,.-"!'J.

{&g_ﬁd}z SRR
- E f
ik

Calk

o T
Y SR N

L

::'Lﬁ‘
i |F§Wdﬁ’l‘

[l

7
i : ; A
T h bt gt

£
“ﬁ%’ﬂ‘.) -.:.i.'-er"!'-

’%L : w-.-:-';%;
Foap w0

g

AL
N

S Vel

CWi BIBLIOTHEEK

RHE L

00062 5294

Al e b e ot 3

e IR R VA TR R el oy oy g 1l Ll b sl PLASTLL s a1 T TS s S g, e rars ol P ek Lo 1 e

p (R TILR FEERE T] T TET B L e e L e AR LRl L] T L TR T

ROEFSCHRIFT

ACADEMISCH P

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus
prof. dr. J.J.M. Franse
ten overstaan van een door het college van dekanen
ingestelde commissie in het openbaar te verdedigen

in de Aula der Universiteit

op donderdag 23 oktober 1997 te 13.00 uur

door
Doeko Jan Barend Bosscher

geboren te Leiden

Promotor: prof. dr. J.A.
Co-Promotor: dr. A. Ponse
Informatica, Natuur- en Sterrenkunde

Bergstra

The work i1n this thesis has been carried out at CWI, Amsterdam in
the context of the ESPRIT BRA project no. 7166 “Concur2”.

fur Marilise

DANKWOORD

Het proefschrift dat voor u ligt heb ik gemaakt, maar had echter
niet tot stand kunnen komen zonder een aantal bijzondere mensen:

[n de eerste plaats mijn grootmoeder en grootvader Dickie Conijn
en Doeko Bosscher en moeder en vader Cathrien Boon en Flip
Bosscher. Ik ben hen dankbaar voor de liefde en de liberale levenshoud-
ing die zij hebben doorgegeven.

Ik dank Steffen van Bakel ervoor dat hij mij in contact heeft ge-
bracht met het Centrum voor Wiskunde en Informatica (CWI) in de
periode van mijn afstuderen. Het contact met Jan Rutten en zijn uit-

stekende afstudeerbegeleiding heeft de kiem gelegd voor mijn promotie
aan het CWI.

Ik dank Frits Vaandrager, mijn eerste begeleider op het CWI, voor
de absolute vrijheid die hij mij gaf om onderzoek te doen. lk ken weinig

mensen met zo’n precisie en zo’n fijne neus voor interessante oplosbare
problemen.

lk dank Jan Bergstra voor zijn invulling van het promotorschap.
Z1jn persoonlijke aanpak en de combinatie van humane en paradoxale

logica hebben de voltooiing van dit proefschrift mogelijk gemaakt en
mij als mens verrijkt.

1k dank Alban Ponse voor de latere dagelijkse begeleiding. Albans
waardering voor eenvoud in procestheorie (“alleen eenvoudige noties
overleven”) heeft mij succesvol geinfecteerd. Van de discussies over
expressivitelt van de ster van Kleene die hebben geresulteerd in hoofd-
stuk 3 heb i1k genoten. Ik dank hem voor de buitengewoon plezierige
manier waarop hij co-promotor bij mijn proefschrift is geweest.

Ik dank Krzysztot Apt, Peter van Emde Boas en Frits Vaandrager
ult de leescommissie voor hun inspanningen voor mijn promotie.

Je veux remercier Didier Caucal pour ses observations tres utiles

sur le texte de cette these et pour sa bonne volonté de participer aux
déliberation de la “commaission de lecture”.

Ik dank Jaco de Bakker die als hoofd van de oude afdeling Program-

matuur (AP) voor anderen en mij een vrijzinnig onderzoeksklimaat
heeft geschapen. 1k dank mijn collega’s van AP en de afdeling van Pro-
erammatuur van de Universiteit van Amsterdam voor de vriendschap
die ik heb ondervonden tijdens mijn promotie: Met mijn collega’s van
het oude AP2 kun je stuk voor stuk paarden stelen.

Doeko Bosscher

Amsterdam, September 1997

* Op de voorkant staat het schilderij de Toren van Babel van Breughel
dat hangt in het museum Boymans van Beuningen in Rotterdam. Het
grafisch ontwerp is van Plano/Stijn van Diemen. De boekenlegger toont
een andere afbeeling van Gustave Doré.

Beide afbeeldingen refereren naar Genesis 11:1-9 in de Bijbel waarin
wordt verklaard dat mensen verschillende talen spreken als strat voor
de hoogmoed om een stad te bouwen die tot in de hemel reikt. Dit
proefschrift handelt over een vergelijking en interpretatie van talen als
processen.

1. Pretace

Chapter 1. Decidability of Bisimulation Equivalence of Context-
free Processes definable with o
1. Introduction
2. An Operational Semantics of BPA;
3. Restricted Greibach Normal Form extended with 9
4. Using Mimicking for Deciding Bisimilarity
5. Decidability of Bisimulation Equivalence of Context-Free
Processes definable with € 7

Chapter 2. Regularity of Context-Free Processes definable with 0
1. Introduction
2. Regularity and NRD specifications
3. Regularity Implies an Upper Bound Modulo Bisimulation
4. Using Mimicking for Deciding Regularity

Chapter 3. Regular Process Graphs and Regular Expressions

1. Introduction

2. Regular Expressions, Process Graphs and Operations on
Process Graphs

3. A Criterion for Process Graphs expressible with Regular
Expressions definable without €: the x property

4. A Criterion for Process Graphs expressible with Regular
Expressions definable with €: the x, property

5. Decidability of Expressibility and the x properties

6. Identifying Expressible Process Graphs

Chapter 4. Term Rewriting Properties of SOS Axiomatizations
1. Introduction
2. The Axiomatization of a GSOS system as a TRS

3. Confluency and Weak Normalization

15
15
16
18
20

24

31
31
34
39
47

49
49

03

64

89
107
119

125
125
126
139

CONTENTS

4. A Strongly Normalizing Subclass 145
Bibliography 153

1. PREFACE 7

Preface

In this thesis I present a collection is of four theoretical papers,
written at CWI in Amsterdam in the last four and a half years. Each
chapter corresponds to a separate research project and can be read on
1ts own.

I am the author of all chapters, but there is a more grandiloquent
binding factor. In the title I have tried to put this concisely. I am
malnly concerned with bisimulation equivalence of grammars of formal

languages expressing process behavior. This last sentence I will explain
in detail.

Grammars

Traditionally expressivity of grammars is the subject of a formal
language theory. It is of great importance to computer science, since
there i1s an intimate relationship between different kinds of grammars
and the abstract machines that can accept or produce the languages
defined by these grammars. In turn these abstract machines are models
for different forms of computation.

