Analysing Industrial Protocols
with Formal M ethods



Copyright®© 1999 J.M.T. Romijn.
ISBN 90-9013086-1
IPA Dissertation Series 1999-09

Typeset withATEX 2,.
Printed by Thela Thesis, Amsterdam.
Cover by Total Design, Amsterdam.

INSTITy,
£
':';.-
- *
R T -
g [ - |
e — R
= e
T [ i
e 4
2, £
7, -
Wi RH e

The research reported in this thesis was carried out as part of the project “Specification, Test-
ing and Verification of Software for Technical Applications” at the Stichting Mathematisch
Centrum for Philips Research Laboratories under Contract RWC-061-PS-950006-ps. The re-
search has been carried out under the auspices of the Institute for Programming Research and

Algorithmics (IPA).



ANALYSING INDUSTRIAL PROTOCOLS
WITH FORMAL METHODS

PROEFSCHRIFT

ter verkrijging van
de graad van doctor aan de Universiteit Twente,
op gezag van de rector magnificus,
prof.dr. F.A. van Vught,
volgens besluit van het College voor Promoties
in het openbaar te verdedigen
op vrijdag 15 oktober 1999 te 15.00 uur.

door
Judi Maria Tirza Romijn
geboren op 13 september 1971

te Zaandam



Dit proefschrift is goedgekeurd door de promotoren

Prof.dr. H. Brinksma
Prof.dr. F.W. Vaandrager



Preface

In 1995, the Philips Research Laboratories in Eindhoven signed a contract with CWI to fund
a PhD student at CWI. The contract was based on a research proposal by Ed Brinksma (Uni-
versity of Twente), Jan Friso Groote (University of Utrecht) and Frits Vaandrager (Centre for
Mathematics and Computer Science, Amsterdam). Ron Koymans (Philips Research Laborato-
ries, Eindhoven) became the project manager for the project at Philips, Frits Vaandrager was
the project manager at CWI from August 1995 up to January 1996, subsequently Jan Friso
Groote became project manager at CWI. Ed Brinksma became the promotor. | was hired as
PhD student for four years at CWI.

At the end of these four years, | am glad to be able to express my thanks in the document
one is supposed to deliver. Even though it is impossible to thank everybody, | make an effort
here.

The first thanks go to the four captains on this ship: Ed, Frits, Jan Friso and Ron have made
sure that there was work to be done, that the work gave rise to papers with scientific value, that
these papers were finished and published, that a thesis was written, and last but not least, that
| learned something from each case study.

Henk Apers, Hubert Garavel, Joost-Pieter Katoen and Thijs Krol are kindly thanked for
their willingness to judge this thesis and take part in the committee. Hubert and Joost-Pieter
have helped in improving the presentation with numerous useful comments.

Fortunately, | have not been working alone. Of the co-authors | especially want to thank
Jan Springintveld (Chapters 4 and 5) and Frits Vaandrager (Chapter 2). Both have taught me a
great deal about writing and science. Jean Moonen is thanked for a pleasant dual presentation
in South Korea of the work presented in Chapter 4. The hard labour one faces when trying
to build a tool environment, implement an algorithm or run an existing tool on extravagantly
large examples, was relieved by the cooperation with/advice from Rudi Bloks, Hubert Garavel,
Gerard Holzmann, Radu Mateescu, Jean Moonen, Jan Springintveld and Eddy Zondag.

At CWI, | have had four very good years, for which nice surroundings and colleagues are
indispensable. My office mates Jan, Joost, David, Tobias, Hugo, Michel, and Mark have each
contributed in their own way to the progress of my work and/or the improvement of my mood.

| would like to thank some other colleagues, friends and family with the following, very
incomplete list: paranimfen Bas and Jan; Bert, Doeko, Izak, Jaco vdP, Jos, Marco, Sjouke,
Thijs, Vincent, Yaroslav, Mieke & Marja, Jaco dB, and the other AP/SEN members and vis-

\Y



\Y Preface

itors; the researchers working at related departments in KUN, TUE, UT, UU, UvA and VU;
Frans, Jaap, Minnie, Simone, Walter, Debby, and the other PV-bestuurders; Joke, Barry, Henk,
Jacques, and the other skaters; Annette, Dejuan, Lynda, Miriam, Natalia, Sylvia, and the other
wimmin; de kantine; Carol, Dennis & Lieve & kleine Judi, Marieke, Miriam, Karin, Kathy,
Saske, Suzanne, Arjan & Annette, Kor & Gwenn, Annemarie & Michael, Robbert & Ramya
& Nina, Joop & Wil, Maria & Joost, Ruben, Job & Lonneke, Huib & Marthe, pap & mam, opa
& oma Banga, and Otje.

Finally, | reserve the greatest thanks for Wan, who is always willing and able to understand,
comfort, enjoy and love me.

i
- ~
e

Amsterdam, August 1999



Preface v
Contents Vii
1 Introduction 1
1.1 Industrialscope . . . . . . . . 1
1.2 Formalmethods . . . .. .. . . . . . . .. . . e 3
1.3 Protocols . . . . . . e 6
1.4 Theproject . . . . . . . . 7
1.5 The formal methods and tools that wereused ...... . . ... ....... 8
1.6 Thecasestudies . . . . . . . . . . . . . . . e 11
1.6.1 Case 1: The RPC/Memory specification problem . . . . . ... .. .. 12
1.6.2 Case 2: IEEE 1394 verification . . . . . .. ... .. ... ..... 13
1.6.3 Case 3: Automatic VHDL testing . . . .... . . . ... ... .... 14
1.6.4 Case 4: Symmetry reduction in test generation . . ... ... ... .. 15
1.6.5 Case5: Asoftware architecture . . . . ... ... .. ... ...... 16
1.6.6 Case6: HAViDCM Management . . . . ... ... .. .. ...... 16
2 A noteon fairnessin /O automata 19
2.1 Introduction . . . . . . .. e e 19
2.2 Definitions. . . . . .. e 20
2.3 MainResult . . . ... ... .. 21
2.4 Composition . . . . . o L 24
3 TheRPC-Memory specification problem 27
3.1 Introduction . . . . . . .. e e 27
3.1.1 Specificationproblem . . ... ... ... o oL 28
3.1.2 Notes on the problem specification. . . . . . ... ... ... ..... 30
3.1.3 Notesonthel/Oautomatamodel . ... ................ 31
3.2 Preliminaries . . . . . . . . e 32
3.21 Farrl/Qautomata. .. .. ... .. . . .. ... i 32



viii Contents
3.2.2 Detailsonfairl/Oautomata . . . .. ... ... .. ... ....... 32
3.3 Specifications and verifications for Problem1 . . . . ... ... .. ... ... 33
3.3.1 Problem 1(a): Specification of two memory components. .. . . . . 33
3.3.2 Problem 1(b)RelMemory implementdMemory . . . . . . . .. .. .. 37
3.3.3 Problem 1(c): Nothing bMEM _FAILUREp actions? . .. ... ... 38
3.4 Specifications and verifications for Problem2 . . . . ... ... ... ... .. 39
3.4.1 Problem 2: Specification of the RPC component ... . . . ... .. 39
3.5 Specifications and verifications for Problem3 . . . .. .. .. ... ... ... 41
3.5.1 Problem 3: Specification of the composition. . . . . . .. ... .. 41
3.5.2 Set-upforthe verification . . . ... ... ... ... ... . ... 45
3.5.3 Problem 3MemorylmpimplementdMemory . . . . . ... ... ... 45
3.6 Specifications for Problem4 . . . .. ... .. ... ... ... ... ... .. 52
3.6.1 Problem 4: Specification ofalossyRPC . . . . . . .. ... ... ... 52
3.7 Specifications and verifications for Problem5 . . . .. .. .. ... ... ... 52
3.7.1 Problem5(a): The RPC implementatReClmp . . . . . . ... ... 54
3.7.2 Problem 5(b)RPCImp implementRPC . . . .. ... ... ..... 56
4 Automated conformancetesting of VHDL designs 61
4.1 Introduction . . . . . . .. 61
4.2 Global description of test environmentand test process . . . . . . . ... ... 63
4.3 Stepwise throughthe testingprocess ... . . . . . . .. . . ... ... ... 65
4.3.1 Generating tests with the ConformanceKit. . . . . ... ... ... 65
4.3.2 From abstract tests to executabletests . . . . ... ... ... ..... 66
4.3.3 Executingtestsatthe VHDLIlevel . . . ... .. .. ... ... ... 68
4.4 EXPEHENCES . . . v v i i e e e e e e e 71
45 Relatedwork . . . . . . . . e 72
4.6 Laterdevelopments . . . . . . . .. ... 73
5 Exploiting symmetry in protocol testing 75
5.1 Introduction . . . . . . . . .. 75
5.2 Finite state machines . . . . . . . . . . ... ... 76
53 Symmetry . . . .. 77
5.4 Constructionofakernel. . . . . ... ... 79
5.5 Test derivation from symmetric Mealy machines . . . . . ... ... ... ... 84
5.6 Patterns . . . . . . . e 88
5.7 Examples . . . . . 94
5.7.1 Achatboxservice. . . . . ... ... . ... 94
5.7.2 Acyclictrain . . . . . . ... e 97
5.7.3 Implementing the algorithmKernel . . . . . ... ... ... ..... 99
5.8 Futurework . . . . . . . .. e e 99
6 TheHAVi leader election protocol 101
6.1 Introduction . . . . . . . .. .. 101
6.2 The DCM Manager leader election protocol . . . . .. ... ... ... .... 102
6.2.1 HAVIicomponents . . . .. . . .. .. ... 103
6.2.2 Protocol . . . . . . .. . 105



Contents iX

6.3 Languagesandtools ... . . .. .. .. ... ... 105
6.3.1 SpinandPromela . . .. ... .. ... ... . o 106
6.3.2 Lotos, Ceesar/Abaranand Xtl . . . .. ... .. ........... 106

6.4 Modellingdecisions. . . . . .. .. . ... 106

6.5 Model checkingexperiments . . . . . . .. .. ... ... ... 109
6.5.1 Safety: Atmostoneleader . . . . .. .. ... ... ... ... 112
6.5.2 Safety: Best candidate becomes finalleader . . . . . .. ... ... .. 113
6.5.3 Safety: Allagree onthefinalleader . . . ... ... ... ....... 114
6.5.4 Liveness: Eventually there will always be a final leader. .... . . . . 117
6.5.5 Isthe HAVi protocolwrong? . . . . . . . . ... . ... ... 120
6.5.6 Statistics . . . ... ... 121

6.6 Conclusions . . . . . . . ... 124
6.6.1 ConcerningSpin . . . . . . ..o 124
6.6.2 Concerning Ceesar/Abdaranandlotos . . . ... ... ... ..... 127
6.6.3 Comparisonofthetools . ... ... ... ... . ... ...... 128
6.6.4 Concerningthisexperiment . . ... ... .. ... .......... 130

7 ThelEEE 1394 leader election protocol 131

7.1 Introduction . . . . . . . 131

7.2 Theprotocol. . . . . . . . 133
7.2.1 ThelEEE 1394 treeidentifyphase . . . . ... .. ... ... ... 133
7.2.2 Other verifications of the protocol . . . . . .. ... ... ....... 134
7.2.3 Thisverification . .. .. .. ... ... 136

7.3 1I0AModels . . . . . . e 138

7.4 Network preliminaries . . . . . . . . . .. . 142
7.4.1 Networks . . . . . . . e 142
7.4.2 Paths,cycles . .. .. .. 143
7.4.3 Connectednetworks . . ... ... ... 144

7.5 Verification . . . . . ... 147
7.5.1 Invariantsfor TIP3andTIP4 . . . . . ... .. ... ... ....... 147
752 TIP4AimplementsTIP3 . . . . . . .. .. .. . . . ... 151
7.5.3 LivenessresultsforTIP4 . . . . . .. . .. ... ... ... .. ..., 152
7.5.4 Arethe IEEE 1394 timing constants correct? ...... ... .. .. .156

7.6 Conclusions . . . . . . . ... e 157

8 Conclusions 159

8.1 Projectobjectives . . . . . . ... 159

8.2 Doesthe hypothesishold? .. ... ... ... ... ... .. ....... 161

8.3 Futuredirections . . . . . . . . . ... 163

Bibliography 164
A 1/O automata 177

Al Safel/lQautomata . . . . ... ... . . . .. ... e 177

A2 Livel/lQautomata . . . . . . . . . . . .. 180

A3 Timedl/Oautomata . . . . . . . . . . . ... 181

A4 FairTimedl/Qautomata . . ... .. . .. . . .. . it 184



X Contents

Samenvatting 187



Chapter 1

| ntroduction

This thesis is about the application of formal methods. It lists and evaluates the results obtained
in a project which was carried out at the Centre of Mathematics and Computer Science (CWI)
in Amsterdam for the Philips Research Laboratories in Eindhoven. It is organised as follows.
This chapter contains short introductions to formal methods, the project and its scope, the
methods used, and the case studies performed. Chapters 2 to 7 contain the scientific papers
written in the scope of this project. Chapter 8 presents an evaluation of the results and some
directions for future research.

1.1 Industrial scope

The present  In modern households, many devices are controlled by computer technology
(embedded systems). The type of devices controlled by embedded systems varies from elec-
tronic devices such as audio equipment to something as simple as a coffee machine. By adding
software and/or hardware, more and more intelligence and functionality is added to the devices.
An example of this is a coffee machine with a clock that can be used to have the machine make
coffee autonomously at a certain time of the day. The next step in the development of such
embedded systems is to allow the embedded systems in different devices to communicate with
each other. For instance, it is already possible to buy a multi-purpose remote control that is
able to operate audio, video and other equipment from various vendors.

The future Let us consider a future household in which all embedded systems are able to
communicate, which is shared by Jane and Ken. Jane is at work, and suddenly is inspired to
prepare a certain dish for dinner. Since she is not sure of the contents of the refrigerator, she
phones home to find out what is in stock. Her answering machine gets all the information
from a camera installed in the refrigerator, including the expiry dates that Jane should take
into account. On her way home she buys the groceries that she needs. When she enters her
apartment, she is recognised by the sound of her voice and greeted with information on her
favourite news items, on the people that phoned or visited the apartment, and on what the cat
has been up to. She asks for a cd to be played, and automatically her profile is checked to find
out which tracks to play in what order. While she goes into the kitchen, the music is redirected

1



2 1 Introduction

to the kitchen speaker set. Now Ken comes home with a new cd player. He connects the device
to a power outlet and to the video recorder, and puts in one of his favourite cds. The cd player
says hello to the other devices in the network and obtains Ken’s profile for the cd that it is
supposed to play.

Should we classify this story as science fiction? It is clear that today’s state of technology
is not able to support the scenario sketched in a generic way. However, producers of consumer
electronics are currently developing architectures that enable products of multiple vendors to
communicate when combined in a network. These architectures are expected to be applied in
products and have the above scenario become reality in just a few years. Two examples of
such architectures are HAVi [GHWM8] and Jini [Sun99]. HAVi is a joint effort by several
companies to solve audio/video interoperability in home networks, with IEEE 1394 FireWire
[IEE96] as underlying medium. Jini is an initiative by Sun Microsystems, which is based on
Java and supposed to connect arbitrary electronic devices.

How? As may be clear from our peep into the future, there are several advantages to such
networks of devices controlled by intelligent embedded systems:

e Globally available user profiles. The preferences of each person need to be stored only
once, and all devices in the household can afterwards access this information and operate
according to the preferences.

e Plug and play with little user interaction. Whenever a device is added to the household,
it is able to get acquainted with the other devices its new environment by itself, the user
of the equipment only needs to connect the device to a power source and the network
of devices already present. Removing a device leads to immediate notification of the
parties that should be informed.

e Dynamic services from the network. When a user wants to operate a certain device, it
may interact with another device that passes the message on to the actual destination.
One could for instance ask the computer in the study to have the cd player in the living
room skip the next track of the cd which is being played.

e Future proof. If the embedded systems are intelligent enough, they can learn about
functionalities or services developed later, by communicating with devices with newer
versions or finding information on the internet. Hence the need for the user to upgrade
things vanishes.

While apparently desirable, the features described are quite hard to establish. We list some
technical points that need to be addressed, and which are of crucial importance to the proper
functioning of the technology:

1. Plug and play. It is important to know at all times which devices are present in the
network. Whenever a device is introduced or taken away, the other devices should be
informed about this, so they can act according to the new situation. It is not trivial to
ensure that the information about the devices present is up to date when many changes
follow each other in a short period of time.

2. Bandwidth requirements. A fair division of the bandwidth over the different applica-
tions, each with their own requirements, is complicated. Audio and video applications



1.2 Formal methods 3

need a large amount of bandwidth on the connecting medium, in order to guarantee a
good service. Communication that concerns control can usually be done with less band-
width, but requires acknowledgements and such.

3. Robustness. The products to be sold are destined for end users with possibly little tech-
nical knowledge. It is important that the operation of the network is transparent to and
capable of handling errors by the user.

When solutions for these issues are devised, the question will remain whether the solutions
work in all imaginable situations. This is where formal methods may help. The remainder of
this chapter explains what formal methods are about and how they may be used, and gives an
introduction to the research presented in this thesis.

1.2 Formal methods

Formal methods are the applied mathematics of computer system engineering, and are used
to construct and/or make judgements about computer system artefacts. By artefacts we mean
designs as well as implementations, and software as well as hardware. Examples of mathe-
matical techniques used by formal methods are predicate calculus (first order logic), recursive
function theory, lambda calculus, programming language semantics, and discrete mathematics
(number theory, abstract algebra, etc).

We now explain the basic terminology of formal methods by giving examples whole of
what can be done with formal methods, inspired by [WM97, WM98]. Note that our interpre-
tation of the terminology is one in a range of (subtly) different interpretations. Therefore this
section also serves to fix the starting point and avoid confusion.

Suppose we start with a set of requirements, and an artefact, which should have some
relation with the requirements:

?
4—» requirements

The requirements give the intended functionality and the artefact is the proposed recipe for ob-
taining that functionality. With formal methods we try to characterise the relationship between
the requirements and the artefact.

Another possibility is to start with just requirements and derive an artefact from these that
provides the required functionality, which is calleggineering. When using formal methods
to do this, we speak aforrectness by design:

engineering
requirements

Finally, if we start with an artefact, and want to derive requirements from these, this is
calledreengineering or reverse engineering.

reengineering
requirements

In this thesis, the research is restricted to the use of formal methods where the requirements
and artefact are given.



4 1 Introduction

Formalisation In practice, the requirements and artefact tend to be described in an informal
and equivocal manner and often have (too) many details. Such descriptions are not suitable
for using formal methods because they are not sufficiently precise or too complicated or too
large. In order to obtain descriptions that are suitable for formal methods, wéonmaglise

the requirements and the artefact:

formal/mathematical world

formalisation formalisation

requirements

Formalisation means translating a description in an informal language to a description in a
formal language. A formal language is defined by a formal syntax, and often has associated
semantics, which give precise meaning to expressions in the syntax. Different kinds of formal
languages are suitable for expressing different kinds and different aspects of artefacts. In the
formalisation decisions like the following often have to be made: details of the informal de-
scription are omitted (abstraction), assumptions are made and equivocal parts of the description
are disambiguated. Even if a language is not completely formal, then it can still be possible
to give very precise descriptions in that language. In such a case formalisation is easy. With
the termspecification, we refer to the formal representation of the requirements. With the term
model, we refer to the formal representation of the artefact.

informal world

Validation The formalisation of requirements or artefact may not be correct, because of the
abstractions, assumptions and/or interpretations made. The task of establishing whether the
formalisation is correct is often referred toesidation. In the following figure, the dashed
arrows depict the formalisation performed earlier.

formal/mathematical world

!

specification

I
I
informal world Lvalidation . L validation
I
I

?

In many cases, validation means that the formal and informal descriptions are compared by
manual study, or that people responsible for the informal description are consulted. If there
is tool support for the language of the formal descriptions, then features like syntax checking,
type checking or simulation can support the validation.

Verification When we are interested in the correctness of an artefact with respect to require-
ments, we may establish a formal relation between the formal representations of these, i.e.



1.2 Formal methods 5

between the model and the specification. When this relation is given by mathematical proof,
we speak ofverification. In the following figure, the dashed arrows depict the formalisation
performed earlier.

formal/mathematical world
verification
> specification

?
<—> requirements

The relation between the specification and model says something about the behaviour that is
allowed by the specification and the behaviour that the model exhibits. It may be that one is
included in the other, or that they are equal. We distinguish two main approaches to establish
the relation by verification, nametieorem proving andmodel checking. These are the expo-

nents of a spectrum of mixed approaches. With theorem proving we denote the construction
of a mathematical proof, which can involve all sorts of proof techniques such as proof by con-
tradiction, by induction, etc. With model checking we denote the exhaustive exploration of
all possible behaviours to show that the relation holds. Both kinds of verification may be sup-
ported by tools: model checking by model checkers, and theorem proving by proof checkers,
proof assistants or theorem provers. Proof checkers take a complete proof as input and check
whether all the steps in this proof are mathematically sound. Proof assistants are interactive
proof checkers: the tool is able to check steps and provide suggestions, but the user has to
direct the proof in an interactive way. Theorem provers attempt to find a proof without user
guidance, with techniques like resolution. Proof assistants are expensivean effort, in

that it takes relatively much user interaction to construct a proof. Theorem provers and model
checkers are expensive mnachine effort, in that it it takes relatively much machine resources
(memory/disk space, computing power) to construct and explore a proof tree, or to explore all
possible behaviours of a model or specification.

When it has been established that a certain relation holds between specification and model,
it remains to be seen whether this is also true at the informal level, between the requirements
and the artefact. The validation of the formalisation is often used as a justification that indeed
the relation in the formal world implies the relation in the informal world.

informal world

Conformancetesting When arelation between any two of the entities artefact, requirements,
model and specification is established by experiment, we spetgtiofy. Experiments are
conducted by executing or simulating an artefact. Testing can support validation or substitute
verification. There are many different kinds of testing, based on what the purpose of testing is.
Some examples are functional, performance, reliability, and robustness testing. When testing
is used to establish the relation between an artefact and requirements, by conducting experi-
ments on the artefact, then we speakariformance testing. When using formal methods for
conformance testing, the relation is established between the artefact and the formal representa-
tion of the requirements, i.e. the specification. In the following figure, the dashed arrow depicts
the formalisation performed earlier.



6 1 Introduction

formal/mathematical world

specification
conformance A
testing

I
|
: |
informal world !
I
1
?
requirements

Formal methods for testing consist of methodsdemerating andimplementing experiments
andevaluating the outcomes. Test generation is done using the specification. In most cases,
test evaluation just says whether the artefact passes or fails. The methods are almost always
based on théest hypothesis, which states that the system to be tested can be modelled in the
formal language of the test method.

Testing is influenced by many factors, e.g. whether one has access to the structure/contents
of the artefact (white box testing) or not (black box testing), in what environment the artefact
must be tested and how it can be observed.

In most cases, exhaustive tests of an artefact are not feasible since this generally requires a
very large, or even infinite, number of test cases to be executed. Therefore, the actual test set
is usually constructed under a number of additional assumptions regarding the occurrence of
errors in the form of a fault model or test hypotheses. In such cases, complete test coverage
can be obtained only relative to the assumptions made. Because of these restrictions, testing
typically aims at the exposure of errors and increasing the confidence in the correctness of
artefacts, but is generally too weak to guarantee absence of errors.

1.3 Protocols

The focus of this thesis is on artefacts which gretocols. A protocol is an agreed-upon
method of communicating information between two or more entities, using an underlying ser-
vice or medium. There are three basic ingredients for a protocol: (1) the messages, and their
intended meaning, (2) the order in which messages should be exchanged, and (3) the way in
which the underlying service or medium is used.

Many protocols start with a connecting phase, followed by a phase in which important in-
formation is passed, followed by a termination phase, each with their associated messages. For
instance, consider a telephone conversation. The telephone medium indicates the conversation
request by ringing. The phone is unhooked and the conversation is started with some opening
message like ‘hello’, and both the caller and the person called give their name. After this ini-
tial phase, some information is exchanged until one of the two indicates that the conversation
must end. At this point, some terminating message like ‘goodbye’ is used by both parties, after
which the phones are put on hook again.

Note that a protocol does not necessarily define equipment or specific software.

An open protocol is a set of detailed, published rules for communications. Open protocols
are available for public use and implementation. These protocols are often developed by the
joint effort of a group of vendors and/or individuals.

A standard protocol is an open protocol which is in many cases globally accepted and



1.4 Theproject 7

used. Standard protocols are often published by a standards organisation, such as IEEE, ISO
and ITU.

1.4 Theproject

The general goal of the project can be found in the following quotation from the project pro-
posal:

The primary objective of the proposed project is to demonstrate and assess the
effectiveness of using formal methods in the software development process within
Philips. This goal is to be achieved by a consortium of three well-established re-
search groups on formal methods with complementary expertise. Together these
groups will validate (critical parts of) the software for a number of selected appli-
cations within Philips.

This is a rather ambitious goal for a project in which the manpower is planned as follows:
one PhD student funded full-time, and four people supervising of which one promotor and
two project managers, not funded by the project and geographically far apart. Given that the
duration of the project was only four years, it is fair to have modest expectations of the outcome

of the research and the degree to which the aforementioned demonstration and assessment can
take place.

The central hypothesis We formulate a hypothesis which expresses the goal of the project
proposal in a modest way. The research presented in this thesis is supposed to give evidence
that supports or refutes this hypothesis.

Using formal methodsto support the industrial software development process can
be effective.

There is a wide range of articles on the use of formal methods in the industrial software
development process. Of these, we only refer to [BH95b, BH95a, CW96, Hal90, Rus95].

Concrete project objectives, case studies The general goal of the project does not lead to
a straightforward research plan. The project proposal suggests some concrete objectives and a
plan, as follows.

Concretely the project will address the following more specific goals:

1. Development of heuristics about when formal methods should be applied.

2. Improvement of methods and tools so that bigger applications can be dealt
with faster.

3. Integration of complementary approaches within formal methods research.

4. Improvement of technology transfer process from formal methods research
to practice.



8 1 Introduction

In order to achieve the goals described, it is planned that during the three first
years of the project six applications will be dealt with. The fourth year is reserved
to write a PhD thesis.

Ideally, the selection of case studies would take the relation to the project objectives into ac-
count: a case study that is expected to contribute to one (or more) of the goals mentioned
should get preference over case study from which no such contribution is expected. Such ex-
pectations are not easy to come up with, especially for Items 1 and 4. Moreover, it turned out
that the selection of case studies was limited by the availability of suitable industrial devel-
opment projects, the possibility of applying formal methods and the estimation of the effort
required, to such a degree that preference with respect to the concrete objectives has not been
taken into account in practice. Hence, it is only afterwards (at the time of writing of this the-
sis), that it is evaluated how these case studies do or do not contribute to the concrete objectives
of the project. This is done in detail in Chapter 8. The case studies were proposed by Frits
Vaandrager (Case 1, 4) and Ron Koymans (Case 2, 3, 5, 6).

1.5 Theformal methods and toolsthat were used

This section shortly introduces the formal methods and tools that were used. The verifications
involve models in the formal languages I/O automata, Promela and Lotos and the tools Spin
and Ceesar/Alebaran. The testing theory and experiments involve Mealy machine models and
the tool KNP Conformance Kit.

The differences between 1/0O automata, Promela and Lotos are found mostly in the verifi-
cation approaches. The expressivity of the languages is comparable, which is illustrated by the
translation from 1/0O automata descriptions to Promela presented in [Jen99].

A mathematical notion that is often used for the interpretation or comparison of models in
formal methods is thiabelled transition system. A labelled transition system is a set of states
with labelled transitions between them. Each transition is supposed to represent an indivisible
or atomic event, and the label indicates what the eventis. One or more states may be designated
as initial state, meaning that behaviour may start from these states.

/O automata The input/output automaton model [LT87, LT89], developed by Lynch and
Tuttle, is a labelled transition system model for components in asynchronous concurrent sys-
tems. The actions of an I/O automaton are classified as input, output and internal actions, where
input actions are required to be always enabled. The output action of one I/O automaton may
be the input action of one or more other /O automata, which can be used to enforce multi-way
synchronisation. An I/O automaton has “tasks”; in a fair execution of an I/O automaton, an
enabled task cannot be ignored indefinitely. The behavior of an I/O automaton is describable
in terms of traces, or alternatively in terms of fair traces.

I/O automata are mostly described in a precondition/effect style with state variables, where
a state is a valuation of the state variables. It is often straightforward to model behaviour in
terms of state variables and actions.

Verification on 1/0O automata is done with both model and specification described as 1/0 au-
tomata, with theorem proving techniques. The verification relation between the 1/0 automata
is based on the behaviour of the 1/0 automata: trace inclusion. Given the 1/0O automata de-
scriptions in precondition/effect style, the common approach to establish this is by means of



1.5 Theformal methods and toolsthat were used 9

simulation relations [LV95]. With a simulation relation one shows that any observable event
from one 1/0 automaton can always be imitated with some activity by the other I/O automaton.
The simulation relation is stronger than trace inclusion in the sense that the former implies the
latter, but not vice versa.

Itis possible to include timing requirements in I/O automata and in simulation relations to
establish that the timed behaviour of one 1/0 automaton is included in the timed behaviour of
another I/O automaton [LV96].

The presentation of I/O automata can be done in the I0A language [GLV97], which facil-
itates the precondition/effect style and manipulation of data. Tool supportis currently worked
on, in the form of a simulator and translations to Promela, Java and the input language for the
Larch theorem prover [GH93].

In my experience, the examples | worked on could be easily modelled as (timed) I/O au-
tomata. The proof techniques could almost always be used in a straightforward manner, and if
this was not the case, it was not hard to find a small extension of the theory that supported my
needs. The IOA language allows for natural representation of I/O automata.

Promela, Spin  Promela (a Process Meta Language) [Hol91] is a non-deterministic language,
loosely based on Dijkstra’s guarded command language notation and Hoare’s language CSP,
extended with other constructs. It is the input language to the tool Spin [Hol91, Hol97]. Mod-
els in Promela consist of definitions of process behaviour, with variable assignments, sequen-
tial and alternative composition, repetition and dynamic process creation. Communication
between processes happens on synchronous or asynchronous channels. Synchronous commu-
nication always involves two processes. The support of data types is limited: basic types are
booleans and naturals, from which arrays and record structures can be built.

The tool Spin facilitates simulation and verification of Promela models. Different simula-
tion possibilities are random, guided and interactive. Simulating behaviour of Promela models
helps in understanding what has been modelled.

Verification is supported in Spin through model checking. Here the model is encoded in
Promela and the specification in linear temporal logic (LTL, [Pnu77, MP92]). The verification
is done on the fly: the global state space is not constructed, but explored directly from an
interpreted version of the Promela code. This means that for each new verification run, the
effort of constructing the state space while exploring has to be done anew, but also that only
that part of the behaviour has to be constructed and explored which influences the validity of
the property checked.

In my experience, Promela is easy to use when one has experience with imperative pro-
gramming languages. The Spin tool support is good and the interfaces are very user-friendly.
However, it can be hard to decide how to model complicated behaviour. Different choices may
have a great impact on the tractability of the model by Spin, and combinations of synchronous
communication and other language constructs can cause rather obscure behaviour. When the
complexity of the behaviour that is modelled increased, | had to consult the semantic defini-
tion of the language more often. When modelling a property to be checked, it can be hard to
determine a proper formulain LTL that captures the property precisely if the property is a little
complex.

Lotos, Caesar/Aldébaran Lotos [ISO89] is a message passing process algebra with two
parts: a process algebra based on CCS [Mil89] which is used to describe the flow of control in



10 1 Introduction

a system, and an abstract data type language to describe the information manipulated by that
system. Together the two parts are known as full Lotos. The data part is expressed in ACT-
ONE, an algebraic formalism for abstract data types, and the behaviour part is expressed in
process algebra with sequential, alternative and parallel composition, and recursion. Commu-
nication happens on synchronous gates and can involve more than two processes. Verification
is mostly done by comparison of behaviour using (bi)simulation relations with theorem prov-
ing techniques or (when using tools) with model checking, or by checking properties expressed
in temporal logic with model checking.

Caesar/Alébaran [FGR 96] is a tool set that supports simulation and model checking of
Lotos specifications. The model is given in Lotos, the specification can be either a Lotos de-
scription or a property expressed in temporal logic. Caesaelfsldin has tools for simulation,
generation, minimisation, comparison and checking temporal properties on labelled transition
systems. Ceesar accepts Lotos as input language and generates a labelled transition system
and simulates both Lotos models and labelled transition systemebatdh composes, com-
pares and minimises labelled transition systems. Xtl checks properties expressed in a choice
of several temporal logics on labelled transition systems.

In my experience, each given Lotos model has a clear meaning which is easy to grasp.
The Ceesar/Aldbaran tool support is good and the interfaces are user-friendly. When starting
to use Lotos, | needed a good description of the semantics. As soon as familiarity with all
Lotos operators was obtained, the references were used less often. However, it is not always
easy to express desired behaviour in Lotos since (1) there are no global variables, (2) the data
types are rather restricted, (3) all activity must be modelled as communication, and (4) each
processes that can communicate on a gatst participate in any communication occurring
on that gate (enforced synchronisattbnyVhen modelling a property to be checked, it can
be hard to determine the proper formula in one of the temporal logics supported by Xtl if the
property is a little complex. This is not just because of the nature of temporal logics, but also
because in the formula, there is no way to access the value of parameters to a Lotos process,
and since there is no notion of (global) state variables in Lotos.

Mealy machines, conformance test methods A Finite State Machine (FSM) is a finite la-
belled transition system. A Mealy machine is an FSM where each transition is labelled with
aninput/output pair. The idea of the Mealy machine model is that the behaviour of reactive
systems can be modelled as follows: if the system is in a stated inputi is applied, then
an outputo may occur and the system may go to stateThis is reflected in the transition
S 2 t in the corresponding Mealy machine. When a Mealy machidetsministic, the next
state is determined by the current state, the input and the output. When a Mealy machine is
input deterministic, the next state is determined by only the current state and the input. When
a Mealy machine isnput enabled, then in each state there is an outgoing transition for each
input in the input alphabet.

Black box conformance testing on Mealy machines can be done withutbemata theo-
retic method [Cho78], also referred to as tgmethod [Vas73]. This method is based on the
comparison of two input deterministic, input enabled Mealy machines, i.e. it is assumed that
the specification is an input deterministic, input enabled Mealy machine and that the artefact to

1This is illustrated by any design in which three identical processes want to have synchronous communication
occur between each combination of two of them



1.6 Thecase studies 11

be tested can be modelled as an input deterministic, input enabled Mealy machine. The latter
assumption is often referred to as ths hypothesis[Tre92]. Note that with black box testing,

the structure of the artefact to be tested is not known; it suffices to estimate the number of states
of the artefact. From the specification, a set of test sequences is derived, which can be applied
to the artefact. The test derivation is based on the notimhafacterising sets which contain

for each pair of states with different behaviour, a test sequence to distinguish these states. The
other ingredient of the test derivation is tinansition cover which contains for each state a test
sequence that brings the system to that state from the start state.

The test method is complete in the sense that it has been proved in [Cho78] that if the
number of states of the artefact is estimated correctly and the behaviour of the specification
and artefact is equal for all test sequences, then the specification and artefact are equal.

The advantage of the test method over other state based test methods is that it is able
to detect many kinds of errors such as output errors, next-state errors, and missing or extra
states. Difficulties with the method are that it may be hard to estimate the number of states
of the artefact, and that the number of test sequences produced with this method becomes
unproportionally high when the number of states in specification and artefact increase.

A variant of the automata theoretic approach is the UIO method [ADLU91, SD88] which
has the same ingredients except for the characterising set. Instead, a Unique Input Output
(UIO) sequence is associated with each state in the specification, such that the behaviour of
the state under this sequence is different from any other state in the Mealy machine. The
advantage of this method is that the number of test sequences becomes smaller, since in each
state that must be distinguished from another, only one sequence will be used instead of all the
sequences in the characterising set. The difficulty with this method is that the UIO sequence
does not always exist and that the error detecting power is smaller.

Tool support for test generation in this fashion exists in the form of the KPN Conformance
Kit [KRWKK91]. This tool supports the automatic test generation from input deterministic,
input enabled Mealy machines for the UIO method.

1.6 Thecasestudies

In Figure 1.1 a time schedule is shown of the actual work on each of the case studies within the
project. One should interpret this figure as follows. The lines in the figure indicate research
activity. If there is no line for a certain case at a certain time, this means that at that moment
no activity was taking place for that case. If there are several lines at a certain time, this means
that the time was divided over these cases. This division was not always equal. The momenton
which the last activity line for a case ends means that the case was ended with a final version
of a paper to be published (Cases 1, 3), the case was terminated unsuccessfully (Case 5), the
last tool experiments took place (Case 4), or a paper was finished for which publication and
finalising has yet to take place, which is expected not to take longer than two weeks (Case 2,
6). Time spent on holidays, conference visits, school/course participation and illness has not
been included in the figure for sake of readability. Over the period displayed, the time not
spent on the project adds up to a total of 6 months.



12 1 Introduction

—_ e by b e ey ey e e e e e
vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv —
|

1jan 1996  1jul1996  1jan1997  1jul1997  1jan1998  1jul 19981 jan 1999

L.~ 1aug 1995 1 mar 1999:-.__!
start of first case end of last case

Figure 1.1: An overview of the work on the different case studies

1.6.1 Casel: The RPC/Memory specification problem

problem A case study in distributed systems formalisation created by Leslie Lamport and
Manfred Broy [BL96] for a workshop in Dagstuhl, Germany in September 1994. The
problem contains formalisation and verification tasks and has failure, fairness and real
time aspects.

goal To solve the problem with either I/O automata0€RL theory, two methods not yet
applied to this problem. To gain experience in protocol verification by doing the proofs
manually.

method 1/0O automata for formalisation, (timed) invariants/simulations for proving safety as-
pects, fair trace inclusion for proving liveness

duration 10.5 months (total), 6.5 months (effectively)

findings All tasks in the problem statement have been solved completely. During the construc-
tion of the proof it turned out that the theory of I/O automata was not general enough
if the problem statement was followed, because the cardinality of one of the parameters
was not given. Also, the problem statement called for strong fairness restrictions. In this
situation, the existing I/O automata theory did not guarantee the liveness of the models
with respect to the desired fairness restrictions. However, Frits Vaandrager and | found
sufficient conditions for liveness that were more general. It was easy to show that these
conditions were true for the RPC/Memory models. This result led to the writing of a
separate paper.
Two years after the paper with the solution was published, the proofs were checked in
PVS [ORSH95] by Archer and Riccobene with the tool TAME [AH96]. Results ap-
peared in [RAH98]. Some minor errors, one type inconsistency, and four proof errors
were found which were repaired easily. One extra invariant was used, which could have
been circumvented. The proof checking effort took about three weeks.
Note that the terminology in this case does not conform to our introduction in Sec-
tion 1.2. For the ternspecification one should reatbrmalisation.

papers (1) The solution to the problem with I/O automata [Rom96] which appeared in the
LNCS volume with many different solutions for the case study, (2) The extension of I/O
automata theory [RV96] which appeared in the journal Information Processing Letters.



1.6 Thecase studies 13

in thisthesis Chapter 3 is [Rom96] slightly adjusted: the errors found in [RAH98] were fixed.
Chapter 2 is [RV96] with an addition: the proof for Theorem 2.

1.6.2 Case2: |IEEE 1394 verification

problem The IEEE 1394-1995 standard document describes an architecture for a high speed
serial bus. The transaction, link and physical layer contain some protocols. Do these
protocols behave correctly under the given assumptions?

goal To verify that (part of) one of the 1394 layers works correct.

method 1/O automata for formalisation, I0A language for presentation, (timed) invariants/
simulations for proving safety aspects, fair trace inclusion for proving liveness

duration 3years and 2 months (total), 8.5 months (effectively)

findings The research soon focused on the tree identify phase in the physical layer. The plan
was to give a model that could be checked for syntactic correctness, and a manual veri-
fication (sketch).
The first attempt at specifying the tree identify phase resulted in a huge model which
could not even be type checked completely in PVS because of the difficult conditions on
the passage of time. Manual verification of this model was not feasible.
Late 1997, Frits Vaandrager suggested a layered verification, which could start with a
very abstract version of the protocol, and then refine this stepwise to reach the amount
of detail given in the standard document. The essence of the tree identify phase was
extracted, specified at a very high level of abstraction and verified manually. The safety
part of the proof was checked in PVS.
Following this verification effort, David Griffioen and Frits Vaandrager started refining
the abstract model in order to prove correctness for behaviour with more details from the
IEEE 1394 tree identify phase. They introduced a new type of simulation, useful for the
verification of the refined tree identify phase model, and checked the proofs in PVS.
Following up on the work of David Griffioen and Frits Vaandrager, | refined the model
of the tree identify phase even further to include timing information, and gave a manual
proof of correctness. Timing is used to signal whether the network topology contains a
cycle (which is an error) and to model the delay of messages in the network. Further
refinement is necessary in order to obtain a correctness statement that includes all detail
of the IEEE 1394 documentation.
Since the start of this case study, other researchers have studied (parts of) the IEEE
tree identify phase as well. The relation between the different papers is explained in
[Rom99b].

papers Two papers appeared of which | was (co-)author: (1) the formalisation and verification
at a very abstract level of the tree identify phase [DGRV97], and (2) the formalisation
and verification of the tree identify phase with more detail [Rom99b].

in thisthesis Chapter 7 is [Rom99b].



14 1 Introduction

1.6.3 Case3: Automatic VHDL testing

problem In 1996, Olaf Sies graduated at the University of Eindhoven on the design and im-
plementation of a test environment for conformance testing of VHDL designs [Sie96].
However, the test environment had not actually been used. Philips was interested in the
conformance of some link layer code with respect to the IEEE 1394 standard.

goal To test the link layer code for conformance with respect to the IEEE 1394 standard in the
test environment, and to show that testing in this manner is feasible.

method Test method: generation of abstract tests from an FSM model, translation of the ab-
stract tests to the VHDL level, execution of the VHDL tests on a VHDL design.
Test strategy for link layer code: (1) construct an FSM model of the input/output be-
haviour of the link layer from the IEEE 1394 standard (a preliminary version by Sies
existed), (2) make a translation from abstract input and output events as used in the
FSM, to concrete VHDL input and output for the design to be tested (3) generate tests
from the FSM model (4) translate the abstract tests to VHDL input and output (5) in-
stantiate the VHDL test code with the link layer code (6) execute the VHDL tests (7)
conclude whether the link layer code conformed to the IEEE 1394 standard

duration 1 year (total), 5.5 months (effectively)

findings The test environment consists of several tools of which only one was provided by a
third party (the KPN Conformance Kit [KWKK91]). The fact that the test environment
had not been used before (hence contained various errors) combined with the complexity
of the interface behaviour of the link layer code and the lack of precision in the descrip-
tion of this behaviour in the IEEE 1394-1995 standard made it impossible to obtain
meaningful test runs for the link layer code. Half-way through the planned time for the
case, it was decided to switch to a different test case for which | constructed the FSM
model and VHDL implementation. The insight in the VHDL code enabled the under-
standing of the several tools in the test environment and the components in the VHDL
test software. The correction of several errors finally led to successful testing of the
VHDL code, meaning that conformance was shown for a correct implementation, and
errors were found for an incorrect implementation.

Following up on this research, other projects have worked with the test environment. In
1997, the test environment was used to test an MPEG2 decoder chip in the DIVA project
[FMMW98]. In 1998, the test environment was used to test a 64 inch projection TV
produced by Philips Consumer Electronics [Hol98a, T199].

papers Three papers were written: (1) the presentation of the integrated test method and
the results obtained [MR'®7a], (2) a manual on all of the tools and the VHDL code
[MRS*97b], and (3) a manual for the demonstration workshop held at the Philips Re-
search lab [MR$96]

in thisthesis Chapter 4 is [MR$97a].



1.6 Thecase studies 15

1.6.4 Case4: Symmetry reduction in test generation

problem Building on the experiences of Case 3, Jan Springintveld and | felt that there is a huge
need for reduction of tests that are generated when one is testing for conformance. In
practice, one assumes that certain test scenarios are similar and will therefore skip some
of these. On the other hand, conformance testing without a measure for coverage is not
convincing enough. In model checking, partial orders and data and other symmetries
are criterions used to reduce the part of the state space that is actually being explored.
The question is whether the same can be done for conformance testing, that is, whether
a formal basis can be given for not generating/executing some test scenarios and still
having complete coverage with the smaller set of tests, when the criterion for reduction
is based on some sort sfmmetry.

goal To construct a formal basis for a notion of symmetry that makes it possible to test with a
smaller test set and still have complete coverage.

method (1) Find a criterion under which behaviours of a FSM can be considered to be sym-
metric, (2) find a way to construct a kernel FSM for the FSM to be tested such that for
each behaviour of the original FSM, a symmetric behaviour is in the kernel, (3) find a
test generation method for the kernel FSM, (4) show the generated tests are exhaustive
and complete for any implementation tested with them, and (5) show that the kernel is
smaller than the original FSM and (hence) the generated test set is smaller than tests
generated from the original FSM.

duration 1 year and 8 months (total), 8.5 months (effectively)

findings The starting points for the research were: black box conformance testing in the
Chow/Vasilevskii [Cho78, Vas73] fashion, symmetry in terms of transactions, i.e. small
patterns of actions, as few assumptions as possible on the implementation to be tested.
First a proper definition of symmetry had to be invented. This turned out to be a quite
difficult task, since the kernel construction and test method depended heavily on the
choices made in the basic definitions. The nature of the Chow test methods implied that
some equivalence between states was needed, whereas in black box testing, too strong
assumptions on the inner structure of the implementation are not desirable. Therefore
we formulated symmetry in terms of equivalence of observable traces. The resulting
symmetry definition enabled a straightforward algorithm for constructing a kernel FSM
and a Chow-like test method, all of which have been proved correct. The assumption
on the implementation implied only completeness of its observable behaviour under the
symmetry equivalence, on the specification more assumptions were made.
Some experiments were done with the kernel construction algorithm, in the tool set
Caesar/Alébaran [FGK 96]. This showed that for some toy examples, significant re-
ductions in the kernel sizes and thus the test sets could be obtained.
Due to lack of time we have not yet experimented with real designs or programs, so test
execution still remains to be explored.

papers One paper has been written in a report (full) and a conference (short) version [RS98].

in thisthesis Chapter 5 is the full version of [RS98] without the code listings.



16 1 Introduction

1.6.5 Caseb5: A software architecture

problem In 1997, the Philips Multimedia Center in Palo Alto was working on the development
of a communication architecture for supporting distributed applications. A team of four
people at the Philips Research Lab in Eindhoven was to cooperate and help with the
development of this architecture in several ways. My involvement in this project was to
search protocols in the formal methods literature in order to guarantee a certain desired
but not yet implemented functionality in the architecture.

goal To help in the development of a new product, with a protocol from literature, such that a
correctly operating part of functionality can be guaranteed.

method Literature study, and if desired, fine tuning of the candidate protocol for the given
situation and formal verification, possibly automated by the use of model checking tools

duration 7.5 months (total), 1.5 months (effectively)

findings The architecture developmentwas in the hands of the Palo Alto team. They provided
documentation about the architecture design. Of course the design changed a lot over the
months, which made it hard to find functionality in the architecture for which a protocol
should be found. Also, the desired functionality was not clear or stable. The distance
between the Eindhoven and Palo Alto locations made communication hard. The focus
of the Palo Alto team was most on getting a prototype to work before anything else,
which really hampered the cooperation. This attitude was shown most explicitly when
the opportunity arose to verify an algorithm for logical addressing/routing. The person
working on this algorithm preferred to implement the algorithm before any formalisation
or verification would take place.
In September 1997, it was decided that the focus of the two teams had diverged too much
for further cooperation. The Eindhoven team joined the HAVi architecture development
activities.

papers None

in thisthesis None

1.6.6 Case6: HAVi DCM Management

problem During 1997, the Philips Research Labs in Eindhoven became involved in the HAVI
standard activity. The HAVi standard defines communication architecture for audio/vid-
eo applications in the home environment. The involvement of this project was to for-
mally prove that a leader election/resource allocation protocol in the HAVi architecture
works correctly.

goal To guarantee that part of the HAVi standard operates correctly, by either finding and
eliminating errors, or showing their absence, and to demonstrate the effectiveness of
model checking and/or theorem proving tools.

method Formalisation in a suitable formal language, verification by model checking and/or
theorem proving



1.6 Thecase studies 17

duration 1 year (total), 6.5 months (effectively)

findings The first activity was to capture the leader election part of the protocol in a formal
model. This activity was hampered by the lack of precision of the natural language de-
scription in the HAVi document. The first model was made in Promela [Hol91], the input
language for the model checking tool Spin [Hol91, Hol97]. A second model was made in
the language Lotos [ISO89]. Both models were to be checked for correctness with model
checking tools. The Promela model was checked in Spin, the Lotos model with the tools
Ceesar, Alébaran and Xtl [MG98] in the Caesar/Addaran tool set. Safety properties
of the models were written down, in Promela this was very straightforward. For the
Lotos model this had to be done in the temporal logic ACTL [DNV90], which meant
that some requirements engineering was necessary. One liveness property was required,
which could only be expressed in temporal logic. This was done in ACTL without too
much trouble. In LTL (the only temporal logic accepted by Spin) the property could
not be expressed. The property was checked by changing the models and looking for
invalid end states. In the model checking process it turned out that only one of the pure
safety properties as expressed in the Promela model was satisfied, and the liveness prop-
erty was not satisfied. For the Lotos model, only some of the safety violations detected
with Spin were found with model checking, but the liveness violation was found using
the temporal property. All erroneous behaviour found with Spin could be reproduced in
the corresponding Lotos models by simulation. The errors were caused by scenarios in
which the protocol (as presented in the HAVi documentation) indeed behaved incorrect.

It has been acknowledged by Philips that the description of the protocol in the HAVi
documentation was indeed not sufficiently precise to be error free, but it is expected
that due to timing requirements (not expressed in the HAVi standard) the erroneous be-
haviour will not occur in implementations of the protocol. In the meantime, the HAVi
specification has altered such that the initiative for communication in the leader election
protocols now works the other way around. We believe that this alone is not enough to
avoid the type of error that we found.

papers One paper has been written of which a short version has been submitted [Rom99a].

in thisthesis Chapter 6 is [Rom99a] without the appendices and the detailed description of
the Promela and Lotos models.



18

1 Introduction




Chapter 2

A noteon fairnessin I/O automata

Summary

Notions of weak and strong fairness are studied in the setting of the 1/0O automaton model of
Lynch & Tuttle. The concept of &ir I/0O automaton is introduced and it is shown that a fair

I/0 automaton paired with the set of its fair executions is a live /0O automaton provided that
(2) in each reachable state at most countably many fairness sets are enabled, and (2) input ac-
tions cannot disable strong fairness sets. This result, which generalises previous results known
from the literature, was needed to solve a problem posed by Broy & Lamport for the Dagstuhl
Workshop on Reactive Systems.

2.1 Introduction

Many specification formalisms for reactive systems incorporate notions of weak and strong
fairness (see, for instance, [Jon94, Lam94a, LT87, MP92]). Informally, the requirement of
weak fairness disallows executions in which certain sets of transitions are continually enabled
but not taken beyond a certain point, whereas the requirement of strong fairness disallows
executions in which certain sets of transitions are enabled infinitely often but taken only finitely
many times. A natural criterion that any acceptable notion of fairness should satisfy is that
it induces liveness properties in the sense of [AS85]: it should be possible to extend every
finite execution to a fair one. Several authors have observed that weak and strong fairness
induce liveness properties if the number of fairness sets (sets of transitions for which fairness
is required) is countable [AL94, LT87]. If this number is uncountable then one does not obtain
liveness properties in general: since in a transition system each execution contains at most a
countable number of transitions, it is impossible to give fair turns to uncountably many fairness
sets.

In most practical cases, the restriction to a countable number of fairness sets is unproblem-
atic. However, there are classes of applications where this restriction cannot be made. A nice
example here is the RPC-Memory specification problem proposed by Broy & Lamport [BL96]
for the Dagstuhl Workshop on Reactive Systems. In this problem, there is a set of processes
that can concurrently issue procedure calls to a memory component, which responds to these
calls by issuing returns. Because there are no constraints on the number of processes and each
call should eventually lead to a corresponding return, it is impossible to specify the required

19



20 2 A noteon fairnessin |/O automata

liveness properties using only a bounded number of fairness sets. Essentially, the main result
of this note is that liveness is also ensured if one does not impose a global constraint on the
number of fairness sets, but instead assumes that in each reachable state only a countable num-
ber of fairness sets is enabled. The latter restriction applies to the Dagstuhl example since in
each reachable state the number of outstanding calls is finite. The key argumentin our proof is
not difficult, but distinctly different from the arguments used in the proofs of [AL94, LT87].

