Graaf. The first result, however, we could not find in the literature in the
form in which it stands here. The major obstacle seems to be the convergence
that is uniform in v, without a lower bound on v. It does seem possible to
render a theorem due to Knabner ([Kna91], Th. 5.9) independent of v, but
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some additional work would be necessary to obtain the result in the form given
above.

For the second starred entry in Table 1.1 the situation is similar. A
transformation of the type (1.44) leads to a fast reaction limit in the adsorp-
tion/desorption equation. In this case, however, the diffusion coefficient does
not vanish, but remains constant under the transformation. By a similar com-
bination of limit processes we obtain a similar (formal) result: as 1 — 00,
system (1.19) effectively reduces to an equation of type (1.20), and the large-
time behaviour of the two solutions is therefore essentially the same.

1.9 Existence of interfaces for system (1.19)
If we cast equation (1.27) in the form
w; + (W) — (W) =0 (1.45)

with ¢ = B! then we expect that if ¢(u) resembles the function ™ in some
sense we should find interfaces for equation (1.45), just like for equation (1.6).
This has been investigated by a number of authors [OKYLS58, Kal73, Pel74,
Gil88] (see also the survey articles mentioned on page 4), and the final answer
is that interfaces appear if and only if

/
[E2as <o0,
0

s

which is equivalent to

/ ! ds < o0. (1.46)
0 B(s)

As an example of the practical meaning of this integrability condition, note
that for the function B(s) = s” for some p > 0 condition (1.46) is equivalent
to0 < p < 1. In this case ¢(s) = s'/7, and the ensuing condition 1/p > 1
corresponds to m > 1 for equation (1.6).

When we supplement equation (1.20) with the equation for v to obtain sys-
tem (1.19), we expect—under conditions on F—that the property of existence
of interfaces will persist. However, the travelling waves investigated by Van
Duijn and Knabner [DK92b, DK91] demonstrate that interfaces can also ap-
pear in the case of degeneration of the function F, even if f is non-degenerate,

29



1e. f 1/B(s)ds = oo. We will first discuss the results of [DK92b, DKO1],
then describe our own work on general solutions.

Let (£, g) be the travelling wave given by Theorem 1.3. Again we assume
u, = v, = 0 and set

L=sup{neR: f(n) >0} =supfneR:gn > 0}.

The first equality is a definition, the second is proved by Van Duijn and Knab-
ner. We collect as a theorem a number of results given in [DK91, DK92b]. We
recall that the total isotherm yx is given by x (1) = B(u) + ¥ (u).

Theorem 1.7 ([DK91, DK92b]) — Same hypotheses as Theorem 1.3.
. L <00 = 1/x is integrable near 0;
2. 1/B integrable near 0 — L < o0,

3. If F(u,v) = k(¥ (u) — v) for some k > 0, then

1
L <00 & s —m(s—) is integrable near 0,

where X (s) = fos x(o)do;
4. If F(u,v) = k(u — w‘l(v))forsome k > 0, then

L <00 <= 1/B isintegrable near 0.

Remark 1.7 As an explicit example consider the case
Bu) =u” and F(u,v)=u?—v,
with p, g > 0. Following part 3 of Theorem 1.7, we then have

L<oo < p<l or ¢g<l1 °

Remark 1.8 The last two parts of this theorem serve as an example to show
that it is not possible to close the gap between parts 1 and 2 without more
specific knowledge about the form of the function F. °
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Clearly not only degeneration of B, the classical case, but also degeneration
of F can lead to the existence of interfaces in travelling waves. In Chapter 5
we investigate interfaces of general solutions of the system of equations

Bu), +v, —divA(x,t,u, Vu) + B(x,t,u, Vu) =0 (1.47a)
v, = F(x,t,u,v), (1.47b)

on some domain Q C RY x R*. The structural conditions on the different
nonlinearities are given later. They are chosen as to include the case of sys-
tem (1.19).

We mentioned above the extensive literature on interfaces for single equa-
tions. For systems of equations the results are less abundant. We mention
the articles by Diaz and Stakgold [DS95] who considered problem (1.47) with
a reaction term of the form F(u, v) = g(u)h(v), and Hilhorst, Van der Hout,
and L. A. Peletier [HHP96a] who extended this to more general reaction terms.
Both works consider one-dimensional autonomous situations with constant ini-
tial and boundary data. A much more general result is given in [Kna91], for
system (1.19) with general convection and diffusion terms, but in one space
dimension with additional restrictions on the time derivative. This latter re-
striction was necessary to apply a comparison principle, as is explained in
Section 1.4, and with the recent results on uniqueness this restriction is proba-
bly unnecessary.

Most of the earlier results, including the three papers on systems mentioned
above, have been obtained by comparison with travelling waves or other spe-
cial solutions. The method that we use here, often called ‘the energy method
for free boundary problems’, is different, and in fact does not require that
the system satisfy a comparison principle. It was originally introduced by
Antontsev [Ant81], rendered in a mathematically rigorous form by Diaz and
Véron [DV85], and later extended and applied by these and several other au-
thors, amongst whom Bernis [Ber96] and Shmarev [ADS95]. In [AD91] this
method is applied to a different system of equations, arising in two-phase flow
in porous media. We refer to [AD] for a good overview of the existing litera-
ture on this method.

The method has two principal features. On the one hand, it is a local
method: it operates in subsets of the domain without taking into account global
information like boundary conditions or boundedness of the domain. On the
other hand, it has a very general setting, allowing to consider, for instance,
problems in any space dimension, (x, t)-dependence of the different terms of
the equations, and anisotropic diffusion. It is worth noting that the method is
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essentially qualitative, in the sense that it does not provide, in general, quanti-
tative estimates of the evolution of the support.

In Chapter 5 we give the details of the hypotheses, theorems, and proofs.
Here we shall merely try to give a flavour of the results that we obtain. Let us
mention that Section 5.4 contains a formal outline of the method and is meant
to serve as an introduction.

Two important conditions on the nonlinearities are the following:

mouPt! < du) < muPtt for wu >0, (1.48)
where ®(u) = [ sp'(s)ds and p € (0, 1], and
B(x,t,u,Vu)=q(x,t)- VB(u)

with ¢ € L*®(Q; RV) satisfying divg = 0 in the sense of distributions on
Q. Condition (1.48) characterises the degeneracy (p < 1) or non-degeneracy
(p = 1) of the nonlinearity 8. The condition on B is more of a technical
nature, and signifies that the term B, when interpreted as a convection term,
corresponds to a divergence-free and uniformly bounded flow. We assume of
A that

A, 8)-E=myll? and |AC, - &) <msl€l forall &eR"

The theorems that we formulate depend crucially on some hypotheses on
F. The first is®

I, There exists a number 0 < v < oo and a non-negative function 6 :
[0, v) — R such that

(u—60)F(,-u,v)=0

forallu > 0and 0 < v < v. If ¥ < oo then we set 8(v) = oo for all
v > 0.

Although this may not be clear at first sight, hypothesis |; is a very natural one
in view of the underlying model. If the rate function F has one of the forms
mentioned in Remark 1.1 on page 10, then

(u—v ') FC. - u,v) =0

$Throughout this work we use sans-serif letters for important hypotheses, and we try to
choose the letters in an intuitive way. Here ‘I’ stands for ‘Interfaces’.
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for all u > 0 and all v > 0 for which ¥ ~!(v) is defined. Obviously Y~ !isan
ideal candidate for the function 6 of hypothesis |;.

The first property that we prove is often called Finite Speed of Propagation
(FSP). We give an exact definition in Chapter 5; in the meantime it is a good
approximation to interpret FSP as ‘the existence of interfaces’.

Theorem 1.8 — Let hypothesis || be satisfied. If p < 1 then system (1.47)
has property FSP.

We already mentioned on page 7 the existence of waiting-times: the inter-
face of equation (1.6) for m > 1 can remain stationary over a time interval
[0, *], in which case the time * > 0 is called a waiting-time. For this to hap-
pen it is necessary that the initial data u satisfy a certain ‘flatness condition’
near the interface, i.e. if ug(x) = 0 for x > xo, then uop(x) may not grow too
quickly for x < xo.

The occurrence of waiting-times has been thoroughly investigated by
means of comparison arguments. The energy method that we apply supplies
a different means of determining the existence of waiting-times (we will call
this property WT).

Theorem 1.9 — Let hypothesis || be satisfied and suppose that B = 0. If
p < 1 then system (1.47) has property WT (see Chapter 5 for the accompany-
ing flatness condition).

Remark 1.9 In one dimension, the equation with convection

Bu) + B(u)y — uxx = 0

can be reduced to an equation without convection
Bu) —uge =0

by defining the new space variable £ = x — t. If a solution of the second
equation has a waiting-time, then the corresponding interface of the solution
of the first has an initial speed of 1. This shows that the restriction to the no-
convection case is a natural one. °

Both theorems stated above are concerned with degeneracy in 8: p < 1
in (1.47). One could interpret |; as a hypothesis that guarantees that equa-
tion (1.47b) does not interfere with the interface properties of equation (1.47a).

We now state a theorem which also proves existence of interfaces when for
instance p = 1 but F is degenerate. Introduce the hypotheses
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b 0 <FC(,-u,0)<ku? forallu > 0;
Iy kou? < F(-, -, u,0) < ksu? forallu > 0.

Here the exponent p is the same as above (i.e., given by (1.48)) and the expo-
nent y is free to be chosen in (0, 1). The k; are positive constants.

Theorem 1.10 — Let either of the following conditions be satisfied:
l, with p <1 or I3 withy < 1.
Then

1. System (1.47) has the property FSP;
2. If B = 0, then system (1.47) also has the property WT.

Again the flatness condition is given in Chapter 5.

Under hypothesis |3, Theorem 1.10 allows for p = 1, y < 1, in which case the
FSP and WT properties are consequence of the degeneracy in F.

We now describe the topics of Chapters 6 and 7. Both are concerned with
different, although related, problems.

1.10 Blow-up of interfaces

The Barenblatt-Pattle solution (1.7) of equation (1.6) has interfaces at Ix|> =
2y Nm/(a(m — 1)) t?#/N and although they move outwards as time increases,
they clearly remain finite for all finite time. A similar property holds true for
general solutions u of the initial value problem associated with (1.6). If the
initial value u(-, 0) is bounded and has compact support, then we can choose
an appropriately shifted and scaled version of the Barenblatt-Pattle solution
Ugps such that ugp(-, 0) > u(-,0) on R. This ordering then persists for all
time, and the finiteness of the interfaces of ug, carries over to the function u.
The interfaces may (and do) move outwards, but at every finite time they are
bounded.

We wish to investigate the situation for a slightly modified version of (1.6),
namely

o(u; = Au™  xeRY, >0 (1.49)
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t

ugp =0 ugp =0

b
Figure 1.8: The interfaces of a general solution are bounded by those of an
appropriately shifted and scaled Barenblatt-Pattle solution.

This equation (with m = 6) has been proposed as a model for heat transport in
a gas through radiation rather than conduction. In this model u represents the
temperature and p the mass density of the gas [ZR66].

Kamin and Kersner [KK93] investigated the behaviour of the interfaces of
solutions of (1.49) when N > 3. They showed that if p satisfies p € LAYy,
then for any initial datum u( with compact support there is a time 7" = T (uo)
such that the corresponding solution u = u(x, t) of (1.49) has non-compact
spatial support for all 7 > T'. In other words, the interface runs off to infinity
in finite time. We call this phenomenon interface blow-up, and inspired by this
result we investigated it further.

A detail that we should mention is that in one and two space dimensions the
quantity fRN pu(t)dx is conserved. If [ p < oo then we speak of a medium
of finite mass, and we show in Theorem 6.2 that u — u, uniformly on compact
sets, where u is the average of the initial data u:

/ p(x)ug(x)dx
def JRN

u =
/ p(x)dx
RN

This is in contrast to the case of constant p, in which solutions with finite initial
mass tend to zero uniformly on the domain. In space dimensions three and
higher the mass [ pu(t) is not conserved, and it is by obtaining a contradiction
to this fact that Kamin and Kersner prove the result mentioned above.

A first result on the interfaces [Pel94], valid forall N > 1, gives a sufficient
condition on non-blow-up, as well as a nearly-explicit bound for the interface.
The result is based on an explicit supersolution—essentially a generalisation
of the Barenblatt-Pattle solution—that supplies a bound on the interfaces of
the solution itself.
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We suppose that p is radially symmetric and non-increasing, and that u is
the solution of (1.49) with initial data u¢. The function

1 |)C|2 1/(m—1)
Ve 0= (7(5[1 - WL) ’

is a supersolution of equation (1.49) if f and g satisfy the inequalities

f'(t) <2m (1.50a)

N [
p(x)g2(1)

g0 > —m : (1.50b)

m—1px) f(Hg®)

for all x and 7 such that 0 < x < g(¢). We show in Chapter 6 that functions
f and g can be found that satisfy (1.50) and that for any initial datum u
with compact support we can also choose them such that v(x, 0) lies above
uo. It follows from the comparison principle that 0 < u < v, and therefore
the support of u must then be bounded by the interfaces of v, i.e. the curves
{Ix| = g(t)}. A possible choice for the function g is given by

g(t) 2mt
/ ro(r)dr = .
£ m—1

We summarise this in the

Theorem 1.11 — Let N > 1 and suppose that p is radially symmetric and
non-increasing in r = |x|. Let a and b be numbers such that

27 3\ VD
oo (i-5])
b?],

Then the support of the solution u to (1.49) with initial datum u satisfies
suppu(t) C {x € RN :r < g(0),

where g is given by

g() 2 t
/ rp(r)dr = e
b m —

It immediately follows that

I
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Corollary 1.12 — Under the conditions of Theorem 1.11, finite-time blow-up
can not occur if

/ rp(r)dr = o0.
0

Remark 1.10 The conditions on p can be relaxed, and this is done in Chapter

6. However, some important questions remain when p is strongly non-radial.
[ ]

Written for radially symmetric densities p, the sufficient condition for
blow-up introduced by Kamin and Kersner [KK93] reads

/ Ny dr < . (1.51)
0

This result is valid in space dimensions N > 3, and in this case there is obvi-
ously a gap between this result and Corollary 1.12. But in one space dimen-
sion, Corollary 1.12 turns out to be sharp:

Theorem 1.13 — Let N = 1 and suppose that

/ |x| p(x)dx < oo.

—0o0

Ifug > 0 and ug # 0, then the outer bounds of supp u(r) will tend to infinity
in finite time.

This follows from a simple formal argument which we make rigorous in
Chapter 6. By multiplying (1.49) by x and integrating over (0, 00) x (0, 1),
we find

/ x,o(x)u(x,r)dx—/ xp(x)uo(x)dx:// x(u™)x dxdt
0 o Jo

0

= —/ / (um)xdxdt—{—/ [x(u'"),(]gO dt
0 JO 0
— /O [x(um)x __um]go dt

If we suppose that the interface is bounded for 0 < 7 < 7, then the boundary
terms at infinity vanish, and we are left with

/ xp(xX)u(x, t)dx = / xp(xX)up(x)dx + /r u™ (0, t)dt.
0 0 0
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Since f|x|,o(x)dx < o0 implies fp(x)dx < 0o, we have u — u > 0 as
t — oo (see page 35), the last term in this equation will tend to infinity while
the left-hand side is bounded by

oo
(max uo)/ xp(x)dx.
R 0
We find a contradiction to our assumption that for all 7 > 0 interfaces were
bounded in space on [0, 7).

Remark 1.11 Recently the asymptotic behaviour of the solution and the inter-

face near the blow-up time have been studied by Galaktionov and King [GK].
[ ]

Two space dimensions

A simple trick allows us to extend this complete characterisation of the occur-
rence of blow-up from one dimension to two dimensions with radial symmetry.
If p and u satisfy (1.49) with both p and u being radially symmetric then by
setting s = logr = log |x| the functions

i(s) =u(r) and p(s) =r’p(r)
satisfy the one-dimensional equation
p(s)u, = (@) for se€R and t>0.
This gives us the result
Corollary 1.14 — Suppose that the function r r2p(r) is non-increasing

on [0, 00), and suppose that the initial datum u is radially symmetric and has
compact support. Then interface blow-up occurs if and only if

o
/ r? logrp(r)dr < oo.
|

Remark 1.12 Using the comparison principle we can extend this result to
non-radial solutions u by comparing a general solution with radially symmetric
solutions that lie above and below it at r = 0. °
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A question still unanswered is whether it is at all possible to characterise
occurrence of blow-up entirely in terms of the density function p. In one di-
mension the answer is obviously yes, at least for non-increasing densities. For
N = 2 with radially symmetric density Corollary 1.14 gives a complete char-
acterisation, but for different types of densities one expects different results.
For instance, if p only depends on the first coordinate x;, then by comparison
with the one-dimensional case we would expect instances of blow-up if

[e9]
/ lx1] p(x1) dx; < oo.
—0

Remark 1.13 In Chapter 6 we consider a slightly more general situation,
in which the nonlinearity u™ is replaced by a general function A(u) which
is allowed to degenerate in two points (scaled to 0 and 1). This situation
arises commonly in the modelling of two-phase flow in porous media, e.g.
oil and water in porous rock ([AS79], equation (2.91)) or salt and fresh water
in aquifers [JdJ81]. °

1.11 Fast diffusion

The equation known as the ‘fast diffusion equation’,
u, = Au™ for m <1, (1.52)

arises in a number of areas of application such as plasma physics, gas kinetics,
and semiconductors. This equation has a life of its own and we shall briefly
enter into it.

Herrero and Pierre [HP85] proved that the Cauchy Problem in RY for
(1.52) is well-posed for all 0 < m < 1 with initial data in L), (R"). This
situation is different from the heat equation m = 1 for which conditions on the
behaviour of the initial data are necessary to ensure uniqueness of the solution.
In the parameter range —1 < m < 0 for N = 1 an interesting result was
proved in [RV90]. For any ug € L'(R) and f, g € L (0, 00), f, g = 0, there
exists a unique solution of (1.52) with initial datum u( and satisfying the flux
conditions at infinity

lim u™ lu (x, t) = —f(1), lim u™ up(x, 1) = g(@).
X—>00 X—=>—00

Such flux conditions could be interpreted as inhomogeneous Neumann bound-
ary conditions at infinity.
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We will be interested in the long-term behaviour of solutions with fi-
nite mass and therefore concentrate on initial data ug € L'(RV). For
(N-2)4/N <m < 1,ie.(N—=2)/N <m < lforN >2and0 <m < 1
for N = 1, it is known [FK80] that the asymptotic behaviour is given by the
Barenblatt-Pattle solution (1.7). For N > 3 therange 0 < m < (N — 2)/N
is not covered. It is shown by a formal argument in [Pel81] and rigorously
in [BC81] that in this range any solution with finite mass extinguishes in finite
time due to a non-zero flux at infinity.

In Chapter 7 we prove the existence and additional properties of self-
similar solutions of (1.52) in the parameter range 0 < m < (N —2)/N. These
solutions have finite mass and therefore also extinguish in finite time. Galak-
tionov and L. A. Peletier have proved that general solutions of the Cauchy
Problem follow this self-similar behaviour prior to extinction [GP96a].

We seek solutions that are of the self-similar structure

u(x,t) = (T —t)*f(n) where n=I|x|(T —1)", (1.53)

where @ > 0 and B € R are constants that need to be determined. Such
solutions were also considered by Philip [Phi94] and in more detail by
King [Kin93b], who gave a formal motivation for the existence of such so-
lutions, and for the convergence of solutions with arbitrary initial distributions
to these self-similar profiles. With Theorems 1.15 and 1.16 we provide a rigor-
ous proof of King’s conjectures concerning existence and uniqueness of self-
similar solutions and some of their properties.
Substituting expression (1.53) into (1.52), we find that if we choose

a(l—-m)+28=1, (1.54)
then f satisfies the equation
' NN U = B +af =0 for 0> 0. (1.55)
Symmetry and smoothness require that
=0 at n=0. (1.56)

The restriction that f represent a solution of (1.52) of finite mass translates
into the condition

/ V= f(n)dn < oo. (1.57)

0
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One can show that (1.57), when combined with (1.55), is equivalent with the
statement that the flux F(n) = n¥~! f™=! f'(n) has a finite (negative) limit at
infinity. This statement is equivalent to the assertion that

f) = N=2/m a5 — oo, (1.58)

where the notation a(t) < b(t) signifies

a(t) . ) i
m —— exists and is positive.
t—>00 b([)

To conclude our preliminary remarks about equation (1.55), note that the scal-
ing

fay =y Y™ fm/y) for y >0 (1.59)

leaves the equation as well as both boundary conditions invariant. We therefore
always assume f(0) = 1.

Therefore the problem we shall study is: Find f : [0, 00) — R, positive
and smooth, and parameters « > 0 and B € R such that

NN Y — Bnf +af =0, f>0  forn>0 (1.60a)

f0)=0 and f(0)=1 (1.60b)
fn) =< n~N=2/m as n — oo (1.60c)
a(l —m)+28=1. (1.60d)

The relation (1.54) between the two parameters introduced by the Ansatz
(1.53) arises from the requirement that f satisfy an equation involving only
n. In situations where the problem under consideration satisfies a conservation
law (e.g. conservation of mass), this law supplies a second condition on « and
B, thus fixing the parameters. In this case we speak of self-similar solutions
of the first kind. Since we seek solutions that do not conserve mass, there is
no second condition on « and B for Problem (P). This extra degree of freedom
gives it the character of a nonlinear eigenvalue problem: the parameter « (or
B) is to be determined together with the solution function f. The function f
is then called a self-similar solution of the second kind [Bar79].

The main results are summarised in the following two theorems. The first
one gives existence and uniqueness for Problem (P).
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Theorem 1.15 — Forevery N > 2and 0 <m < (N — 2)/N, Problem (P)
has exactly one solution (f, a, B). Moreover,
N-2

- 1.61
0<a<(l—m)N—2’ ( )

and B is given by (1.54).

This theorem implies that for every value of m in the given range, there exists
exactly one self-similar solution of equation (1.52) of the form (1.53).

The second result concerns the behaviour of the eigenvalues « and f, as
given by Theorem 1.15 and equation (1.54), when we vary the parameter /m.
We indicate the dependence of « and $ on m by writing a(m) and f(m). Let
mo = (N —2)/(N + 2). We prove the following assertions:

Theorem 1.16 —
1. a(m) and B(m) depend continuously on m;,
2. B(mg) = 0; if m < mg then f(m) > 0, and if m > mg then p(m) < 0;
3. Whenm* (N —2)/N, then a(m) — oo and f(m) — —0oQ;

4. Whenm |0, then a(m) — 0 and B(m) — %

Theorem 1.16 can be interpreted in the following way. The parameter « de-
termines the decay rate of the maximum of the solution. When m approaches
zero, a(m) tends to zero, implying that the decay of the solution near 1 = T
is very slow. On the other hand, when m tends to (N — 2)/N, a(m) tends
to infinity, signifying a very fast decay rate. The parameter  determines the
spread of the profile. When B < 0, the profile of the solution spreads out as
t approaches T, while for 8 > 0 the profile shrinks, all mass concentrating in
the origin. Because B(mg) = 0, the solution u for m = my is separable, con-
sisting of a fixed profile multiplied by the factor (7" — 1)(N+2)/4 This situation
is very similar to the one considered by Berryman and Holland in [BH80].

1.12 Comments and miscellaneous references

In the preceding sections many references have been mentioned in relation to
the subjects treated in this thesis. Others are slightly less related but deserve to
be mentioned nonetheless.
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Related models

Van Kooten wrote a thesis [vK95] on an unusual model for contaminant transport by
a known discharge field. Contaminant particles are convected along streamlines and
diffuse in perpendicular directions. This allows for a relatively efficient numerical
approximation.

Two-phase immiscible and incompressible flow in porous media (for instance, oil
and water in underground reservoirs) is an important source of degenerate diffusion
problems. The origin of the degeneracy lies in the (experimental) observation that
when the concentration of a phase approaches its minimal value, the resistance of the
medium to flow of that phase becomes unbounded. Such models show the same kind
of two-point degeneration as the fresh-salt water model derived by De Josselin de
Jong (see page 3). See [AS79] or ([Bea72], Chapter 9) for a physical exposition, or
[KL84, ADB85, GMT96] for well-posedness results.

Large-time behaviour for (1.20)

In models of two-phase flow in porous media, especially in oil-water systems, equa-
tions of type (1.20) arise with convex-concave nonlinearities (Buckley-Leverett). Re-
cently the long-term behaviour of the solutions of these equations has been shown to
exist of combinations of travelling waves and rarefaction waves [BGH].

Section 1.5 does not cover the case u* = u,, which is more subtle. It was investigated
in [GDDY4] for one space dimension, and in [DDGY94] for two space dimensions.
The analysis shows an interesting unfolding of cases, depending on the nonlinearity
B. Closely related questions, also in several space dimensions, were considered by
Escobedo and others in [EVZ93].

Travelling waves for (1.19)

Besides the work by Van Duijn and Knabner on travelling waves for the non-
equilibrium model (1.19) many other authors have constructed travelling wave so-
lutions. Most of these results are for linear models (see the introduction of [Zee90]
for an overview). By contrast the nonlinear theory is much less developed. Van der
Zee [Zee90, Zee91] introduces approximate travelling wave solutions, by disregarding
a second-order derivative. On these solutions Logan and Ledder perform a perturba-
tion analysis [LL95]. Also the article [DKZ93] should be mentioned, in which the
authors apply the results of [DK91] to a specific combination of isotherms.

Well-injection

Goncerzewicz [Gon92] considered a problem related to that of section 1.7 and Chap-
ter 4 in which water is not injected into the medium but extracted from it by main-
taining a low water level in the well. This results in Dirichlet boundary conditions at
r = ¢. The resulting equations are similar and some of the existence and uniqueness
results overlap.
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Chapter 2

Well-posedness for system (1.19)

In this chapter we set the stage for later investigations of Problem (1.19). The
problem we treat is a Cauchy Problem associated with (1.19) in one dimension,

B) +vi+ux —ur =0 (2.1a)
v, = F(u,v) (2.1b)

on Q7 =R x (0, T] with 0 < T < oo with the initial condition
(u, v) = (up, vo)

at t = 0. For the length of this chapter we shall call this Problem (P).