The word “language” in formal language theory must be under-
stood 1n a mathematical way. A language is a collection of sentences
or a lexicon built up of a given alphabet. This definition means that
Dutch sentences are a language, but also the strings over the alphabet
consisting only of the symbol “1”. Languages of interest are mostly
infinite collections that can be represented by a finite specification or
grammar. Languages can be ordered with respect to the specific for-
mat of the grammar allowed. Thus in the well-known hierarchy of
formal languages by Chomsky regular, context-free, context-sensitive
and recursively enumerable languages are discerned [Cho59]. In this
thesis I am concerned with the “simplest” languages in the hierarchy,
1.e. regular and context-free languages.

lext books on formal languages usually start with the study of the
regular expressions as formulated by Kleene |[Kle56|. Regular expres-
sions are very simple grammars which define the forming of a language
In a very restricted way: by a union of two languages, concatenation
ot words belonging to two languages and the Kleene star, which forms

8 ‘ CONTENTS

a new language by a finite concatenation of words from the old lan-
guage. This last construct gives the power to describe an infinite lan-
guage in a finite way. The regular expression a*b defines the language
of words ending with a b and starting with an arbitrary number of a’s,
i.e. {b,ab,aab,aaab,..}. Regular languages are called regular, since
they exhibit a very regular structure.

Regular languages look very simple, but are more interesting if one
realizes that the regular languages are exactly the languages which can
be accepted by finite state automata. Finite state automata are an
elementary form of computing device, which use no auxiliary memory:.
A program which controls a vending machine can typically be modeled
by a finite state machine. For every regular expression a finite state
machine exists which accepts the language generated by it and vice
versa |Kle56, MY®60, With finite state machines it is possible
to model non-deterministic computation, although surprisingly it was
proved that for every non-deterministic automaton, a deterministic au-
tomaton exists which accepts the same language [RS59]. This implies
that a deterministic parser can be constructed for a regular language.

The second class of languages traditionally studied are the context-
free languages. These are the languages produced by context-free gram-
mars. The context-free grammar {S — ab, S — aSb} defines the lan-
guage of words of a’s followed by an equal number of b’s. The context-
free languages are precisely the languages which can be accepted by a
much more powerful computing device than a finite state automaton,
called a push down automaton [Sch63]. Push down automata have a
special form of memory, called a stack, with which they can perform a
limited form of counting.

It is a standard result that the class of regular languages is smaller
than the class of context-free languages. Every language defined by
a regular expression is equal to a context-free language which has a
so-called right or left-linear context-free grammar 'HU79]. However
the converse does not hold. E.g. the language of a’s followed by an
equal number of b’s is not regular, i.e. cannot be defined by a regular
expression. This result is best understood if one thinks about regu-
lar languages as being accepted by a machine which cannot count, in
particular cannot keep track of the number of a’s and b's.

Context-free languages are sufficiently rich to express languages of
“practical” interest, such as programming languages. They are also

1. PREFACE 9

inherently more difficult than regular languages. Parsers for context-
free languages are much more complex programs than those for regular
languages. Therefore a useful question is whether a given context-free
language 1s regular. Regularity of context-free languages is however
undecidable, which means that there is no algorithm to verify whether
a context-free language can be defined by a regular expression [BH64].
The so-called pumping theorems can be used to establish that the above
context-iree language of a’s followed by an equal number of b’s is not
regular, but this requires human intuition [BHPS61]. It is also undecid-

able whether two context-free grammars define the same context-free
language [BHPS61].

... Modulo Bisimulation

An alternative interpretation of regular expressions and context-
free grammars 1s provided by process theory. The regular expression
a*b can be said to express a process behavior where at any time a choice
can be made between an a action and a b action, but ends when the b
is performed. Similarly the context-free grammar {S — ab, S — aSb}
can be sald to define a regular process behavior where a number of a
actions can be performed, but at any moment can be chosen to perform
b actions and is stopped when as many a’s as b’s have been performed.

In this thesis I study regular expressions and context-free grammars
defining process behavior. The only difference between process expres-
sions as defining process behaviors and grammars defining languages
lies in the interpretation of the syntax. Process expressions define pro-
cesses, whereas grammars define languages. The difference between
grammars and their interpretations as process expressions vanishes if
the set of traces of a process expression is examined. The strings formed
by a concatenation of actions of some action set, then correspond im-
mediately to the strings which are formed in accordance to a grammar
over an alphabet. The equivalence which identifies process expressions
which have the same set of traces is suitably called language or trace
equivalence.

In process algebra a familiar way to represent a process is by means
of a process graph, in which the nodes denote the states the process

10 CONTENTS

expressions have evolved to and transitions labeled with an action be-
tween states denote that a state can evolve to another state while per-
forming an action. An operational semantics describes how the graphs
are constructed from process expressions. For the regular and context-
free grammars (and others) this is done mostly by means of transition
rules in the so-called SOS format [Plo81].

The equivalence of process expressions is generally also given in
terms of their process graphs. In contrast to the situation in language
theory, in process algebra language equivalence is one of many equiv-
alences studied intensively to identify process expressions. There are
many applications for which trace equivalence is considered to be too
coarse a notion. This becomes manifest when the context-free processes
are extended with the extra constant § from ACP [BK84b] which has
no equivalent in formal language theory', and defines a deadlocking
process, 1.e. a process that never terminates, but also cannot do any-
thing. Significantly, trace equivalence does not distinguish between a
terminating and a deadlocking process.

A comprehensive list of equivalences known as the linear time—
branching time spectrum is given in [Gla90, Gla93]. With linear time
only the traces are taken into account, whereas branching time takes
the branching structure of a process graph into account.

A frequently used equivalence on processes is strong bisimulation
[Par81]. This equivalence essentially distinguishes processes with a dif-
ferent branching structure. The process expressions a and a + a are
language equivalent and bisimilar, since their set of traces ({a}) and
branching structure is the same. The process expressions a - (b + c)
and a - b + a - ¢ are language equivalent but not bisimilar. They are
language equivalent, since the sets of traces {a, ab,ac} are the same.
However they do have a different branching structure: the first process
can still choose to do a b or ¢ after the g is pertormed, whereas in the

second process the choice for a consequent b or ¢ is fixed the moment
a 1S performed.

EXAMPLE 1.1. In the picture below the process depicted by (1) and
(2) (defined by a and a + a) are bisimilar, whereas the processes (3)

'The constant ¢ is usually regarded as the natural interpretation of the empty
word e or A of formal language theory.

1. PREFACE 11

and (4) (defined by a- (b+c¢) and a-b+ a - c) are not.

(1) (2)

There 1s however a strong relation between bisimulation and trace
equivalence. In a deterministic setting, where at every point of choice
only distinctive actions are possible, the linear time—branching time
spectrum collapses, 1.e. all forms of equivalences between strong bisim-
ulation equivalence and language equivalence are the same [Par81, Eng85].

In this thesis the focus is on grammars for process expressions in the
context of strong bisimulation. This choice is somewhat arbitrary, but
can be motivated by the fact that bisimulation is a popular equivalence
with some nice mathematical properties. It is a congruence for the most
frequently used operators in process algebra, notably the operators
concatenation and union of languages, which are referred to in a pro-
cess algebraic setting as sequential composition and non-deterministic
choice. Furthermore bisimulation equivalence is a decidable equiva-
lence for regular expressions and context-free grammars, whereas that
1s not the case for the other equivalences in the linear-branching time

spectrum |[GH94]|. This motivates my interest for grammars modulo
bisimulation.