We have stated our results in terms of the I/O automaton model [SGSL98, LT87], since
it was needed for this I/O automata solution to the Dagstuhl problem (See Chapter 3). We
propose a model dhir |/O automata, which is a generalisation of the original /O automaton
model of [LT87]. Our main result is that under certain assumptions fair I/O automata can be
viewed as a special case of thee 1/O automata of [SGSL98], another generalisation of the
original model. Roughly speaking, this result says that each finite execution can be extended
to a fair one independently of the inputs provided by the environment. The notion of a live
I/O automaton is very general but its definition is complex and cumbersome to use: in order to
prove that a certain structure is a live /O automaton one has to exhibit a winning strategy in an
infinite two-player game. Since it appears that all liveness properties that one needs in practice
can be specified using weak and strong fairness properties only [Jon94, Lam94a, MP92] and
since it is usually trivial to check that a structure is a fair /0O automaton, we think that there
will be many situations where, after one has described a system as a fair I/O automaton, our
result provides one with a live I/O automaton description almost for free.

The outline of this chapter is as follows. In Section 2.2, we introduce fair /O automata. In
Section 2.3 we prove that a fair I/O automaton paired with the set of its fair executions is a live
I/O automaton provided that (1) in each reachable state at most countably many fairness sets
are enabled, and (2) input actions cannot disable strong fairness sets. In Section 2.4, we define
a composition operation on fair I/0O automata and show that this operation is compatible with
the composition operation on live I/O automata defined in [SGSL98].

2.2 Definitions

In this section we define the model t&#ir 1/0 automata, which is a generalisation of the
original I/O automaton model of [LT87]: whereas the 1/O automata of [LT87] only allow for
weak fairness, fair I/O automata permit both weak and strong fairness. See Appendix A for
definitions of safe 1/0 automata.

Fair 1/0 automata A fair 1/0 automaton A is a triple consisting of

e a safe I/O automatosafe(A), and

o setsnfair (A) andsfair (A) of subsets ofocal (safe(A)), called theneak fairness setsand
strong fairness sets, respectively.

In the rest of this note we writkocal (A) for local (safe(A)), steps(A) for steps(safe(A)), etc.
Also, we fix a fair I/O automator.

Enabling LetU be a set of actions oA. ThenU is enabled in a states if and only if an
action fromU is enabled irs. SetU is input resistant if and only if, for each pair of reachable



2.3 Main Result 21

statess, s’ and for each input actioa,
senabled) As-3 s = ¢ enabledJ.

So oncel is enabled, it can only be disabled by the occurrence of a locally controlled action.

Fair executionsand traces An executionx of A is weakly fair iff the following conditions
hold for eachW € wfair(A):

1. If « is finite thenW is not enabled in the last statedmf

2. If a is infinite then eithetr contains infinitely many occurrences of actions fravn or
« contains infinitely many occurrences of states in whiglis not enabled.

Executionx is strongly fair iff the following conditions hold for eacls € sfair (A):

1. If « is finite thenSis not enabled in the last statewf

2. If w is infinite then eithet contains infinitely many occurrences of actions fr6nor «
contains only finitely many occurrences of states in wi8ét enabled.

Executiony is fair iff it is both weakly and strongly fair. Finite executions are fair only if in the

last state, no weak or strong fairness sets are enabled anymore. The intuition is that it would
not be fair to stop execution otherwise. In an infinite fair execution, each weak fairness set gets
turns if enabled continuously, and each strong fairness set gets turns if enabled infinitely many
times. We writefairexecs(A) for the set of fair executions k. We writefairtraces(A) for the

set of traces of fair executions of a fair I/O automatan

Implementation relation Let A andB be fair I/O automata.
A implements B if fairtraces(A) C fairtraces(B).

Fairness asaliveness condition We writelive(A) for the underlying safe I/O automaton of
A paired withfairexecs(A): live(A) £ (safe(A), fairexecs(A)).

2.3 Main Result

In [SGSL98], live I/O automata are introduced as a generalisation of the 1/O automata of
[LT87] with general liveness properties (see also Appendix A). Our main result, stated below,
says that, if fair I/O automata satisfies two conditions then the p&afe(A), fairexecs(A))

is a live 1/0 automaton. The first condition states that in each reachable state at most count-
ably many weak and strong fairness sets are enabled. This cardinality assumption allows us to
define, via a diagonalisation construction, a strategy for the 1/0O automaton that gives fair turns
to each fairness set. The second condition states that all strong fairness sets are input resistant.
This technical assumption excludes situations where the environment gives turns to the system
only when some strong fairness set is not enabled. As an example, consider the fair I/O au-
tomaton of Figure 2.1. In this I/O automaton the strong fairnesgoges not input resistant.

As aresult the I/O automaton is not live: for each strateghe outcome (s, AiiAiiA---)

equals the unfair executian s'i si s ---. It seems that most applications with strong fairness
aspects meet this requirement.



22 2 A noteon fairnessin |/O automata

input action:i

output actiono

strong fairness sefo}
i

Figure 2.1: A fair I/O automaton that is not live.

Theorem 2.1 Suppose that fair I/O automatdhsatisfies the following conditions: (1) each
reachable state ok enables at most countably many sets/fair (A) U sfair (A), and (2) each
set insfair (A) is input resistant. Thekive(A) is a live 1/0 automaton.

Proof With each finite executios we associate an infinite two-dimensional aryéy of weak

and strong fairness sets. The array contains all the weak or strong fairness sets that are enabled
at some point in executio@ but from which no action has been executed in the subsequent
part ofe. We will use array4, to define a strategy that treats each fairness set in a fair manner
and thus establishes tHate(A) is a live I/O automaton. The array is defined by induction on

the length ofx:

¢ If o consists of a single statethen A, is constructed by filling the first row with the sets
in wfair (A) andsfair (A) that are enabled is. While filling, the sets are alternatingly
taken fromwfair (A) andsfair (A). Remaining positions are filled with the symiml
If senables 6 weak fairness sets and 2 strong fairness sets4ghmight look like this:

1 2 3 4 5 6 7 8 9 ..
Wi | Sy [ Wap | S, | Whg | Wh, | Wag | Wi | W
2 | | | | | | | | |

=

Note that by Condition (1) we are able to squeeze all the enabled sets in a single row.

e If o containsn > 1 states and is of the forod a s, thenA,, is constructed fromd, by
replacing each fairness set that contains acidwy m, and filling then-th row with the
sets inwfair (A) andsfair (A) that are enabled ig, as in the previous case.

The array for an executian with 4 states might look like this:

1 2 3 4 5 6 7 8
Wy, | Sy [ | S, [ | m | W [ |
B S| W, | S (W, | S| u u
HEEEINEEYNE B
Wy | Sy | Wy, | &, W43 S43 Wy, | S,

| | | | | | | | | | | | | | | |

O wWwNPE
&




2.3 Main Result 23

Letp = (g, f) be any strategy defined cafe(A) that satisfies the following conditions:
1. If f (@) = L then the last state of enables no set infair (A) U sfair (A).

2. If f(a) = (a,s) then the last state af enables a set imfair(A) U sfair(A), anda
is member of the first séfl that is enabled in the last statewfand that occurs in the
sequence

Q) = Al 1]
Aal1,2] Aql2,1]
Aal1, 3] Aql2,2] Aql3,1]
Aall, 4] Aal2, 3] Aul3,2] Aul4, 1]

Note that a strategy satisfying these properties exists since by construction the atgay
contains at least all the weak and strong fairness sets that are enabled in the lasbstate of
sequence& («) enumerates all elements 4f, .

We show thative(A) is a live 1/0 automaton by proving that the outcoode= O, («, Z)
is fair for each finite executios and each environment sequetce

Assume that’ is a finite execution. Theh contains only finitely many input actions and,
for s the last state o&’, f(a’) =L. Therefore, by the first assumption about strategthe
last state ofr’ enables no set infair (A) or sfair (A). Hencex' is fair.

Thus we may assume thatis infinite. We prove that’ is fair by contradiction. Suppose
o’ is not fair. We distinguish between two cases:

1. o’ is not strongly fair.
Then some strong fairness sgts enabled in an infinite number of statesadfanda’
contains only finitely many occurrences of action$sin

SinceSis input resistant, it is enabled in an infinite number of states in which a system
move is allowed by. From the definition of strategy it follows thatSis enabled in an
infinite number of states in which a locally controlled action occurs. Silamntains

only finitely many occurrences of actions$there is a state ia’ after which no action

in Soccurs. Nevertheless, there is a subsequent state sdy thei -th state, in which

Sis enabled. Therefore, there is a positionj| such that, ifak is the finite prefix otx’

with k states, Ay, [i, j] = S, forallk > i. Letl =i 4+ j — 1. Then, for eacim > |, each
position precedingi[ j] in the strategy’s sequence that is filled wihin the arrayAy,,,

is also filled withm in any array.A4,,,, with m > n. Each locally controlled action that
occurs after thé-th state from a state that enab®gauses a fairness set at a position
precedingi, j]in the strategy’s sequence to be replacedliy the array. This happens
infinitely many times. But this is a contradiction since the number of preceding positions
is finite.

2. o is not weakly fair.
Then some weak fairness 34t is enabled in all states of an infinite suffix @f with
only finitely many occurrences of actions fram.



24 2 A noteon fairnessin |/O automata

By an argument that is almost identical to the one used in the previous case we arrive at
a contradiction.

Hencex' is fair and we may conclude thave(A) is a live I/O automaton. X

2.4 Composition

Building on the work of [SGSL98, LT87], there is an obvious way to define composition of
fair /0 automata.

We say that two fair I/O automat&; and A, arecompatible if safe(A;) andsafe(Ap) are
compatible. Suppose thay and Az are compatible fair /0 automata. Then tt@nposition
A1 Az is the fair I/O automator\ given by

o safe(A) = safe(Aq)||safe(Az),
o Wfair (A) = wfair (A1) U wfair (A2) andsfair (A) = sfair (A1) U sfair (Az).

Thus we simply compose the underlying safe /0O automata and take the unions of the weak
and strong fairness sets. The following theorem, which is easy to prove, states that the above
composition operation for fair I/O automata is compatible with the composition operation for
live /0 automata of [SGSL98].

Theorem 2.2 Suppose thaf\; and A, are compatible fair I/O automata. Then
live(Ar[A2) = live(Aq)|llive(Ap).

Proof By definition, live(A1]|A2) = ((safe(Aq)|safe(Ap)), fairexecs(A1||A2)). By Defini-
tion 3.19 in [SGSLI98]live(Ar)|live(A2) = ((safe(Ay)|safe(A)), F), whereF = {a €
execs(safe(Ar) ||safe(A2)) | (a[safe(Ar)) € fairexecs(Ar) A (a[safe(Ar)) € fairexecs(A2)}.

It remains to be proved th&f = fairexecs(Aq||A2).

C Supposer € F.
Letw; = a[safe(Ar) andaz = a[safe(Az). Then by definition ofF, a1 € fairexecs(Ar)
anday € fairexecs(A2).

— Suppose is finite.
Thena; anday are also finite. By definitiorast(a1) = m1(last(«)) andlast(a2) =
mo(last(a)). Sincewy € fairexecs(A1), last(«1) does not enablgV or S for any
W e wfair (A1) and anyS € sfair(A;). Likewise,ay € fairexecs(Az), solast(az)
does not enablgV or S for anyW € wfair(A2) and anyS € sfair(Az). We see
thatlast(«) does not enablé/ or Sfor anyW e (wfair (A1) Uwfair (A2)) and any
S e (sfair(Ay) U sfair (A2)), hencex e fairexecs(Aq||A2).

— Suppose is infinite.

x Supposey; is finite.
Then for an infinite sufficpaisiars, . .. of o, 71(§) = 71(S+1) with i >
0, that is, the state of\; remains the same in this suffix ef Sincea; €
fairexecs(A1), none of the stateg1(s), 71(S+1), - . - enableW or S for any
W € wfair(A;) and anyS € sfair(A;). We see that for eacW € wfair (Ayg),



2.4 Composition 25

a contains infinitely many states in whidlV is not enabled, and for each
S € sfair(A1), « contains only finitely many states in whichis enabled,
hencex e fairexecs(Aq||Az).

x Supposey; is infinite.
Sinceay € fairexecs(Ar), for eachW e wfair(A1), a1 contains infinitely
many states in whichV is not enabled, and for eadhe sfair(Az), a1 con-
tains only finitely many states in whicB is enabled. We see that for each
W e wfair (A1), o contains infinitely many states in whidN is not enabled.
Since for eacl$ e sfair (A1), a1 contains only finitely many states in which
Sis enabledps contains an infinite suffix in which eacB € sfair(Az) is
permanently disabled. From the definitioncaf, we see tha& must contain
an infinite suffix in which eacls e sfair (Az) is permanently disabled. We see
that for eachs € sfair (A1), a contains only finitely many states in whi&is
enabled, hence € fairexecs(A1]|A2).

Foraz we can reason likewise. We conclude that fairexecs(A1||A2).

D Supposex € fairexecs(A1||A2).
Leta1 = a[safe(A1) anday = a[safe(Ar).

— Supposex is finite.
Thena; anday are also finite. By definitiorast(a1) = m1(last(«)) andlast(a2) =
mo(last(a)). Sincea e fairexecs(A1||A2), last(«) does not enable/ or Sfor any
W e (wfair (A1) U wfair(Ap)) and anyS e (sfair(Ap) U sfair(Az)). We see that
last(1) does not enabl@V or S for anyW e wfair(A1) and anyS € sfair(Ay),
hencex; € fairexecs(A;). Likewise, we see thdast(a2) does not enabléV or S
for anyW € wfair (A2) and anysS € sfair (A2), hencex; € fairexecs(Az).

— Suppose is infinite. Sincex € fairexecs(A1]|Az), for eachW € (wfair(Ap) U
wfair (A2)), o contains either infinitely many occurrences/@f or infinitely many
states in whichW is not enabled, and for eac € (sfair(A1) U sfair(A2)), o
contains either infinitely many occurrencesSfor only finitely many states in
which Sis enabled.

* Suppose contains infinitely many occurrences\f(S), with W e wfair (Az)
(S € sfair(Ag)).
Thene; is infinite and contains infinitely many occurrences/@f(S), hence
a1 € fairexecs(Aq).
*x Supposex contains infinitely many states in whidW is not enabled, with
W e wfair (Aj).
- Supposex; contains infinitely many states in whidN is not enabled.
Thenasy is infinite, hencex; € fairexecs(Ar).
- Supposex; contains only finitely many states in whidM is not enabled.
It is easy to see that; must be finite and that must contain an infinite
suffix spa;s1a2% . . . in which W is permanently disabled. Alstast(ws)
cannot enabl&V, otherwise this state would be different from(s ) for
eachi > 0. Soax; is finite, andlast(«1) does not enabl&/, hencex; €
fairexecs(Aq).



26

2 A noteon fairnessin |/O automata

x Supposer contains only finitely many states in whi&is enabled, withs e
sfair (Ay).
Thena contains an infinite suffispaisiars; . .. in which S is permanently
disabled.
- Suppose; is finite.
Then from some state i onwards, the state fok; remains the same, so
last(a1) = m1(s) for somei > 0, hencdast(«1) does not enabl§, so
aq € fairexecs(Ap).
- Suppose; is infinite.
Thenas contains only finitely many states in whichis enabled, hence
a1 € fairexecs(Ar).

We conclude thak, e fairexecs(A1). Foras we can reason likewise.



Chapter 3

Tackling the RPC-Memory
specification problem
with |/O automata

Summary

An 1/0O automata solution to the problem posed in 1994 by Broy & Lamport at the Dagstuhl
Workshop on Reactive Systems is presented. The problem calls for specification and verification
of memory and remote procedure call components. The problem specification consists of an
untimed and a timed part. In this chapter, both parts are solved completely.

3.1 Introduction

An example of an distributed system specification problem was stated at the Workshop on
Reactive Systems, held in Dagstuhl, Germany in September 1994. The problem concerned the
specification of a memory component and a remote procedure call (RPC) component, and the
implementation of both.

The workshop’s main intention was to compare different formalisms by applying them
to this example, in order to understand the similarities and differences of the various ap-
proaches, as well as their strengths and weaknesses. The problem has been solved completely
in [ALM96, Bro96, CBH96, Ho096, KS96, LSW96, Stg96]. Other papers on this topic are
[AR96, Bes96, BJ96b, Got96, Hun96, KNS96, UK96] which only solve the untimed part.

This chapter is the result of a successful attempt to model and verify the RPC-Memory
problem with the 1/0O automata model [SGSL98, Lyn96, LT89, LV95, LV96, RV96]. It is
organised as follows. The remainder of this section lists the problem statement, taken from
[BL96], some notes on the problem statement and on the merits of I/O automata. Section 3.2
lists some preliminaries which are necessary for a good understanding of the specifications, as
well as the proofs. Sections 3.3 to 3.7 solve parts 1 to 5 of the problem consecutively.

27



28 3 The RPC-Memory specification problem

3.1.1 Specification problem

This section is quoted from [BL96] with permission from Springer-Verlag.

The procedureinterface The problem calls for the specification and verification of a series

of components. Components interact with one another using a procedure-calling interface.

One component issuesaall to another, and the second component responds by issuing a

return. A call is an indivisible (atomic) action that communicates a procedure name and a list

of argumentsto the called component. A return is an atomic action issued in response to a call.

There are two kinds of returnsprmal andexceptional. A normal call returns aalue (which

could be a list). An exceptional return also returns a value, usually indicating some error
condition. An exceptional return of a valeds calledraising exception e. A return is issued

only in response to a call. There may be “syntactic” restrictions on the types of arguments and
return values.

A component may contain multipf@ocesses that can concurrently issue procedure calls.
More precisely, after one process issues a call, other processes can issue calls to the same com-
ponent before the component issues a return from the first call. A return action communicates
to the calling component the identity of the process that issued the corresponding call.

A memory component The component to be specified is a memory that maintains the con-
tents of a seMemLocs of locations. The contents of a location is an element of &setvals.

This component has two procedures, described informally below. Note that being an element
of MemLocs or MemVals is a “semantic” restriction, and cannot be imposed solely by syntactic
restrictions on the types of arguments.

Name Read

Arguments loc : an element oMemLocs

Return Value an element ofMemVals

Exceptions  BadArg : argumentoc is not an element dflemLocs.
MemPFailure : the memory cannot be read.

Description  Returns the value stored in addréss

Name Write
Arguments loc: an element ofMemLocs
val : an element oMemVals
Return Value some fixed value
Exceptions  BadArg : argumentoc is not an element aflemLocs, or
argumental is not an element dflemVals.
MemPFailure : the writemight not have succeeded.
Description  Stores the valueal in addressoc.

The memory must eventually issue a return for e\Regd andWrite call.

Define anoperation to consist of a procedure call and the corresponding return. The oper-
ation is said to basuccessful iff it has a normal (nonexceptional) return. The memory behaves
as if it maintains an array of atomically read and written locations that initially all contain the
valuelnitVval, such that:

e An operation that raisesBadArg exception has no effect on the memory.



3.1 Introduction 29

e Each successfiRead(l) operation performs a single atomic read to locati@ some
time between the call and return.

e Each successfulrrite(l, v) operation performs a sequence of one or more atomic writes
of valuev to locationl at some time between the call and return.

e Each unsuccessfulrite(l, v) operation performs a sequence of zero or more atomic
writes of valuev to locationl at some time between the call and return.

A variant of the memory component is the reliable memory component.In this component, no
MemFailure exceptions can be raised.

Problem 1 (a) Write a formal specification of the memory component and of the reliable
memory component.

(b) Either prove that a reliable memory componentis a correctimplementation of a memory
component, or explain why it should not be.

(c) If your specification of the memory component allows an implementation that does
nothing but raisélemFailure exceptions, explain why this is reasonable.

I mplementing the memory

The RPC component The RPC component interfaces with two environment components,
asender and areceiver. It relays procedure calls from the sender to the receiver, and relays
the return values back to the sender. Parameters of the component afreself proce-

dure names and a mappinggNum, whereArgNum(p) is the number of arguments of each
procedurep. The RPC component contains a single procedure:

Name RemoteCall
Arguments  proc : name of a procedure
args : list of arguments
Return Value any value that can be returned by a calptoc
Exceptions  RPCFailure : the call failed
BadCall : proc is not a valid name oirgs is not a
syntactically correct list of arguments fpiroc.
Raises any exception raised by a calptoc
Description  Calls procedureroc with argumentsargs

A call of RemoteCall(proc, args) causes the RPC component to do one of the following:
e Raise aBadCall exception ifargs is not a list ofArgNum(proc) arguments.

e Issue one call to procedupeoc with argumentsrgs, wait for the corresponding return
(which the RPC component assumes will occur) and either (a) return the value (normal
or exceptional) returned by that call, or (b) raise HRCFailure exception.

e Issue no procedure call, and raise Rf&CFailure exception.

The component accepts concurrent callrehoteCall from the sender, and can have multiple
outstanding calls to the receiver.

Praoblem 2 Write a formal specification of the RPC component.



30 3 The RPC-Memory specification problem

The implementation A memory component is implemented by combining an RPC com-
ponent with a reliable memory component as followsRéad or Write call is forwarded to

the reliable memory by issuing the appropriate call to the RPC component. If this call returns
without raising arRPCFailure exception, the value returned is returned to the caller. (An excep-
tional return causes an exception to be raised.) If the call raise®@Railure exception, then

the implementation may either reissue the call to the RPC component or Méserailure ex-
ception. The RPC call can be retried arbitrarily many times becalRe@iailure exceptions,

but a return from th&®ead or Write call must eventually be issued.

Problem 3 Write a formal specification of the implementation, and prove that it correctly
implements the specification of the memory component of Problem 1.

Implementing the RPC component

A lossy RPC The Lossy RPC component is the same as the RPC component except for the
following differences, wheré is a parameter.

e TheRPCFailure exception is never raised. Instead,BwmoteCall procedure never re-
turns.

e If a call to RemoteCall raises aBadCall exception, then that exception will be raised
within § seconds of the call.

e If a RemoteCall(p, a) call results in a call of procedung then that call ofp will occur
within § seconds of the call dkemotecCall.

¢ If a RemoteCall(p, a) call returns other than by raisingBadCall exception, then that
return will occur within§ seconds of the return from the call to procedpre

Problem 4 Write a formal specification of the Lossy RPC component.

The RPC implementation The RPC component is implemented with a Lossy RPC compo-
nent by passing thRemoteCall call through to the Lossy RPC, passing the return back to the
caller, and raising an exception if the corresponding return has not been issued after 2
seconds.

Problem 5 (a) Write a formal specification of this implementation.
(b) Prove that, if every call to a procedure fmocs returns withine seconds, then the
implementation satisfies the specification of the RPC component in Problem 2.

3.1.2 Noteson the problem specification

Ambiguities The informal descriptions of the memory componentin Problem 1 and the RPC
componentin Problem 2 are slightly ambiguous. Itis not clear whether these components may
issue a failure when a bad call is received. In both cases we have chosen to allow this, because
it yields a more general specification. For the memory component this decision conforms with
the implementation proposed in Problem 3.



3.1 Introduction 31

Observable versus internal behaviour Problem 3 requires a proof that a composition of
components implements the memory component. The memory component can perform at
most one internal read action between call and return. The proposed implementation, however,
can do this an arbitrary (but finite!) number of times. The proof for the implementation relation

is simplified substantially if one assumes that the memory component can perform an arbitrary
number of internal read actions instead of at most one. The solution of Abadi, Lamport &
Merz [ALM96] uses such a more convenient memory component, and thus implicitly assumes
that the two memory components are observationally equivalent. We prove formally that this
assumption is correct, which requires a backward simulation proof of about four pages.

In the solution of Hooman [Hoo96] the correctness of this assumption is also proved, with
seemingly much less effort. This is due to a difference in view on executions. Hooman in-
troduces safety restrictions on the set of all possible executions. In this manner, unwanted
behaviour is avoided. His approach also allows executions with an infinite number of internal
actions between two external actions. Our executions are built in an operational manner by
concatenating states and transitions. Hence safety restrictions are posed only on single actions,
and not on executions. Besides, since each execution contains at most a countable number of
actions, there is at most a finite number of actions between any two actions. We feel that the
operational view is more natural and closer to any real-world implementation of this problem
specification.

Fairnessand real time In Problem 5, a timed implementation is compared with an untimed
specification. The untimed behaviour is restricted by fairness, whereas the timed behaviour
is completely determined by timing constraints. To be able to compare these behaviours, we
defined thdair timed I/O automaton. This notion is explained in Appendix A.4.

3.1.3 Noteson thel/O automata model

Benefits 1/0O automata provide a natural way to describe processes with an input/output be-
haviour. Most distributed systems can be specified in this way. The specifications are highly
readable, and can be explained without too much trouble to most non-experts.

In the untimed part of our solution, simulation relations provide the major part of proofs
for implementation relations, the rest is taken care of by inclusion of fairness properties. All
these are standard ingredients of verifications with 1/0 automata.

Real time aspects of specifications are also captured in I/O automata quite easily. When
comparing timed specifications, simulation relations can be used to prove implementation re-
lations in a straightforward way.

Imperfections When reasoning about an I/O automaton with more than five state variables
and more than five locally controlled actions, proofs for safety properties involve an enormous
amount of tedious detail, and are prone to typos and more serious errors. The amount of paper
needed to get these proofs done in a semi-readable way is terrifying, whereas in general the
properties being proved seem so trivial and intuitively correct. However, we are not aware of
the existence of a similar formalism without this problem.

I/O automata theory lacks a proof system for fairness proofs. Many fairness proofs are
constructed in an intuitive, ad-hoc manner and thus are error prone. The construction of a
formal framework for this certainly qualifies as future research.



32 3 The RPC-Memory specification problem

Another gap in current I/O automata theory is that it is not possible to impose restrictions
on the behaviour of the environment. Especially when using timed I/O automata, one some-
times needs to assume that events controlled by the environment will occur within certain time
bounds. This is another potential benefit deserving further investigation.

What we added to the classic model A desired property of any specification with fairness
requirements is liveness (receptivity, machine closure). In the I/O automata model proposed
by Lynch & Tuttle [LT87], liveness is guaranteed for any weak fairness restriction that holds
a countable number of actions. However, the RPC-Memory problem requires strong fairness
restrictions on the behaviour of the proposed implementation of the memory component in
Problem 3. Secondly, this problem holds a parameter whose cardinality is unknown, namely
the number of calling processes for a memory or RPC component. Well-known results for
liveness with respect to fairness conditions deal with at most a countable number of fairness
sets or actions, and cannot be applied to this problem.

The desire to establish liveness for any specification with uncountably many fairness sets
has led to the invention of thiair I/0 automaton [RV96]. This is a slight variant of the
I/O automaton in [LT87], and a special case of the live I/O automaton in [SGSL98] provided
that two conditions hold. These conditions require that each reachable state enables at most a
countable number of fairness sets, and that input actions do not disturb the enabledness of these
sets. In this chapter, each specification is proved to be a live 1/0 automaton by checking these
two conditions. To our knowledge, no other solution to the RPC-Memory problem includes
proofs of this kind.

Since endless listings of highly detailed proofs guarantee a boring story instead of a higher
degree of understanding, we have omitted unnecessary detailed proofs and replaced some by
sketches. The full formal proofs can be obtained by e-mail request.

3.2 Preiminaries

3.2.1 Fair I/O automata

The set-up of specification and verifications is as follows. All untimed specifications use the
fair 1/0 automata model from [RV96], which is explained in Chapter 2. The model is a gen-
eralisation from the classic model by Lynch & Tuttle [LT87], and, under two restrictions, a
special case of the live /0O automaton model by Gawlick et al. [SGSL98].

The timed specifications use tFer timed 1/0 automata model, which extends the timed
I/0 automata model of [LV96] with an ad hoc notion of fairness in the timed setting. The basics
of this model are listed in Appendix A.4. Section 3.7 explains why we need to use fairness in
the timed setting.

3.2.2 Detailson fair I/0O automata

Specification Each action is indexed with the process, for which this action is performed.
Some of the state variables are also indexed with a process. The state space is roughly parti-
tioned by the value of therogram counters, the state variablgx,. These variables keep track

of what the automaton should be doing for procBs#\ll automata initially wait for some ac-

tion by the environment, and eaplbp has a value that expresses this waiting condition. As



3.3 Specificationsand verificationsfor Problem 1 33

soon as input is received for proceBspcp changes accordingly, and each next inputRor

is discarded (the state is not changedpci does not satisfy the waiting condition. For each
internal action, the precondition requiness to have a specific value in order to ensure that
the right actions are taken at the right moment. After the input for some préchass been
handledpcp is set to the waiting condition again.

To give the values of each program counter the right meaning, we assume that the inter-
pretation of the domain of each program counter is free, in the sense that different constant
symbols are mapped to different elements in its domain (“no confusion”), and each element in
the domain is denoted by some constant symbol (“no junk”).

Presentation The following conventions are used.
e We omit the precondition of an input action (since this eqtratsby definition).

¢ Inthe effect part of transition types we omit assignments of the forea x.

e We writeif c then [z; := f1,..., z« ;= fi] as an abbreviation for
z1 = ifcthen f1else z;
zx = ifcthen fyk else z

o We writex € {A, B, C} for x=A Vv x=B v x=C, etc.

e To improve readability we often use Lamport’s list notation for conjunction or disjunc-
tion. Thus we write

/\bl
/\b2

A bn

forby Abo A -+ Abp.

Proofs We prove an implementation relation between two fair /0 autonfaend B by
proving thaffairtraces(A) C fairtraces(B). To ease this proof, we mostly start out by proving
inclusion on the ordinary and quiescent trace#\@ndB using refinements and simulations.

Since the only difference between the fair and classic I/O automata model lies in the fair-
ness properties, all results in the latter that do not concern fairness carry over to the fair I/O
automata model. This is used when proving ordinary and quiescent trace inclusion.

3.3 Specifications and verificationsfor Problem 1

3.3.1 Problem 1(a): Specification of two memory components

In this section, we present the formal specification of the memory component and the reliable
memory component.



34 3 The RPC-Memory specification problem

Datatypes We start the specification with a description of the various data types that play
a role. We assume a typed signatireand aXj-algebrad; which consist of the following
components:

e atypeBool of booleans with constant symbatae andfalse, and a standard repertoire
of function symbols A, v, =, —), all with the standard interpretation over the booleans.
Also, we require, for all typeSin X, an equality, inequality, and if-then-else function
symbol, with the usual interpretation:

.=. . SxS— Bool
.#. . SxS— Bool
if .then.else. : BoolxSxS— S

Note the (harmless) overloading of the constants and function symbols @ogbeiith
the propositional connectives used in formulas. We will frequently view boolean valued
expressions as formulas, i.e., we bsa&s an abbreviation di=true.

e a typeProcess of process identifiers. We frequently use the variableanging over
Processas a subscript.

e atypeMemL ocs of legal memory locations.

e a typeMemVals of legal memory values, with constant symiwatval. None of the
memory values is equal ®adArg.

e atypel ocsof memory locations, such thktemL ocs C L ocs, and a functiomemloc :
Locs — Bool, telling us whether an element bbcsis also an element dfl emL ocs.

e a typeVals of memory values, such thddemVals C Vals, and a functiormemval :
Vals — Bool, telling us whether an element @élsis also an element df emVals.

e atypeAck of acknowledgement values, such thak = MemValsU {WriteOKk}.

e a typeMemory of functions fromMemLocs to MemVals. We need two functions
to actually access the memoryind : LocsxMemory — MemVals andchange :
LocsxValsxMemory — Memory. These operations are fully characterised by the
axioms:

find(l, m)
change(l, v, m)

if memloc(l) then m(l) else Initval

if memloc(l) A memval(v) then m’ else m
wherem'(D=v AVl : (I' 1 = M/ (I")=m("))

(1,1" are variables of typkocs, v is a variable of typ&/als, andm, m’ are variables of
typeMemory)

e atypeM pc of program counter values of the memory component, with constant symbols
WC, R andw. The intended meaning of these constants will be explained further on in
this section.



3.3 Specificationsand verificationsfor Problem 1 35

The memory component

We present the fair 1/O automatdemory, which models a memory component. The state
variablepcp of Memory gives the current value of the program counter of the memory compo-
nent for calling procesB. Note that there are as many program counters as calling processes.
Each of them may have one of the following values:

e WC: Waiting for aREADp or WRITEp call,
e R: Reading from memory,
e W: Writing to memory.
Initially, the program counter value WC for every procesp.

Every possible action dflemory is indexed with the process that issued the call leading to
this action. Since the state variables are also indexed in this manner (exceptiany!), we
can determine in any situation what is going on for each prdeess

READp andWRITEp model an incoming read or write call from a proc&4 hey do not
change the state whéviemory is still handling a previous call from the same process. In this
case, we call the input actialiscarded. If Memory is ready for handling an incoming call, its
state is updated according to the parameter(s) of the call.

GETp actions model an atomic read operatiBlTp actions model an atomic write oper-
ation. Reading is allowed only once between call and return, writing is allowed for an arbitrary
number of times.

A MEM _FAILUREp action can occur in any ‘busy’ state.

BAD_ARGp is the only action enabled if the parameters of the call from prdeegsre not
legal. RETURNp delivers the requested memory value or a gen&radOk acknowledgement,
afterperformed, has been set toue by aGETp or PUTp action. The fact thaPUTp actions
are in another weak fairness set tHRIETURNp and MEM _FAILUREp, ensures that writing
will stop at some point.

The code foMemory is listed in Figure 3.1.

Liveness We show that fair I/O automatddemory is a live I/O automaton in the sense of
[SGSL98]. To do this, we have to check thdemory satisfies two conditions. After this,
Theorem 1 from [RV96] applies immediately.

The next lemma checks a restriction of one of the two conditions.

Lemma 3.1 Each reachable state Memory enables at most finitely many locally controlled
actions.

Proof For each procedB, locally controlled actions can only be enablegdp#AWC. Suppose
there is an execution with actions leading to state Then there are at mostprocesse®
such thas = pcp#WC, hences enables at mostrblocally controlled actions. X

Proposition 3.2 live(Memory) is a live I/O automaton.

Proof We can apply Theorem 1 in [RV96] if we can show that (1) each reachable state of
Memory enables at most countably many weak and strong fairness sets, and (2) each set in
sfair (Memory) is input resistant.



36

3 The RPC-Memory specification problem

Input: READp, WRITEp
Output:  RETURNp, BAD_ARGp, MEM_FAILUREp
Internal: GETp, PUTp
WFair: Up{{GETp, PUTp}, {BAD_ARGp, MEM_FAILUREp, RETURNp}}
SFair: ]
State Variables: pcp: Mpc Initial: A\p pcp=WC
locp: Locs /\ find(l, memory)=InitVal
valp: Vals
memory: Memory
performedp: Bool
legalp: Bool
READp(l : Locs) BAD_ARGp
Effect: Precondition:
if (pcp=WC) then [locp =1 A pcp € {R, W}
performedp := false A —legalp
legalp := memloc(l) Effect:
pcp :=R] pcp ;== WC
WRITEp(l : Locs, v : Vals) MEM _FAILUREp
Effect: Precondition:
if (pcp=WC) then [locp ;= pcp € {R, W}
valp i=v Effect:
performedp := false pcp ;== WC
legalp := memloc(l) A memval(v)
pep = W]
GETp PUTp
Precondition: Precondition:
A pcp=R A pcp=W
A |®ajp A |®a|p
A —performedp Effect:
Effect: memory := change(locp, valp, memory)
valp := find(locp, memory) performedp := true
performedp := true
RETURNp(a : Ack)
Precondition:
A pcp € {R, W}
A performedp
A a=if (pcp=R) then valp else WriteOk
Effect:
pcp := WC

Figure 3.1: Fair I/O automataviemory



3.3 Specificationsand verificationsfor Problem 1 37

Condition (1) is satisfied by Lemma 3.1, since each locally controlled action is in exactly
one weak fairness set. Condition (2) is trivially satisfied, since there are no strong fairness sets.
X

Thereiable memory component
We present the fair I/O automatételMemory, which models a reliable memory component.
This component behaves exactly like the memory component, except that it can never issue a
MEM _FAILURE.

Since the code forelMemory can be obtained from the code fidemory by omitting the
MEM _FAILURE action,wfair (RelMemory) becomes

(Up{{GETp, PUTp}, {BAD_ARGp, RETURNp}}

Liveness Knowing thatMemory is a live I/O automaton, it is easy to prove tiird Memory
is also a live I/O automaton.

Proposition 3.3 live(RelMemory) is a live I/O automaton.

Proof The proofis almost identical to the proof of Proposition 3.2, since the only difference
betweerMemory andRelMemory is the absence dfIEM _FAILUREp actions. X

3.3.2 Problem 1(b): RelMemory implements Memory

We show thafairtraces(RelMemory) C fairtraces(Memory), using the properties safety and
deadlock freeness.

Safety SinceRelMemory andMemory are so very much alike, a weak refinement appears the
most natural construction for proving safety.

Theorem 3.4 The function REF, which is the identity function on state variables with the
same name, is a weak refinement frestiMemory to Memory, with respect to the reachable
states in botlRelMemory andMemory.

Proof The requirements in [LV95] are trivially fulfilled, since REF is the identity function,
and the actions iRRelMemory form a subset of those Memory. X

Corollary 3.5 RelMemory is safe with respect tlemory.

Proof Directly from Theorem 3.4 in this chapter and Theorem 6.2 in [LV95]. X

Deadlock freeness

Theorem 3.6 For each reachable and quiescent ssaté RelMemory, REFS) is a quiescent
state ofMemory.

Proof Supposeais a quiescent state 88lMemory. Observing the preconditions BElMemory,
we see thas = /\ pRelMemory.pcp=WC.
Clearly, RERs) = /\ pMemory.pco=WC, hence REFs) is quiescent. X

Corollary 3.7 RelMemory is deadlock free with respect Memory.



38 3 The RPC-Memory specification problem

Proof By Theorems 3.4 and 3.6 we can, for each quiescent executiReiEmory, construct
a corresponding quiescent executiorMemory with the same trace. X

Implementation
Theorem 3.8 RelMemory implementdMemory.

Proof We provefairtraces(RelMemory) C fairtraces(Memory).
Assume thap e fairtraces(RelMemory). Let« be a fair execution dRelMemory with trace
B.

If « is finite thenw is quiescent and it follows by Corollary 3.7 thefiemory has a qui-
escent execution with tragé Since each quiescent execution is also fair, this imgies
fairtraces(Memory). So we may assume without loss of generality thé infinite.

Using the fact that REF is a weak refinement (Theorem 3.4) we can easily construct an
executiony’ of Memory with tracep. It remains to prove that’ is fair.

The only case in whick is fair bute’ is not, is obtained as follows. In a infinite suffix
of o', for someP, MEM _FAILUREp is enabled continuously, but no action frdRETURNp,
BAD_ARGp, MEM_FAILUREpR} is performed. In this casey must contain an infinite suf-
fix g in which no action from{RETURNp, BAD_ARGp} is performed. Sincer is weakly
fair, B is also weakly fair. Since iB’, MEM_FAILUREp is enabled continuously, by defi-
nition of REF, ing, the se{ GETp, PUTp, RETURNp, BAD_ARGp} is enabled continuously.
Since bothRETURNp and BAD_ARGp, once enabled, can only be disabled by being per-
formed and since no action frofRETURNp, BAD_ARGp} occurs ing andg is fair, the set
{RETURNp, BAD_ARGp} is not enabled in any state fh So the sefGETp, PUTp} is enabled
continuously in8. Since any occurrence of an action fr¢@ETp, PUTp} enablesRETURNp,
no action from{GETp, PUTp} occurs ing. Sincep is fair and{GETp, PUTp} is enabled
continuously but no action frofGETp, PUTp} is performed in3, we have a contradiction.

The interpretation of all the other actions are equal in both automata, even with respect
to the weak fairness sets, so the weak fairness requirements éoe satisfied by the weak
fairness requirements for.

SinceMemory has no strong fairness sets, the above showsthaffair. X

3.3.3 Problem 1(c): Nothing but MEM _FAILUREp actions?

We can construct a very trivial automaton that implem&fesiory, and does nothing but raise

MEM _FAILUREp actions. It can have the same state variablellemory, but only actions

READp, WRITEp andMEM _FAILUREp. A weak refinement like REF will provide us safety

and deadlock freeness results. Such a refinement is even enough to show that this automaton
implementsMemory, since each fair execution in this automaton can be imitated by a fair
execution inMemory, using the refinement.

Is it reasonable that such an implementation is possible? Since the specification of the
memory component is presented as a black box that does not remember success nor failure, it
is reasonable to think of it as a dice, harbouring the same chances at success with every throw.
So while one can expect such a memory componentto yield the right return at some time in an
infinite sequence of trials, the possibility of infinitely many failures exists and must therefore
be included in the specification we have presented here.



3.4 Specificationsand verificationsfor Problem 2 39

3.4 Specifications and verifications for Problem 2

34.1 Problem 2. Specification of the RPC component

Datatypes We assume a typed signatufe and aX;-algebrad; which consist of the fol-
lowing components:

e the typeBool as defined in Section 3.3.1
e atypeNat of natural numbers
e atypeProcsof procedure names

e atypeNames, such thaProcs € Names, and a functionegal_proc : Names — Booal,
telling us whether a given name is a legal procedure hame (that is, an elerRentsg)f
and a functiorarg_num : Names — Nat, giving the expected number of arguments for
each name.

e a typeArgs of function arguments, and a functiomm : Args — Nat, giving the
number of actual arguments.

e afunctionlegal_call : Namesx Args — Bool, such thategal call(p, a) = legal proc(p)A
(arg_-num(p)=num(a)) for eachp in Namesanda in Args.

e atypeReturnVal of possible return values. All exceptions raised by remote procedure
calls are expected to be included in this type.

e a typeRpc of program counter values of the RPC component, with constant symbols

WC, IC, WR andIR.

Specification We present the fair 1/O automat®iPC, which models an RPC component.
RPC stands for Remote Procedure Call. The program count&B8@may have one of the
following values:

e WC: Wait for remote calls from the sender

e IC: Issue a call to the receiver or an exceptional return to the sender
e WR: Wait for a return from the receiver

e IR: Issue a return (possibly exceptional) to the sender

Initially, the program counter value WC for every procesp.
The code folRPC is listed in Figure 3.2.

Liveness RPCis a live I/O automaton.

Lemma 3.9 Each reachable state RPC enables at most finitely many locally controlled ac-
tions.

Proposition 3.10 live(RPC) is a live I/0O automaton.



40

3 The RPC-Memory specification problem

Input: REM_CALLp, | _RETURNp

Output:  |_CALLp, REM_RETURNp, BAD_CALLp, RPC_FAILUREp
WFair: | Jp{{I_CALLp, REM_RETURNp, BAD_CALLp, RPC_FAILURER}}
' 9

SFair:

State Variables: pcp: Rpc
procp: Names
argsp: Args
legalp: Bool
returnp: ReturnVval

REM_CALLp(p : Names, a : Args)

Effect:
if (pcp=WC) then [procp ;= p
argsp ‘= a
legalp := legal_call(p, a)
pcp :=1C]
BAD_CALLp
Precondition:
A pcp=IC
A ﬁ'@&]p
Effect:
pcp :=WC

| _RETURNp(r : ReturnVal)
Effect:
if (pcp=WR) then [pcp :=IR
returnp :=r]

Initial: \p pcp=WC

RPC_FAILUREp
Precondition:
pcp € {IC, IR}
Effect:
pcp :=WC

| _CALLp(p : Names, a : Args)
Precondition:
A pCp:|C
A |®a|p
A p=procp
A a=argsp
Effect:
pcp := WR

REM_RETURNp(r : ReturnVal)
Precondition:
A pCp:|R
A I =returnp
Effect:
pcp ;= WC

Figure 3.2: Fair 1/0O automatdrPC




3.5 Specificationsand verificationsfor Problem 3 41

3.5 Specifications and verifications for Problem 3

3.5.1 Problem 3: Specification of the composition

Data types We reuseX; (section 3.3.1) and, (section 3.4.1) to obtain a typed signature
3 and aXz-algebra, such that:

e Read andWrite are different constants of tyf#& ocs (and therefore also of tygdames)
e arg_num(Read) = 1, andarg_num(Write) = 2
e the domain oReturnVal is equal to the domain &ick, plus an extra constaBadArg

o for eachl, |’ of type Locs andwv, v’ of type Vals, (I) and (I, v) are elements of type
Args () =d) =1 =1',0,v) = 1,v) > 1 =1"Av =7, num(()) = 1 and
num((, v)) = 2.

A front end for the RPC component We need another component to make the RPC com-
ponent retry a call to the reliable memory component. This component is a clerk, which can
translate incoming calls to the format accepted®{C, and reissue such a calliPC should

fail. Therefore we present the fair I/O automatderkR, which models a front end to the RPC
componenRPC. The program counters @lerkR are of typeRpc, and therefore have the
same possibilities as the program counterRRE. Initially, the program counter value \W&C

for every proces®.

The code folClerkR is listed in Figure 3.3.

Liveness Fair I/O automatorClerkR is a live I/O automaton.

Lemma 3.11 Each reachable state @lerkR enables at most finitely many locally controlled
actions.

Proposition 3.12 live(ClerkR) is a live I/O automaton.

Proof As before, we apply Theorem 1 in [RV96] after showing that (1) each reachable state
of RPC enables at most countably many weak and strong fairness sets, and (2) each set in
sfair (ClerkR) is input resistant.

Condition (1) is satisfied by Lemma 3.11, since each locally controlled action is in exactly
one weak fairness set.

Condition (2) relies upon the input resistance of actWBM_FAILURE. Suppose that
MEM_FAILUREp is enabled in the reachable state Clearly,s = ClerkRpcp=IC. If an
input actiona for P occurs ins, by definition of ClerkR the transitions—2> s is taken, and
MEM _FAILUREp is still enabled. If an input actioa for anotherP’ occurs ins, the transition
taken does not affec@lerkR.pco. HenceMEM_FAILUREp is input resistant and the second
condition is satisfied. X

Renaming component RelMemory The front endClerkR is not enough to establish the in-
tended implementation. We also need to rend&ddlemory to avoid name clashing, and



42

3 The RPC-Memory specification problem

Input:  READp, WRITEp, REM_RETURNp, BAD_CALLp, RPC_FAILUREp
Output: REM_CALLp, RETURNp, BAD_ARGp, MEM_FAILUREp

WFair: | Jp{{REM_CALLp, RETURNp, BAD_ARGp, MEM_FAILURER}}
SFair:  (Up{{MEM_FAILURER}}

State Variables: pcp: Rpc Initial: Ap pcp=WC
procp: Names
locp: Locs
valp: Vals
failedp: Bool
returnp: ReturnVval
READp( : Locs) WRITEp( : Locs, v : Vals)
Effect: Effect:
if (pcp=WC) then [procp := Read if (pcp=WC) then [procp := Write
locp =1 locp =1
failedp := false valp (= v
pcp :=1C] failedp := false
pcp :=1C]

REM_CALLp(p : Names, a : Args)

Precondition:
A pcp=IC
A p=procp
A a=if (procp=Read) then (locp) else (locp, valp)
Effect:
pcp :=WR
BAD_CALLp BAD_ARGp
Effect: Precondition:
if (pcp=WR) then [returnp := BadArg pcp=IR A returnp=BadArg
pcp == IR] Effect:
pcp :=WC
RPC_FAILUREp MEM _FAILUREp
Effect: Precondition:
if (pcp=WR) then [failedp := true pcp=IC A failedp
pcp :=IC] Effect:
pcp : = WC
REM_RETURNp(r : ReturnVal) RETURNp(r : ReturnVval)
Effect: Precondition:
if (pcp=WR) then [returnp :=r A pcp=IR
pcp == IR] A returnp#£BadArg
A r=returnp
Effect:
pcp :=WC

Figure 3.3: Fair /O automatodlerkR




3.5 Specificationsand verificationsfor Problem 3 43

to get the proper synchronisation. So we define a new fair /O autonfittemory’ =
rename(RelMemory), where for everyP:

rename(READp(l)) = |_CALLp(Read, (1))
rename(WRITEp(l, v)) = I|_CALLp(Write, (I, v))
rename(RETURNp(a)) = |_RETURNp(a)
rename(BAD_ARGp) = | _RETURNp(BadArg)

rename(X) =X otherwise

(I is a variable of typé.ocs, v is a variable of typ&/als, a is a variable of typéck, andx is a
action variable)

The code foRMemory is listed in Figure 3.4.

Liveness ltis easily shown thaRMemory is a live 1/0O automaton.
Proposition 3.13 live(RMemory) is a live 1/0 automaton.

Proof Trivially, live(RMemory) = rename(live(RelMemory)). Combining this with Theo-
rem 3.3 in this chapter and Proposition 3.23 in [SGSL98], we obtaifitreRMemory') is a
live 1/0O automaton. X

The implementation Memorylmp is defined as the parallel composition of /0 automata
ClerkR, RPC andRMemory’, with all communication between those components hidden:

Memorylmp = HIDE | IN (ClerkR|RPC||RMemory)
wherel £ UP{REM_CALLp(p, a), REM_RETURNp(r), BAD_CALLp,
RPC_FAILURER, | _CALLp(p, a), | _RETURNp(r)
| pin Names, ain Args, r in ReturnVal}.

The behaviour oRPCImp is illustrated in the following figure.

READ,
WRITE REM_CALL |_CALL
| ClerkR RPC RMemory'
RETURN, REM_RETURN, |_RETURN
BAD_ARG, BAD_CALL,
MEM_FAILURE RPC_FAILURE
Liveness

Proposition 3.14 live(Memorylmp) is a live 1/O automaton.

Proof (Sketch) We use Propositions 3.10, 3.12 and 3.13 in this chapter, Propositions 3.22 and
3.28in [SGSL98], and Theorem 2 in [RV96]. X



3 The RPC-Memory specification problem

Input: | _CALLp

Output: | _RETURNp

Internal: GETp, PUTp

WFair: Up{{GETp, PUTp}, {| _-RETURNp}}

SFair: Y]
State Variables: pcp: Mpc Initial: Ap pcp=WC
locp: Locs /\; find(l, memory)=InitVal
valp: Vals
memory: Memory
performedp: Bool
legalp: Bool
|_CALLp(Read, (I : Locs)) | _RETURNp(BadArg)
Effect: Precondition:
if (pcp=WC) then [locp =1 A pcp € {R, W}
performedp := false A —legalp
legalp := memloc(l) Effect:
pcp :=R] pcp :=WC
| _CALLp(Write, (I : Locs, v : Vals))
Effect:
if (pcp=WC) then [locp := |
valp :=v
performedp := false
legalp := memloc(l) A memval(v)
pep = W]
GETp PUTp
Precondition: Precondition:
A pcp=R A pcp=W
VAN |®ajp A |®a|p
A —performedp Effect:
Effect: memory := change(locp, valp, memory)
valp := find(locp, memory) performedp := true

performedp := true

| _RETURNp(a : Ack)
Precondition:
A pcp € {R, W}
A performedp
A a=if (pcp=R) then valp else WriteOk
Effect:
pcp := WC

Figure 3.4: Fair /O automatdRMemory’



3.5 Specificationsand verificationsfor Problem 3 45

3.5.2 Set-up for the verification

A direct proof of trace inclusion betwed&temorylmp andMemory is not very straightforward.
This stems from the fact thaflemory can only read its memory once for every read call.
However, by the fail/retry mechanism bfemorylmp, it is able to read multiple times for one
read call.

An intermediate automaton To show trace inclusion, we seem to need a forward backward
simulation. However, since this is rather complicated, and Theorem 4.1 in [LV95] states that
we can just as well look for an intermediate automaton, we will keep things clear by construct-
ing an intermediate automaton, which we allow to read its memory multiple times for one read
call. This intermediate automaton will be callbtemory*, the x indicating the possibility of
multiple reads instead of one. The codeltemory* is obtained fronMemory as follows. The
precondition foiGETp is weakened, and a new state varidtbp is added, in which the value

of valp is stored each time a return is issued. Figure 3.5 lists the code for fair I/O automaton
Memory*. Boxes highlight the places where the codeNtmmory* differs fromMemory.

A forward simulation establishes trace inclusion betwiktamorylmp and Memory*; a
backward simulation does the same fdemory* and Memory. The use of the new state
variable Memory*.histp substantially simplifies the backward simulation and also makes it
image-finite.

Liveness Fair I/0O automatoMemory* is a live I/O automaton.

Lemma 3.15 Each reachable state Memory* enables at most finitely many locally con-
trolled actions.

Proposition 3.16 live(Memory*) is a live I/O automaton.

3.5.3 Problem 3: Memorylmp implements Memory

In this section, we will first show thaflemory* implementsMemory, then we will show that
Memorylmp implementdviemory*. Both results are reached via safety and deadlock freeness.
Transitivity of the implementation relation yields the desired result in Section 3.5.3.