2.1 Formulation of the problem

Definition 2.1 — A solution of the Cauchy Problem (P) is a pair of functions
(u, v) such that

I. ueC(Qr)NL®(Qr) withu, € L} (Qr);
2. veC(0, T]; L®(R));

3. u and v satisfy the equations
—/Q ((B) + V) + u(pex + ¢2)) = /R(ﬁ(uo) +v0)e(0)  (2.2)
and

—/ v :/vo<p(0)+ F(u,v)g (2.3)
or R or

for every ¢ € Cf'l(a) such that (T) = 0.
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Sub- and supersolutions of Problem (P) satisfy parts I and 2, as well as (2.2)
and (2.3) with the equality signs replaced by < for subsolutions and > for
supersolutions.

Remark 2.1 The regularity assumptions on u and v deserve some expla-
nation. It is possible to define solutions of degenerate diffusion problems
with less a priori regularity (see e.g. [AL83, Ott95a, Ott95b]), whilst retain-
ing the well-posedness of the problem. A posteriori one can show that the
solutions are in fact more regular than assumed in the Definition. In the case
here at hand, regularity does not depend on the coupling between the equa-
tions; each equation produces its own regularity. In fact, any pair of functions
(u,v) € L®(Q7)? that satisfies equations (2.2) and (2.3) automatically has
the regularity of parts 1 and 2 of this definition. Before we show why, let us
note that this is only true for solutions, not for sub- and supersolutions. In or-
der to prove a comparison principle for sub- and supersolutions (Theorem 2.2)
we need to assume a priori the additional regularity.

The boundedness of F when u and v are bounded automatically implies
v € C([0,T]; L°(R)). The a priori regularity of u follows from equa-
tion (2.1a) in two steps. The first is a uniqueness result for the equation

Bu) +uy —tyy =g (2.4)

with initial data ug € L (R). Solutions of this problem are defined similar to
(2.2). Here the right-hand side g € L*(Q7) is assumed to be given. Unique-
ness of a solution u € L>°(Q7) of this problem is established by extending
results from [BKP85] (Theorem C of the Appendix of that reference; see also
Appendix 2.A for a different proof).

The second step consists in remarking that because of this uniqueness any
solution of (2.4) is the pointwise limit of regular solutions u, of regularised
problems. In such a case well-known results [DiB83, Sac83, Zie82] imply that
solutions are continuous; also, a bound of the type

luncll 20,10 < C

is readily obtained from which the regularity u, € L[20 (Qr) follows. ©
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Remark 2.2 It will be useful to note that because of the continuity in time an
equivalent formulation of part 3 of Definition 2.1 reads

/R(ﬂ(u(r)) +v(t))e(t) — / ((Bw) +v)pr + ul@y + ¢1r))

1

= /R (Bluo) + v0)p(0) (2.5)

and

/v(t)qo(t)—/ vwzzfvow(O)Jr Fu,v)p (2.6)
R " R QO

forall0 <t < T and ¢ € C>'(Q,). .
We now state the conditions on the nonlinearities 8 and F.

B € C(10,00)) N C*((0,0)), B(0) = 0, ' = by > O,
By { and B’ and B” are bounded on compact sets away from the
origin;

F 10, 00) x [0, o0) — R is continuous, F (0, 0) = 0, and
F satisfies the one-sided Lipschitz conditions

F(ur, v) = F(uz, v) >—L, forall wuj,u;,v>0

uy —up
OSL
and
F(u, — F(u,
(, v1) (, v2) <L, forall wu,v;,vp >0
V) — )

for some L,, L, > 0.
M F satisfies OSL with L, = L, = 0.

Hypothesis B will always be tacitly assumed; the other two will be mentioned
explicitly where necessary. By ‘F is monotone’ we shall mean hypothesis M.

Remark 2.3 Condition M is a very natural one from the point of view of the
physical model described in Section 1.3. The function F models the adsorp-
tion rate, the amount of chemical moving from dissolved to adsorbed phase per
units of time and space. The natural situation would be that this rate is an in-
creasing function of the concentration of dissolved chemical, and a decreasing
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function of the concentration of adsorbed chemical. In fact it would be diffi-
cult to imagine a chemical mechanism that did otherwise. However in many
other models, for instance in mathematical biology, non-monotone behaviour
of zero-order terms is not uncommon. ®

2.2 Uniqueness for monotone functions 7

Throughout this section we assume that F satisfies hypothesis M. Define for
every A > 0 the weight function

wy(x) = e M I+ for x e R
Theorem 2.2 — Let (1, v1) be a subsolution and (uz, v2) a supersolution of

Problem (P) with corresponding initial data (uo1, vo1) and (up, vo2). Then
there exists a constant C > 0 that does not depend on A such that

/wa([ﬂ(ul(t)) — Blua ()] + [v1(t) — v2(D]4)

= 0 [ ((Blunn) = Bl + [ = k) @27
R

forall0 <t <T.

Theorem 2.2 simultaneously provides three distinct results:

1. A comparison principle:

if ug; > ugz and vo; > vz, then u; > uy and v; = vy on or;

2. A contraction in L'"(R): if B(uo1) — B(ugz) € L'(R) and vo; — vz €
L'(R) then

181 (1)) — Blur(N) | Liwy + 1 (1) — v2(D L1 (w)
< 1Buor) — Bwo) L1y + llvor — voll L1 (g) ~(2-8)

forall 0 < ¢ < T. This follows from the limit A — 0in (2.7);
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3. Continuous dependence on initial data in a weighted space L(‘uA (R) in-
duced by the norm

leellLy gy = / w; |ul
* R

of the form

181 (D) = Bz )lly, @y + 101(0) = w20l @

C(A+2?
< e“HA (| Bugr) — By @ + llvor — vozIIL)%(lm),

forall0 <t <T.

While the contraction in L'(IR) only has a sensible definition for initial data
with difference in L' (R)?, the continuous dependence result in L (‘uk (R)? holds
for all bounded initial data. We might as well mention a fourth property that
we prove in Corollary 2.3:

4. Conservation of mass: if

A;(Iﬂ(um) — Bup)| + lvor — voz|) < oo,
then

f (,B(ul) — B(uz) + vy — vz) 1s constant in time. (2.9)
R

Remark 2.4 In physical terms, the quantity 8(u) + v corresponds to the total
amount of chemical contaminant that is present in a unit volume. Hence the
interpretation ‘Conservation of mass’ for (2.9). Although properties 2 and 3
clearly are related to the physical mass 8 (u)4v, their exact interpretation is not
obvious. Let us note that the contraction in L' will play an important role in
the proof of convergence of general solutions to travelling waves (Chapter 3).

®

Proof of Theorem 2.2. We will apply a theorem due to Otto [Ott95a,
Ott95b] that gives an estimate for single equations. Although strictly speak-
ing the hypotheses of [Ott95a, Ott95b] exclude application to the situation at
hand, it is easily verified in the proof that these restrictions are non-essential.
We shall briefly comment on this.
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We shall apply the theorem proved by Otto to the equation

Bu) +uy —uxy =8

on a domain (a, b) x (0, T) for some a < b, with non-homogeneous Dirich-
let boundary data on {a, b} x (0, T). Clearly both u; and u, satisfy such an
equation with different zero-order terms g and boundary data. Note that for u;,
g = —F(u;,v)) € L*((a, b) x (0, T7)).

There are two main differences between our situation and the hypotheses
of Otto’s theorem. First, Otto disallows zero-order terms that depend explicitly
on x and ¢. It is readily verified that the proof holds unchanged for zero-order
terms that are in L. Second, Otto demands Dirichlet data that are constant in
time. For test functions with support inside (a, b) x [0, T] this is not essential
either.

We now proceed with the proof. We set U = uy — Uy, U = vy — V2,
,3 = B(u)—P(uz), and F = F(uy, vi)—F (uz, v2). Let x be any non-negative
element of C2°(R), and choose a, b € R such that supp x C (a, b). Define H
to be the Heaviside function with H(0) = 0. When we apply Otto’s theorem
to the solutions u; and u, with the test function y(x, ) = H(t — ) x(x) we
obtain

/xB+(t)—/xB+<0> s—/ xwa)(ﬁx—a)—/ x F H (it).
R R QO o

Here Q; = R x (0, t]. Now since

—/ XXH(IZ)IZX = —/ Xx(ﬁ+)x :f Xx.rﬁ+’
. ; o
we obtain

/Rx5+(t)—/RxB+(0)§/ ﬁ+(xx+xxx)—/ x FH(it).

Now let x converge to the function w,, for instance by setting x = w; 1,
where 1, is a cut-off function. By observing that there exists a constant ¢ > 0
independent of A such that

lwil, Ware] < c(h + 2wy on R,

we find that

f By (t) — f 03 B4 (0) <2c(A+ A7) | wiig — f w, FH (it).
R R o '
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Next we consider equation (2.3). When we multiply the difference of equa-
tions (2.3) for v; and v, by H(V)w; and integrate we obtain

/ T () / 054 (0) < / o FH(),
R R 1

and by adding this inequality to the previous one,

wa(5+(t)+ﬁ+(t))—/wx(5+(0)+17+(0)) <

R

5/ a)x]?(H(f))—H(ﬂ))—%ZC(A-f—Az)f wyuy. (2.10)
t Ql

Set h = H(v) — H(u). Clearly h takes values in the set {—1, 0, 1}. At
points (x, t) € Q, where h(x,t) = 1 we have v; > vy and u; < uy; therefore,
by hypothesis M,

Fuy, v1) < Flup, v2)

and Fh < 0. Similarly, where h = —1 we also have Fh < 0. This implies
that the first term on the right-hand side in (2.10) is non-positive. Since " >
by > 0, we can estimate the last term in (2.10) by

2c ) -
b—()x + A7) | o By
0 (o)

Thus we can use Gronwall’s Lemma to conclude that

/ or(Bat) + 54.(1)) < COPD / 0, (B+(0) + 4.0,
R

R

where C = 2¢/by, as asserted. This concludes the proof of Theorem 2.2.

Corollary 2.3 (Conservation of mass) — If
/(lﬂ(um) — Bup)| + lvor — ve2|) < oo,
R
then the integral

fR(ﬂ(u]) — Buz) + v — vy)

is constant in time.
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Proof. Subtract equations (2.5) for u;, uy and a test function x € C2°(R):

/Rx(ﬂ(ul(t))—ﬁ(uz(t))+vl(t)—v2(t))
= / x (B(uor) — Buo2) + vor — v02) +/f(u1 —u2) (X, + Xyx)-
R 0JR

Since B > by > 0, the function u; — uz € L' (R x (0, t)); the result then
follows from letting x converge towards the function 1. °

For the proof of existence of a solution of the Cauchy Problem (P) (The-
orem 2.7) we shall need a comparison theorem for the Cauchy-Dirichlet Prob-
lem on bounded sets. We state here the definition of a solution and the com-
parison theorem. The proof of this theorem is a slight perturbation of that of
Theorem 2.2.

Let  C R be a bounded open interval. We consider the problem

ﬂ(u)t+vt+ux —uxx =0
Uy :f—(u’v)

on O = Q x (0, T with the boundary condition
u=0 on 92 x(0,T]
and the initial condition
(u, v) = (uo, vo)
at t = 0. We call this Problem (C D).

Definition 2.4 — A solution of the Cauchy-Dirichlet Problem (C D) is a pair
of functions (u, v) such that

1. ueC(HNLX0,T; H(Q);
2. ve C(0, T]; L=(R)),

3. u and v satisfy the equations

- fQ (B +)0r + ulper +90) = fQ (Bluo) + v0)p(0) (211)
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and

—/ v, :/ vop(0) + F(u,v)ep (2.12)
0f Q of

forevery ¢ € Cz"(_Q_?) such that o(T) = 0and ¢ = 00on 92 x (0, T,
and the boundary condition

u=0 on 92 x(0,T]. (2.13)

Sub- and supersolutions of Problem (C D) satisfy parts | and 2, as well as
(2.11), (2.12), and (2.13), with the equality signs replaced by < for subsolu-
tions and > for supersolutions.

Note that we do not incorporate the boundary condition (2.13) into the function
space in part 1. This allows us to consider sub- and supersolutions with non-
zero boundary values.

We recall that we assume hypothesis M to be satisfied.

Theorem 2.5 — Let (1, v) be a subsolution and (uy, v2) a supersolution of
Problem (C D) with corresponding initial data (ugy, vo1) and (ugy, ve). Then

/ ([Bui (1) = Blua(N]y + w1 (1) — va(0)]4)
Q

< / (Buo) — Buo)l+ + [vor — vo2l+)  (2.14)
Q

forallO <t <T.

Proof.  The proof follows the same lines as the proof of Theorem 2.2. A
non-obvious difference is that we apply the theorem of Otto to the test function
y(x, ) = H(t — 1), a function that is constant in space. The restriction to
test functions with compact support does not hold for the case of zero Dirichlet
data. ®
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2.3 Uniqueness for non-monotone 7

For completeness we mention here a generalisation of Theorem 2.2 to the case
of non-monotone rate functions F. Under hypothesis OSL a comparison prin-
ciple does not hold in general—as shown by examples in the next section—but
the continuous dependence in L (lm and the contraction in L' still hold in weak-
ened form:

Theorem 2.6 — Let hypothesis OSL be satisfied and let (uy, v1) be a subso-
lution and (u, v2) a supersolution of Problem (P) with corresponding initial
data (uoy, vo1) and (ugz, vo2). Then

Awmwwm»—ﬂwxnn+wmn—wam

< LHCAF /wa(lﬁ(um) — Buo)| + lvor — veal)  (2.15)

forall0 <t <T. Here L = 2max{L,/bo, Ly}.

Proof. We enter the arguments of the proof of Theorem 2.2 at inequal-
ity (2.10). Under hypothesis M the first term on the right-hand side is non-
positive and can be discarded. Under hypothesis OSL this term yields a posi-
tive contribution and can be estimated by

/'wwLumr+mey

t

where s_ is defined as [—s];. By interchanging (u;, vy) and (u2, v2) and
adding we obtain

/wa(lﬁ(t)leIf)(t)l)—/wa(IB(O)IHT)(O)I)

< 2max(Ly/bo. Ly) [ @x(1B1 +181) +2ca +2%) |y lal.
QI Ql

Estimate (2.15) follows by applying Gronwall’s Lemma to this inequality.
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2.4 Counterexamples

To motivate the hypotheses that we have set on F in order to prove uniqueness
and a comparison principle, we briefly discuss a number of counterexamples.
See also the book by Pao [Pa092], section 1.6.

As an example to show the necessity of M for a comparison principle,
consider the problem

U+ v, — Uy =0 0<x<1,t>0
Vy=—u-—v O0<x<1,t>0 (2.16)
u,t) =u(l,t) =0 t >0
u(x,0)=vx,0 =0 0<x<l.
Clearly u; = v; = 0 is a solution to this problem. If we construct a second

solution (u2, v2) by solving this problem with initial data v(-,0) = 0 and
u>(-,0) > 0 then by equation (2.16) solution v, instantly becomes negative
everywhere on (0, 1). This shows that a comparison principle can not hold for
this system. This idea can be extended to show that for (2.1) for smooth rate
functions F a comparison principle can not hold if F violates the monotonicity
assumption M at any value of (u, v).

When M is relaxed to OSL, the comparison principle is lost but uniqueness
still holds. When the rate function F also violates the one-sided Lipschitz
conditions then non-uniqueness can Occur.

This is well known in the case of ordinary differential equations: if we
seek a solution y of the problem

y' =y?, with y(0) =0, (2.17)

then for p > 1 there is a unique solution y = 0. For 0 < p < 1, however,
there is an additional solution

y(t) = ((1 = pyr) /7,
and since y’(0) = 0 the functions

0 0<t<c

ye(t) = {y(f —¢) t>c

for any ¢ > 0 are also solutions of problem (2.17). In this case, the loss of
Lipschitz continuity of the nonlinearity clearly results in non-uniqueness.
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For a second example we extend these ideas to partial differential equa-
tions. Consider

Uy = Ugy +uP t>0, xeQCR (2.18)
u(x,0)=0 xeN
Here we write u? = |u|” "' u.

On © = R we can immediately identify the solution u(x, ) = y(r). We
can also find other non-zero solutions, for instance the self-similar solution

we.ty = VP py, =

n e \/;’
where f satisfies the equation
1 1
—f'+——f=5uf' =f" on R
1—p 2

We are free to choose f(0) and f’(0), and here we choose f(0) = 0 and f'(0)
positive but not too large. The resulting function f is plotted in Figure 2.1.

,/\ ﬁ o~

Figure 2.1: The function f.

We use this self-similar solution to construct a non-zero solution to (2.18)
on the bounded domain = (0, 1) with homogeneous Dirichlet boundary data
u(0, 1) = u(1, 1) = 0. Denote the first positive zero of f by n;. If we define
the function

tl/mp)f<\%> for 0<x<myt
0 for mvi<x=<1

then for0 <t < nfz the function u is a subsolution (in distributional sense)
of equation (2.18). By applying the technique of sub- and supersolutions to
u and y we prove that there is at least one solution u such thatu < u <y
on [0, 1] x [0, nl_z]. Clearly u can not be identically equal to zero and this
establishes non-uniqueness on a bounded domain.
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2.5 Existence for monotone F

Theorem 2.7 — Suppose F satisfies condition M and let (ug, vo) € L®(R)?,
up, vo > 0. Then there exists a solution (u, v) of Problem (P) as defined in
Definition 2.1.

Proof. Step 1: approximation on a bounded domain. Define for n N
the spatial domain €2, = (—n, n) and set O, = 2, x (0, T]. We consider the
approximate problem (FP,)

Bu), + vy +uy —Uxy =0 x€Q, 0<t<T (2.19)
v, = F(u,v) x€Q, 0<t<T (2.20)
u=>0 x€{-n,n}, 0<t <T

(u, v) = (u,v) at t=10.

Solutions to this problem are defined as in Definition 2.4.

We first introduce an a priori bound. Define the functions u, v : [0, T'] —
R by

Bi) = —F(u, v), u) =up = max ug,
v = F(u,v), v(0) = vg = mﬁgx V0.
Since (B(u)+v) = 0, both B(u(t)) and v(¢) are uniformly bounded by B (it¢)+

o. From the lower bound on g’ in By it follows that there exists M > 0 such
thatu(t) < M and v(t) < M forall0 <t <T.

We prove the existence of a solution to Problem (P,) by the Schauder fixed
point theorem. Define the convex set

X ={ueL*(Qn):0<u(x,t) <i()on Q).

We introduce the operator 71 : X — L?*(Q,), where Tju is defined as the
solution ¥ of the ordinary differential equation

0, = F(u,v) on Q, (2.21)

with initial condition 9(-, 0) = vg. By hypothesis M the function v is an upper
bound for 0: if forany x € Q,,0 <t < T we have 0(x, t) = v, then

0, (x, 1) = Fu(x, 1), 0) < Fpu,v) =0.
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The possibility that 0, (x, ) = 0 is ruled out by local uniqueness since F is
one-sided Lipschitz continuous in its second argument. By a similar argument
the constant 0 is a lower bound for 9. As a result, 7;u belongs to the set

Y ={velL*Q,):0<uv(x,t) <o) on Q).

The operator 7; : ¥ — L?(Q,) is defined in the following way: & = T,v
is the solution of

,B(ﬁ)t + 12)( - ﬁxx - _-7:(12’ U) on Qm (222)

subject to the boundary condition # = 0 and the initial condition & = u¢. The
functions u = 0 and u = u are sub- and supersolutions: for u this follows from

Blu), = —F @, v) = —F(u, v)

since v < v on Q,, and for u = 0 the argument is similar. As a result the
composite operator 7 = 7, o 71 maps X into X.

Next we prove that the operators 77 and 7 are continuous in the L?-norm.
For the length of this proof, let ||-|| denote the norm of L?(Q,). We first con-
sider 7;. Let u™, u € X, |[u™ —u] — 0asm — oo, and set v™ = Tju",
v = Tiu. We need to prove that |[v" — v|| — 0. By multiplying the difference
of equations (2.21) with w™ = v™ — v we find

t
Sup %‘/;2 (wm)2 S Sup /(;/ (f(um’ Um) _f(um, U))wm +

0<t<T 0<t<T
|F@™, v) = Fu,v)| |w"]. 2.23)

The first term on the right-hand side is non-positive by hypothesis M and we
find the estimate

|w™|| < C |F@™, v) = Fu,v) .

Since F is continuous, there is a subsequence along which F(u™, v) —
F(u,v) — 0 almost everywhere in Q,, and consequently [|w™| — O along
that sequence. By the uniqueness of the limit the whole sequence converges to
Zero.

For the continuity of 7, we take analogously a sequence v, v € Y, such
that |[v™ — v]| — 0, and define in the same way u™ = T,v" and u = Tv, and
7™ = u™ — u. By the results of Sacks [Sac83] the sequence u™ is uniformly
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continuous and we can therefore extract a subsequence along which #™ and v™
converge pointwise almost everywhere in Q,,. We can then pass to the limit in
the equation

i
- /O /Q (BU™ g + u™ (@x + ¢xx)) = | Buo)p(0)

Qy
a
+/ f‘(um’ Um)QD
0 JQ,

for every ¢ € C°([0, T] x §2,,). The function u = T>v is the unique solution
of the limit equation which proves that the pointwise limit of ™ is equal to u.
Again the uniqueness of the limit implies that the whole sequence converges.

The uniform continuity of ™ also implies that 7 is compact. It then fol-
lows by the Schauder fixed point theorem that there exists a u € X such that
T u = u, implying that the pair (u, v) with v = Tju solves Problem (FP,).

Step 2: the limit n — oo. We denote the solutions of (P,) obtained in
this way by (u,, v,) and we let n tend to infinity. By the comparison principle
on bounded domains (Theorem 2.5) u,, and v, form increasing sequences. We
pass to the limit in equations (2.2) and (2.3).

The regularity assumptions of Definition (2.1) are satisfied for v by the
uniform boundedness of v; = F(u, v) and for u by the uniform continuity of
the functions u™ due to Sacks and Remark 2.1. °

Remark 2.5 If the problem is semilinear, i.e. in the case of equations (2.1) if
B is linear, then it is possible to construct an operator for which one seeks a
fixed point by inverting the principal part. The resulting operator is compact
and one finds an existence result for small time [CL95]. °

Appendix 2.A Uniqueness proof for equation (2.4)

For sake of completeness we give here a uniqueness proof for the equation
Bu) +uy —uxx =8 (24)

on Q7 under weak conditions on the regularity of the solution. We assume g €
L>(Q7) and the initial data uy € L*(R) to be given. We consider a solution to
be a function u € L*(Q7) such that

—/) (Bw)g: + u(px + @xx)) = / ﬂ(uo)¢(0)+/ 4% (2.24)
Or R

T

for every ¢ € C>'(Qr) such that ¢(0) = 0.
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Theorem 2.8 — Let u; and u, be two solutions of the problem described above with
identical initial data and right-hand side. Then u, = u;.

Note that the uniqueness theorem proved by Otto demands that u, € L2(Q7).
Theorem 2.8 demonstrates that this regularity is automatic for solutions defined in the
weaker sense of (2.24).

Proof. Setu = u; — u,. For a given test function ¢ we have

] ﬁ(B(pt + ¢+ (pxx) =0. (2.25)
-
Here B is defined by
Buy) — B(uz) i £ u
B = Uy —up
bo otherwise.

Note that since 8’ > by by By, this definition implies that B > by > 0 a.e. on Q7.
We remark here that since u € L*(Q7) and uB € L*(Q7), by approximation any
function ¢ € C%'(Q7) is admissible in (2.25) if (T) = 0 and ¢,, ¢, ¢, € L' (Q7).

Let B, be a smooth and bounded approximation of B such that B > B, > b, and
B, — Bae.on Q7. Choose x € C°(Qr), and define the sequence of test functions

¢a by

BuCnt + Cnx + G = X on Qr (2.26)
$n(T) =0 on R
Lemma 2.9 — The functions {, have the following properties:

1. There exists a constant M independent of n such that
16l < Mi(lx] + De™™ forall (x.1) € Qr;
2. There exist constants M,, depending on n such that
1Sals 1nxls 16nel < My(Ix| + De™™ forall (x,1) € Qr:

3. There exists a constant M, independent of n such that

‘/mmsm.

T

4. The integral

T
/ \% Bn |§nr|
0 Jx|>r

tends to zero as r tends to infinity, uniformly in n.
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We conclude the proof of the Theorem and give the proof of Lemma 2.9 after-
wards. Take ¢ = ¢, in equation (2.25):

’/ i =‘/ (B — B

B — B,
M Bn nt
fff” T | ¥ on la

1 T
< —— ||luB||;~ v/ B¢
< \/b—()“ Il (QT)/O . [Ene |
T 2 1/2
~ (B - Bn)
([ #2520
0 Jlx|<r Bn

The first term is small uniformly in n when r — oo by part 4 of this Lemma, and for
fixed r the second term tends to zero as n — oo by the pointwise convergence of B,

to B. Consequently
/ uxy =0
T

for every x € C°(Qr)- °

L2Q1)

Proof of Lemma 2.9.  First note that by comparing ¢, with functions that are
constant in space it follows that ¢, is bounded by a constant that only depends on by,
x,and T.

Part 1 follows from the observation that if R > 0 is such that supp x C (—R, R),
then the function ¢(x) = Me™* is a solution for equation (2.26) on x > R, and the
function ¢ (x) = —M,xe* a supersolution on x < —R (if R > 3/2). By choosing M,
such that ¢ and ¢, are ordered at x = £R, the result follows.

Part 2 follows directly from part 1 by the classical BernStein estimates. The de-
pendence on n of the constant M, arises from the non-boundedness of B, and its
derivatives.