Overview of this thesis

It appears that in the context of bisimulation not only is more dis-
tinguished, but also more becomes decidable. One of the remarkable
achievements in process theory in recent years is the proof that bisim-
ulation equivalence is decidable for context-free processes [BBK87b,
CHS92|. It basically shows that there is a finite characterization of
a possible infinite bisimulation. This is not at all obvious, since lan-
guage equivalence of context-free languages 1s undecidable.

The question of decidability of bisimulation equivalence can also
be asked for context-free processes that can be defined with the extra

12 CONTENTS

constants 0 and €. The constant € denotes the process which terminates
immediately. In Chapter 1 I prove that a recursive map exists which
maps context-free processes definable with § to “ordinary” context-free
processes. This is done in such a way that the mapped processes are
bisimilar if and only if the original processes are bisimilar. Basically
I show that there is no difference between dead lock and live lock in
the world of the context-free processes. I give a tentative explanation
why the same technique does not suffice to prove the same result for
context-free processes definable with e.

Another important result is that regularity of context-free processes
is decidable [BCS96]. The decidability of regularity of context-free
processes modulo bisimulation is closely related to the decidability of
bisimulation equivalence for context-free processes. This is usually un-
derstood as the question as to which of the processes defined by a
context-iree grammar have a regular process graph, i.e. are bisimilar
to a process graph which has finitely many states or which allow only
finite traces of non-bisimilar states. This is essentially the same ques-
tion as to which context-free processes can be defined with a finite state
machine %, In turn finite state machines are associated in a natural way
with process graphs with finitely many states. In Chapter 2 I show that
for an interesting class of context-free processes definable with § not
only can regularity be decided, but also an upper bound can be given
on the size of the state space modulo bisimulation. Furthermore I show
that the results of Chapter 1 and [BCS96] can be combined to prove the
decidability of regularity of all context-free processes definable with §.

Chapter 3 is the largest chapter of this thesis. Here I deal at length
with the relation between regular expressions and their machine model
in language theory, the finite state machines. In contrast to the case
for context-free processes it is common knowledge that it is decidable
whether two regular expressions or two finite automata define the same

process modulo bisimulation However it is not the case that

the processes which are defined by regular expressions, coincide with
the processes defined by finite state automata. It was shown in [
that there are very simple finite automata for which no regular ex-
pression exists with the same process Interpretation. I consider the
question as to whether an effective criterion exists that describes finite

2and not the question which context-free processes can be expressed modulo
bisimulation with a regular expression !

1. PREFACE 13

automata which can be expressed as a process by a regular expression.
I will show that indeed such a criterion exists and present algorithms to
compute the regular expression which has the same process interpreta-
tion modulo bisimulation as a finite automaton, notably for the regular
expressions which can be defined with and without the constant e.

In Chapter 4 I treat a subject about the relation between the al-
gebraic and operational approach to define equality on process expres-
sions. As stated earlier, many more equivalences have been studied
in process theory than in language theory. Process algebras such as
CCS [Mil86| start with an operational semantics and an equivalence,
and then prove soundness with respect to a set of axioms. Another
style is to specity the equality of processes by means of axioms and an
equational logic, and then search for sound models. This approach is in
some sense more algebraic and is chosen in ACP [BBK87al]. The relation
between the operational and axiomatic approach is a well-researched
subject. A question I have elaborated on in Chapter 4 is whether the
axiomatizations for bisimulation equivalence in [Al for a given op-
erational semantics have nice term rewriting properties. I show that a
well-defined class of oriented axiomatizations are (strongly) normaliz-
ing. It is nice if axiomatizations are normalizing, because this means
that in principle equality proofs can be carried out mechanically. In
this particular case 1t means that there 1s another way to check bisim-

ulation equivalence, besides computing the bisimulation.

1.1. Origins of the Chapters. Chapter 1 has not yet been pub-
lished elsewhere. The subject arose from the idea that the results in
(CHS92| could be “re-used” rather than that a whole new proof should
be given. The proofs in [CHS92| are very elegant, but also rather diffi-
cult.

Chapter 2 is the result of a cooperation with David Griffioen at
CWI. The results were presented earlier at the ICALP ’96 conference
in Paderborn, Germany [BG96|. The paper evolved from a careful
analysis of the example in [MM94| of a regular process whose BPA
system 1s not regulars.

Chapter 3 is as yet unpublished elsewhere. The subject arose from
a discussion with Alban Ponse about the expressiveness of the Kleene

’I.e. the context-free process defined by X over the specification (3) in Example
1.1 of Chapter 2.

14 CONTENTS

star. 'T'he chapter considers the second open question in [N “What

structural property of finite charts 18 necessary and sufficient for star
behavior ¢7

Chapter 4 is the first paper I wrote at CWI. The idea came from
my supervisor at that time at the CWI, Frits Vaandrager, who had
just finished [ABV92] (subsequently published as [ABV94]) in which
the problem was posed. The chapter was presented at the conference
TACS ’94 in Sendai, Japan [Bos94].

Conventions used in this thesis.

or want to stress the importance of (a part of) a sentence. Sometimes
] make use of a | ... | construct in conditions, which means that the
part in between brackets belongs together, e.g. ... [whenever s | and
s—s, —>5']... . For the rest everything is pretty standard, I think.

In [CHS92] it is proved that (strong) bisimulation equiva-

lence is decidable for all context-free processes. We show
that there exists a recursive map from context-free pro-
cesses definable with 6 of ACP [BK84b] to context-free
processes which preserves bisimulation equivalence. We
conjecture that no “similar” map exists with which we can
reduce context-free processes definable with the constant

€ to context-free processes.

A classical result from formal language theory is that language
equivalence 1s undecidable for context-free languages. This is proved
to be a consequence of the well-known Correspondence Lemma of Post
Pos46] in [BH64|. The picture changes if these languages are stud-
led as processes. In [BBK87b, BBK93| it is proved that bisimula-
tion equivalence is decidable for normed context-free processes, also
known as normed processes over the signature of Basic Process Alge-
bra (BPA). In that remarkable paper it is shown for the first time that
context-free processes express some finite periodicities which allow an
effective comparison of processes. Simpler proofs have been given in
'Cau90, HS91, Gro92]. A polynomial time algorithm for deciding bisim-
ulation for normed context-free processes is presented in [HJM94].

The previous result is extended in [CHS92| by showing decidability
of bisimulation equivalence for all context-free processes, also known
as processes over the signature of Basic Process Algebra (BPA). The
proof i1s very elegant, exploiting a deep insight in the structure of such
processes. An exponential time algorithm for deciding bisimulation
equivalence has been given in [BCS95].

As far as we know the question of decidability of bisimulation equiv-

alence for BPA;, i.e. those context-free processes which can be defined

15

processes is (logically)
| T r e @ E HV e S t 1 g a;t e

1 between lcmgua,gc

fer the interested reader to [HMG 6}.