Memory* implements Memory We need an invariant to show that between the previous out-
put action and the next internal action, the history vari&idg in Memory* is up to date with
respect tovalp for eachP.

Lemma 3.17 The following property Inv1 is an invariant dlemory*.
Ap (PCp € {WC, R} A —performedp) — valp=histp

The next invariant expresses tHdemory* will not read or write if it has received illegal
arguments.

Lemma 3.18 The following property Inv2 is an invariant dlemory*.

A\ p PCp#WC — (—legalp — —performedp)



46

3 The RPC-Memory specification problem

Input: READp, WRITEp

Output: RETURNp, BAD_ARGp, MEM_FAILUREp

Internal: GETp, PUTp

WFair: (Up{{GETp, PUTp}, {BAD_ARGp, MEM_FAILUREp, RETURNp}}
SFair: [

State Variables: pcp: Mpc Initial: Ap pcp=WC
locp: Locs /A find(l, memory)=InitVal
memory: Memory
performedp: Bool
legalp: Bool
\histp: Vals
READp(| : Locs) BAD_ARGp
Effect: Precondition:
if (pcp=WC) then [locp =1 pcp € {R, W} A —legalp
performedp := false Effect:
legalp := memloc(l) pcp :=WC
WRITEp(l : Locs, v : Vals) MEM _FAILUREp
Effect: Precondition:
if (pcp=WC) then [locp =1 pcp € {R, W}
valp i=v Effect:
performedp := false pcp ;= WC
legalp := memloc(l) A memval(v)
pep = W]
GETp PUTp
Precondition: Precondition:

pcp=R A legalp pcp=W A legalp
Effect:

Effect: —ch | al
valp := find(locp, memory) WBF;DI;:/E:C ange(locp, valp, memory)
performedp := true performedp := true

RETURNp(a : Ack)
Precondition:
A pcp € {R, W}
A performedp
A a=if (pcp=R) then valp else WriteOk
Effect:
pcp := WC

Figure 3.5: Fair /O automatddemory*




3.5 Specificationsand verificationsfor Problem 3 47

A weak backward simulation enables us to construct the behaviddewbry, given the be-
haviour ofMemory*. We can start in the last state of such a sequence, and work our way back
to the beginning. The relation that induces this simulation needs to be image-finite.

Lemma 3.19 The relation BACK defined by the following formula is an image-finite relation
overrstates(Memory*) andstates(Memory).

/A\p Memory.pcp Memory*.pcp

A\ p Memory.locp = Memory*.locp

A\ p Memory.valp if  Memory.pcp=R A =Memory.performedp
thenMemory*.histp
else Memory*.valp

Ap Memory.legalp, = Memory*.legalp

A Memory.memory = Memory*.memory

A\ p ~Memory*.performed, — —Memory.performedp

A\ p Memory*.pcp#R — (Memory*.performeds — Memory.performedp)

Theorem 3.20 Relation BACK is a weak backward simulation frademory* to Memory,
with respect to the reachable stateddamory*.

Proof (Sketch) We satisfy the three requirements in [LV95], which is a bit complicated and
takes a lot of paper. The most difficult part is caused byGE& action, sincéVlemory does
not always perform this action along witMemory*. Here, the history variable dflemory*
proves its value. X

Corollary 3.21 Memory* is safe with respect thlemory.

Proof Combining Lemma 3.19 and Theorem 3.20 in this chapter with Theorem 6.2 in [LV95],
we obtain the desired result. X

Theorem 3.22 For each reachable, quiescent s&atd Memory*, each state € BACK(s) is
a quiescent state demory.

Proof Considering the preconditions demory*, in each quiescent state Memory*.pcp
must be equal tavC for everyP. For eaclr € BACK(s) : r | /\ pMemory.pco=WC, hence
r is quiescent. X

Corollary 3.23 Memory* is deadlock free with respect Memory.

Proof By Theorems 3.20 and 3.22 we can construct, for each quiescent execudemory*,
a corresponding quiescent executiorMeEmory with the same trace. X

Theorem 3.24 Memory* implementdMemory.

Proof (Sketch) Assume that e fairtraces(Memory*). Leta be a fair execution dlemory*
with the same tracg. If « is finite thena is quiescent and it follows by Corollary 3.23 that
Memory has a quiescent execution with trgée Since each quiescent execution is also fair,
this impliesg e fairtraces(Memory). So we may assume without loss of generality théd
infinite.

Using the fact that BACK is a weak image-finite backward simulation (see Lemma 3.19,
Theorem 3.20), we can easily construct an executiasf Memory with tracep. It remains to



48 3 The RPC-Memory specification problem

prove that’ is fair.

We need to show that’ must be infinite. Again, th6&ETp action causes trouble, since
Memory does not always perform it whevlemory* does. However, fairness helps us establish
the fact thatMemory* cannot perform infinitely man@ETp actions forP, without performing
other actions foP in between. Sinc®emory imitates each of these other actions, the infinity
of o’ is inevitable.

Using the above, the fairness@fis satisfied quite trivially because of three facts. Firstly,
wfair (Memory) = wfair(Memory*) andsfair (Memory) = sfair(Memory*) = @. Secondly, if
a weak fairness set is not enabledMemory*, it is certainly not enabled iMemory. Thirdly,
infinitely many occurrences of acti@in « cause infinitely many occurrencesain o’. X

Memorylmp implements Memory*

Invariants The following list of invariants is rather dull. They are necessary for ensuring
that the arguments of an incoming call are transmitted properly among the components of
Memorylmp, and no component will act before it receives permission to do so.

ComponenRPC will remain quiescent until a request is issued by compoG&arkR:

Lemma 3.25 The following property Inv3 is an invariant demorylmp.
Ap ClerkR.pco#WR — RPC.pcp=WC

ComponenRMemory will remain quiescent until a request is issued by compoReX:

Lemma 3.26 The following property Inv4 is an invariant délemoryl mp.
/\p RPC.pco#WR — RMemory'.pco=WC
ComponenClerkR only handles read or write calls:

Lemma 3.27 The following property Inv5 is an invariant délemoryl mp.

Ap ClerkR.pco#WC — Vv A ClerkR procp=Read
A3l : ClerkR.locp=l

V A ClerkR.procp=Write
A 3l : ClerkR.locp=l

A Ju : ClerkRvalp=v

ComponenRPC receives the same calls and arguments f@eankR, asClerkR received from
the environment:

Lemma 3.28 The following property Inv6 is an invariant demorylmp.

A\ p RPC.pco#WC — A RPC.proce=ClerkR procp
A RPC.argss=if  ClerkR procp=Read
then (ClerkR.locp)
else (ClerkR.locp, ClerkR.valp)

ComponenRPC only receives read or write calls:



3.5 Specificationsand verificationsfor Problem 3 49

Corollary 3.29 The following property Inv7 is an invariant éemorylmp.

A\ p RPC.pco#WC — v RPC.procp=Read A 3l : RPC.argss=(l)
Vv RPC.procp=Write A 3, v : RPC.argse=(, v)

Proof Directly from invariants Inv3, Inv5 and Inve. X

SinceRead andWrite are proper procedure names, &RLC receives no other procedure calls,
the actiorBAD_CALLp is never enabled:

Corollary 3.30 The following property Inv8 is an invariant éemorylmp.
/\p —enabled(BAD_CALLp)

If RMemory is busy, itis by request ®&PC, and the arguments have been transmitted properly:

Lemma 3.31 The following property Inv9 is an invariant d&lemoryl mp.

/\p RMemory .pco.=R — A RPC.pcp=WR
A RPC.procp=Read
A RPC.argsp=(I) — RMemory'.locp=I
A\ p RMemory .pcp=W — A RPC.pcp=WR
A RPC.procp=Write
A RPC.argsp=(l, v) - A RMemory'.locp=l
A RMemory.valp=v

RPC can only issue a return lerkR, following a (possibly exceptional) return BRMemory’,
and the return value is transmitted properly:

Lemma 3.32 The following property Inv10 is an invariant demorylmp.

/A\p RPC.pcp=IR — v A RMemory .performedp
A RPC.returnp=if ~ RPC.procp=Read
then RMemory .valp
else WriteOk
Vv A =RMemory'.legalp
A RPC.returnp=BadArg

Inv11 states the same result as Inv10, for compoGearkR:

Lemma 3.33 The following property Inv11 is an invariant demorylmp.

/\p ClerkR.pco=IR — v A RMemory'.performedp
A ClerkRreturnp=if  ClerkR proco=Read
then RMemory .valp
else WriteOk
Vv A —=RMemory'.legalp
A ClerkR.returnp=BadArg

RMemory'.legalp behaves just like we expect it to, as longRMemory’ is busy:

Lemma 3.34 The following property Inv12 is an invariant demorylmp.



50 3 The RPC-Memory specification problem

A\ p RMemory .pcp=R — RMemory'.legalp= memloc(RMemory’.locp)
/\p RMemory .pco=W — RMemory'.legalp= A memloc(RMemory'.locp)
A memval(RMemory .valp)

RMemory'.legalp is not changed aftdRMemory returns toRPC:
Lemma 3.35 The following property Inv13 is an invariant demorylmp.

Ap RPC.pcoe{WR, IR} v ClerkR.pcp=IR
— V A ClerkR.procp=Write
A RMemory'.legalp= A memloc(ClerkR.locp)
A memval(ClerkR.valp)
Vv A ClerkR.procp=Read
A RMemory .legalp.=memloc(ClerkR.locp)

Memory*.legalp behaves just like we expect it to, as long\damory* is busy:
Lemma 3.36 The following property Inv14 is an invariant demory*.

/A\p pPcp=R — legalp=memloc(locp)
/\p PCp=W — legalp=memloc(locp) A memval(valp)

Safety We use a weak forward simulation, instead of a weak refinement. In fact, a weak
refinement does not exist fromMemorylmp to Memory*. Suppose&lerkR receives a read call
for P for the first time, andMemorylmp transits to stats. Memory* imitates this step, and
ends up in an image state sfwith Memory*.performed, equal tofalse. SupposeClerkR
forwards the call tdRPC, which forwards it toRMemory'. Supposé&Memory’ performs some
reading activity. We can only ensure tihaémory* returns the same value R¥emory if they
read and write simultaneously. So in the image statg bfemory*.performedp must befalse.
Suppose after this reading activifgPC returns a fail toClerkR. This may lead to the same
states again. HoweverMemory* has imitated the read actions performedemory’, and
Memory*.performedp must therefore b&rue. So a refinement should maponto a state in
which Memory*.performedp is bothtrue andfalse, which is a contradiction.

Theorem 3.37 The relation SIM defined by the following formula is a weak forward simula-
tion from Memorylmp to Memory*, with respect to the reachable states in bid#amorylmp
andMemory*.

/\p Memory*.pcp = if ClerkRpcp=WC

then wC

else if ClerkR procp=Read then R else W
Ap Memory*.loce = ClerkR.locp

A Memory*.memory = RMemory .memory
A\ p ClerkR.proco=Write — Memory*.valp=ClerkRvalp
/\p RMemory .performedp A Vv RPC.pcpe{WR, IR}
v ClerkR pcp=IR
— A Memory*.performedp
A Memory*.valp=RMemory'.valp



3.5 Specificationsand verificationsfor Problem 3 51

Proof (Sketch) We use the following property.
For each two reachable states Memorylmp, r in Memory*:

r.s = Ap Memory*.pcec=R — Memory*.legalp.=memloc(ClerkR.Iocp)
A p Memory*.pco=W — Memory*.legalp= A memloc(ClerkRlocp)
A memval(ClerkR.valp)

This follows directly from Inv5, Inv14 and the definition of SIM. Using this property, and the
invariants Inv3, Inv5, Inv6, Inv8, Inv9, Inv1l and Inv13, the proof is obtained by fulfilling the
two requirements in [LV95] in a straightforward manner. X

Corollary 3.38 Memorylmp is safe with respect tlemory*.

Proof Directly from theorem 3.37 and Theorem 6.2 in [LV95]. X

Deadlock freeness In order to establish thdtlemorylmp is deadlock free with respect to
Memory*, we need an additional invariant. It expresses that as lo@jegkR is waiting for a
return,RPC is busy. Likewise, ifRPC is waiting for a returnRMemory’ is busy.

Lemma 3.39 The following property Inv15 is an invariant demorylmp.

Ap ClerkR.pco=WR — RPC.pcp#£WC
/A\p RPC.pco)=WR — RMemory' .pcpe{R, W}

Theorem 3.40 For each reachable and quiescent ssabé Memorylmp, each reachable state
r € Memory* such that, s = SIM is a quiescent state demory*.

Proof (Sketch) From the action types Mfemorylmp and Inv15, we see thaflemorylmp is
quiescent in stateiff s = ClerkR pce=WC. Sincer, s = SIM, obviouslyr &= Memory*.pcp
=WC, hence is quiescent. X

Corollary 3.41 Memorylmp is deadlock free with respect Memory*.

Proof By Theorems 3.37 and 3.40 we can construct for each quiescent executitemofy-
Imp, a corresponding quiescent executioMdmory* with the same trace. X

Theorem 3.42 Memorylmp implementdMemory*.

Proof (Sketch) We provéairtraces(Memorylmp) C fairtraces(Memory*).
Assume thatg € fairtraces(Memorylmp). Let o be a fair execution oMemorylmp with
traces. If « is finite thenw is quiescent and it follows by Corollary 3.41 tHdemory* has
a quiescent execution with trage Since each quiescent execution is also fair, this implies
B € fairtraces(Memory*). So we may assume without loss of generality thi infinite.

Using the fact that SIM is a weak forward simulation (Theorem 3.37) we can easily con-
struct an executioan’ of Memory* with the same tracg. It remains to prove that’ is fair.

First we show tha&’ is infinite. Then we observe that each non-discarded cldgimory-
Imp will lead to a return within a finite number of steps. Using these two facts, we can easily
show for each class imfair (Memory*), thata' satisfies the requirements for weak fairness.
Sincesfair (Memory*) is empty, this is enough to show theltis fair. X



52 3 The RPC-Memory specification problem

The main result
Theorem 3.43 Memorylmp implementaviemory.

Proof Theorems 3.24, 3.42 yieldirtraces(Memorylmp) C fairtraces(Memory). X

3.6 Specificationsfor Problem 4

3.6.1 Problem 4: Specification of alossy RPC

The lossy RPC is a timed component whose behaviour is similar to the behaviour of the RPC
component from section 3.4.1.

The difference between timed and untimed I/O automata is that time-passage is made ex-
plicit by the actionTIME, and that the fairness constraints are translated into timing restric-
tions. However, we will see in Section 3.7 that fairness restrictions are still needed for a timed
I/O automaton. To avoid comparing different types of timed I/O automata, all specifications
are in the format of thé&ir timed 1/0 automaton. Brief introductions to ordinary and fair timed
I/O automata are given in Appendices A.3 and A.4.

Datatypes We reuse the ingredients & and.A3, given in section 3.4.1, and add the data
typeTimeto obtain a typed signatui®, and ax4-algebrad,. Timeis the seR™ of nonnega-
tive real numbers, with the usual interpretation and functions for addition (+) and multiplication
().

We now present the fair timed 1/0 automatarssy, which models a lossy RPC component.
It has a new state variabtdockp for each calling process, to keep track of the time elapsed
since the last call was received from the sender, or issued to the receiver. Its behaviour is
almost equal to that of the fair I/O automatBRC component, except that the output action
RPC_FAILURE is replaced by an internal actidrtOSE. After eachLOSEp action,Lossy is
ready for a new call from the sender for proc€ssAlso a time-passing actiol ME is added.
We let time pass without bounds, except in states where a certain output action should be
issued withins seconds. Here we forbid time passing if it violates this bound. Clocks are only
updated in states where their value is actually used. Since all fairness restrictions have been
replaced by timing constraints, bottfair (Lossy) andsfair (Lossy) are empty.

The code foLossy is given in Figure 3.6. Boxes highlight the places where the code differs
from the code foRPC.

3.7 Specifications and verifications for Problem 5

To model an implementation as specified, we need more than the specificdtmssyofThere
has to be some sort of clerk component, that signals the need for a failure output action and
issues this failure.

Suppose.ossy performs dOSEp action. Now,Lossy.pcp = WC, and new calls from the
sender for procesB can be handled. However, the clerk will wait until th& 2 ¢ bound
is reached to issue the necessBBC_FAILUREp. Before thisRPC_FAILUREp, all calls for
processP should be discarded. So the clerk must also monitor the calls from the sender to

Lossy.



3.7

Specifications and verificationsfor Problem 5

Input: REM_CALLp, | _ RETURNp
Output: I_CALLp, REM_RETURNp, BAD_CALLp
Internal:

WFair: 0

SFair: Y]

State Variables: pcp: Rpc
procp: Names
argsp: Args
legalp: Bool
returnp: Returnval
‘ clockp: Time

REM_CALLp(p : Names, a : Args)

Effect:
if (pcp=WC) then [procp = p
argsp ‘= a
legalp := legal_call(p, a)
pcp :=1IC
[doce =0}
BAD_CALLp
Precondition:
A pcp=IC
A —legalp
Effect:
pcp := WC

| _RETURNp(r : ReturnVal)

Effect:
if ()cp=WR) then [pcp :=IR
returnp :=r
[doce =0}
TIME(t : Time)
Precondition:

Ap pcpel{lIC, IR} — clockp +t < §
Effect:

for Pin {Q | pcg € {IC, IR}}

do clockp := clockp +t

Initial: Ap pcp=WC

LOSEp
Precondition:
pcpe{IC, IR}
Effect:
pcp :=WC

I_CALLp(p : Procs, a: Args)
Precondition:
A pcp=IC
A legalp
A p=procp
A a=argsp
Effect:
pcp :=WR

REM_RETURNp(r : ReturnVal)
Precondition:
VAN pCp:|R
A I =returnp
Effect:
pcp :=WC

Figure 3.6: I/O automatohossy




54 3 The RPC-Memory specification problem

3.7.1 Problem 5(a): The RPC implementation RPClmp

Datatypes We reuse the ingredients &f; and.A4, given in Section 3.6.1, and add the data
typeCpc to obtain a typed signatur®s and Xs-algebrads. Cpc contains the constantscC,
IC andWR. Note that the domain d@pc is included in the domain dRpc.

Specification We will now present the fair timed 1/O automat@herkL, which models a
clerk for the lossy RPC componédrssy.

ClerkL catches eacREM_CALL from the sender. If it is ready for an incoming call, then
this call is forwarded witiPASSto Lossy. At the moment of forwarding, a clock is started
to check the response time bbssy. If ClerkL is busy, incoming calls are discardedlerkL
signals all output actions fromossy, to ensure that, whenever thé 2 ¢ bound is reached,
the correspondinBPC_FAILURER is really needed. To signal theé 2 ¢ bound,ClerkL has
a clock for each procedB. Time action may pass without bounds, except when the clerk is
waiting for a return fronmLossy, or when an incoming call should be forwarded. In the last
case, the bound is used, which has no other purpose than to ensure that the talédpis
forwarded within some time limit. The delay of forwarding the call is not added to the response
time of Lossy.

The code forClerkL is listed in Figure 3.7.

Thecomposition SinceREM_CALL is an input action for bothossy andClerkL, but should
only be received by the latter, we need to rendossy:

Lossy = rename(Lossy)

where rename(REM_CALLp(p,a)) = PASS(p,a)
rename(X) = X otherwise

Note that the output actiorBAD_CALL, | _CALL andREM_RETURN should be received by
bothClerkL and the environment. The only output action which must be hiddeAss.
The implementatiolRPCImp is defined as follows:

RPCImp = HIDE(U {PASS:}) IN (ClerkL||Lossy)
P

The behaviour oRPCImp is illustrated in the following figure.

REM_CALL I_CALL

ClerkL PASS Lossy’

RPC_FAILURE I _RETURN

BAD_CALL,
REM_RETURN



3.7

Specifications and verificationsfor Problem 5 55

Input: REM_CALLp, BAD_CALLp, | _CALLp, REM_RETURNp
Output: PASSp, RPC_FAILUREp
WFair: @
SFair: @
State Variables: pcp: Cpc Initial: Ap pcp)=WC
procp: Names
argsp: Args
callp: Bool
clockp: Time
REM_CALLp(p : Names, a : Args) PASSp(p : Names, a : Args)
Effect: Precondition:
if (pcp=WC) then [pcp :=1IC A pcp=IC
procp ;= p A p=procp
argsp :=a A a=argsp
clockp := 0] Effect:
pcp := WR
callp ;= false
clockp :=0
BAD_CALLp |_CALLp(p: Procs, a: Args)
Effect: Effect:
pcp :=WC callp := true
REM_RETURNp(r : Returnval) RPC_FAILUREp
Effect: Precondition:
if (pcp=WR A (clockp < 25+¢€)) A pcp=WR
then [pcp := WC] A clockp=25+€
Effect:
pcp :=WC
TIMEC(t : Time)
Precondition:
Appcp=IC — clockp+t < ¢
Appcp=WR — clockp+t < 25+¢
Effect:
for Pin {Q | pcge{IC, WR}}
do clockp := clockp+t

Figure 3.7: Timed 1/O automata®l erkL



56 3 The RPC-Memory specification problem

Note that in the behaviour &PCImp, the following scenario is includedlerkL issues a
RPC_FAILUREp andLossy issues &REM_RETURNp for a call from proces®, that is, one
call leads to two returns. This situation arises whenever the receiver takes too long before
returning a procedure call foossy’. However, since the specification is only required to im-
plement specificatioRPC under the assumption that edcRALL from Lossy’ is followed by
al _RETURN within e seconds, this situation is excluded from the desired behaviour.

3.7.2 Problem 5(b): RPClmp implements RPC

At this point we have an implementatid®PClmp with real-time aspects, and an untimed
specificatiorRPC. To be able to compare these, we can add tinkRRG and prove admissible
trace inclusion. Since we already specified all components as fair timed I/O automata, we are
able to keep the weak and strong fairness sef@.

The timed 1/O automatommeRPC combines the code fdRPC with the actionTIME(t :

Time). The precondition oTIME is true, the effect is empty (no state variables change).

If we could prove that each fair admissible traceRFCImp is in the intersection of the
admissible traces and fair timed tracesTaheRPC, we would be done. However, we still
need to formalise the restriction on the environment, namely that the receiver will return each
forwarded procedure-call within seconds.

Since there is no straightforward way to express this type of restrictions in 1/0O automata
theory, we choose to specify a very general receiver by means of the fair timed 1/0 automaton
Rec. Rec returns some answer for each call friumssy’ within € seconds.

Now, RPCImp implementsTimeRPC if the behaviour oRPCImp is included in the fair be-
haviour of TimeRPC, provided that both are communicating with the receRe.

The code foRec is listed in Figure 3.8.

A new implementation and specification For the new implementation and specification, we
take two copies oRec, and call thenRecLossy andRecRPC.
The composition for the implementation is

Imp = HIDE | IN (RPCImp||RecLossy)
wherel = Up {IC(p, @), IR(r) | pin Names, ain Args, r in ReturnVal}.
The composition for the specification is

Spec = HIDE | IN (TimeRPC||RecRPC)
wherel £ Up {IC(p, &), IR(r) | pin Names, ain Args,r in ReturnVal}.

Note that each discrete action$pec is persistent, and that each admissible execution of
Imp is fair. Using these two facts, the implementation relation is proved by the inclusion

t-traces(Imp) C (t-traces(Spec) N fair-t-traces(Soec))

First we provet-traces(lmp) C t-traces(Spec), by means of a weak refinement, and then
t-traces(Imp) C fair-t-traces(Spec).



3.7

Specifications and verificationsfor Problem 5

57

Input: I_CALLp

Output: |_RETURNp

WFair: @

SFair: Y/

State Variables: busyp: Bool Initial: \p —busyp
clockp: Time

| _CALLp(p: Procs, a: Args)

|_RETURNp(r : ReturnVval)

Effect: Precondition:
if —busyp then [clockp := 0 busyp
busyp := true] Effect:
busyp := false
TIME(t : Time)
Precondition:
A\ p busyp — clockp +t < ¢
Effect:

for Pin {Q | busyQ}
do clockp := clockp +t

Figure 3.8: Timed I/O automatdrec

In the remainder, we will mostly reason about ‘'sampling’ executions instead of timed ex-
ecutions. Since Lemmas 2.11 - 2.13 in [LV96] state that both induce the same set of timed
traces, and we only consider inclusion on sets of traces, this does not make a difference.

Admissible traceinclusion Some invariants are needed to enable the use of a weak timed
refinement. The first one states that in the particular states, no clocks violate their bounds.

Lemma 3.44 The following property InvT1 is an invariant dfp:

/\p ClerkL.pcp=IC — (ClerkL.clockp<¢)
Ap ClerkL.pc,=WR  — (ClerkL.clockp<25+¢)
A\ p Lossy .pcp€{IC, IR} — (Lossy'.clockp<§)

/\p Lossy.pcoc=WR  — (RecLossy.clockp<e¢)

The next invariant states that all components synchronise in some way, which is reflected
in their program counters and clocks. The formula looks rather complicated, but readability
cannot be improved by splitting it into smaller pieces. This is due to the precondition of action

RPC_FAILURE.

Lemma 3.45 The following property InvT2 is an invariant ip:

A\ p Lossy .pco#WC — ClerkL.pco=WR

A\ p Lossy .pco=WR <> ReclLossy.busyp

/\p Lossy'.pco=IC — (ClerkL.clockp=Lossy'.clockp)

/\p Lossy’.pco=WR — (ClerkL.clockp<RecLossy.clockp+5)



58 3 The RPC-Memory specification problem

Ap Lossy .pce=IR — (ClerkL.clockp<Lossy'.clockp+8+-¢)

WhenevelLossy or ClerkL is ready to issue a return to the sender, the other of the two is not
doing something unexpected.

Corollary 3.46 The following property InvT3 is an invariant &fp:

/\p enabled(BAD_CALLp) — ClerkL.pcp=WR

A\ p enabled(RPC_FAILUREp) — Lossy' .pco=WC

A\ p enabled(REM_RETURNp) — A ClerkL.pco=WR
A (C.clockp <28+-¢€)

ClerkL records every call frorhossy’ to RecLossy correctly.

Lemma 3.47 The following property InvT4 is an invariant dip:

A\ p Lossy .pcp=IC — —ClerkL.callp
/\p Lossy .pcpe{IR, WR} — ClerkL.callp

Lossy’ does not unexpectedly change its state variables.

Lemma 3.48 The following property InvT5 is an invariant afossy':

A\ p PCp#WC — legalp=legal_call(procp, argsp)
Lossy’ andClerkL agree on the arguments of the last call.

Lemma 3.49 The following property InvT6 is an invariant dimp:

A\ p Lossy .pco#WC — A Lossy'.proco=ClerkL.procp
A Lossy .argsp=ClerkL.argsp

Corollary 3.50 The following property InvT7 is an invariant &fp:

/\p Lossy .pco#WC
— Lossy'.legalp=legal_call(ClerkL.procp, ClerkL.argsp)

Weak refinement The weak timed refinement does not look very straightforward. This is
due to the possibility of.ossy’ to LOSE every now and then. If this happens, the program
counter value inMlmeRPC suddenly relies on the information @lerkL.

Theorem 3.51 The function TREF, which is defined by the identity function on variables
with the same name frofRecLossy to RecRPC and by the following formula, is a weak timed
refinement frommp to Spec, with respect to the reachable state$rip and Spec.

Ap TIMeRPC.pcp  =if  Lossy.pcp#WC
then Lossy’.pcp
else if  ClerkL.pcpre{WC, IC}
then ClerkL.pcp
else if  ClerkL.callp
then IR
else IC



3.7 Specificationsand verificationsfor Problem 5 59

Ap TimeRPC.proc, = ClerkL.procp

Ap TimeRPC.argss = ClerkL.argss

Ap TimeRPC.legalp = legal_call(ClerkL.procp, ClerkL.argsp)
/A\p TimeRPC.returnp = Lossy .returnp

Proof (Sketch) Using the invariants, this is not too hard. We simply check the requirements in
[LV96]. X

Corollary 3.52 t-traces(Imp) C t-traces(Spec)
Proof Directly from Theorem 3.51 in this chapter and Theorem 8.2 in [LV96]. X

Fairnessispreserved We prove that eacREM_CALL to Imp leads to a returnrBAD_CALL,
REM_RETURN or RPC_FAILURE) within bounded time.

Lemma 3.53 Leta = spars1a2% . . . be an admissible execution lofip.

Thena; = REM_CALLp ands_1 | pcp=WC implies that there is somgsuch thatj > i,

a; € {BAD_CALLp, REM_RETURNp, RPC_FAILUREp}, and the sum of time elapsing be-
tweens _; ands; is bounded.

Proof First we observe that all discrete actionsrinp are persistent. This is easily checked by
examining the effect ofIME, the preconditions of the discrete actions and invariant InvT1.
Supposer = Ha1s1aSy - . . is an admissible execution bbssy’,
a8 = REM_CALLp ands_1 = pcp=WC.
Clearly,s E pcp=IC A clockp=0. So eithers enablesTIME, BAD_CALLp andLOSEp
ors enablesTIME, | _CALLp andLOSEp. By persistency, InvT1, InvT2 and the action types
we know that idling after statg can only disabl&1ME, but not enable other discrete actions.
Sincew is admissible, time must pass without bound. So within bounded time, one of the
discrete actions mentioned must be performed:

Ak : Ak>i
A ax € {BAD_CALLp, | _CALLp, LOSEp}
A the sum of time elapsing betwegn 1 ands, is bounded

Take such .
1. Suppos@x = BAD_CALLp. The lemma is fulfilled.

2. Supposey = | _CALLp.
Thens = RecLossy.busyp A RecLossy.clockp=0, sosc enables RETURNp andTIME.
As before, idling after statg; can only disableTIME, but not enable other discrete
actions. So within bounded time,RETURNp must be performed:

A: Al >k
A a = | _RETURNp
A the sum of time elapsing betwegpands is bounded

Take such ah.
We know thaty = Lossy.pcp=IR A Lossy'.clockp=0 andg enablesREM_RETURNp,



60 3 The RPC-Memory specification problem

LOSEp andTIME. Again we see that within bounded tinfeEM_RETURNp or LOSEp
must be performed:

dm: Am>|
A am € {REM_RETURNp, LOSEp}
A the sum of time elapsing betwegrandsy, is bounded

Take such am.

(a) Supposemn = REM_RETURNp. The lemma is fulfilled.
(b) Supposey, = LOSEp. We know thaim > | > k > i, so Case 3 applies.

3. Supposeyx = LOSEp.
Thens, = ClerkL.pco=WRALossy .pcp=WC. Now s, enables onlfTIME, but idling is
only allowed up to (and not beyond!) the state that enaRiRS FAILUREp. So within
bounded timeRPC_FAILUREp must be performed:

A: Al >k
A a = RPC_FAILUREp
A the sum of time elapsing betwegpands is bounded

The lemma is fulfilled.

Theorem 3.54 t-traces(Imp) C fair-t-traces(Spec)

Proof Supposes is a timed trace ofmp, andae = Sa15182% . .. is an admissible execu-
tion of Imp such thatt-trace(e) = B. Using the fact that TREF is a weak timed refine-
ment (Theorem 3.51), we can easily construct an admissible exeetitimhSpec such that
t-trace(a’) = B. It remains to prove thait’ is fair.

Initially, Lossy'.pcp=WC for eachP. Whenever_ossy'.pce=WC, the first action that
changed. ossy .pcp must bel CALLp. By Lemma 3.53, we know that each occurrence of
| _CALLp is followed within bounded time by a state in whithssy'.pc, = WC. Combining
this with InvT2 and the fact that is admissible, we see that for eaPh « must contain in-
finitely many occurrences of states such that hatssy’ . pco=WC andRecLossy.busyp=false.

Using the above and the fact thdtis admissible, we see that for eaBha’ must contain
infinitely many occurrences of states such fliateRPC.pc,=WC andRecRPC.busyp=false.
Since in such a state no locally controlled actions are enableB,faf must be weakly fair.
Combining this with the fact that there are no strong fairness s&gem) we obtain that is
fair. X



Chapter 4

A two-level approach to automated
conformance testing of
VHDL designs

Summary

For manufacturers of consumer electronics, conformance testing of embedded software is a vi-
tal issue. To improve performance, parts of this software are implemented in hardware, often
designed in the Hardware Description Language VHDL. Conformance testing is a time con-
suming and error-prone process. Thus automating (parts of) this process is essential.

There are many tools for test generation and for VHDL simulation. However, most test gener-
ation tools operate on a high level of abstraction and applying the generated tests to a VHDL
design is a complicated task. For each specific case one can build a layer of dedicated circuitry
and/or software that performs this task. It appears that the ad-hoc nature of this layer forms a
bottleneck of the testing process. We propogergric solution for bridging this gap: a generic

layer of software dedicated to interface with VHDL implementations. It consists of a number
of Von Neumann-like components that can be instantiated for each specific VHDL design.

This chapter reports on the construction of and some initial experiences with a concrete tool
environment based on these principles.

4.1 Introduction

As is well-known, the software embedded in consumer electronics is becoming increasingly
voluminous and complex. Accordingly, testing the software takes up an increasing part of the
product development process — and hence of the costs of products. Therefore, Philips considers
automating (parts of) the test process a vital issue.

More and more, manufacturers of consumer electronics do not completely develop the
software themselves but import parts from other manufacturers. To guarantee well-functioning
and interoperability of these parts, it is essential that they are tested for functional confor-
mance w.r.t. internationally agreed standards. Therefore, testing efforts in this area concentrate
on functional conformance testing (see [Hol91, ISO91, Kni93] for testing terminology and
methodology).

61



62 4 Automated conformancetesting of VHDL designs

To optimise performance (in terms of speed or bandwidth), the lower layers of protocol
stacks are often implemented directly in hardware. Testing these layers would imply hardware
testing. However, Philips is interested in detecting design ebefige implementation in
silicon, which would mean testing hardwatesignsrather than their implementations.

Nowadays, hardware is designed using internationally standardised Hardware Description
Languages. Testing a design then is testing a program in the description language at hand.
Among the Hardware Description Languages, VHDL [IEE93] is prominent.

There are many tools for test generation on the one hand and VHDL simulation, analysis
and synthesis on the other hand. Moreover a lot of effort is put into extending and refining
these tools. Ideally, therefore, the testing process could be automated by generating tests with
a test generation tool, and then executing these tests using a simulation tool. However, most
test generation tools expect behaviour to be modelled in clean-cut events with a high level
of abstraction. Applying such tests to a VHDL design whose interface behaviour consists of
complex patterns of signals on ports is by no means a trivial task. Now, it is always possible to
solve this problem by adding a layer of dedicated circuitry and/or software to bridge the gap
between low-level events and high-level events, but it appears that the ad-hoc nature of this
dedicated circuitry and software forms one of the bottlenecks of the testing process.

We propose generic solution for bridging the gap between generating tests on the abstract
level and executing tests on the simulation level. This makes it possible for each of the two
different tasks (test generation and test execution) to be performed at the appropriate level
within one test trajectory, with a higher degree of automation. The idea is to build a generic
layer of software (written in VHDL), dedicated to interface with VHDL implementations. We
call this layer theest bench. It consists of a number of components that fulfill various tasks:
to offer inputs to interfaces of the implementation, to observe outputs at these interfaces and to
supervise the test process. The components are Von Neumann-like in the sense that for each
specific VHDL design they are loaded with sets of instructions. These sets are compiled from
user-supplied mappings between high level and low level events and abstract test cases derived
from the specification. In order to be maximally generic, the test bench should accept tests
described in a standardised test language. In this way, any tool that complies with this test
description language can be used for test generation.

Of course, this test bench will not solve all the problems involved in interpreting abstract
tests. But by performing many of the routine (and repetitive) tasks, it enables the tester to
concentrate on the specific properties of the interface behaviour of the protocol under test.

This chapter reports on the construction of and some initial experiences with a concrete
tool environment based on these principles. This prototype tool environment is Pafled
and has been developed at Philips Research Laboratories Eindhoven, in cooperation with CWI
Amsterdam and the universities of Eindhoven and Nijmegen. It consists of a test generation
part and a test execution part. The intermediate language between the two parts is the standard-
ised test description language TTCINde and Tabular Combined Notation [ISO91, Part 3]).

In the test execution part we find the test bench written in VHDL, with a front-end that accepts
TTCN test suites.

In our tool environment, test generation is done byKR& Conformance Kit [BKKW9O0,
KWKK91]. This tool takes as input a specification in the form of an Extended Finite State
Machine (EFSM) and generates a TTCN test suite for the specificationL&ipérog tool
from [Cad] is used for VHDL simulation.



4.2 Global description of test environment and test process 63

This chapter is organised as follows. In Section 4.2, we globally describe the tool environ-
ment and the testing process it supports. Section 4.3 highlights each important step in the test
process. In Section 4.4, we describe our experiences with the use of the environment and dis-
cuss its limits. In Section 4.5, we compare our approach with other approaches for analysis of
VHDL designs. Finally, Section 4.6 gives a short account of what happened after this research
was published.

4.2 Global description of test environment and test process

In this section, we give an overview of the tool environment and the testing process it sup-
ports. The next section treats some interesting aspects in more detail. We begin with a short
digression orfunctional conformance testing.

Conformance testing aims to check that an implementation conforms to a specification.
Functional conformance testing only considers the external (input/output) behaviour of the
implementation. Often the implementation is given dsack box with which one can only
interact by offering inputs and observing outputs.

In the theory of functional conformance testing many notions of conformance have been
proposed. The differences between these notions arise from (at least) two issues. The firstissue
is the language in which the specification is described (and the (black box) implementation
is assumed to be described). Specifications can be described, e.g., by means of automata,
labelled transition systems, or by temporal logic formulas. Secondly, the differences arise
from the precise relation between implementation and specification that is required. Typically
the different conformance notions differ in the extent to which the external behaviour of the
implementation should match the specification.

Thus conformance testing always assumes a specific notion of conformance. However, for
most conformance relations, exhaustive testing is infeasible in realistically sized cases: some
kind of selection on the total test space is inevitable. So it is generally not possible to fully
establish that an implementation conforms to the specification; the selected tests rather aim
to show that the implementation approximately conforms to the specification. Conformance
then simply means: the resulting test method has detected no errors. An appropriate mixture
of theoretical considerations and practical experience should then justify this approach. This
holds in particular for the test process supported by our tool environment.

Following ISO methodology [ISO91, Kni93], the conformance test process can be divided
in the sequence of steps given in Figure 4.1.

Our prototype tool environment automates the test generation and test execution phases
and to a lesser extent the test realisation phase. It expects two inputs: the VHDL code for
the Implementation Under Test (henceforth called IUT) and the (abstract, formal) functional
specification, in the form of a deterministic Extended Finite State Machine (EFSM). From the
EFSM specification abstract test cases are derived. These test cases are translated to the VHDL
level and executed on the IUT. The history of the test execution is written to a log file and the
analysis phase just consists of inspecting this file and the verdicts it contains.

Note that the EFSM is required to be deterministic. We believe that the restriction to
deterministic machines is not a real restriction since we are mostly interested in testing a single
deterministic VHDL implementation.



64 4 Automated conformancetesting of VHDL designs

functional specification

1. test generation

abstract test cases

2. test realisation

executable test cases

3. test execution

test results log

4. test analysis

conformance verdict

Figure 4.1: Global conformance testing process

The tool environment consists of two parts, taking care of test generation and test execu-
tion, respectively. Each one contains an already existing tool. Test generation is done by the
Conformance Kit, developed by Dutch PTT Research [BKKW90, KWKK91]. When given an
EFSM as input, this tool returns a test suite for this EFSM in TTCN notation. The user canto a
certain extent determine the parts of the EFSM that are tested and the particular test generation
method used. We elaborate on this in Section 4.3.1.

The test cases in the test suite are applied to the IUT tegtdench, which is, like the
IUT, written in VHDL. The Leapfrog tool from [Cad] simulates the application of the test
suite to the IUT using the test bench. Thus testing an IUT here means: simulating it together
with the test bench. The test bench, which is described in more detail in Section 4.3.3 and in
[Sie96], consists of several components connected bysathe stimulators, the observers,
and thesupervisor take care of feeding input to the IUT, observing output from the IUT, and
coordinating the test cases and handing out the verdict, respectively. The test bench has been
designed generically and only needs to be instantiated for each particular IUT.

Compilers connect the test generation part, the output of which is in TTCN notation, to the
test execution part, the input of which must be readable for VHDL programs. There are three
compilers, one for each type of component of the test bench. The compiler for the supervisor
translates the TTCN test suite to an executable format. The compilers for the stimulators
and observers map abstract events from the EFSM to patterns of bit vectors at the VHDL
level. They require user-supplied translations (comparable to PIXITs in ISO terminology).
Section 4.3.2 discusses this in more detail.

Given an IUT written in VHDL and a specification or standard to test against, the global
test set-up from Figure 4.1 leads in our setting to the following sequence of steps, also depicted



4.3 Stepwisethrough thetesting process 65

EFSM PIXIT VHDL
spec design

test TTCN test VHDL test verdict
generation test realisation input execution log
suite

Figure 4.2: Overview of the test trajectory usiRlgact

in Figure 4.2:

0. (Manual) Write an abstract specification EFSM of the IUT.

1. (Automatic) Use the Conformance Kit to derive a test suite for this EFSM, specifying
which parts of the EFSM must be tested and what test generation method must be used.

2. (&) (Automatic) Compile the test suite to the executable format for the supervisor.

(b) (Manual) Define translations between abstract events and patterns of bit vectors (in
Figure 4.2 called PIXITSs).

(c) (Automatic) Compile the translations to input files for the stimulator and observer,
respectively.

(d) (Manual) Instantiate the test bench as appropriate for the IUT. That is: enter the
number of stimulator/observer pairs, the precise name and location of the compiled
translation files, etc.

3. (Automatic) Run the Leapfrog tool on the instantiated test bench together with the IUT.
4. (Manual) Inspect the resulting conformance log file.

We end this section by remarking that the Leapfrog tool also allows the use of the Hardware
Description Languageerilog [IEE95]. In particular, the Leapfrog can simulate combinations
of VHDL and Verilog programs, which makes it possible to plug a Verilog program as IUT
into the VHDL test bench.

4.3 Stepwisethrough thetesting process

The following sections explain the consecutive steps in the testing process more thoroughly.

4.3.1 Generatingtestswith the Conformance Kit

The Conformance Kit consists of a collection of tools for test generation.
The Extended Finite State Machine model supported by the Kit is a slight extension of the
traditional Mealy-style FSM model. Transitions are labelled with input/output pairs, where



66 4 Automated conformancetesting of VHDL designs

input and output are treated as simultaneous events (inputs without outputs are allowed). In
addition to states and transitions, an EFSM may contain a finite set of variables that range
over the booleans or over finite, convex subsets of the integers. Transitions may modify the
values of the variables and may be guarded by simple formulas over the variables. There is
also the option to mark transitions. For instance, it often happens that certain transitions are
added to the EFSM only to make it complete. These transitions are artificial and should not be
tested. This is achieved by marking them with a certain marker and excluding all transitions
marked thus from the test generation. Finally, it is possible to specify Points of Control and
Observation (PCOs) where inputs and outputs occur. They correspond to interfaces of the IUT.

To allow for test generation, the EFSM should be deterministic. Given a deterministic
EFSM, one of the tools in the tool set builds a deterministic, trace-equivalent, and minimal
FSM (i.e., the FSM exhibits the same external behaviour as the EFSM and contains no pair of
distinct but trace-equivalent states). Test generation tools proper take this FSM as input and
return a TTCN test suite.

We highlight two of the test generation methods (for more information on test generation
methods in general we refer to [FBRKR1, Hol91]).

e TheTransition Tour method. This method yields a finite test sequence (i.e., a sequence
of input/output pairs) that performs every transition of the FSM at least once. Thus it
checks whether there are no input/output errors.

e ThePartition Tour method. In addition to the previous method this method also checks
for each transition whether the target state is correct. It is similar to the UIO-method
[ADLU91, SD88] which in its turn is a variant of the classical W-method [Cho78,
Vas73]. Unlike the Transition Tour method, this method yields a number of finite test se-
guences, one for each transition of the FSM. Each one is a concatenation of the following
kinds of sequences:

— A synchronising sequence, that transfers the FSM to its (unique) start state. The-
oretically, such a sequence need not always exist. In practice however, most ma-
chines have a reset option and hence a synchronising sequence.

— A transferring sequence, that transfers the FSM from the start state to the initial
state of the transition to be tested.

— The input/output pair of the transition.

— A Uniquelnput/Output sequence (UIO) which verifies that the target state is correct
(that is, all other states will show different output behaviour when given the input
sequence corresponding to the UIO). If this sequence does not exist it is omitted.

Although theoretically the fault-coverage of this method is not total, not even when one
correctly estimates the number of states of the implementation [CVI89], the counter-
examples are academic and we expect that the fault coverage in practice is quite satis-
factory.

4.3.2 From abstract teststo executable tests

In the EFSM specification the input and output events of the IUT are described at a very
abstract level. For instance, a complicated pattern of input vectors, taking several clock cycles,



4.3 Stepwisethrough thetesting process 67

s_bit

Observe

=

s._ack

IUT

s_reset

s_data

Sender Receiver

Figure 4.3: An example IUT

may have been abbreviated to a single evergut _Dat um1. The abstraction is needed to
get a manageable set of meaningful tests. But when one wants to use the TTCN test suite
derived from the EFSM to execute tests on the IUT, one has to go back from the abstract level
of the EFSM to the concrete level of the VHDL implementation. This translation must be such
that the VHDL test bench knows for each abstract event exactly what input should be fed to
the IUT or what output from the IUT should be observed. For stimulators, the abstract input
events have to be translated to patterns of input bit vectors. For the observers we have to write
parser-code to recognise a pattern of output bit vectors as constituting a single abstract output
event.

These user-supplied translations may be quite involved and hence sensitive to subtle errors.
We expect that in the approach outlined here, this is the part that consumes most of the user’s
effort.

The translation is constructed in four steps:

1. All abstract events used in the EFSM are grouped per PCO in input and output event
groups.

2. All ports of the IUT are grouped into the input or output port group of one interface.
Each interface should be associated with exactly one PCO.

3. Each event of an input (output) event group at one PCO is translated to sequences of
values of the ports in the input (output) port group at the associated IUT interface. This
is done for each interface.

4. All event translations are fed to the compilers that generate code which is understood by
the test bench during simulation.

We will give a very simple example of a user-supplied translation that is input for the
observer compiler.

The IUT for which the example file is intended is a protocol that transfers data from a
Sender to a Receiver and, when successful, sends an acknowledgement back to the Sender.
For synchronisation purposes, the acknowledgement is an alternating bit. The IUT has two
interfaces (PCOs)Sender and Receiver. We consider the observer at tBender interface,
which should observe acknowledgement events. This situation is depicted in Figure 4.3.



68 4 Automated conformancetesting of VHDL designs

The Sender interface has two output ports (which are connected to the input ports of the
observer):s_bi t , through which the alternating bit is delivered, anéck, through which
arrival and presence of an acknowledgement is indicated. Furthermore, the interface has two
input ports:s_dat a, a 4 bit wide port through which th&ender communicates data to the
IUT, ands _r eset , which has the valug whenever th&ender resets the IUT.

An acknowledgement event consists of an announcementthat an acknowledgementis com-
ing, followed by the acknowledgement itself. The announcement is indicated by the signal at
s_ack having the valud ; the value at the _bi t port is not yet relevant. Subsequently, the
acknowledgement is delivered: partack still carries1, and ports _bi t has the valu® or
1 for the alternating bit.

Now we have all information needed to construct the translation that is input for the ob-
server compiler. The translation code is given in Figure 4.4. Note that the lines preceded with
/| are comments.

First, the translation contains two so-caliguhlifiers, conditions that determine when the
parsing of the output of the IUT at this interface should be started or aborted. Parsing should
start when an acknowledgement is coming, so the start qualifier uses the values cdittke
port. Parsing should be aborted whenever the IUT is reset, so the abort qualifier uses the value
of thes_r eset port.

Next, the event translation proper is given. Bit masks are defined to recognise individual
output bit vectors. In this case the vectors represent two one-bit portsuitht at the first
position ands _ack at the second. So maskk _comi ng hasl for s_ack, andx fors _bi t,
indicating that bothl1 and01 match here. Maskck_0 only matches whess_bi t is 0
ands_ack is 1. Output events are defined as regular expressions over the (names for the) bit
masks. Here, the arrival of an acknowledgement is recognised by consecutive matching of the
two relevant bit masks. This two-phase definition of events reflects the way the observer parses
the output from the IUT during execution.

4.3.3 Executingtestsat the VHDL level

In order to test the VHDL implementation with the generated tests, we need to execute the
VHDL implementation. Executing VHDL code means hardware simulation, for which we use
the Cadence Leapfrog tool.

When simulating a VHDL program, which models a reactive system, the program should
be surrounded by an environment that behaves — from the program’s point of view — exactly
like the environment in which the program eventually must operate. This environment should
also be able to observe whether the program is operating correctly, and to hand out verdicts
reflecting these observations. Finally, since the execution is done by VHDL simulation, the
environment itself should be programmed in VHDL too.

Creating the proper environmentin VHDL is hard work. However, many tasks remain the
same when testing different IUTs. We have therefore creatgshaic VHDL environment,
which can easily be instantiated to suit any IUT. The environment we created to perform these
tasks is referred to as tltest bench.

The test bench consists of three kinds of components: a supervisor, some stimulators and
some observers. The components communicate with each other by means of a bus. Figure 4.5
shows the structure of the test bench.

Each component type is dedicated to perform its particular task for any IUT. To achieve



4.3 Stepwisethrough thetesting process 69

/1 Cbserver bit patterns for the PCO at the Sender side

/1 Cbserved ports, with number of bits:
/1 s_bit(1l) s_ack(1)

PCO Sender
QUALI FI ERS

/1 Start parsing output when this qualifier is true
[(:s_ack ="1")]

/1 Abort parsing when this qualifier is true
[(:s_reset ="1")]

MASKS
ack_com ng = ' x1’
ack_0 ='0Yr
ack 1 =11
EVENTS
ACK_QUT_0 = ack_comi ng ack_0;
ACK_QUT_1 = ack_comi ng ack_1;

Figure 4.4: Example user-supplied translation for observer

this, each component type has its own instruction set. When plugging an IUT into the test
bench, each componentis loaded with a sequence of instructions which are specific to the IUT
in question. Thus the components can be viewed as small Von Neumann machines.

In the following paragraphs we explain the task of each component type in detail. There-
after, we describe how the generic test bench is instantiated for testing a certain IUT.

The supervisor component has control over the whole test bench. It takes the generated
TTCN test suite as input, works its way through each test case and outputs a log file with the
verdict and some simulation history. While traversing a test case, it steers the stimulator and
observer components and uses a number of timers. Each test case is executed in the following
way.

When the current TTCN test case states that input should be provided to the IUT, the
supervisor notifies the stimulator at the designated interface. After the stimulator indicates that
it has completed this task, the supervisor goes on with the remainder of the test case.

When the TTCN test case states that output should be generated by the IUT, the supervisor
checks with the observer at the designated interface to see if this output has been observed. If
the output has been observed, the supervisor goes on with the remainder of the test case. If
nothing was observed, the supervisor will wait for the observer’s notification of new output
from the IUT. If output other than the desired output is observed, the TTCN code indicates
what action should be taken. The TTCN generated by the Conformance Kit typically hands



70 4 Automated conformancetesting of VHDL designs

supervisor

|

communication bus

| stimulator#1 — interface#1 —| observer#1 | |
| |
. | | .
. I IUT [ .
. | | .
| |
: stimulator #n —»: interface #n :—» observer#n |__|

Figure 4.5: Structure of the VHDL test bench

out the verdicfail in such a situation.

When the TTCN test case states that a verdict should be handed out, the supervisor logs
this verdict to the output file, and quits the current test case.

The other TTCN commands handled by the supervisor are timer commands. TTCN offers
the possibility to use timers for testing timing aspects of the behaviour of a system. These
timers may be started, stopped and checked for a time-out. At the start of the TTCN test
suite, all timers with their respective duration are declared. The supervisor handles these timer
instructions in the obvious way. It can instantiate any number of timers with different durations
and use them in the prescribed way.

The TTCN produced by the Conformance Kit, however, employs the timer construction in
only two ways. It uses one timer for the maximum time a test case should take. This ensures
that the test bench will not get stuck in the simulation. A second timer is used to test transitions
from the EFSM that have an input event but no output. Since no output event is specified, the
IUT should not generate one. This is tested by letting a timer run for some time, during which
the IUT should not generate output. Any output observed before the timer expires is considered
erroneous and leads to the verdait. The precise value to which the no-output timer should
be set is gleaned from the specification.