Part 3 is also more or less standard. By multiplying with ¢,, and integrating by

parts we find
T T T
/ an§51+%/ C,,ZX(I)I/ /X{nl—/- /an;-n!
t JR R t JR t JR

and therefore

H VButu

2
I 2
+ sup 3 [16ax (D72
Bl gy B R LA

e bo . 1 5
= ”Cnr”LZ(QT) + ? H;’””LZ(QI‘) + 2—[?0 ”Cnx ”LZ(QT)
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Since B, > by and

IS R TN

0<t<T

the boundedness of [[v/B,ull 120,y and [[Eaxll2(g, follows if T < bo/2. If this is
not the case, we divide Q' into time slices and repeat the procedure.

Part 4 seems to be the novel part of this Lemma. Its proof breaks up into three
steps.

An estimate of £, in L'(Q7). By comparing ¢, with a translated copy of itself it
follows that ¢, (x, t) < 0 for x > R. Therefore

T poo
/ / [Cax] < Tsup ¢,(r,t) <TMre"” for r >R
0 Jr

0=<t<T

by part 1. A similar statement holds for r < —R.
An estimate of ¢, in L"(Q7). Pick p € (2, 00) and multiply equation (2.26) by
];nx ill_z Cllf:

/ By ol 285+~ sup f|c,,x<z>|"
0r — 1) o<i<r

bO 5 1 (p=2)/p
< > 1Snx?™ Cn,+b / |Cnx|p+C</ |§nx|”>
Or T Or

where the constant C does not depend on n. By a similar reasoning with 7" as for
part 3 we show the norm [|$,x || .»(g,) to be bounded independently of n.

A local estimate of ¢, in L?. Pick a cut-off function n € C°(R) which satisfies
n(x) = 1 for |x| < 1 and n(x) = 0 for |x| > 2. Choose r > R + 2. If we repeat the
same argument as under part 3, now by multiplying with n*(x — r)¢,,(x, t) instead of
just &, we find,

T T T
f/Bnn2:3,+%/n2§3x<r)=—2f /gxcmnm—/ /nzcm@m
t R R t R t R

and therefore
/ Btk < C/ o
Or T

where C does not depend on r or n. From the bounds on ¢,, in L' and L” we find by
interpolation

6 —0
”Cnx”LZ((r,oo)x(o,T)) <Cr’e &

where 6 = (p —2)/(2p —2) € (0, 1). Therefore

T pr+l T pr+l 1/2
/ \% Bn ICm| =< \/5 (/ / B,,C,lz,) < Croefor.
0 Jr—1 0 Jr—1

This proves the result. °
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Chapter 3

Convergence to travelling waves

In this chapter we prove the convergence of general solutions of the system

ﬂ(u)t+vt+ux_uxx:() (3121)
v = F(u,v) (3.1b)
to travelling wave solutions. Collecting all necessary regularity assumptions

(those needed to ensure the existence and uniqueness of a solution of this sys-
tem, and the hypotheses of Theorem 1.3), we assume that § and F satisfy

B € C([0, 00)) N C?((0, 00)) (3.2)

F € C([0, 00) x [0, 00)) N Lip((0, 00) x (0, 00)) (3.3)
F0,00=0, F,=0, and F, <0 ae.on (0,00)x (0,00) (3.4)
We make use of the results of Van Duijn and Knabner [DK91, DK92b] on trav-

elling wave solutions of (3.1). The theorem that these authors prove supposes
that associated to F there is an isotherm :

There exists a strictly increasing function ¢ € C ([0, 00)) such that
Fu,v)z0 < vu)zv (3.5)
forall u, v > 0.

Note that by conditions (3.3)-(3.4), a function ¥ € C([0, 00)) satisfying (3.5)
always exists; the new element is the strict monotonicity.
The most important condition for the existence of a travelling wave is

*
X('i Yo forall 0=s =,

x(s) >

where the total isotherm x is given by x(s) = B(s) + ¥ (s). We commented
on the interpretation of this condition on page 19.

This chapter has been submitted as D. Hilhorst and M. A. Peletier, Convergence to Travel-
ling Waves in a Reaction-Diffusion System Arising in Contaminant Transport.

63



Theorem 3.1 ((DK91, DK92b]) — Under the given hypotheses there exists
a travelling wave solution (U, V)(x,t) = (f, g)(x —ct) of system (3.1) with
limits (0, 0) and (u*, v*) at plus and minus infinity. The functions f and g are
strictly decreasing.

Remark 3.1 A travelling wave (f, g) satisfies the system of ordinary differ-
ential equations

—cB(fY —cg' +f - f'=0

—cg' = F(f. 8-
If B and F satisfy the regularity assumptions (3.2) and (3.3) above, then f, g €
C'(R). We use this regularity in the proof of Theorem 3.2. °

We prove the following convergence result:

Theorem 3.2 — Suppose that F is strictly monotone, i.e. the inequalities
in (3.4) can be replaced by strict inequalities almost everywhere. Let (ug, vo) €
L®(R)? satisfy

0<ug<u* and 0<wvy<v",

and
A(|ﬁ(uo)—ﬁ(f)|+lvo—g|) < 00, (3.6)

where (U, V)(x,t) = (f, g)(x — ct) is the travelling wave given by Theo-
rem 3.1. Let (u, v) be the corresponding solution of (3.1). Then there exists a
translation of (U, V), again denoted (U, V), such that

A(Iﬁ(u(t)) — BU@)I +v@) = VD)) — 0
ast — oOQ.

The proof is based on the ideas of Osher and Ralston [OR82] who proved
a similar result for a single convection-diffusion equation (see also [BH86,
HH91, COR93, Zha93]). The main difference with the previous articles lies in
the generalisation from an equation to a system.

Acknowledgement We wish to thank J. Hulshof and R. van der Hout for a
number of valuable remarks.
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3.1 Construction of a semigroup

By Theorems 2.7 and 2.2 we can define a semigroup operator that maps the
initial data (u¢, vo) to the corresponding solution (u (), v(t)). For future con-
venience we consider pairs of the form (8(uo), vo) instead of (ug, vo) and de-
fine S(1)(B(uo), vo) as the solution (B(u(t)), v(t)) corresponding to the initial
data (B(ug), vo). The domain of definition of the semigroup S(¢) is the set

L = {z0 = (Buo), vo) € L(R)* : up, vo > 0}.

We introduce the norm on L'(IR)? for elements z = (8(u), v) € L:

Izl 1wy = fR(Iﬁ(u)l + [vl),

and a partial ordering > on L:
71 >2z0 if wuy >wupandv; > vyonR
Using this notation the semigroup S(¢) has the following properties:
1. S(z) preserves L', i.e.
1S(H)z1 — SOz2ll w2 < 21 — 221wy (3.7)
for each t > 0 and 7, z» € £ such that z; — zo € L' (R)?.

2. S(t) preserves order, i.e. if 71,z € L and z; > 2, then S(¢)z1 = S(1)z2
forall r > 0.

These properties are simply reformulations of Theorem 2.2. As a by-product
of the proof of Theorem 2.2 we obtain the following extra information:

Proposition 3.3 — Forz;,z3 € £, 21 — 22 € L'(R)?, set (B(u; (1)), v; (1)) =
S(t)z;. If the set

{(x,7) e Rx (0,1) : (u; — up)(vy — vp)(x, 7) <0}
has non-zero measure, then

1S®)z1 — SBz2ll 1wy < llzi — 22l wy2 -
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Proof. The proof follows from an inspection of inequality (2.10). By
Theorem 2.2 the integral f 0, i is finite, and therefore we can set A = 0 in
(2.10). This leads to

/R(1§+(1)+5+(f)) —A(5+(0)+5+(0))
S/ (Fuy, vi) — Fluz, v2))(H @) — H(@)).

By hypothesis (3.4) the integral on the right-hand side is strictly negative.

On a region © x (0, 7) on which a solution (u,v) is bounded away
from zero, assumptions (3.2) and (3.3) imply that equation (3.1a) is uniformly
parabolic, and therefore by classical regularity theory u; and u ., are functions
and equation (3.1a) is satisfied almost everywhere. We use this to prove a
Strong Comparison Principle:

Proposition 3.4 — Let (uy, vy) and (uz, v2) both satisfy equations (3.1a) and
(3.1b) on a domain Q x (0, T) and let uy and uy be bounded away from zero.
Suppose that |uy,| is bounded on Q x (0, T). If u; > up and vy > vy, then

either uy=uy or u; > up
on 2 x (0, 7).

Note that we do not explicitly impose any regularity on u, or B(u1);, other
than follows from the uniform parabolicity.

Proof. The strict positiveness of u; and u; and (3.2) imply that " is
bounded on the values of | and u,. Then we have after setting w = u| — uy,

B/ (u)w, — wyx + wy + cw = —F(uy, v1) + F(uz, v2).

where

_ Bu) = Bur)
c=—"——"u

Uy —uz

t

is a bounded function of x and ¢. Using the monotonicity of F in v we have

Fur, v1) — F(uz, vy)
w,

Uy —up

—F(uy,vy) + Fuz, v2) > —

and the result then follows from standard parabolic theory. .
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3.2 Proof of Theorem 3.2

By the hypothesis

/R(|5(Mo)—ﬂ(f)|+|vo—gl) < 00, (3.8)

we can assume without loss of generality that

/R(ﬁ(uo>—ﬂ(f)+vo—g) =0. (3.9)

This follows from the observation that if a locally integrable function ¢ : R —
R has finite limits at plus and minus infinity, then

R+h —R+h
/((p(x+h)—g0(x))dx = lim {f (p—/ 90}
R R—00 R —R

= (¢(00) — p(—00))h.

Condition (3.9) pins down the travelling wave that («, v) will converge to. We
define the translation operator 7, for h € R, by

(thy)(x) = y(x —h) forall xeR

for any function y on R.

In order to compare the general solution of Problem (1.60) with the travel-
ling wave solution we introduce a change of variables: we set n = x —ct where
¢ is the wave speed of the travelling wave (U, V) and consider the solution as
a function of (), t) instead of (x, r). This amounts to considering instead of
S(t) the semigroup

(1) =1 0 S(2).

The properties of S(7) discussed above are passed unchanged to ¥(7), and by
construction ¢ = (B(f), g) is a fixed point of X (z).

First we prove stability in a special case:

Proposition 3.5 — Suppose that zq lies between two travelling waves, i.e.
there exist hy, hy € R such that

T ¢ <20 < (.

Then ||lz(t) — ¢l g2 — Oast — oo
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Proof. The proof consists of six steps. For the length of this proof set
z(t) = X (t)zo.
Step 1 The set {z(t) — ¢ }i~0 is compact in LY(R)2.
By (3.7),

lTrz(t) — 2z L w2 < lThzo — 2ollLi(r)2 5 (3.10)

for all h € R. This implies that ||7,2(t) — z(t)|l.1(g2 — O uniformly in ¢ as
h — 0. By the comparison principle the fact that initially the solution z lies
between travelling waves implies that the same holds for all positive time 7.
Therefore B(u) — B(f) and v — g have tails at plus and minus infinity that are
integrable uniformly in 7. We can then apply for instance Corollary IV.26 of
[Bre83] or Theorem 1V.8.20 of [DS58] to conclude that {B(u(t)) — B(f)}i~0
and {v(t) — g};~0 both are compact in L' (R).
Let the w-limit set w be defined as

w={yet+L®?:3;, > o0, z(t,) — yin L'(R)*}.

By Step 1, w # 0.

Remark 3.2 By the results of Sacks [Sac83] solutions of (3.1a) have a mod-
ulus of continuity in space and time that does not depend on ¢ for large 7.
Consequently if y = (B(y,), y») € o, then y, is necessarily uniformly con-
tinuous in space, and the first component of X (¢)y is uniformly continuous in
space and time. The second component of X(z)y is Lipschitz continuous in
time by equation (3.1b). Finally, it follows from Corollary 2.3 that

/R(ﬂ(yu)'{"yv):(l (3.11)

We introduce a class of Lyapunov functionals Vj, for h € R,
Vay) = Iy — wtllge  forall ye¢+L'(R)?.

Step 2 The functional V), is constant on w.

This is a classical result in the theory of dynamical systems. By (3.7) the
functional V), decreases along the trajectory z(¢). If y;, y2 € w, then we can
find a sequence t, — oo such that z(t;,) — y; — 0 and z(t2,41) —y2 — 0
in L'(R)2. It follows that V;,(y;) = Vi (y2).
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Step 3 If y € w, then (t)y € w forallt > 0.

Again this is classical: if the sequence #, — 00 is such that z(z,) — y — O,
then

lz(tn +8) — ZOylpge = 1Z2@®)z(t) — Z@OYILi(wy2
< llz(ty) — Yl L (w)2

A

and this last term tends to zero by hypothesis.
Step 4 If y € w, Vo(y) > 0, then there exists h € R such that

Vi(Z(t)y) < Vi(y) foralltime t > 0.

Set y = (B(u), v). When we compare u with 1, f for different values of h,
there are two possibilities:

1. There exists & € R such thatu = 7, f on R;

2. There exists # € R and I = [y, n2] C R such that u — 7, f is of two
signson/ andu, f > Oon[.

In case 1 the possibility v = 1;,¢ implies 4 = 0 by the mass restriction (3.11).
Therefore Vo(y) = 0 which is ruled out by hypothesis. From v # 18 it
follows that by choosing & close to 0 we can obtain that the set

fneR:—wuf)v—1g <0}

has non-zero measure. We then conclude by the continuity in time and Propo-
sition 3.3.

In case 2 we obtain the result by the strong maximum principle. De-
note by B(u(t)) and v(z) the first and second components of X(7)y, so that
(B(u(0)), v(0)) = y. We define the initial conditions (on R)

o = max{u(0), 7, f} and Vo = max{v(0), T8},
and we set
i = max{u(t), 7, f} and ¥ = max{v(t), T,g}.
Let (B(i(1)), v(t)) = Z(1)(B(iig), Vo). By the comparison principle we have

that u, 7, f < it and v, T,¢ < v. Since by construction 7, f # o on I, we
deduce from the strong comparison principle (Proposition 34)thatu, 1, f <u
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on I x (0, 1]. Here we use the fact that f is continuously differentiable so that
the travelling wave has a bounded time derivative. Then

u(t) <u() and u(t)u(@) on [ x(0,1]

If we construct analogous functions i, u, v, and v, where max is replaced by
min, then we have for0 <t < 1,

A(|ﬂ(u(r>)—ﬁ(rhf)|+|v<r>—rhg|)

= /R(ﬂ(ﬁ(t)) — B@(®) + V(1) — B(1))

A

/R(ﬂ(ﬁ(t)) — Bu(t)) + v(t) — (1))

IA

/R (Bio) — Bliio) + o — o)

= /R(I,B(M(O)) — B )+ 1v(0) — Tgl).

This implies that V, (X(¢)y) < Vi (y) forall z > 0.
Step 5 Conclusion.

We combine these building blocks in the following manner: by Step 1, the
w-limit set @ is not empty. By Step 3, it consists of trajectories, and by Step 2
every functional V}, is constant along these trajectories. By Step 4, this implies
that Vy(w) = 0. Therefore w = {¢}. °

Theorem 3.2 is a simple consequence of Proposition 3.5 and the property
of contraction in L':

Proof of Theorem 3.2. By (3.8) we can approximate zo by functions z,
such that z¢, lies between two travelling waves, [|zo, — zoll .12 < 1/n, and

/R(ﬁ(uon) — B(uo) + von — v9) = 0.

By applying Proposition 3.5 to the sequence of functions z,(1) = X(7)zo, it
follows that ||z, (t) — ¢l 12 — 0ast — oo forall n. Then

A

lz(®) = ¢liLige < 12() — za@ w2 + 122 () = Cll 1wy
< llzo = zonll 1wy + lzn(@®) — &l L1 (w2 »

and by choosing n and ¢ large enough these two norms can be made as small
as necessary. .
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Chapter 4

Well injection: stability of self-similar
solutions

4.1 Introduction

In this chapter we consider the asymptotic behaviour as 1 — oo and as ¢ | 0
of radial solutions of the equation

B(u), + div (ui—)\—|e, —Vu) =0 for (x,1) € 2, x R", 4.1)
X

satisfying the boundary condition

du A
8_“ =2, —u)  for(x,1) € 9Q x R*. (4.2)
v &

The set Q. is the outer domain {x € R? : |x| > &}, e, is the unit vector in the
radial direction, A > 0 and u, are given constants, and g : [0, 00) — [0, 00)
is a function to be specified later.

Since we only consider radial solutions, we seek a function u = u(r, 1)
that satisfies

Bu), + u, —uy,, =0 e<r<oo, t>0 (4.3a)
A

u, = —(u — u,) r=¢1t>0 (4.3b)
)

u(r,0) = ug(r) P 5.8 (4.3¢)

where ug : [, 00) — [0, 00) denotes the radially symmetric initial distribu-
tion. Without loss of generality we may consider the cases

Contamination process: u, =1, ug(oo) =0, (4.4)

Remediation process: u, =0, upg(oco) =1, 4.5)

This chapter is to appear as an article in Journal fiir die reine und angewandte Mathematik
as C.J. van Duijn & M. A. Peletier, Asymptotic Behaviour of Solutions of a Nonlinear Transport
Equation.
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where we suppose that u(00) = lim, _, « uo(r) exists. Furthermore we sup-
pose that u satisfies

A, uge C%'([e,00)), 0 <up < 1, and ruy(r) is uniformly bounded on
(g, 00).
About the function 8 we assume (cf. [DK92b]):
B, B e C*0,00)NC(0,00));
B, B(0)=0, p/(s) >0and p"(s) <0fors > 0.

A Cauchy-Dirichlet problem for equation (4.3a) with & > 1 was studied
by Goncerzewicz [Gon92], generalising results by Gilding [Gil89] and Diaz
and Kersner [DK87a] who considered general convection-diffusion equations
in R'. Following these authors we introduce weak solutions in the following
sense. Let T be some fixed positive number, which eventually will tend to
infinity, and consider the half strip S5 = {(r,7) 1 ¢ <r < 00, 0<t<T}.

Definition 4.1 — A non-negative function u : g — R is called a weak
solution of Problem (4.3) if

l. uecC (—SE) and u has a bounded weak derivative u, in S.;

2. for every test function ¢ € H l(S*}) that vanishes for large r and at
t =T,

/ (Bpir + Ot — run)g, ) drds + / Bliaotr Yoty D) rdr
S; &

T
£ xue/ o(e, t)dt = 0.4.6)
0

If u satisfies (4.6) with the equality replaced by > (<) and with ¢ = 0 in S%
then we call u a sub(super)solution.

Hypotheses B;-B, and A, ensure the existence of a unique weak solution u
which is smooth in the set {(r, 1) € S} : u(r, t) > 0}. Thisis proved in Section
4.2.

Remark 4.1 Observe that when (4.3a) is interpreted as a convection-diffusion
equation in R', the sign of A — 1 determines the direction of the convection:
when A < 1 it is directed towards the origin, and when A > 1 away from
the origin. This distinction will turn out to be important when studying the
asymptotic behaviour as ¢ | 0. °
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Our aim is to show that under certain conditions, solutions of Problem (4.3)
converge to self-similar solutions when either £ | 0 or # — 00. The combina-
tion of these two limit processes is explained by the following transformation:

under which Problem (4.3) becomes

Bu), + Ug — Ugg = 0 E>1,t>0 (4.7a)
ug = Au — u,) =1 %t%>0 (4.7b)
u(,0) = uo(e) &> 1. (4.7¢)

Obviously the behaviour of solutions of Problem (4.7) for large 7 is strongly
linked to that of solutions of Problem (4.3) for either ¢ | 0 or  — o0©.

A scaling argument leads us to investigate self-similar solutions of equa-
tion (4.3a) of the form

w0 = () = S,
satisfying the equation
SPBUOY + (f = 1f) =0, (4.8)

where primes denote differentiation with respect to 7. Since these self-similar
solutions are expected to arise in the limit ¢ | 0, we solve equation (4.8) in
the domain 0 < 1 < oo with the combinations (4.4) and (4.2) as boundary
conditions:

Contamination process: f0) =1, f(co) =0, (4.9)
Remediation process: f(0) =0, f(oo) =1. (4.10)

Note that n = r/+/t = £/4/T, and therefore the self-similar solution satisfies
both equation (4.3a) and equation (4.7a).

The boundary value problems (4.8)-(4.9) and (4.8)-(4.10) are studied in
Section 4.3. In Section 4.4 we prove the main results of this paper. They
concern the asymptotic behaviour of weak solutions of Problem 1. We shall
need an additional hypothesis on ¢ and g in order to prove these results:

Ax

/ ”{,3(140(’)) - ,B(uo(oo))} dr| < oo
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Hypothesis A, can be interpreted physically as stating that the perturbation
uo — ug(oo) of the constant state up(oo) has finite mass. We will show in
Section 4.2 that A, implies that

/ r{ﬂ(“(”, 1) — ﬂ(uo(oo))} dr| < oo

forall ¢+ > 0.

The double degeneration of (4.8) with (4.10)—the degeneration of B(f)
at f = 0 and the degeneration of the equation at n = 0, which coincide—
forces us to assume a technical hypothesis in order to prove the result for the
remediation process:

sp”(s)

B im =p—1where0 < p<1.
e T r=

Note that in the case of a Freundlich isotherm the condition Bs is satisfied with

0 < p < 1, and in the case of a Langmuir isotherm with p = 1.

The precise asymptotic statements are:

Theorem 4.2 — Let hypotheses B|-B;, and A|-A; be satisfied. Further let u
be the solution of Problem (4.3) with u, = 1 and uo(oc) = 0 (contamination
process), and let [ denote the solution of (4.8) and (4.9).

1. If ¢ is fixed, then

sup lu(r,t) — f(r/vD =00 as t— oo;

£<r<oo

2. Ifug = 0, then for fixedt > 0

2

sup |u(r, ) — F(r/VD)] = 0(87>k, & 850

ES<r<oo

Here the exponent k is given by

A/3 ford <1,
1/3 forx > 1.
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Theorem 4.3 — Let hypotheses B1-Bs and A;-A; be satisfied. Further let u
be the solution of Problem (4.3) withu, = 0 and ug(00) = 1 (remediation pro-
cess), and let f denote the solution of (4.8) and (4.10). Then the conclusions
are the same as those of Theorem 4.2 (with ug = 1 in part (b)).

Remark 4.2 The restriction to constant uo when ¢ is varied is a natural one.
Since the influence of changes in ¢ on the solution is small at a fixed time and
away from the well, it is necessary for convergence to self-similar solutions
that the initial behaviour of the general solution corresponds to the initial be-
haviour of the self-similar solution. In practical terms, this means u has to be
constant. Observe that when uq is constant, the two limit processes ¢ | 0 and
t — oo are truly equivalent. °

Remark 4.3 As a by-product of the proof of Theorems 4.2 and 4.3 we obtain
a pointwise estimate of u. In the contamination case the self-similar solution is
a subsolution for the general solution, which implies the following inequality:

0<1—u(rt)<l— f(r/t) forall r>e, t>0.

The behaviour of 1 — f(n) near n = 0 is shown to be proportional to n*
(Proposition 4.14), and therefore for fixed r > ¢

1 —u(r,t) = O(I_’\/z) as t — o0.
In the same way an estimate follows for the remediation case:
0 <u(r,t) < f(r/s/t) forall r>ze t>0.

Here the behaviour of f (Proposition 4.16) translates in a similar way to the
behaviour of u(r, t) for fixed r as ¢ tends to infinity. °

4.2 Weak solutions: existence and uniqueness

We present here the existence and uniqueness results for weak solutions of
Problem I. Most of these results are obtained by a straightforward generalisa-
tion of the work of Diaz and Kersner [DK87a], Gilding [Gil89], and Goncerze-
wicz [Gon92]. In those cases we omit the details and only give the appropriate
references. However, special attention has to be given to the flux boundary
condition at r = &.
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As is usual we obtain weak solutions as limits of approximating positive
classical solutions. Since these approximations are used later on in this paper
to prove the asymptotic results, we describe the procedure in some detail in the
existence proof below.

Theorem 4.4 — Let hypotheses B-B, and A, be satisfied. Then Problem
(4.3) has a unique weak solution.

Proof. To show existence, we slightly alter the initial and boundary con-
ditions in Problem I, ensuring that the corresponding solution remains strictly
positive. This is achieved by considering approximating sequences {Uo}n>1
and {uen}n>1, satisfying

uon € C=([e, nl);

uon L ug as n — 0o, uniformly on bounded subsets of [&, 00);

L'<up, <1 on [enl; 4.11)
sup |ruo,’ (r)] < sup |rug(r)l; (4.12)
e<r<n e<r<oo

uon(r)y =38, forn—1=<r <n; (4.13)
uo'(€) =0,

and

Uen(t) =ty — (e — ugn(e))e™™ for 0<t<T,

where the constants 8, are chosen in [1/n, 1]. Note that the compatibility
condition

Uen(0) = upn(e)

is satisfied. In Problem (4.3) we now replace ug by uo, and u, by u,. This
yields the approximate problems

Bu), + u —u,;, =0 in S;:" = (e,n) x (0, T], (4.14a)
A

U, = —(U — en(t)) atr =¢,t € (0, T], (4.14b)
£

u=>=, atr =n,t € (0, T], (4.14¢)

U= Uy, att =0, r € [, n], (4.144d)

for n > 1. Existence and uniqueness of solutions to this problem are classical
and can be found in e.g. [LSU68], page 491. The solutions obtained have the

regularity Cw(s;v”) N C2+a.1+e/2 (STf"_).
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In order to obtain an estimate on the spatial derivative of the solutions u,,
we derive an equation for the flux

F, = Au, —ruy,.
The functions u, satisfy the equation
B (n)uns + 1 Fpr = 0. (4.15)

Differentiating this equation with respect to r yields for F, the uniformly
parabolic equation

B En
- in S;.