Act with typical elements X,Y,Z. The
. over the signature of BPA(Act) and Var are

=al|d|p+p|p-p|X

> a € Act and X € Var. We use that - binds stronger than +, e.g.
a-b+c is the same as (a-b)+c. In this chapter and Chapter 2 we will also

Var thh 1s a subset of I 5\/31_ of process expressions without ¢

P2 18 the usual process algebraic notation for the choice between p;
| p1 - po for sequential composition. A specification A over the

2. AN OPERATIONAL SEMANTICS OF BPAjs 17

signature of BPAs and Var is a set of tuples {(X,tx(Va))|X € Va}',

where Va is a finite subset of Var of variables of A and tx(Va) € P15,

a process expression In which only process variables of VA occur. For
convenience we write {X = p, ...} ¢ instead of {(X,p),...}. We call two
specifications A and A’ disjoint if VAo N Var = . Furthermore we use
Aa C Act for the set of actions occurring in A. The set of process
expressions over the signature of BPA(Act) and the variables of A is

DT EC

denoted by PjA.

Let A be a specification over 3(BPAs(Act, Var)). The operational

semantics of a process expression p € "' 1s given by a binary termi-

nation relation - —a / C P} X Act and a ternary transition relation

Tec

P5°A with the transitions provable by the fol-

p—p p—p’ p—>+/ p—
p+ qg—=p' q + p—=p' D+ q—=/ q+p—r/
p—-p’ p—+/
p-g—p g p-qg—q
p—p X =pe A p—/ X =peA
XSy XSy

where a € Act. A derivative of a process expression over A is an
process expression which can be reached with a sequence of contigious
transitions. We feel free to write state instead for derivative. For the

set of reachable process exrpressions from a process expression we also
use the term state space.

DEFINITION 2.1. Let A be a specification over X (BPAs(Act, Var)).
1. Let R C P}% x P;% be a relation satisfying for every (p,q) € R,
(a) p—,+/ iff ¢— .4/, and
(b) if p—=>,p’ for some a € Act, p’ € P}, then there is a
¢ € P} so that ¢—,¢' and (p',¢’) € R, and

'Notice that for every X, there is precisely one tx.
*Notice that the equality sign is not interpreted as such.

18 1. BISIMULATION OF CONTEXT-FREE PROCESSES

(C) 1f q-ihﬂ' for some a € Act, ¢ € P
P7°% so that p—,p' and (¢, ¢') € R,
then R 1s a bisimulation over A,
2. If there exists a bisimulation R over A, such that (p,q) € R,
then p and g are bistmilar over A, shortly p € agq.

then there is a

DEFINITION 2.2. Let A be a X(BPAs(Act, Var)) specification.

1. If p € P§X and every occurrence of variable X € Vi in p is
in a subexpression of the form a - p', where a € Act, then p is
syntactically quarded.

2. If [whenever X = p € A, p is syntactically guarded], then A is
syntactically guarded.

EXAMPLE 2.3. The process expression a-X - X +b- X - X is syntacti-
cally guarded, whereas the process expressions (a+b)-Y and Y-.-a+Y -b
are not, and so {X =a-X-X +b:-X X} is a syntactically guarded
specification and {Y = (a+d)-Y - Y}, {Y =Y -a+Y - b} are not
syntactically guarded.

DEFINITION 2.4. Let A be a syntactically guarded £ (BPAs(Act, Var)
specification. The set of tuples {(X,A)|X € Va)} is a solution of A.

It is folklore that syntactically guarded specifications satisfy the so-
called Recursive Definition Principle (RDP), i.e. every specification has
a solution, and the Recursive Specification Principle (RSP), i.e. every
syntactically guarded specification has at most one solution |BBK87c,
BV95].

We feel free now to speak of the set] 1.e. of process expres-
sions over the signature of BPA;(Act) and the (unique) solution of A.
Abusing notation we write X instead of (X, A) and we call X a process

name. E.g. for the process expression a - (X, A) we write a - X, when
A 1s known from the context.

3. Restricted Greibach Normal Form extended with ¢

In the literature often specifications in an even more restricted for-
mat are studied. The restricted Greibach Normal Form i1s a format
which allows specifications, which are as expressive as syntactically
guarded specifications, as we will prove in this section. We present
here an extension of this format for the c¢ ‘tant 0.

s #9

Y (BPAs(Act, Var)) specification.

p = 6 or | p consists only

be a syntacticall y 84 arded L(BPAs(Act, Var))
= {Xy,...,Xr}. Then there is a computable
pecification A’ in rGNF dlsjomt ﬁ‘om A with

I AX <2 AUA’ . for < ~ k S Za

known for context-free processes |BBK

h an extension with 4.2 First we rewrite
the associativity of - and
muta,tlwty and associativity of the + with the axioms
. r+r =z (Ad) (z+y) - z2=2-24+y-2,(A6)z+d=1 a.nd
7) 0 - = ¢0 oriented from left-to-ri ght (Axiom names from [BW90]).
d we substitute all summands of the form o -p, a € Act U Var,
» € Var by « - X’ and introduce a new equation X' = p, where X' is
“fmbh process variable. We repeat this procedure until there are only
G mmands and summands of the form X - Y. Notice that the

mmands are linear, i.e. of the form 9, a or a - X.
Last we substitute all summands of the form X -Y by ¢- Y, where

g 1s an equation and rewrite the specification to normal form with
(AS A4,A6,AT).

‘T'he whole procedure tern
1S stron

inates since rewriting with (A3,A4,A6,A7)
normalizing and every time an equation is added which 1s

*The extension with € used in Section 5 is similar, where the axioms (A8)
r-e¢=ux and (A9) €.z = x are used, instead of (A6) and (A7).

20 1. BISIMULATION OF CONTEXT-FREE PROCESSES

not in rGNF; the (single) summand has a smaller size than the sum-
mand it stems from. The final specification is in rGNFy, since at the
last step a process expression is substituted of the form a or a - X.
We omit the tedious proof that a subset of the solution of the new
specification is bisimilar to the solution of the original specification U

EXAMPLE 3.5. For the specification A, = {X =a-X - X -6 + b}
according to the proof in Lemma 3.4 can safely be used the rGNF;
specification Ay = {Y = a-Y' +b0, Y =a - Y - Y'+0b-Y"Y" =
a- Y -Y"+b.-Y"Y" =4} and X € a,un,Y.

A pleasant property of specifications in rGNF; is that the state

space of a process expression which is a sequence of process names 1s a
set of sequences of process names.

LEMMA 3.6. Let A be a X(BPAs(Act, Var)) specification in rGNFs.
If 0 € Vo™, then whenever c—*»,p and p € P}%, p € Va™.