The stimulator component provides input to the IUT. It waits until the supervisor com-
mands it to start providing a certain abstract event, then drives the input ports of the IUT with
the appropriate signals. It has access to the user-defined translation of abstract input events to
VHDL input signals.

The observer component observes output from the IUT and notifies the supervisor of the
abstract events it has observed. Like the stimulator component, it has access to the user-defined
translation of VHDL output signals to abstract output events.

Observing the ports of a VHDL component and recognising certain predescribed events is
no trivial task. The observer must parse the output of the IUT such that the patterns provided
by the user are recognised. Parsing is done with the help of a parser automaton, constructed



4.4 Experiences 71

with the UNIX tool Lex (and the user-defined translation). The observer uses this automaton
to decide which event matches the current output. When the IUT outputs a sequence of values
that does not fit into any of the patterns, the supervisor is notified of an error using a special
error event.

The supervisor and stimulators communicate directly in a synchronous way — the supervi-
sor always waits for the stimulators to end their activity before resuming its own task — while
the supervisor and observers communicate in an asynchronous way via FIFO queues.

In order to plug an arbitrary VHDL implementation into the test bench as the current |UT,
someinstantiating has to take place. The test bench must have as many instantiations of the
observer and the stimulator component as the IUT has interfaces. These instantiations must
each be connected to the proper interface of the IUT. The IUT may need some external clock
inputs, these have to be provided with the correct speed. The supervisor must have the desired
number of timers at its disposal, as specified in the TTCN test suite. Each observer (stimulator)
must be given access to the compiled version of the user-defined translation. Likewise, the
supervisor must be given access to the compiled version of the TTCN test suite.

When these instantiating actions have been performed, the test bench is ready for simula-
tion.

4.4 Experiences

We experimented with our tool environment by running it on a small protocol example. The
protocol was derived from the Alternating Bit Protocol [BSW69], with some modifications to
test crucial features of the test bench. The features tested mostly concerned the synchronising
mechanisms in the test bench.

During the test runs, the VHDL implementation we constructed for the example protocol
proved not to conform to its abstract specification. Among other things, the toggling of the
alternating bit was not implemented correctly. Already in this small protocol, multiple errors
were detected that were subtle enough to escape a manual inspection of the VHDL code.

After conformance was shown for the corrected implementation, we modified the abstract
specification EFSM to have discrepancies the other way around. All of these were detected.

Besides this small protocol, we considered a fair-sized, more complex and industrially
relevant design. For this we selected a part of the 1394 Serial Bus Protocol, which has been
standardised in [IEE96]. The 1394 protocol implements a high speed, low cost bus that can
handle communication between video and audio equipment, computers, etc. It supports multi-
media applications, allows for “plug-and-play”, and provides data transfer rates ranging from
100 Mbit/s to 400 Mbit/s.

The experiments were not carried to completion, because of several problems encountered
along the way. We started off with a natural and abstract specification EFSM suggested by
the standard document. However, when constructing the translation from abstract events to
low-level events, we found that the interface behaviour of the implementation had a very high
degree of interleaving of input and output events at different interfaces. In fact, the low-level
representation of one abstract event often turned out to be a complete protocol in itself, involv-
ing low-level synchronisation schemas and corresponding handshake mechanisms. To enable
the test bench to deal with this behaviour, these protocols should be encoded into the stimula-
tor and observer components. Given the simple, generic set-up of the stimulator and observer



72 4 Automated conformancetesting of VHDL designs

components, this appeared to be virtually impossible. This problem was worsened by the fact
that the documentation of the protocol and the PIXIT information both lacked the degree of
precision required to construct the translation. It remains to be investigated whether the prob-
lems encountered with the complicated interface behaviour are specific to the 1394 protocol or
occur more frequently and require a refinement or extension of the test bench.

The remainder of this section is devoted to the limits of the test generation method sup-
ported by the Conformance Kit.

The EFSM specification formatimposes certain restrictions. It has difficulties in modelling,
e.g., output events without an input, events occurring simultaneously at multiple interfaces,
data parameters of events, and timers. Solutions here require more research in the theory of
testing.

Regarding the Conformance Kit itself, it would be convenient if the test generation process
could be steered more directly by the user. For instance, one may want to transfer the imple-
mentation to a certain interesting state, and perform certain experiments in that state, whereas
the Kit moves in a completely autonomous way through the state space.

45 Related work

Our tool environment has a modular structure and integrates two well-known techniques: one
for automatic generation of TTCN test suites based on finite state machines and the other for
the simulation of VHDL hardware designs.

Prior to this research, a number of papers that employ similar techniques for analysing
VHDL designs have appeared. From these, only [G86] seems to follow a similar approach
to conformance testing. When keeping the phased trajectory from Figure 4.1 in mind, the fo-
cus in [GFL™96] is on the test generation phase, the other phases are not described in detail.
The method used for test generation is quite different from the classical graph-algorithmic ap-
proach such as applied by the Conformance Kit. Model checking techniques are used to derive
the tests automatically from an FSM model of either the implementation or the specification.
To test a certain transition, a model checking tool is fed with the FSM and a query asserting
the non-existence of this transition. The tool derives a counterexample containing the path to
the transition. This path is then used as a test sequence. More general temporal formulas can
be used to direct the counterexample to check certain situations. Selection of interesting tran-
sitions is based on a ranking of state variables, as opposed to the transition marking supported
by the Kit (see Section 4.3.1). Although coverage is obtained w.r.t. the ‘interesting’ state vari-
ables, there is no measure for coverage w.r.t. exhaustive testing. It seems that theoretic support
for dealing with the state explosion problem is as much an issue for this approach, as it is for
ours.

In [HYHD95] a tool is described for exhaustive state exploration and simulation of VHDL
designs. The VHDL design is transformed into an FSM for which a transition tour is generated
(see Section 4.3.1). This tour induces a finite set of finite sequences of bit vectors which
together exercise every transition of the VHDL design. As this tool only concerns simulation,
there is no notion of conformance w.r.t. a specification, or a mechanism for automatic error
detection.

In [WH96] a tool environment is described for the automatic execution of test scripts on
VHDL components. There is no support for the automation of test script generation itself.



4.6 Later developments 73

Finally, there exist many tools for theerification of VHDL designs (e.g., [BBDEL96,
BJ96a, BBD 96]). Each of them maps VHDL code to some semantical domain, on which the
verification algorithms operate. It may be worthwhile to see whether our approach can benefit
from techniques used in these tools.

4.6 Later developments

Following up on this research, other projects have worked with the test environment. In 1997,
the test environmentwas used to testan MPEG2 decoder chip in the DIVA project [FMMW298].
In 1998, the test environment was used to test a 64 inch projection TV produced by Philips
Consumer Electronics [Hol98a, TL#99]. Further developments and experiments are still
taking place at Philips.

After the research presented here was published, some very similar research was presented
in [KVZ98, KVZ99]. In these papers, the test generation tool TGV [FJJV96] is used to gener-
ate high-level tests which are translated and executed at the VHDL/Verilog level. The structure
of the test environment is based on three component types which seem to have the same tasks
as the supervisor, stimulator and observer in our test bench. A difference with our method
is that test generation is done on-the-fly, such that the selection of the next test step depends
on the results of executing the last test step. The test generation method is based on Lotos
[ISO89].



74

4 Automated conformancetesting of VHDL designs




Chapter 5

Exploiting symmetry in
protocol testing

Summary

Test generation and execution are often hampered by the large state spaces of the systems in-
volved. In automata (or transition system) based test algorithms, taking advantage of symmetry
in the behaviour of specification and implementation may substantially reduce the amount of
tests. We present a framework for describing and exploiting symmetries in black box test deriva-
tion methods based on finite state machines (FSMs). An algorithm is presented that, for a given
symmetry relation on the traces of an FSM, computes a subautomaton that characterises the
FSM up to symmetry. This machinery is applied to the classical W-method [Vas73, Cho78] for
test derivation. Finally, we focus on symmetries defined in terms of repeating patterns.

5.1 Introduction

It has long been recognised that for the proper functioning of components in open and dis-
tributed systems, these components have to be thoroughly tested for interoperability and con-
formance to internationally agreed standards. For thorough and efficient testing, a high degree
of automation of the test process is crucial. Unfortunately, methods for automated test gen-
eration and execution are still seriously hampered by the often very large state spaces of the
implementations under test. One of the ways to deal with this problem is to exploit structural
properties of the implementation under test that can be safely assumed to hold. In this chapter
we focus on taking advantagesimmetry that is present in the structure of systems. The sym-
metry, as it is defined here, may be found in any type of parameterised system: such parameters
may for example range over IDs of components, ports, or the contents of messages.

We will work in the setting of test theory based on finite state machines (FSMs). Thus,
we assume that the specification of an implementation under test is given as an FSM and the
implementation itself is given as a black box. From the explicitly given specification automaton
a collection of tests is derived that can be applied to the black box. Exploiting symmetry will
allow us to restrict the test process to subautomata of specification and implementation that
characterise these systems up to symmetry and will often be much smaller. The symmetry is

75



76 5 Exploiting symmetry in protocol testing

defined in terms of an equivalence relation over the trace set of the specification. This definition
is inspired by symmetry-based reductions in the field of verification [AHI98, CFJ93, EJP97,
ES93, ES97, God96, GS97, ID96]. Some requirements are imposed to ensure that such a
symmetry indeed allows to find the desired subautomata. We instantiate this general framework
by focusing on symmetries defined in terms of repeafiatierns. Some experiments with
pattern-based symmetries, supported by a prototype tool implemented usiregREOZESAR

tool set [Gar98], have shown that substantial savings may be obtained in the number of tests.

Since we assume that the black box system has some symmetrical structurey(aifahe
mity hypothesisin [CG97, Gau95]), it is perhaps more appropriate to speakayfbox testing.

For the specification FSM it will generally be possibleviify that a particular relation is a
symmetry on the system, but for the black box implementation one lzasume that this is the

case. The reliability of this assumption is the tester’s responsibility. In this respect, one may
think of exploiting symmetry as a structured way of test case selection [BTV91;"BBK

for systems too large to be tested exhaustively, where at least some subautomata are tested
thoroughly.

This research is not the first to deal with symmetry in protocol testing. In [MAD96], similar
techniques have been developed for a test generation methodology based on labeled transition
systems, success trees and canonical testers [Bri88, Tre89]. Like in our case, symmetry is an
equivalence relation between traces, and representatives of the equivalence classes are used for
test generation. Since our approach and the approach in [MAD96] start from different testing
methodologies, it is not easy to compare them. In [MAD96], the symmetry relation is defined
through bijective renamings of action labels; our pattern-based definition generalises this ap-
proach. On the other hand, since in our case a symmetry relation has to result in subautomata
of specification and implementation that characterise these systems up to the symmetry, we
have to impose certain requirements, which are absent in [MAD96].

In [KK97], symmetrical structures in the product automaton of interoperating systems are
studied. It is assumed that the systems have already been tested in isolation and attention is
focused on pruning the product automaton by exploiting symmetry arising from the presence
of identical peers. In the present approach, we abstract away from the internal composition of
the system and focus on definingeneral framework for describing and using symmetries on
FSMs.

This chapter is organised as follows. Section 5.2 contains some basic definitions concern-
ing FSMs and their behaviour. In Section 5.3, we introduce and define a general notion of trace
based symmetry. We show how, given such a symmetry on the behaviour of a system, a subau-
tomaton of the system can be computed, a so-catiat, that characterises the behaviour of
the system up to symmetry. In Section 5.5 we apply the machinery to the classical W-method
[Cho78, Vas73] for test derivation. In Section 5.6 we will instantiate the general framework
by focusing on symmetries defined in terms of repeating patterns. Section 5.7 contains an
extensive example, inspired by [TPHT96]. Finally, we discuss future work in Section 5.8.

5.2 Finite state machines

In this section, we will briefly present some terminology concerning finite state machines and
their behaviour, that we will need in the rest of this chapter.
We letNat denote the set of natural numbers. (Finite) Sequences are denoted by Greek letters.



5.3 Symmetry 77

Concatenation of sequences is denoted by juxtaposiidanotes the empty sequence and the
sequence containing a single elemarns simply denotedh. If o is non-empty thefirst(o)
returns the first element of andlast(o) returns the last element of

If V andW are sets of sequences amds a sequence, thewW = {ot | T € W}
andVW = J,.y o W. For X a set of symbols, we defin¥® = {¢} and, fori > 0,
X' = XI=1u X XI=1. As usual X* = [ cna X'-

Definition 5.1 A finite state machine (FSM) is a structured = (S, =, E, s% where
e Sis afinite set oftates
e X afinite set ofactions
e E C Sx X x Sis afinite set okdges
e sV e Sis theinitial state

We require tha#d is deterministic, i.e., for every pair of edgds, a, '), (s,a,s”) InE, s’ = §’.
We write S4, X 4, etc., for the components of an FSM but often omit subscripts when they
are clear from the context. We Ists’ range over states, @', b, c, ... over actions, and, €
over edges. lé = (s, a, §') thene = a. We writes B i (s,a,s) € E and withs 2 we
denote thas — s for some state’. A subautomaton of an FSMA is an FSMB such that
Sg =S?4, S5 C Sy, 25 C 4, andEg C E4.

An execution fragment of an FSM A is a (possibly empty) alternating sequence=
Spa1 s+ -an Sy of states and actions of, beginning and ending with a state, such that for
alli, 0 <i < n, we haves G+ S+1. If 5 = s theny is aloop, if n # 0 theny
is a non-empty loop. An execution of A4 is an execution fragment that begins with the ini-
tial state of. 4. Thetrace for execution fragmenyy = spa1s1---an Sy of A is defined as
trace(y) = aiaz---an. If o is a sequence of actions, then we wite—> s’ if A has an
execution fragmeng with first(y) = s, last(y) = &/, andtrace(y) = o. If y is a loop, then
o is aloop-inducing trace. We writes — if there exists ars’ such thas — s/, and write
traces(s) for the setf{fo € (2 4)* | s 75}, We writetraces(A) for traces(sg‘).

53 Symmetry

In this section we introduce the notion of symmetry.

We want to be able to restrict the test process to subautomata of specification and imple-
mentation that characterise these systems up to symmetry. In papers on exploiting symmetry in
model checking [AHI98, CFJ93, EJP97, ES93, ES97, God96, GS97, ID96], such subautomata
are constructed for explicitly given FSMs by identifying and collapsing symmetsiatds.

We are concerned with black box testing, and, by definition, it is impossible to refer directly

to the states of a black box. In traditional FSM based test theory, FSMs are assumed to be
deterministic and hence a state of a black box is identified as the unique state of the black box
that is reached after a certain trace of the system. Thus it seems natural to define symmetry as
a relation ovetraces.



78 5 Exploiting symmetry in protocol testing

For our basic notion of symmetry on an FS8; we use an equivalence relation @ 4)*,
such that4 is closed under the relation, i.e., if a sequence of actions is related to a trade of
then the sequence is a traceftoo.

The idea is to construct from the specification automaton an automaton such that its trace
set is included in the trace set of the specification and contains a representative trace for each
equivalence class of the equivalence relation on the traces of the specification. In order to
be able to do this, we define a symmetry to be the pair consisting of the equivalence relation
and a representative-choosing function. We impose some requirements on the symmetry. For
the specification we demand (1) that each equivalence class of the symmetry is represented
by a unique trace, (2) that prefixes of a trace are represented by prefixes of the representing
trace, and (3) that representative traces respect loops. The third requirement means that if a
representative trace is a loop-inducing trace, then removing the loop-inducing part also yields
a representative trace. This requirement introduces some state-based information in the defini-
tion of symmetry.

These requirements enable us to construct a subautomaton of the specification, a so-called
kernel, such that every trace of the specification is represented by a trace from the kernel. Of
course, it will often be the case that the symmetry itself is preserved under prefixes and respects
loops, so the requirements will come almost for free.

For the black box implementation, we will, w.r.t. symmetry, only demand that it is closed
under symmetry. So if tests have established that the implementation displays certain be-
haviour, then by assumption it will also display the symmetrical behaviour. In Section 5.5,
where the theory is applied to Mealy machines, we will in addition need a way to identify a
subautomaton of the implementation that is being covered by the tests derived from the kernel
of the specification.

Definition 5.2 A symmetry Son an FSMA is pair (~, ()') where~ is a binary equivalence
relation on(Z 4)*, and()" : (X 4)* — (T _4)* is arepresentative function for ~ such that:

1. Ais closed under: If o € traces(A) ando ~ 7, thent € traces(A).
2. Only traces of the same length are related: i 7, then|o| = |z|.
3. (' satisfies:
@ o' ~o
b)to=1"=0'
(c) OF is prefix closed o: If o a € traces(A) and(o a)" = th, thene" =t

(d) (" isloop respecting on representative traceésifo; 03)" = 01 0203 € traces(A)
andoy is a loop-inducing trace, the1 03)" = 01 03.

As mentioned above, we will demand that there exists a symmetry on the specification, while
the implementation under test is required only to be closed under the symmetry.

Proposition 5.3 (¢")" =o'

Definition 5.4 Let S= (~, ()') be a symmetry on FSM!.. A kernel of A w.r.t. Sis a minimal
subautomatoiC of A, such that for every € traces(A), o' € traces(K).

Note that although the kernel is unique since it is minimal, the unicity is relative to the
representative function.



5.4 Construction of akerne 79

5.4 Construction of a kernel

In this section, we fix an FSMA and a symmetngs = (~, ") on A. Figure 5.1 presents
an algorithm that constructs a kernel.dfw.r.t. S. It basically explores the state spaceAf
while keeping in mind the trace that leads to the currently visited state. As soon as such a trace
contains a loop, the algorithm will not explore it any further.

In Figure 5.1 enabled(s, A) denotes the set of actiomssuch thatE 4 contains an edge
(s,a,s), and for such am, €ff (s, a, A) denotess’. Furthermorerepr(c, E) denotes the set
F of actions such tha < F iff there exists an actiob € E such thatb" a = (o b)", that
is, all candidate actions that extemt to a greater representative trace. We will only call this
function foro such thato” = o (see Lemma 5.7). By definition @j", for some actiore,
(o b)) =0o'"c=oc. So, sinced is deterministic and closed undet F € E and if E is
non-emptyF is non-empty. This justifies the functi@hoose(F) which nondeterministically
chooses an element from In the algorithm, the global variablé is the growing state space
which is returned at the end of the algorithm, and updated during the execution of the procedure
Build_It. The local variabld= for Build_It is not significant for the execution of the algorithm
but is useful for proving correctness.

The remainder of this section is devoted to the correctness of algorithm Kernel. In order
to prove that the algorithm works properly, we first prove that it terminates, that it creates a
subautomaton aoffl and that Buildlt uses its parameters properly.

Lemma5.5 The execution of the algorithm Kerriel, S) terminates.

Proof The number of states id is finite, and for each nested call of Builts’, o/, Seen’)
within Build_It(s, o, Seen), Seen’ = Seen U {s'} with s’ ¢ Seen. So there can be only finitely
many levels of such nested calls. Furthermore, the number of enabled transitidedinite,

so the while loop that empties (E decreases strictly monotonically during this loop until it's
empty) can make finitely many nested calls to Bulild X

Lemma 5.6 During execution of Buildt(s&,e,(/)), automatoriC is a subautomaton o, and
K grows monotonically.

Proof Obvious from the algorithm. X

The following lemma concerns the value of the variakleat the moment that the call to
Build_It is made.

Lemma 5.7 When Kernell,S) during its execution calls Buildk(s,o,Seen), then at that mo-
mentsY. —x sando’ = 0.

Proof By induction on the length of o.

e n = 0. Theno = €. From observing the algorithm Kernel and procedure Bitildk
is clear that the only call of Buildt(s,e,Seen) is with s = 594 andSeen = (. In the

initialisation of K, s has been defined equal$f. AssY —x sand(e)" = e, the
result follows.

e N=m+1.



80

5 Exploiting symmetry in protocol testing

1 function Kernel(4, S): FSM;
2 var K: FSM;
3
4 procedureBuild_lt(s, o, Seen);
5 wvarabs,E F;
6 begin
7 if s¢ Seen then
8 E := enabled(s, A);
9 F =g
10 while E # ¢ do
11 a := choose(repr (o, E));
12 s = €ff(s, a, A);
13 Sc = Sc U {s};
14 Y = X U{a};
15 Ex := Ex U{(s,a,s)};
16 Build_It(s/, o a, SeenU {s});
17 F:=FuU/{a};
18 foreach be E.ca~ob do
19 E:=E\ {b};
20 od;
21 od;
22 fi;
23 end;
24
25 begin
26 sy =s9;
27 Sci={s)h;
28 I =0,
29 Ex :=0;
30 BuildIt(sy, €, #);
31 returnk;
32 end.

Figure 5.1: The algorithm Kernel



5.4 Construction of akerne 81

Supposer = ¢’ ais a trace of lengtim + 1 and Kerneld,S) calls Build It(s,o, Seen).
Sinceo # ¢, the call Buildlt(s,0,Seen) must occur within the execution of a call

Build_It(s',0”,SeerY). By the induction hypothesis, we know trﬁ 5>k s. When
Build_lt(s',0’,Seen’) calls Build.It(s,0c" a,Seen) then (s, a, s) has just been added to
Ei, with a from enabled(s, A) ands = €ff(s’, a, A). Sos —am s when the call
Build_It(s,0,Seen) is made, and it follows that e traces(X).

Astoo’ = o. When BuildlIt(s',0’,Seen’) calls Build.It(s,0” a,Seen) then by definition
of choose(repr (¢”, E)), (6/)" a = (¢’ a)". Since, by induction hypothesigr’)" = o/,
(6’ a)" = o’ a, which completes the proof.

X

Lemma5.8 If Kernel(A4,S)=K and during its execution has called Bullds,o,Seen), then
s> T sando’ =o.

Proof Follows immediately from Lemmas 5.6 and 5.7. X

Lemma5.9 If Kernel(4,5)=K ands — t then there is & such thats? —x s and
(ca)’ =oa.

Proof If s —a>,c t, then we know by Lemma 5.6 and by the fact that execution starts with
K empty, that the transitio(s, a, t) has been added 6 by execution of line 15 of algorithm
Kernel. This happens during the execution of the call Bilti{d,o,Seen) for somes and some

Seen, so by Lemma 5.8 we may conclude that upon compleﬁﬁn,im sando’ = o.
By the definition ofa during execution of the call Buildt(s,o,Seen) at line 11, we see that
(ca) =oca. X

Lemma 5.10 When Kernel@,S) calls BuildIt(s,o,Seen), then during the execution of Build
the following holds:

1. at termination of the while loop, the following property holds:
a e F = Kernel A, S) has called Buildt(eff (s, a, K), o a, SeenU {s})

2. attermination of the while loop, the following property holds:

s—b>A=>EIae F.ca= (ob)

Proof

1. When the while loop is started, is empty. The only statement that add$o F is at

line 17, which is executed after lines 12 through 16 have been executed, hence the edge

(s, a, 8') has been added ©y and Buildlt(s', oa, Seen U {s}) has been called.

2. At the start of the while loopE = enabled(s, A,), sob € E at the start of the while
loop. At termination of the while loopE is empty. Actions are never addedEo only
removed fromE at line 19. So during the execution of the while loop, certaialy-
enabled(s, A4,). We observe that during the execution of the while loop for eatha €



82 5 Exploiting symmetry in protocol testing

repr (o, E), thena € repr (o, enabled(s, A, )). At the moment thal is removed fromE
(at line 19), the condition that a ~ o b holds. Sincea was defined at line 11 and has
not changed since, and by our observation, it holdsahatepr (o, enabled(s, A, )). So
there is ac € enabled(s, A,) such thab a = (o €)". Sinceo a >~ o b, and by definition
of representativey b ~ o c. By uniqueness of representativea = (o b)", and the
result follows.

X

Lemma5.11 If Kernel(A4,S) during execution calls Buildt(s,o,Seen) with o = ajay. . . an,
soimsliAsz...iAsq,andsozs&,then

1. Kernel4,S) calls Build.It(sp,e,9)

2. forO<i < n,Build_lIt(s ,0i,Seen;) calls BuildIt(s +1,0i+1,5eeni+1) with oy = a1ay.. . . g;
and for 0<i <n, Seenj = U1, .i—1{Si}

3. s =5, andSeen = Seen,,
Proof By induction on the length of o.
e n=0. Theno = ¢, and the result follows immediately.

e N=m+1.
Supposer = ajay...am+1 and Kernel@,S) calls Build.lt(s,0,Seen) with s i>A
ap am+1 0 I i

S] —> 4 ... —> 4 Sm+1 andsg = Sy Leto’ = a1a2...am. Sinceo # ¢, the call
Build_lt(s,0,Seen) must occur within the execution of a call Built{s’,o’,Seen’) and
Seen = Seen'U{s’}. By the induction hypothesis, we know tt&een’ = Seenp,, thats’ =
Sm, that Kernel(d,S) calls Build.It(sp,€,4), that for 0 < i < m, Build_It(s ,0i,Seen;)
calls Build It(5 +1,0i+1,5een;+1) with oy = aja2...a and thatfor0<i < m, Seen; =
Ujeo,..i—y{sil-

So Build.It(sm,om,Seeny) calls Buildt(snr1,0m+1,5een), and we need to prove that
S = Snt1 andSeenmi1 = Seen = (Jjc01,. m{Sj}. Looking at the statements in
Build_It(sm,om,Seenm) that call Build It(Sm+1,0m+1,.5een), we see thas = sp41 and
Seen = Seenm U {Sm}. S0Seen = (Uje{o’lym’m_l}{Sj HhU{sn} = Uje{oyl’_”m}{sj} and
the result follows.

X

Lemma5.12 If Kernel(A,S) during execution calls Buildt(s,o,Seen), then

(o (o
s e Seen & Joy, 00.0 =(71(72/\02;£€/\S?4—1>_AS—2>_AS

Proof From Lemmas 5.6 and 5.8 it follows thate traces(.4). The lemma then follows from
Lemma5.11. X
The next theorem completes the proof of the fact that the algorithm Ket/®l¢eturns a
kernel forA w.r.t. S.

Theorem 5.13 Let K = Kernel(4,S).



5.4 Construction of akerne 83

1. If K’ is a subautomaton of such thato e traces(A), o' e traces(K'), then thenC is
a subautomaton d€’.

2. If o e traces(A), thens' e traces(K).

Proof Firstwe prove Iltem 1. From the algorithm Kernel it is obvious that for each statg,
eithers is the initial state, or there is a transition leadingt&@incek’ andX’ are subautomata
of A, their initial states are equal. SinkeandK’ are deterministic and representative traces
are unigque, and since by Lemma 5.9 each transitiofi ia part of a representative trace, we
see that each transition i must be present ift’. Combining all these observations, we see
that each state ift is presentin’. We conclude thak’ is a subautomaton df’.
Asto Item 2. Letr = ¢". SinceA is closed unde8, t € traces(A); say thats?4 —T>A t.
We prove a stronger propentgv(z) by induction on the length of o (= the length ofr).
Inv(t) = A T € traces(K)
A 3 Seen.
v Kernel(A, S) during execution calls Buildt (t, =, Seen)
V ANT=1T172a713
/\S&&_At/ E)_At/ i>_,4t
A T1 T2 contains no non-empty loop-inducing trace4n
A Kernel 4, S) during execution calls Buildit(t’, t1 T2 a, Seen)

e N=0.
Theno = ¢, and alsor = €. Sot = s5. Sinces € S, € € traces(K). It suffices to
observe that Kernel(,S) calls Build_lt(sfl\,e,@).

e N=m+ 1.
Induction Hypothesis (IH): &< |p| < m = Inv(p")

Supposer = o’b, T = 7/c, and|o| = || = m+ 1. Since()" is prefixed closed,
(/)" =7’. Sincer € traces(A), T’ € traces(A). We distinguish two cases.

— 7/ does not contain a non-empty loop-inducing trace.

We show that, for some s&een, Kernel A, S) calls Build It(t, ' c, Seen). By
Lemma 5.8 we then know that ¢ € traces(K), which provednv().

Assumesy — 4 t'. Since(c’)" = 7/, Inv(t’) holds by IH, sor’ € traces(K).
There is no loop-inducing trace iri, and bylnv(z’), for someSeen’, Kernel A4, S
calls Build It(t’, t/, Seen’). We now inspect the execution of procedure Bultld
for this call. By Lemma 5.12, we know that ¢ Seen’. By Lemma 5.10 we
know that upon completion of the while loop Built{t”,z’ ¢/,Seen’ U {t'}) has

been called, for some statéand actiorc’ such that’ an t” and(z’c)" =1'c.
By Lemma 5.3, we know thatr’c)” = t'c, soc’ = ¢ and hencea” = t. Thus,
Build_lt(t,z’ c,Seen’ U {t’}) has been called.

— 7/ contains a non-empty loop-inducing trace.
Then there exist1, 12, 13, 01, 02, 03, &, andt’ such that



84 5 Exploiting symmetry in protocol testing

AN T=T1T172a13CA 0 = 010203
Al =lo1l Alr2a] = |o2| A |T3c| = |o3]
71 , Ted , 13C
AN S—putl — gyt — 4yt
A 1172 CONtains no non-empty loop-inducing trace4n

We show that, for some s8ten, Kernel A, S) calls Build.It(t’, 71 T2 a, Seen), and
thatr € traces(K). Trivially, |t1 2a] < |r1 2@ 13|, and|r1 13 €| < |11 T2 @73 C|.
Since ()" is prefix closed and” = 7, ri1wa = (r12a)". Since()' is loop
respectingz; 3¢ = (r173¢)". So we may apply IH and obtain thatv(zy 2 @)
andlnv(zy T3 ¢) hold. This means that 7> a € traces(K), t1 T3 ¢ € traces(K), and
since there is no loop-inducing tracetrs, that, for some sefeen, Kernel A, S)
calls Build It(t’, 71 2 a, Seen). Sincek is a subautomaton o (Lemma 5.6), we

know thats — xc t/ 128 ¢ 5 t, and hencey rparsc € traces(K).

5.5 Test derivation from symmetric M ealy machines

In this section we will apply the machinery developed in the previous sections to Mealy ma-
chines. There exists a wealth of test generation algorithms based on the Mealy machine model
[ADLU91, Cho78, CVI89, Vas73]. We will show how the classical W-method [Cho78, Vas73]
can be adapted to a setting with symmetry. The main idea is that test derivation is not based on
the entire specification automaton, but only on a kernel of it. A technical detail here is that we
do not require Mealy machines to be minimal (as already observed by [PHK95] for the setting
without symmetry). We will use the notation from Chow’s paper.

Definition 5.14 A Mealy machineis a (deterministic) FSM4 such that
Ypa={0{/0)]i €elgn0e Oy}

wherel 4 and O 4 are two finite and disjoint sets dfputs and outputs, respectively. We
require that4 is input enabled andinput deterministic, i.e., for every stats € S, and input

i € 14, there exists precisely one outpug O 4 such thas ﬂﬁ

Input sequences of A are elements ofl 4)*. Foré an input sequence of ands, s’ € Sy, we

write s :§>A s’ if there exists a trace such thas — 4 s’ andé is the result of projecting
o ontol 4. In this case we writ@utcome, (§,S) = o, and the execution fragmeptwith
first(y) = s andtrace(y) = o is denoted byexec 4(s, &). A distinguishing sequence for two
statess, s’ of A is an input sequencgsuch thabutcome4 (&, S) # outcome4 (&, ). We say
thaté distinguishes froms'.

In Chow’s paper, conformance is defined as the existence of an isomorphism between specifi-
cation and implementation. Since we do not assume automata to be minimal, we will show the
existence of disimulation between specification and implementation. Bisimilarity is a well-
known process equivalence from concurrency theory [Mil89]. For minimal automata, bisimi-
larity is equivalent to isomorphism, while for deterministic automata, bisimilarity is equivalent

to equality of trace sets.



5.5 Test derivation from symmetric Mealy machines 85

Definition 5.15 Let A andB be FSMs. A relatiorR C S4 x Sz is abismulation on A and
B iff
e R(s1, ) ands; —a>A s, implies that there is 8, € Sy such thats; —a>B s, and
R(s;. s)),

e R(s,®) andsy —a>B s, implies that there is & € Sy such thats, —a>A s, and
R(s. ).
A and B arebisimilar, notation4 = B, if there exists a bisimulatioRR on .4 and B such
that R(s&, sg). We call two states;, s € Sy bisimilar, notations; < 4 %, if there exists a
bisimulationR on A (and.A) such thatR(s1, ). The relation= 4 is an equivalence relation
on Sy; abismulation class of A is an equivalence class 8f; under< 4.

The main ingredient of Chow'’s test suite istaracterising set for the specification, i.e., a set

of input sequences that distinguish inequivalent states by inducing different output behaviour
from them. In our case, two states are inequivalent if they are non-bisimilar, i.e. have different
trace sets. In the presence of symmetry we will need a characterising set not for the entire
specification automaton but only for a kernel of it. However, a kernel need not be input enabled,
so two inequivalent states need not have a common input sequence that distinguishes between
them. Instead we will use a characterising set that contains for every two states of the kernel
that are inequivalent in the original specification automaton, an input sequence that these states
have in common in the specification and distinguishes between them.

Constructing distinguishing sequences in the specification automaton rather than in the
smaller kernel is of course potentially as expensive as in the setting without symmetry, and
may lead to large sequences. However, if the number of states of the kernel is small we will not
need many of them, so testecution itself may still benefit considerably from the restriction
to the kernel. Moreover, we expect that in most cases distinguishing sequences can be found
in a subautomaton of the specification that is easily identified and that envelopes the kernel.

Definition 5.16 A test pair for a Mealy machined is a pair(/C, W) wherekC is a kernel of4
andW is a set of input sequences.dfsuch that the following holds. For every pair of states
s,§ € S¢ such thats # 4 s, W contains an input sequenéesuch thaoutcome (£, s) #
outcomey (€, ).

The proof that Chow's test suite has complete fault coverage crucially relies on the assumption
that (an upper bound to) the number of states of the black box implementation is correctly
estimated. Since specification and implementation are also assumed to have the same input
sets and to be input enabled, this is equivalent to a correct estimate of the number of states
of the implementation that can be reached from the start state by an input sequence from the
specification. Similarly, we will assume that we can give an upper bound to the number of
states of the black box that are reachable from the start state by an input sequence from the
kernel of the specification. We call the subautomaton of the implementation generated by these
states themage of the kernel.

Technically, the assumption on the state space of the black box is used in [Cho78] to bound
the maximum length of distinguishing sequences needed for a characterising set for the imple-
mentation. Since, like the kernel, the image of the kernel need not be input enabled, it may be
that distinguishing sequences for states of the image cannot be constructed in the image itself.
Thus, it is not sufficient to estimate the number of states of the image, but we must in addition



86 5 Exploiting symmetry in protocol testing

estimate how long the suffix of a distinguishing sequence can be which starts with the first step
outside the image of the kernel.

Definition 5.17 Let A andB be Mealy machines with the same input set andlé&e a kernel

of A. A K-sequence is an input sequencg such thats,% =§>K. A states of B is called

KC-related if there exists &C-sequencé such thasl% =§>3 S.

We defindmy (B) as the subautomatdas, =, E, s°) of B defined by:

e S={se S |sisK-related

e E={(s,a,s)cEg|s, s eSS

e X={acXp|3ss.(sa/5s)c E}

o P=s)
In the following definition, the parametaris the upper bound to the length of that part of the
distinguishing sequence which steps outside the image of the kernel.

Definition 5.18 A subautomatots of a Mealy machined is n-self-contained in .4 when the
number of bisimulation classé&3 of A such thatQ N Sz # @ is m, and for every pair of states
s, s of B such thats # 4 ¢/, there exist input sequences &> of A of length at mosm, n,

respectively, such that=Ls 5, 8’ =L 5, andoutcome 4 (£1£2, S) % outcome 4 (£1£2, S).

The next lemma is a generalisation of [Cho78]'s Lemma 0.

Lemma5.19 Let 4 andB be Mealy machines with the same input setnd let(, W) be a
test pair forA. LetC = imy(B). Suppose that:

1. The number of bisimulation class@sof B such thatQ N S # ¥ is bounded byn;.
2. C is mp-self-contained irB3.
3. W distinguishes betweembisimulation classe® of B such thatQ N S # @.

Then for every two statesands’ of C such thas £z ', |™~" M2 W distinguishes from
s.

Proof By inductiononj € {0, ..., m;—n} we prove that there exigt+-n bisimulation classes

Q of Bwith QNS # B suchthat ! 1™ W distinguishes between them. This proves the result,
since, by assumption 2, the number of bisimulation clagses 5 such thatQ N & # @ is
bounded bym;.

e j = 0. By assumption 3\ already distinguishes betwearbisimulation classes df
with Q N & # ¥, so surelyl ™ W distinguishes at least thereclasses.

e j = k+ 1. If IKIM W already distinguishes betwe&nt n + 1 bisimulation classes
Q of B such thatQ N & # @, we are done. So suppose not. Then there exist two
distinct bisimulation classe®; and Q2 of B whose intersection witls is non-empty,
such that K 1™ W does not distinguisk; from Q. So there exist statess € Q1N &
ands; € Q2N & of C such that; #5 s but | k' 1m2 \W does not distinguishy from s,.



5.5 Test derivation from symmetric Mealy machines 87

SinceC is mp-self-contained in3, we can define the smallest number m; such that

I ™ W contains an input sequengesuch thaoutcomeg (£, S1) # outcomeg (€, Sp).

So there exist statds andt, of C (among thel — (k + 1))" successors of; andsy,
respectively) such thatk |™ W does not distinguishy from t, whereasl ¥+1 M2 W
does distinguisly from to. Hencel kt1 | M2 W distinguishes the bisimulation classes of
B to whicht; andt; belong.

X

This result allows us to construct a characterisingzet 1™ "™ W for the image of

the kernel in the implementation. The test suite resulting from the W-method consists of all
concatenations of sequences frorntransition cover P for the specification with sequences
from Z.

Definition 5.20 A transition cover for the kernel of a Mealy machind is a finite collection
P of input sequences o4, such that € P and, for all transitions a9 s’ of K, P contains
input sequencesandé i such thats,% =§>;c S.

Now follows the main theorem.

Theorem 5.21 Let Spec andImpl be Mealy machines with the same input seind assume
(=~, Q") is a symmetry orgpec such thaimpl is closed under=. Let (K, W) be a test pair for
Soec. Write C = imy (Impl). Suppose

1. The number of bisimulation class@sof Spec such thatQ N S¢ # @ is n.
2. The number of bisimulation class&sof Impl such thatQ N S # @ is bounded byn;.
3. C is mp-self-contained inmpl.

4. Forallo € Pandr e |M=N | M2

outcoMespec(a T, sgpec) = 0UtCOMEYmpI (0 T, qompl) (%)
ThenSpec = Impl.

Proof Spec andImpl are deterministic, so it suffices to protraces(Spec) = traces(Impl).
Since Spec is input enabled andimpl is input deterministic, it then suffices to prove that
traces(Spec) C traces(Impl). Using thatimpl is closed undes, this follows immediately
from the first item of the following claim.

Claim For everyo € traces(Spec), with " =  ands. — x r we have:

1. © € traces(Impl)

2. For everyé e P such thats> inc r:if s1°mp| > 1mpl U andqompl =§>|mp| u’ then
uzru.

whereZ abbreviatesmpl.
Proof of claim Write Z = |™~" M2 W, Note that, by construction &V, W distinguishes
betweem bisimulation classes dfec whose intersection witls¢ is non-empty. So, since



88 5 Exploiting symmetry in protocol testing

(x) holds,W distinguishes between at leasbisimulation classes dfmpl whose intersection
with & is non-empty. Thus we can use Lemma 5.19.

The proof of the claim proceeds by induction on the lengtfi o .

e N = 0. Soo = ¢ = . Then certainlyr € traces(Impl). As to item 2). Consider an

input sequence € P such thas? S s and assume,ompl =é>|mp| u’. We have to

show thaiqompl eru.

Since¢ ande are elements oP and lead inSpec to the same state, it follows froi#)
that for allp € Z, outcomempi (o, qompl) = outcomempi(p, U’). Hence, by Lemma 5.19,

0 /
S1mp| 27 u.

en > 0. Writeo = o/ (i/0). By induction hypothesiss’)" = 1/ € traces(K) N

traces(Impl). Say thais,% > 1. SinceK is a kernel ofSec, there exists an action
(i’/0) suchthato’ (i /0))" = 1/ (i’/0') and, for some stargr’ ﬂm r.Sincer’ € S,

’

there exist input sequencgs&’i’ € P such thas,% =i’

Let S1°mp| S lmpl U andgompl é>|mp| u’. By induction hypothesis, item 3), <7 U’.
Sinceoutcomegpec(&’ i/, sgoec) = outcomemyl (€ i, s1°mp|), there exists a (unique) state

v’ such thau’ ﬂz v'. Sinceu 27 U/, there exists a (unique) statesuch thau ﬂz
v. Sot’ (i’/0) € traces(Impl). Becausémpl is input deterministicy <7 v'.

Finally, we have to prove, for ali € P such thals,% :ém r: for the unique statev

such thaE‘{’mpl =E>|mp| w, we havew <7 v. Consider such &. Sincev’ <7 v it suffices
to prove thatw =7 v'. Since¢’i’ and¢ are elements o and lead to the same state in
Spec, it follows from () that, for allp € Z, outcomemi(p, v) = OUtCOMEmpI (0, w).
Hence, by Lemma5.19] 7 w.

X

X

5.6 Patterns

In this section we describe symmetries basegdaiterns. A pattern is an FSM, together with a

set of permutations of its set of actions, so-catlethsformations. The FSM is aemplate for

the behaviour of a system, while the transformations indicate how this template may be filled
out to obtain symmetric variants that cover the full behaviour of the system.

In [KK97] an interesting example automaton is given for a symmetric protocol, represent-
ing the behaviour of two peer hosts that may engage in the ATM call setup procedure. This
behaviour is completely symmetric in the identity of the peers. An FSM representation is
given in Figure 5.2. Here,daction>(i) means output of the ATM service to caller i, and
?<action>(i) means input from caller i to the ATM service. So, action Agefl) denotes the



5.6 Patterns 89

’?set—up(l)?set-up(Z) ?set—up(l)/
?Set—up(zw \ ?set-up(1) ?set-up(2)
Icall- N
Icall-proc(1) \call-proc(2) Icall-proc(1)
?set-up(z)f\@ C%% ?set-up(1) ?set-up(2) >
Iset-up(2) Iset-up(1) Iset-up(2)
3 @ 3
?call-prOC(Z)/O?conn @ 2¢all-proc(L) ?Ca”-prOC(Z)/O?conn @
?conn(1)
?conn(2) 6 ?conn(1) 2conn(2) 5
lconn-ack(2) lconn-ack(2)
Iconn-ack(1)
@\!conn(l) Iconn(2). @\!conn(l)
Figure 5.2: The ATM call setup protocol Figure 5.3: A template

request from caller 1 to the ATM service, to set up a call to caller 2. Aupeatequest is fol-

lowed by an acknowledgement in the form of caibc if the service can be performed. Then,
action conn indicates that the called side is ready for the connection, which is acknowledged by
connack. A caller may skip sending calroc, if it can already send conn instead (transition
from state 3 to 5 and from 10 to 12 in Figure 5.2).

Here, a typical template is the subautomaton representing the call set up as initiated by
a single initiator (e.g. caller 1), and the transformation will be the permutation of actions
generated by swapping the roles of initiator and responder. Such a template is displayed in
Figure 5.3.

In the example of Section 5.7, featuringtatbox that supports multiple conversations be-
tween callers, the template will be the chatting between two callers, while the transformations
will shuffle the identity of the callers.

The template FSM may be arbitrarily complex; intuitively, increasing complexity indicates
a stronger symmetry assumption on the black box implementation.

Definition 5.22 A pattern P is a pair(7, IT) whereT is an FSM, called théemplate of P,
andIT is a finite set of permutations &7, which we calltransformations.

Given a sequencefy, ..., fy) of (partial) functionsfy, ..., f, : 1 — Eg, we denote
with exec((f1, ..., fy), m) the sequence of edges obtained by taking for each fundtion
0 <i < n, the edgee (if any) such thatfi (7) = e.

In the example in Figures 5.2 and 5.3, the set of permutatiofidis> 1,2 — 2}, {1 —
2,2 1}}.

In the remainder of this section, we fix an FSMand a patterr® = (7, IT). Below we
will explain howP defines a symmetry of the behaviour.4f Each transformationr € I1



0 5 Exploiting symmetry in protocol testing

gives rise to a copyt (7) of 7 obtained by renaming the actions accordingrtoEach such
copy is a particular instantiation of the template. Intuitively, the trace set isfincluded in
the trace set of the parallel composition of the copi€$), indexed by elements df, with
enforced synchronisation over all actions4fUsing that traces ofl are traces of the parallel
composition, we will define the symmetry relation on traces in terms of the behaviour of the
copies and permutations of the index Eet

The following definition rephrases the intuitive requirement above in such a way that the
relation >~ and a representative function for it can be formulated succinctly. In particular,
if A is the parallel composition of the copies 7, both the intuitive requirement and the
formal rephrasing apply. In this definition (and the remainder of this section), the following
terminology for partial functions and multisets is usedf If A — B is a partial function and
a € A, thenf (a) | means thaf (a) is defined, whilef (a) 1 means thaf (a) is not defined.
A multiset over A is a set of the formj(az, n1), ..., (ak, nk)} where, for 1< i < k, g is an
element ofA andn; € Nat denotes itanultiplicity. We use [f (x)| condx)] as a shorthand
for the multiset ovelA that is created by adding, for every singlee A, a copy of f (x) if the
condition condx) holds.

Definition 5.23 Leto = a; - - - a3 be an element af: 4)*. A coveringof o by P is a sequence
(f1, ..., fn) of partial functionsf; : IT — E5 with non-empty domain such that for every
mellandl<i <n;

1. If fi(w) = etheng = 7 (e).
2. The sequenoexec({ f1, ..., fi), 7) induces an executiop of 7.
3. If the sequencwace(y;—1) &; is atrace ofr (7)) then fj () |.

We say thaP coverso if there exists a covering aef by P.

We callP loop preserving when the following holds. Supposg o, € traces(.A) is covered
by (f1,..., fn, 01, ..., gm) andoz is a loop-inducing trace. Then for atl € IT,

last(exec({f1, ..., fn), 7)) = last(exec({f1, ..., fn, 91, --., Om), 7))

Intuitively, these requirements mean the following. The ‘non-empty domain’ requirement for
the partial functiond; ensures the inclusion of the trace seioih the trace set of the parallel
composition of copies of . Requirements 1 and 2 express that a covering should not contain
‘junk’. Requirement 3 corresponds to the enforced synchronisation of actions of the parallel
composition.

Lemma 5.24 For every trace, there exists at most one coveringooby P.

Proof SinceT is deterministic, coverings af are uniquely determined bjy. X

Two tracess andt of the same lengti that are covered by, arevariants of each other

if at each positioni, 1 < i < n, of o andz the following holds. The listings fos and,
respectively, of the copies(7) that participate in the action at positionthe states these
copies are in before participating, and the edge they follow by participating, are equal up to a
permutation ofl1. Then, two traces of the same length syemetric iff they are either both

not covered byP or are covered by coverings that are variants of each other.



5.6 Patterns 91

Definition 5.25 Let o andt be elements of 4)", which P covers bycov; = (f1,..., fn)
andcov, = (01, . - ., On), respectively. Thenov; andcov, are said to beariants of each other
ifforeveryl<i <n,[fi(x)| = € ] =[gi(w) | m € I].

We define the binary relatianp on (X 4)* by:

ocoxpt & A |o|=|1|
AV botho andt are not covered b
Vv P coverso andr by variant coverings

It is easy to check that-p is an equivalence relation. As in Section 5.3, we will write
instead of~p.

An important special case is the following. Suppgbkeonsists of the parallel composition of
component<;, indexed by elements of a skt that are identical up to their indices (which
occur as parameters in the actions). &eandt be traces ofd. If there exists a permutation
p of the index set such that for all indices € |, ¢ induces (up to renaming of indices in
actions) the same execution@©f ast induces inC, (), thens andr are symmetric.

Lemma5.26 If P coversca by (f1,..., fn), thenP coverss by (fy, ..., fn_1).

Lemmab’.27 If P coversc aandr b ando a~ 7 b, theno ~ t.

Proof Leto aandr b be covered by fy, ..., fy) and(gs, ..., On), respectively. By Lemma
5.26, these coverings induce the coverinds ..., fa—1) and (g1, ..., Onh—1) of o andr,
respectively, which are clearly variants of each other. X

The previous two lemmas together imply the following result.

Corollary 5.28 The relation~ is prefix closed on A, i.e., for every two traces a, b €
traces(A), if c a~ rbtheno ~ .

Given the definition of~, it is reasonable to demand that every tracedofs covered by
‘P. We will also need the following closure property. We call a binary relafoon (X 4)*
persistent on A whenR(o, ) ando a € traces(A) implies that there exists an actibrsuch
thatR(c a, T b).

Now we define a representative function for We assume given a total, irreflexive ordering
< onXy4. Such an ordering of course always exists, but the choice foay greatly influence
the size of the kernel constructed for a symmetry baseH.on

Definition 5.29 Let < be atotal, irreflexive ordering i 4. This ordering induces a reflexive,
transitive orderings on traces of the same length in the following way:

ac <brsa<bv@a=bao<r1)
We defines" as the least element ¢f|oc ~ 7} under<.
We will show that()" is a representative function far. First we prove that)" is prefix closed.

Lemma 5.30 Supposex~ is persistent ond and A is closed under-. If (b))’ = oca €
traces(A), then(z)" =o.

Proof Suppose that there exists a tracsuch thato = (r)". Note that, sinced is closed
under~, t b € traces(A). By persistence of, p >~ 7 implies that there exists an actian



92 5 Exploiting symmetry in protocol testing

such thafo ¢ >~ 7 b. Since is prefix closed o4 (Corollary 5.28) andr a >~ t b, it follows
thato ~ 7. By definition of )", p < o. On the other handsa < pc, and, by definition of<,
o <p.Sop=o. X
To show that)" is loop respecting, we first prove two auxiliary results.

Lemma5.31 If P coverss andzt by (fy, ..., fn) and(gs, ..., gn), respectively, and ~ t,
then for every 1I<i < n:

[last(exec({f1, ..., fi),m)) | = € [T A fi(w) |]
= [last(exec((g1,....0i), 7)) | w € TTAGi() {]
Proof Sinces ~ t we know thatforevery i <n,[fi(m) | # e 1] =[gdi(w) | & € IT].
Now the result follows immediately. X

Lemma 5.32 SupposeP is a loop preserving pattern o and let< be a total, irreflexive
ordering onX 4. Let () be as in Definition 5.29. Suppose every tracelaé covered byP, A
is closed under-, and~ is persistent otd. If o1 02 03 € traces(4) andoy is a loop-inducing
trace, then

o103~ o171 iff o10003 >~ 0107 T.

Proof Write |o1] = n, |o2| = m, and|o3| = |t]| = k.

Let(fi,..., fn,Q1,...,0m, h1, ..., hy) coveroy o2 03.
By Lemma 5.26f1, ..., fn, 01, ..., m) coversoy o2 and(fy, ..., f,) coverso;. Sincex~
is loop preserving oo, we know that for everyr € I1
So(fq,..., fa, h1,..., hx) coversoy o3.
“=" Sinceo103 >~ o1t ando1 o3 € traces(A), o1 T € traces(A).
Let(f1,..., fn, ], ..., hy) coveroy T.
From Equation 5.1 and the fact théty, ..., fn, g1,..., Om) coversoi oy, it follows
that(fy, ..., fn,01,...,9m, 0}, ..., hy) coverssy oz 7. Sinceoy 03 > 01 7, We obtain,

forevery O<i < k:
[hi(r) | = e Tl =[hj() | = €] (5.2)

Now it follows thato1 o203 >~ o102 7.

<" Sinceo1 0203 >~ 0102 T andoy 02 o3 € traces(A), o1 02 T € traces(A).
Let (f1,..., fn,Q1,....9m, N}, ..., hy) coveroioz 7. From Equation 5.1, it follows
that(fy, ..., fn, 3, ..., hy) coversoy t. Sinceoy 02 03 =~ 01 02 T, We obtain, for every

O<ic<k
[hi(m) | = € T] = [h{(7) | = € ] (5.3)

Now it follows thato1 03 >~ o1 7.



5.6 Patterns 93

Finally, we prove that)" is loop respecting.

Lemma 5.33 SupposeP is a loop preserving pattern o and let< be a total, irreflexive
ordering onX 4. Let )" be as in Definition 5.29. Suppose every tracedaf covered byP,
Ais closed under, and~ is persistent otd. If (61 0203)" = 010203 € traces(A) ando is
a loop-inducing trace, the@1 03)" = 01 03.