A 1 "
ﬂ’(u,,)F,,, = F,r — Fyu { + + 13 (un)

i u
B'(un)
Using (4.15) once more we find the boundary conditions

Fi = Augy, r=2E§;
F,, =0, r=n.

Hypothesis A; and properties (4.11) and (4.12) of the functions ug, imply that
F, is bounded uniformly in n at # = 0. By the maximum principle, the same
then holds for F,, on the whole of S7.". Therefore

sup lup,| < L (4.16)

&N
ST

for some L > 0 that is independent of n.

Next we investigate the regularity in time. We first consider the behaviour
of u, at the boundary r = €.

Lemma 4.5 — There exists a positive constant ¢ independent of n such that
1
lun(e, t2) — un(e, 1)l < clty — 1112

forall0 <ty <tp <T.

Proof. We shall only prove the inequality u, (¢, t2) — un(e, t1) = —c(tp —
11)"/? for t; > t,; the opposite inequality follows along the same lines.

We first consider an auxiliary problem: find z : [0, 00) x [0, 00) — R that
satisfies
2t =2y forall (x,1) € (0, 00) x (0, 00),
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along with initial condition z(-, 0) = 0 and boundary condition z,(0, -) = 1.
This problem has a unique solution which is of the form

2(x, 1) zﬂ.f(%)-

It is not difficult to verify that f is negative on [0, 00), has a finite limit f (0),
and satisfies f” < 0 on (0, 00).

We now construct a comparison function for equation (4.14a) that is based
on the function z. For 0 < b < min{f'(s) : 0 < s < 1} to be chosen later,
define

Mnﬂ:uﬂ&n)+z@'mv—fxt—n)—LU—E%—mU—nL

onthesete <r <n,t; <t <T,wherem = |A — 1| (b"/z + L)/(be). It
then follows that

ﬂ’(){ 1 +*_1u}
Vr = V)V — Urr r
B'(v) rp’(v)

/ 1 A — 1
< ﬂ(v)ivt__vrr'l' |Ur|}

lg(v)t — Urr +

b be
< 0, 4.17)

where we have used the fact that v,, < 0 in the first inequality. In (4.17) we
have changed the nonlinearity 8 outside the range of u, such that (v) is well-
defined and 0 < b < B'(s) < oo for all s € R. This is necessary because v
may not be positive everywhere on its domain.

We prove that u, > v, which implies the assertion. It follows from (4.17)
that the minimum of u,, — v is assumed on the parabolic boundary of the set
{e <r <n, t; <t <T}. Thebound (4.16) ensures that u, > v att = 1y,
and since u,(n,t) = 1 > u,(e, t;) the same holds on the right boundary
{r =n, tj <t < T}. Therefore a negative minimum of u, — v can only be

assumed on the boundary r = ¢, where
A —1/2
(un —v)r = E(un—uen(t))—b Zr + L
§&+L—b”@
€

Choosing b sufficiently small we therefore obtain (1, —v), < 0 on the bound-
ary r = ¢, and conclude thatu, > von{e <r <n, t; <t <T}. °
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The regularity result of Gilding [Gil76] then yields that

““n“co+1‘0+1/2(@) < C foralln.

This suffices to apply the Arzela-Ascoli Theorem and conclude that there ex-
ists a subsequence that converges uniformly on compact subsets of E By a
familiar argument (see e.g. Oleinik [Ole63], p. 361) the limit function « can
be shown to be a weak solution of Problem (4.3). This concludes the proof of
existence. °

The uniqueness follows directly from a comparison principle:

Proposition 4.6 (Comparison Principle) — Let u' be a subsolution and u?
be a supersolution of Problem (4.3), with initial values u(l) and u(z), and bound-
ary conditions atr = ¢:

1 2 2 2
r = r < - —uy).

u

M | >

>)‘(1 1
—(u —wu,) and u
£

1 < 2 I < 2 I <2 e
Ifuy <ugonle, 00)andu, < u,, thenu' < u” onSj.

The proof of Proposition 4.6 is a simple extension of the proof in Gon-
cerzewicz [Gon], and follows the ideas of Diaz and Kersner [DK87a]. This
completes the proof of Theorem 4.4 =

We conclude this section with a property of solutions of Problem (4.3) that
is crucial for the large-time behaviour.

Proposition 4.7 (Mass Conservation) — Ler u be a solution of Problem
(4.3). Then

/ (Bu(r, 1)) = Blug(c0))} rdr = / {Buo(r)) — Bluo(o0))} rdr
| + At (it — uo(00)).

This can be interpreted as stating that the only increase of ‘mass’—in
the case of the model described in the introduction, this would be mass of
contaminant—comes from the injection at the boundary. The proof of this
statement is analogous to the proof of mass conservation for the porous media
equation (1.6) [Gil77].
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4.3 Limit profiles

In order to obtain solutions of (4.8) subject to boundary conditions (4.9), (4. 10)
we consider the slightly more general problem

1.2 / ’ ’_
P byl 2" BOY+f —rf) =0, 0<n<oo (4.18)
f0)=a, [f(o0)=b,

for any a, b € [0, 1]. We first prove existence and uniqueness of solutions of
P(a, b) and then enter more deeply into the specific cases P(0, 1) and P(1, 0).
Some of the proofs will only be sketched; the reader can find comprehensive
and detailed studies of Problem P(1, 0) in [DK94] and of Problem P(0, 1) in
[Pel93].

Existence and uniqueness

Because of the possible degeneration of the equation when f = 0, we must
again define the notion of a solution of this problem. For convenience we set

F(m) =nf'm—Arfm, n>0.

Definition 4.8 — Let a, b € [0, 1]. A function f : [0, 00) — [0, 1] is called
a solution of Problem P(a, b) if F and B(f) are locally absolutely continuous
on [0, 00), and satisfy

F' + %nz{ﬁ(f)}’ =0 ae on(0,00);
and
f(0)=a and f(o0)=h.
We can directly deduce from this definition

Proposition 4.9 — Let f be a solution of Problem P(a, b) and let P be the
positivity set {n > 0: f(n) > 0}. Then

1. f e C'((0,00)) NC®(P);
2. f is monotone, and ' # 0 on P unless a = b;

3. F(n) > —Abasn — oc.

Proof. Parts 1 and 3 are proven in [DK94], and part 2 follows from a local
uniqueness argument as in [AP71, AP74]. °
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About the positivity set P we remark that
e ifa=0andb > 0, then P = (0, o0) [Pel93];

e ifa > O0and b = 0, then we distinguish two cases: if 1/ (s) is integrable
ats = 0, then P = [0, L) for some L > 0; otherwise P = [0, o0)
[DK94].

When P is unbounded, we have an a priori estimate of the rate of convergence
at infinity:

Proposition 4.10 — Let f be a solution of Problem P(a, b). Then there exist
positive constants no, C, and K, such that

w—meSC/ g E 4.19)

Loa
an

forall n > no.

The proof is given in [Pel93] and uses a lower bound of B'(s) near s = b.
Note that (4.19) implies that

[o.¢]
w—fMNSC/ Ko 4
Lo

an
2K 2

< C/ ey P L o
1

an

_ —2/A 2
:Ce KA 77’

if n is large enough.

We have the following comparison principle.

Proposition 4.11 (Comparison Principle) — Ler f;, fori = 1,2, be solu-
tions of P(a;, b;) with a;, b; € [0, 1]. If ay < ay and by < by then f| < f> on
[0, 00).

Proof. Denote the positivity sets of the functions f; and f, by P, and
P>. Suppose that the difference v = f; — f, assumes a positive maximum at
no € (0, 00). Then fi(no) > 0 so that ny € Py, which implies that f; is twice
continuously differentiable in 7.
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e If no € P then f, also is twice differentiable in 1o, and then the result
follows from subtracting the equations for fi and f, at n = no.

e If 59 € R* \ P, then fj(no) = 0, which implies f{(no) = 0. From
Proposition 4.9 it follows that this only is possible when a; = b and
f1 is constant on P;. Because fi(no) > 0 we have a; = by > 0,
and the boundary conditions then imply that f> is not monotone. This

contradicts Proposition 4.9.
®

Corollary 4.12 — For every a,b € [0, 1], Problem P(a, b) has at most one
solution.

Proposition 4.13 — For every a,b € [0, 1], Problem P(a, b) has a solution
(which is unique by Corollary 4.12).

Proof. With the change of variables s = %n* and g(s) = f(n), Problem
P(a, b) can be written as

g+ us*{B(g) =0 for 0<s<o0 (4.20)

P,(a, b
(@D 0 =a go0)=b

where ' = d/ds and the constants  and p are given by
2
a:x—l and u:%k".

A solution of Py(a, b) is defined in a sense similar to the case of Problem
P(a, b), and it can easily be verified that the two problems are equivalent.

If both a and b are positive, then by the Comparison Principle any solution
of Problem P(a, b) will take values between a and b. Therefore the problem is
non-degenerate and the existence of a solution to the boundary value problem
P(a, b) can be shown by a shooting argument: if 4 is the solution of (4.20)
with initial conditions 4(0) = a and A'(0) = A, then lim,_,» h(s) exists for
all A > 0, depends continuously on A, and tends to zero or infinity when
A — 0or A — oo. This implies that there exists an A such that the limit is
equal to b. The details of this argument can be found in [Pel93] and a similar
argument is used by Gilding and L. A. Peletier ((GP77], p. 532). In the rest of
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this proof we will suppose that a = 0 and b > 0, and merely assert that the
other case, b = 0 and @ > 0, can be handled in an analogous way.

A solution of P, (0, b) is constructed as the limit as ¢ | 0 of solutions of
P (¢, D). For ¢ > 0 the solution of P, (¢, b) is defined and unique, and by the
Comparison Principle the sequence {g.} depends monotonically on . We now
show that the pointwise limit of this sequence, denoted by g, is a solution of
Problem Py (a, b). By twice integrating the equation in P, (e, b) we find the
following integral identity for g,:

gg(S):b—u/ [0+ )0 —as]o™ {B() - Blg.(o)}do  (@421)

for all s € [0, oo). The finiteness of the integral follows from the exponential
convergence proved in Proposition 4.10. Since g. | g as ¢ — 0, and there-

fore (B(b) — B(g:)) 1 (B(b) — B(g)) on [0, 00), we can apply the monotone
convergence theorem to the integral in (4.21) to conclude that it converges; the

positivity of the left-hand side implies that the limit is finite. This results in the
same integral equality for the limit function g:

g(s)=b— M/ [(1+ )0 —as|o* {B®b) — B(go))}do  (4.22)

for all s € [0, 0o). Starting with (4.22) and differentiating twice we can show
that g is a solution to Problem P, (0, ). This implies that the corresponding
function f is a solution of Problem P(0, b). °

Behaviour near zero

In the proofs of Section 4.4 we need an estimate of the behaviour of the sim-
ilarity solution near the origin. We restrict ourselves to the cases P(0, 1) and
P(1, 0).

Proposition 4.14 — Let f be the solution of Problem P(1,0). Then

limn' ™ f'(n) existsin (—o0,0).
nl0

Proof. Writing equation (4.18) in the form

f// =] 1 /
e 0B (f(m)),
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we obtain for arbitrary n, no € P,

B g
n' ) =ny Tt f (o) e Jo B/ (FONdy
Letting 1 | 0 yields the result. .

For P(0, 1) the analysis is more involved because the degeneracy of the
nonlinearity and the geometric degeneracy coincide at n = 0. We encounter
these two elements when describing the behaviour of solutions. In order to be
able to make definite statements we must assume the extra hypothesis on f8

lim & B"(f) _
im——— =
fio B'(f)
This condition expresses that for small data g behaves essentially as a power
with exponent p.

For a nonlinearity f in the form of B(f) = c¢f”, equation (4.18) has certain
scaling properties that allow us to transform it into an autonomous one, and
then apply a phase plane analysis. This analysis, which contains a complete
classification of the behaviour of solutions near the origin, is given in [Pel93].
Here we summarise the results.

Proposition 4.15 — Let f be the solution of P(0, 1), where B(f) = cf" for
some p € (0,1) and ¢ > 0, and let u be given, as in Proposition 4.13, by

Bs p—1 for some constant p € (0, 1].

= %)J_l.
1. Ifx <2/(1 — p), then the limit
lim f(;?) exists in (0, 00);
ni0 1
2. If A =2/(1 — p), then
f7rm -
im———-— = —2cupr 7
nlo n*logn H
3. If»>2/(1 — p), then
I S A
im—— = —,
nl0 nr,? A
in which k = 2/(A(1 — p)) and
cup
A= =r,
(H2)

For more general nonlinearities f the analysis is more involved, and the
results less precise. We find
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Proposition 4.16 — Let f be the solution of Problem P(0, 1), where B satis-
fies B|-Bs. Then

a
1. If)\<1

, then liig n_kf(n) exists in (0, 00);
n

2 2
2. Ifr > , then limn?B'(f(n)) =2 (A - —) .
1-p 740 l—p

The number 2/(1 — p) should be replaced by oo when p = 1.

Proof. Introducing the variables

sg'(s)

and  8(s) = us*t1 B (g(s))
g(s)

y(s) =
in equation (4.20), we find that they satisfy the system of equations

sy =y(l—y —8)
s8 =8(a+1+(s)y),

where

/!
() = EOEEE)
B'(g(s))

By B3 and the boundary condition g(0) = 0 we observe that £(s) — p — 1
as s | 0. Consequently this system is asymptotically autonomous in the sense
of Thieme [Thi92] as s | 0 (or if o = logs, as 0 — —o00). We wish to apply
a theorem of Poincare-Bendixson type (Theorem 1.6 of the same reference) to
conclude that (y, §) tends to an equilibrium of the ‘limit’ system

syl =yl —y —19)

(4.23)
58’ =8+ 14 (p— Dy),

as s | 0. According to [Thi92], the only remaining condition to be verified is
that the orbit under consideration is bounded as s |, 0.
To show that this is the case, remark that the concaveness of g implies that

g(s) > sg'(s) forall s >0,

which gives 0 < y < 1 forall s > 0. Since § is positive, the orbit (y, §)
can only be unbounded in the positive §-direction. To force a contradiction,
suppose that there exists a sequence s, | 0 such that §(s,) — oo and such that
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8'(s,) < 0and \(Y(S,,)/y’(sn){ — 00. Sincea+1 > 0and ¢(s) — p—1 when
s | 0, there exists an & > 0 such that 8’ is positive when y < &. It therefore
follows that y (s,) > &. On the other hand, we can write

8 s+ 1+56)y)
y' o y(l—y—9)

and if y > e then the right-hand side of this expression is bounded from
above and below when & is large. This contradicts the assumption that
|8’(s,,)/y’(s,l)| — 00 as n — oo, and we conclude that the orbit (y, 3) is
bounded and therefore tends to an equilibrium of the limit system (4.23).

For the analysis of the equilibrium points of (4.23) it is convenient to in-

troduce

Definition 4.17 — Let ¢ € C'(0, 8) for some § > 0. Then

def .. x¢'(x)
v = lim
2 xl0 @(x)

(provided this limit exists)

is called the index of .

If ¢ is a power of its argument, v(¢) simply is the exponent. One can derive
some properties of v which extend this correspondence: if ¢ and ¢ are such
that v(¢) and v(y) are defined, then

1. v(py) = vip) +v(¥);

2. v(p o) = v(p)v(y) provided ¥ (0) = 0;
3. v(g®) = av(p) forall @ € R;

4. v(p) > -1 = @ e L'(0,9).

Besides, by de I’'Hopital’s rule, the existence of v(¢") implies that v(¢) exists
and that

5. v(p) =1+ v().
Note that with this notation assumption B3 can be written as v(p)=p— 1

The system (4.23) has the equilibria eg = (0,0) and ¢; = (1,0), and if
a + p < 0 then the point

a+1 oa+p
€ = y T
l-p 1-p
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is also an equilibrium point. Of these equilibria the first, (0, 0), can be quickly
ruled out: by definition v(g) = limy o ¥ (s), and by writing equation (4.20) as

sg"(s)
= —5(s)
g'(s)
we see that v(g’) = — lim, o 8(s). Consequently (y,8) — (0,0) implies on

one hand v(g’) = 0 and on the other hand v(g) = 0; this is incompatible by
property 5 above. For the other two equilibria, we distinguish three cases:

e when @ + p < 0, the equilibrium (1, 0) is unstable (in backward time)
and is therefore not admissible; it follows that (v, §) — e as s | 0, and
more specifically §(s) — —(« + p)/(1 — p);

e whena + p =0, ¢; = e; and therefore §(s) — O as s | 0;

e when @ + p > 0, e; is the only admissible equilibrium and therefore
v(g) = 1; using properties 1-3 we find that

v(s*B'(g(s)g'(s)) =a+p—1>—1,

which implies by (4.20) and property 4 that g” is integrable; as a result,
g’ (0+) is finite.

We can rearrange this information in the following form:

e Whena + p > 0, limg o g'(s) is finite;

. o+
e Whena + p <0, limus®™'8'(g(s)) = W
540 1—p
In terms of A, f, and 7, this is the statement of the theorem. °

4.4 The main results

This section is devoted to the proofs of Theorems 4.2 and 4.3. We shall discuss
the proof in full for Theorem 4.2, and merely comment on the differences with
Theorem 4.3.

Proof of Theorem 4.2. In order to compare the solution of the original
problem with the self-similar solution we reformulate the problem in self-
similar variables. If u is the solution of Problem (4.3), then define z by
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z(n, T) = u(r, t), where the independent variables are again linked through
the relations
r d 1 t
= — an = —.
1 «fF g2

The function z satisfies the equation

Zy—zm=0 for n>1//T, 1>0 (424)

8(2)r — %nﬁ(z)n +
and the boundary condition
Zy=*/T(z—1) for n=1/47, T>0.

The first step consists of an integral estimate, based on the conservation of
mass.

Proposition 4.18 — Under the conditions of 4.2, let 2 : R* — R be defined
by
o0
Q(1) =/ n{Bzn, 1) — B(f()}dn, T >0,
1/J7

and suppose that either ¢ is fixed or uy is constant. Then there is a constant x
such that

Q@) <% foralit>o0. (4.25)
T
If ug is constant, then x does not depend on .

Proof. By integrating (4.8) and using boundary conditions (4.9) and
Proposition 4.10 we find that

o 1/JT
/ BUFO)mdy = — / B(f () nd
17 0

The conservation of mass (Proposition 4.7) reads in the n, T coordinates

o0

l o0
B()ndn = T/ Bug(r)) rdr + A.
1/t E°T Je

By combining these two we find that €2 is well-defined and that

1 [ 1/JT
Q(1) = 3_2/ Buo(r)) rdr + T/ B(Cf () ndn. (4.26)
£ 0

The second term in (4.26) is bounded by 8(1)/2. When ¢ is constant, the result
follows immediately; when & varies, but ug is equal to 0, the first term on the
right-hand side vanishes and the remainder is bounded independent of . °
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The interest of this integral estimate lies in the fact that z and f are or-
dered, and that therefore the argument of the integral is positive. Indeed,
if v is the self-similar solution of equation (4.3a) corresponding to f, i.e.
v(r,t) = f(r/ /1), we can integrate equation (4.3a) from O to & to obtain

fg B(v), rdr + [Av — rvr]g =0.
0

Now v, (r, t) = —%rt*3/2f’(r/\/;) > 0 for all » and ¢ and therefore we have
av(e, t) — ev (e, 1) < A. By the Comparison Principle (Proposition 4.6) we
then find that u lies above v on the whole of S5, which implies the same for z
and f (on the appropriate domain).

Our aim is to convert an integral estimate related to (4.25) into a pointwise
estimate. For this we need the next lemma (for an idea of the proof we refer to
[Pel71]).

Lemma 4.19 — Let ¢ be a non-negative continuous function on [0, 00) with
lower Lipschitz constant L, i.e.

¢ (x) —d(y)
X =Yy
Let xo > 0. Iff):o x¢(x)dx < a, then

sup ¢(x) < V6L2%.

X0 <x <00

> —L forallx,y€[0,00), x #y.

We shall not apply this lemma directly to €2, but to the integral

o0
/ n{z(n, ©) — f(m}dn.
1%

For this integral we obtain an estimate similar to (4.25) by pointing out that,
because B is concave and strictly increasing on its domain, the function s >
B(s) — B'(1)s is non-decreasing for0 < s < 1. This implies that B(z(n, 7)) —
B(f(m) = B'(1)(z(n, T) — f(n)) and thus

> X
(n, T) — dn < . 427
ﬁ/ﬁn{z(n T)— f(mtdn < B (4.27)

The crucial part in the application of Lemma 4.19 to estimate (4.27), with
¢ (n, 1) = z(n, T)— f(n), is that we need to verify the lower Lipschitz continu-
ity of ¢ with respect to the variable 7. For general f, the function S(z (7, 7))
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n= 1Nt

n =n/eNt

T/¢€?

Figure 4.1: The domains D7" and E7".

need not be lower Lipschitz continuous with respect to 1, and therefore we
switched here from (4.25) to (4.27). From Proposition 4.9 we know that f is
nonincreasing on R, so the lower Lipschitz constant of ¢ only depends on z.
We have

Proposition 4.20 — If 0 < A < 1, then there exist positive constants ¢ and
m independent of n and t such that

1—-A
zy(n, 1) > —€t2 —m forallt > 0andn > 1/
If A > 1, then there exists a constant m independent of n and t such that

2y(n,7) = —m forallt > 0andn > 1//t.

If, for the moment, we consider this proposition proved, the conclusions
of Theorem 4.2 follow by combining (4.27) and Proposition 4.20 and applying
Lemma 4.19.

Proof of Proposition 4.20. Let z,(n, T) = u,(r, t) where u, denotes the
regularised solution constructed in Section 4.2. The domain of definition of z,,
is

g0 '1 n T
Dy =1g1): —=<j<—x.0<x12 5
g

VT eJT’

which is drawn in Figure 4.1. The first part of the proof is the following lemma.
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Lemma 4.21 — There exists a positive constant C, depending on B, A and
ug, such that

|2ag| = % on D7".

The constant C does not depend on n or T, and if ug is constant, then it does
not depend on ¢, either.

Proof of Lemma 4.21. We use again the flux F, introduced in the proof of
Theorem 4.4. First note that

Fo(r,t) = Az,(n, T) — NZuy(m, T)

on the relevant domains. The the estimate follows from the observation that
both F, and z, are bounded uniformly in n. If up = 0, then by choosing

8, = 1/n in (4.13) the constant C can be chosen independently of ¢ as well.
[

The remainder of the proof is based on the application of the maximum
principle for parabolic equations to certain flux-type functions, depending on
the value of A. We distinguish two cases.

CASEL. 0 < A < 2. We truncate the unbounded domain D" by consid-
ering
EX =D " N{n<1}

We assume that n > /T, so that the domain E7" is as is shown in Figure 4.1.
On E;" we define the modified flux function

Fy = F(n, ©) = 0" [2ag(. T) + 31B(za (1, T))] -
Using equation (4.24) we find that F, satisfies
tf' Fyy — Fupy — bFay —cF, =d on ET", (4.28)
where the coefficients b, ¢, and d are given by

_F
B

d(n,t) =3 (A —2) nHy;ﬂ(zn)z.

Zngy €, T) =3 (A =2) {ﬂ’ - %ﬂ(zn)} ,
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Here we note B’ and B” for B'(z,) and B”(z,). Due to the regularisation, the
coefficients in (4.28) are all smooth and bounded on E7". Note that ¢ < 0 and
d > 0, and that therefore F), is a supersolution for the equation

18 G, — Gyy —bG,—cG =0 onE;".

By the maximum principle (see e.g. [PW67]), a non-positive minimum of F,
on E gT"" must be assumed on its parabolic boundary, i.e. I'T U I5.
On I}, given by n = 1/4/7, we use the boundary condition and find

Fo(1/y7,7) = 1% 20721/, T) = 1) + 3B(zn) //T}

—AM2(1 - FQ/VT))
A,

vV v

in which A is the (negative) limit value from Proposition 4.14. On I, where
n = 1, we have F, = z,y(1, 7) + 1B(z,(n, 1)) = — C — 38(1) by Lemma
4.21. This implies that F,, > —¢ := min{A, —C — %ﬂ(l)} on E7" where
¢ > 0, and therefore we have z,,,, > —gpp-T — %ﬂ(l) on E?" foralln > /T.
When we combine this with Lemma 4.21 we obtain the required result.

CASE II. The case A > 2 demands a different modified flux function:
Fy = Fy(n,7) = 0"z, 1) — 3An(B1) — B(z.(n, D)),

which satisfies

T Fur = Fupy + bFun + ¢ {Fu + 320> [B(1) — B(z0)]}
+d{F,+ A — D *[B) — BGa)]} on EF",  (429)

in which the coefficients b, ¢ and d are given by

1 . )\' V4 1’
br.7) = ——+11p - %znn, c(n,7) = lx(k—z)%[mn—ﬁ(z")],
d(n,t)=—32p".

Now define the function w by

o(F,n, ) E c[F+ I *[B(1) — Bz}
+d{F+ = D> B — Bz},  (4.30)
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and remark that ¢, d < 0. We claim that the function n > (B(1) — B(zn))
is bounded on RT by a constant independent of 7 and n: on one hand,

0 <P HBO) = BGw)] < P H[BO) = BUF ()]
/ A 2
<26 (H—n’,

if n is small enough, in which A is again the limit value from Proposition 4.14.
On the other hand,

0 < > [B() — Bzn)] < BHN* .

The combination of the first for small  and the second for large 7 yields the
uniform bound. Therefore, by choosing Fy € R, Fy < A negative and large
enough, @(Fy, n, T) can be made positive for all n and 7. This implies that
the constant Fy is a subsolution for equation (4.29), and by following the same
line of reasoning as for case I, we can conclude that F;, > Fo on EZ", for all
n > «/T. The required result is then obtained in a similar fashion. e

This concludes the proof of Theorem 4.2.