Proof. let A and o be as in the premise. Let X be the first process
name of o, i.e. (0) o = X or (1) 0 = X - ¢'. Since o—=p, by the
operational semantics there is a p; a summand of p" and X =p' € A
which was used in the transition. Since A in rGNFs p; is of the form
(0) a, (1) a- Xy, (2) a- X, - X, and p is of the form (0.1) X;, (0.2)
X;-Xo, (1.0) 0, (1.1) X1 -0 or (1.1) X7 - X5 - 0. In all five cases we
find p € VA+ L]

PROPOSITION 3.7. Let A be a specification in rtGNFs and p € P5%X.

There exists a specification A’ in rtGNF s disjoint and computable from
A and Y € VAJ such that D — AUA’Y*

4. Using Mimicking for Deciding 1larity

A crucial ingredient of our proof is the result in [CHS92] that bisim-
ulation equivalence of process expressions over syntactically guarded
>(BPA(Act, Var)) specifications (thus without ¢ !) is decidable.

THEOREM 4.1. Let E be a syntactically guarded >(BPA (Act, Var))
specification. Let p,q € P%$°. Then p € gq is decidable.

We prove the same result for process expressions over guarded
Y.(BPAs(Act, Var)) specifications, by showing that bisimulation equiv-

alence of sequences of process names over L(BPAs(Act, Var)) specifi-
cations in rGNF; is decidable.

4. USING MIMICKING FOR DECIDING BISIMILARITY 21

In this chapter and Chapter 2 we assume that all specifications
A,A'... are 2 (BPAs(Act, Var)) specifications in rGNF;, unless spec-
ified explicitly otherwise. We prove that bisimulation equivalence of
process expressions over such specifications can be reduced to bisimu-
lation equivalence of process expressions over 2 (BPA(Act, Var)) spec-
ifications, by replacing 6.

Here we give a formal definition of the interpretation of context-free
processes, which we refer to as 0 mimicking.

DEFINITION 4.2. Let Ps € Var — VAo and as € Act — Ax. We
define the maps pa o, p, : P sA P ’i‘;’,; > HAas,P5 ¢ R rin(Var x ' —
P1e¢) as follows.

|

a
as - Pg

if X < A5, then P, else X
BAas,P5 (D) ® Laes,ps(q), ® € {+,-}

|

|

{_Pg — ags Pg}
if X € A0, then pa 4, p,(A'),
else {X = paa.p (D)} U A o p; (A")

where a € Aa, X € Va and p, q € P3X.

3
Ny
C
>
|

REMARK 4.3. If X is a process name over some specification A,
then pa o, p,(X) is the 6 memicker of X over the 6 mimicking specifi-

cation pa.a,. ps (D).

LEMMA 4.4. If X € V5, then X ¢ A0 is decidable.

Proof. Since A is in rGNFy, it is suflicient to verify whether X =
0 € A [

LEMMA 4.5. The maps KA. a5, Ps ' —> ' and KA a5, Ps
prin(Var x P3K) — psin(Var x " as defined in Definition 4.2
are computable. Moreover the size* of the mimicked specification

“e.g. the number of symbols or the symbol complexity extended to specifica-
tions of Definition 3.48 in Chapter 3.

22 1. BISIMULATION OF CONTEXT-FREE PROCESSES

HA.as.Ps (A) is linear in the size of A.

Proof. Immediate by definition of x and Lemma 4.4 O

In this section we further assume that a5 € Act — A, and Ps €
Var — Va. For readability we drop the subscripts of the mimicking
maps p if they are clear from the context.

PROPOSITION 4.6. u(A)isa X (BPA(Act, Var)) specification in rGNF,

LEMMA 4.7. If 0,0’ € VAT, X € VA and a € AL, then

1. o=, 0" iff (o), ,,p(0"), and

2. X—=,/iff u(X)-=* ,+/, and

3. If (o)==, ,,p for some p € (VAUP;s)™, then thereisa o” € Va™
such that o—, 0" and u(o”) = p.

Proof. Notice that p is an identity on {X € VA|X £ A0} O

We first prove “soundness” of the mimicking translation, i.e. if two

process expressions are bisimilar, their mimicked versions are bisimilar
as well.

LEMMA 4.8. If o,v € Vo™ and 0 © av, then u(o) & u(AY (V).

Proof. Let R C (VAU{Ps})" x(VAU{Ps})™ be theset {(u(c"), u(v')) |
o' & av'}. We prove that R is a bisimulation. Suppose (u(c”), u(v'")) €
R.

1. (=) Suppose p(0')-%, ,,+/- By definition of 4 a # as. By the
operational semantics 0’ = X for some X € V; and by Lemma
4.7 X =+, +/. By definition of bisimulation /-2, 1/ and by the
operational semantics v/ € V4. By Lemma 4.7 pu(v/’)= ay V-

2. (=) Suppose pu(0o’)-*, . p,- Distinguish (L) whether or not
a = as. (T)If a = a;, then o' © A6. Now (0) o' = X or (1)
o' = X - g, for some 03 € Vo' and X © A6. By definition of L
(O) Po — M(X) Or (1) Po = ;.L(XO'Q) and X 09 €2 AX = Aé. By
definition of R v/ © A4, (0) v =Y or (1) v/ = Y - 1, for some
vy € VAT and Y © A4. By definition of x (0) p(v')—% Ps or (1)
p(v')= , Ps-pu(v2). By definition of R (0) (u(o'), n(Y)) € R and
u(Y) = Fs or (1) (u(0'), p(Y -12)) € R and pu(Y -v5) = Ps- pu(ws).

(F) If a # a5, then by Lemma 4.7 o' %+ ¢" for some 0" € V™
and u(c”) = p,. By definition of R there is a " such that

V' "

imi r translation, 1.e. if
lar, the original

two mimi
expressions are bisimilar.

Process wmssmns are bisi DIOCESS

. Suppose (a V') € R.

/. Since d Isinr G NF; by the operational se-

nd by Lemma 4.7 u(o’) =

V' = Y for some

D () G , . o
L 7,)-——-—a»# P> for some p €

d hence 0 £ Av O

decidable.

Let o,v € VAT. Then o € Av is

d Proposition 4.5 we are finished if we
can effectively reduce the question whether or not ¢ & Av to that of
(o) € 4ayu(v). Hence the result follows by Lemma 4.8 and 4.9 O

COROLLARY 4.11. Bisimilarity of process expressions over syntac-
guarded X(BPA;(Act, Var)) specifications is decidable.

EXAMPLE 4.12. Let A be the specification {X =a-X-Y +qa,Y =
Z,Z = ¢}. In the picture below left the process graphs of X over A

24 1. BISIMULATION OF CONTEXT-FREE PROCESSES

is depicted and right X (= p(X)) over u(A).

In [BCS95] it is proved that decidability of bisimulation equivalence
has exponential time complexity ° thus improving the result of
which proved decidability of the full class but permits no analysis of
the complexity. Since computing p(A) is relatively cheap, we expect
that the complexity of deciding bisimulation of process exXpressions over

syntactically guarded ¥X(BPA;(Act, Var)) specifications is exponential
too.

1ivalence of Context-Fr

able with € ?

Processes defin

T'he results in the previous section show that decidé,bility of bisim-
ulation equivalence over context-free processes with & is easily reduced
to that of context-free processes without §. An Interesting question

1s whether the same method can be used to show interconnections of
other process algebras.