Proof By contradiction. Suppose thét; 03)" = 1113 andt1 13 # 0103. By Lemma 5.30,
(01)" = 01, andry = (01)", s011 = o1. By definition of )", 01 13 < 01 03 andoy 13 >~ 01 03.
By Lemma 5.32¢1 0203 >~ 0102 13. Sinceoy 0203 = (010203)", 010203 < 01072 13, and
by definition of <, 0103 < o0113. Since alsw1 13 < 0103, 0173 = o103, and we have a
contradiction. S@1 03 = (0103)". X

The next result allows us to use the pattern-approach for computing a kernel. In our ex-
ample of the ATM switch, we have computed the kernel from the FSM in Figure 5.2, using
the symmetry induced by the template in Figure 5.3 and an orderitgit obeys the relation
?setup(1) < ?setup(2). Not surprisingly, the resulting kernel is identical to the template.

Theorem 5.34 SupposeP is a loop preserving pattern ofh and let< be a total, irreflexive
ordering onx 4. Let )" be as in Definition 5.29. Suppose every traceddf covered byP,
A is closed under-, and= is persistent otd. Then(~, ") is a symmetry omA.

Proof We have to show tha)' is a representative function for. It is immediate that" ~ o
and for allt such that ~ 7, t" = o". The requirement tha)" is prefix closed follows from
Lemma 5.30. That)" is loop respecting follows from Lemma 5.33. X

The following two lemmas give the justification for making the implementation of the
algorithm Kernel from Section 5.4 more efficient. The implementation itself is described in
Section 5.7. Lemma 5.36 enables us to stop exploring as soon as staisited for tracer,
under the condition thathas been visited already by the algorithm for another traeado
andr steer each copy of the template to the same state.

Lemma5.35 Supposé® = (T, I) is a pattern ord, that coversr andzt by (fy, ..., fy) and
(91, - - -, Om), respectively.
If 35’4 Z4s, 35’4 —55 4 sand for eachr in IT: last(exec(( f1, . .., fn), 7)) = last(exec((gu,

.., Om), 7)), then for eactp such thas 2> 4:
(f1,..., fn, h1, ..., hy) coversop < (01,...,0m, h1, ..., hg) coverstp

Lemma5.36 SupposeP, O') is a symmetry ond, ()" is as in Definition 5.29, an® =
(T, 1I) coverso andzt by (fq, ..., fn) and(gs, ..., Om), respectively.

If s% —“>.4's, 4 —>.4 s, for eachr in IT: last(exec({fi, ..., fa), 7)) = last(exec((g1.
.., 0m), ™)), ando = o' andr = ", then for eachy such thas i>A:
op=(op) & 1p=(10)

Proof We only prove =7, the other direction then follows immediately.



94 5 Exploiting symmetry in protocol testing

usery userg useg user userg useg usery userg useg
Join Leave DReq Dind

| | | !

L

Figure 5.4: The chatbox protocol service

By contradiction. Supposg LA, op = (op)' and(rp)" = 1o’ with p # p’. By
definition of (), we know thatrp ~ tp’. By Lemma 5.35, we know that the covering of the
p-part intp must be equal to the covering of thepart inop, and likewise for the’-part in
7o’ andop’. Then certainlyp >~ op’ must hold. By unicity of representativesy = (op’)".
From Definition 5.29 we then obtain thap < op’ andtp’ < tp, S0p < p’ andp’ < p. This
yields a contradiction with the assumption tleag p’. X

5.7 Examples

In this section we report on some initial experiments in the application of symmetry to the
testing of two examples. Section 5.7.1 presents the example of a chatbox, and Section 5.7.2
presents the example of a cyclic train.

Part of the test generation trajectory was implemented: we used the tool environment
OPEN/CESARGar98] for prototyping the algorithm Kernel from Section 5.3. Section 5.7.3
relates some prototyping experiences.

We work with a pattern based symmetry (Section 5.6) and apply the test derivation method
from Section 5.5.

5.7.1 A chatbox service

In this section we report on some experiments in the application of symmetry to the testing of
a chatbox.

A chatbox offers the possibility to talk with users connected to the chatbox. After one
joins (connects to) the chatbox, one can talk with all other connected users, until one leaves
(disconnects). One can only join if not already present, and one can leave at any time. For
simplicity, we assume that every user can at each instance talk with at most one user. Moreover,
we demand that a user waits for a reply before talking again (unless one of the partners leaves).
Finally, we abstract from the contents of the messages, and consider only one message. The
service primitives provided by the chatbox are thus the following; Join, Leave, DReq, and
Dind, with the obvious meaning (see Figure 5.4). For lack of space, we do not give the full
formal specification of the chatbox or its template.

What we test for is the service of the chatbox as a whole, such as it may be offered by
a vendor, rather than components of its implementation, which we (the “customers”) are not
allowed to, or have no desire to, inspect.



5.7 Examples 95

des (0, 20, 3)

(0, "1 !'DREQ'O !1 !MES ! DIND', 1)

(0, "3 !DREQ'!1 !0 !MES !DIND', 1)

(0, "9 'DREQ !0 !'1 I MES ! NO_ QUTPUT", 0)
(0, "10 !'DREQ !0 !'1 ' ACK ! NO_ QUTPUT", 0)
(0, "11 'DREQ !0 !0 !'MES ! NO_QUTPUT", 0)
(0, "12 !'DREQ !0 !0 ' ACK I NO_QUTPUT", 0)
(1, "2 'DREQ!1 !0 'ACK ! DIND", 0)

(1, "4 'DREQ !0 !1 ! ACK ! DIND', 0)

(1, "5 'DREQ!1 !0 !MES ! DIND", 2)

(1, "7 'DREQ !0 !'1 I'MES ! DIND", 2)

(1, "13 !'DREQ !0 !'1 I MES ! NO QUTPUT", 1)
(1, "14 'DREQ !0 !'1 ' ACK ! NO_QUTPUT", 1)
(1, "15 !'DREQ !0 !0 ! MES ! NO QUTPUT", 1)
(1, "16 !DREQ !0 !0 ! ACK ! NO_QUTPUT", 1)
(2, "6 'DREQ !0 !1 'ACK ! DIND', 1)

(2, "8 !'DREQ!1 !0 'ACK ! DIND", 1)

(2, "17 'DREQ !0 !'1 I MES ! NO_ QUTPUT", 2)
(2, "18 !'DREQ !0 !'1 I ACK I NO QUTPUT", 2)
(2, "19 'DREQ !0 !0 I'MES ! NO QUTPUT", 2)
(2, "20 'DREQ !0 !0 !'ACK I NO QUTPUT", 2)

Figure 5.5: The template for a chatbox with three users and no joining/leaving

This example was inspired by the conference protocol presented in [TPHT96]. Some
changes were made, all stemming from the need to keep the protocol manageable for experi-
ments without losing the symmetry pursued. We mention the absence of queues and multicasts
and the restriction to the number of outstanding messages. Also, we ignore the issues of test
contexts, test architectures, and points of control and observation. A Lotos [ISO89] model and
auCRL [GP95] model were constructed for 3 and 4 users.

The symmetry inherent in the protocol is immediate: pairs of talking users can be replaced
by other pairs of talking users, as long as this is done systematically according to Defini-
tions 5.23 and 5.25. As an example, the trace in which user 1 joins, leaves and joins again, is
symmetric to the trace in which user 1 joins and leaves, after which user 2 joins. The essence
is that after user 1 has joined and left, this user is at the same point as all the other users that
are not present, so all new join actions are symmetric. Note that this symmetry is more general
than a symmetry induced solely by a permutation of actions or IDs of users. Thus the template
T used for the symmetry basically consists of the conversation between two users, including
joining and leaving, while the transformatiomsn the setll shuffle the identity of users. We
feel that it is a reasonable assumption that the black-box implementation offering the service
indeed is symmetric in this sense.

We have applied the machinery to chatboxes with up to 4 users. We also considered a
(much simpler) version of the protocol without joining and leaving.

InFigure 5.5, we display the template for the chatbox with three users and no joining/leaving.
The template is in the Alebaran state space format, in which, <l abel >, j ) indicates
the transition from state to statej with action labelkl abel >. The set of permutations is
f1l—-12+- 2,122~ 1,{1» 12+ 3,{1~ 3,2~ 1},{1— 22+
31,{1 — 3,2 — 2}}. So, the template gives the chatting between user 0 and 1, from the
point of view of user 0. There are three states, namely where no message has been sent (or all



96 5 Exploiting symmetry in protocol testing

model kernel
states trans | minimal? | states trans
3users 512 12288 yes 213 3722

4 users| 65536 | 2621440 yes 16385 | 263000
no joining/leaving
3users 64 1152 yes 10 84
4users| 4096 | 131072 yes 112 1296

Table 5.1: Kernel statistics for the chatbox

messages have been acknowledged), a state in which a message has been sent from one to the
other, which has not yet been acknowledged, and a state in which two messages have been sent
(in the two different directions) which have not been acknowledged. The self-loops are there

to cover unsuccessful chatting attempts. The permutations shuffle the identities such that all
possibilities are covered.

We start the test generation by computing a kernel for these specifications. In Table 5.1,
the results of applying our prototype implementation of the algorithm Kernel can be found.
Our prototype is able to find a significantly smaller Mealy machine as a kernel for each of
the models, provided that it is given a suitable ordernfsee Definition 5.29) on the actions
symbols for its representative function. The kernels constructed consist of interleavings of
transformations of the pattern, constrained by the symmetry and the ordering

For instance, in a chatbox with 3 users and no joining and leaving, we take the ordering
defined as follows. “Sending a message fliqrto j;" < “sending a message fromto j2” if
(ip <ip)orif (i =izandj1 < jo2), and “sending a reply from to j1” < “sending a reply
fromis to jz" if(il > i2) orif (i]_ =iy andjl > Jz)

Using this ordering, the kernel only contains those traces in which first messages from user
1 are sent, then messages from user 2 and finally messages from user 3, while the sending of
replies is handled in the reverse order. Each trace with different order of sending messages can
then be computed from a trace of this kernel, which is exactly what Theorem 5.13 states. This
technique of dealing with traces is reminiscent of partial ordering techniques [God96].

From Table 5.1 we see that the kernel size is relatively smaller when considering chatboxes
without joining and leaving. This difference is due to the fact that, since one cannot send a
message to a user that has left, joining and leaving obstructs the symmetry in messages being
sent.

Given the computed kernels, we can construct test pairs by determining for each kernel
a set of input sequencé¥ that constitutes aharacterising set for the kernel (as defined in
Definition 5.16). Although this part has not yet been automated, it is easily seen by a generic
argument that for every pair of inequivalent (non-bisimilar) states very short distinguishing
sequences exist. It is easy to devise a transition cover for a kernel, the size of which is propor-
tional to the size of the kernel.

As shown in Theorem 5.21, the size of the test suite to be generated will depend on the
magnitude of two numbera; andmy, indicating the search space for distinguishing sequences
for the image of the kernel in the implementation. This boils down to the following questions:

(1) What is the size of the image part of the implementation for this kernel? (2) What is the
size of a minimal distinguishing experience for each two inequivalent (non-bisimilar) states in



5.7 Examples 97

Station 2

Station 3 Station 1

Station 0
Figure 5.6: A cyclic train with 4 stations

the image part of the implementation? (3) How many steps does a distinguishing sequence

perform outside the image of the kernel? These questions are variations of the classical state
space questions for black box testing. For practical reasons, these numbers are usually taken
to be not much larger than the corresponding numbers for the specification.

5.7.2 Acyclictrain

In this section we report on some initial experiments in the application of symmetry to the
testing of acyclic train. This example was inspired by the elevator specification used by
Frits Vaandrager in the course ‘Declarative Specifications and Systems’ at the University of
Nijmegen in spring 1998. Since the symmetry in an elevator obviously must be sought in the
floor numbers, and at the lowest (highest) floor it is not possible to go any lower (higher), we
modified the example a little to make the elevator cyclic: from the lowest floor, the elevator
can reach the highest floor by moving one floor down, and vice versa. To make the example a
bit more intuitive, we rename the cyclic elevator to a cyclic train, and floors to stations.

See Figure 5.6. The train runs on a cyclic track, from station to station. It can change
direction if needed, and can be sent to a destination if a button inside the train is pressed, and
called to a station if a button in the station is pressed. We consider as running example a cyclic
train running between four stations. In Figure 5.6, the train is moving from station 3 to station
2.

The symmetry inherent in the protocol is immediate: the behaviour of the train requested
to go to a station or moving from one station to another is symmetric to the same behaviour
when other stations are involved. As an example, the trace in which the train starts at station
1, is called to station 2 and then sent to station 0 is symmetric to the trace in which the train
starts at station 3, is called to station 0 and then sent to station 2. Thus the tefmpksed for
the symmetry basically consists of the train arriving at the current station (from left or right),
opening its doors, closing its doors and moving away again, while the transformatiorise



98 5 Exploiting symmetry in protocol testing

des (0, 20, 5)

(0, "1! REQUEST(CALL,1)", 1)
(0, "2!REQUEST(SEND, 1)", 1)
(0, "3!MOVELEFT(1)", 2)

(0, "4'MOVERIGHT(1)", 2)

(1, "5!REQUEST(CALL,1)", 1)
(1, "6!REQUEST(SEND, 1)", 1)
(1, "7!MOVELEFT(1)", 3)

(1, "8!'MOVERIGHT(1)", 3)

(2, "9!REQUEST(CALL,1)", 3)
(2, "10! REQUEST(SEND, 1)", 3)
(2, "11! MOVELEFT(0)", 0)

(2, "12!' MOVERIGHT(2)", 0)
(3, "13! REQUEST(CALL,1)", 3)
(3, "14! REQUEST(SEND, 1)", 3)
(3, "15! MOVELEFT(0)", 1)

(3, "16! MOVERIGHT(2)", 1)
(3, "17! OPENDOOR(1)", 4)

(4, "18! REQUEST(CALL,1)", 4)
(4, "19! REQUEST(SEND, 1)", 4)
(4, "20!CLCSEDOOR(1)", 2)

Figure 5.7: The template for a train with three stations

setIT shuffle the identity of the station.

In Figure 5.7, we display the template for a train with three (or more) stations. Again,
the template is in the Alebaran state space format, in whigh <I abel >, j ) indicates the
transition from staté to statg with action labekl abel >. The set of permutations {$0 —
0,1~ 122,00~ 1,1+ 22+ 0},{0—~ 2,1+~ 0,2 +— 1}}. So, the template
gives the possibilities for the train arriving at station 1, and passing by or opening and closing
its doors. The neighbour stations are 0 and 2. The permutations shuffle these station identities
in a roundabout way.

We have applied the machinery to trains with up to 8 stations. We also considered a version
of the train in the Mealy style, where each transition consists of an input and an output action.
Here we have assumed that in each state, one can give an input by pressing a button, and that
the output for such an input depends on the state of the train. If no input is given, the train may
still want to move from station to station. This is modeled with the input a&N&InT.

In Table 5.2, the results of applying our prototype implementation of the algorithm Kernel
can be found. We work with state spaces generated ft@RL code which have not been
minimised. The kernel is significantly smaller for each of the models, provided that it is given a
suitable ordering: (see Definition 5.29) on the actions symbols for its representative function.
The orderings in the table refer to the ordering of symmetric request actions for the train to go
to a certain station. The numbers indicate the identity of the station to which the train should
go. For the Mealy style models, it turns out that the orderings listed in the table work better
than others. For the models with 4 and 5 stations these are in fact the best orderings. For the
other models, only some orderings were tested. Naturally, if the state space from which the
kernel is constructed and the kernel itself get larger, the process takes longer.



5.8 Futurework 99

model kernel

states trans | minimal? states trans | representative ordering
7 stations| 286725| 4300874 no 12685 | 79594 6<5<4<3<2<1<0
8 stations| 1310725| 22282324 no 30945 | 195404 | 7<6<5<4<3<2<1<0

Mealy style

4 stations 2808 24312 no 1548 0<2<1<3
5 stations 13950 148650 no 5193 0<2<4<3<1
6 stations 72036 912276 no 16959 0<2<5<3<4<1
7 stations| 336042 | 4927734 no 49941 | 79594 0<3<6<4<5<2<]
8 stations| 1563696 | 26060592 no 146394 | 887208 | 0<2<7<3<6<4<5<1

Table 5.2: Kernel statistics for the cyclic train

5.7.3 Implementing the algorithm Kernel

The algorithm Kernel (see Figure 5.1) was implemented using HeNGC£SAR[Gar98] tool

set. An exploration algorithm like this is implemented by writing the essence of the algorithm

in C, using library functions and data types from thee® C/£sARinterface in the prescribed
manner. The routines and datatypes from thee@C/ESAR library take care of the data
structures for exploring the state space. The core of this is a table of states with two pointers,
one pointing at the state that is being explored, and one pointing at the end of the table, where
new states may be inserted. As soon as the first pointer passes the second one, the exploration
is finished.

Since we based our implementation on the pattern approach, the input to the algorithm
consists of two finite state machines: one for the specification that is reduced to a kernel,
and one for the template of the symmetry, which is used to determine (as an oracle) whether
two traces are symmetric. To enable this, thee@ C£sARr interface had to be generalised
somewhat so that it is now able to explore several labeled transition systems at the same time.

Our implementation differs a little from the presentation in Figure 5.1, in that it does not
only keep track of the trace that it is exploring, but also of the current state for each copy of
the template. This enables us to use Lemma 5.36, and search in the part of the table that was
already explored for the current state, together with the current set of states for the copies of
the template. Also, the set of possible representative actions leading from the current state is
not determined using the trace leading to the current state, but using the state of each copy of
the template.

The implementation was tried on the examples described in Sections 5.7.1 and 5.7.2, giving
the results mentioned in Tables 5.1 and 5.2.

We have the experience thaPENCAESAR is suitable for prototyping exploration algo-
rithms such as Kernel.

5.8 Futurework

We have introduced a general, FSM based, framework for exploiting symmetry in specifica-
tions and implementations in order to reduce the amount of tests needed to establish correct-
ness. The feasibility of this approach has been shown in a few experiments.



100 5 Exploiting symmetry in protocol testing

However, a number of open issues remain. We see the following steps as possible, nec-
essary and feasible. On the theoretical side we would like to (1) construct algorithms for
computing and checking symmetries, and (2) determine conditions that are on the one hand
sufficient to guarantee symmetry, and on the other hand enable significant optimisations of the
algorithms. On the practical side we would like to (1) generate and execute tests for real-life
implementations, and (2) continue prototyping for the whole test generation trajectory.



Chapter 6

Model checking the HAVI
leader election protocol

Summary

The HAVi specification [GHM 98] proposes an architecture for audio/video interoperability in
home networks. Part of the HAVI specification is a distributed leader election protocol. We have
modelled this leader election protocol in Promela and Lotos and have checked several properties
with the tool Spin and the tool Xtl (from the Caesar/Alran package).

It turns out that the protocol does not meet some safety properties and that there are situations
in which the protocol may never converge to designate a leader. Our conclusion is that realis-
tic timing requirements on sending and processing of messages should be added to the HAVi
specification. Then a (timed) formal verification could give a definite answer with respect to
correctness of the leader election protocol.

6.1 Introduction

The Home Audio/Video Interoperability (HAVi) project [GHWD8] is a joint effort by eight
consumer electronics companies to solve interoperability problems for audio/video networks
in the home environment.

The HAVI specification specifies a set of Application Programming Interfaces (APIs) and
protocols that allow consumer electronics manufacturers and third parties to develop appli-
cations for the home network. Thus the home network is viewed as a distributed computing
platform, and the primary goal of the HAVi architecture is to assure that products from differ-
ent vendors can cooperate to perform application tasks. The HAVi architecture is supposed to
work on top of an IEEE 1394 serial bus [IEE96, IEE99].

There are two types of HAVi devices: controllers and controlled devices. The controller
acts as a host for controlled devices via a Device Control Module (DCM). Installation and al-
location of such DCMs is done by a HAVi software element which is called the Device Control
Module Manager (DCM Manager). Each controller is supposed to have a DCM Manager. All
DCM Managers have to cooperate with each other to ensure that the installation and allocation
of DCMs works properly. A complicating factor here is the dynamic plug-and-play character

101



102 6 TheHAVi leader election protocol

of the 1394 network. Each time when a change in the 1394 network occurs, the DCM Man-
agers restart their activities by first choosing a leader among them, and then under the control
of the designated leader, complete their DCM controlling tasks.

The purpose of the leader election is that the DCM Manager with the best capabilities
will play a central role in the DCM controlling tasks. Since not all of these capabilities are
persistent and globally available, the DCM Managers need to communicate to find out which
one is the best candidate for leadership.

In this chapter, we study the leader election protocol between the DCM Managers. Our goal
is to analyse this protocol with several model checking tools, to determine whether the protocol
is correct, and to compare the model checking tools. Our approach is to construct a model of
the behaviour of the protocol in a suitable formal language, and to establish certain properties
through model checking. Model checking is a verification approach where one checks whether
a property holds by exploring the reachable state space of the model. The manual construction
of such proofs is a tedious and error-prone process. Nowadays, there are several tools that fully
automate the model checking process.

We present several models of the protocol leader election protocol in the formal languages
Promela [Hol91] and Lotos [ISO89]. Several properties have been checked with the model
checking tools Spin [Hol91, Hol97] and Xtl [Mat98, MG98] (part of the Ceesamhltan
distribution [FGK"96]).

We have found errors in the formal models with both Spin and Xtl. It turns out that some
safety properties are not met by the protocol and that there are situations in which the protocol
may never converge to designate a leader. The cause of these errors is that the HAVi speci-
fication is not detailed enough to ensure that HAVi compliant implementations are faultless.
The errors occur when communication between different devices is faster than communication
between components in one device. Besides our conclusions on the correctness of the HAVI
protocol, we compare the two model checking tools.

As far as we know, the only other paper in which the HAVi leader election protocol between
DCM Managers is studied is [Use99]. Here, a comparison is made between the performance
of state space exploration of Spin and {h@RL tool set [GP95]. The model of the protocol
differs from ours and no model checking has been performed.

It should be noted that although [GHMNS8] is not the most recent version of the HAVi
specification, it is the only version publicly available. Newer versions are subject to constant
change and confidential. Therefore this research is based on {GBM

This chapter is organised as follows. Section 6.2 gives an informal description of the HAVI
leader election protocol. Section 6.3 introduces the tools and languages used. Section 6.4
describes our model of the protocol. Section 6.5 gives the details of all the model checking
experiments. Finally, Section 6.6 gives several conclusions that we drew from this experiment.

The full version of the research presented in this chapter is available as CWI report SEN-
R9915. It contains relevant excerpts from the HAVi and 1394 specifications and several code
listings.

6.2 TheDCM Manager leader election protocol

The DCM Manager leader election protocol is described in the HAVi specification [G38)1
at page 160. The protocol tries to find a suitable leader that can manage the actual task of the



6.2 TheDCM Manager leader election protocol 103

application
application

interoperability API

application

Registry Event Stream Resourc DCM
Manager Manager Manager| | Manager
[ Messaging System }

[ 1394 Communication Media Manager]

platform specific API

[ vendor specific platform ]

Figure 6.1: The HAVi architecture

DCM Managers, which is performed in the autonomous operation phase. We only study the
leader election phase.

The parts of the HAVI specification and the IEEE 1394 standard that are relevant for this
protocol can be found in the report version. Here, we give an informal explanation of the
protocol, and the services that it requires from several HAVi components. We start with the
latter.

6.2.1 HAViI components

In Figure 6.1, the HAVI architecture is depicted. The different services in the middle layer of
the architecture are described in the HAVi specification; they are referred to as HAVi elements.
Local elements reside in the same device. The DCM Managers use the services of the local
elements Messaging System, Communication Media Manager, and Event Manager. These
elements will be available at each HAVi device that contains a DCM Manager.

The Messaging System provides two services and two modes of sending messages to
software elements, whether local or not. The service choices are to block while waiting for a
response by the receiver or not to wait for a response. The modes are reliable or simple. The re-
liable mode implicates that the sender is informed by the Messaging Systems involved whether
the message reached the receiver. The sender is blocked until such an acknowledgement arrives
or a timeout occurs. The simple mode implicates no acknowledgement information from the
Messaging Systems is given to the sender. The Messaging System on the device of the receiver
delivers the message to the receiver via a call back function, which the receiver has dispensed
to the Messaging System at start-up time. The Messaging System uses the 1394 network for
the actual message passing. From the 1394 specification we learn that at the 1394 level, no
messages can be sent between different devices while a bus reset is taking place.



104 6 TheHAVi leader election protocol

DCM Manager EM CMM
. start N
' busresetphase ;" T T T T T T Tttt T
S~e___---7 PostEvent(BusReset)
.7 " Ms:no deliveryof AN

J messages to other nodes \I

\

AN CMM: GUIDList /// Event(BusReset)

>~._ notavailable .-~

7 - end ) AN
'\ busresetphase F----"--"--------"" """ --"--------- - - - - - - - -

o GetGUIDList

Figure 6.2: A bus reset scenario

The DCM Managers communicate with each other using the reliable method and the re-
sponse service. The HAVi specification does not limit the nature of the call back function that
the DCM Managers use. The DCM Managers use a timeout of 3 seconds on all messages.

The Event Manager accepts requests to post events and sends a message with the event
through the Messaging System to every local software element that has subscribed to the event.
A posting request must be sent through the Messaging System. The DCM Managers all sub-
scribe to the BusReset event during initialisation.

TheCommunication Media Manager provides information on the network configuration
which it gets from the 1394 layer. Upon the start of a bus reset phase, it posts the event
BusReset. Since each FAV or IAV device has its own Communication Media Manager to
signal the bus reset start, the BusReset event only needs to be sent to software elements on
the same device. This means that the Messaging System can at all times deliver the messages
containing this event to the interested parties, as long as the device is powered up.

The Communication Media Manager also allows software elements to request network in-
formation in the form of a GUIDList. This service is only available outside bus reset phases,
after the Communication Media Manager has received the information from 1394. This infor-
mation is to be asked with a message through the Messaging System.

An example scenario In Figure 6.2 we show an example scenario in which the following
happens. A bus reset period starts. The Communication Media Manager posts the BusReset
to the Event Manager. The Event Manager delivers the BusReset to the DCM Manager. The
DCM Manager reacts by requesting the GUIDList from the Communication Media Manager.
This list is available only when the bus reset period has ended.



6.3 Languagesand tools 105

6.2.2 Protocol

Each DCM Manager enters the leader election phase upon initialisation and each time a bus
reset eventis received. First it obtains information on the current network topology, by sending
a request to another HAVi element, the Communications Media Manager, which returns a list
with all the devices that are active in the (1394) network. The list contains the Global Unique
ID (GUID) of all devices in the network. The DCM Manager then questions the 1394 level of
each active device to find out some more information. The information needed for this protocol
is the HAVi type of the device (FAV, IAV, BAV or LAV), and whether there is a DCM Manager
present at the device (at FAV compulsory, at IAV optional). Based on this information, the
DCM Manager selects an initial leader from the GUIDs of devices on which a DCM Manager
is present. Since each DCM Manager uses the same procedure for the selection, all of them
choose the same initial leader without communicating with each other. Each DCM Manager
which is not the initial leader is called initial follower.

The initial leader waits for initialisation requests from all initial followers, in which they
state their capability. Using this new information and the HAVi type of the devices, the initial
leader decides which DCM Manager is the best candidate for the final leadership. One of the
criterions is the HAVi controller type, which is found in the (static) information of the HAVI
device and which can be accessed from outside the device. The other criterion is Internet access
which is found in the request messages from the followers. Each initial follower is informed
of the decision with an initialisation reply, and the DCM Manager that has been elected as the
final leader is informed last. After this, the leader election phase ends and the autonomous
operation phase is entered. Here, each DCM Manager which is not the final leader is called
final follower.

During or after the leader election phase, the network topology may change, which causes a
bus reset phase to start. Whenever this happens, the DCM Managers should start anew with the
leader election because the previously elected leader may have disappeared from the network
or a more suitable candidate may have appeared. The DCM Managers are informed of a bus
reset phase by the Communications Media Manager with an event. The HAVi specification
does not lay down any implementation rules for the delivery of this event, such as timing
requirements. So it is possible that the bus reset event is delivered after the bus reset phase
has already ended. If multiple bus reset phases occur (almost) adjacently, the DCM Managers
may get out of phase in their leader election. Then one DCM Manager might be sending its
initialisation request to an initial leader which is not aware of any bus reset phase having taken
place, or vice versa. To keep things in order, the DCM Manager which is to be the initial
leader, must remember this role and answer initialisation requests with an initialisation reply,
even after leader election has ended. During and after the protocol, all unexpected messages
are ignored.

6.3 Languagesand tools

This section gives a short introduction to the languages and tools used for formalisation and
verification of the leader election protocol. For details we refer to the documentation cited
below.



106 6 TheHAVi leader election protocol

6.3.1 Spin and Promela

Spin [Hol91, Hol97] is a tool that supports simulation and verification of Promela [Hol91]
models of distributed systems. Models in Promela (a Process Meta Language) consist of def-
initions of process behaviour, with variable assignments, sequential and alternative compo-
sition, repetition and dynamic process creation. Communication between processes happens
on synchronous or asynchronous channels. Synchronous communication always involves two
processes. The support of data types is very limited: basic types are booleans and naturals,
from which arrays and record structures can be built.

Verification is supported through detection of deadlocks, invalid end-states or non-progress
loops, through violation of assertions and through LTL [Pnu77, MP92] properties. The verifi-
cation is done on the fly: the global state space is not constructed, but explored directly from
an interpreted version of the Promela code.

6.3.2 Lotos, Caesar/Aldébaran and Xtl

Lotos [ISO89] is a standardised language for abstract modelling of distributed systems. Lotos
models consist of a data part and a behaviour part: the data part is expressed in ACT-ONE,
an algebraic formalism for abstract data types, and the behaviour part is expressed in process
algebra with sequential, alternative and parallel composition, and recursion. Communication
happens on synchronous gates and can involve more than two processes.

The Ceesar/Aldbaran tool set [FGK96] facilitates simulation and verification of Lotos
models. Simulation and detection of deadlocks, livelocks et cetera can be done on the fly.

The Xtl tool [Mat98, MG98] (which is part of the Caesar/glokiran tool set) facilitates
the verification of temporal properties over Lotos models. First the global state space must be
generated (with Caesar), then Xtl can verify a property given in one of the following logics:
HML [HM85], CTL [CES86], LTAC [QS83], ACTL [DNFGR93, DNV90] and the modat
calculus [Koz83]. It is even possible to define one’s own modal logic in terms of the libraries
provided by Xtl (including greatest and least fixpoint operators).

6.4 Modeling decisions

In this section, our model of the protocol is explained. What is presented here is the result
of a process of experimenting with different models, imposing and lifting restrictions until a
satisfactory model with a manageable size was obtained.

In the remainder of this section we abbreviate DCM Manager (DM), Communication Me-
dia Manager (CMM), and Messaging System (MS).

Restrictionson thenetwork Each of the following choices is a restriction on what s allowed
by the HAVi model. These restrictions are imposed in order to obtain a model of manageable
size.

We study only situations with one network in which maximally three devices are active,
and demand that in the start state no device is powered on.

The HAVi device types are FAV, 1AV, BAV and LAV. We assume that there only are FAV
devices in the network, and that on each of these devices, a DM is present.



6.4 Modelling decisions 107

A bus reset in the 1394 network may be caused by a change in the network topology (a
device being added to or removed from the network), by a device in the network being powered
up or down, by race conditions in the 1394 protocol or by other error situations. We model
the cause of a bus reset as the power change of zero or more devices in the network. Here,
zero power changes represent some other cause of bus reset, and the power change of a device
also represents the connecting or disconnecting of that device (when a device is disconnected
but still powered up, it operates in a new network consisting of just itself; we only study one
network). The network behaviour is modelled with the processBeset.

From IEEE 1394 we learn that the worst-case time delay between the start of the bus reset
phase and the moment that the last device in the network notices the bus reset is less than 167
microseconds. The duration of the bus reset phase until normal operation resumes is at least
414 and maximally 581 microseconds. We restrict the bus reset phase delay to zero, which
means that the bus reset phase starts at the same time at all devices in the network. For our
verification purposes we only want to consider properties that concern situations in which a
bus reset is not taking place. Therefore it is convenient to have the start of the bus reset phase
actually precede the change of network which causes the bus reset phase.

In the HAVI design, each DM uses a capability and a preference in the leader election
protocol. We restrict ourselves to the capability UrlCapable, which indicates whether a device
has Internet access (true) or not (false). We assume that the value of UrlCapable does not
change.

In a 1394 network a device may be unplugged (powered off), and then plugged back in
(powered on). This may cause the device to get a different 1394 physical ID and HAViI SEID
(Software Element ID) once it is back in the network, than the 1394 and HAViI IDs it had
before. Since each device has a globally unique ID (GUID) which does not change, and other
devices can find out about this through the GUIDList which is managed by their CMM, we
only identify devices with their GUID and do not model the physical ID.

Which HAViI components? We model the DM, the MS and the CMM with separate pro-
cesses, which are described below. We do not include a process for the Event Manager. The
only event posted to this component will be the BusReset, and all different scenarios of deliv-
ery of this event can be modelled by one synchronous communication between the CMM and
the DM. If the delivery is unsuccessful, the communication does not occur. An extra process
Bus Reset is needed to model the behaviour of the 1394 network.

Process Bus_Reset  This process determines whether a new bus reset period will start, and
which devices (hence which DMs and CMMs) will be powered up or down. Both of these
choices are non-deterministic, hence in a verification all possibilities will be considered. When-
ever a device is powered up or down, the DM, CMM and MS on that device are informed by
Bus Reset in a synchronous manner. The power changes are determined in increasing order of
device ID.

ProcessCMM  This process controls the GUIDList, in which all devices present in the net-
work are listed. It also signals any start or end of a bus reset period on the 1394 network, and
passes this information on to the DM and the MS on the same device.



108 6 TheHAVi leader election protocol

HAVI specification: Our model: Our model:
synchronous communication asynchronous communication synchronous communication
DM 1 DM 2 DM 1 DM 2 DM 1 DM 2

T
MS 1 MS 2 MS 2

7

HAVi/1394 communicatior

Figure 6.3: DCM Manager to DCM Manager communication

When several bus reset periods follow each other with little time in between, it is possible
that a CMM has not posted the occurrence of a previous bus reset, when the next is already
taking place. The HAVi specification does not define whether both bus reset events should be
posted or just one. We choose to have the new bus reset overrule the previous one, and have
only the last bus reset naotification being posted and delivered.

Process MS This process takes care of the communication between the DMs and acts as
a buffer. All message transfers that use the MS, are performed in reliable mode, therefore
we model such a message transfer as one communication involving just the sending and the
receiving component. The message transfer is shown in Figure 6.3.

The HAVi design is that DM 1 sends a message, intended for DM 2, to the MS 1 (which
is on the same device as DM 1). MS 1 sends the message on the network to MS 2, which
deliversit to DM 2. After sending the message, DM 1 will wait for an error message, a timeout
or an acknowledgement of successful delivery to DM 2. DM 1 only continues its operation
after such a notification/timeout. In Figure 6.3, continuous arrows show how a message is
transported through the HAVi architecture from DM 1 to DM 2, and the dashed arrows show
how the notifications are generated and returned. In case of erroneous transfer, the message
may not reach MS 2 or DM 2, but DM 1 is aware that something is wrong because the proper
acknowledgement was not received. Successful delivery to DM 2 means that either DM 2 is
interrupted to receive the message (synchronous communication) or the message is put into a
buffer designated by DM 2 (asynchronous communication).

We have modelled the synchronous version of this communication with direct synchronous
communication between DM 1 and DM 2 (and then there is no need for any MS process), and
the asynchronous version by synchronous communication between DM 1 and MS 2. In the
latter case, DM 2 can get the message from MS 2 by synchronous communication. Note that
MS 1 is not used in this communication scheme. This modelling choice is made to limit the
possibilities for the communication, which is reasonable since we are only interested in the
communication succeeding (modelled by the message put into the buffer) or failing (modelled
by the communication not occurring at all). Of course, the size of the buffer maintained by the
MS limits the number of messages that can be sent to a DM before it actually receives them.

So, in short, in the case of synchronous communication between DMs, there will be no MS



6.5 Model checking experiments 109

process in our model. In the case of asynchronous communication between DMs, there will be
an MS process which acts as a buffer for incoming messages directed to the DM at the same
device. The buffer size is a parameter for the model; in all our models the buffer size is 1. In
case of asynchronous communication, the DM will empty the buffer in the event of a bus reset
period or whenever the power is switched off.

ProcessDCM _Manager The general task of the DM is explained in Section 6.2. Our model
follows this procedure as closely as possible, except for a few modelling choices.

1. In our model we skip the subscription that the DM uses to inform the Event Manager
that it wants to receive all bus reset events. We also skip the registration of the call back
function that the DM must dispense to the MS.

2. From the two parameters that the DM uses in the protocol, we only consider UrlCapable
(Internet access).

3. The HAVI method of electing the initial leader, is to choose the DM on the device with
the highesbit order reversed ID. Since our assignment of IDs to DMs is arbitrary, we
just choose the DM with the lowest ID for initial leader.

4. The selection of the final leader in the HAVI design should be an arbitrary choice of the
devices with the best capabilities. We study networks with only FAV devices on which
a DM is present, hence we let the device with the lowest ID and UrlCapable set to true
be the final leader (which is not arbitrary, but does limit the size of the state space). If
no device has special capabilities, the HAVi design allows the initial leader to elect an
arbitrary device for final leader. In this case, we have the initial leader elect itself for
final leader (which also limits the state space size).

5. Inthe HAVi protocol, each initial follower will send its initialisation request to the initial
leader, and will resend the request if a reply was not received before a timeout occurs
(which is after 3 seconds). All our models are without timing information. Hence we
let the initial follower choose arbitrarily between resending the request and receiving the
reply. In this manner we cover all possibilities. Note that this choice does not introduce
new behaviour, that is, behaviour that is not permitted by the HAVi specification.

6.5 Mode checking experiments

In order to check that the protocol works as intended, we have checked four properties on
several models of the protocol. Each of the following sections is dedicated to one property. The
properties are listed in this section in an informal manner and in a notation slightly different
from the actual input for the tools. For the exact definitions of the properties, we refer to the
report version.

The properties presented here were devised after the models of the protocol had been con-
structed. This has both advantages and disadvantages. A disadvantage is that it turns out to
be rather difficult to express properties for our specific models. In fact we have had to change
them slightly to make some information visible. An advantage is that the models have not
been tailored towards the properties that should be checked except the changes mentioned. A



110 6 TheHAVi leader election protocol

potential danger is that the model does not resemble the protocol close enough anymore, and
the properties to be checked trivially hold.

Since the behaviour of the protocol is unpredictable during bus resets or the period that
the CMMs need to deliver the bus reset event, we only demand that the properties be true for
stable situations, that is, in states where it is not the case that a bus reset is taking place or a
bus reset event should still be delivered. Since a new bus reset period may start at any moment
after the previous bus reset has ended and since we have included this possibility in our models
with non-deterministic choice, we get the behaviour depicted in Figure 6.4 from our models.
Suppose that;, S, Sz, ..., Sy in Figure 6.4 are stable states, which means that no bus reset
is taking place, and all events concerning the last bus reset have been delivered. We see that
from g it is possible that a new bus reset period starts, but it is also possible that some other
behaviour takes place on the transitiorsio If we establish a property in terms of behaviour,
we can only capture the desired behaviour fremby using arexists quantifier: froms; there
exists a behaviour which satisfies a certain requirement. Moreover, in our models the amount
of activity that concerns the protocol is bounded. After a certain point, the protocol is stuck
or completed, and the only possible behaviour is that a new bus reset period starts. So it is
not possible to express a property as follows: “for all behaviours: if no bus reset starts in this
behaviour then fulfill a requirement”.

Expressing propertiesfor Promelamodels Safety properties can be checked in Spin through
the use ofasserti on statements. We use a process with only such an assertion statement
in the verification for checking whether there is a state in which the assertion is false. If this
happens, Spin reports this as an error and stops the verification. An error trace is saved which
can be used for diagnostic purposes.

Liveness properties can be checked in Spin through the use of LTL [Pnu77, MP92] for-
mulas, which are translated inteever claims. A never claim is a process which will only
terminate if the corresponding LTL formula was violated. Actually, never claims represent
w-regular properties. Spin checks whether never claims hold in the initial state. This means
that if a never claim is already satisfied by the initial state, no further exploration of the state
space is needed.

Both assertions and LTL formulas are expressed in terms of predicates, which range over
values of variables. It is also possible to check a pattern of communications, but not in com-
bination with checks of state variable values. Since in our case, it is by far the easiest to find
error situations by referencing the state variable values, we stick to the assertions and never
claims.

start start start start
bus rese bus rese bus rese bus rese
—_— o o 0o — 3|

Figure 6.4: Protocol behaviour



6.5 Model checking experiments 111

Expressing propertiesfor Lotosmodels We express safety and liveness propertiesin ACTL
[DNFGR93, DNV90]. A property is checked by Xtl on the reachable state space, by checking
for each reachable state whether the property holds in that state.

Since the model checker Xtl is only used on state spaces which have been generated from
the Lotos model, the information of state variables is lost. Actually, the states are identified
by natural numbers in the state graph accepted by Xtl. This means that we cannot express
properties in terms of values of state variables, but can only observe the occurrences of actions.
A consequence of this approach is that some safety properties are expressed with patterns of
action occurrences, which are normally only used for liveness properties. With the ACTL
logic we are able to observe such patterns. In order to still reference state variable values, one
could build self-loops into the Lotos model, which give the values of the state variables in the
corresponding state. However, this was not a feasible approach in our case (See the discussion
in Section 6.6).

An action can be observed by comparing an action label from a transition to a label set in
the property that is being checked. Comparing an action label to the lafe(Bealways suc-
ceeds (fails). Label sets can be constructed from syntactic expressions that capture one or more
action labels, and boolean operators. For instance, it is straightforward to construct a label set
that succeeds when compared to the |83 RESET START or the labe PONER _CHANGE
and fails otherwise.

In order to enable the checking of not just communications between the DCM Managers,
but also other important actions, the model contains a few extra observable events. These are
modelled by the occurrences of communication on the special@atent . In this way we
observe a DCM Manager electing itself for initial or final leader.

We now give an overview of the ACTL operators used, and their informal me&ning

T,—, A, vV, — Boolean true, negation, and, or, implication

[a] ¢ For every transitiors 2 t from the current state: formuiamust hold in the target state
t

VGa¢ For each (possibly finite) path from the current state where all actions area&ibher
formulag must hold in every state

A(paUpyr) There exists a path from the current state along which for a finite fragment formula
¢ holds in each state and all actions are either 7, and this fragment is immediately

followed by a transitiors 2 t, and in state formulay holds.

For a complete list of ACTL operators and a formal definition, we refer to [DNFGR93, DNV90,
HM85].

The standard library in the Caesar/AltHran distribution for using these operators is the
act | . xtl library (implemented by Mateescu [Mat98, MG98]) which establishes the validity
of a formula by checking whether the formula holds in all reachable states of the Lotos model.
This library is not implemented in such a way that it gives diagnostics in case a property is
not true. Diagnostics can be obtained by usingwhék act | . xt | library (implemented

INote that here, [1is not a pure ACTL operator, but an operator from the Hennessy-Milner modal logic [HM85].
Since the Xtl library for ACTL is defined using the Xtl libraries for the Hennessy-Milner modal logic and the modal
pn-calculus [Koz83], we can use operators from these logics in any ACTL expression.



112 6 TheHAVi leader election protocol

by Pecheur [Pec98]), which also implements the ACTL operators mentioned, and which tries
to find an error trace. This implementation establishes the validity of a formula by checking
whether the formula holds in the initial state of the Lotos model. Of course, in general the use
of this library is more costly since there is more administration involved in finding the trace,
and a lot of backtracking occurs.

6.5.1 Safety: At most one leader

It is never the case that more than one DCM Manager is a (initial or final) leader.

Spin  We use arasserti on statement, and check the following formula:
vd, d’.(—bus_reset A leader (d) A leader(d’) — (d =d))

This property does not hold for any of the models. In Figure 6.5 an error trace constructed by
Spin for the model with two DCM Managers and synchronous communication is2istaés

trace describes the following behaviour. In the first bus reset period both DCM Managers are
powered up. They start the leader election protocol, in which DCM Manager A is the initial
leader and DCM Manager B is the initial follower. B is UrlCapable and A is not. B sends A an
InitRequest, A computes the final leader which is B, and sends the InitReply to B. A new bus
reset period starts and ends without change in the network topology. The CMM on the device
of B delivers the bus reset event to B, and B starts the leader election protocol anew. B is again
initial follower and sends A an InitRequest. A does not know about the second bus reset period
so itis in its final follower phase where it answers any InitRequest with the same InitReply as
before. A sends B the InitReply and B concludes it is the final leader. Now the CMM on the
device of A delivers the bus reset event to A, and A starts the leader election protocol anew. A
is again initial leader and does not know the identity of the final leader to be elected, while B
still thinks it is final leader. In this state the property checked is violated.

The question is now whether this scenario is also possible within the HAVi specification.
The problems apparently arise when the delivery of a bus reset event message is delayed be-
yond the duration of both a message and a response between different devices, and when the
GUIDList is available before the corresponding bus reset event has been delivered. It may
be argued that such delays are not ‘realistic’ and ‘will not occur in practice’. However, since
the HAVI specification does not put constraints on the duration of communication between
devices, or on the delay between posting and delivery of the bus reset event, it is possible that
the bus reset event is delivered first to other HAVi elements which have subscribed to it, before
the DCM Manager receives it. Thus, it seems that in HAVi compliant implementations this
erroneous scenario may occur, and we conclude that this error indeed traces back to a design
flaw. We refer to Section 6.5.5 for a more elaborate discussion whether the HAVI protocol is
wrong.

Xtl  What we want to establish, is that there are not multiple InitialLeader or FinalLeader
events in between of bus reset periods. Since we can check for patterns of actions, we formulate
the property as follows: if a bad pattern of Initial or FinalLeader events occurs, then we are

2|n fact, this trace was generated when model checking the property from Section 6.5.3. It turns out that it is also
an error trace for the property discussed here.



6.5 Model checking experiments 113

not in a stable situation (where no bus reset is taking place and the last bus reset events have
all been delivered). This boils down to expressing that when a bad pattern does occur outside
bus reset periods, apparently a bus reset event must still be delivered.

We check the following formula:

([b1] YGi, ([i3] ¥Gi, (lig] 3(Ti,Up,T)) A ([b1] ¥Gi, ([ ] ¥Gi, ([ia] 3(Ti,Up,T))
where by = BusResetEnd
by = BusResetEvent
i1 = Ignore; = —(BusResetEvent v BusResetStart v Initleader v FinalLeader)
i> = Ignore, = —(BusResetEvent v BusResetStart)
i3 = InitLeader
i4 = InitLeader v FinalLeader
f = FinalLeader

This formula expresses two patterns that should be followed by a bus reset event being deliv-
ered. Both patterns start with the end of a bus reset period, and do not allow the start of a new
bus reset period by the use of the action label sets Igmo@ Ignorg. The first pattern checks

the double occurrence of the InitialLeader event. The second pattern checks the occurrence of
a FinalLeader event, followed by either an InitialLeader or FinalLeader event. The action label
sets in the subscript of th@ andT symbols enable the actions in the subscripts to occur in any
sequence in between.

This property holds for all models. Since we found errors in the Promela models for this
property using Spin (See earlier in this section) two questions remain, namely whether the er-
ror behaviour found with Spin also occurs here and if so, why it is not found with the ACTL
formula used. Simulating the behaviour from the Spin error trace is possible for the Lotos
model with two DCM Managers and synchronous behaviour. As to the second question. The
answer is that the label set Ignetis too restrictive. The idea of checking a pattern when a
bus reset event has completed turns out counterproductive. We might have chi¢dasir-
rences of the FinalLeader event followed by bad patterns, and qualified the occurrence of a
BusResetStart, BusResetEnd or BusResetEvent as a good pattern. In any case, it appears that
the formulation of the property in this setting is very complicated. We refer to Section 6.5.5
for the discussion whether the HAVi protocol is wrong.

6.5.2 Safety: Best candidate becomesfinal leader
Itis never the case that a final leader is selected which is not UrlCapable, while there is a DCM
Manager active in the network which is UrlCapable.
Spin  We use arassert i on statement, and check the following formula:
—bus_reset A Vd.((fleader (d) A —url_capable(d)) — vd’.(up(d’) — —url_capable(d’)))

This property holds for all models except for the setting with three DCM Managers and asyn-
chronous communication. However, the error found here reveals problems with the interpre-
tation and execution of the Promela code rather than an error in the protocol. In fact, we can



114 6 TheHAVi leader election protocol

reason why in our model the property should be true for any number of DCM Managers with
either synchronous or asynchronous communication. The idea is that upon receipt of a bus
reset event, each DCM Manager will clear the information of being final leader and ask for the
new network topology (the GUIDList). Since the start of a bus reset period causes the delivery
of a bus reset event at some time, in a stable situation all bus reset events have been delivered,
and each DCM Manager must have the correct network topology information. So after the last
bus reset event delivery to a DCM Manager, it cannot choose a non UrlCapable final Leader
if there is a UrlCapable DCM Manager present. So the only way in which a non UrlCapable
DCM Manager can still be the final leader in a stable situation, while a UrlCapable DCM
Manager is present, is to receive an InitReply with its identity from the initial leader, when the
initial leader has not received the latest bus reset event. But we have modelled the final leader
election by having the initial leader choose itself, if no UrlCapable Manager is present. So it
cannot ever send an InitReply with the identity of another, non UrlCapable DCM Manager. It

is clear that although the property must hold in our models, it does not hold when we lift the
restriction that the initial leader chooses itself for final leader when no UrlCapable DCM Man-
ager is present. Since there is no such restriction in the HAVI specification, we expect that this
property does not hold for HAVi compliant implementations in general. As in Section 6.5.1
the error scenarios require that the delivery of a bus reset event message is delayed beyond the
duration of the sending and delivery of both a message and a response between different de-
vices, and possibly also that the GUIDList is available before the delivery of the corresponding
bus reset event. We refer to Section 6.5.5 for a more elaborate discussion whether the HAVi
protocol is wrong.

Xtl The situation that a DCM Manager is up and UrlCapable is signalled by the request
from such a DCM Manager to the initial leader, in which the UrlCapable parameter is true.
Whenever such a request is followed by the election of a final leader which is not UrlICapable,
there must be a bus reset event pending that needs to be delivered.

We check the following formula:

[u] VGi, ([f] A(Ti,UpT))
where b = BusResetEvent
i1 = Ignore; = —~(BusResetEvent v BusResetSart v BusResetEnd v Final Leader)
i> = Ignore, = —~(BusResetEvent v BusResetStart)
f = FinalLeaderNotUr|Capable
u = RequestUrICapable

This property holds for all models. We refer to the paragraph above on Spin experiments for
this property, for a discussion whether this property holds in general or not, and to Section 6.5.5
for the discussion whether the HAVi protocol is wrong.

6.5.3 Safety: All agreeon thefinal leader

Whenever a final leader is selected, all DCM Managers agree on the identity of this leader.
Of course this can only be checked as soon as all DCM Managers have been informed of
the decision of the initial leader. Since the final leader is informed last of the decision (and



6.5 Model checking experiments 115

whenever this happens to be also the initial leader, it will ‘inform itself last’), this can be
checked as soon as one of the DCM Managers has been elected for final leader.

Spin  We use arassert i on statement, and check the following formula:
vd.(—bus_reset A f_leader(d) — vd'.(up(d’) — leader_id(d") = d))

This property does not hold for any of the models. The error trace constructed by Spin for
the model with two DCM Managers and synchronous communication, which is depicted in
Figure 6.5, is discussed in Section 6.5.1. We refer to Section 6.5.5 for the discussion whether
the HAVi protocol is wrong.