The proof of Theorem 4.3 follows the same lines, with some alterations.
First, the ordering of the solution u and the self-similar solution f is reversed,
which gives rise to the definition

sz(r)=/ n{B(f () — Bz, D) }dn, T>0.
/7

The assertion of Proposition 4.18, however, holds unchanged, as does its proof.
Second, if we denote f () —z(n, T) by ¢ (1, 7), the application of Lemma 4.19
requires an estimate of ¢, from below. From Section 4.3 we know that f is
strictly increasing on R™ . For an upper bound on z,), we have

Proposition 4.22 — Let z be the solution of Problem (4.3) with u, = 0 and
up(00) = 1, transported to the n, t-plane. If 0 < A < 1 then there exist
positive constants ¢ and m independent of n and T such that

1-2
zy(n,T) <€t 2 +m forallt >0andn > 1/J/7;
if = > 1 then there exists a constant m independent of n and t such that

2y, T) <m forallt >0andn > 1//T.

93



The proof of Proposition 4.22 follows the same lines as that of Proposition
4.20, and we shall only mention the flux function that is used:

F, = nl‘y[znr] + %nﬁ(zn)]

where y = min{A, 2}. The result is then again reached by combination of
Propositions 4.18 and 4.22 and Lemma 4.19. °
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Chapter 5

Interface behaviour for system (1.19)

5.1 Introduction

In this chapter we study the support evolution properties of solutions of the
system of equations

B(u); + v, —divA(u, Vu) + B(u, Vu) = 0 (5.1a)
v, = F(u,v). (5.1b)

As explained in the Introduction, a travelling wave analysis of (5.1) shows that
solutions with interfaces can exist when either § or the rate function F (or
both) is degenerate. This phenomenon is often called finite speed of propaga-
tion. In this chapter we wish to investigate finite speed of propagation and the
existence of waiting-times for general solutions of (5.1).

We start by giving the definitions of the properties of system (5.1) that we
will prove in this chapter:

Definition 5.1 (Finite speed of propagation, FSP) — If (u, v) is a solution
such that u(-, 0) and v(-, 0) both vanish on a ball B(xo, po), then there exists
an instant ty > 0 and a continuous function p : [0, to)] = R, p(0) = po, such
that u(-, t) and v(-, t) vanish almost everywhere in B(xo, p(t)) for all t < to.

Finite speed of propagation, as defined by the Definition above, is depicted
in Figure 5.1. If the initial data resemble the bottom graph, then there is a
region in the x, ¢-plane (the cone |x| < p(?)) in which u = v = 0. The thin
line indicates the real interface, which generally will lie further away.

We speak of a waiting time if we have a condition that guarantees that p is
constant over a finite time interval:

This chapter is to appear as an article in Annales de la Faculté des Sciences de I’Université
de Toulouse as G. Galiano and M. A. Peletier, Spatial Localization for a General Reaction-
Diffusion System.
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t
lx — xo| = p(2)
u,v >0

X0 xo + po x

U, v

uo

% %
X0 X0 + Po ¥

Figure 5.1: Finite speed of propagation

Definition 5.2 (Waiting times, WT) — If (u, v) is a solution such that u(-, 0)
and v(-, 0) both vanish on a ball B(x, po) and satisfy a flatness condition in
an annulus B(xo, p1) \ B(xo, po), then there exists an instant t* > 0 such that
u(-, 1) and v(-, t) vanish almost everywhere in B(xq, po) for all t € [0, t*].

Before we continue two remarks are due. First, we have not yet defined the
notion of a solution; we postpone this to Section 5.5. Second, the flatness con-
dition that the definition of the WT property refers to is unspecified; the precise
condition depends on the assumptions that we make about the components of
(5.1). This will become clear in what follows.

5.2 Statement of results

Let us state our hypotheses. We consider the problem
Bu), + v, —divA(x,t,u, Vu) +q-Vpu) =0 (x,t) e Q (5.2a)
v, = F(x,t,u,v) (x,t) e Q (5.2b)
(u, v) = (up, vo) atf =10 (5.2¢)
on a domain Q =  x (0, T], where 2 is a bounded domain in RV . Solutions

to this problem are defined in Definition 5.6. The following hypotheses shall
hold throughout this chapter, even when not stated explicitly:
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1. ug, vy € LOO(Q);

2. B is continuous, and A and F are Carathéodory functions;'

3. mouPt! < d(u) < muPt! for all u > 0, where the function @ is given
by

d(u) = /u sB'(s)ds. (5.3)
0

4 AC,- 85 -EzmlE?, &eRY;
514G, . &) <malgl, £eRY;
6. g € L*(Q; RY) and divg = 0.
7. F is Lipschitz continuous in the second variable:
|F(x,t,u,v)) — F(x,t,u,v2)] < LJvy — v 54)
forall u, v, v2 € R, and (x,t) € Q.

Here 0 < p < 1 and the numbers m; are positive constants. In view of
Properties FSP and WT defined previously we fix once and for all xo € €2 and
po > 0 such that B,, = B(xo, po) C 2 and up = vp = 0 on By,. In addition,
for Property WT we assume that p; > po and B, C 2. We shall use the
notation ‘B),” for B(xo, p).

We shall use the following hypotheses in the formulation of the different
theorems (I for Interfaces):

I, There exists a number 0 < v < oo and a non-negative function ¥ :
[0, v) — R such that

u—yvw)Fx,t,u,v) >0

forallu > 0,0 <v < v,x € B and forall 7 > 0. Here p > 0o and, if
appropriate, p > p;. If v < oo then we set ¥ (v) = oo forall v > v.

b 0 <F(,-, u,0)<ku?foralu=>0;

'A Carathéodory function f(x,,u) is continuous in u for almost every fixed (x, ) and
measurable in (x, 1) for every fixed u. This guarantees that f(x,t, u(x,t)) is measurable if
u(x, 1) is measurable.
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Iy kou? < F(-, - u,0) < ksu” forallu > 0.

Here the exponent p is the same as above and the exponent y is free to be
chosen in (0, 1). The k; are positive constants. Whenever possible we shall
omit the variables x, ¢ in expressions of the type A(x, ¢, u, Vu).

Although at first sight hypothesis |; may seem far-fetched, it arises in a
natural way in the derivation of the model underlying (5.2), as explained in the
Introduction.

We shall now state our main results. The first one extends a known result
for the ‘porous medium equation’ (1.6): if p < I, then under a weak condition
on F system (5.2) has property FSP. Besides, an advection term of the form
q - V(u) does not change this property:

Theorem 5.3 — Let hypothesis || be satisfied. If p < 1 then Problem (5.2)
has property FSP.

For the theorem on waiting times we introduce an auxiliary function:

W(s) = / y(o)do
0
where v/ is given by ;. If s > v, then W(s) is taken equal to infinity.

Theorem 5.4 — Let hypothesis || be satisfied and suppose thatq = 0. If p <
1 then Problem (5.2) has property WT. The accompanying flatness condition
reads

There exists a constant C > 0 such that

/ (ug) +/ W(vy) < Clp—po)y "™ forall 0<p<pr.
B, B,

Here § is given by (5.14).

It was already known from a travelling wave analysis ([DK91]) that if the
function F satisfies a certain kind of degeneracy, then finite speed of propa-
gation can occur even for regular (i.e. Lipschitz continuous) nonlinearities f3.
The following theorem makes this statement precise.

Theorem 5.5 — Let either of the following conditions be satisfied.:
l, with p < 1 or Iy withy < 1.
Setn = p for Iy and n = y for |5. Then,

1. Problem (5.2) has the property FSP;
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2. ifq = 0, then Problem (5.2) also has the property WT under the assump-
tion of the flatness condition

There exists a constant C > 0 such that

+1
+1 o 1/(1-6
‘ / u +/ v <Clp—po)i" ™
B(xo,p) B(xo,p)

forall 0 <p < py.

Here &8 is given by (5.14) for hypothesis |, and by (5.29) for hypothesis
l5.

Remark 5.1 For a quick interpretation of Theorems 5.3, 5.4, and 5.5, consider
the case B(u) = u” and F(-, -, u, 0) = u? with p, g > 0. We then prove the
FSP and WT properties for the following range of parameters:

p=1, O0O=xg=l (by means of |3)
p<1, p<g<oo (bymeansofl)

p<1, 0<g<l (by means of |3) }$p<l, =g <o

5.3 A comparison with the method of travelling waves

In many cases results of the type of Theorem 5.3 (finite speed of propaga-
tion) are proved by comparing the solution with travelling waves. This allows
the often detailed information that can be obtained on travelling waves to be
transferred to general solutions.

For this method to apply it is however necessary that the problem is au-
tonomous, i.e. invariant under translations. Although the study of such equa-
tions and systems can lead to valuable insight, many applications explicitly
require results that remain valid when this spatial invariance condition is re-
laxed. A typical example is the model of transport of chemical substances
through a porous medium that is derived in Section 1.3. Even if the medium
itself is supposed homogeneous, together with its characteristics such as the
functions B and F, then the dispersion coefficient D will generally depend on
space and time, because it depends on the discharge field g (see footnote 3 on
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page 8). Note that such a dispersion coefficient does not only bring space- and
time-dependence into the problem, but also anisotropy.

The price to be paid for the gain in generality, however, is obvious; for
instance, while for the travelling wave solutions (necessarily in homogeneous
media) that were examined in [DK91] a very precise characterisation could
be given of the occurrence and non-occurrence of bounded supports, in the
general case we must make do with the one-sided results of Theorems 5.3, 5.4
and 5.5.

For the travelling wave method it is also necessary that the problem satisfy
a comparison principle. It is not difficult to see that if § = 0 and & is an in-
creasing function, system (5.1) satisfies a comparison principle if and only if
F is increasing in u and decreasing in v. A comparison principle is a very im-
portant tool, not only in proving existence and uniqueness, but also in proving
finite speed of propagation (property FSP) or its converse, by comparing the so-
lution with travelling waves. Generically the information about the travelling
waves immediately carries over to the full problem.

Therefore it is important to note that the conditions that we set on F allow
for non-monotonicity. Indeed, they could be said to imply a form of ‘weak
monotonicity’: a function F that is increasing in u and decreasing in v auto-
matically satisfies condition || as well as the requirement

Fwm,0)>0 forall u>0

which is part of |, and I5.

As a second point of difference we should note that in general a travelling
wave comparison method can not prove the existence of waiting times, since
travelling waves mostly have non-zero speed.

5.4 An outline of the method

As was mentioned in the Introduction, an important aspect of this Energy
Method is its applicability to very general equations and systems. The other
side of the coin is that proofs tend to be very technical and obscure the un-
derlying ideas. We therefore start with an introduction to the method, aimed
at conveying philosophy rather than mathematically correct statements. After
this introduction we shall prove Theorems 5.3, 5.4, and 5.5 in full rigour.
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We shall discuss the method applied to a simplified version of (5.2):
ul +v,—Au=0 (5.5a)
v, = F(u, v) (5.5b)

The result we seek is that of Theorem 5.3, i.e. if p < 1 and F satisfies l;, then
system (5.5) has property FSP.

The key idea is to derive an ordinary differential inequality from this sys-
tem of partial differential equations and to conclude by means of the study of
this inequality. Following the definition of property FSP we assume that the
initial data u( and vy both vanish in the ball B,, = B(xo, o). We multiply
the first equation of (5.5) by the solution u and integrate by parts on a ball B,
centered in xo with radius p < pg. We obtain

d
L—f uP+1+f |Vu|2=/ uVu-v—f uFu,v). (5.6)
p+1ldt /g, B, 3B, B,

By integrating over (0, ¢) for some 0<t<T,

t t t
_P_ u(t)p+]+/ / |Vu|2:/ / uVu-v—/ / uF(u,v).
p+11J/s, 0JB, 0 JaB, 0 JB,

5.7

We now define the non-negative functions b and E, which represent gener-
alised energies (whence the term ‘energy method’):

t
b(p, 1) = sup/ u(t)?*'  and E(p,t):/ |Vul?.
B, 0 JB,

O0<t<t

Both are non-decreasing with respect to p; using
E ! )
—(p,t) = [Vul|® for p < po (5.8)
ap 0 Jos,

it follows from the Holder inequality that

% aE %
/f uVu - v < // (5.9)
3B, 9B,

Using this in (5.7) we find that

-—-b(p 1)+ E(p. z)< // 5 aE ’ // wF @, v).

(5.10)
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The next step consists in using an interpolation-trace inequality (see Ap-
pendix 5.B) to derive the estimate

(/f uz)% < Ct'T K(T)(E + b),
JB

where

k=6/2+10-0)/(p+1), (5.11)

K(T) = max(1, T3) max (1, b(T. pl)”z——ﬂi‘ﬁli),

and

_ Nd-p)+p+1
TN =p)+2p+2

(5.12)

It is important to remark here that « > 1/2 if and only if p < 1. Therefore
the arguments that follow can only be executed if p < 1, since they require
that k > 1/2. This is the point in the reasoning where the degeneracy of the
nonlinearity is essential. Applying Young’s inequality we obtain from (5.9)

that
// % aE 3
Bﬁ

1l —

A

Ct' T K(T)(E + b)* (%)

1-6 1 (OEN3
£(E 4 b) + C.(Ct 2 K(T))H<%) (5.13)

IA

where 0 < ¢ < p/(p + 1) and

5—2(1—x)—=pt1+NA=p) (5.14)
2p+2+N(—p)

By combining (5.10) and (5.13) we obtain

BE
b+E<C]tzS — —Cz// uF(u,v), (5.15)

where C| and C; collect all the different constants.
In the rigorous proofs we shall show how to handle the second term on the
right-hand side in (5.15), depending on the assumptions on . For the moment
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we assume that it is non-positive, allowing us to find an ordinary differential
inequality for the function E:

10 (OE\ 3

E(p.0) < Cr'7(52) 0.0, (5.16)
ap

which holds for all 0 < p < pgand 0 < ¢ < T. For such ordinary differential

inequalities it is not difficult to prove the following Lemma, which is a special

case of Lemma 5.8, part 2:

Lemma — Letv>0and0 <8 < 1, andlet y € C([0, T] x [0, po]) be a
non-negative function such that

0
Vit p) < Kr“—afa, p)
0

for almost every p € (0, po) and for all t € [0, T]. Then there exists a time
t* < T and a continuous function r : [0, t*] — R with r(0) = po such that

V(p,t) =0 forall pandt suchthat p <r(t).

We conclude from this Lemma that in the region p < r(¢) the function E(z, p),
and therefore also the function b(t, p), is equal to zero. Therefore system (5.5)
possesses property FSP.

As we said above, this is not more than an intuitive outline of a general
method which can be proved in full rigour. Many steps are only formal, and
the treatment of the function F has been completely neglected. In Sections
5.5, 5.6, and 5.7 we shall give the details which are necessary to render the
ideas presented above rigorous.

5.5 Proof of Theorem 5.3

Even for the simple system (5.5) the proof of Theorem 5.3 given above is not
complete. The steps that were omitted were:

1. the definition of a solution of the problem;

2. the justification of equations (5.6) and (5.8) and estimate (5.9). This
depends strongly on the choice of the function space to which a solution
(u, v) should belong;
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t
3. the treatment of the term / / uF(u,v).
0JB,

Besides, in order to complete the proof for system (5.2), we need to consider
the more general functions B, A, ¢, and  instead of their simple counterparts
in (5.5). We shall discuss these points one by one.

The definition of a solution. This first omission is easily remedied:

Definition 5.6 — A pair of measurable functions (u, v) defined in Q = €2 X
(0, T is a weak solution of (5.2) with initial data (uo, vo) if the following
conditions are satisfied:

I ue L®0,T; LPYY(Q) N L0, T; H'(Q)) and v € L®(Q);
2. u>0andv > 0;
3 A(,-,u,Vu) € L'(Q: RV) and VB(u) € L'(Q);

4. limiglfcb(u(-, 1)) = ®(up) and limiglfv(-, 1) = vy in L' (R);
t—> 1—

5. forany ¢ € C*([0, T]; CX(2)) we have
/Qq’(u)llf(T) - fQ [y —Au, Vu)-Vy — yq - VBw)} =
— / D (1) (0) —/ F(u, v)y (5.17)
Q o

and

flﬂ/f(T)—f vlﬁz:/vol/f(o)ﬂL/f(u,v)l//
Q 0 Q Q

where we have omitted the variable pair (x, t) for clarity.

We emphasise that we leave aside all questions of uniqueness, as well as exis-
tence under given boundary conditions. The arguments that follow only require
the existence of a solution in the local sense of Definition 5.6.

Non-zero convection. In order to accommodate non-zero convection we
shall use a domain of integration that is not the cylinder B, x (0, T) but a
truncated cone

Kyr ={(x,71) € 2 x (0,1) : |x] < g(p, 1)}, (5.18)
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where g(p, ) := p—at and « > 0 shall be fixed later. For a general function
Y, we introduce the notation

f wE/’/ wzf'f Y dxdr,
K/).I 0 Bx 0 B;:(pﬂ)

and similarly for the boundary integrals.
It can easily be verified that the following identity holds for smooth func-
tions ¢:

d d
/ —E(x, t)ydx = —/
Bepn ot dt Jp

By a truncation-regularisation scheme such as in [AD] or [DV85] we can com-
bine this formula with equation (5.17) (for ¥ = u) to obtain forall 0 < p < po
and forall0 <t < T,

C(x,t)dx — g'(t)/ ¢(x,t)ds. (5.19)
B

g(p.t) 8(p.1)

f <I>(u(t))+/ (q-u+a))<l>(u)+/ A(u,Vu) -Vu =
Bg(p./) 0 (')B“: K

p.t

:// uA(u,Vu)-v—/ uF(u,v). (5.20)
0 JoB, Ky

When p is allowed to take values in the interval (po, p1), as is necessary for
Property WT, the right-hand side of (5.20) contains the extra term f B, D (ugp).

Equation (5.20) is the equivalent of (5.6) for general functions 8, A, and
g. Observe that by choosing o = [|ql|.=(g). the second term on the left-hand
side becomes non-negative.

Remark 5.2 The use of a cone instead of a cylinder has a very simple physi-
cal interpretation. When « = ||q|| .>(¢), the spatial boundary of the cone (i.e.,
3 By(p.1)) moves inward with time with a velocity that is as least as large as the
maximum velocity of the flow field. Therefore the convection term will not in-
troduce any material from outside into the integration domain; the occurrence
or non-occurrence of zero sets is then determined by the interplay between the
time derivative, the diffusion term, and the function F, as is the case when
convection is absent. °

Justification of equation (5.8) and estimate (5.9). It follows from Fubini’s
theorem that for u € H'(S2) and py such that B,, C €2, the function

pH/ Vul
9B,
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is defined for almost every p € (0, pg). Since the domain of integration is a
cone, we now define the functions b and E in the following way:

b(p,t) = sup/ uP™' and E(p,t):/ |Vul|*.
Bx(pr)

0<t<t K.

Definition 5.6 guarantees that these expressions are well-defined. It then fol-
lows that for almost every p € (0, pp),

IE ! 3
—(p, 1) = Vul~,
ap 0 Jos,
% IE %
uA(u,Vu) -v < mz
3B, 3B,

We can then combine this with (5.20) to obtain

1
mob(p,t) +myE(p,t) < mj3 // 8E)2 —f uF(u,v).
3,0 Ko
(5.21)

and

This inequality is the rigorous counterpart of (5.10).

Handling of the term pr, uF (u, v). Let us now consider the last term in
(5.21). Hypothesis || ensures the existence of a function ¥». By multiplying
the second equation in (5.2) by ¥ (v) and integrating we find that

/ V(v()) < ¥ (v)F(u, v),
BL(/II) Kp.f

forall 0 < p < po. Note that since hypothesis |; allows the function v (s)
to assume the value oo for some values of s, the two integrals written above
might both be infinite. Now we add this inequality to (5.21) to obtain

mob(p, t)+/ V(v(1) + maE(p,t) <

1

£(p.1)
= / / (%) / (= Y O)IF@,v). (5:22)
Kot
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Hypothesis |} now ensures that the second term on the left-hand side is non-
negative and the last term on the right-hand side non-positive. This also en-
sures that both sides of the inequality have finite values. We are left with

8E>%

1
mob(p, 1) + maE(p, t) < m3(/1<p., u2>2 ( = (5.23)

From here onwards the proof is the same as in the formal discussion, with
the one exception that Lemma 5.8 should now be applied to a truncated cone
instead of a cylinder.

5.6 Proof of Theorem 5.4

Throughout the previous section the variable p took values in [0, po). For val-
ues outside of this range, i.e. for p € [po, p1), essentially the same arguments
hold. The main difference is that when integrating over the cylinder (that is,
the passage from (5.6) to (5.7)) the terms at t = 0 do not necessarily vanish.
The equivalent of inequality (5.22) then reads

mob(/),f)+/ V() +maE(p, 1) <

Bp
t 1 1
2\ 2 0EN 3
= m3</0 /Bpu) (%) +/Bp<1>(u0)+/3p\y(vo). (5.24)

The first term on the right-hand side is handled as before, and the proof of
Theorem WT is concluded by the application of Lemma 5.8.

5.7 Proof of Theorem 5.5

The essential difference between Theorem 5.5 and the two other theorems lies
in the assumptions on the nonlinearity F. We shall therefore only discuss this
part of the total argument.

The following Lemma combines some technical estimations.

Lemma 5.7 — Let F satisfy |, or 5. Then foralle > 0and0 <t < T,

t t n+l
—// uF(u,v) < —// uf(u,0)+6_'/”Clt/ vy"
0 JB, 0 JB, B,

+é(a,t)/f u™ (5.25)
0 JB,
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where n = p for l, and n = y for |3, and
Ce,t)y=Le+e'/"Cit and C;=C\(n,T,L) > 0.
Here p takes values in (0, po) for Property ¥SP and in (0, py) for Property WT.

We first continue the proof of Theorem 5.5 and prove this Lemma after-
wards.

Let us first tackle the case of Property FSP under hypothesis |,. In that case
&]
the integral | B, v,” is equal to zero by assumption. Fix n = p Using the

non-negativeness of the term uF (u, 0) stated in I, we obtain from (5.25)

t t
—// uf(u,v)gé// ubtt, (5.26)
0 JB, 0 JB,

Now, combining (5.21) and (5.26) we get

t 1 . t
mob(,o,t)+m2E(p,t)§(// ﬂ(%)%c// w527
0 JB, 0 JB,

By choosing ¢ and ¢* small enough,
N 1 ’
Ce, )t < Emo forall te [O,t ]

Then (5.27) becomes

%mob(p, 1) +myE(p,t) < </o[/;3x ”2>(2_§)%’ (5.28)

and we conclude by a combination of Theorem 5.9 and Lemma 5.8, in the
same way as in the proof of Theorem 5.3.
For Property WT we consider cylinders B, x (0, 1) where p now takes
values in (0, p;), which introduces two extra terms in (5.28):
n+l

%mob(p,t) +myE(p,t) < (-/Ot/aBp u2)%<%>%+

1 _ :
+m|/ ug+ +¢ l/”e'C‘TLt/ v, -
B B

P 0]

The result follows in the same way as in the proof of Theorem 5.4.
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When we trade hypothesis I, for hypothesis |3 we introduce a new energy,

1
Kyt

Using Hypothesis |3 and (5.25), inequality (5.21) becomes

mob(p, 1) + maE(p, t) + (ko — C(e, 1))c(p, 1) <

t 1 1 yil
< m3<// u2>2(%)2 +8*1/VeC‘TLt‘/ vy’ .
0
0 Joas, ap B,

For Property FSP the last term disappears, and we choose ¢ and ¢* such that
C(e, 1) < ky/2forall 0 <t < r*. Then, applying Theorem 5.9 with parameter
y instead of p, we obtain

('/Ot/;By ”2)%(%>% 58(E+C)+%(t¥)ﬁ<%)%

where «, 6 and § all have the same values as in (5.11), (5.12) and (5.14) with
p replaced by y, and

0 o(1-y)
K(T) = max(1, T?) max (1, &(T, p1)2<v+“>.

Notably, § has the value

_3y+1+NA-y)
2y 42+ N1 -y’

(5.29)

and therefore 8 < 1 if and only if y < 1. Property WT is handled analogously.

We conclude with the proof of Lemma 5.7. Multiply the second equation
in (5.2) by v9~!, where ¢ > 1 will be fixed later. Integrating over By, ) and
using formula (5.19) we obtain

1 d

-— v 5/ v F(u, v) (5.30)
q dt Jp,(p.n) By(p.1)

Now, if we write
Fu,v) =Fu,0)+ (F(u,v) — F(u,0))
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and use the assumption of Lipschitz continuity of F in v together with either
I, or I;—depending on which one is valid—we find

/ v F(u, v) / vqlf(u,0)+L/ v?
B(p.0) Be(p.0) By(p.1)

< C/ vq’lu”+Lf v
Be(p,1) By(p,1)

and with Young’s inequality with exponent g we obtain

-1 C
/ VI Fu,v) < <L+Cq——>/ vl 4+ — zld
By(p.1) q By(p.1) g4 JBy(p.0)

where

IA

for I, we set n = p and C = ky, and
for I3 we set n = y and C = k3.

By Gronwall’s Lemma it follows that (setting C’ = (¢ — 1)C)

t
/ V(1) gec”/ vg+cf ec/“—f)f u™(t)dxdr.  (5.31)
Bgp.1) B 0 B

Po g(p.7)

Using this estimate on v, we estimate the integral of uJ (u, v) which
appears in (5.21). Again using the decomposition F(u,v) = F(u,0) +
(F(u,v) — F(u,0)), the Lipschitz continuity, and Young’s inequality, we ob-

tain for any € > 0,
t t t
—// uF(u,v) —// u.7-'(u,0)+Lf/ uv
0 JB, 0 JB, 0 JB,
t t
—// u.7:(u,0)+£L// w1
0 JB, 0 JB,

t
+£_‘/'7L// v%,
0 JB,

where we are writing again g for g(p, r). Now if we use (5.31) with g =
(n + 1)/n we obtain

t t t
—/f uF(u,v) < —// uf(u,O)+sL// utl
0 JB, 0 JB, 0 JB,

t
+s_l/”eCTLtf vg+8_l/”eCTLth/ 'ttt
By, 0JB

&

IA

IA
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and by rearranging the different terms,

t t
——// uF(u,v) < —// uf(u,O)—l—e‘””eC’TLt/ vg
0 JB, 0 JB, By,

t
+L(s+a—'/WCteC’T)// W (5.32)
0 JB,

This proves the Lemma.

