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Robust and Adaptive Methods for Sequential

Decision Making

by Wouter M. Koolen (CWI)

Machine learning systems for sequential decision making continuously improve the quality of their
actions. Our new adaptive methods learn to improve as fast as possible in a wide range of applications.

Many practical problems can be cast as
sequential decision making tasks,
ranging from time series prediction, data
compression and portfolio management
to online versions of routing and
ranking. Yet other problems may be
reduced to sequential decision making,
in particular batch learning from large
data scts. The main challenge is the
design of generic, efficient, robust and
adaptive learning methods.

Following [1], we model the learning
process as a series of interactions
between the learner and its environment.
Each round the learner picks an action.
Then the environment reveals the
quality of all available actions by means
of a “loss function™. Based on this feed-
back the learner updates its internal
state, with the goal of picking better
future actions.

Robustness is traditionally achieved by
taking a game-theoretic perspective. We
interpret the learning problem as a
sequential game, and regard the environ-
ment as an adversary that chooses the
loss functions to maximally frustrate the
learner. One of the accomplishments of
the online learning community is the
design of learners that are provably suc-
cessful in such games. It is amazing that
generic learning methods can be
designed for such a rich class of prob-
lems.

Unfortunately, the robust game-theoretic
methods do not always fare well in prac-
tice, in the sense that for some problems
they are outperformed significantly by
special-purpose methods. The reason is
that, in practice, environments are not
maximally evil, and may admit more
aggressive learning techniques which
arc unsafe in general. This realisation
has spurred the search for reasonable
assumptions that describe the additional
uscful structure present in practical
problems.

We studied two popular types of such
assumptions. First, one may require that

the loss functions exhibit curvature,
either in every direction (strong con-
vexity) or along the gradient (exp-con-
cavity). For either scenario with known
curvature, methods have been devel-
oped that increasc performance dramat-
ically. Yet in practice the curvature
often is a featurc of the data, and hence
unknowable a-priori. We aim to design
methods that adapt to any exploitable
curvature presented.

Second, one may consider the relation
between loss functions issued by the
environment over the course of multiple
rounds. A simple (but rich and often
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every round based on the newly
observed loss function. To exploit the
aforementioned structural properties of
the environment (curvature and/or
Bernstein exponent) it turns out that the
magnitude of this update needs to be
tuned carefully. The friendlier the
problem, the larger the step size
required (whence the title of the NIPS
workshop series “Learning Faster from
Easy Data™).

Tuning the step size. a single scalar,
appropriately for some unknown

parameters might sound like a simple
learning problem in itsclf. Yet no
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Figure 1: Sequential decision making.

practically reasonable) class of assump-
tions is obtained by modelling the
sequence of loss functions as an inde-
pendent and identically distributed sto-
chastic process. We may then charac-
terise the simplicity of the distribution
by its “*Bernstein exponent™ (gencralisa-
tion of the Tsybakov margin condition
used in classification). For distributions
with a known Bernstein exponent it is
possible to design learning algorithms
that perform optimally. But how does
one deal with and adapt to an unknown
Bernstein exponent?

Online learning methods maintain
internal parameters that are updated

existing learning method would apply:
the overhead for learning the step size
would dwarf the benefit of setting it
right. The key contribution of our new
method, called MetaGrad, is a novel
approach for learning the step size from
the data.

We proved that MetaGrad has a certain
performance guarantee of second-order
form [2]. This bound implies in partic-
ular worst-case safety (robustness),
adaptivity to curvature and adaptivity to
the Bernstein exponent [3]. This estab-
lishes MetaGrad as the new state-of-the
art adaptive method for online convex
optimisation. Since MetaGrad only has
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modest computational overhead over
earlier methods, we also expect it to be
highly relevant in practical applications.

The research team consisted of Wouter
M. Koolen (CWI), Tim van Erven
(Leiden University) and Peter
Griinwald (CWI and Leiden
University). The author is funded by an
NWO Veni grant. The results will be
presented at the 30th NIPS conference
in December 2016. Our reference
implementation of MetaGrad is pub-
licly available [L1].

Link:
[L1] https://bitbucket.org/wmkoolen/
metagrad
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