Xtl  We can only check that everyone has the same leader identity by checking the parameters
of messages/events concerning the final leader. We require the leader identity parameter to be
equal for all such actions in stable situations. So the property must express that whenever two
actions carry a different leader identity outside a bus reset period, apparently a bus reset event

must still be delivered.
We check the following formula:

vd. [lg] ¥Gi, ([1-a] 3(Ti,UpT))
where b = BusResetEvent
i1 = Ignoreg
= —(BusResetEvent v BusResetSart v BusResetEnd v InitReply v FinalLeader)
i2 = Ignore, = —(BusResetEvent v BusResetSart v BusResetEnd)
lg = (InitReply v FinalLeader) with leader identityd
g = (InitReply v FinalLeader) with leader identity not equal td

This property holds only when communication between DCM Managers is synchronous.
In the asynchronous case an erroneous initialisation reply may be lingering in someones input
gueue, after the corresponding bus reset event has been handled by the sender of the erroneous
message. In Figure 6.6 an error trace constructed witlhvéthék_act | library is listed. The
behaviour described by this trace is as follows. In the first bus reset period DCM Manager A
is powered up. A is not UrlCapable. A starts the leader election protocol and elects itself for
initial leader. In the second bus reset period DCM Manager B is powered up. B is UrlCapable.
After the second bus reset, A has not received the bus reset event yet. A elects itself for final
leader which completes the leader election. B elects A for initial leader and sends an InitRe-
guest. A receives the InitRequest from the MS and sends an InitReply with its own identity for
final leader. Now A receives the bus reset event and starts the leader election protocol anew. B
has not received the InitReply from the MS yet and sends a second InitRequest to A. Now B
receives the InitReply from the MS and concludes that A is the final leader. A elects itself for
initial leader, and receives the second InitRequest that B sent from the MS. A elects B for final
leader and sends an InitReply with the identity of B for final leader. The property is violated.

Since we found errors for the Promela models with synchronous communication using
Spin, two questions remain, namely whether the error behaviour found with Spin also occurs
here and if so, why it is not found with the ACTL formula used. In Section 6.5.1 we mention
that it is possible to simulate the Lotos model with two DCM Managers and synchronous



116 6 TheHAVi leader election protocol

<show>
BusReset Period 1

Bus_Reset: 2

1 1! pover| change

DCM Manager : 4

3! power _

D\wichange
\ DCM_Manager : 6

4! powef _change,

BusReset Period 0
o1 ou it fequest {7 BT ]

110 6! DM ni {Repl y, 1

T

EW et
7]

BusReset Period 1

BusReset Period 0
5! DM ni t Request , 1 157

161 6! DM ni iReply, 1

T

BusReset Peri od 0

()

Assertion: 1

qinrt:: 0

Figure 6.5: The Spin error trace for ‘one leader’ and ‘same final leader’



6.5 Model checking experiments 117

AG A(A, F) is FALSE
: (0, "GBUSRESET !BUS_RESET_START", 5036)
1 (5036, "GUPDOMN !1 ! PONER_CHANGE", 3437)
1 (3437, i, 4798)
(4798, "GBUSRESET ! BUS _RESET_END ! CONSNET( CONSN( TRUE) , CONSN( FALSE) )", 4797)
1 (4797, "G NFO !'1 ' GUID_LI ST ! CONSNET( CONSN( TRUE) , CONSN( FALSE) ) ", 4790)
(4790, "GBUSRESET ! BUS RESET_START", 4789)
1 (4789, "GEVENT !I NI T_LEADER !1", 4769)
1 (4769, i, 133)
1 (133, "GUPDOMWN ! 2 | POAER_CHANGE", 142)
1 (142, "GBUSRESET ! BUS_RESET_END ! CONSNET( CONSN( TRUE) , CONSN( TRUE) ) ", 658)
10: (658, "GEVENT ! FI NAL_LEADER !'1 ! FALSE", 150)
11: (150, "G NFO !'2 ' GUI D_LI ST ! CONSNET( CONSN( TRUE) , CONSN( TRUE) ) ", 2542)
12: (2542, "GDMOUT !'1 ! CONSM DM NI TREQUEST, 2, TRUE) ", 552)
13: (552, "GDM N !'1 ! CONSM DM NI TREQUEST, 2, TRUE) ", 2524)
14: (2524, "CGDMOUT !2 | CONSM DM NI TREPLY, 1, FALSE)", 316)
15: (316, "G NFO !'1 ! BUS_RESET_EVENT", 303)
16: (303, "GDMOUT !'1 ! EMPTY", 1924)
17: (1924, "CGDMOUT !'1 ! CONSM DM NI TREQUEST, 2, TRUE) ", 1921)
Box(A, F) is FALSE
18: (1921, "GCDM N !'2 | CONSM DM NI TREPLY, 1, FALSE) ", 1909)
AG A(A, F) is FALSE
19: (1909, "G NFO !1 !GUI D _LI ST ! CONSNET( CONSN( TRUE) , CONSN( TRUE) ) ", 1486)
20: (1486, "GEVENT ! NI T_LEADER !1", 1662)
21: (1662, "GDM N !'1 ! CONSM DM NI TREQUEST, 2, TRUE) ", 1507)
Box(A, F) is FALSE
22: (1507, "GDMOUT !2 ! CONSM DM NI TREPLY, 2, FALSE) ", 1548)
EU A B(F, A, B, G is FALSE
*Failure. *

OCoOoO~NOOUDWNEO

Figure 6.6: The Xtl error trace for ‘'same final leader’

communication and reproduce the error behaviour found by Spin and depicted in Figure 6.5.
As to the second question. The ACTL formula used only checks communication involving
leader identities. Here we are really hampered by the fact that for the current Lotos models it
is not possible to include state information in the formula. It turns out that in the synchronous
Lotos models a bus reset event will appear in between of the two events carrying a different
leader identity. Since such a pattern is in general not erroneous, it is not possible with this
approach to find the erroneous behaviours constructed with Spin. We refer to Section 6.5.1 for
a discussion of the behaviour that violates this property, and to Section 6.5.5 for the discussion
whether the HAVI protocol is wrong.

6.5.4 Liveness. Eventually therewill always be afinal leader

Whenever there is at least one DCM Manager active in the network, there should eventually
be a final leader. The property we check is whether from each stable state in which at least one
DCM Manager is up there exists a path on which no bus reset period starts and a final leader
is chosen. It may be argued that this property is too strong since it assumes that there exists a
path on which bus reset periods can be delayed until after the election of the final leader. If the
environmentwould violate this assumption, the property would be false even when the protocol
was correct. There are two reasons for our approach. First, we know that in our models the



118 6 TheHAVi leader election protocol

choice between a bus reset period starting and any other activity is non-deterministic. So
bus reset periods can be delayed as long as other activity is possible. Second, the alternative
property to be checked would be: ‘After the handing out of the GUIDLIst, each path leads
to a new bus reset period or a final leader being elected’. This formula requires that during
and after the leader election activity, the DCM Managers can perform idle/internal actions
indefinitely, in order to distinguish between situations where leader election is interrupted by a
bus reset period and situations where leader election does not terminate for some other reason,
i.e. livelock rather than deadlock, since in case of a deadlock a bus reset period is forced to
start. Moreover, the models already contain a livelock when there are more two initial followers
of which one keeps sending InitRequests and the other never gets a turn. The problem with
livelocks is that the property should then be checked under certain fairness aspects. This makes
the situation increasingly complex, and we have chosen to stick with the first formulation.

Spin  The only way to model a liveness property like this and have Spin check its validity, is
with an LTL formula. We have been able to express this without too much trouble in ACTL,

as can be seen below. However, the expressivity of LTL and branching time logics like ACTL
is not comparable [Sti92]. When we try to express the property to be checked in LTL and
formulate it as follows, we get an expression which is not in LTL syntax:

O((—bus_reset A (3d. up(d))) — 3J(—bus_reset U—bus_reset A 3d. f_leader(d)))

Because of tha@ operator, this is not an LTL formula. However, we do need @perator to
express the behaviour that the Promela models should have (See also Figure 6.4). The reason
is that an LTL formula is interpreted to be true if and only if it holds for each behaviour of the
model. So if it is only possible to express desired or undesired properties for one behaviour.
But the property that we desire to have is that there always exists a good path. The property
that we desire not to have is that there is no state from which there are only bad paths. This
cannot be expressed in LTL. This problem has been discussed via e-mail [Dam98, Hol98b], but
no solution was found, other than to change the model such that there is a fixed number of bus
reset periods, after which the network remains stable. Then Spin’s capability to find invalid end
states can be used to check that the protocol ends up with a leader, or identify a finite path as
undesirable with LTL. A drawback of this approach is that it is not a priori clear how many bus
reset periods should be allowed to obtain correctness for the more general model. However,
we already found errors in the Spin models for other properties, and in the Lotos models for
this property. In the Spin models, errors occur already after two bus reset periods. We have
changed all models such that at most two bus reset periods can take place, and added labels
to indicate what states in the model are valid end states. Then it turns out that all new models
have an invalid end state, which indicates that the protocol ends without electing a final leader
even though at least one DCM Manager is up.

In Figure 6.7 the error trace constructed by Spin for the model with two DCM Managers
and synchronous communication is listed. This trace describes the following behaviour. In the
first bus reset period DCM Manager A is powered up. The first bus reset period is immediately
followed by a second, in which DCM Manager B is powered up. A and B are both not UrlCa-
pable. After the end of the second bus reset period, A does not receive the bus reset event yet.
Now both A and B start the leader election protocol, in which DCM Manager A is the initial
leader and DCM Manager B is the initial follower. B sends A an InitRequest, A computes the
final leader which is A, and sends the InitReply to B. B concludes that A is the final leader



6.5 Model checking experiments 119

<show>
BusReset Period 1
Bus_Reset: 1

DCM_Manager : 3
CWM 2 17
18 1! power _change

EL; 4! power| change DCM_Manager : 5
*}‘ 61

[[owma ] 62 |

BusReset Period 0
BusReset Period 1

63 2! power _charjge
BusReset Period 0

5! DM ni t Request , 1
6! DM ni §Repl y, 0

70
IS

1! bus_reset 7

[ s 86
BusReset Peri od 0
109
109
[10e ]
O

tinit::0

Figure 6.7: The Spin error trace for ‘always final leader’

which completes the leader election. Now the CMM on the device of A delivers the bus reset
eventto A, and A starts the leader election protocol anew. A is again initial leader and waits for
the InitRequest from B, while B has already completed leader election. Since there is no action
possible we are in an end state, and since for A the leader election has not been completed, it
is an invalid end state.

As in Section 6.5.1 the error scenario requires that the delivery of a bus reset event message
is delayed beyond the duration of the sending and delivery of both a message and a response
between different devices, and that the GUIDList is available before the delivery of the cor-
responding bus reset event. In Section 6.5.1, we argue that this behaviour is allowed by the
HAVi specification and hence may occur in HAVI compliant implementations. We refer to
Section 6.5.5 for a more elaborate discussion whether the HAVi protocol is wrong.

Xtl  We check whether a DCM Manager is up in a stable state by observing the transaction
in which the CMM hands out the GUIDList. We check whether a final leader is elected by
observing the FinalLeader event. We demand that there exists a path from each GUIDList

transaction on which no bus reset period starts and on which a FinalLeader event occurs.
We check the following formula:

[9] 3(TiU£T)
where i = Ignore = —~(BusResetStart v FinalLeader)

g = GetGUIDList
f = FinalLeader



120 6 TheHAVi leader election protocol

AG A(A, F) is FALSE
: (0, "GBUSRESET !BUS_RESET_START", 962)
1 (962, "GUPDOM !1 ! POAER_CHANGE', 72)
(72, i, 1024)
: (1024, "GBUSRESET ! BUS RESET_END ! CONSNET( CONSN( TRUE) , CONSN( FALSE) ) ", 1023)
1 (1023, "GBUSRESET ! BUS_RESET_START", 820)
(820, i, 612)
(612, "GUPDOM !2 ! POAER CHANGE", 542)
1 (542, "GBUSRESET ! BUS_RESET_END ! CONSNET( CONSN( TRUE) , CONSN( TRUE) ) ", 288)
:(288, "GNFO!2 'GUID LI ST ! CONSNET( CONSN( TRUE) , CONSN( TRUE) ) ", 97)
1(97, "GNFO!'1 'GQUID LI ST ! CONSNET( CONSN( TRUE) , CONSN( TRUE) ) *, 335)
10: (335, "GEVENT !I NIT_LEADER !'1", 231)
11: (231, "GDM!1 !'2 | DM NI TREQUEST ! FALSE", 199)
12:(199, "GOM!2 !'1 !DM NI TREPLY !1", 995)
13: (995, "G NFO !'1 ! BUS_RESET_EVENT", 95)
Box(A, F) is FALSE
14: (95, "G NFO !'1 ! GUI D _LI ST ! CONSNET( CONSN( TRUE) , CONSN( TRUE) ) *, 1003)
EU A B(F, A, B, G is FALSE
*Failure. *

OCoOoO~NOOUDWNEO

Figure 6.8: The Xtl error trace for ‘always final leader’

This formula does not hold for any of the models.

In Figure 6.8 an error trace constructed with tied k_act | library is listed. By coin-
cidence, the behaviour described by this trace is the same as the behaviour described by the
error trace found by Spin for this property. See earlier in this section for an explanation of the
behaviour. We refer to Section 6.5.5 for the discussion whether the HAVI protocol is wrong.

6.5.5 IstheHAVi protocol wrong?

The error traces given in Figures 6.5, 6.6, 6.7 and 6.8 show that either our model of the protocol
or the HAVI specification itself must be wrong.

The error traces indicate that problems occur when the delivery of a bus reset event message
is delayed beyond the duration of the sending and delivery of both a message and a response
between different devices. In the case of synchronous communication, another cause of prob-
lems is the availability of the GUIDList before the delivery of the corresponding bus reset
event.

If all assumptions and restrictions that we made in our model are correct, then these sce-
narios may occur in an implementation that is totally compliant with this version of the HAVi
specification, because of two reasons. First, the HAVi specification does not lay down how
long messages may be on their way in the system. Second, the delivery of any event has to
go through the Event Manager. The Event Manager may cause a delay of the event for several
reasons. It is not known how many events the Event Manager may get due to a bus reset pe-
riod, which need to be delivered, and in what manner these events are processed. Furthermore,
there may be many components that listen to the bus reset event and in a sequential approach
to delivery of the events, the DCM Manager may very well be the last of them to receive this
message.

If our assumptions are not correct, then obviously it is hard to say whether the protocol



6.5 Model checking experiments 121

would be correct or not. However, all of the assumptions we made are restrictions on con-
figurations or scenarios permitted by the HAVi document which means that we only exclude
some HAVi behaviour. So the error behaviour we found would almost certainly be present in
a model with fewer restrictions. In fact, the chances are high that with fewer restrictions more
erroneous behaviour could be found in the protocol. We already argued in Section 6.5.2 that
lifting the restriction that the initial leader chooses itself for final leader when no UrlCapable
DCM Managers are present, will lead to violations of the property ‘the best candidate becomes
final leader’. Other generalisations we could make are: several types of devices in the network,
physical IDs that change, bus reset periods that start and end at different moments in different
devices, no difference between processing of events and messages, et cetera. Also, it may still
be the case that one or more of the software elements used for this protocol have a potential
deadlock in their behaviour, and thus prevent the DCM Managers from completing their leader
election.

Our conclusion is that for the HAVI leader election protocol to be correct (meaning that
any implementation that complies with HAVi works correctly), the HAVI specification should
have requirements added on the duration of delivery of events related to the duration of com-
munication between devices. Since the disruption by bus reset periods makes it difficult to
establish such requirements, we think the easiest solution is to establish real-time constraints
on the duration of sending and processing messages and events, which are realistic for HAVi-
compliant implementations. This information should then be checked in a timed formal verifi-
cation. Since timed model checking is beyond the scope of this experiment, we cannot give an
estimate of time bounds that would work, or say whether such time bounds exist.

6.5.6 Statistics

The statistics for model checking the different models with the Spin tool set (version 3.2.4, ver-
sion 3.3.0 beta-13 May 1999) and the Caesarhltan tool set (Caesar version 5.3, &ddfan
version 6.4, Xtl version 1.1) are given in Tables 6.1, 6.2 and 6.3. All experiments with Spin
were done on an SGI IRIX64 6.5 machine with 48 Gbyte of memory. All Caesaialdin
experiments were done on a SUN Ultrd 8 SunOS 5.6 machine with 1 Gbyte of memory.

A few remarks are in order.

e All memory entries are in Megabyte. All time entries arehiours: minutes: seconds
format.

e Spin, Ceesar, Aldbaran and Xtl all generate C code which after compilation performs
the state space generation, minimisation and/or exploration.

e The memory numbers mentioned in Table 6.3 indicate the amount of memory used by
the verifier generated by Xtl in C code, compiled to executable form. However, C com-
pilation takes at least 6 Mb. For thal k_act | library, C compilation takes at least
12 Mb for the models with 2 DCM Managers.

e For the Spin experiments, the memory usage is provided in the output of Spin. Note that
this is always a little higher than the memory usage observed with the UNIX command
‘top’. For the Ceesar, Alebaran and Xtl experiments, the memory usage is obtained by
observing the outcome of the UNIX command ‘top’.



122

6 TheHAVi leader election protocol

e For all experiments, the timing information is obtained by the UNIX command ‘time’.

e Normally, Lotos state space generation is done with Caesar inbthg format, which is

very compact. However, Caesar sometimes creates a state space of much greater size than
the corresponding minimal state space under strong bisimulation, and for the models
in our case this means that state space generation gets stuck at an unknown portion
of the desired total, and fails due to lack of memory. So we turned to an alternative
route, and generated the state spaces separately for each instance of each process in
the main parallel composition expression. This again is done with Caesar. The state
spaces generated are first minimised with respect to strong bisimulation equivalence
(with Aldebaran and the bmin criterion), which is also done in.theg format. Then

these minimised state spaces must be combined into one state space. This is done with
Aldébaran and works only if the separate state spaces are.iatheformat. The target

state space is then also in thaut format. The. bcg version is computed and then
minimised.

When generating the state space for one of the communicating processes, often the re-
ceipt of a message is not constrained other than by all possible instantiations of the
parameters of the communication. This means for instance that when a parameter is of
type Natural, that this parameter is instantiated with all constructor values provided by
the library for type Natural, when in fact there are only a few values possible in the con-
text of two or three communicating DCM Managers. These parameter values had to be
constrained in the separate process definitions to make state space generation manage-
able. This was done by making a new library for the data types used, and by modifying
some conditions on communications, for instance by ruling out the receipt of messages
from oneself. Without such constraints, it was not possible to generate a state space
for the DCM Manager process with the lowest identity, in the case of asynchronous
communication and three DCM Managers.

All state space generation sizes in Table 6.2 are for a state space.ibdigeformat,
except thecomb network entries which represent a state space in thet format. Min-
imised state spaces are always in theg format. In some cases, thécg version has
fewer states for the same state space than the original version.

In Table 6.3, the full state space size is listed for each model. When usirarthe
library, the full state space is explored, even when errors are found. When using the
wal k_act | library, the verification stops after the construction of the first diagnostic
trace. We do not know how many states and transitions were explonedildy act |

to construct the diagnostic traces.

The Promela models for 2 DCM Managers are more efficient than the ones with 3 DCM
Managers in the sense that they use the dataliypenstead obyt e for the Id param-
eter in the general proceBEM Manager .

With Spin we first tried to explore the whole state space. Whenever an error was found,
we reran the verification with a smaller search depth (option ‘-m’ at run time) to see if a
smaller error trail could be found. In this way we found the trails reported in Table 6.1,
which are the shortest trails we could find. Sometimes the search for a shorter trail



6.5 Model checking experiments 123

involves the exploration of more states and transitions, due to the order in which the
depth-first search is performed.

Only after completing the verification experiments, we learned that option ‘-DREACH’

(to be used at compile time) guarantees a complete search of the truncated state space.
This explains why we found a shorter error trail with Spin version 3.2.4 in one case
than with Spin version 3.3.0 beta. The -DREACH’ option may increase memory usage
and duration of verification experiments. It is very well possible that with this option

we would have been able to find the error in the model with three DCM Managers and
asynchronous communication for the property ‘best final leader’ with a much smaller
search depth. Without the ‘-DREACH’ option we did not find an error with search depth
-m1000’ but ran out of memory.

e Checking the property ‘best final leader’ for the Promela model with 3 DCM Managers
and asynchronous communication was done with the new Spin 3.3.0 beta option ‘-DSC’
to keep the major part of the depth first search stack on disk, and not in memory. Other-
wise this experiment would have taken much more memory. The stack file size was 281
Mbyte.

e All experiments with Spin were first done on Promela models in which the global vari-
ablemwas ‘hidden’, which means that it is not part of the state vector. In this situation
Spin did not explore the entire state space. Major parts of the code were unreachable
because of using the hidden variable inside two branches of an ‘if’ statement inside an
atomic statement. The predicate ‘hidden’ should not be used this way but this was not
listed in the manuals (it is in the Spin on-line manual now). The difference in semantics
between the simulator and the verifier made the situation increasingly unclear, since the
parts of the state space that were unreachable to the verifier, were reachable in simu-
lation. Some improvements have been made in Spin 3.3.0 beta to the semantics of the
simulator.

e All experiments in Spin were done without partial order reduction by using the com-
pile time option -DNOREDUCE’. The reason for this is that the use of synchronous
communication in the escape guard of an unless command is not compatible with the
partial order reduction, hence when using partial order reduction it is possible that error
behaviour is missed.

e The error traces produced by Spin can be simulated interactively. The figures in this
section are the message sequence charts that were created during such simulation. The
figures have been adjusted a little to improve the presentation in black and white. Each
thin vertical line in the figure refers to a process in the Promela model, arrows between
process lines refers to communication. The thick vertical line refers to the global variable
BusResetPeriod in the Promela model. The numbers in the figures refer to steps in the
error trail.

e The error traces produced by Xtl were found with the use ofahilek act | library.
Traces are only produced in case of a universal property that does not hold, or an exis-
tential property that does hold. Since we used universal properties, we got traces only
in case of an error. The error traces were constructed from end to beginning, and have
been reversed in the figures to improve the presentation. The layout of the steps is:



124 6 TheHAVi leader election protocol

<step nr>:(<source state>, <transition |abel> <target state>)

The transition labels consist of the gate and the offers exchanged at the gate (each offer
is preceded by ). In between of the steps, messages occur that indicate that a temporal
operator from the formula checked does not hold at that point.

one leader

model | states | trans | holds? | memory time Sin

2sy 18K 93K F 136 | 0:00:04 3.24
2as 23K | 108K F 135 | 0:00:06 | 3.3.0 beta
3sy 781K | 4.7M F 161 | 0:03:59| 3.3.0 beta
3as 2.8M 18M F 230 | 0:15:30| 3.3.0 beta

best final leader
2sy 167K | 806K T 140 | 0:00:43 | 3.3.0 beta
2as 418K | 2.1M T 149 | 0:01:57 | 3.3.0 beta
3sy 44M | 279M T 1767 | 7:32:22| 3.3.0 beta
3as 194M | 3.8G F 7778 | 49:43:03| 3.3.0 beta
same final leader
2sy 16K 77K F 135 | 0:00:04 | 3.3.0 beta
2as 19K 91K F 135 | 0:00:05| 3.3.0 beta
3sy 407K | 2.5M F 148 | 0:02:05| 3.3.0 beta
3as 1.7M 10M F 190 | 0:08:54 | 3.3.0 beta
always final leader

2sy 17K 58K F 135 | 0:00:04 | 3.3.0 beta
2as 27K 98K F 135 | 0:00:06 | 3.3.0 beta
3sy 674K | 3.2M F 134 | 0:03:32| 3.3.0 beta
3as 1.5M | 7.5M F 182 | 0:07:52| 3.3.0 beta

Table 6.1: Spin statistics: state space generation + model checking

6.6 Conclusions

We have modelled the leader election protocol among DCM Manager components in the HAVI
architecture, and found that this protocol does not meet some safety requirements and that
it does not always converge to a situation with a leader actually elected. The errors are due
to the absence of requirements on how long it takes for messages and events to reach their
destination. It is expected that if these requirements are added, a formal verification will be
able to show whether the restricted protocol works correctly.

6.6.1 Concerning Spin

Using Promela and Spin  Promela is an easy language at first, and more difficult at second
sight. The basic language constructs have an intuitive meaning, but combining many aspects
such as rendez-vous communication, the atomic and the unless construct makes behaviour
more fuzzy. The treatment of data is manageable as long as the data is not too involved. In



6.6 Conclusions 125

| 2 DCM Managers, synchronous
generating minimising
per process states | trans | memory time | states | trans | memory time
DM 1 16K | 79K 3| 0:00:11 32 144 9 | 0:00:04
DM 2 10K | 5.4K 3 | 0:00:03 21 96 4 | 0:00:02
Bus Reset 46 59 3 | 0:00:02 16 24 4 | 0:00:01
CMM 1,2 12K | 55K 3 | 0:00:09 12 49 5 | 0:00:02
Other 1,2 2 8 3 | 0:00:02 1 4 4 | 0:00:01
comb network | 1.5K | 5.0K 51 0:00:01| 1.2K | 4.0K 4 | 0:00:01
2 DCM Managers, asynchronous
DM 1 404K | 3.0M 28 | 0:05:12 37 233 183 | 0:01:18
DM 2 21K | 18K 3 | 0:00:05 27 170 4 | 0:00:01
Bus Reset 46 59 3 | 0:00:02 16 24 4 | 0:00:01
CMM 1,2 12K | 55K 3 | 0:00:09 12 49 5 | 0:00:02
MS 1,2 23K | 19K 3 | 0:00:04 27 159 4 | 0:00:02
comb network | 6.3K | 23K 7 | 0:00:07| 5.1K | 19K 5 | 0:00:02
3 DCM Managers, synchronous
DM 1 21M | 16M 140 | 0:43:46 63 474 897 | 0:08:52
DM 2 177K | 1.4M 12 | 0:02:31 37 255 92 | 0:00:39
DM 3 46K | 38K 3 | 0:00:07 25 174 4 | 0:00:02
Bus Reset 186 243 2 | 0:00:02 40 64 3 | 0:00:02
CMM 1,2,3 297K | 2.1M 79 | 0:14:00 20 93 139 | 0:00:49
Other 1,2,3 2 40 2 | 0:00:02 1 20 3 | 0:00:01
comb network | 58K | 247K 47 | 0:00:52| 44K | 193K 24 | 0:00:21
3 DCM Managers, asynchronous
DM 1 20M | 11M 109 | 0:24:29 55 360 620 | 0:05:33
DM 2 509K | 3.8M 31 | 0:06:52 35 199 233 | 0:01:36
DM 3 9.8K | 105K 3| 0:00:13 31 254 10 | 0:00:03
Bus Reset 186 243 3 | 0:00:02 40 64 4 | 0:00:02
CMM 1,2,3 297K | 2.1M 111 | 0:13:57 20 93 139 | 0:00:47
MS 1,2,3 3.9K | 47K 3 | 0:00:08 35 279 6 | 0:00:02
comb network | 1.0M | 5.2M 358 | 0:31:12 | 748K | 3.9M 423 | 0:10:21

Table 6.2: Ceesar/Abaran statistics: state space generation

our case, we are clearly overstepping the bounds of the type of model for which Promela was
designed.

The graphical interface of Spin is attractive, and it is easy to use. The semantics of the
simulator and the verifier have been made more alike recently, which is very important since
simulation is often used as a justification for having modelled things right. We are in favour of
the semantics being exactly the same for simulator and verifier. After a while, we turned to the
command-line use of the tools rather than the graphical interface. This was partly due to the
experimental use of Spin on a 64 bit machine.

Expressing safety properties in assertions is very straightforward. Expressing liveness
properties in LTL is rather cumbersome and proved impossible in our case, mostly because
of the nature of LTL and the nature of the protocol. However, the possibility to track invalid



126 6 TheHAVi leader election protocol

one leader
model | states | trans | holds? | memory time
2sy 1.2K | 4.0K T 3| 0:00:08
2 as 51K | 19K T 3| 0:00:13
3sy 44K | 193K T 4 | 0:05:11
3as 748K | 3.9M T 68 | 25:12:18
best final leader
2sy 1.2K | 4.0K T 3| 0:00:05
2as 51K | 19K T 3| 0:00:08
3sy 44K | 193K T 4 | 0:02:17
3as 748K | 3.9M T 68 | 10:31:08
same final leader
2sy 12K | 4.0K T 3| 0:00:05
2 as 51K | 19K F 3| 0:00:11
3sy 44K | 193K T 4 | 0:0551
3as 748K | 3.9M F 69 | 29:05:41
error trace sameleader
2as 5.1K | 19K F 5| 0:00:26
3as 748K | 3.9M F 199 | 15:22:48
always final leader
2sy 12K | 4.0K F 3| 0:00:05
2as 5.1K | 19K F 3| 0:00:08
3sy 44K | 193K F 4 | 0:03:28
3as 748K | 3.9M F 69 | 18:57:39
error trace always final leader
2sy 12K | 4.0K F 3| 0:00:05
2as 5.1K | 19K F 3| 0:00:08
3sy 44K | 193K F 6 | 0:05:32
3as 748K | 3.9M F 199 | 14:16:50

Table 6.3: Xtl statistics: model checking

end states was a simple way around this, although it implied changing the models.

Performanceof Spin As can be seen in Table 6.1, the performance of Spin is quite good, as
long as the number of DCM Managers remains small, and there are no asynchronous channels.
We achieved the best performance by using all the advice given in Spin’'s Help Section on
reducing the state space size. Of course, when the communication channels in a Promela
model are asynchronous rather than synchronous, the state space grows tremendously because
of all possibilities of interleaving the sending and receiving of messages with other activities.
Spin uses a partial order reduction technique [HP94] to reduce the model checking effort.
This technique identifies transitions as independent and takes only one of the many orders in
which these transitions might be explored. The independence criterion holds for transitions
that (1) access only local variables, (2) access only communication channels to which the
executing process has exclusive read or write access. In our case, we could not use the partial
order reduction because we had synchronous communication in the escape guard of an unless



6.6 Conclusions 127

command. If we had been able to use partial order reduction, then we would not have had a
great benefit for the following reasons. In our models, most variables have to be used in the
verification and are global, and all communication channels for which exclusive read or write
access can be guaranteed, are declared as arrays of channels which prohibits the use of the
exclusive access declaration construct. The latter is a syntactical restriction for which some
escape routes are available, such as the creation of a process where a channel from an array
is bound to an ordinary channel, on which the exclusive read or write access can be declared.
The other restriction is at the core of the reduction method, and cannot be lifted.

Anotherimportant memory usage-increasing factor for our models is probably that, whereas
usingat omi ¢ sequences does reduce the number of states, still the number of steps performed
in one suchat omi ¢ sequence is reflected in the ‘search depth’ of the tool. This search depth
is limited by the user, and determines the portion of the state space to be explored, the size of
the heap that is to be allocated for the search, and hence the amount of memory used for the
verification.

What one would like to have (and what might help to improve the performance of Spin
tremendously) is to be able to define functions that perform computations without adding to
the state space size, aatlonmi ¢ sequences to be truly atomic. One would then lose the
possibility of exactly tracing down a statement where error situations occur or simulating per
statement, but we feel that when useigom ¢ sequences, it is fair to not have those possibil-
ities anymore. Since the focus of Spin is on synchronisation and not on computation, there is
no plan to improve Spin in this respect [Hol99].

Multi-way synchronisation It is difficult to model multi-way synchronisation in Promela

and keep the state space small. Channels are by definition one-to-one, and several processes
glancing a global variable or a channel cannot be forced to do this in one atomic action. There

is no plan to improve Spin in this respect [Hol99].

Datastructures Spin forbids the initialisation of processes with a parameter which is a non-
basic data structure, such as an array or record. This hampers the construction of generic
models. Recently, the sending of messages with an array as parameter became possible.

Never claims and traces A mixture of ‘never claim’ and ‘trace’ processes will probably
affect the performance of Spin very badly. Nevertheless, the possibility to use assertions (that
reference global state variables) in the ‘trace’ process seems like a desirable and useful feature
for Spin. This is also a planned improvement for Spin [Hol99].

6.6.2 Concerning Caesar/Aldébaran and L otos

Using Lotos, Caesar, Aldébaran and Xtl Lotos is a hard language at first, and a precise
language at second sight. It can be hard to grasp the meaning of the language constructs at
first, but they have a clear semantics and do not become more complicated when combined.
Modelling data is not very hard as long as the data is of a constructive and simple nature.
Constructions like sets are not easy to model, but lists are.

The graphical interface of the tool set is easy to use. The simulator has the same semantics
as the verifiers, which makes simulation a good means for validation of models. After a while,
we turned to the command-line use of the tools rather than the graphical interface.



128 6 TheHAVi leader election protocol

Expressing properties in an action based logic like ACTL turned out to be quite hard. This
is partly due to the nature of the protocol, with bus reset periods disrupting normal behaviour,
and partly due to the fact that we cannot use state information in the formulas. Using ACTL,
we were not able to find some violations of safety properties which we found with assertions
in the Promela models.

Performanceof Caesar  For this protocol, the performance of the Caesar generator is poor. It
does not produce the minimal graph under strong bisimulation equivalence, but generates far
more states. Judging from the Lotos code and Table 6.2, we think this may be caused by the
use of the abstract data types. Perhaps terms which are equal on the basis of the data models
are not recognised as such during state space generation.

If it were not for the Aldsbaran possibility to compose several communicating components,
we would not have been able to construct a complete state space even for 2 DCM Managers.
Actually, for the Lotos model with synchronous communication between DCM Managers, and
2 DCM Managers in the network, Caesar generated about 1.3M states and 2.5M transitions in
one hour, and then got stuck due to lack of memory. It is hard to say whether the error traces
present in this model, would have been found with a far more restricted model of the protocol.

In order to use the Alebaran facility of combining state spaces, we had to enumerate
some data types, which affected the genericity of the Lotos model. We also had to restrict the
possibilities for communication, which proved essential when generating the state space for
the asynchronous case with 3 DCM Managers.

6.6.3 Comparison of thetools

Models, state spaces The models in Promela or Lotos are hard to compare. Some tasks can
be performed in onat oni ¢ sequence in Promela (but do increase the size of the verification
itself), which takes several atomic actions in Lotos. In Lotos, the data types and process param-
eters allow for computations being made without state space enlargement. In Promela, most
computations must be translated into (partsadfni ¢ sequences. In Promela one would like

a little more support for data types and functions. The Lotos models with asynchronous com-
munication and 3 DCM Managers are about as general as they can be. With the current tool
support, state space generation becomes impossible with any generalisation of the behaviour.

LTL versus CTL We have found an error in the protocol with an ACTL property which

we cannot express in LTL, and which we could only find with Spin by changing the models.
The LTL versus CTL issue is the inspiration of many papers and discussions of which we
only cite [EL87, KV98, Pnu85, Sti92]. Some attempts have been made at unification of the
two approaches (See for instance [KV98]). However, the property that we expressed in ACTL
turns out to be a classical example of the difference in expressivity between the two paradigms.

State space sizes The state spaces are smaller for the Lotos models than for the Promela
models, when the models are fully explored. On the one hand, this definitely is a flattered
view, since generating the state space for a complete Lotos model as such gives tremendously
high numbers. On the other hand, the Spin sizes hide the actual number of statements that
must be executed to reach a certain state. Because af thei ¢ predicate, the number of



6.6 Conclusions 129

statements may be much higher. This does not affect the state space size, but it does affect the
amount of memory used for the verification.

When errors are found, Spin stops immediately, hence explores only part of the state space.
In Xtl, the libraryact | always explores the full model. The libramal k_act| stops im-
mediately when a diagnostic trace is constructed.

Memory usagewhen model checking It turns out that we needed much less memory for the
Xtl verifications than with the Spin tool, which is probably due to the state space sizes being
larger for Promela, andt oni ¢ sequences consisting of more steps causing more memory to
be used than one statement. When verifying a property withnéthek_act | library, much

more memory is used than with tiaet | library, which we think is due to backtracking and
overhead for the diagnostic trace.

Size of generated code The size of C code generated by Spin is manageable considering
the state space size. For state space generation from Lotos models, the C files become larger.
Finally, large state spaces cause Xtl to generate very large C files in which very many variables
are allocated (a stack size greater than 2 Ghyte).

Expressing the propertiesto bechecked The properties verified with Spin and with Xtl are
not comparable. In Spin we used assertions (and tried in vain to use LTL) in terms of state
variable values. In Xtl we used ACTL properties in terms of observable actions.

We would like to use state information from the Lotos process parameters in the properties
to be verified with Xtl.

In Spin one would like to reference the values of state variables ire& e process, where
the occurrences of communications can be checked. The combination of these features, which
is as yet forbidden, would be very useful. This is a planned improvement.

Comparing model checking times When errors can be found, Spin is overall faster than

Xtl except when the models become very large. For full state space exploration, Xtl is faster,
probably due to the state space sizes. It should be noted that Spin builds the state space anew
during exploration whereas Xtl checks properties on state spaces that have already been built,
so in this case one should add the state space generation times to the model checking time.
Both approaches have advantages and drawbacks in terms of efficiency.

Tailoring modelsfor model checking We had slightly different Promela models depending

on whether we were checking properties concerning final leadership, properties concerning
any type of leadership, or the property which we could not express in LTL. In the former two
cases, differences were only in the variables used for observation. In the latter, a fundamental
change was made to the environment behaviour by having maximally two bus reset periods
instead of arbitrarily many. If we had used one general model for all properties, we would
have had a much larger state space. This was not necessary with the Lotos model because the
experiments there were based on observing actions rather than state variable values and it was
possible to express all properties in ACTL. The addition of the events that signal the election

of a leader in the Lotos models do not seem to enlarge the state space size as much as the state
variables in the Promela models do.



130 6 TheHAVi leader election protocol

Efficiency of model checking When verifying an ACTL property with thact | . xt | li-
brary, Xtl visits all reachable states, thus verification does not stop as soon as the property
is found to be false, and it cannot become true anymore, or vice versa. When using the
wal k_act | . xt| library, Xtl will stop as soon as a diagnostic trace has been constructed.
This will be a trace showing truth in the case of an ‘exists’ property, and it will be a trace
showing falsity in the case of a ‘for all' property.

Spin uses partial order reduction [HP94] to improve efficiency. We already mentioned that
a small change in the Promela syntax accepted by Spin can increase the benefit of this reduction
technique. In our case the partial order reduction cannot be exploited because of the combina-
tion of rendez-vous communication and unless constructs. This may be a consideration when
constructing models.

Spin stops the verification as soon as an error is found. A diagnostic trace leading to the
error situation is presented to the user. The trace may reveal the falsity of the property to be
checked, but also a dynamic error because an array index is out of range, et cetera.

6.6.4 Concerning thisexperiment

It appears that the combined approach of having different models of the same protocol and
different verification techniques, gives better results, for several reasons:

1. The restrictions of the different modelling languages force one to think carefully about
how to model all the aspects of the protocol.

2. The different verification techniques enable establishing different kinds of properties for
the protocol.

3. One approach acts as a debugger for the other, in the sense that
e Mistakes at the syntactic or semantic level are generally not made in the exact same
manner during the different modelling efforts.
e Results can be checked in two different situations.

e Negative results obtained on one side and not on the other can still be ‘checked’ by
simulating with the counterexample, and validating whether the error behaviour is
also present in the model for which this could not be verified.

Thus, the results are more convincing than when only one modelling/verification approach
is applied.



Chapter 7

A timed verification of the |EEE
1394 leader election protocol

Summary

The IEEE 1394 architecture standard defines a high performance serial multimedia bus that
allows several components in a network to communicate with each other at high speed. In the
physical layer of the architecture, a leader election protocol is used to find a spanning tree with
a unique root in the network topology. If there is a cycle in the network, the protocol treats this
as an error situation. This chapter presents a formal model of the leader election protocol in the
language 10A as well as a correctness proof. The verification shows that under certain timing
restrictions the protocol behaves correctly. The timing constants proposed in the IEEE 1394
standard documentation obey the requirements found in this proof.

7.1 Introduction

The IEEE 1394-1995 serial bus standard [IEE96] defines an architecture that allows several
components to communicate at very high speed. Originally, the architecture was designed by
Apple (FireWire). Currently, more than 70 companies are involved in the standardisation effort.
Although the IEEE 1394-1995 standard has been finalised, the architecture is still being refined
and adapted. Part of this ongoing work is reflected in the IEEE P1394a standard proposal
document [IEE99], which is intended to be a supplement to IEEE 1394-1995. In this chapter,
1394 will refer to IEEE 1394-1995 unless otherwise stated.

The IEEE 1394 standard allows several components to be connected either with cables
and IEEE 1394 chips (cable environment), or with an IEEE 1394 backplane in one physical
device (backplane environment). We restrict our attention to the cable environment situation,
and refer to the whole of components, cables, etthesetwork.

Like in the OSI model, the IEEE 1394 architecture has several layers of which the physical
layer is the lowest. This layer takes care of the actual communication on the bus, which
happens by sending signals on a wire by asserting voltages. The physical layer is responsible
for the knowledge that a component has of the network topology and of components present,

131



132 7 ThelEEE 1394 |leader election protocol

and for issues such as timing of asynchronous and synchronous communication and arbitration
for use of the bus. These tasks are taken care of in several phases.

The first phase in the physical layer is thas reset phase, which is entered whenever a
component is powered up, when the network topology changes or an error is discovered, or
on request of higher layers in the architecture. After completion of the bus reset phase, the
tree identify phase starts. In the three identify phase the network topology is determined by
spanning a tree in the network. The root of the tree will act as the bus master. After the tree
identify phase, theelf identify phase follows in which all components inform the rest of the
network of their capabilities and get a unique ID. Finally, in teemal operation phase, the
arbitration for and actual use of the bus by higher layers and applications takes place.

In this chapter we study the tree identify phase in the physical layer. The components
employ a leader election protocol to span a tree in the network, with the root acting as the
leader. A side effect of the protocol is that it detects whether there is a cycle in the network,
and if so, does not terminate with a leader but halts in the initial phase of the protocol and
issues error messages. Our intention is to prove that an abstraction of the protocol, which is
as close as possible to the description in the IEEE 1394 documents [IEE96, IEE99], works
correctly. There already are some correctness proofs for other abstractions of this protocol
[DGRV97, GV98, SV99, S798]. We reuse part of this work for proving the correctness of our
model of the protocol. This is done by establishing an implementation relation between the
most detailed model from [GV98] and our more detailed model of the protocol. In this way,
our verification adds to a stepwise refinement of IEEE 1394 in which more detail is added to
models in each step.

The verification is carried out by establishing timed trace inclusion between timed 1/O
automata through a timed refinement [LT87, LT89, LV96]. The I/O automata are presented
in the 10A language [GLV97]. We reuse an untimed I/O automaton from [GV98] to which
we add a harmless time-passage action to turn it into a timed I/O automaton and use timed
refinements as presented in [LV96]. As mentioned in [LV96], we could equally well establish
an untimed refinement between the timed 1/0O automata, so timed trace inclusion follows if
the time-passage action is visible in both models. Some related work that is interesting in the
timed vs. untimed respect is the work presented in [Sch97], which discusses safety and failure
refinements between timed and untimed CSP models [DS95]. Some results are presented
for failure refinements between communicating processes, which may be useful in the I/O
automata setting.

The proofs show that under the assumptions made, the behaviour of the models is correct
when we use the timing constants proposed in IEEE 1394-1195 and IEEE P1394a. It still
remains to be seen whether further refinement of the models preserves the correctness.

This chapter is organised as follows. Section 7.2 explains the IEEE 1394 tree identify,
discusses related verifications and presents our abstraction. Section 7.3 introduces our 1/O
automata models of the tree identify protocol and shortly discusses the I0A language. Sec-
tion 7.4 is an intermezzo about network topologies, in which general results are derived, which
we need in the verification. Section 7.5 presents the formal verification of the protocol. In
Section 7.6 we sum up the conclusions that can be drawn from this exercise.

Note that to improve readability, we often use Lamport’s list notation [Lam94b] for con-
junction or disjunction in formulas.



7.2 Theprotocol 133

7.2 The protocol

In this section, the IEEE 1394 tree identify phase is described, other verifications of this pro-
tocol are discussed, and our abstraction is introduced. The IOA models are presented in Sec-
tion 7.3. The tree identify phase has already been described in several articles. The following
text and pictures are borrowed from [DGRV97].

7.2.1 ThelEEE 1394 treeidentify phase

We refer to the components connected to 1394 budedses. Each device has a number of

ports, which are used for bidirectionabnnections to other devices. Each port has at most

one connection. The device at the other side of the connection is callpdahdevice. The

tree identify phase follows on completion of the bus reset phase, which is started as soon
as a total reset of the network is demanded. This can occur on request of applications, or
because the network configuration has changed or an error situation has been detected. The
bus reset phase clears all topology information except local information on a device, namely
which ports have connections. During the tree identify phase a spanning tree is constructed
in the network. After the tree identify phase completes, the tree structure will be used in the
normal bus operation. An example of a network topology at the start of the tree identify phase

is presented in Figure 7.1.

parent?

Figure 7.1: Initial network topology Figure 7.2: Intermediate configuration

Informally, the basic idea of the protocol is as follows: each device starts in the initial
phase, in which it may receive a “parent request” on from a peer device on one of its ports.
The receiving device then sends an acknowledgement message to the peer device and adds
the port to its collection of children. A peer device which is connected to the child port, is
then considered to be a child in the tree structure (See Figure 7.2). When a device is in the
initial phase and has no more than one port left on which no communication has taken place
yet, it can send a parent request on that port and leave the initial phase. It is obvious that leaf
devices (i.e. devices with a single connected port) have exactly one such port at the start of the
protocol, so they can send their parent request and leave the initial phase immediately. In this
manner, a tree is constructed that grows from the leaves inward, until all ports of one device
are children, and that device is thmot of the tree (See Figure 7.4).

It is possible that two devices end up asking each other to be the parent. This situation
is called “root contention”. The devices both signal the reception of a parent request on a
port on which they already sent a parent request, and turn to a symmetry breaking protocol in
which random bits are used (See Figure 7.3). This root contention protocol has been formally



134 7 ThelEEE 1394 |leader election protocol

o« ‘parem?"/. o« ’/.
\ \

Figure 7.3: Two contending devices Figure 7.4: Final spanning tree

specified and verified in [SV99].

When a cycle is present in the network, all the devices that are on such a cycle will not get
a parent request from their peers on the cycle. So they will have more than one port on which
no parent request was received, and can therefore not send a parent request themselves or leave
the initial phase. Devices that are not on a cycle, but are wedged between two or more cycles
will not get a parent request either on at least two ports, and will not send a parent request
themselves or leave the initial phase. Such a situation is solved by a timer, which is started at
the start of the tree identify phase, and which is supposed to expire only in the situation of a
cycle in the network. When there is a cycle in the network, a root should not be elected, since
the operation of the bus in the following phases relies on the topology being a tree structure.

A device may influence its own chances at becoming root by waiting for some time before
sending the parent request, even if it is already possible to proceed. A device will only do so if
it has the flag forceoot set to true.

Devices may enter the tree identify phase at different times. This is due to the difference
in the moments at which different devices signal that the bus reset phase (preceding the tree
identify phase) should be entered.

7.2.2 Other verifications of the protocol

Parts of the IEEE 1394 architecture have been formally specified and/or verified in several arti-
cles [DGRV97, GV98, KHR97, Lut97, SM98, SV99, Sz98]. Of these, [KHR97, Lut97, SM98]
focus on the link layer. The articles [DGRV97, GV98, SV99, SZ98] study the tree identify
phase of the physical layer, like we do. In Figure 7.5 we give an overview of the results of
these articles, and their relation to the research presented here. The results of the different
articles are in the dashed boxes. The names of the formal models are listed, arrows between
these indicate a (proved) implementation relation. The vertical position of a model name indi-
cates the level of abstraction of that model with respect to the IEEE 1394 documentation. Very
abstract models do not consider implementation details such as timing, signals etc. The most
detailed models incorporate more detail from the IEEE 1394 documentation. In the picture,
we have given some models the same vertical position to indicate that they have a comparable
degree of detail. We now explain the results of each article in short.

Deuvillers, Griffioen, Romijn and Vaandrager [DGRV97] have shown that the election in
the tree identify phase works correctly, under the assumption that there are no cycles in the
network, that the network topology is fixed throughout the protocol, that a root contention
situation is solved in one atomic step, and that no device tries to become root by having the



7.2 Theprotocol 135

which part of the protocol: 1 1+3 1+2 3
[DGRV9T7} 1SZ98] Gves] : Svo9]
abstract SPEC Spec TIP1 Spec
ImpA TIP2 13
TIP ImpB © TIP3 12
11
this research- - - - - - = ¢
detailed TIP4 Impl
1 = root election
2 = cycle detection
3 =root contention solution
A —= B ="Aimplements B’

Figure 7.5: An overview of research on the IEEE 1394 tree identify phase

corresponding forceoot flag set to true. The models are at a high level of abstraction: there

is no timing and communication is modelled with finite queues. The models are I/O automata
[LT87, LT89] presented in a precondition/effect style. The proofs use invariants and simula-
tion techniques from [LV95]. The proofs have been checked with the theorem prover PVS
[ORSH95].

Shankland and van der Zwaag [SZ98] have also shown that the election in the tree identify
phase works correctly, under the assumption that there are no cycles in the network, that the
network topology is fixed throughout the protocol, and that no device tries to become root
by having the corresponding foreeot flag set to true. The models are at a high level of
abstraction: there is no timing and communication is modelled with finite queues. The models
are presented inCRL [GP95], a process algebra language with data. The proofs use invariants
and the cones and foci method from [GS]. Note that the paper gives no proof that the root
contention protocol actually terminates within bounded time, since for the verification it is
enough to show that ¢an terminate.

Griffioen and Vaandrager [GV98] have shown that the election in the tree identify phase
works correctly, under the assumption that the network topology is fixed throughout the pro-
tocol, that a root contention situation is solved in one atomic step, and that no device tries
to become root by having the corresponding farget flag set to true. The models are at a
high level of abstraction: there is no timing and communication is modelled with finite queues.
The models are 1/0 automata [LT87, LT89] presented in the I0A language [GLV97]. The
paper introduces a new simulation proof technique, calladned simulations. The proofs
use invariants and the proposed simulation technique. The proofs have been checked with the



136 7 ThelEEE 1394 |leader election protocol

theorem prover PVS [ORSH95]. Note that cycle detection is done with a predicate that takes
the structure of the whole network into account, and does not use timing information, as in
IEEE 1394. The predicate used implies that nodes that are part of a cycle will detect this with
an error message. In IEEE 1394 (and in the models presented here), the error situation is also
detected by nodes that are not part of a cycle themselves, but wedged in between of two cycles.

Stoelinga and Vaandrager [SV99] have shown that the root contention solving protocol in
the tree identify phase works correctly under the assumption that the network topology is fixed
throughout the protocol. The models are at an intermediate level of abstraction: on the one
hand timers and probabilities are used, but on the other hand communication is modelled with
finite queues. The models are probabilistic timed I/O automata [Seg95, SL95] presented in
the 10A language [GLV97]. The paper introduces two simulation proof techniques, which are
special cases of the simulation techniques in [Seg95, SL95]. The proofs use invariants and the
proposed simulation techniques.

The model of the protocol that is presented in [DGRV97] is essentially the same as one
of the I/O automata examples in the bdolstributed Algorithms by Lynch [Lyn96]. A cor-
rectness proof of this protocol is not given in [Lyn96]. The models that either include cycle
detection or the root contention protocol can be considered refinements of the protocol in
[Lyn96].

7.2.3 Thisverification

As can be seen in Figure 7.5, we aim to give an implementation relation between the most
detailed model from [GV98] and a more detailed model. In this way, our verification adds to
a layered verification of IEEE 1394 in which models are refined, that is, more and more detalil
is added in each step. In order to keep our proof obligations manageable, we do not add too
much detail, and hence our model has an intermediate degree of detail with respect to IEEE
1394.

The verification is carried out by establishing trace inclusion between timed 1/0 automata
through arefinement [LT87, LT89, LV96]. The I/O automata are presented in the IOA language
[GLV97].

The most detailed model of [GV98] is an untimed model. This means that the cycle detec-
tion is done with a predicate that takes the structure of the whole network into account. In this
verification, we want to establish that cycle detection based on the timing in IEEE 1394 works
correctly. In order to do this, we add timers to the model which expire when the leader election
takes too much time. We also add timing information to the messages sent, in order to model
the delay in communication in IEEE 1394. As argued above, we use a different predicate for
cycle detection than the one used in [GV98], in order to conform to the error behaviour of IEEE
1394. As in [GV98] we assume that the network topology is fixed throughout the protocol, that
a root contention situation is solved in one atomic step that no device has thegdotdag
set to true, and that communication can be modelled with finite queues.

Since our aim is to show that whenever timers in the model expire, there is indeed a cycle
in the network, and that the timers will expire in case of a cycle in the network, we are trying
to show that the timers do not expire too soon or too late. In our proofs we use invariants that
express worst case scenarios in terms of delay. So we are actually performing a worst case
analysis on the timing proposed in IEEE 1394. In this way, we establish a relation between the
parameters of the protocol in terms of minimal and maximal values.



7.2 Theprotocol 137

We expect that in a next refinement step it is possible to include the result from [SV99], to
get closer to the IEEE 1394 behaviour without much effort. The next refinement step could then
be to add a forceoot flag to the model, thus expressing that devices behave a little different
to increase their chances at leadership. In order to obtain a correctness statement about IEEE
1394 with all its detail, it still has to be shown that modelling the IEEE 1394 communication of
voltages on wires by messages and finite queues is correct. We expect that in this situation, we
will not just have a judgement on correctness, but we will also be able to say how the timing
constants in IEEE 1394 could/should be adjusted.