Appendix 5.A A nonlinear ordinary differential inequality

Lemma 58 — Lety >0and0 <6 < 1.

1. Let§ > 0andlet F € C([0, pp + 8] x [0, T]) be a non-negative function such
that

5 ya]: 1575
Fip, 1) = Kt E(p,t)+8(p—p0)+

for almost every p € [0, po+ 8] and forallt € [0, T). Here € is a non-negative
number. If F is non-decreasing in both arguments, then there exists a time
0 < t* < T such that F = 0 on [0, po] x [0, t*].

2. Let K, 1 be the cone defined in (5.18) with p = pgandt = T, and let F €
C(K,,.1) be a non-negative function such that

oF
Fip, 1) < Kﬂ%(p, 1) (5.33)

for all t € [0, T] and for almost all p € [0, g(po,t)]. Then there exists a
continuous function r : [0, T] — R with r(0) = pg such that

F(p,t) =0 forall pandt such that p < r(t).

Proof. For part 1 we consider an auxiliary function z = z(p) that satisfies
) *\17) dz %
Z(p) = K@) %(p) +e(p— poy (5.34)
and

z(po+8) = Pp(po +6,17). (5.35)

Here t* > 0 is still to be chosen. It is easily shown that the function
8
z2(p) = A(p — po) i’
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satisfies these two conditions if
A > max{et, ¢(po + 8, 178 ).

In that case ¢* is deduced from (5.34):

A’ = K@*)" + &.

1-6

The statement of the Lemma then follows from the monotonicity of F in 7 and p.
Part 2 is proved in the following way. Fix 0 < ¢ < T and suppose that F is strictly

positive on (p, g(po, 1)]. Remark that by (5.33) the function ¢ is non-decreasing in p,

and therefore ¢ (p, t) > 0 implies ¢ (-, 1) > 0 on (p, g(po, 1)]. Then forall p < p <

g(po, 1),

I(F'?)
L —

{1 —S & F
ap

Now integrate over (B’ g(po, 1)]:

(1=K 177(g(po. 1) — p) < F'(glpo, 1), 1) = F'*(p. 1),
or equivalently,

F'p, 1) < F'(g(po. 1). 1) — (1 = O)K'177(g(po. 1) — p)-

Clearly this implies a contradiction if

p <g(po.t) — 7 F' (g (po. 1), 1) (5.36)

(1-19)

Since F is continuous on the closed set K ,, 7, F'~° is bounded by a constant M > 0
and as a consequence

¢(p,t) =0 if < g(po, 1) — kM tY
P, - P = g(po, (1-8) )

Appendix 5.B An interpolation-trace inequality

As there exist some slightly different versions of interpolation-trace inequalities, we
present here the one that is used in the present work. For further reference see [AD,
LSU68]. We denote the norm of the space of Lebesgue integrable functions L”(X) on
a measure space X by |||l x-
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Theorem 5.9 — Let Q be a bounded domain in RN with piecewise smooth boundary
Iandletu € W'P(Q), 1 < p < oo. The following inequality holds:

0 1-6
lullyr = CUIVull, o + llull, )" llull, o

where
ZBqN—r(N—l) c©.1)
q p(N+r)—Nr
1<y <oo
p(N —1)

1<r<

andl <qg < —if N > p
N-—-p

1<rqg<oifp=N
l<r,gqg<oifp>N

and the constant C depends on Q2 and the exponents.
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Chapter 6

Blow-up of interfaces

6.1 Introduction

In this chapter we study some properties of solutions of the nonlinear diffusion
equation

p(X)u; = AA(u) xeRY, >0, (6.1)

in one and two space dimensions. The nonlinearity A is such that A" > 0
on (0, 1) and A’(0) = A’(1) = 0; the density function p : R¥Y — (0, 0o)
is supposed bounded and continuous, and we shall mostly be interested in the
case where p(x) tends to zero for large |x|.

Equations of type (6.1) arise in plasma physics [KR81, RK82], and in hy-
drology [JdJ81, Bea72, CHDHKS89], and in order to set the ideas we shall
briefly describe the hydrological model. In the interaction between fresh and
salt water in underground aquifers, mixing of the two liquids occurs over
length scales much smaller than the size of the aquifer, and in modelling this
situation it is therefore generally assumed that a sharp interface separates the
liquids. In a horizontal aquifer of even thickness, and under the assumption
that the slope of the interface is not too large, the movement of the interface is
governed by the equation [JdJ81, Bea72]

uou . Vu
,yY)———d , l—-u)y———= | =0. 6.2
e(x y)y rrla (K(x y) u( u)1+|vu|2> (6.2)

Here u(x, y) represents the height of the interface, scaled to take values be-
tween zero and one. The constants p and y represent the viscosity and the
density difference between the fluids, ¢ is the porosity, and « is the permeabil-
ity of the medium.

This chapter is to appear in Advances in Mathematical Sciences and Applications as
M. Guedda, D. Hilhorst, & M. A. Peletier, Disappearing Interfaces in Nonlinear Diffusion.
It also contains the main result of an earlier work [Pel94].
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Since we shall mainly be interested in solutions u with relatively small gra-
dients, we replace the quotient Vu/ 1+ |Vu|2) in (6.2) by Vu. Furthermore,
we shall mostly consider either one-dimensional or two-dimensional axially
symmetric solutions. In the two-dimensional case with axial symmetry, equa-
tion (6.2) reduces to

e(r)gu, — l(mc(r)u(l - u)u,)r =0 (6.3)
r

where 2 = x? + y? and subscripts denote differentiation. If we introduce a
new space variable 7, defined by

then (6.3) transforms into
, 1,
p (P, — = (Fu(l — wyuz), =0 (6.4)
r

in which 72p(F) = (n/y) r2e(r)k (r). In one space dimension, the equation
becomes

p(x)u; — (u(l — u)ux)x =0. (6.5)
Both (6.4) and (6.5) are of the form (6.1).

We shall suppose that the degeneration of the nonlinearity A is such that at
the values # = 0 and u = 1 interfaces can appear (we shall henceforth use the
term ‘interfaces’ in the mathematical sense that is common in degenerate diffu-
sion, instead of the physical sense used above). Such is the case for equations
(6.4) and (6.5) above. Our main interest in this chapter lies in the behaviour of
solutions of (6.1) and their interfaces for large time. This interest was fired by
previous works by Kamin and Rosenau [KR81, RK82] on equation (6.1) with
single degeneration (A’(0) =0, A’(s) > O forall s > 0). Among other results
they showed that as time tends to infinity the solution u converges uniformly
on bounded sets to the weighted mean of the initial distribution u, i.e. u — u
where u is given by

_def [ p(X)up(x)dx
el | PR
[ p(x)dx
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provided the numerator of this expression has a finite value. This extends a
known result in the case of constant p, which states that a solution with finite
initial mass decays to zero.

Recently an interesting result has been proved by Kamin and Kersner in
[KK93]. They consider equation (6.1) in RN with N > 3, again with single
degeneration, and they proved that integrability of p on RN (p € L LRY)) im-
plies that even if the initial distribution has compact support and therefore the
solution also has compact support for small times, there is a time 0 < 7" < o0
such that for ¢ > T the support is no longer compact. This behaviour differs
strongly from the case of constant p, in which the support of the solution is
a compact set for all time ¢ > 0. For the same equation a converse result
has been proved in [Pel94]: in this paper the author exhibits an explicit su-
persolution that also has compact support for small time. In the case that p is
radially symmetric and decreasing in r, the support of this supersolution re-
mains bounded for all time if and only if rp(r) & L'(0, 00). By means of the
comparison principle this implies that if rp(r) & L'(0, 00), then a solution of
(6.1) with bounded initial support has a bounded support at all finite time.

In this chapter we shall be interested in the Cauchy problem for (6.1) in
one and two space dimensions. This dimensional restriction is natural in the
case of the hydrological model, and also the mathematical properties that we
wish to examine are different for dimensions one and two on one hand and
three and higher on the other. Since we will be interested in solutions with
interfaces between the regions {u = 0}, {0 < u < 1}, and {# = 1}, we assume
that

AeC'(0,1]), A’ > 0on (0, 1), A(0) = A’(0) = A'(1) =0,
/ 1~ /

/ A(S)ds<oo and / A(S)ds<oo.

0+

s l—s

In addition, the density function p and the initial data u( should satisfy
pe CRVYNL®MRY), p>00onR";
up € CRY), 0 <up <1onRV.

Throughout this chapter we shall suppose that these hypotheses are satisfied.

To our knowledge, existence and uniqueness for the Cauchy problem as-
sociated with (6.1) have not yet been proved in the literature. We therefore
include these proofs in Appendix 6.A. The uniqueness is a consequence of the
following Comparison Principle:
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Theorem 6.1 — Let N be equal to either one or two, and suppose that u|
is a subsolution and u, a supersolution of Problem (P). If p(uo1 — Uyp)s+ €
L'(RN), then p(uy — uz)+(-, t) € L'(RN) forall t > 0 and

/ p(uy —u2)4(, 1) < / p(uor — ue2)+
RV RV
forallt > 0.

The definition of sub- and supersolutions is given in Appendix 6.A.
We prove the following theorems.
Theorem 6.2 (Large-time behaviour) — Let N be equal to either one or

two, and let u be the solution of (6.1) with initial data uo. If pug € L'(RM),
then

u(t) > u = as t— o0,

as t — 0o, uniformly on compact subsets of RN,

Eidus has remarked in [Eid90] that a similar result holds in the case of a single
degeneration in two space dimensions.

Let the support of a function f (supp f) be defined as the closure of the
set {x : f(x) > 0}. A solution u of (6.1) for N = 1 is said to exhibit finite
time blow-up if its support is bounded from above initially and there exists a
time T such that supp u(¢) is unbounded from above for all time t > T. For
the formulation of Theorem 6.3 we shall need an auxiliary density function &
defined by

o(x) = min p(§),
0<é<x
the reason being that the function o is monotonic while p need not be.

Theorem 6.3 (Blow-up in one dimension) — Ler u be a solution of (6.1) for
N = 1, with non-zero initial data ug, such that the support of u is bounded
from above at time t = 0. Then the following implications hold:

o0
1. / xp(x)dx < oo = finite time blow-up;
0
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o
2. / xo(x)dx = 0o = no finite time blow-up.
0

If p is not decreasing, the two conditions above leave a small gap. In the class
of decreasing functions p, however, the characterisation is complete:

Corollary 6.4 — Let the conditions of Theorem 6.3 be satisfied, and suppose
in addition that p is non-increasing on [ K, 00) for some K > 0. Then

o0
finite time blow-up <= / xp(x)dx < oo.
0

It follows from the inversion & = 1 — u that similar statements hold for the
interface at u = 1. Note that the behaviour of p and u, towards —oo has no
influence on the (qualitative) behaviour of the upper boundary of the support.
We can apply these statements once to {x > 0} and once to {x < 0} with
independent results.

Using the Comparison Principle we can extend this result to a statement on
a strip Q = R x (—1, 1) with Neumann boundary conditions, with a density
function p that does not depend on the vertical coordinate: p(x, y) = p(x) on
Q. Consider the problem

pu;, = ANA(u) inQr =Qx(0,T]

9
2 e on 9Q x (0, T]
ov

U= Uy att = 0.

The following result easily follows from the Comparison Princixple:

Theorem 6.5 (Blow-up in a 2d strip) — Let the initial condition u be such
that ug(x, y) = 1 for small x and uo(x, y) = 0 for large x. Let {y(t) denote
the interface between {u > 0} and {u = 0} at time t:

Co(t) = suppu(t) N{(x,y) € Q:u(x,y, 1) =0}.

Then the following statements hold:

o
1. I_f/ xp(x)dx < oo then the interface o will run off to infinity in finite
0

time;
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[e¢)
2. If/ xo (x)dx = oo then the interface {o will remain bounded for all
0
finite time.
A similar statement holds for the interface {y between the sets {u = 1} and

{u < 1}.

A different way of extrapolating the one-dimensional results is by consid-
ering the two-dimensional radially symmetric problem and transforming the
ensuing (one-dimensional) equation to an equation of the form (6.1). In this
case the auxiliary density function o is different:

o(r) =Oglgr<1r€2p(€)-

We prove the following result:
Theorem 6.6 (Blow-up in 2d, radially symmetric case) — Let u be a solu-
tion of (6.1) with initial condition ug. Suppose that both p and ug are radially
symmetric, and that supp ug is compact.
o
1. If/ p(r)rlogrdr < oo and 0 € Int(supp uo), then the support of u
1

ceases to be compact in finite time;

o log r
2. If / o(r) £ dr = oo, then the support of u is compact for all time.
1 r

Corollary 6.7 — Suppose ug has compact support and 0 € Int(supp up). If
r > r2p(r) is a decreasing function of r on a neighbourhood of +00, then the
support of u becomes unbounded in finite time if and only if

o0
/ p(ryrlogrdr < oo.
|

Remark 6.1 The proof of part (ii) of Theorem 6.3 is based on the construction
of a supersolution. This construction can be done in all dimensions N' = |
[Pel94], leading to the following theorem:

Theorem 6.8 — Let N > 1 and define o(r) = min{p(x) : |x| < r} for
0 < r < 00. Suppose the solution u of Problem (P) has compact support
initially. If

o0
/ ro(rydr = o0
0
then supp u(t) will be bounded for all time t > 0.
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There is an interesting gap between the statements of Theorem 6.8 for N = 2
and Corollary 6.7. Clearly, the condition ro(r) ¢ L'(0, 00) is too weak
in the case of radially symmetric densities. But if we take a density func-
tion p = p(x,y) on R? that is only a function of x, i.e. p(x,y) = p(x),
then in the same way as in Theorem 6.5 we can compare it with solutions
of the one-dimensional problem. The result of this comparison is that for
convenient initial distributions the blow-up of interfaces is equivalent with
xp(x) € L'(0,00), which implies that the condition ro (r) ¢ L'(0, 00) is
sharp. It is not clear what a general condition for blow-up of interfaces should
be in a non-radially symmetric situation. °

Theorem 6.2 is proved in Section 6.2. The blow-up of interfaces in one
space dimension (Theorem 6.3) is studied in Section 6.3, and in two space
dimensions in Section 6.4 (Theorem 6.6).

6.2 Proof of Theorem 6.2

Theorem 6.2 was proved for the single-degeneration case in one dimension by
Rosenau and Kamin [RK82]. We give here a completely different proof which
also applies to the case studied by Rosenau and Kamin.

We shall use certain a priori estimates on the solution of Problem (). The
following Lemma is proved in Appendix 6.A:

Lemma 6.9 — Let u be the solution of Problem (P) with initial function u,
and set v = A(u). Suppose that pu € LY (RN). Then the following statements
hold.

1./ pu(-,t):/ pug forall T >0 (conservation of mass);
RV RV

2./ pB(v(-,t))+/f |Vv|2§/ pB(vy) forall ©=>0;
RN o JRN RV

3.f Vol 1)< S forall >0
RN T

where B(s) = f(; op'(o)do with B = A~ and ¢ > 0 is a constant that does
not depend on .
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Remark 6.2 Estimates as given in Lemma 6.9 are well known in degenerate
diffusion problems. The presence of the density function p does introduce a
novel element, however: the conservation of mass is only true in this form in
one and two space dimensions. In fact the main result of [KK93], valid for
N > 3 (see the Introduction), is based on showing that conservation of mass
does not hold. °

Proof of Theorem 6.2. It follows from the uniform continuity of the
function v (this is a consequence of [DV94], as is shown in the proof of The-
orem 6.13) that there exists a sequence #, — oo and a function v € C (RM),
0 < v < A(1), such that v(¢,) — v as n — 00, uniformly on compact sets.
Now let 2 be an arbitrary bounded set of RY . Then by Lemma 6.9, part 3,

1
v(ty) — 'I"S'2—|/S;v(tn)

where C is a constant that depends on €2, so that

_ l/_
pe— i p
1R2] Jo

for each bounded subset 2 C RM. Therefore v is constant, and u(t,) =
B) — i = B(D) as 1, — oo, where 8 = A~!. The value of @ fol-
lows from the conservation of mass (part 1 of Lemma 6.9). The fact that this
limit is uniquely defined implies the convergence of u(z) as ¢t — oo. This
concludes the proof of Theorem 6.2. °

g
< ClIVv(@t)ll2 o = —,
L2(Q) In

6.3 Proof of Theorem 6.3

The proof of Theorem 6.3 is based on the comparison principle. First we
consider a special case.

Lemma 6.10 — Let ug € L'(R), ug # 0, and suppose that the support of
uo is bounded from above. If fooo xp(x) dx is finite, then there exists a time T
after which the support of the solution u is unbounded from above.

Proof. Define the upper interface function
¢(t) =sup{x € R:u(x,t) > 0}.
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For the purpose of contradiction we suppose that ¢ (t) < oo forall ¢ € [0, 00).
Let the sequence of smooth functions y, be such that supp x, is compact in
(0, 00), x,, and |x x, (x)| are bounded uniformly in x and n, and finally x, — 1
and x, — 0 pointwise on (0, 0o0). We substitute the test function
xx,(x) ifx >0,
Y = { Xn)

ifx <0

in equation (6.15). Then

/ xp(x)u(x,T)x,,(X)dx—/ xp(x)uo(x) x, (x)dx
0 0

i o0
= / / A(u){xx,}cx dxdt
0 0

T poo
- —f / A)ix, + xx,} dxdt.
0 JO

Note that the function A(u), is well-defined by Lemma 6.9. Letting n — o0
and applying Lebesgue’s dominated convergence theorem we deduce that

00 00 T pt)
f xp(x)u(x, T)dx —f xp(Xug(x)dx = — / A(u), dxdt
0 0 0 0
T
:/ A, 1)) dt. (6.6)
0

If p € L'(R), then by Theorem 6.2, u(0,t) — u > 0 ast — oo. Since
the left-hand side of (6.6) is bounded as T — oo, there exists a sequence
{t,}, lim,_ o0 t, = 00, such that A(u(0,1,)) — 0asn — oo, implying a
contradiction. On the other hand, if p & L! (R), then by Theorem 6.2 the
function u(-, t) converges to zero pointwise on R as t — oo. By the dominated
convergence theorem we conclude that the first integral in (6.6) tends to zero
as T — oo. At some time T there will be a sign difference between the left
and the right hand side of (6.6), again implying a contradiction. °

We now turn to the proof of Theorem 6.3. First consider the case in which
fooo xp(x)dx < oo. Let x : R — R be a smooth cut-off function such that
x(x)=1forallx >0, x(x) =0forallx < —1and0 < x <1 onR. Define
vo(x) = up(x)x (x + d) for such a value of d > 0 that vy is not identically
equal to zero. Then vy € L'(R), and supp vg is bounded from above. If we
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denote the solution of Problem (P) with initial data v by v, then Lemma 6.10
implies that supp v will be unbounded from above in finite time. Since by the
comparison principle # > v on R x R*, the same holds for u.

Now assume that fooo xo (x)dx = oo. In order to show that the support of
u remains bounded for all time, we compare the solution u with a supersolution
with bounded support. A similar supersolution was discussed in [Pel94].

Suppose for the time being that ug(x) = 0 for all x > 0. Let the compari-
son function w be defined by

1 x <0
w(x,t) = n‘] [a (l —xz/g(t)z)] 0<x <g(t)
0 x = g(1),

where n(s) = fOY A'(t)/tdt, n(1) = a,and g : [0, 00) — [0, 00) is a func-
tion to be specified later. By explicit calculation it follows that the following
conditions are sufficient to guarantee that w is a weak supersolution in the
sense of Definition 6.12:

pw; > A(W)yy for0 <x <g@), t>0 (6.7

, 1 )
g = _p(g(t)) En(w)(g(t), t) forallz >0 (6.8)
w(x,0) > up(x) forall x € R. (6.9)

This follows from the following argument: if P = {(x,?) € R x R : |x] <
gHyand T = {(x,1) e R x R* : |x| = g(¢)}, then it follows from (6.15) that
w is a supersolution if

- f {owr — A(w)xx }¥ + /{Pwvt — A(w)yve}y =0 (6.10)
P r

for all appropriate test functions y. Here v = (v, vy) is the unit vector nor-
mal to P that points outward. If g is differentiable then v, = — g (t)v,, and
by conditions (6.7) and (6.8), condition (6.10) is met. The condition (6.9) is
necessary to apply the comparison principle (Theorem 6.1).

Inequality (6.9) is satisfied due to our assumption that the support of u( is
contained in {x < 0}. If we expand (6.7) we find

d {p();)(f)(l) - g?za)2 >—A'(w) for 0<x<g(),t>0. (6.11)
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The right-hand side is non-positive and therefore it is sufficient to require that
g satisfy

g'(t) > forall 0 <x <g(),t>0.

a
gMp(x)
With the definition of o in mind we define g by setting

/([) e —261__
8= o s
g(0)=1. (6.12b)

forall >0 (6.12a)

Since 9n(w)/dx takes the value —2a/g(t) in x = g(), with this definition of
g the function w also satisfies (6.8).

Now that the comparison function has been defined, we need to determine
the behaviour of its interface {(x, ¢) : x = g(¢)}. The solution g of the problem
(6.12) is given by

g(t)
/ xo(x)dx = 2at. (6.13)
1

From the initial assumption xo (x) ¢ L'(0, 00) it follows that g(z) remains
finite for all finite time ¢. By the comparison principle the same holds for u.

We can relax the condition on the support of u( by shifting the supersolu-
tion rightwards until the initial distributions uo and w(-, 0) are ordered. If w
is shifted rightwards by a distance d > 0, then the ensuing condition on the
behaviour of o is [;°(x — d)o (x) dx = 00; since

00 2d 0
f (x —d)o(x)dx > (x—d)o(x)dx+%/ xo(x)dx = 00,
d d 2d
this condition is satisfied. This concludes the proof of Theorem 6.3. °

Remark 6.3 If the condition fooo xo(x)dx = oo is satisfied, the proof of
Theorem 6.3 not only shows that the support of u stays bounded for all time,
but also gives a (more or less explicit) bound: suppu(t) C {x € R: x < g(1)},
where the function g is given by (6.13). °
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6.4 Radial symmetry in two dimensions

Theorem 6.6 is proved by comparison with radially symmetric solutions of the
same problem. Let v be a radially symmetric solution of Problem (P). Then

1

pvy = —(rA(v),), for0 <r <oo,t>0.
r

By the change of variables s = log r we find

o(s)v; = A(v)gs for —oo <s <00, t >0,

where p(s) = r?p(r). Note that 6(s) := ming<¢<; 6(§) = o (r). Theorem
6.3 states that the behaviour of interfaces depends on the integrability of s (s)
and 56 (s) at infinity. This translates in the following way:

[e.¢] o0
/ sp(s)ds < o0 f p(ryrlogrdr < oo
0 I

and

1
Ogrdr = 00.
,

/Oosc}(s)a's:oo =5 /OOU(V)
0 I

The statement of Theorem 6.6 then follows from Theorem 6.3. Note that the
extra condition 0 € Int(supp up) guarantees that we can find a subsolution with
non-trivial support. °

The result of Theorem 6.6 is made possible by the existence of a scaling
of the independent variable r (s = log r) that maps the point r = 00 to s = 00
and gives the equation a one-dimensional form. This same scaling maps the
point r = 0 to s = —oo, which implies that by following exactly the same
reasoning we can prove

Theorem 6.11 — Let u be a solution of Problem (P) with initial condition
ug, let p(x) = p(|x|), and suppose that 0 ¢ supp u.

I
1. If/ p(r)rlogrdr < oo, then after finite time supp u(t) shall contain

0
the point x = 0;

1
1
2, If/ o (N~2L dr = 0o, then 0 ¢ suppu(t) for all time t > 0.
0

r
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Example. In [AG93] the authors describe a so-called focusing solution of
the N-dimensional porous medium equation

u, = Au™ inRY x R, (6.14)

The support of this solution contains a hole that shrinks as time increases,
disappearing totally at some finite time r*. The solution that they construct is
radially symmetric and of self-similar form: if we set #* = 0, and let v denote
the (scaled) pressure associated with (6.14), v = mu™'/(m — 1), then the
solution is given by
v(r, 1) =r¥« 5@, r>0,1<0,
-1

where the self-similar variable 7 is given by n = tr~%. The function F and the
exponent & € (1, 2) are obtained by solving the ensuing ordinary differential
equation.

In the case N = 2 we can use this solution to construct an explicit example
of disappearing interfaces. Again we perform the change of variables s =
log r, after which the solution u given by Aronson and Graveleau satisfies the
equation

)6(.5')14; == (um)ss on ]R7

where p(s) = e?°. Initially—that is, at some finite time before 1 = 0—
suppu = [—a,o0), where a is a positive number. The transformation
s = logr maps r = 0 tos = —oo, and the closure of the hole in the sup-

port in the original variables therefore corresponds to a disappearing of the left
interface, clearly in finite time. Given the results of this chapter, this also fol-
lows directly from the form of p. The interest of this solution lies in the fact
that the interface is given explicitly. The location of the interface is given by
r = c(—t)"/* in the original variables; in terms of s and 7, the interface lies at

1
s = —log(—t)+c, t<0O.
o

Appendix 6.A Well-posedness and a priori estimates

This appendix is devoted to the proofs of existence and uniqueness of the solution of
the Cauchy Problem

p(X)u; = AA) inRY x RF

u(x,0) =up(x) forx e RV
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in one and two space dimensions. We can write problem (P) in the equivalent form

p(x)B(V), = Av inRY x RF

P
(F) v(x,0) = A(up(x)) forx e RY

where v = A(u) and B = A~
We borrow the definition of a weak solution from [BKP85]. Set 0 = RY x R*,
and Or ={(x, 1) e Q:t < T}

Definition 6.12 — The function u € C(Q) is a weak solution of Problem (P) if
1. 0<u<1lonQ;

2. u satisfies the integral identity
/ p(x)ulx, )Y (x, 1) dx —/ p(x)uo(x)y (x,0)dx
Q Q

=//{pul//,+A(u)A1/l} dxdt—// A(u)%a'xdr (6.15)
0 JQ 0 Jo av

for all smooth bounded domains $2 C RY, for all non-negative functions ¥ €
C*1(Q x [0, T)) that vanish on 92 for all t > 0.