*Unfortunately we cannot deduce the measure of the complexity used in

[BCS95], i.e. is the complexity formulated in terms of the number of process names
defined, the number of summands of the specification .. 7 We expect the authors

to have meant the size of the specification, in which the complexity is usually mea-

sured e.g. the (polynomial) time complexity of deciding bisimulation of normed
context-free processes [HIM94].

5. WHAT ABOUT CONTEXT-FREE PROCESSES WITH € ? 20

A question still open to our knowledge is whether or not bisimula-
tion equivalence of context-free processes defined with the extra con-

stant €, otherwise known as the process expressions over X(BPA,(Act, Var))
specifications is decidable. In this section we explain why we think the
mimicking technique does not apply to the setting with e.

Syntaz and Semantics of BPA,

We present the main differences of syntax and semantics with re-
spect to BPA;. The syntax of the set of process expressions P77 r

over the signature of BPA, and Var is given by the abstract syntax

pi=ale|p+p|p-pl|lX

where a € Act and X € Var.

The operational semantics of process expressions over £ (BPA . (Act, E.)),
where E, is a 2(BPA((Act, Var)) specification is given by the unary
termination relation - |C "" and the ternary transition relation

— C PE, X Act x P%, satisfying the following rules.

pl X =p¢€EFk, D4 D4 P4,q4
X 4 (p+4q)4 (g+p) ! (p-q) €l
p—p p—p
p+qg—p qg+p—p
p—p pl g4
p-q—=p-q p-q—¢ a— €

where a € Act.

DEFINITION 5.1. Let E, be a X(BPA.(Act, Var)) specification.

1. Let R C PL%, .%. be a relation satisfying for every (p, ¢) € R,
(a) pliff ¢, and

26 1. BISIMULATION OF CONTEXT-FREE PROCESSES

(b) if p-2+p for some a € Act, thereisa ¢ € P such that

g—=q and (p',¢') € R, and

(c) if g-%+¢ for some a € Act, thereisa p’ € Prec, such that

e,V&I‘

p—p’ and (P, ¢') € R,
then R is a bisimulation over E.,
9. If there exists a bisimulation over E, such that (p,q) € K, then

p and ¢ are bisimilar over E, shortly p € g.q-

DEFINITION 5.2. Let A be a X(BPA(Act, Var)) specification.

1. If p € P5% and every occurrence of variable X € Var 1n p 18
in a subexpression of the form a - p’, where a € Act, then p 1s

syntactically guarded.
2. If [whenever X = p € A, p is syntactically guarded|, then A is

syntactically quarded.

DEFINITION 5.3. Let E, be a X(BPA.(Act, Var)) specification.

l.¢,a,a- X anda-X Y fora € Act, X,Y € Vg, are in rGNF..
2. If p € PT% , every summand of p is in rGNF . and every summand

appears only once, then p is in rGNF-..
3. If [whenever X = p € E, p is in rGNF|, then E, is in rGNF..

It is folklore that a ¥ (BPA.(Act, Var)) specification E, in rGNF has
an unique solution {(X, E),...} as defined in Section 2 [BV95]| of this
chapter. In the same way as in the previous section we take the liberty
to speak of the process name X, instead of (X, F.) and we consider
process expressions over the signature of BPA, and the solution of E..

In the remainder of this chapter we assume specifications to be over
Y (BPA((Act, Var)) and in rGNF..

Using Mimicking for Deciding Bisimulation over BPA, ¢

If we use the mimicking technique of the previous section to mimic
e, we replace occurrences of € by a fresh process name X.. Also we
extend specifications with a new equation X, = p., where p, is a process
expression which performs only fresh actions with respect to Axn. We
leave here the precise form of p. open, e.g. a. - X,, a direct translation
of 6 mimicking or p. = a., where a, is of course a fresh action.

A first observation is that the replacement forces to distinguish
process expressions which are obviously bisimilar. This is the case for

5. WHAT ABOUT CONTEXT-FREE PROCESSES WITH ¢ ? 27

process expressions specifications where the € is not essential. This
is if the specification can be substituted by an e-free specification so
that a process expression over the original specification and a process
expression over a new (disjoint) specification are bisimilar, but the new
specification has no € occurrences. We describe such a specification E.
in the next example.

EXAMPLE 5.4. Let £, be the specification defined as

E. = {X=b-Y -Z
Y =b+ €
Z=b-2}

and its € mimicked version u.(E) defined as

pe = {X=b-Y.Z

Y =0+ X,
L =b-Z
Xe:pe}-

The process names X and Z are obviously bisimilar over E,, whereas
their e mimicked versions are not: The e mimicker for X has a derivative
De - £ which can perform a fresh action due to the translation of the
summand p. in Y, which the € mimicker for Z cannot.

This immediately poses the question
Question 1: Is it decidable whether an equivalent e-free specification for

a process expression over a syntactically guarded (BPA.(Act, Var))
specification exists ¢

In the above example it is easily seen whether or not there exists
an e-free specification for X, but it is already much more difficult to
prove for T and the specification in Example 5.8 (Of which we prove
the € to be essential in the specification). We have no idea whether this
1s decidable. A tangible criterion would be that the process expression
does not terminate intermediately, i.e. has no derivatives which can
terminate and perform an action. The next supposition is that if a
process expression is not intermediately terminating, then the defining
specification can be effectively replaced by an equivalent e-free specifi-
cation. This would then immediately imply decidability of bisimulation

28 1. BISIMULATION OF CONTEXT-FREE PROCESSES

BPA.(Act, Var)) specifica-

equivalence for process expressions over
tions.

LEMMA 5.9. |
ately terminating.

Let 0 € Vg, 7. It is decidable whether o is intermedi-

Proof. Notice that since E, is in rGNF, a process name X is in-

termediately terminating iff its defining equation in F, has a summand
¢ and a summand # €. Furthermore if 0 = X; - ... - X} and o is inter-
mediately terminating, then X; | for all ¢ and there is a X; such that
X 18 intermediately terminating O

Notice that this results extends to syntactically guarded specifica-
tions with straight forward extensions of Lemma 3.4 and Proposition
3.7.

We next present an example of a process expression which is not in-
termediately terminating, but is nevertheless not bisimilar to a process
expression over some X (BPA(Act, Var)) specification. This specifica-
tion 1s even more interesting, since it shows that process expressions
over 2 (BPA (Act, Var)) specifications need not have a bound on the
branching degree. This makes it even more doubtful that process ex-
pressions over X(BPA.(Act, Var)) specifications can be encoded faith-
tully with respect to bisimulation as context-free processes.