Our assumptions As a specification of the desired behaviour, we have taken the most de-
tailed model TIP3 from [GV98]. In [GV98] it is shown that the behaviour of TIP3 meets the
requirements for the tree identify phase.

TIP3 is a very abstract model of the tree identify phase, in the sense that it abstracts from
a lot of details. We introduce a model TIP4, which is more detailed than TIP3, and prove that
it is a refinement of TIP3. In this way, the correctness of the behaviour of TIP4 can be derived
from the correctness of the behaviour of TIP3.

Our justification for still leaving out many implementation details that may affect the cor-
rectness of the protocol, is that we intend to reuse as much as possible of the proofs already
established. This can only be done in a manageable way if we do not add too many details at
once. As it is, the proofs for our verification are already quite lengthy and involved. See also
Section 7.6 for a discussion of our results.

The abstractions have been chosen as follows.

e In TIP3, it is assumed that the devices signal a cycle by merely checking the network
topology. In TIP4, the devices use a timer, which conforms to IEEE 1394.

e In both TIP3 and TIP4, communication between devices is modelled by sending mes-
sages on queues. In a IEEE 1394 network, the devices communicate by asserting signals
(defined in terms of voltages) on wires for a certain time.

e Inboth TIP3 and TIP4, it is assumed that no device has the faEflag set to true.

e Inboth TIP3 and TIP4, the network is assumed to be connected and to be fixed through-
out the protocol. There may be cycles in the topology.

e In both TIP3 and TIP4, the root contention situation is solved in one atomic step, as
opposed to the IEEE 1394 protocol which involves picking random bits, and which
repeats until the symmetry is broken. Note that the root contention protocol has been
formally specified and proved correct in [SV99].

e In both TIP3 and TIP4, all devices enter the tree identify phase at the same time.

e In TIP3, no timing is used whatsoever. In TIP4, timing is used for determining whether
the network topology contains a cycle (see above), and for determining the actual de-
livery time of messages. The IEEE 1394 delay between the moment of sending and
reception and processing of a signal is caused by difference in clocks of the devices, the
length and propagation delay of the wires, and the difference in the tree identify phase
enter moment of the sending and receiving device. In TIP4, the delay of message is



138 7 ThelEEE 1394 |leader election protocol

determined at the moment that the message is being received. This delay may vary be-
tween the bounds caused by difference in clocks of the devices, and by the length and
propagation delay of the wires. Although the second factor is constant, we have mod-
elled the choice of delay to be completely free for each receive operation. Since we are
after the bounds on the timing constants in relation to the network topology with respect
to detecting cycles, we are establishing the property that the cycle detection timer will
not expire too soon or too late. Therefore we are actually performing a worst case anal-
ysis. The worst case scenarios for IEEE 1394 and our model are the same, under the
assumption that all devices enter the tree identify phase at the same moment.

7.3 10A models

We present two models in the IOA language [GLV97] of the tree identify protocol, namely
TIP3 and TIP4. The IOA model for TIP3 comes (almost) literally from [GV98] and gives an
abstract and untimed model of the protocol behaviour. It has been shown in [GV98] that this
model has the desired behaviour of electing exactly one device for root if there is no cycle in
the network. If there is a cycle in the network, all devices that are part of this cycle will detect
this and give an error message.

The IOA language The IOA language facilitates precise and readable descriptions of 1/0
automata [LT87, LT89]. Since our models are timed, we have addiedesaction, according
to the definition in [LV96].

IOA contains the basic types Bool, Nat, Int and Real with their standard operators. In
addition type constructors Array, Seq (finite sequences) and Set (finite sets) are part of the
language. The notation[__] is used for array subscripting, an array with a value e in all cells
is denoted by const(e). The operatioh__ appends an element at the end of a sequence and
the operations head and tail have the usual meaning. We assume the type Time which is the
(predefined) type Real restricted to nonnegative values.

We assume the extra types Mes to represent the different message contents that may be
exchanged between devices, as follows:

Type Mesenumer ation of parent, ack

In Section 7.4 we give several definitions and operations that concern network topologies.
Given a networkN = (D, P, dev, peej, we assume the types Deb=and Port and all
operations as defined in Section 7.4.

The TIP models The signature part for both models is shown in Figure 7.6. The connected
network N = (D, P, dev, peel is a parameter for both models. In addition, the constants
MinDelay, MaxDelay, MinLpdtime, and MaxLpdtime are parameters for TIP4. We assume
MinDelay < MaxDelay and MinLpdtime< MaxLpdtime. Any message sent at timerrives
in the intervalt + [MinDelay, MaxDelay]. If a loop is signalled, then this happens in the
interval [MinLpdtime MaxLpdtime].

The I0A description of TIP3 is shown in Figure 7.7. The action definitions are almost
equal to those of TIP4, so we refer to the explanation below. The model TIP3 comes (almost)
literally from [GV98]. The first change is the addition of the time action, whose precondition



7.3 10A models 139

signature

internal childrenknown(d: Dev),
addchild(d:Dev, p:Port),
receivemes(d:Dev, p:Port, m:Mes)
solverootcontent(d:Dev, p:Port)

output root(d:Dev),
loopdetect(d:Dev)

time §

Figure 7.6: Signature for TIP3 and TIP4.

is true, and whose effect is empty. The second change is the use of the oncycle predicate,
which recognises not just devices that are on an ordinary cycle, but also devices that are on
a path between two cycles (see Section 7.4). Our verification shows that these devices also
detect a cycle in the protocol and give an error message (see propeityDefinition 7.10,
Section 7.5.1).

The I0A description of TIP4 is shown in Figure 7.8. The model TIP4 is a proper timed IOA
model: there is a state variable time which is used as a global clock, and per message queue
there is a variable delay that is reset for each message sent on the corresponding queue. A mes-
sage is available at least after MinDelay time units have passed or ultimately after MaxDelay
time units have passed. The condition for detecting a cycle in the network also depends on
time, and not (as in TIP3) on the predicate oncycle which is based on the structure of the net-
work. It is our goal to show that cycle detection will occur if and only if there really is a cycle
present in the network.

We now give a short explanation of each action of TIP4. Whether a device is in the ini-
tial phase is reflected in the state variable init. When init is true, only actions addchild and
childrenknown can be enabled. With addchild a parent request may be received (if the value
of delay indicates that the parent request is available) and the corresponding port is added to
the collection of children. The action childrenknown marks the end of the init phase. It can
only be performed when there is at most one port left which is not a child port, and when
it is performed, an acknowledgement is sent to all peer devices that are connected to a child
port and a parent request is sent to the peer device connected to the port that is not a child, if
any. If a device is on a cycle, then it does not ever reach the state in which childrenknown is
enabled, because two of its ports are connected to peer devices which are also on a cycle. In
this situation, the action loopdetect should be performed. In TIP3, the cycle is detected with
the oncycle predicate. In TIP4, a timer signals that the device stays in the init phase too long,
and therefore must be on a cycle.

As soon as a device has left the init phase, it must wait for a message on the one remaining
port that is not a child. If there is no such port, then the device is the root of the tree, and can
perform the root action. If there is such a port, then the action receivemes can be performed as
soon as the message is available. The expected message is an acknowledgement, after which
the contribution of the device to the leader election is over. If an unexpected parent request is
received, then the device is in root contention with the peer device that sent the parent request.



140 7 ThelEEE 1394 |leader election protocol

automaton TIP3
states
child: Set[Port] = {}
mq: Array[Port,Seq[Mes]} const{})
init: Array[Dev,Bool] .= const(true)
rc, root, Ipd: Array[Dev,Bool]+= const(false)
transitions
internal childrenknown(d)
pre init[d] A size(ports(d)-childk 1
eff init[d] : = false;
for pin ports(d)doif p € child
then mq[p] := mq[p]+ ack
else mq[p] := mq[p] + parentfi od
internal addchild(d,pwhered = dev(p)
pre init[d] A head(mq[peer(p)]) = parent
eff child := insert(p, child);
mq[peer(p)] = tail(mg[peer(p)])
internal receivemes(d,p,nWwhered = dev(p)
pre —init[d] A ports(d)-child ={p} A head(mq[peer(p)]) =m
eff if m = parenthen rc[d] := truefi;
maq[peer(p)] = tail(mq[peer(p)])
internal solverootcontent(d,pyhered = dev(p)
pre rc[d] A rc[dev(peer(p))]
eff child := insert(p,child);
rc[d] := false;
rc[dev(peer(p))]= false
output root(d)
pre —init[d] A —root[d] A ports(d)< child
eff root[d] :=true
output loopdetect(d)
pre oncycle(d)A — Ipd[d]
eff Ipd[d] := true
time s where§ > 0
pre true
eff

Figure 7.7: Automaton TIP3.



7.3 10A models 141

automaton TIP4
states
child: Set[Port] = {}
mq: Array[Port,Seq[Mes]} const{})
delay: Array[Port, Time]= const(0)
init: Array[Dev,Bool] := const(true)
rc, root, Ipd: Array[Dev,Bool]+= const(false)
time: Time =0
transitions
internal childrenknown(d)
pre init[d] A size(ports(d)-childk 1
eff init[d] : = false;
for pin ports(d)do delay[p] = O;
if p € child
then mq[p] := mq[p]+ ack
else mq[p] := mq[p] + parentfi od
internal addchild(d,pwhered = dev(p)
pre init[d] A head(mq[peer(p)])=parentdelay[peer(p)} Mindelay
eff child := insert(p, child); mq[peer(p)l tail(mqg[peer(p)])
internal receivemes(d,p,nwhered = dev(p)
pre A —init[d] A ports(d)-child ={p}
A head(mg[peer(p)])=m delay[peer(p)k Mindelay
eff if m = parenthen rc[d] := truefi;
maq[peer(p)] = tail(mq[peer(p)])
internal solverootcontent(d,pyhered = dev(p)
pre rc[d] A rc[dev(peer(p))]
eff child := insert(p,child);
rc[d] := false; rc[dev(peer(p)) false
output root(d)
pre —init[d] A —root[d] A ports(d)< child
eff root[d] :=true
output loopdetect(d)
pre init[d] A —Ipd[d] A time > MinLpdtime
eff Ipd[d] :=true
time§ whereé > 0
pre Vvd,p:
A — pre(childrenknown(d))\ — pre(root(d))
A if init[d] A — Ipd[d] then time+5 < MaxLpdtimefi
A if mq[p]#£{} then delay(mq[p])® < MaxDelay fi
eff time =time+s
for pin Portdo delay[p] = delay[p]+ od

Figure 7.8: Automaton TIP4.



142 7 ThelEEE 1394 |leader election protocol

The peer device has received or will receive the parent request that was sent earlier, and thus
has signalled or will signal the root contention. As soon as both devices have signalled root
contention, the action solverootcontent can be performed to break the symmetry and add one
of the two ports involved to the child collection. The device whose port is added to child can
then perform the root action.

The time action signals the passing of time, by increasing the value of time. Time passage
may not occur if there are other actions that cannot be delayed any further. Actions children-
known and root are urgent, which means that they should happen at the first moment when
they are enabled. Actions addchild and receivemes are also urgent, but they are enabled only
when a message becomes available. Since the message is available only when the value of
delay is in the interval [MinDelayMaxDelay], we require that the value of delay does not pass
beyond the right-hand border of this interval. The action loopdetect depends on the value of
time and can happen anywhere in the interval [MinLpdtiMaxLpdtime], so we require that
time does not pass beyond MaxLpdtime. The only action that is not mentioned in the pre-
condition of the time action, is solverootcontent. The reason for this is that in the IEEE 1394
documentation, there is a small sub-protocol with timers that is used to break the symmetry,
instead of the one action that represents this sub-protocol in TIP4. Since this sub-protocol is
not guaranteed to end in finite time (due to randomly drawn bits), we cannot say at what time
the action solverootcontent will take place. Hence we have put not requirement on the time ac-
tion for solverootcontent. The root contention solving protocol is discussed and proved correct
in [SV99].

7.4 Network preliminaries

This section gives some definitions and properties of network topologies which are needed in
the verification.

741 Networks

Definition 7.1 A network is a quadrupléD, P, dev, peel, where
e D is a non-empty set of devices.

e Pis aset of ports.
e dev:P — D.

e peer :P — P with for all p: peefpeelp)) = p andp # pee(p).

Ford € D, we define the abbreviation pofd = {p € P|devp) = d}.
GivenD’ andd € D/, the predicate le@D’, d) holds iff V1, p2 € portgd) : deMpeex p1)) €
D’ A devipeerpy)) € D' — p1 = p2.

The network consists of a collection of devices, each of which has a set of ports. Each port is

connected to one other port with a cable, which is captured by the function peer. Each port has

a connection and no port is connected to itself. The cable connection itself is referred to as a

cable hop. Since for eactp € P, deu p) is defined, it follows thaP = | J,.p portd).
Throughout this paper, we fix a netwakk= (D, P, dev, peei and let variablep, p’, p”,

Po, . .. range over ports i, andd, d’, do, . . . over devices irD.



7.4 Network preliminaries 143

7.4.2 Paths, cycles

The following definitions and lemmas are necessary to identify paths, cycles, etc. in the net-
work.

Definition 7.2 A path i is a non-empty sequence of potts= pops1 ... pn, Such that:

e nis odd

® Po# Pn
e foralli > 0, ifi is odd thenpi_1 = peeKp;) else deyp;_1) = deup;))

We denote the first and last port sfwith first(x) = po and lastr) = pn. We denote the
length ofz with length(x) = (n + 1)/2. We denote the path obtained by reversingith
reversér) = pn... po-

Pathr is a pathfrom dy to dy if dev(first(r)) = di and devlast(w)) = dp. We say that a
deviced ison r iff there is a portp in 7 such thatl = devp). A cycleis a pathr = pg... pn
such that de¢po) = dev(pn).

The predicate oncyd@) is true iff there is a cycle such thai is on it. The predicate
oncyclgd) is true iff there is a porp € portgd), such that oncyclg) holds.

A path reflects a walk through the network by the concatenation of cable hops, in whigh a
cable hop may not be followed immediately by the reverse iigm. The length of a path is

the number of cable hops included in that path. A cycle may include arpattich is wedged

in between smaller cyclesandz, resulting in the shape of a pair of glassgs:treversér).

Ports that are part of a cycle (of whatever shape) remain inactive during the protocol, as we
will show later.

Lemma7.3 If = = pop1pz2... Pn iS a cycle, thenpy... phpop1 and reverser) are also
cycles.

Lemma 7.4 oncyclg p) — oncyclegpeekp))
Lemma 7.5 oncycldg p) — size{p’|p’ € portgdeup)) A oncyclgp’)}) > 2

Proof Letwr = pops1... pn be a cycle such that = p.

If i =0, then by definition of a cycle, dép,) = deup), and by definition of a pathpn # p.
If i is even and > 0, then by definition of a path, déepi_1) — deu(p) andpi_1 # p.

If i = n, then by definition of a cycle, dépo) = devp), and by definition of a pathpo # p.
If i is odd and < n, then by definition of a path, dégj+1) — deMp) and pj+1 # p. X

Lemma7.6 LetN = (D, P, dev, peel be a connected network, adg, dy € D.
If oncycledy), oncycl€d,), andr is a path frond; to d, then for eactp € 7 : oncycle€p)

Proof Let p be a cycle such that; is on it. Letr be a cycle such thab is on it. We will
show for each porp in r that oncyclép), as follows.

Letwr = po... pn. If piisinp orz, then oncyclep;). We take a fragment’ = p; ... pj
from 7 such that > 0 implies thatpj_1 in p orinz, andj < nimplies thatpj41 in p orin
7, and for each porp onz’, p is not onp and not onc. If we can construct a cycle such that
the fragmentr’ is part of it, we are done.

Note that by definition, de\p;) is onp or ont, and deyp;j) isonp oront.



144 7 ThelEEE 1394 |leader election protocol

In the following case distinction we leave out all cases which are symmetric to a case
proved earlier.

1. pi=p;j.
We assume w.l.0.g. that dgw) is onp. Letp = p1p2 such that deyp;) = devlast(py)) =
deufirst(p2)) and lengtlipoy) is even. By assumption, lagh) # pi = pj # first(pz).
We construct the pathpp17t” and see that it is a cycle.

2. pi #Pj.
We assume w.l.o.g. that d@y) is on p and deypj) is onz. Letp = p1p2 such
that deyp;) = deulast(p1)) = deufirst(pz)) and lengtlip;) is even. Lett = 711
such that defpj) = devlast(r1)) = deufirst(rz)) and lengtliry) is even. By assump-
tion, las(p1) # pi # first(p2) and lastry) # pj # first(zz). We construct the path
2017’ ToT1reversén’) and see thatit is a cycle.

X

7.4.3 Connected networks

The following definitions and lemmas are necessary to identify the distance of devices in the
network to the edge of the network, that is, how many times we have to take all the leaf devices
away before a device becomes a leaf in the remaining set. The distance measure defined here
will be used in the protocol to quantify the worst-case time that it takes for a device to complete
its part in the protocol.

Definition 7.7 N is connected if for each two devices, d’ € D there is a path frord to d'.

If N is connected, we denote the maximum length of the shortest pattbistween any two
devices by MaxHop= max({n|dz, d2 € D A n = min({length(z)|x is path fromd; to d2})}).
The function Steps is defined by the following equation:

, |0 if leaf(D’, d) or oncycle€d)
StepgD’, d) = { 1+ StepgD”, d) otherwise

where D” = D’ — {d’ € D'|leaf(D’, d')}
We abbreviate Stepd) = StepsD, d).
The function Shrink is defined by the following equation:
D’ ifn =0
ShrinkD”, n" — 1) otherwise
where D” = D' — {d’ € D'|leaf(D’, d')}
We abbreviate Shrirk) = Shrink(D, n).

The value MaxHop, which is an upper bound to the minimum number of cable hops between
any two devices, is used in the IEEE documentation as a restriction on the networks on which
the protocol is to operate.

The function Steps gives the one but greatest distance between a device and a leaf in the
network. This number is determined by the number of steps it takes for such a device to become
a leaf, when in each step all leafs are removed. For a device that is part of a cycle, the value of
Steps has no meaning and will not be used.

Shrink D', n) = {



7.4 Network preliminaries 145

The function Shrink gives the set of devices that remains when in each step the leaf de-
vices are removed and this is repeated for the indicated humber of times, starting with the
given set. The correspondence between Steps and Shrink is obvious: ifd$teps then
leaf(Shrink(n), d) holds and if Stepgsl) > nthend € Shrink(n).

In the remainder of this paper, we assume thias connected.

Lemma 7.8 Letd € D such that-oncyclgd).
If Stepgd) = n then sizé{p’ € portgd)|joncycledevpee(p’)) v Stepsdevpeelp’))) >
np < 1.

Proof By contradiction. Assume-oncycldd) and Step&l) = n. Let p, p’ € portgd) such
thatp # p’ and oncyclédev(peel p)) v Stepsdevpeel p))) > n and oncyclédevipeelp’)) v
Stepsdev(peerp’))) > n. Since Step&l) = n, either oncycléd) or leaf Shrink(n), d). Since
we assumeeroncycled), apparently leaShrink(n), d). By our assumption d€peel p)) and
dev(peek p)) are both in Shrinkn). But p # p’, which contradicts leaShrink(n), d). We
conclude that sizgp’ € portgd)|oncyclédevpeelp’)) v Stepgdevpeelp’))) > n}) < 1.
X

Lemma?7.9 Foreachd € D

|MaxHop/2] if vd’ € D : —oncyclegd’)
Stepsd) < { max(0, MaxHop— 1) otherwise

Proof By contradiction.

1. Suppos&d € D : —oncycle€d).
Suppose Stepgd) = m > |n/2]. We show that we can construct a shortest pathith
length(m) > n, by starting withd and extending the path in each step with one cable
hop in two directions. We use induction ohe {1, ..., m} in the following hypothesis:
There is a pattpg . . . pav—_1 With Stepgdev(pp)) > m — n’ and Step&lev psv_1)) >
m — n’ and there is no other path from dg@g) to dev pan_1).

o (Base stepip’ =1
Sincem > 0, certainly—leaf(Shrinkm — 1), d), and since legShrink'm), d),
there must bep, q € portgd) such thatp # q and deypee(p)) and devypeexq))
in Shrinkm — 1). Fix p, g.
Clearly, Stepedevpeelp))) > m — 1 and Step&levpeeKq))) > m — 1. Con-
sider peefp) pgpeerq). This is a path if pe€p) # peerq). Since—oncyclgd’)
for all d’ € D, we see that dépee(p)) # devpeeKq)), SO peefp) # peeq).
If was another path from dépee(p)) to deupeerq)) then this would contra-
dict the assumption thatoncyclgd’) for all d’ € D. We conclude thatr =
peex p) pgpeerq) is a path that meets the requirements.

e (Induction stepp’ = n” + 1 < mand the hypothesis holds fof
Letw = po... panr—1 such that StegdeM pp)) > m—n" and Step&lev(pan_1))
> m — n” and there is no other path from d@g) to dev psn_1). We abbrevi-
ated; = dev(pp) anddy = deMpanr_1) for the first and last device of. Since
n” < m, Stepsd;) > 0 and Step&,) > 0. So—leaf(Shrinkm — n” — 1), d1)
and —leaf(Shrinkm — n” — 1), d»). So there must b@, p’ € portgd;) and
0.4’ € portdz) such thatp # p’, q # q’, and deypee(p)), dewpee(p))



146

7 ThelEEE 1394 |leader election protocol

dev(peelq)), and deypeexq’)) in Shrinkm — n” — 1). Fix p, p/, g andq’. Now
forx € {p, p’,q,q’} : Stepgdevpeerx))) > m—n"—1=m—-(n"+1) = m-—n’
We assume without loss of generality that£ po andq # panr—1. Consider
peelp) prgpeelq). This is a path if pe€p) # peexq). Since—oncyclegd’) for
anyd’ € D, we see that dépeelp)) # deuvpeelq)), SO peefp) # peelq). If
there was another path from deeex p)) to dewpeekq)) then this would contra-
dict the assumption thatoncyclgd’) for all d’ € D. So, peefp) prgpeerq) is a
path that meets all the requirements for the induction step.

We conclude that there is a shortest path in the network of lengttsthcem > |n/2],
certainly 2n > (2[n/2]) + 1 > n. So 2n > n and we have a contradiction.

. Supposéld’ € D : oncycl€d’).

Suppose Stepgd) = m > max0,n — 1). Thenm > 0 and by definition of Steps,
certainly—oncyclgd). We show that we can construct a pattwith lengthiz) > n,
by starting withd and a neighbour ofl on a cycle, and extending the path in each

step with one cable hop to a neighbour which is not on a cycle. We use induction on

n" € {0, ..., m} in the following hypothesis:

Thereis a pathpopsz . . . p2rv1 With oncycleédev pp)), Stepsdev p2y41)) > m—n"and
forall 1 <i < 2n’ + 1: —oncyclédev(p;)), and there is no shorter path from dpy)
to dev(pz+1)-

o (Base steplp’ =0

Suppose there is np € portgd) such that oncycl@euvpeerlp))). SinceN is
connected, there must ke d’ such thatr is a pathr = po. .. pn fromd’ tod with
oncyclgd’) and for each > 0 : —oncyclgdevp;)). Fix d’, =. Since oncyclél’)
and—oncycl€dev p1)), we can use Lemma 7.8 to conclude that Steeg p1)) >
max({Stepsdev(p)|p’ € portgdev(p1)) A P’ # p1}). Then itis not hard to show
(using induction and Lemma 7.8) théit € {1,3,...,n — 2} : Stepsdevp;)) >
Stepgdev( pi+2)). Then we easily havei € {1, 3,...,n} : Stepgdevp;)) > m.
Sinced is chosen arbitrarily with Stepd) > n — 1, any of the devices on
except deypp) would do. So we assume without loss of generality that there is a
p € portgd) such that oncyclgleupee(p))). Fix p.

We now have Steggd) > m, —oncyclgd), and oncyclédev(peelp)). We see that

peex p) p is a path that meets the requirements, since there cannot be a shorter path

from devpee(p)) tod.

e (Induction stepp’ = n” + 1 < mand the hypothesis holds fof
Letw = po... P2n+1 Such that oncycl@ev(po)) , Stepsdev p2nr41)) > m—n”
and forall 1 < i < 2n” 4+ 1: —oncyclddeVp;), and there is no shorter path
from dew(po) to dewpznri1). We abbreviatel’ = deu(ponry1) to indicate the
last device inr. Sincen” < m, Stepsd’) > 0. So-—leaf(Shrinkm — n” —
1),d. So there must b@, p’ € portgd’) such thatp # p’, and deypeexp))
and deypee(p’)) in Shrinkm — n” — 1). Fix p, p’. Now forx € {p, p'} :
Stepgsdevpeerx))) > m—n"—1=m—(n"+ 1) = m—n’. We assume without
loss of generality thap # ponr41.
Considerz ppeelp). This is a path if pe€p) # po. Suppose that pe@r) = po.
Thenp = p; and deypy) = di, hencepsy. .. py is a cycle, which contradicts our



7.5 Verification 147

assumption. We conclude that pger # po andz ppeekp) is a path.

Suppose that oncydl@devipeerp))). Then by Lemma 7.6 we have that for all
1 <i < 2n” + 1, oncyclédeu p;)), which contradicts our assumption. So we
conclude that-oncyclgdevpeerp))).

Suppose a shorter path thappeex p) exists from deypp) to dewpeeKp)). This
enables us to conclude that oncydeMpeelp;))) with p; € 7, which contradicts
our assumptions. So we conclude that no shorter pathstippeer p) exists from
dev(po) to devpeerp)).

We see that the pathppeel p) meets all the requirements for the induction step.

So there is a shortest path in the network of length 1. Sincem>n—-1,m+1>n
and we have a contradiction.

X

7.5 Verification

In this section we prove that the IEEE 1394 tree identify protocol is correct relative to our
model. In Section 7.5.1 some properties are given which have been proved invariant for the
model TIP3in [GV98]. Some additional properties are given, which are be proved invariant
for the model TIP4, provided that the invariants for TIP3 are also invariant for TIP4. This
provision is solved in the next section, Section 7.5.2, in which it is proved that under certain
timing restrictions the behaviour of TIP4 is included in the behaviour of TIP3. The proofs in
Section 7.5.2 allow us to conclude that the safety aspects of cycle detection and root election
in TIP4 meet the IEEE 1394 requirements. In Section 7.5.3 we prove some liveness properties
for TIP4. Finally, in Section 7.5.4 we discuss whether the IEEE 1394 timing constants obey
the restrictions that we found in Section 7.5.2.

The proofs in Sections 7.5.1 and 7.5.2 use simulation techniques from [LV96] which are
listed in Appendices A.1 and A.3. These appendices also present a new result for using invari-
ants in stepwise refinement, which is useful for this verification because it allows us to reuse
invariants properties from [GV98] without extra effort. In Appendix A.3, some new sufficient
conditions for feasibility can be found. These lessen the proof burden when proving that there
are no time deadlocks in the model.

Throughout this section we fix a connected netwirk= (D, P, dev, peej as the param-
eter for TIP4. We les,t range over states of TIP& over Time, andn over Mes.

75.1 Invariantsfor TIP3 and TIP4

We first define the properties, of which some are taken from the PVS code used to check the
proofs for [GV98]. All of the following properties are necessary for the proofs in Sections 7.5.2
and 7.5.3.

Definition 7.10 l1(d) = init[d] — —rc[d]
I2(p) = init[dev(p)] — md[p] = {}
I3(p) = init[dev(p)] — peelp) & child



148 7 ThelEEE 1394 |leader election protocol

l4(d) 2 init[d] v size(portgd) — child) < 1
Is(p) = lengthimg[p]) < 1

ls(p) = p € child — mg[peetp)] = {}
I7(p) = rc[dev(p)] — malpeetp)] = {}
lg(p) = rc[dev(p)] — peexp) ¢ child

lo(p) = v init[dev(p)]
v headmq[p]) = parent
v peeKp) € child
v rc[devpeelp))]
Vv p € child

l10(p) = mq[p] # {} — delay[p] < MaxDelay

l11(d) 2A —oncyclgd) A initfd] — time < Stepgd) x MaxDelay
A —oncyclgd) A time > Stepgd) x« MaxDelay
— Vp'e portgd) :
headmq[p’]) = parent
— time — delay[p’] < Stepsd) * MaxDelay

l12(d) = A MinLpdtime > max0, MaxHop— 1) * MaxDelay
A init[d]
A —oncycled)
— time < MinLpdtime

l13(d) = oncycled) — init[d]
l14(d) = oncycld€ p) A —lpd[d] — time < MaxLpdtime
We letly = Agl1(d), 12 = Ap l2(p), et cetera.

Some of the properties in Definition 7.10 have been taken from [GV98], from which we also
repeat the following result.

Lemma 7.11 Propertied, I2, I3, 14, Is, Is, 17, I, andlg are invariant for TIP3.

Even though the predicate oncycle has a different meaning in [GV98], we can assume that the
proofs [GV98] still hold here, since the oncycle predicate is not used in the proofs.

Now we prove that under the assumption that some of the properties from Definition 7.10
hold in each reachable state for TIP4, it follows that others hold in each reachable state for TIP4
as well. In Section 7.5.2, the assumptions will be fulfilled by the corresponding properties for
TIP3.

Lemma7.12 1. ligisinductive relative tql> A I5) for TIP4.
2. ly1is inductive relative tal1 A I3 A Is A lg) for TIP4.

3. For eacts € reachablél1P4), s = 111 impliess = 1.



7.5 Verification 149

4. |13is inductive relative td3 for TIP4.
5. l14is inductive relative td 13 for TIP4.
Proof

1. Trivial.

2. Suppose-oncyclegd).
Initially, s.time = 0andvp : smq[p] = {}. Since Step&) > 0, Stepsd)«MaxDelay>
0 = s.time. Sincevp € portdd) : smq[p] = {}, it follows thats = 113.

Suppose frons & tands E l1Al3AlsAlg A l11. We have to show thadt= 111, Fix
n such than « MaxDelay < s.time < (n + 1) * MaxDelay.

We make the following case distinction.

(a) stime > Stepsd) x MaxDelay
By s = 111 we see that-s.init[d]. By the effect ofa, we conclude that:t.init[d].
Now we just need to show for eagl € portqd) that if headt.mq[p’]) = parent,
thent.time — t.delay[p’] < Stepsd) x MaxDelay. Assumey e portgd) and
headt.mq[p’]) = parent. By—s.init[d], s &= |5 and the precondition and effect of
a, heads.mqg[p’]) = parent. Since = 13, it follows thats.time — s.delay[p’] <
Stepgd) « MaxDelay.
. V6>0:a#3$
Then by the effect o#, t.time = s.time, and by-s.init[d] and the precon-
dition and effect ofa, t.delay[p’] = s.delay[p’]. Sot.time — t.delay[p’] =
s.time — s.delay[p’] < Stepsd) x MaxDelay and it follows that = 111(d).
i. a=34
Thent.time = s.time + §, andt.delay[p’] = s.delay[p’] + §. Sot.time —
t.delay[p’] = stime + § — (s.delay[p’] + §) = s.time — s.delay[p’] <
Stepgd) « MaxDelay and it follows that = 111(d).
(b) s.time < Stepgd) * MaxDelay
i. —s.init[d]
By the effect ofa, —t.init[d]. The remainder is equal to the proof for Step 2a.
ii. s.init[d]
A V§>0:a#s$
Then by the effect od, t.time = s.time, sat.time < Stepsd)xMaxDelay,
hence for eaclp’ € portgd), trivially t.time — t.delay[p’] < Stepsgd)
MaxDelay and it follows that = 111(d).
B. a=4§ Astime+ § < Stepgd) x* MaxDelay
Then for eachp’ e portgd), trivially t.time — t.delay[p’] < Stepgd) *
MaxDelay and it follows that = 111(d).
C. a=4 A stime+ § > Stepsd) « MaxDelay
The effect ofa leads to a violation of propertls;, so we have to show
that our assumption omleads to a contradiction.
First we prove by contradiction that for eadhwith —oncyclgd’) and
Stepsgd’) < Stepsd), it follows thatVp’ € portgd’) : s.mq[p'] = {} Vv



150 7 ThelEEE 1394 |leader election protocol

heads.mq[p’]) = ack. Suppose-oncyclgd’), Stepsd’) < Stepsd) and
heads.mq[p']) = parent. Bys = |11, we see thas.time— s.delay[p’] <
Stepgd’)«MaxDelay. Ast.time—t.delay[p’] = s.time+§—(s.delay[p’]+
8) = s.time—s.delay[p’] < Stepsd’)x*MaxDelay, and since.time+4§ >
Stepsgd) * MaxDelay> (Stepgd’) + 1) x MaxDelay, we ges.delay[p’] +
3 > MaxDelay, which in contradiction with our assumption teanhables
8.

Now we prove by contradiction that for eadhwith —oncyclgd’) and
Stepgd’) < Stepsd), it follows that —s.init[d’]. Fix a d’ such that
—oncyclgd’), s.initfd’] and there is na” with Stepgd”) < Stepsd’)
ands.initfd”]. Let P’ = {p’ € portgd’)|—oncyclédevpee(p’))) A
Stepsdev(peerp’))) < Stepgd’) — 1}. By Lemma 7.8, sizgortgd’) —
P) < 1. Fix p € P’ andd” = devppeelp’)). Note that Stepsl”) <
Stepsgd’) < Stepsgd). By our assumptionss.init[d”]. By s.init[d'] and
s = I3, we see peép’) ¢ s.child. By s.initfd’] ands & |1, we see
—s.rc[d’]. Combining all of this with our observatiocmqg[peetp’)] =
{} v heads.mq[peefp’)] = ack ands = lg, we getp’ € s.child. So
sizgportgd’))—s.child = 1. Sinces.init[d’], senables childrenknowd’)
which is in contradiction with our assumption tregnabless. We con-
clude that-s.init[d'].

From this observation, it trivially follows thats.init[d] which is in con-
tradiction with our assumption. It follows that # § v stime+§ <
Stepgd) « MaxDelay.

3. Lets € reachabléTIP4) such that = 111. Assume MinLpdtime> max0, MaxHop—
1) * MaxDelay A s.initfd] A —oncyclgd). By s.init[d] A —oncycléd) ands &= 111,
s.time < Stepgd) = MaxDelay. Note that for each > 0, [n/2] < max0,n — 1).
Combining this with Lemma 7.9, we get Stégs < max(0, MaxHop— 1). Sos.time <
max(0, MaxHop— 1) x« MaxDelay < MinLpdtime and it follows thas = 112.

4. Suppose oncydd).
Initially, s.init[d], hences = 113.

Supposes 2 tands E I3 A l13. By oncycléd) ands = I13, we see thas.init[d].
If a = childrenknowiid) thent.initfd] = s.init[d], so it suffices to show thad
childrenknowrid). By Lemma 7.5 and oncyald), there must b1, p2 € portgd) such
that p1 # p2 and oncyclédevpeelp1))) and oncyclédevpee(py))). Sinces = 113,
we see thas.initjdev(pee(p1))] and s.init{dev(peex p2))]. Sinces | I3, we see that
p1 ¢ s.child andpy ¢ s.child. Sincep; # p2, we see that sizportgd) — s.child > 2,
hences does not enable childrenknoyd).

5. Trivial.

X

Note that by Items 2 and 3 it follows théf; is inductive relative tal; A I3 A Is A Ig A l11)
for TIP4.



7.5 Verification 151

752 TIP4implements TIP3

We use the properties established in Section 7.5.1 to obtain that TIP4 implements TIP3. As an
implementation relation we take inclusion of admissible timed traces. From Section 7.5.1, it
follows that the behaviour of TIP4 meets these properties only when the parameters obey the
following relation: MinLpdtime> max0, MaxHop— 1) x MaxDelay. Therefore, we assume
throughout this section that this relation holds.

In order to obtain the implementation relation, we construct a function that is to be proved a
weak timed refinement from TIP4 to TIP3. Given the complicated relations between the invari-
ants for TIP3 and the properties for TIP4, we have been forced to either prove the properties
for TIP4 that depend on invariants for TIP3 anew, or to prove the invariance of the properties
for TIP4 and the weak refinement in one proof, or to come up with a more elegant solution.
The latter approach has given rise to some new sufficient conditions, which are presented in
Appendices A.1 and A.3.

To avoid confusion, all state variables from TIP3 are subscriptedayahd all state vari-
ables from TIP4 are subscripted with Since the action signatures are equal, we do not use
these subscript on the action names.

Definition 7.13 The function ref from states of TIP4 to states of TIP3 is defined to be the
identity function on state variables with the same name.

Lemma7.14 Lets € states(TIP3). For alll € {lq, |2, I3, l4, I5, lg, |7, I8, lg}, ref(s) &= |
impliess = I.

Proof Trivial. X
Lemma7.15 1. s e Star(TIP4) implies refs) € Star{TIP3).

a
2. s—Tpat,s E lioAliialioAalizaligandrets) = 1A laAlzAlsAIsAlgATZAIgA LG
. . a
implies refs) —1p3 ref(t).

Proof

1. Supposs € Star(TIP4).

Since the initial requirements are the same for every state variable in TIP3 as for the state
variable with the same name in TIP4, and the state variables with the same name have
the same value is and in refs), ref(s) € Star{TIP3) follows froms € Star(TIP4).

2. Supposs —a>'|'|p4t sk lioAlirAlioAlizAligandrefs) = l1 Al AIZAT4A IS A
lg A 17 A g A lg. s € reachabl€TIP4) and refs) € reachabl€TIP3).
Since for eacha, the effect in TIP3 is equal to the effect in TIP4 on all state variables
from TIP3, it follows that whenever ré&d) —a>T|p3t’, thent’ = ref(t).
If a ¢ 4 loopdeteatd), then we see that the preconditioneoin TIP4 trivially implies
the precondition o& in TIP3, hence is —a>T|p4, then refs) —a>T|p3. So we just need to
show that ifa = loopdeteata), then refs) —a>T|p3.

Supposea = loopdetedaia). By precondition ofa in TIP4, —s.Ipds[d] ands.timeg >
MinLpdtime. From—s.lpds[d] we see—ref(s).lpds[d]. By s.times = Ipdtimey[d] and



152 7 ThelEEE 1394 |leader election protocol

s = |12 we see that eithens.init4[d] or oncycl€d). By precondition ofa in TIP4 we
see thas.init4[d], and we conclude that oncy¢t®. Hence refs) enables.

X

Corollary 7.16 11, 12, 13, 14, 15, lg, 17, g, lg, 110, 111, 112, 113 @nd 114 are invariant for TIP4.
Proof By Lemmas 7.11,7.12, 7.14 and 7.15 we can use Lemma A.2. X

Corollary 7.17 The function ref is a weak timed refinement from TIP4 to TIP3 with respect
to(ligA l1aA lioAlizA Tl and(lr Ao AlsAlaAIsAlgA Tz Alg A lg)

Proof By Lemmas 7.11,7.12, 7.14 and 7.15 we can use Lemma A.2. X

The implementation relation now follows easily.
Theorem 7.18 t-traces(TIP4) C t-traces(TIP3).
Proof Combine Corollary 7.17 with Theorem 6.14 from [LV96]. X

7.5.3 Livenessresultsfor TIP4

In this section we show some liveness results for model TIP4. As in Section 7.5.2, we assume
that the parameters of TIP4 meet the following relation: MinLpdtimenax0, MaxHop—
1) x MaxDelay.

The liveness results are the following. We first show that TIP4 has no time deadlocks. For
this, some new sufficient conditions are used, which are presented in Appendix A.3. Then we
prove that when a cycle is present, it will be detected, and that otherwise a root will be elected.
Notice that we cannot use results from TIP3, since notions as quiescence and fairness are not
present at the timed level.

First we need to define a measure on reachable states, to indicate the number of discrete
actions that must be performed before passing of time will be enabled again.

Definition 7.19 The function Measure gives a pair for each statieom TIP4, as follows:

Measurés) = (I,C+ R+ M + L)
where
| = sizg{d|s.init[d]})
C = sizgP — s.child)
R = sizg{d|—s.root[d]})
M = size({pls.mq[p] # {}})
L = sizg{d|—s.Ipd[d]})
The ordering< is the lexicographic ordering on pairs of naturals, based on the orderargy
naturals.

Since< is well-founded< is also well-founded.

Now we prove the properties that we need for deadlock freedom, namely that when no
discrete action is enabled, then the passage of time is enabled, and that at every moment in
time at most a finite amount of discrete activity can occur.



7.5 Verification 153

Lemma 7.20 For eacts € reachabl€TIP4) the following holds:

1. senables an action fromwcts(TIP4).

2. fs2 tandvs >0:a # §, then Measurg) < Measurgs) otherwise Measulg) =
Measurés).

Proof

1. It suffices to show that § does not enabla for all a € acts(Tipvier) — ;. o{8}, then
s enables for somes > 0, which we prove by contradiction.

Suppose that for all € acts(TIP4), s does not enabla. Apparentlys does not enable
anys$ > 0, so eithers.time = MaxLpdtime andad : s.init[d] A —s.Ipd[d], or 3p :
s.mq[p] # {} A s.delay[p]) > MaxDelay.

Supposes.time = MaxLpdtime,s.init[d] and—s.lpd[d]. Thens enables loopdetect)
and we have a contradiction.

Supposes.mq[p] # {} ands.delay[p] > MaxDelay. Let hea@.mqg[p]) = m. Since
MaxDelay > MinDelay, s.delay[p] > MinDelay. Using Invarianti;, we see that
—s.init[dev(p)], and using Invariants we get peeip) ¢ s.child. Suppose < s.child.
Using Invariant 3 we get—s.init[dev(peex p))]. So,s enables receivem@evpee p)),
peek p), m) and we have a contradiction. §p¢ s.child. Using Invariant;, we see
that —s.rc[devpeerp))]. Combining all of this withlg we getm = parent. Sup-
poses.init[dev(peex p))]. Thens enables addchildev(peerp)), peek p)) and we have
a contradiction. Sec-s.init[dev(peeKp))]. Thens enables receivem@evpeel(p)),
peex p), parenf and we have a contradiction.

2. Let Measur&s) = (ls, Cs + Rs+ Mg + L) and Measurg) = (l;, C; + R + M; + Ly).

(a) a = childrenknowrid)
By precondition ofa, —s.init[d] and by effect ofa, t.init{d]. Sol; < ls. We
conclude that Measuf® < Measurés).

(b) a = addchildd, p)

By effect ofa, t.init = s.init, t.root = s.root andt.lpd = s.Ipd, hencel; = Is,

R = Rs andL; = Ls. By precondition ofa, heads.mq[peetp)] = parent.
Combining this with Invariants, we gets.mq[peetp)] = {} - parent. By the
effect ofa, t.mq[peelp)] = tail(s.mq[pee(p)]) = {}, sOM; = Ms — {peexp)},

henceM; < Ms. Combining heat.mg[peetp)] = parent with Invariantg we

get p ¢ s.child. By effect ofa, t.child = s.childU {p}. SoC; < Cs. By effect of
a We conclude that Measuit¢ < Measurés).

(c) a =receivemed, p, m)
By effect of a, t.init = s.init, t.child = s.child, t.root = s.root andt.lpd =
s.lpd, hencel; = Is, Ct = Cs, Rk = Ry andL; = Ls. By precondition ofa,
heads.mg[pee(p)] = m. Using Invariantls, we gets.mq[peetp)] = {} - m.
By the effect ofa, t.mq[pee(p)] = tail(s.mqg[pee(p)]) = {}, sOM; = Ms —
{peexp)}, henceM; < Ms. We conclude that Measut¢ < Measurgs).



154 7 ThelEEE 1394 |leader election protocol

(d) a = solverootconterit, p)
By effect of a, t.init = s.init, t.root = s.root, t.mq = s.mq andt.lpd = s.Ipd,
henceli = Is, R = R, M{ = Mg andL; = Ls. By precondition ofa,
s.rc[devpeerp))]. Combining this with Invarianig we getp ¢ s.child. By
effect ofa, t.child = s.childU {p}. SoC; < Cs. We conclude that Measuite <
Measurés).

(e) a =root(d)
By effect ofa, s.init = t.init, s.child = t.child, t.mg = s.mq andt.lpd = s.Ipd,
hencel; = Is, C; = Cs, M; = Mg andL; = Ls. By precondition ofa, —s.root[d],
and by effect ofa, t.root[d]. So R < Rs. We conclude that Measutte <
Measurés).

(f) a = loopdeteatd)
By effect of a, s.init = t.init, s.child = t.child, s.root = t.root ands.mq =
t.mqg, hencel; = I5, Gt = C;, RR = Rs and M; = Ms. By precondition
of a, —s.Ipd[d], and by effect ofa, t.lpd[d]. SoL: < Ls. We conclude that
Measurét) < Measurgs).

(9) a=3
By effect ofa, s.init = t.init, s.child = t.child, s.root = t.root,s.mq = t.mq and
t.Ipd = s.Ipd. Hencel; = 15, Ct = Cs, Rk = R, M{ = Mg andL; = Lg, and we
conclude that Measuf® = Measurés).

X

Now we show that TIP4 cannot get into a time deadlock by its own discrete activity. A timed
I/O automaton that has this property is calfeasible.

Theorem 7.21 TIP4 is feasible.

Proof It can easily be seen that TIP4 fulfills the requirements for Lemma A.4. This lemma
fulfills one of the requirements in Theorem A.5. The other requirement is fulfilled by the
Measure function and the result in Proposition 7.20. It follows from Theorem A.5 that TIP4 is
feasible. X

We now show that whenever there is a cycle in the network, it is detected by the protocol.

Theorem 7.22 Leta be an admissible execution of TIP4.
If oncycled) thena contains an occurrence of I(d).

Proof Since time proceeds i without bound, and since initiallg.lpd[d] is false and since
s.Ipd[d] can only be made true by an occurrence of(fpd it suffices to show that for each
reachable state in TIP4, if s.time > MaxLpdtime, thers.Ipd[d]. This follows easily from
Invariantl 4. X

Unfortunately, it is not possible to prove that if there is no cycle in the network, then within
finite time a root will be elected. This is due to the unknown duration of the root contention
solving sub-protocol. The following theorem shows that if no root contention occurs, then
indeed a root is elected in finite time.



7.5 Verification 155

Theorem 7.23 Leta = spa15: . . . be an admissible execution of TIP4.
If vd : —oncyclegd) andVi,d : —s.rc[d], then3d such thate contains an occurrence of
root(d).

Proof Assumevd : —oncyclgd). We observe the following:
1. Time proceeds inr without bound.

2. In each reachable sta@ TIP4 the following holds. For alfl: if sis an initial state then
—s.root[d], and if s.root[d], then each execution leadingganust contain an occurrence
of root(d).

3. If there is a stats in « and ad such that port&) — s.child = {}, thena contains an
occurrence of rogtl).

This is easily seen by a few observations. &andd such that port&) — s.child = {}.
First, s.init[d] or s.root[d] or s enables roat). If s.root[d], then by Item 2 we conclude
thata contains an occurrence of r@dj. If s.init[d] thens enables childrenknowd).

If s enables childrenknowd) or root(d), thens does not enable ardy> 0. If s enables

childrenknowrid) ands 2 { then eitherm = childrenknowrid) andt enables rodtl)

ort enables childrenknowd). If s enables rogtl) ands 2 tthena = root(d) ort
enables roqt).

4. In each reachable statén TIP4 the following holds. Ivp € P eitherp e s.child or
peek p) € s.child, then there exists@such that port&l) — s.child = {}.

Supposevp € P eitherp € s.child or pee¢p) € s.child and there is nal such that
portgd) — s.child = {}. Construct a longest path = pg. .. p, such that for each €
{0,2,...,n=1}: p; £ s.childandforalii, j € {0,1,3,5,...,n}:i # ] —> deUp;) #
deu(pj). Sincepn_1 ¢ s.child, andp, = peelpn—1) certainly p, € s.child. Suppose
thatp € deu pp) : p ¢ s.child. If devpeelp)) = dev p;) forsome € {0, ..., n}, then
we can construct a cycle, and we have a contradiction. Sgdeyp)) # deu p;) for all

i €{0,...,n}. Butthenwe can construct a longer path thato meet the requirements,
and we have a contradiction. So we conclude that there saaevpyp) : p ¢ s.child,
hence port&leupp)) — s.child = {}.

We now show that there is a statdn « and ad such that port@) — s.child = {}. By
definition of«, there exists ansuch that .time > (|MaxHop/2 + 1] + 1) * MaxDelay and
V] <i :sj.time < (|[MaxHop/2] + 1) * MaxDelay. Fixi.

By Lemma 7.9 and&’d : —oncycled), we havevd : Stepsd) < [MaxHop/2], hencevd :
(Stepgd) + 1) « MaxDelay < s.time. Using invariantii; we getvd : —s.init[d]. Using
invariantl4 we getvd : sizgportgd) — s .child) < 1.

Supposéld : sizg(portgd) — s.child) = 0. Fixd. It follows that portgd) — s .child = {}. By
Item 3 we may conclude thatcontains an occurrence of rgadj.

Supposerd : sizgportgd) — 5.child) = 1. Supposélp : p ¢ 5.child A pee(p) ¢ s .child.
Fix p. By our assumption we haves.rc[deMpeel p))]. Combining this with—s.init[dev(p)]
and By invariantlg, we get hea@s.mq[p]) = parent. Combining this withr-oncyclédev p))
and Invariant 11, we gets .time— s .delay[p]) < Stepsdev p)) * MaxDelay. Sinces .time >
(Stepgdev(p)) + 1) x« MaxDelay, we have .delay[p] > MaxDelay which is in contradiction
with Invariantlio. We conclude that there is rqosuch thatp ¢ 5.child A peelp) ¢ 5 .child.



156 7 ThelEEE 1394 |leader election protocol

| constant | value | reference |
min cable length 0 no restriction specified
max cable length 45m Section 1.1, Page 1, 1394-1995
max cable hops 16 Section 1.1, Page 1, 1394-1995
propagation delay <5.05 ns/m| Section 4.2.1.4.3, Page 74, 1394-1995
min CONFIGTIMEOUT 166.6us Table 7-14, Page 89, 1394-1995
166.6us Table 8-14, Page 90, P1394a
max CONFIGTIMEOUT 166.9us Table 7-14, Page 89, 1394-1995
166.9us Table 8-14, Page 90, P1394a

Table 7.1: IEEE 1394 timing constants

SincevVp : p € s.child v pee(p) € s.child we can use Item 4 to conclude that there is a
d such that portgl) — 5.child = {}. Fix d. By Item 3 we may conclude that contains an
occurrence of rogtl).

X

754 Arethel EEE 1394 timing constants correct?

Table 7.1 gives the IEEE 1394 timing constants, and a reference to where they are to be found
in the documentation. Here, 1394-1995 refers to [I[EE96] and P1394a refers to [IEE99]. Note
that the constants are the same for 1394-1995 and P1394a. From these numbers, we get the
constants used for the formal verification as follows:

MinDelay = min cable length«x propagation delay- Ons
MaxDelay = max cable length« propagation delay- 22.72ns
MinLpdtime = min CONFIGTIMEOUT = 166.6us
MaxLpdtime = max CONFIGTIMEOUT = 166.9us
MaxHop < max cable hops=16

The question is then, do these constants meet the requirements for a correct implementa-
tion? We found in Theorem 7.18 that the model behaves correctly if the relation MinLpsgtime
max(0, MaxHop— 1) x MaxDelay holds. Sinc€l6— 1) x22.72 ns = 34080 ns < 166.9 us,
the answer is yes. If the devices in IEEE 1394 enter the tree identify phase at the same time,
if there is no device with the forceot flag set to true, and if our model of the IEEE 1394
communication is correct, then we can say the following with certainty: If a loop is in the
network, it is detected, and that if there is no loop in the network, no loop will be detected and
a root will be chosen.

The difference between the actual MinLpdtime value and the minimal value as required by
our relation is rather large. One could wonder whether this implies that the limitations set by
IEEE 1394 and P1394a can be tightened. This could be done by decreasing the MinLpdtime
value, increasing the number of nodes allowed, increasing the delay between nodes (by allow-
ing greater cable lengths), or a combination of these. However, the times at which the tree
identify phase is entered can differ among nodes. The constant responsible for the duration of



7.6 Conclusions 157

the bus reset signal being sent is based on a worst-case scenario for any node to notice that a
bus reset period has started. This constant has a value of abops1@8d can be used as

an indication of the difference in starting times for the tree identify phase. If the times can
indeed be that far apart for peer nodes, the loop detection timer should be in the same order
of magnitude to not run the risk of detecting a loop when it is not there. Moreover, the use of
the force root flag increases the delay in participating in the tree identify phase even further.
We conclude that it is not yet clear whether the IEEE 1394 and P1394a bounds are correct and
may be tightened.