Weak sub- and supersolutions are defined similarly, after replacement in (6.15) of the
equality sign by ‘<’ (for subsolutions) or ‘>’ (for supersolutions).

We establish the following result.

Theorem 6.13 — Let N be equal to either one or two. There exists a weak solution
of Problem (P).

Proof. We prove the theorem for N = 2, the extension to N = 1 being straight-
forward. We set 2, = {x € R? : |x| < n}and Q,7 = €, x (0, T) and we consider
the problem

puba0) = AV (x.1) € Qur (6.16)
(Py) %20 (x,1) €92, x (0,T)

v(x,0) =vp,(x) x €,
in which
1. py € C®(2,), pr > 0, and p, — p pointwise in R?;

2. B, € C=([0,A()]). B, > by > 0 on [0, A(1)], B, — B uniformly on
[0, A(1)], and B, — Bin L' (0, A(1));
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3. vo = A(ug); von € C®(R2,), 1/n < vo, < A(l) — 1/n, and vy, — vg almost
everywhere on R”.

Problem (P,) has a unique classical solution v, [LSU68] and it follows from the com-
parison principle that 1/n < v, < A(1) — 1/non Qur.

We conclude from [DV94] that there exists a function v € C (Q) and a subse-
quence {vy, } such that v,, — v uniformly on {lx] < R} x [0, T] for all R. We deduce
from a similar identity for v, that v satisfies the integral identity

/P(X)ﬁ(v(x,f))l/f(hf)dx—f p(X)ug(xX)Y (x,0)dx =
Q Q

_/t/ {pﬂ(v)l//,+vAw}dxdr—/1/ v%dxdt
0 Ja o Jag OV

for all smooth bounded domains  C R2, for all functions ¥ € Cr(Q x [0,T))
which vanish on 82 and for all ¢ > 0. The function u = B(v) satisfies the assertion
of the theorem. °

The proof of Theorem 6.1 that we give here is an adaptation of the proof of a
similar property due to Bertsch, Kersner, and L. A. Peletier [BKP85]. It should be
noted that although the techniques are similar, there is an interesting effect in the
change from one or two spatial dimensions to three dimensions and higher. This is
further explained in Remark 6.4.

Proof of Theorem 6.1. Again we only prove the theorem for N = 2; the extension
to N = 1 is straightforward.
Define the functions w = u; — u and wg = ugy — upz2. They satisfy

/‘Pw(uf)l/f(wf)—/ pwoy (-, 0) < (6.17)
Q Q

< //(w/)lﬂt‘F(A(ul) —A(uz))Alﬂ)—f/ (A(uy) — A(u2)) ¥y
0 Ja 0 Jag

for all appropriate domains €2 and test functions . For the length of this proof we
adopt the notation ¥, = 9y /dv. Define 2, = {x € R? : |x| < n}and Qu =
Q, x (0, t], and the function
Auy) — Aun)
qx,t) = up —up
0 ifl/tl = U

ifu| ;ﬁ Uy

Remark that ¢ € L®(R? x R*), and that ||g|~®2xr+) < [|A"llz=(0,1). We approxi-
mate g on Q,, by functions g, such that

172 < gy < gl Le@exr) + 1700 Quis (6.18)
1(gn — @)/ /qnll120,) = 0 asn — oo, (6.19)
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and introduce as test functions the solutions v, of
oY + an"// =0 inQy
v =0 on 082, x [0, ¢] (6.20)
Yx, 1) =x(x)  ongy,

where x is a fixed function that belongs to C>°(€2,) for n large enough and takes
values in [0, 1]. The_density p is bounded from below on Q,,, so (6.20) has a unique
solution ¥, € C>'(Q,,). By multiplying the equation for ¥/ with Ayr/p we find that

f/"%mwﬂsc 6.21)
0JQ,

where C is a constant independent of n.

Using v, as a test function in (6.17) we find that

/pxw(-,t)dx—/ prI/fn('»O)dxfff (q—qn)Allfn—f/ quir,,
Q, Q, 0JQ, 0 Jo,

Denote the two integrals on the right-hand side I; and I;. We shall now show that both
tend to zero as n tends to infinity. First consider /;:
q — qn

t 2 pt
ﬁ5// ff%mwﬁ
: 0oJao, | V4, | Jo Ja,

and the right-hand side of this expression tends to zero because of (6.21) and (6.19).
To prove that I tends to zero, we compare the function ¥, with the solution z,, of

Az=0 ro<l|x|l<n
z=0 x| =n
z=1 [x] =ro
where ry is such that supp x C {|x| < ro}. The solution z, of this problem is z,(x) =

(logn — log |x|)/(logn — logry). Since both ¥, and z,, are equal to zero on |x| = n,
we have

0 =< _wnv < —Zn, on BQ,,

Explicitly this implies that

[Ynul < (6.22)

n(logn — logry)
We can then estimate I, by

2

1B < A" pep iy ———7——
logn — logrg
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and the right-hand side of this expression tends to zero as n tends to infinity.
Since by the comparison principle 0 < ¥, < 1 on Q,r, we can deduce from
(6.A) that

IA

fpxw(-,t)dx 11+12+/ pwoy (-, 0) dx
R2 Q,

IA

L+ 1 +/ pwoy dx. (6.23)
]RZ

The right-hand side of this expression is finite by the hypothesis of the Theorem.
Passing to the limit in (6.23) yields

/pxw(~.t)dxs/ pwoy dx
R2 R?

forall x € C (R?) such that 0 < x < 1. The theorem then follows immediately
from this inequality by letting x converge pointwise to the function sgn(w, ). °

Remark 6.4 The absence of a uniform lower bound for p introduces an interesting
effect in the well-posedness of the Cauchy Problem for equation (6.1). If the proof
of Theorem 6.1 is rewritten for spatial dimensions different from N = 2, the only
important difference lies in the explicit function z,,. In one dimension, z,(x) = (n —
x)/(n — ry), so that z, (n) = —1/(n — ry) tends to zero as n — oo. This implies that
I, tends to zero as n — oo, which is necessary to conclude. However, when N > 3,
2u(r) = (>N — 02Ny /(3N — n?~N). In this case, g, |2,| remains bounded away
from zero, and without an additional assumption on the solution in fact uniqueness
does not hold [KK93, Eid90, EK94]. °

Remark 6.5 The proof of the comparison principle still holds when the condition A €
C'([0, 1]) is replaced by A € W'>°(0, 1) and the condition ug € C(RV),0 < uj < 1
by up € L*(R"),0 <up < 1ae. onR". .

We conclude this appendix with the proof of Lemma 6.9.

Proof of Lemma 6.9. We first prove the second part of the Lemma. By Theorems
6.13 and 6.1 we can obtain v as the limit of functions v,,, which are defined for all
x| < nand 0 < ¢ < 7. Firstfix R > Oand set B = {x € R" : |x| < R}.
We multiply the differential equation in Problem (P,) by v, and integrate on {|x| <
n} x (0, 7):

/ Pn(x) B, (v, (x, r))dx+// |V, |?

Br

/ Pn(x) B (v, (x, r))dx+/ / |V, |?
[xl<n |x|<n

[ pn(x)Bn(UOn)dxv (624)
|x|<n

IA
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where B, (s) = f(; B, (t)dt. The condition fpuo < oo implies that the functions
vo. can be chosen such that f 0B (vo,) is bounded independently of n. Since the
function B, o B, is Lipschitz continuous with a Lipschitz constant L that does not
depend on n, the last term in (6.24) is bounded as n — oo and therefore we can
extract a subsequence—without changing notation—such that Vv, converges weakly
in L2(Bg x (0, 7)). With the uniform convergence of v, we can identify the limit as
V. Using the dominated convergence theorem and the weak convergence of Vv, we
can pass to the limit in (6.24) to obtain

fp(x)B(v(x,r»der// |VU|25/ p(x)B(vp) dx.
Bgr 0 Bgr RN

The result then follows from the monotone convergence theorem.

To prove part 1, consider a monotonic cut-off function n € C*(R) such that
n = 1on (—oo, 1]and n = 0 on [2, 00). Take ¥ (x) = n(|x|/R) for some R > 0 as a
test function in (6.15), giving

/pu(-,f)lﬂ:/ Puow—// VoVy (6.25)
RN RN 0 JRN

where we have used the fact that Vv € L2(RN x (0, 1)) by part 2. We can estimate
the last integral in (6.25) by

7 1/2
RN>~" max |n/| (f / |Vv|2>
R 0 JR<|x|<2R

which tends to zero as R — oo. The result then follows from an application of the
monotone convergence theorem.
To prove part 3, multiply by v, the equation satisfied by v, and integrate:

T , 2 1 T d 2
tpn B, (Vv = ) IE|VU,,|
0 Jlx|<n 0 Jlx|<n
1 T
= _/ / IVU,,'Z - E/ |VUH|2(-,T)_
2 0 Jlx|<n 2 |x|<n

T
of wureos [ [ i
|x|<n 0 Jix|<n

after which the result follows from the second part of the Lemma. .

or
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Chapter 7

A self-similar solution in fast diffusion

7.1 Introduction

In this chapter we consider solutions of (1.6) in the case of fast diffusion, 1.e.
0 < m < 1. We shall write the equation as

u, = div(u "Vu). (7.1)

For n = 1, equation (7.1) arises in the study of the expansion of a ther-
malised electron cloud [LH76], in gas kinetics as the central dynamical limit
of Carleman’s model of the Boltzman equation [Car57, KL80, KLR80, Kur73,
McK76], and in ion exchange kinetics in cross-field convective diffusion of
plasma [HP58]. In [Kin88] a model is described for the diffusion of impurities
in silicon, in which equation (7.1) arises for values of n between 0 and 1.

We shall consider equation (7.1) in RV, for a spatial dimension N larger
than two, subject to an initial condition

u(x,0) = up(x) for x eRV, (7.2)

where the initial distribution u( is non-negative and u( € L' (RM).

When 0 < n < % it is well-known that solutions of the initial value
problem (7.1), (7.2) are smooth and exist for all time (see e.g. [Pel81]). For
values of n > 1 no solutions with finite initial mass exist [Vaz92b]; in [BC81]
it is proved that when % < n < 1, finite-mass solutions become identically
equal to zero in finite time, due to a non-zero flux at infinity. We will be
concerned with a special kind of such solutions, namely those which are of a
self-similar form. In particular we take N > 2 and % < n < 1, and seek

solutions u of (7.1) which vanish at a finite time 7', and which are of the form

u(x,t) = (T —1)*f(n) where n=|x|(T —1)"", (7.3)

This chapter has appeared as an article in Differential and Integral Equations [PZ95].
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where « > 0 and B € R are constants that need to be determined. Such
solutions were also considered by Philip [Phi94] and in more detail by
King [Kin93b], who gave a formal motivation for the existence of such so-
lutions, and for the convergence of solutions with arbitrary initial distributions
to these self-similar profiles. In this chapter we provide a rigorous proof of
King’s conjectures concerning existence and uniqueness of self-similar solu-
tions and some of their properties. When 8 = 0, the solution u given in (7.3) is
separable, and for this case Galaktionov and L. A. Peletier have proved conver-
gence of general finite-mass solutions to the separable one [GP96a]. A similar
statement on bounded domains can be found in [BH80].

The character of fast diffusion implies that at any time ¢ at which a solution
of (7.1) is not identically equal to zero, it is in fact strictly positive in RN and
smooth [HP85]. Hence, when looking for solutions of the form (7.3), it is no
restriction to assume that f(n) is positive and smooth for all n > 0.

Substituting expression (7.3) into (7.1), we find that if we choose

an+28 =1, (7.4)
then f satisfies the equation
n' NGNS — Bof +af =0 for 5> 0. (7.5)
Symmetry and smoothness require that
=0 at n==0. (7.6)

The restriction that f represent a solution of (7.1) of finite mass translates into
the condition

/O " f(n)dy < oo. (1.7)

One can show that (7.7), when combined with (7.5), is equivalent with the
statement that the flux F(n) = n™~! £~ f(n) has a finite (negative) limit at
infinity. This statement is equivalent to the assertion that

f) <~ N=2/A=m a5 n - o0, (7.8)

where the notation a(t) =< b(t) signifies

. a(r) , . .
lim —— exists and is positive.
t—00 b([)
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To conclude our preliminary remarks about equation (7.5), note that the scaling

fay=y"f@m/y) for y>0 (7.9)

leaves the equation as well as both boundary conditions invariant. Throughout
this chapter we therefore set f(0) = 1.

Therefore the problem to be studied in this chapter is: Find f : [0, 00) —
R, positive and smooth, and parameters « > 0 and 8 € R such that

' NGNT Y = Bnf +af =0, f>0 for n >0  (7.10a)

f'0)=0 and f(0)=1 (7.10b)
f(n) =< n~W-2/0-n as n — oo (7.10c)
an+28 = 1. (7.10d)

The relation (7.4) between the two parameters introduced by the Ansatz (7.3)
arises from the requirement that f satisfy an equation involving only 7. In
situations where the problem under consideration satisfies a conservation law
(e.g. conservation of mass), this law supplies a second condition on « and f,
thus fixing the parameters. In this case we speak of self-similar solutions of
the first kind. Since we seek solutions that do not conserve mass, there is no
second condition on « and B for Problem (7.10). This extra degree of freedom
gives it the character of a nonlinear eigenvalue problem: the parameter « (or
B) is to be determined together with the solution function f. The function f
is then called a self-similar solution of the second kind [Bar79].

The main results of this chapter are summarised in the following two the-
orems. The first one gives existence and uniqueness for Problem (7.10).

Theorem 7.1 — For every N > 2 and % < n < 1, Problem (7.10) has
exactly one solution (f, a, B). Moreover,

N -2

0<a< .
nN —?2

(7.11)

This theorem implies that for every value of n in the given range, there exists
exactly one self-similar solution of equation (7.1) of the form (7.3).

The second result concerns the behaviour of the eigenvalues o and f, as
given by Theorem 7.1 and equation (7.4), when we vary the parameter n. We
indicate the dependence of « and 8 on n by writing a(n) and B(n). Let ng =
4/(N + 2). We prove the following assertions:
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Theorem 7.2 —
1. a(n) and B(n) depend continuously on n;
2. B(ng) =0; if n > ng then B(n) > 0, and if n < ng then B(n) < 0;
3. Whenn| % then a(n) — oo and B(n) — —o0;

4. Whennt 1, then a(n) — 0 and p(n) — 3.

Theorem 7.2 can be interpreted in the following way. The parameter « deter-
mines the decay rate of the maximum of the solution. When n approaches one,
a(n) tends to zero, implying that the decay of the solution near t = T is very
slow. On the other hand, when n tends to % a(n) tends to infinity, signifying
a very fast decay rate. The parameter S determines the spread of the profile.
When B < 0, the profile of the solution spreads out as ¢ approaches 7', while
for B > 0 the profile shrinks, all mass concentrating in the origin. Because
B(ng) = 0, the solution u for n = ny is separable, consisting of a fixed profile
multiplied by the factor (7' — )V +2/4_ This situation is very similar to the one
considered by Berryman and Holland in [BH80]. In Figure 7.1 the dependence
of « and B on n is drawn for N = 3.

0.5

8 0
-0.5

-1
4 -1.5

-25

0.7 0.75 0.8 0.85 0.9 0.95 0.7 0.75 0.8 0.85 0.9 0.95 1

Figure 7.1: The dependence of « (left) and B on n, for N = 3 and
0.7 <n<1.

To prove these results we first consider in Section 2 an alternative formula-
tion for Problem (7.10). In that section we also derive estimates and properties
of solutions that will be used later. In Section 3 we prove the existence and
uniqueness of solutions of Problem (7.10) (Theorem 7.1), and in Section 4 we
prove Theorem 7.2.

Acknowledgement We wish to thank J. Hulshof for his valuable contribution.
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7.2 Preliminaries

Inspired by the analysis of King [Kin93b] we first transform equation (7.5) into
a first-order autonomous system. This is the key step in our approach because
it allows for an analysis in the phase plane. In particular we concentrate on the
first order equation which holds along integral curves in the phase plane.

Let f € C2((0, 00)) N C'([0, 00)) be a positive solution of Problem (P).
Then introduce the functions ¢, z : (0, 00) — R, defined by

_nanf'()

2 fm
They are well-defined for all n > 0, and {(z(n), z(n) : 0 < n < oo}isa
continuously differentiable curve in the ¢, z-plane. Remark that this curve is
invariant under the scaling (7.9). Along the curve we have for z # 0

dz 2 4 2\ 1 1
—Z:<——2>z—<N+2——>—(N——>—+e_2’(k+—>.
dt n n nj)z Z

t(n) = Llog2n2f () and z(n) = -1

(7.12)
The boundary conditions (7.6) imply
t >o00 and z — —1 as nl0, (7.13)
and (7.8) yields
t - oo and z—»Ldef aN—2 as 1n — o0. (7.14)

~2(01-n)

To summarise, every solution f of Problem (P) can be represented as a
continuously differentiable orbit in the #, z-plane that satisfies (7.12) and con-
nects the points (oo, —1) and (oo, L).

For brevity we introduce the notation

2
a=-—2 and A=28,
n
and write equation (7.12) as
dz 1
lzg(z—L)(z+l)+e42’ <A+—). (7.15)
dt Z Z

A solution of equation (7.15) is locally unique, since for every (t,z) € R?,
either dz/dt or dt/dz depends on ¢ and z in a Lipschitz continuous manner.

We can immediately use this formulation to restrict the admissible values
of A:
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Lemma 7.3 — Suppose there exists a A € R and a continuously differen-
tiable orbit y in the t, z-plane that satisfies (7.15) and connects the points
(00, —1) and (00, L). Then

—— <A<
L

Proof. We argue by contradiction. First suppose A > 1. By the continuity
of y there exists (9, zo) € y such that

1 d
=7 and d_: <0 in (%, zo0),
which contradicts equation (7.15). If A = 1, then the line z = —1 is a solution

curve of (7.15); we will prove in Lemma 7.8 that for fixed values of A, an orbit
with behaviour (7.13) is unique. In a similar fashion one proves the lower
bound: here the contradiction is also on the line {z = —1/A}, but with the
crossing in the other direction. °

Solution curves that satisfy (7.15) have a simple structure. This is the
content of the following lemma.

Lemma 7.4 — If f is a solution of Problem (7.10), and y is the correspond-
ing orbit in the t, z-plane, then y intersects the t-axis exactly once. Further-
more, there exist functions 7, (t) and z_(t), such that 7y > 0 and z_ < 0, and
that

y={t,2):z=z4@}U{(t, 2) : z=2z-(0)}.

It follows immediately from the preceding remarks that the functions z
and z_ satisfy (7.15).

Proof. We can write the isocline I' = {(¢, z) : dz/dt = 0} as the union of
'y ={z=¢4@)and I'_ = {z = ¢_(¢)}, where the functions ¢ are given
by

1=f & 1 A 2 1
et = e G F el I~ L =g W) pdf L P},
2 2 2 a "

The phase plane is drawn in Figure 7.2; we should remark that ¢/, > 0 and
¢’ < 0, and that

lim ¢, (t) =L and lim ¢_(z) =—1.
100 t—>00
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Figure 7.2: The phase plane

From the vector field in Figure 7.2 and the limiting behaviour (7.13) and
(7.14) we can deduce that an orbit with more than one intersection with the
t-axis has to intersect itself. This is ruled out by the local uniqueness. Any
solution curve can therefore be split into two parts, one above the 7-axis, and
one below. Since dz/dt is finite whenever z is non-zero, the two parts can each

be represented by a single-valued function of ¢, as in Figure 7.3. °
=L e i
>
r
z-(1)
Z=—1 _ o T — -

Figure 7.3: A typical solution

The following lemma describes how the functions z; and z_ approach
their limits as 7 tends to infinity.

Lemma 7.5 —

1. Let 7 satisfy equation (7.15) and the asymptotic behaviour 7, (t) — L
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ast — 00. Then
2.(t) =L — Ae ¥ + x(1)

where

n 1+ AL

= and x(t):O(e“") as t— 0o.
2L+1—n

2. Let z_ satisfy equation (7.15) and the asymptotic behaviour 7 _(t) —
—last = oo. Then

7-(t)=—1+Be %+ y@t)
where

B:—N— and y(t)=0(e_4’) as t— 00.

Proof. We only prove the first part; the proof of the second part is simi-
lar. First remark that the isocline ¢ (¢) tends to L as L — a~'e™?" and that
therefore L — 7z, tends to zero at least as fast as a~'e™%. Set

z24() =L — Ae™ + x(1) (7.16)

and define g (t) = x(t)e*. By the previous remark, g remains bounded as ¢
tends to infinity. Using (7.16) in (7.15) we find the following equation for g:

L+1 L~z
qg = \a +2)qg+(ag—aA+1) =
L Z+L
= kq + pu(t). (7.17)

Remark that since z(r) — L as fastas e, |u(t)| < Ce™? for some constant
C. Equation (7.17) implies

o
q(t) = —e“/ e " u(s)ds,
t

and thus

-2t

@
lg(®)] < 12
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We now are in a position to prove the equivalence of the two formulations
that we have discussed so far.

Lemma 7.6 — With every solution f of Problem (7.10) correspond functions
74 and z_, such that

1. z4 and z_ are defined on [T, 00) for some T € R;
2. z4 and z_ satisfy (7.15) on (T, 00), and z4.(T) = z(T) = 0;
3. z4(t) > Landz_(t) > —last — oo.

Conversely, every pair of continuously differentiable functions z and z . that
satisfies the above conditions defines a solution f of Problem (7.10).

In what follows, we shall refer to z as the upper solution and to z_ as the
lower solution of equation (7.15).

Proof. The first assertion was shown in Lemma 7.4; we only need to
prove the inverse case. First let us remark that we can choose a parametrisation
(1(£€), Z(£)) of the union of the two curves S = {(t,2) : 2 = 24 ()} U {(t,2) :
z = z_(1)}, in such a way that

10)=T and Z(0)=0; (7.18)
() =z4((¢) if >0, and Z(§) =z-(1(§)) if § <0:(7.19)
1'(€) = 2(6). (7.20)

Indeed, with any point (z, {) € S we associate the parameter value £ as fol-
lows:

T ds )
/ ©) if >0
R (721

/r ds if ¢ <0.
T 2-(5)

From equation (7.15) we deduce that

d d
lim —z2 (1) = lim —z% (1) = —2aL +2¢~*" :
tlir;l dtz+(t) tlil;l dtz,( ) al + 2e (7.22)
which implies that 1/z,(¢) and 1/z_(r) are integrable near t = T. Therefore
the integrals in (7.21) are well defined. Observation (7.22) also implies that

the orbit thus obtained is continuously differentiable for all £ € R.
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We can then construct the solution f of Problem (7.10) by defining
n=2¢ and f(n)" =2e 2Ep72 (7.23)

From differentiation of (7.23) it follows that f is a solution of equation (7.5).
It remains to prove that boundary conditions (7.6) and (7.8) are satisfied. It
follows from (7.23) that

d ~
() = 4731+ 3(E))e O,
n

Using the limiting behaviour of z_ (Lemma 7.5) we find that f "(0) = 0. This
proves (7.6). For the boundary condition at n = 00, we calculate

TS f ()" = 2e2LETE,
The limiting behaviour of z.; implies that

;_s (L& — 7(6)) = L — 2(§) <247 7® <247,

where the second inequality is true if £ is large enough, and therefore
lim (L& —1
Jim (L& —7(©))

is finite. This concludes the proof. °

7.3 Existence and uniqueness

Problem (7.10) is a nonlinear eigenvalue problem: the number g is to be de-
termined together with the solution function f. In this section we prove the
following theorem:

Theorem 7.7 — For every N > 2 and % < n < 1, Problem (7.10) has
exactly one solution (f, «, 8). Moreover,
l1—n 1

- 24
2N_2-P=3 ihah
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Note that statement (7.24) is an immediate consequence of Lemma 7.3.

By Lemma 7.6, the assertion of Theorem 7.7 is equivalent to the existence
and uniqueness of a number A € R and functions z, and z_ as described in
the Lemma. The proof shall proceed as follows: for every —1/L < A < 1
we show that there exist functions z, and z_, solutions of (7.15), which have
the prescribed behaviour at 1 = co. Both functions intersect the 7-axis, but in
general at different values of ¢. For exactly one value of A, the two half-orbits
connect in a continuous way, and therefore define a solution of Problem (7.10).

Lemma 7.8 — For every —1/L < A < 1, the following statements hold:

1. There exist unique solutions 7z, (t) and z_(t) of (7.15), defined for t large
enough, such that

z.(t) > L and z_(t)—> —1
as t tends to infinity;
2. The solutions z and z_ can be uniquely continued for decreasing t as

long as they remain non-zero.

Proof. If we choose t sufficiently large, then ¢ (f9) > 0, and the part of
the phase plane to the right of ¢ = 1y will have a structure as shown in Figure
7.4.