DEFINITION 5.6. The branching degree bf : PT% — N U {co} of a
process expression 1s the size of the set {p-%,p'|la € Act,p’ € P

LEMMA 5.7. Let E be a syntactically guarded Y.(BPA(Act, Var))

specification. If p € P7¢°, then bf (p) is bounded by the maximal num-
ber of summands of the equations of E.

roof. By the operational semantics the maximum number of

different derivatives of p is bounded by the number of summands of
the equations of £ O

5. WHAT ABOUT CONTEXT-FREE PROCESSES WITH ¢ ? 29

We can verify that that the process expressions ¢ - Y™ - Z have a

branching degree of m + 1 for every m > 0, 1.e. €¢- Y™ - Z has deriva-
tives € - £, ..., € - y™m=1. 7. 'This |

holds also modulo bisimulation since
e Y- Z4 pe-Y'-Zfor k # 1, where k,l > 0 as can verified with the
picture below.

COROLLARY 5.9. The following statement is false.

Ifp € Vg 7 is not intermediately terminating, then there is a process
expression p' over a Z(BPA(Act, Var)) specification E disjoint from E.
so that p & g uEp .

We expect that the proof of decidability of bisimulation equivalence
of process expressions over 2 (BPA.(Act, Var)) specifications needs a
completely new proof. Most likely we cannot scrounge the result of
(CHS92| as we did in this chapter with the decidability of bisimulation
equivalence of BPA; by interpreting ¢ as a live lock.

We end with a last open question.

Question 2: Is bisimulation equivalence of process expressions over syn-
tactically guarded 2(BPA . (Act, Var)) specifications decidable ?

We conjecture that in case one would establish decidability of bisim-
ulation equivalence of process expressions over syntactically guarded

30 1. BISIMULATION OF CONTEXT-FREE PROCESSES

S (BPA(Act, Var)) specifications, we can reduce decidability of bisimu-
lation equivalence over syntactically guarded X(BPA;s(Act, Var)) spec-
ifications to the former question using an extension of ¢ mimicking.

REMARK 5.10. In this chapter (and the rest of this thesis) we are
primarily concerned with strong bisimulation equivalence. In recent
years also the decidability of branching bisimulation equivalence [GW89)]
over context-free processes with a silent step (7) has been solved for
the normed case [Hut91].

It is an open question whether branching bisimulation equivalence
over all context-free processes with a silent step is decidable. This
1S relevant to our problem since the behavior of 7 in the context of
branching bisimulation has some similarities with €, as is noticed by

several authors [BV95, Vra97].
Our key argument against the possibility of reduction of the decid-

ability question in this section is that context-free processes definable
with € can have an unbounded branching degree, whereas context-free
processes definable without € have a bounded branching degree.

Context-free processes definable with the extra 7 do not have this
restriction, if we assume the standard operational semantics in the
setting of branching bisimulation®.

We see no way to translate the decision of arbitrary (possibly unnormed)
context-free processes definable with ¢ to a decision of branching bisim-
larity of normed context processes. We conjecture that an interpreta-
tion as a decision problem of branching bisimilarity of arbitrary context-
free processes fails because there is no method to get around the € axiom

€-T = x: whereas a+¢€-b and a+ b are strongly bisimilar, @ + 7 - b and
a + 0 are not branching bisimilar.

Acknowledgements. I thank Jan Friso Groote, Bas Luttik and
Alban Ponse for simplifications in the proois and fruitful discussions.

°If we replace ¢ by 7 in Example 5.8 T has no upper bound on the branching
degree modulo branching bisimulation.

In [BG96] an upper bound is given of the size of the state
space modulo bisimulation equivalence of regular process
expressions over so-called NRD specifications, a non-trivial
subclass of the context-free processes. This result implies
the decidability of regularity of process expressions over
these context-free processes. The decidability of regularity
of all context-free processes is proved in |[BCS96| . We show
that the upper bound result directly extends to context-
free processes definable with § of ACP [BK84b]. Further-
more, the problem of decidability of regularity of context-
free processes definable with 0 can be effectively reduced
with the mimicking technique of Chapter 1 to one deciding
the regularity of context-free processes definable without §.

In Chapter 1 we proved that bisimulation equivalence of context-
free processes is decidable. Here context-free processes are defined by
the process expressions over syntactically guarded specifications over
the signature of Basic Process Algebra (BPA) with the constant § from
ACP [BK84a]. This leads one to believe that bisimulation is a suffi-
ciently strong equivalence to imply decidability of reqularity of context-
free processes, where regularity means that the state space of a process
1s finite modulo bisimulation equivalence. As with bisimulation equiva-
lence, decidability of regularity has been mostly studied for context-free
processes definable without 6.

In the past five years the decidability of regularity has been ex-
tended from process expressions over linear specifications to process
expressions over arbitrary syntactically guarded specifications (with-
out §), which we can illustrate with the example below.

31

32 2. REGULARITY OF CONTEXT-FREE PROCESSES

HXAMPLE 1.1.
A=a-Y+c- 2 X=a-X-Y+c
(1) Y=d- X+e-Y (Z)Y:b v
=
Y =a-Y-B+c (4)T:b+c-T-Y
(3)Z::b-Z Y=d+d-Y+d-Z
B = L =e- 4

All four specifications define X as a regular process name. X is
regular with respect to specification (1) because the specification is
iznear. It is well-known that the class of regular process expressions is
the same as the class of process expressions which can be denoted by a
linear specification BV95|. In fact one of the reasons for using
regular process expressions is that these can be described precisely by
the class of linear specifications, which allows an easy implementation
and checking of modal and temporal properties [Hol89].

The specification (2) also defines X as a regular process name.
however to see this is already more difficult since the specification is
not linear (X has the summand a- X -Y in the defining equation). In
94| the decidability of regularity of BPA systems ! is proved. It is
proved that specifications which employ no “normed stackings” define
only regular process expressions, a result also implied by [Kru95]. Both
papers describe a method to generate a linear specification for a process
expression, provided that it is regular.

In [BGY96] we proved that we can extend the class of specifications
further by allowing specifications like (3). The specification is not linear
and not a regular BPA system (i.e. not all process names are regular),
since Y obviously is not regular. However X is regular: the idea is
that the “context-free behavior” of Y is somehow neutralized by Z.
New in this approach is that we do not consider the specification as a

whole, but investigate the regularity of the individual process names
by explicitly distinguishing a “root” process name.

! Which has the same meaning as that all process names defined by a speci-

fication are regular. This implies that the elements of ng("z) are regular, i.e. the

set of all process expressions definable over the signature of BPA with § and the
process names defined by the specification (2).

1. INTRODUCTION 33

The result in [BG96] establishes decidability of regularity of pro-
cess expressions over the class of specifications such that the weakly
Repeats are weakly Deterministic (NRD, see Section 2.1).
For this class of specifications we defined an effective criterion for the
regularity of process expressions. The effectiveness proof follows an
“upper bound argument”: We prove that a process expression over a
NRD specification is regular iff the state space modulo bisimulation has
less than an upper bounded number of states . This gives a decision
procedure which lists new states until no more non bisimilar states can
be generated, but stops when the approximation of the state space has
more states than the upper bound. The test stops before an upper
bounded number of non-bisimilar states is generated if and only if the
process expression 1s regular. Since generation of new states and testing
of bisimilarity is effective [Cl 3CS96/|, this describes an effective
procedure.