___-____//z_ﬂ__/___z:L

z=¢4(1)

N

Figure 7.4: The existence proof

Let y, (1, ¢) denote the orbit in the 7, z-plane that starts in (z, ¢) and con-
tinues for increasing 7. Define the set S = {(t,2) : t = to, ¢+(t9) <z = L}
and the subsets

S; = {(t,2) € S: y.(¢, z) intersects the line z = L}
S, = {(t,z) € S : y, (¢, z) intersects the curve z = ¢ (¢)}.
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By a classical argument it can be shown that S; and S, are disjoint, and that
both are non-empty and open relative to S. It follows that there exists an s €
S\ (S) US,). The orbit y4 (s) then remains between z = ¢ (¢) and z = L for
all 7 > 9. Let z be defined by

v+() ={(t,2) 12 =24(), t = 1o};

since ¢, (t) — L as ¢ tends to infinity, it follows that z, (t) — L ast — o0 as
well.

To prove the uniqueness of z., consider two solutions z and z, and sup-
pose that 7, > z4 ont > fy (local uniqueness does not permit that solution
curves intersect). If we subtract the equations (7.15) for z4 and z4 and inte-
grate the result from ¢, > 7y to 1, > t|, we find that

o t f2 o
-2z e [ G-
14
provided ¢, is large enough. Letting 7, tend to infinity yields
o0
—{z1 ) — 21 ()*} = %a/ (& —23)dr.
n

Hence z; and z are equal on ¢ > 1.
Because solutions of (7.15) are locally unique as long as z remains non-
zero, we can continue z4 for decreasing ¢ in a unique manner as long as

z4(t) > 0.
This proves the theorem as far as z is concerned. The result for z_ is
derived in a similar way. °
The uniqueness shown above implies that when A = —1/L, the only orbit
in the phase plane for which z tends to L as & — oo is the line z = L.

Obviously, this orbit can never match up with a lower solution z_. In a similar
way, a solution can not have A = 1, either. This proves the strictness of the
inequalities of Lemma 7.3.

Define the functions 7'y (A) and 7 (1) as follows:
Ti(A) = inf{t e R : z4(t) > 0}.

A priori these functions need not be finite, and there is no reason why 7, (1)
should be equal to 7_ (%) for any A. The next Lemma leads the way to the
conclusion that there exists exactly one value of A such that 7'y (1) = T_(X).
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Lemma 7.9 —
|. Forall =1/L < A < 1, T{(X) and T_(X) are finite;

2. T, is a strictly increasing function of A, and T_ a strictly decreasing
one;

3. We have the following upper bounds:
To(0) < Ty 0) and T-() < T-(),
where f"+ and T_ are defined by

2
842f+()\) _ ﬁ{)\L — log(1 + ML)} fora#0
L* forx =0
R 2
o2 _ﬁ{)‘ +log(1 —X1)} forxA #0
1 for x =0;

1
4 Ti(A) = —00 ask¢—z;

T_-(A) - —ooas At 1;

5. T, (A) and T_(X) are continuous in A.

Proof. We shall only prove the assertions for 7'y, as the extension to 7_
is straightforward. Assume the converse of part 1 of the lemma: z. () exists
and is positive for all # € R. Since z’+(t) > ( for all 7, this implies z’+(t) J0as
t — —o0. This contradicts equation (7.15).

For part two, suppose that T4 (A1) > Ty (A2) while A; < A3. From Lemma
7.5 we conclude that for 7o large enough, z(f9, A1) > z4(fo, A2). Between
t = T4 (A1) and 1 = 1, the solutions z4 (¢, A1) and z, (7, A») must intersect in
such a way that

g (t)»)>d (t, X2)
g ot el B i SR

Again we find a contradiction with equation (7.15).
Part three is proved by considering the solution ¢ of the problem

'(ty=e* (A 3 Z(lr_)> for t € R
{(o00) = L.
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The function ¢ can be calculated explicitly:

1+ AL()

7.25
1+ AL ( )

—2t 2
e = v AL —¢()) + log

From (7.25) we calculate that ¢ tends to L as L — (1 + AL)/(2L)e™%', which
implies by Lemma 7.5 that z, (t) > ¢(¢) for large 7. Then, if 7, is the largest
value of ¢ for which the graphs of z and ¢ intersect, we have 7/, (o) > ¢'(1).
This is contradicted by equation (7.15).

Part four follows from the observation that

uli—IP/L % {AL —log(l + AL)} = oo.

To prove the continuity of 7 with respect to A, suppose that for some
—1/L < Ao < 1,4y = limyy,, T4 (1) and ¢, = lim,, ;, T (A) do not coincide.
In proving part 2 of this Lemma we not only showed that T, decreases, but also
that the function z, (¢) increases when A increases. We can therefore define
the limit functions we(t) = limy4y, 24 (A, ) and w,(t) = limy ;24 (X, 1).
By considering a weak formulation of (7.15) and passing to the limit in A, we
find that wy and w, both satisfy equation (7.15) for A = Ay. Since they both
lie between z = L and z = ¢4 (Ao, 1), and therefore they both tend to L as
t — o0, this is in contradiction with the uniqueness of z; . °

To conclude the proof of Theorem 7.7, let us draw 7, and 7_ in one dia-
gram (Figure 7.5). Lemma 7.9 guarantees that there is exactly one value of 1
such that 7'y (A) = T_(X). For this value of A, z4 and z_ match up continu-
ously at t = T4 (1). Using Lemma 7.6 we conclude that there exists exactly
one solution ( f, «, B) of Problem (7.10). °

7.4 Qualitative properties

In the previous section we have proved that for every value of n between % and

1, there exists exactly one solution ( f, @, ) of Problem (7.10). In this section
we study the behaviour of B, or equivalently, A = 28, as we vary n. We will
write A*(n) for the value of A given by Theorem 7.7.

First we prove continuity of A* with respect to n.

Lemma 7.10 — A* is a continuous function of n.
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T+ (X)

~1/L

Figure 7.5: The functions 7 and 7"

Proof. In Lemma 7.9 it was proved that for fixed n, T’ (1) and T_(X) are
continuous functions of A. One can extend this result in a straightforward way
to state that the functions Ty and 7 are continuous in the variable pair (4, n)
for all (A, n) in the appropriate range.

Now suppose that 1* is discontinuous in 2. Then we can choose a sequence
{n;} converging to n such that A; = A*(n;) — A # A*(n). Therefore, by
definition, T (A;, n;) = T—(A;, n;), and

0= lim {Ty(Ai, n) = T-(Ai, n)} = Ty (hy, n) = T-(2y, ),

1 —>00

which implies that there exists a solution ( f1, A1) other than the one given by
Theorem 7.7. This is contradicted by the uniqueness. °

It has been known for some time (see [Pel81] or [Kin93a]) that when n
equals

def 4
TN+2

the solution of Problem (7.10) can be calculated explicitly:

n ~3
fn) = (1 + m)
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By substituting f into equation (7.5) one finds that A*(ng) = 0. The values of
A* are ordered with respect to n = ny:

Lemma 7.11 — Ifn < ng then A*(n) < 0, and if n > ng then A*(n) > 0.

Proof. Suppose that n < ng; when n > ng the argument is similar. We
shall show that 71 (0) > 7_(0). This implies by the monotonicity of 7'y and
T_ that A* < 0 (see Figure 7.5).

Let z, and z_ be the upper and lower solution of equation (7.15) in which
we have set A = 0. Then z_(t) - —last — oo. Setz_ = —z_. Then
z.(t) - last — oo, and since L < 1 because n < ny, it follows that
Z_(t) > z4+(t) when ¢ is sufficiently large. Plainly, it is enough to show that
Z_(t) > z4(t) forall T, (0) <t < oo.

To prove that this is indeed the case, suppose to the contrary that

t=inf{t > T, (0):Z_ >z, on (t,00)} > T, (0).
Then
I-(t)=2z4(r) and Z_ (v) =7, (7). (7.26)
Hence, from (7.15) we deduce that at r = T,
~/ ~ -2t 1
. =az_—a(l —L)—(aL —e “")—
Do
A -2t 1
<az_+a(l—-—L)—(aL —e “")—
Z—
|
=azy +a(l —L)— (aL —e*")— =7/,
i+

which contradicts (7.26). °

The ordering given by Lemma 7.11 has an important consequence for the
behaviour of the solution . When n > ng, A*(n) > 0, which is equivalent with
B(n) > 0, and therefore the solution u given by (7.3) contracts as t approaches
T. When n < ny, the profile of u spreads out when t — 7. When n equals
no, 1 is in fact equal to |x|, and the solution u is given by

|x|2 —(N+2)/2
)= (T — )N 4 = .
u(x.t) =( ) AN
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The remainder of this section is devoted to the calculation of the two limits

lim A*(n) and limk*(n).

ni%

To simplify the notation, we shall drop the superscript ‘*” from A*, and write
T = T(A(n)) = T (n) for the common vamshmg pointof z; and z .
First we consider the limit process n $2 - Recall that

2 N-2
a=--—2>0 and L:E——>O
n 2(1 —n)

Hence n | —,%,— implies that

ata®™N—-2 and LJO.

Therefore the upper half of the phase plane ‘collapses’: the line z = L de-
scends to zero. In addition, the isocline ¢ (r) vanishes for the value of ¢ given

by
al = e %, (71.27)

and this vanishing point clearly ‘runs off” to plus infinity when n | —]2\7 These
observations suggest the following scaling of z:

1
e =qle™® < o=t+ %log(aL) and w(o) = Zer(t). (7.28)

For every n, the function w tends to 1 as o tends to infinity, and satisfies the
following equation (in which primes denote differentiation with respect to o):

£ww’:(Lw—+- Dw—1)+e 21— yw), (7.29)
a

where we have written y for —AL. Note that by Lemmas 7.3 and 7. 11 0 <
y < L. The coefficient of the derivative w’ in (7.29) tends to zero as n 1e - We
therefore introduce a second scaling of the independent variable. Define X as
the vanishing point of w (the analogue of 7" in the variable o):

¥ =T + 3 log(al),
and set

oc=Y+alLt and x(t)=w(0).
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We find that x satisfies the following equation (where the prime now denotes
differentiation with respect to 7):

1
—2xx/ = (Lx 4+ D(x — e 2E723L7(] — yx) for 7 > 0. (7.30)
a

Before we can continue with this equation, we have to consider the lower
part of the phase plane. We shall see later that y — 1, and therefore A =
—y/L — —o0. We can rid equation (7.15) of this parameter blow-up by
introducing a scaling of z_ which is different from the one we use for z:

—he M =P & s=1t—1log(—A) and y(s) =z_(1).

which results in the equation

1
vy =a(y—L)(y+1)— e <y + X) . (7.31)

We also define
S =T — 3log(—A).
Note that S and X are linked in the following way:
S =% — llog(ay). (7.32)

Now we are in a position to formulate our result. To facilitate the notation,
the functions x and y are defined equal to zero outside of their domain of
definition.

Lemma 7.12 — Letn | %. Then

1.y —1;

N-2
N

285> 8= —% log N, which is equivalent to ¥ — X = %log

3. x tends to the solution of the problem

2
££/:N—_—2(1‘£) fort >0

x(t)y =0 fort <0;
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4. y tends to the limit function y given by

1 —2s
X(s) _ -1+ —ﬁe fors > S (7.33)

0 fors < S;
Here the convergence of x and y is uniform on compact subsets of the real line.

Proof. In the same way as the existence and uniqueness of solutions was
shown by matching the upper half of the phase plane with the lower half, we
prove this lemma by studying, separately, first the functions y and then the
functions x, and then combining the results.

Step 1: The lower half of the phase plane. Throughout step one we shall
assume that ) is bounded away from zero as n |, % In step two we shall prove,
independently of these results, that y — 1 and therefore A = —y /L — —00,
thereby justifying this assumption.

First we prove that S can not tend to plus infinity as n | % This follows
from Lemma 7.9, in the following way:

A 2
e =_pe T > —de W =24 3 log(1 —2),

and since we assume that A stays bounded away from zero, this last expression
is positive and bounded away from zero. This implies that S is bounded from
above.

Now choose a sequence {n;}, converging to % such that S — S €
[—00, 00) and A — A € [—o0, 0] along that sequence. Equation (7.31) implies
that the sequence of functions y? is equicontinuous. By the Arzela-Ascoli the-
orem we can extract a subsequence such that y? converges uniformly on com-
pact subsets of R along that subsequence. The same holds for the sequence
of functions y, because the function ¢ /1 is uniformly continuous, and the
limit function y is continuous on R. We integrate equation (7.31) from s; > §
to 57 > Sp:

52 1 B
3y2(s2) — 3¥°(s1) = a/ {(y -+ D-e* (y + X) } ds,
S1
and by passing to the limit we deduce that the limit function y satisfies

ﬂ/ =ay(y+ 1) —e % (X"' i) fors > §
X(S) =10 fors < S (f § > —o0).

(7.34)
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If, for the moment, we assume that A — oo, then we can integrate the
equation for y to obtain

1 —2s
) = —l+ﬁe fors > § (1.35)

0 fors < S.

The continuity of y implies that S is equal to either —oo or —% log N. Since
all y are positive, the former is ruled out. We conclude that § — —% log N.

Step 2: The upper half of the phase plane. For all n, the solution z4
lies above the isocline ¢, and therefore (7.27) implies that T < —% log(al),
or ¥ < 0. Choose a sequence {n;}, converging to % such that ¥ — ¥ €
[—o0, 0] along that sequence. Then integrate (7.30) from 7; > 0 to 7, > 1;:

1
) (x* (1) — x*()) =

5] 2
= —/ (Lx + 1)(1 —x)dt — e 2% / e 2T (yx — 1) d1(7.36)
T T

First we use (7.36) to prove that ¥ does not tend to minus infinity. Suppose
that it does. Then e 2% becomes very large, while the first two terms in (7.36)
remain bounded. Since x and y both are less than or equal to one, this implies
thaty — lasn) % But then A = —y /L tends to minus infinity, and we have
previously calculated that in that case S tends to —% log N. Using (7.32), we
find that

z— —%logN+%logc_1> —00,

which contradicts the assumption. Therefore £ is bounded from below (and
also from above, since ¥ < 0).

It follows that y can not tend to zero. For if it did, then using (7.32) and the
boundedness of £, S would tend to plus infinity, a contradiction. This implies
that L = —y /L indeed tends to infinity.

To prove the convergence of x, we pass to the limit in equation (7.36).
Since y is bounded between zero and one, we can extract a subsequence such
that y — y € (0, 1]. We find the following differential equation for the limit
function x:

Lxx'=—(1-x)—eE(yx—1) fort >0

Q

(7.37)
(ty=10 fort < 0.

= 1
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It follows from (7.37) that

YR = ]
X —* m as T — OQ. (738)
Note that
5 Llog N + 11 = L} = D
— —3log N + 5 log(ay) < ; log = Us
and therefore e 2% > 1. The limit value (7.38) can only be less or equal to

one (as is necessary, since all x are less or equal to one) if y = 1.

A final remark to conclude the proof. We have liberally taken subse-
quences to arrive at this result. Because of the exact characterisation of the
limit functions x and y and of the limit value 1 of y, however, the assertions
automatically apply to any sequence. °

In Figure 7.6 the convergence of y towards 1 is plotted from numerical
calculations

1
0.9} \

0.8f \

0.7f \

0.6 \

05 \

0.4} \
0.3 \

0.2 \

0.1 :
05 0.55 0.6 0.65 0.7 0.75 0.8

Figure 7.6: Plot of y against n, for two values of N. The continuous line is
for N = 3, the dashed line for N = 4.

If we translate the results of Lemma (7.12) back in terms of z, and z_, we
find the following statements:
Theorem 7.13 — Letn % and write e(n) = n — % Then
N-2
N2’

1. em)i(n) —> =2
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2. T(n)+ %logs(n) — % log <2

3. —1—z+(T(n)+s(n)ﬂr) x(t) forall telk;
n n

e(n)
4. z_ (s + %log(—k(n))) — X(s) forall s eR.

.
2(N —2)

The convergence is uniform on compact subsets of R in the variables T and s.

Let us now direct our attention towards the other limit, n 1 1. As n ap-
proaches 1, the parameter a = % — 2 tends to zero and L = (nN — 2)/2(1 —
n) — oo. Note that al. — N — 2. In the previous limit, A converged to its
lower bound (—00); here we therefore expect A to tend to its upper bound, one.
We shall show that this is indeed the case.

Since n > ng, the values of A are confined to the interval [0, 1], and we
can choose a sequence {n;}, converging to one, such that . — A € [0, 1]
along that sequence. When L tends to infinity, f"+(k)—as defined in Lemma
7.9—tends to minus infinity uniformly in A, thereby forcing Ty (A) = T-(A)
to minus infinity, too. We shall write T = T (n) = T+.(A(n)).

With this remark in mind we introduce the following variable transforma-

tions:
a=eT, t=T+ao, and y(o)=2z_(1).
This leads to
yy =aa(y —L)y+ D +e ™ y+1) for o>0, (7.39)

while y(0) = 0. Define y(o) = 0 for all ¢ < 0, too. Equation (7.39) implies
that the sequence of functions y? is equicontinuous as n 1 1. The Arzela-Ascoli
theorem then implies that we can extract a subsequence such that the functions
y2, and therefore also the functions y, converge uniformly on compact sets.
The limit function y is continuous and by passing to the limit in the equivalent
integral equation we find that y satisfies

., = 1
y=A+4—- foroc >0 (7.40)

R
y()=0 foro <0.

From (7.40) it follows that the limit function y tends to —2laso — oo, and
by the fact that y > —1 for all o and n, we conclude that A must be equal to
one.
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The behaviour of z.. can be retrieved with the following scaling:

1
ge = = t1=1t- %loga and x(t) = Zz_(t),

leading to

| 1 1
I 1 _ A Y — 7.41
XX a(x )<x+L>+aLe <x+L), ( )

fort > T — %1oga. Again we set x(7) equal to zero fort < T — %loga.
The Arzela-Ascoli theorem yields the convergence of a subsequence of the
functions x, uniform on compact subsets of R, to a continuous limit function
x. Define

7 = limsup (T — §loga).
ntl

It follows from the upper bound f+ defined in Lemma 7.9 that T < oco. On
{tr > T} we can pass to the limit in equation (7.41), finding

1
z -2t
X - e
which results in
i(r) =1 E(T—_zse‘zr forall 7 > T.
The continuity of the limit function x now implies that T = —% log2(N — 2).

It follows from the explicitness of this value that 7" — %loga converges to
—% log2(N — 2) along every sequence n 1 1.
Let us summarise our results in the

Lemma 7.14 — Letnt 1. Then
1. A —1;
2. T —1Lloga— —310g2(N —2);

3. x tends to the limit function

x(r)=1 . e —%logZ(N -2)

+ ——e
2(N —2)
#5) =10 fort < —31log2(N —2)
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4. y tends to the function y given by

y(o)—log(l1+y(o)) =0 foro >0
y()=0 foro <0

Here convergence is uniform on compact subsets of the real line.

Figure 7.7 shows the convergence of A to 1 as n tends to 1.

1
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0.21
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L L L n L
0.1 ; i - . 4 X 0.8 0.9

Figure 7.7: Graph of A as a function of n. The curves are for N =
3,4, ..., 12, where the dimension increases from right to left.

We conclude with the translation of these assertions into the original vari-
ables. We again define 7 () = z_(t) = 0 forall t < T'(n).

Theorem 7.15 — Letnt 1. Then
1. AM(n) —> 1;

2. T(n) — 5log(l —n) - —31log(N —2);

%)

. (1=nm)zy(t+3log(1—n)) > (N=2)x(t —1log2) forall teR;
4. 7z (T(n)+ao) — y(o) forall o €R.

The convergence is uniform on compact subsets of R in the variables T and o.
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Samenvatting

In dit proefschrift beschouwen we vier wiskundige problemen. Deze vinden
hun oorsprong in modellen van vloeistofstroming in poreuze media en hebben
niet-lineaire diffusie als gemeenschappelijk kenmerk.

Hoofdstuk 1 heeft als doel een overzicht te geven van de resultaten tegen
de achtergrond van bestaande theorie.

Hoofdstukken 2—5 hebben betrekking op een model voor de verspreiding
van reactieve stoffen in de bodem als gevolg van grondwaterstroming.

In Hoofdstuk 2 beschouwen we het Cauchyprobleem geassocieerd met dit
model. We bewijzen dat dit probleem een unieke oplossing heeft.

In Hoofdstuk 3 gebruiken we dit resultaat om het lange-termijngedrag van
oplossingen te bestuderen. We laten zien dat dit gedrag wordt gegeven door
een lopende golf.

In Hoofdstuk 4 bestuderen we een probleem dat ontstaat bij het injecteren
van water in de grond. Hierbij ontstaat een radiaal stromingsprofiel. We laten
zien dat hier het lange-termijngedrag van de oplossing wordt gegeven door een
gelijkvormigheidsoplossing. Dit is een speciale oplossing van het probleem
die volgens een vast profiel met de tijd uitdijt.

In Hoofdstuk 5 leiden we voorwaarden af die garanderen dat de opgeloste
stoffen zich met eindige snelheid verspreiden. Hierdoor ontstaan grensvlakken
tussen gebieden met en gebieden zonder opgeloste stoffen.

In Hoofdstuk 6 bestuderen we de grensvlakken van een aanverwant prob-
leem. We leiden een criterium af dat aangeeft of de grensvlakken in eindige
tijd verdwijnen.

Hoofdstuk 7 behandelt gelijkvormigheidsoplossingen van een probleem
met ‘snelle’ diffusie. Deze zijn oplossingen van een niet-linear eigenwaarde-
probleem. Met behulp van fasevlaktechnieken bewijzen we dat dit probleem
een eenduidige oplossing heeft, en onderzoeken we twee limietgevallen.

Hoofdstukken 2—7 zijn—behoudens enkele wijzigingen—transscripties van artikelen:

Hoofdstukken 2 en 3: Convergence to Travelling Waves in a Reaction-Diffusion Sys-
tem Arising in Contaminant Transport, ter publicatie aangeboden, met D. Hil-
horst;
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Hoofdstuk 4: Asymptotic Behaviour of Solutions of a Nonlinear Transport Equation,
Journal fiir die reine und angewandte Mathematik 479 (1996), pp. 77-98, met
C. J. van Duijn;

Hoofdstuk 5: Spatial Localization for a General Reaction-Diffusion System, te ver-
schijnen in Annales de la Faculté des Sciences de I'Université de Toulouse, met
G. Galiano;

Hoofdstuk 6: Disappearing Interfaces in Nonlinear Diffusion, te verschijnen in Ad-
vances in Mathematical Sciences and Applications, met M. Guedda en D. Hil-
horst;

A Supersolution for the Porous Media Equation with Nonuniform Density, Ap-
plied Mathematics Letters 7 (1994), pp. 29-32;

Hoofdstuk 7: Self-similar Solutions of a Fast Diffusion Equation That Do Not Con-
serve Mass, Differential and Integral Equations, 8 (1995), pp. 2045-2064, met
Hongfei Zhang.
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1. In his Principia Mathematica Isaac Newton derives the form of the solid of rev-
olution that experiences the least resistance in moving through a ‘rare medium’
with a constant velocity in the direction of the axis of revolution. We can restate
his formulation in modern notation, and we abandon the restriction to axially
symmetrical functions:

. dx
Min —
wQ—=[0.M] Jo 1+ |Vu|‘

u concave

Here M > 0 is a parameter and  C R’ denotes the basis of the solid, which
is perpendicular to the velocity.
If u : Q@ — [0, M] is the solution of this minimisation problem, then u is

piecewise linear.

2. Consider the problem

Uy = Uy +ar(t)u, x>0,1>0, (1)
d o

r(t) = —/ u(x,t)dx t >0, (2)
dt Jy

u(0,1) =1, u(co,t) =0 t >0,

u(x,0) = up(x) x > 0.

Here « € R is a parameter.

e If o > —1, then for all 0 < uy < 1 this problem has a unique solution
which is defined and positive for all 1 > 0;

e If « = —1, then (1-2) only has constant solutions;

e If « < —1, then every solution with finite mass fooo u(x, 1) dx will be-
come identically equal to zero in finite time.

3. The system of equations

Uy — Uyy = —k(eu) —v) —l<x<l1,1>0,
v, = k(p(u) —v) —1l<x<1,1t>0,
u(—1,1)=—1 en u(l,t)=1 t >0,

with ¢(s) = —2s + 3s* has a unique solution for every k > 0 and initial datum
(uo, vo) € L*(—=1,1).



_]/ 1 u
—1+

Figure 1: The function ¢(u).

When k — oo, the functions u; converge to a solution of the problem

Bu), —uy =0 —1l<x<l1,1t>0,
u(—=1,t1)=—1 en u(l,t)=1 t >0,

where B (u) is obtained from the function u +— u-+¢(u) as depicted in Figure 2:

14

Figure 2: The functions u + u + ¢(u) and u + B(u) (thick line).

4. The results obtained in Chapter 6 of this thesis have an elliptical analogue. Let
N > lenlet p € L°(R"Y), p > 0, be radially symmetrical if N > 2. Let u be
the solution of the problem

—Au+rp(x)u” = f x e RV,

u(x) — 0 |x] = oo.

The exponent p satisfies 0 < p < 1, and A > 0 is a parameter. We define / by

oo
N=1: I:/ p(x)|x|dx, N=2: 1:/ p(r)rlogrdr,
Jx|>1 1

o0
N>3:1 :/ p(r)rN_Idr,
1

where r = |x|.



Suppose that the support of f is contained in the unit ball in RV . Then the
following holds.

1. If I = oo, then u has compact support for every A > 0;

2. If I < oo, then there exists A, > 0 such that u has compact support if
and only if X > A,.

. The solution of the problem
w4y = (U")xx O<x<1,1>0

with m > 1 for an initial datum uy > 0 and a boundary condition «(0, 1) =
u(l,t) = O vanishes in finite time. If 7 is the extinction time, then the be-
haviour of the solution u just before t = T is given by a self-similar solution
of the form

u(x, 1) = (T —z)ﬁf(T'x_I).

. The most effective way to disseminate the content of a report seems to be by
marking it as ‘confidential’.

. A rapidly flashing bicycle light is more effective and at the same time less
distracting than a slowly flashing light.

. The current restriction of telephone numbers to digits is both technically and
conceptually out of date.