Almost at the same time that [BG96] was published, decidability
of regularity for all context-free processes was proved independently in
'BCS96]. Besides establishing the regularity of the process name X over
the specifications (1)—(3) in Example 1.1, this approach can establish
regularity of X over (4), which the approach in [BG96] cannot (as
was discovered by the authors of [BCS96]). The approach of [BCS96]
1s radically different from ours and uses a sophisticated argument to
show that the question of regularity of context-free processes can be
reduced to the (decidable) question of whether a regular graph has a
finite grammar. The method of [BCS96| does not say anything about
the size of the state space modulo bisimulation equivalence of a regular
context-free process.

In this chapter we present again the main results of [BG96] and
extend these to specifications definable with §. We first prove that
the upper bound result holds also for regular process expressions over
NRD specifications. As indicated above, this proves that regularity
of process expressions over NRD specifications is decidable. Second
we prove that the technique of 6 mimicking as presented in Chapter 1
extends the decidability result of regularity of all context-free processes

of [BCS96] to a setting with 4.

“Which is an exponential bound in the number of different process names of a
specification, see Lemma, 3.16.

34 9. REGULARITY OF CONTEXT-FREE PROCESSES

The plan of this chapter is as follows. In Section 2 we define reg-
ularity formally and give preliminary definitions for the upper bound
result, which we present in Section 3. In Section 4 we prove that the o

mimicking technique of Chapter 1 and the decidability result of [BCS96]
imply decidability of regularity for all context-free processes G efinable
with 0.

2.

For convenience we recall in this chapter all results of Section 2
of Chapter 1 about the process expressions, consisting of sequences of
process names over (Act, Var)) specifications in rGNFs. Un-
less explicitly stated otherwise we assume that a specification A 1s
over L(BPAs(Act, Var)) and in rGNFy, Vi is the set of process names
defined by A with typical elements X, Y, Z and v, p,0 € VAT are se-
quences of process names.

For convenience we introduce some extra terminology, which 1s
mostly straightforward: If p = X or p = X - 0, then X is the head
process name of p. We feel free to write a transition as p A ¢ and
not p— , ¢, if we have no interest in the action a. For the process ex-
pressions p and g we use also the words derivatives and states. We use
the Greek letters ¢, v, ®¥ to range over transition sequences, possibly
ending with a termination predicate. If ¢ ends with a —a +/ step,

shortly a tick step then ¢ is terminated.

We mean by |p| the length of a transition sequence ¢ given by the
number of transitions and tick steps, e.g. | X —aA Y —a /| = 2 and
X —=a Y| =Y —2a /| = 1. We say that ¢ is finite, if © has a
hinite length. If ¢ < |p|, then ¢©(7) denotes the i + 1-th state of . If
i 1s finite and not terminated, then ¢(|p|) denotes the last state of ¢,
which we also denote by last(y). Hence X —A Y —A +/(0) = X and
X =AY —=a /(1) =Y. The last state of a terminating transition
sequence 1s undefined, e.g. X —A Y — A /(2) is not defined.

We say that o is weakly normed over A, shortly o {, if there ex-
Ists a terminated transition sequence starting with o ° and perpetual if
0 ¥a- By |Va| we mean the size of the set VA, and |v| the number of
process variables of v, e.g. |X|=1and |[X-o| =1+ |o| for X € Vi
and o0 € Vo™. By v* for kK > 0 we mean the sequential composition

*Notice that a weakly normed process can come after one or more transitions
In a state that is perpetual, i.e. it is not normed in the usual meaning.

2. REGULARITY AND NRD SPECIFICATIONS 30

of k£ v's. If no confusion can arise, we use ||, |Val, |[v| without stating
whether respectively the number, length or size is meant.

The most important notion that we use in this chapter is regularity
that we define on process expressions.

yrec

DEFINITION 2.1. Let p € P3§°X. If there exist only transition se-
quences p = py — p; — pP2... such that there are only finitely many
palr-wise non bisimilar p;, then p is reqular over A.

For convenience we define regularity as the absence of the possibility
of infinite sequences of non bisimilar states. If process expressions are
finitely branching this implies that the state-space modulo bisimulation

1s finite, which is another frequently seen formulation in the literature
[VIM94, Kru9 5] :

LEMMA 2.2. The state-space modulo bisimulation equivalence of a
process expression that is regular over A is finite.

Proof. It is folklore that process expressions over finite syntactically
guarded >(BPAj(Act, Var)) specifications are finitely branching. By
Konig’s Lemma a regular process expression hence gives rise to a finite
state space modulo bisimulation O

pecifications. In Section 3 we prove decidability of
regularity of process expressions over a restricted class of specifications,

called NRD specifications. In this section we give the definition and
some auxiliary results.

DEFINITION 2.3. If X = p € A and there is only one summand* in
p starting with the action a € Act, then a is unigque in X over A.

EXAMPLE 2.4. Let A be the specification X = {X =a- X +b-Y +
b-X-Y +c-Y+d,Y =0}. Then the actions a, ¢c and d are unique in
X over A and b is not.

PROPOSITION 2.5. It is decidable whether a is unique in X over
A.

DEFINITION 2.6. Let Wa o, Wa;,--- C Va be sets inductively de-
fined as follows

* Recall that specifications in rGNFs; have only equations with unequal
summands.

36 2. REGULARITY OF CONTEXT-FREE PROCESSES

A0 — 0: .
WA; or X = p € A and there is an

action a such that ¢ is unique in X over A, and the summand
starting with a is either a, or has all subsequent process names

in Wa .
Let Wa; = W A i+l for some 7 € IN. Then W A i is the set of weakl Y

normed deterministic process names for A, denoted as W

EXAMPLE 2.7. In the specifications in Exan 1.1,

. Wayo =0, ={Z}, W2 =1{Z,X}and Wy, = {Z, X, Y}
for 2 > 2, and

. W (2),0 = () and W(g),i — {X } for + > 0, and

. Wizyo =0 and Wiy ; = {Y, B} for i > 0, and

4. W(4),0 = () and W(4),i = {T} for 2 > 0.

PROPOSITION 2.8. For i < j Wa; C Wa j, |Wa. il — |V
and if WA,,: — WA,i+15 then WA,,‘; = WAJ.

LEMMA 2.9. W, is effectively computable.

Proof. Immediate by Propositions 2.5 and 2.8 O

DEFINITION 2.10. Let X € V4, and ¢ = X — ... be a non termi-
nated, finite transition sequence. If last(¢) = X - ¢ for some o € VAT,
last(y) Ya and [whenever i < j < |¢|, (i) and v(j) do not have the
same head process name], then ¢ is a weakly normed repeat and o is
the stacking of .

EXAMPLE 2.11. In the specifications in Example 1.1,

1. there are no weakly normed repeats defined by (1) and (2), and

2. Y= Y - B is the only weakly normed repeat defined by (3),
and

3. T ,T-Y is the only weakly normed repeat defined by (4).

LEMMA 2.12. If X starts a weakly normed re<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>