7.6 Conclusions

The verification shows that under the assumptions made, the IEEE 1394 definition of the tree
identify phase meets the requirements. Exactly one root is chosen when there is no cycle
present, and a cycle is detected if and only if there is a cycle present in the network. It is
obvious from the proofs that the refinement step from an untimed model to a timed model in
combination with the desired property of correct cycle detection is a complicated one. More
proofs about network topologies are needed to make a quantitative analysis of the worst case
scenarios. Also, the invariants that are specific to the model TIP4 are more complicated than
the invariants for TIP3. The effort invested in the construction of these proofs adds up to about
two months. We hope that in further refinement steps these proofs can be reused with little
effort.

As to the remaining IEEE 1394 details that we have not considered, we believe that the
addition of the root contention solving protocol with its verification from [SV99] will probably
not touch the critical behaviour parts of the root election or cycle detection. However, the
correctness of a new model, obtained by adding the delay in entering the tree identify phase or
by adding the forcgoot flag, and the correctness of the assumption that the message queues
model the IEEE 1394 signal communication are not that obvious. An extension of this work
may show that either IEEE 1394 timing bounds can be tightened or should be loosened.

The advantage of the layered verification in this case is that we do not need to prove any-
thing about the safety properties of root election, since our refinement proof gives us safety
immediately. Establishing the refinement was not as easy as expected, because of the compli-
cated reuse of invariants at the abstract level. The extra lemma that was needed shows that the
proof obligations can still be divided over small, clear proof steps.

The desired liveness properties, which express that a cycle is detected when there is a
cycle in the network topology and a root is elected otherwise, cannot be established with the
‘implements’ relation alone, since we have only proved inclusion of admissible traces. In an
untimed verification, liveness properties are proved by showifagy drace inclusion, that is,
each fair trace from the more detailed model is also a fair trace in the more abstract model.
In most cases, the liveness property holds trivially for any fair trace of the abstract model,
and therefore also for any fair trace of the detailed model. In a timed verification, liveness is
often expressed in terms of timing bounds. Then again the (admissible) trace inclusion yields
correctness. In our case, neither of these methods works. We are comparing a timed model
to an essentially untimed model and hence have no fairness that carries over from the more
abstract level to the (timed) detailed level. On the other hand, we have no timing requirement
stating when the root should be elected. So, we had to prove the liveness completely on the



158 7 ThelEEE 1394 |leader election protocol

level of model TIP4, without reusing proofs from the level of TIP3. For proving feasibility (i.e.
no time deadlocks) we added a small result to the I/O automata theory, consisting of sufficient
conditions, mostly of a syntactical nature.

We conclude that for proving safety and liveness properties in a situation with only un-
timed models or with only timed models, a layered verification is a very suitable proof method
which allows one to ‘divide and conquer’ the proof obligations. In a situation where timed
and untimed behaviour are compared, we think that other methods should be used in addition,
or the degree of refinement should be very low in order for a layered verification to diminish
the amount of work to be done in each layer. It would be very useful if the proofs constructed
for this verification were checked with a proof checker. Careful manual inspection can never
replace the confidence obtained by such automated inspection. Some results have been ob-
tained in checking invariant proofs for I1/O automata, both timed and untimed, as can be seen
in [AH96], and several papers which are under construction [Arc99]. We expect that such an
effort will be considerable, but manageable.



Chapter 8

Conclusions

In this chapter, the results of the project are evaluated with respect to the project objectives and
the central hypothesis from Section 1.4. The hypothesis is:

Using formal methods to support the industrial software development process can
be effective.

The project objectives are:
1. Development of heuristics about when formal methods should be applied.
2. Improvement of methods and tools so that bigger applications can be dealt with faster.
3. Integration of complementary approaches within formal methods research.
4. Improvement of technology transfer process from formal methods research to practice.

In the following sections, | discuss first per project objective how the cases have or have not
contributed to this objective. Then | give my position with respect to the general hypothesis.
Finally, I list some directions for the future of this kind of research.

8.1 Project objectives

1. Development of heuristics about when formal methods should be applied.

None of the cases have given quantifiable information from which such heuristics could
be deducted. However, from the experience with Case 2, 3, 5 and 6 it can be concluded
that formal methods are not (yet) to be applied to complete designs of the size of IEEE
1394 or HAVi. They are suitable to show or refute correctness of small, self-contained
parts of such designs. So, if one is interested in applying formal methods to a large
design, it is sensible to try to find a small self-contained part of the design with some
critical function for the whole design. In Case 2 this was the tree identify phase, since the
rest of the protocol depends heavily on the correct completion of this phase. In Case 3
one of the reasons for not being able to test the link layer of 1394 was that this part is
not self-contained enough to enable testing in isolation.

159



160

8 Conclusions

Another criterion for applying formal methods is of course the suspicion of errors. When

a design looks complicated, correctness is usually not obvious, and errors may be found
already in a very abstract formalisation of the design. When constant values are used
such as the time bounds in Case 2, a verification may show whether these values are
correct or not, and in addition, fault-tolerance bounds may be found which improve the
overall effectiveness of the design.

. Improvement of methods and tools so that bigger applications can be dealt with faster.

Case 3 and 4 are clear attempts at this objective, each from their own specific angle.

After the completion of Case 3, other projects have been able to test real-life designs in
VHDL, in several stages of the development. So it can be concluded that indeed this
case has contributed to this objective.

Case 4 can be seen as the formalisation of a common practice in testing, where one
reasons in an ad hoc manner to justify the selection of tests and not execute the whole
set. The good news in Case 4 is that a suitable formal basis was found for such reasoning
and it does help in eliminating a significant part of the test obligation. A limiting factor

is that the symmetry definition and the conditions on the implementation are currently
rather complicated, hence engineers cannot be expected to use this method in practice
straightaway. We expect that further research will lead to definitions and conditions
which are simpler to apply.

The extension of I/O automata theory that was established during Case 1 is an improve-
ment for problems with possibly uncountable action sets or strong fairness requirements.
It remains to be seen how often such problems are encountered in practice, but | ex-
pect strong fairness aspects occur more often than uncountable action sets. The proof-
checking efforts on my work for Case 1 show that such manual proofs need not be
trusted as such, but can be checked in a fairly efficient way to obtain more confidence in
the results.

. Integration of complementary approaches within formal methods research.

In spite of the aim at the start of the project, none of the cases have used complementary
approaches to tackle a problem. In Case 6 the following approach was considered: first
perform model checking to obtain correctness for finite instances of the HAVi leader
election protocol, and then use these results in a formal proof that the protocol is correct
for all instances (e.g. with the help of a theorem proving tool). However, since the
protocol was not correct and model checking already took up more time than planned,
this approach was not feasible.

. Improvement of technology transfer process from formal methods research to practice.

Both Case 3 and Case 6 aimed at this objective.

For Case 3 the transfer has clearly succeeded since the tool environment has been used in
several projects on industrial designs. The use of the tool environmentrequires academic
skills.

The results of Case 6 could be used by Philips in two ways: one is to see how protocols
can be specified and verified formally, and another is to improve this particular leader



8.2 Doesthe hypothesishold? 161

election protocol or tighten the assumptions under which the protocol should behave cor-
rect. The latter option implies imposing restrictions on the environment of the protocol
in the HAVi environment. It remains to be seen whether this transfer will actually take
place.

The ultimate transfer of formal methods research to practice can be achieved when eval-
uations like in this thesis find their way to the industrial public, and both positive and
negative results are used to improve the software development process.

8.2 Doesthe hypothesishold?

Now | will discuss the most important conclusion of this thesis, whether using formal methods
to support the industrial software development process can be effective. | think the hypothesis
is true and will gain strength over the coming years. | have three arguments to support my
position:

1. The potential of formal methods will increase significantly in the coming years.
2. The applications of formal methodsin this project have given useful results.
3. Formal methods can be applied more effectively till than in this project.

Argument 1 can be justified by several developments. In the academic world, much attention is
given to the application of formal methods to industrial cases of increasing size and complexity,
and one is working constantly on the improvement of theory and tools. In fact, there is a
competition going on in which tool developers will go to great lenghts to be able to handle
larger or more complex cases than the rest of the community. The quest for improvement is
supported by the ever-growing capacities of computer systems in terms of speed, memory and
storage. | think the current trend of growing potential will continue for at least another ten
years.

The justification for Argument 2 can be found in Section 1.6. The work on the different
case studies has taken a long (effective) time, and neither the results, nor their scope are over-
whelming. However, in five out of six case studies, formal methods have given an answer that
can or does support the software/hardware development process in Philips. Given the limiting
factors of the project, the outcomes are rather good.

Argument 3 is inspired by our experiences with such limiting factors. We list them below
since they may help to improve the conditions for applying formal methods and increasing
effectivity. In the following list, the symboé indicates a cause that is related to academic
expertise, experience and more whimsical causes like personal taste. The syndicdtes a
cause arising from external factors.

e The learning curve of methods and tools.
Delay in the project was caused by the time | needed to learn to work with several formal
methods and tools. It seems such learning curves can only be shortened by involving
people more experienced, which may imply more funding.

e Underestimation of the formalisation effort.
Understanding the behaviour and properties that are to be formalised and making the



162

8 Conclusions

right abstractions is a tough job. Especially the task of finding proper requirements
and expressing these in a temporal logic was underestimated. What may help in such
situations is the approach proposed in [DAC98], where patterns are given for classes of
properties in different temporal logics.

The two next items contributed to the complexity of the formalisation task.

Ad hoc abstraction methods.

Once the proper model and specification have been obtained, in many cases the model is
too complex for verification by hand or with tools. The abstractions performed to make
the model manageable, were in all cases done during the formalisation itself, in an ad
hoc manner and justified with intuitive arguments. Only in Case 2 there has been an
attempt at undoing some abstractions through the use of refinements. However, when
formalising, one should work in the other direction first, by starting to give the most
detailed model and then use abstraction methods to obtain more abstract models which
are suitable for verification. After establishing verification relations at the abstract level,
one could then obtain similar relations at the more detailed level as presented here or as
proposed in [KP98].

Choosing the proper paradigm.

It is not always clear what formal language paradigm fits a particular case best. Most
formal languages are rather disjunct in the sense that none of them have all the prop-
erties that a particular case calls for. A good cooperation with the industrial partner is

indispensable for this effort.

Lack of precision in standard documents.

Standard documents often describe protocols in natural language. This gives rise to
ambiguities, errors and unclear statements, hence this hampers the formalisation effort.
Also, the people who write standards often have implicit ideas about how the standard
should be implemented. Even when a standard attempts to be more precise and clear
(e.g.the IEEE 1394 standard documents [IEE96, IEE99]), many mistakes and unclarities
remain.

The limiting conditions of the project.

As mentioned in Section 1.4, not much funded manpower was involved in the project,
and the cooperating institutes were geographically far apart. This made intense coop-
eration very hard. For such a modest project, the priority with the Philips Research
Laboratories was naturally not very high. So in most cases, the analysis was performed
after the development of the corresponding system had already completed. This means
that the results of the analysis could only be used for a posteriori evaluation. Also, the
cooperation with people from the Philips Research Laboratories who were not involved
in the project but acted as external experts, was limited to one person per case. Itis
desirable to have more people involved with such expertise, because this is beneficial for
the availability and objectivity of the information and advice exchanged.



8.3 Futuredirections 163

8.3 Futuredirections

What can be done to improve the effectiveness of using formal methods? The first important
point is the improvement of formal methods themselves. The second is to induce industry
to use formal methods, for instance by investing in projects like these. The third is the im-

provement of the application of formal methods in projects like these by meeting some prior
conditions.

Much has been said about the road ahead for formal methods. Judging from the experiences
gained in this project, | think there are many directions for research which are valuable for the
application of formal methods in projects like these.

It seems that in this project, the verification techniques theorem proving and model check-
ing have given different benefits and are both suitable to be used in the future. The advantage
of theorem proving is that proofs, once constructed, can be reused and often easily adapted if
models are slightly changed. Also it is possible to construct proofs for models of infinite size,
which cannot (yet) be done with model checking. The advantage of model checking is that it
requires less expertise and is easier to present to industrial partners. The choice between the
two approaches may depend on the expected variety in models, the expected size of the mod-
els, and the number of people involved that are skilled in constructing proofs. | conclude that
extensive research into improvements of both model checking and theorem proving is desired.
Issues like composition (of methods, models, proofs), abstraction and refinement, reduction
through confluence, and the like are important for both approaches.

As to conformance testing, | think the application to industrial case studies teaches us
that complete coverage is too much to ask for. In order to be used in industry, research must
be performed in two directions. The first is the quantification of coverage. Testers want to
have percentages of errors found or behaviour tested. The assumptions under which such
percentages are given, should have a clear, intuitive meaning to people from industry. The
other direction is the approach to test by exhaustive exploration, where e.g. artefacts are model
checked.

The second item for improving effectiveness, the inducement of industry to invest in for-
mal methods, is perhaps the toughest task. The Philips Research Laboratories have repeatedly
shown their interest in formal methods in terms of funding and cooperation, and their willing-
ness to use the outcomes of such cooperation. How can we convince more industrial partners
of their need for using formal methods? | think researchers like me are not and should not be
qualified for convincing industry that they should use formal methods, and how they should
do this. The priorities, budgets, time schedules, working atmosphere, hierarchy, protocols, and
such that prevail in an industrial environment are very different from the scientific environ-
ment. The expected counter argument is “But you have all these success stories of finding
bugs in very important software and hardware designs”. There are indeed a number of success
stories, but academic researchers do not have the skill to drive the point home, that is, to teach
industry how to use which formal method for which problem, how to keep doing this, and how
to do this on a large scale. Therefore | think it would be useful (and in the long term indispen-
sible) to cooperate with experts on business processes in order to find the most effective way
to train industry, and to find what still needs to be added to formal methods.

As to the prior conditions to projects like this one, my views are as follows.

The industrial partners must

e Study this project: both results and evaluation.



164 8 Conclusions

e Put in more manpower.

e Assign greater priority to possible results.

e Be very clear in what is desired on the whole and per case study.
On the other hand, the researchers from academia must

e Gather and classify results of applications of formal methods and work towards a li-
brary in which one can hope to find the appropriate method for specific problems. Cur-
rently, this is being attempted on an Internet site which can be found through the URL

http://vlib.org/.
e Putin more manpower.
e Putin more effort to cooperate among research institutes and projects.

e Be clear and honest in what is currently possible for different types of case studies.

If and only if the majority of these suggestions for improvement are picked up and imple-
mented, it can be expected that in about ten years, significant parts of the software/hardware
development will be analysed formally, and therefore of better quality.



[ADLU91]

[AH96]

[AHI98]

[AL94]

[ALM96]

[AR96]

[Arc99]
[AS85]

[BBD+96]

Bibliography

A.V. Aho, A.T. Dahbura, D. Lee, and M.UJyar. An optimization technique

for protocol conformance test generation based on UIO sequences and rural Chi-
nese postman tourkEEE Transactions on Communications, 39(11):1604—-1615,
1991. Also appeared in: Proceeding$Pobtocol Specification, Testing and Ver-
ification VIII, pp. 75-86, North-Holland, 1988.

M. Archer and C. Heitmeyer. Mechanical verification of timed automata:
A case study. InProceedings 1996 IEEE Real-Time Technology and
Applications Symposium (RTAS 96). IEEE Computer Society Press, 1996.
A full version is available as Report NRL/MR/5540-98-8180 from URL
http://www.itd.nrl.navy.mil/ITD/5540/publications/CHACS/1998/.

K. Ajami, S. Haddad, and J-M. & Exploiting symmetry in linear time temporal
logic model checking: One step beyond. In Steffen [Ste98], pages 52—67.

M. Abadi and L. Lamport. An old-fashioned recipe for real tin&CM Trans-
actions on Programming Languages and Systems, 16(5):1543-1571, September
1994,

M. Abadi, L. Lamport, and S. Merz. A TLA solution to the RPC-Memory spec-
ification problem. In Broy et al. [BMS96], pages 21-66.

E. Astesiano and G. Reggio. A dynamic specification of the RPC-Memory prob-
lem. In Broy et al. [BMS96], pages 67-108.

M. Archer. Personal communication, March 1999.

B. Alpern and F.B. Schneider. Defining livendsgor mation Processing Letters,
21:181-185, 1985.

D. Borrione, H. Bouamama, D. Deharbe, C. Le Faou, and A. Wahba. HDL-based
integration of formal methods and CAD tools in the PREVAIL environment. In
M. Srivas and A. Camilleri, editors;MCAD’ 96, Palo Alto, CA, USA, volume
1166 ofLecture Notes in Computer Science, pages 143-158. Springer-Verlag,
1996.

165



166

Bibliography

[BBDEL96] I. Beer, Sh. Ben-David, C. Eisner, and A. Landver. RuleBase: An industry-

[Bes96]

[BH95a]

[BHO5D]

[BJ96a]

[BJ96D]

oriented formal verification tool. IfProceedings of the 33rd ACM Design Au-
tomation Conference, Las Vegas, NV, USA, 1996.

E. Best. Amemory module specification using composable high-level Petri Nets.
In Broy et al. [BMS96], pages 109-160.

J.P. Bowen and M.G. Hinchey. Seven more myths of formal metht€lsE
Software, 12(4):34—41, July 1995.

J.P. Bowen and M.G. Hinchey. Ten commandments of formal meth&iE
Computer, 28(4):56—63, April 1995.

M. Bickford and D. Jamsek. Formal specification and verification of VHDL. In
M. Srivas and A. Camilleri, editors;MCAD’ 96, Palo Alto, CA, USA, volume
1166 ofLecture Notes in Computer Science, pages 310-326. Springer-Verlag,
1996.

J. Blom and B. Jonsson. Constraint oriented temporal logic specification. In
Broy et al. [BMS96], pages 161-182.

[BKKW90] S.vande Burgt, J. Kroon, E. Kwast, and H. Wilts. The RNL Conformance Kit. In

[BLO6]

[BMS96]

[Brigs]

[Bro9e6]

[BSW69]

[BTVO1]

[Cad]

[CBHO6]

Proceedings 2nd I nternational Wbrkshop on Protocol Test Systems, pages 279—
94. North-Holland, 1990.

M. Broy and L. Lamport. The RPC-Memory specification problem — Problem
statement. In Broy et al. [BMS96], pages 1-4.

M. Broy, S. Merz, and K. Spies, editordormal Systems Specification — The
RPC-Memory Specification Case Study, volume 1169 ot _ecture Notesin Com-
puter Science. Springer-Verlag, 1996.

E. Brinksma. A theory for the derivation of tests. In S. Aggrawal and K. Sabani,
editors,Protocol Specification Testing and Verification, Volume V111, pages 63—
74. North-Holland, 1988.

M. Broy. A functional solution to the RPC-Memory specification problem. In
Broy et al. [BMS96], pages 183-212.

K.A. Bartlett, R.A. Scantlebury, and P.T. Wilkinson. A note on reliable full-
duplex transmission over half—-duplex linksCommunications of the ACM,
12:260-261, 1969.

E. Brinksma, J. Tretmans, and L. Verhaard. A framework for test selection. In
B. Jonsson, J. Parrow, and B. Pehrson, editBretocol Specification Testing
and \erification, Volume XI, pages 233—-248. North-Holland, 1991.

Cadence. Leapfrog VHDL simulator. Product information at http://www.
cadence.com/software/gx-leap.html.

J.R. Cellar, D. Barnard, and M. Huber. A solution relying on the model check-
ing of boolean transition systems. In Broy et al. [BMS96], pages 213-252.



Bibliography 167

[CESS6]

[CFJ93]

[CGO7]

[Cho78]

[Cou93]

[CVI89]

[CWO96]

[DAC98]

[Dam98]

[DGRV97]

[DNFGRO3]

[DNV9O0]

[DS95]

E.M. Clarke, E.A. Emerson, and A.P. Sistla. Automatic verification of finite-
state concurrent systems using temporal logic specificati@isl Transactions
on Programming Languages and Systems, 8(2):244—-263, 1986.

E.M. Clarke, T. Filkorn, and S. Jha. Exploiting symmetry in temporal logic
model checking. In Courcoubetis [Cou93], pages 450-462.

O. Charles and R. Groz. Basing test coverage on a formalization of test hy-
potheses. In M. Kim, S. Kang, and K. Hong, editdssting of Communicating
Systems, Volume 10, pages 109-124. Chapman & Hall, 1997.

T.S. Chow. Testing software design modeled by finite-state machliEE
Transactions on Software Engineering, 4(3):178-188, 1978.

C. Courcoubetis, editdProceedings 5t International Conference on Computer
Aided \erification (CAV ' 93), volume 697 ot ecture Notesin Computer Science.
Springer-Verlag, 1993.

W.Y.L. Chan, S.T. Vuong, and M.R. Ito. An improved protocol test generation
procedure based on UIOs. Rroceedings of the ACM Symposium on Communi-
cation Architectures and Protocols, pages 283-294, 1989.

E.M. Clarke and J.M. Wing. Formal methods: State of the art and future direc-
tions. ACM Computing Surveys, 28(4):626—643, December 1996.

M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. Property specification patterns for
finite-state verification. In Mark Ardis, editdProceedings of the 2nd Workshop

on Formal Methods in Software Practice (FMSP-98), pages 7—15, New York,
March 1998. ACM Press.

D. Dams. Personal communication, October 1998.

M.C.A. Devillers, W.O.D. Griffioen, J.M.T. Romijn, and F.W. Vaandrager. Ver-
ification of a leader election protocol — formal methods applied to IEEE 1394.
Technical Report CSI-R9728, Computing Science Institute, University of Nij-
megen, December 1997. Accepted, subject to revision, for Formal Methods in
System Design.

R. De Nicola, A. Fantechi, S. Gnesi, and G. Ristori. An action based framework
for verifying logical and behavioural properties of concurrent syst€uasputer
Networks and ISDN Systems, 25:761-778, 1993.

R. De Nicola and F.W. Vaandrager. Action versus state based logics for transi-
tion systems. In |. Guessarian, editBroceedings of Semantics of Systems of
Concurrent Processes, volume 469 of_ecture Notesin Computer Science, pages
407-419. Springer-Verlag, 1990.

J.W. Davies and S.A. Schneider. A brief history of timed d3georetical Com-
puter Science, 138(2):243—-271, 1995.



168

Bibliography

[EJPIT7]

[EL87]

[ES93]

[ESO7]

[FBK*91]

[FGK+96]

[FIIV96]

[FMMW98]

[Gar9g]

[Gau95]

[GFL+96]

E.A. Emerson, S. Jha, and D. Peled. Combining partial order and symmetry re-
ductions. In E. Brinksma, editofpols and Algorithms for the Construction and
Analysis of Systems (TACAS'’97), volume 1217 ofLecture Notes in Computer
Science, pages 19-34. Springer-Verlag, 1997.

E.A. Emerson and C.-L. Lei. Modalities for model checking: Branching time
logic strikes backScience of Computer Programming, 8(3):275—-306, June 1987.

E.A. Emerson and A.P. Sistla. Symmetry and model checking. In Courcoubetis
[Cou93], pages 463—-478.

E.A. Emerson and A.P. Sistla. Utilizing symmetry when model-checking under
fairness assumptions: an automata-theoretic approA€M Transactions on
Programming Languages and Systems, 19(4):617-638, 1997.

S. Fujiwara, G. von Bochmann, F. Khendek, M. Amalou, and A. Ghedamsi. Test
selection based on finite state mod&EEE Transactions on Software Engineer-
ing, 17(6):591-603, June 1991.

J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sig-
hireanu. CADP: A protocol validation and verification toolbox. In R. Alur and
T.A. Henzinger, editordRroceedings of the 8th Conference on Computer-Aided
Verification (CAV), volume 1102 ofecture Notes in Computer Science, pages
437-440. Springer-Verlag, August 1996. Information and tool set available from
URL http://www.inrialpes.fr/ vasy/pub/cadp.html.

J. C. Fernandez, C. Jard, T. Jeron, and G. Viho. Using on-the-fly verification
techniques for the generation of test suites. In R. Alur and T.A. Henzinger,
editors, Proceedings of the 8th International Conference on Computer Aided
Verification (CAV), volume 1102 ofecture Notes in Computer Science, pages
348-359. Springer Verlag, July 1996.

L.M.G. Feijs, F. Meijs, J.R. Moonen, and J.J. van Wamel. Conformance testing
of a multimedia system using PHACT. In A. Petrenko and N. Yevtushenko,
editors, Testing of Communicating Systems, volume 11, pages 193-210. Kluwer
Academic Publishers, September 1998.

H. Garavel. BENCZESAR An open software architecture for verification, sim-
ulation, and testing. In Steffen [Ste98], pages 68—84. For more information on
the tool set, see http://www.inrialpes.fr/vasy/pub/cadp.html.

M.-C. Gaudel. Testing can be formal, too. In P.D. Mosses, M. Nielsen, and
M.l. Schwartzbach, editorAPSOFT 95: Theory and Practice of Software De-
velopment, volume 915 ofLecture Notes in Computer Science, pages 82-96.
Springer-Verlag, 1995.

D. Geist, M. Farkas, A. Landver, Y. Lichtenstein, S. Ur, and Y. Wolfsthal.
Coverage-directed test generation using symbolic techniques. In M. Srivas and
A. Camilleri, editorsFMCAD’ 96, Palo Alto, CA, USA, volume 1166 dfecture
Notesin Computer Science, pages 143-158. Springer-Verlag, 1996.



Bibliography 169

[GHO3]

[GHM*98]

[GLV97]

[God96]

[Got96]

[GPY5]

[GS]

[GS97]

[GV98]

[Hal9o]

[HM85]

[Hol91]

[Hol97]

J.V. Guttag and J.J. Horning, editorisarch: Languages and Tools for Formal
Soecification. Springer-Verlag, 1993.

Grundig, Hitachi, Matsushita, Philips, Sharp, Sony, Thomson, and Toshiba. The
HAVi Specification — Specification of the Home Audio/Video Interoperability
(HAVi) Architecture. Version 1.0 beta, November 19, 1998. Available from
URL http://www.havi.org/.

S.J. Garland, N.A. Lynch, and M. Vaziri. 10A: A language for specifying,
programming, and validating distributed systems, December 1997. Available
through URL http://larch.lcs.mit.edu:8004arland/ ioaLanguage.html.

P. Godefroid.Partial-order methods for the verification of concurrent systems
— An approach to the state-explosion problem, volume 1032 ot.ecture Notesin
Computer Science. Springer-Verlag, 1996.

R. Gotzhein. Applying a temporal logic to the RPC-Memory specification prob-
lem. In Broy et al. [BMS96], pages 253-274.

J.F. Groote and A. Ponse. The syntax and semantie€BiL. In A. Ponse,

C. Verhoef, and S.F.M. van Vlijmen, editor8lgebra of Communicating Pro-
cesses '94, Workshops in Computing Series, pages 26—62. Springer-Verlag,
1995.

J.F. Groote and J.G. Springintveld. Focus points and convergent process oper-
ators — a proof strategy for protocol verification. In A. Arnold, editero-
ceedings 2nd AMAST Wbrkshop on Real-Time Systems (ARTS 95). To appeatr.
Report versions: Logic Group Preprint Series 142, Utrecht University, 1995, and
Technical Report CS-R9566, CWI, 1995.

V. Gyuris and A.P. Sistla. On-the-fly model checking under fairness that exploits
symmetry. In O. Grumberg, editoProceedings 9" International Conference

on Computer Aided Verification (CAV '97), volume 1254 ofLecture Notes in
Computer Science, pages 232-243. Springer-Verlag, 1997.

W.O.D. Griffioen and F.W. Vaandrager. Normed simulations.Piaceedings
CAV' 98, volume 1427 ofLecture Notes in Computer Science, pages 332—-344.
Springer-Verlag, 1998.

J.A. Hall. Seven myths of formal method&EE Software, 7(5):11-19, Septem-
ber 1990.

M. Hennessy and R. Milner. Algebraic laws for nondeterminism and concur-
rency.Journal of the ACM, 32:137-161, 1985.

G.J. Holzmann.Design and Validation of Computer Protocols. Prentice Hall,
1991.

G.J. Holzmann. The model checker SPINEEE Transactions on Software En-
gineering, 23(5):279-295, May 1997.



170

Bibliography

[Hol9sa]

[Holosb]
[Hol99]

[Ho096]

[HP94]

[Hun96]

[HYHD95]

[ID96]

[IEE93]

[IEE95]

[IEE96]

[IEE99]

[1S089]

[1SO91]

[Jen99]

[Jon94]

M. Hollenberg. Testen van een digitale TV. Presentation at the Fourth Dutch
Testing Conference, 1998.

G.J. Holzmann. Personal communication, November 1998.
G.J. Holzmann. Personal communication, June 1999.

J. Hooman. Using PVS for an assertional verification of the RPC-Memory spec-
ification problem. In Broy et al. [BMS96], pages 275-304.

G.J. Holzmann and D. Peled. An improvement in formal verification. In
Proceedings Formal Description Techniques, FORTE94, pages 197-211, Bern,
Switzerland, October 1994. Chapman & Hall.

H. Hungar. Specification and verification using a visual formalism on top of
temporal logic. In Broy et al. [BMS96], pages 305—-337.

R. Ho, C.H. Yang, M.A. Horowitz, and D. Dill. Architecture validation for
processors. IfProceedings of the International Symposium on Computer Archi-
tecture, Santa Margerita Ligure, Italy, 1995.

C.N. Ip and D.L. Dill. Better verification through symmetiormal Methodsin
System Design, 9(1/2):41-75, August 1996.

IEEE Computer Society. Standard VHDL language reference manual (ANSI).
International standard 1076, 1993.

IEEE Computer Society. Standard description language based on the Ver-
ilog(TM) hardware description language. International standard 1364, 1995.

IEEE Computer Society. IEEE Standard for a High Performance Serial Bus. Std
1394-1995, August 1996.

IEEE Computer Society. Draft Standard for a High Performance Serial Bus
(Supplement). P1394a Draft 3.0, June 1999.

ISO. Information processing systems — Open Systems Interconnection— LOTOS
—aformal description technique based on the temporal ordering of observational
behaviour. ISO/IEC 8807, 1989.

ISO. Information technology, open systems interconnection, conformance test-
ing methodology and framework. International standard 1S—9646, 1991.

H.E. Jensembstraction-Based Verification of Distributed Systems. PhD thesis,
Aalborg University, June 1999.

B. Jonsson. Compositional specification and verification of distributed systems.
ACM Transactions on Programming Languages and Systems, 16(2):259-303,
March 1994.



Bibliography 171

[KHR97]

[KK97]

[Knio3]

[KNS96]

[Koz83]

[KP98]

[KS96]

[KVO8]

[KVZ98]

[KVZ99]

L. Kuhne, J. Hooman, and W.P. de Roever. Towards mechanical verification
of parts of the IEEE P1394 serial bus. In I. Lovrek, ediferoceedings 2nd
International Workshop on Applied Formal Methods in System Design, Zagreb,
pages 73-85, 1997.

S. Kang and M. Kim. Interoperability test suite derivation for symmetric com-
munication protocols. In T. Mizuno, N. Shiratori, T. Higashino, and A. Togashi,
editors,Formal Description Techniques and Protocol Specification, Testing and
Verification (FORTE X/ PSTV XVII '97), pages 57—72. Chapman & Hall, 1997.

K.G. Knightson. OS Protocol Conformance Testing: |S 9646 Explained.
McGraw-Hill, 1993.

N. Klarlund, M. Nielsen, and K. Sunesen. A case study in verification based on
trace abstractions. In Broy et al. [BMS96], pages 341-374.

D. Kozen. Results on the propositional mu-calculuheoretical Computer
Science, 27:333-354, 1983.

Y. Kesten and A. Pnueli. Modularization and abstraction: The keys to prac-
tical formal verification. In L. Brim, J. Gruska, and J. Zlatuska, editdtse

23rd International Symposium on Mathematical Foundations of Computer Sci-

ence (MFCS 1998), volume 1450 ot ecture Notes in Computer Science, pages
54-71. Springer-Verlag, 1998.

R. Kurki-Suonio. Incremental specification with joint actions: The RPC-
Memory specification problem. In Broy et al. [BMS96], pages 375-404.

O. Kupferman and M.Y. Vardi. Relating linear and branching model checking.
In D. Gries and W.-P. de Roever, editalis| P Working Conference on Program-
ming Concepts and Methods, New York, June 1998. Chapman & Hall.

H. Kahlouche, C. Viho, and M. Zendri. An industrial experiment in automatic
generation of executable test suites for a cache coherency protocol. In A. Pe-
trenko and N. Yevtushenko, editor$gsting of Communicating Systems, vol-

ume 11. Kluwer Academic Publishers, September 1998.

H. Kahlouche, C. Viho, and M. Zendri. Hardware testing using a communication
protocol conformance testing tool. In W.R. Cleaveland, edRooceedings of

the 5th International Conference on Tools and Algorithms for the Construction

and Analysis of Systems (TACAS 99), volume 1579 of ecture Notesin Computer
Science, pages 315-329. Springer Verlag, March 1999.

[KWKK91] E. Kwast, H. Wilts, H. Kloosterman, and J. Kroon. User manual of the Confor-

[Lam94a]

[Lam94b]

mance Kit, October 1991.

L. Lamport. The temporal logic of actior®CM Transactions on Programming
Languages and Systems, 16(3):872—-923, May 1994.

Leslie Lamport. How to write a long formuldzormal Aspects of Computing,
6:580-584, 1994. Also appeared as SRC Research Report 119.



172

Bibliography

[LSWO6]

[LT87]

[LT89]

[Lut97]

[LVO5]

[LV96]

[Lyn96]

[MAD96]

[Matos]

[IMG98]

[Mil89]

[MP92]

[MP93]

[MP95]

K.G. Larsen, B. Steffen, and C. Weise. The methodology of modal constraints.
In Broy et al. [BMS96], pages 405-436.

N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributed al-
gorithms. InProceedings of the 6!" Annual ACM Symposium on Principles of
Distributed Computing, pages 137-151, 1987. A full version is available as MIT
Technical Report MIT/LCS/TR-387.

N.A. Lynch and M.R. Tuttle. An introduction to input/output automatam
Quarterly, 2(3):219-246, September 1989.

S.P. Luttik. Description and formal specification of the Link layer of P1394.
In I. Lovrek, editor,Proceedings of the 2nd International Workshop on Applied
Formal Methods in System Design, Zagreb, pages 43-56, 1997. Also available
as Report SEN-R9706, CWI, Amsterdam. See URL http://www.cwiluttik/.

N.A. Lynch and F.W. Vaandrager. Forward and backward simulations, I: Un-
timed systems. Information and Computation, 121(2):214-233, September
1995.

N.A. Lynch and F.W. Vaandrager. Forward and backward simulations, II:
Timing-based systemsnformation and Computation, 128(1):1-25, July 1996.

N.A. Lynch. Disgtributed Algorithms. Morgan Kaufmann Publishers, Inc., San
Francisco, California, 1996.

F. Michel, P. Azema, and K. Drira. Selective generation of symmetrical test
cases. In B. Baumgarten, H.-J. Burkhardt, and A. Giessler, edilestsng of
Communicating Systems, Volume 9, pages 191-206. Chapman & Hall, 1996.

R. MateescuVérification des propriétés temporelles des programmes paral el es.
These de doctorat, Institut National Polytechnigque de Grenoble, April 1998.

R. Mateescu and H. Garavel. XTL: A meta-language and tool for temporal logic
model-checking. In T. Margaria and B. Steffen, editéisiceedings of the I nter-
national Workshop on Software Tools for Technology Transfer STTT' 98, number
NS-98-4 in BRICS Notes Series, July 1998.

Robin Milner. Communication and Concurrency. Prentice-Hall International,
Englewood Cliffs, 1989.

Z. Manna and A. PnueliThe Temporal Logic of Reactive and Concurrent Sys-
tems: Specification. Springer-Verlag, 1992.

Z. Manna and A. Pnueli. Verifying hybrid systems. In R.L. Grossman,
A. Nerode, A.P. Ravn, and H. Rischel, editoksybrid Systems, volume 736
of Lecture Notes in Computer Science, pages 4—35. Springer-Verlag, 1993.

Z. Manna and A. Pnueli.Temporal \erification of Reactive Systems. Safety.
Springer-Verlag, 1995.



Bibliography 173

[MRS*96]

[MRS+974a]

[MRS*97b]

[ORSHO5]

[Pec98]

[PHKO5]

[Pnu77]

[Pnuss]

[QS83]

[RAHO8]

[Rom96]

[Rom99a]

[Rom99b]

J.R. Moonen, J.M.T. Romijn, O. Sies, J.G. Springintveld, L.M.G. Feijs, and
R.L.C. Koymans. A course in using Phact: Testing the conformance of a small
protocol, November 1996.

J.R. Moonen, J.M.T. Romijn, O. Sies, J.G. Springintveld, L.M.G. Feijs, and
R.L.C. Koymans. A two-level approach to automated conformance testing of
VHDL designs. In M. Kim, S. Kang, and K. Hong, editoifesting of Commu-
nicating Systems, volume 10, pages 432—-447. Chapman and Hall, 1997.

J.R. Moonen, J.M.T. Romijn, O. Sies, J.G. Springintveld, L.M.G. Feijs, and
R.L.C. Koymans. Phact: A tool environment for automated conformance testing
of VHDL designs — User manual and documentation, 1997.

S. Owre, J. Rushby, N. Shankar, and F. von Henke. Formal verification for fault-
tolerant architectures: Prolegomena to the design of REEE Transactionson
Software Engineering, 21(2):107-125, February 1995.

C. Pecheur. Advanced modelling and verification techniques applied to a cluster
file system. Technical Report 3416, INRIA &mé-Alpes, May 1998.

A. Petrenko, T. Higashino, and T. Kaji. Handling redundant and additional states
in protocol testing. In A. Cavalli and S. Budkowski, editoPsotocol Test Sys-
tems, Volume Vi1, pages 307-322. Chapman & Hall, 1995.

A. Pnueli. The temporal logic of programs. Rroceedings of 18th IEEE Sym-
posiumon Foundations of Computer Science (FOCS), pages 46-57. IEEE, 1977.

A. Pnueli. Linear and branching structures in the semantics and logics of reactive
systems. IrProceedings of 12th International Colloguium on Automata, Lan-
guages and Programming (ICALP), Lecture Notes in Computer Science, pages
15-32. Springer-Verlag, 1985.

J.-P. Queille and J. Sifakis. Fairness and related properties in transition systems
—atemporal logic to deal with fairnesacta Informatica, 19:195-220, 1983.

E. Riccobene, M.M. Archer, and C.L. Heitmeyer. Applying TAME to I/O au-
tomata: A user’s perspective, 1998. Draft.

J.M.T. Romijn. Tackling the RPC-Memory specification problem with 1/O au-
tomata. In Broy et al. [BMS96], pages 437-476.

J.M.T. Romijn. Model checking the HAVi leader election protocol. Technical
Report SEN-R9915, CWI, Amsterdam, 1999. Submitted.

J.M.T. Romijn. A timed verification of the IEEE 1394 leader election protocol. In
S. Gnesi and D. Latella, editofBroceedings of the Fourth International ERCIM
Workshop on Formal Methodsfor Industrial Critical Systems (FMICS 99), pages
pages 3-29, 1999. Full version available as CWI Report SEN-R9919.



174

Bibliography

[RS98]

[Rus95]

[RVO6]

[Sch97]

[SD88]

[Seg95]

[SGSLI8]

[Sie96]

[SL95]

[SM98]

[Ste9s]

[Sti92]

[Sta96]

J.M.T. Romijn and J.G. Springintveld. Exploiting symmetry in protocol testing.
In S. Budkowski, A. Cavalli, and E. Najm, editorSormal Description Tech-
niques and Protocol Specification, Testing and Verification (FORTE XI/PSTV
XVIII '98), pages 337-352. Kluwer Academic Publishers, 1998. Full version
available as CWI Report SEN-R9918.

J. Rushby. Formal methods and their role in the certification of critical systems.
Technical Report SRI-CSL-95-1, Computer Science Laboratory, SRI Interna-
tional, March 1995.

J.M.T. Romijn and F.W. Vaandrager. A note on fairness in I/O automater-
mation Processing Letters, 59(5):245-250, September 1996.

S.A. Schneider. Timewise refinement for communicating proceSsiesce of
Computer Programming, 28(1):43-90, 1997.

K.K. Sabnani and A.T. Dahbura. A protocol testing proced@amputer Net-
works and |SDN Systems, 15(4):285-297, 1988.

R. SegalaViodeling and Verification of Randomized Distributed Real-Time Sys-
tems. PhD thesis, Department of Electrical Engineering and Computer Science,
Massachusetts Institute of Technology, June 1995. Available as Technical Report
MIT/LCS/TR-676.

R. Segala, R. Gawlick, J.F. Sggaard-Andersen, and N.A. Lynch. Liveness in
timed and untimed systemslnformation and Computation, 141(2):119-171,
March 1998.

O. Sies. Automatic techniques for protocol conformance testing, 1996. Master’s
Thesis.

R. Segala and N.A. Lynch. Probabilistic simulations for probabilistic processes.
Nordic Journal of Computing, 2(2):250-273, 1995.

M. Sighireanu and R. Mateescu. Verification of the link layer protocol of the
ieee-1394 serial bus (firewire): an experiment with e-lot8stinger Interna-
tional Journal on Software Tools for Technology Transfer (STTT), 2(1):68—88,
December 1998.

B. Steffen, editofloolsand Algorithmsfor the Construction and Analysis of Sys-
tems (TACAS' 98), volume 1384 of_ecture Notesin Computer Science. Springer-
Verlag, 1998.

C. Stirling. Modal and temporal logics. In S. Abramsky, Dov M. Gabbay, and
T. SE. Maibaum, editorsHandbook of Logic in Computer Science. Volume

2. Background: Computational Sructures, pages 477-563. Oxford University
Press, 1992.

K. Stglen. Using relations on streams to solve the RPC-Memory specification
problem. In Broy et al. [BMS96], pages 477-520.



Bibliography 175

[Sun99] Sun Microsystems, Inc. Jini Connection Technology, 1999. Specifications avail-
able from URL http://www.sun.com/jini/whitepapers/.

[SV99] M. I. A. Stoelinga and F. W. Vaandrager. Root contention in IEEE 1394. In
J.-P. Katoen, editofProceedings 5th International AMAST Wbrkshop on For-
mal Methods for Real-Time and Probabilistic Systems (ARTS 99), Bamberg,
Germany, volume 1601 dfecture Notes in Computer Science, pages 53-74.
Springer-Verlag, 1999.

[SZ98] C. Shankland and M.B. van der Zwaag. The tree identify protocol of IEEE 1394
in uCRL. Formal Aspects of Computing, 10(5/6):509-531, 1998.

[TLHT99] T. Trew, B. Lanaspre, M. Hollenberg, J.G. Springintveld, and T. Harosia. Deliv-
ering high definition TV to the USA — testing subcontracted embedded real-time
software. InProceedings of 16th International Conference and Exposition on
Testing Computer Software, Washington D.C., June 1999.

[TPHT96] R. Terpstra, L. Ferreira Pires, L. Heerink, and J. Tretmans. Testing theory in
practice: A simple experiment. IRroceedings of the COST 247 International
Workshop on Applied Formal Methods in System Design, 1996. Also published
as Technical Report CTIT 96-21, University of Twente, The Netherlands.

[Tre89] J. Tretmans. A theory for the derivation of tests.Fmmal Description Tech-
niques (FORTE |1 ' 89). North-Holland, 1989.

[Tre92] J. TretmansA Formal Approach to Conformance Testing. PhD thesis, University
of Twente, December 1992.

[UK96] R.T. Udink and J.N. Kok. The RPC-Memory specification problem: UNITY +
refinement calculus. In Broy et al. [BMS96], pages 521-540.

[Use99] Y.S. Usenko. A comparison of Spin and thieRL toolset on HAVI leader elec-
tion protocol. Technical Report SEN-R9917, CWI, Amsterdam, 1999. Submit-
ted.

[Vas73] M.P. Vasilevskii. Failure diagnosis of automat&ybernetics, 9(4):653—665,
1973.

[WH96] P. Walsh and D. Hoffman. Automated behavioral testing of VHDL components.
In Canadian Conference on Electrical and Computer Engineering, Calgary, Al-
berta, Canada, May 1996.

[WM97] H. Wupper and H. Meijer. A taxonomy for computer science. Technical Report
CSI-R9713, Computing Science Institute, University of Nijmegen, August 1997.
Also available via URL http://www.cs.kun.nl/ wupper/taxonomy/taxonomy-
frame.html.

[WM98] H. Wupper and H. Meijer. Towards a taxonomy for computer science. In F. Mul-
der and T. van Weert, editorsiformaticsasa disciplineand in other disciplines:
what is in common? Informatics in Higher Education — IFIP WG 3.2 Working
Conference. Chapman & Hall, 1998.



176 Bibliography

[Yi90] Wang Yi. Real-time behaviour of asynchronous agents. In J.C.M. Baeten and
J.W. Klop, editorsProceedings CONCUR 90, Amsterdam, volume 458 dfec-
ture Notesin Computer Science, pages 502-520. Springer-Verlag, 1990.



Appendix A

/O automata

In this appendix we review some basic definitions from [SGSL98, LV95, LV96, MP95], and
we give some new sufficient conditions. The sufficient conditions for including invariants in
refinement proofs, when the invariants at the refined level depend on invariants at the abstract
level, are presented in Lemma A.2 and Lemma A.7. The sufficient conditions for feasibility
are presented in Lemma A.4 and Theorem A.5. In Appendix A.4, we introdudaithtémed

[/0 automaton, which extends the timed I/O automaton in [LV96] with fairness properties.

A.1 Safel/O automata

A safe 1/0O automaton B consists of the following components:
e A setstates(B) of states (possibly infinite).
e A nonempty settart(B) C states(B) of start states.

e A setacts(B) of actions, partitioned into three seta(B), int(B) andout(B) of input,
internal andoutput actions, respectively.

Actions inlocal (B) £ out(B) U int(B) are calledocally controlled.

e A setsteps(B) C states(B) x acts(B) x states(B) of transitions, with the property that
for every states and input actiora € in(B) there is a transitioigs, a, ') € steps(B).

We lets, §,.. range over states, aagl. over actions. We write —a>B s, orjusts—2> s if B
is clear from the context, as a shorthand(@ra, s') € steps(B).

Enabling of actions An actiona of a safe I/O automatoB is enabled in a states iff s—2> &

for somes’. Since every input action is enabled in every state, safe I/O automata are said to be
input enabled. The intuition behind the input-enabling condition is that input actions are under
control of the environment and that the system that is modeled by a safe 1/0 automaton cannot
prevent the environment from doing these actions.

177



178 A /O automata

Executions An execution fragment of a safe I/O automatoB is a finite or infinite alternating
sequencepais as, - - - of states and actions &, beginning with a state, and if it is finite also
ending with a state, such that for alls &y S+1. An execution is an execution fragment that
begins with a start state. We writgecs*(B) for the set of finite executions &8, andexecs(B)
for the set of all executions d8. A states of B is reachableif it is the last state of some finite
execution ofB. We writerstates(B) for the set of reachable states®f

Traces Supposer = SHa1S1a2S - - - is an execution fragment &. Lety = ajap---. Then
thetrace of « is the sequencé/ [in(B) U out(B)), denoted byy. With traces(B) we denote
the set of traces of executionsBf Fors, s’ states ofB and g a finite sequence of input and

output actions oB, we defines :ﬂ>B s’ iff B has a finite execution fragment with first state
last states’ and traces.

Implementation relation Let A andB be safe 1/0 automata.
A implements B if traces(A) C traces(B).

Invariants Let P, Q C states(B). P isinvariant for B if it is a superset of the reachable
states ofB, i.e.rstates(B) € P. P isinductiverelativeto Q if start(B) € P and if for each

SePNnQ: s 33 simpliess € P.
Refinements Let A and B be safe I/O automata. Aefinement from A to B is a function
r : states(A) — states(B) that satisfies:

1. If s e start(A) thenr (s) € start(B).

2. Ifg —a>A sthenr (s) =ﬂ>5 r(s), whereg = .

Let A andB be safe I/O automata with invarian®sand Q, respectively. Aweak refinement
from A to B, with respect td® andQ, is a functiorr : states(A) — states(B) that satisfies:

1. If s e start(A) thenr (s) € start(B).

2. Ifs —a>A s, s € P, andr (s € Q, thenr (s) £>B r(s), whereg = a.

Theorem A.1 Let A andB be safe I/O automata. If there exists a (weak) refinement ffom
to B, thentraces(A) C traces(B).

Using abstract and refined invariantsin arefinement  Let A, B be safe I/O automata. The
following lemma gives sufficient conditions for a weak refinement franto B when one
wants to useP;, P>, Q such thatQ is invariant forB, Py is invariant for A depending orQ
and the definition of the refinement function, aglis invariant forA depending orP;.

LemmaA.2 Let A, B be safe I/O automata. L& be invariant forB and P, be inductive
relative toP; for A. Letr : states(A) — states(B) such that

1. r(s) € Q impliess € Px,

2. s e start(A) impliesr (s) € start(B), and



A.1 Safel/O automata 179

3.5¢P,r(s)eQands >as impliesr (s) :ﬂ>B r(s), whereg = a.
Then

1. P1, P, are invariant forA.

2. r is a weak refinement frorA to B with respect taP, and Q.
Pr oof

1. By induction.
IHN) = Vs,a: (serdates(A) Aa € exeCS(A) Ao = pa1S1... S AS= )
— (r(s) erdtates(B) Ase (P1NP2))

e Base stepn = 0.
By definition ofa, s € start(A). By definition ofr, r (s) € start(B) so certainly
r(s) € rstates(B). SinceQ is invariant forB, r (s) € Q. By definition ofr, s € Py.
Sinces € start(A), and since?; is inductive relative tdP; for A, s € Ps.

e Induction step¥n < n’ : IH(n).
Lets e rstates(A) Ao € execS(A) A = SHa1St - - - Sy +1Sv+1AS = Sy+1. Since
Sa1s1 ... Sy € execs(A), certainlys, € rstates(A). Combining this withn” < n/,
we get IHn'). Since IHN), r (sy) € rstates(B) A sy € (P1 N P2). Sincer (sy) €

rstates(B) and Q is invariant forB, r(sy) € Q. Sincesy aiirlA Sv+1 and by

definition ofr, r (sy) :ﬂ>B r(Sy4+1) With 8 = a1, hencer (sy,1) € rstates(B),
hencer (sy+1) € Q. By definition ofr, sy,11 € P1. Sincesy € (P1 N Py) and

Sy aiilA Sv+1 and sincePs is inductive relative tdP; for A, Sy+1 € Po.
2. By Item 1, the assumption th& is invariant forB and by definition of .
X
Composition Two safe I/O automat8; and By arecompatibleiff out(B1) N out(By) = @,

int(B1) N acts(Bz) = @, andint(By) N acts(B1) = ¥. Thecomposition By || B2 of compatible
safe 1/0 automat8; andB; is the safe I/O automatoB defined by

e States(B) = states(B;) x states(Bp),
o Start(B) = dart(By) x start(Bp),

e acts(B) = in(B) Uout(B) U int(B), where

in(B) = (in(By) Uin(B2)) — (out(By) U out(By)),
out(B) = out(By) Uout(By),
int(B) = int(By) Uint(By),

e steps(B) is the set of tripleg(sy, S), a, (S}, S))) in states(B) x acts(B) x states(B) such
that, fori € {1, 2}, if a € acts(B;) thens JBi S elses =5.



180 A /O automata

A.2 Livel/O automata

Intuitively, alive 1/O automaton is a pair of a safe 1/O automatdhand a set. of executions
of B such thatB can always generate an executiorLinndependently of the input provided
by its environment. Formally, live I/O automata can be defined in terms of a two person
game between a system player and an environment player. The goal of the system player is to
construct an execution i, and the goal of the environment player is to prevent this. The pair
(B, L) is alive /0O automaton iff there exists a strategy by which the system player can always
win the game, irrespective of the behaviour of the environment player.

A strategy defined on a safe 1/0O automatdhis a pair of functiongg, f) whereg :
execs*(B) x in(B) — states(B) and f : execs*(B) — (local(B) x states(B)) U {_L} such that

1. g(w,a) =S = «aas € execs'(B),
2. f(@) =(@,s) = aas € execs'(B).

An environment sequence for B is an infinite sequence of symbols fran(B) U {A} with
infinitely many occurrences df. The symbolh represents the points at which the system is
allowed to move. The occurrence of infinitely mahgymbols in an environment sequence
guarantees that each environment move consists of only finitely many input actions.

Letp = (g, f) be a strategy defined @ Z = ajazaz - - - an environment sequence Br
anda a finite execution 0B. Then theoutcome O, («, 7) is the limit of the sequency; )i>o
of finite executions defined inductively by

e ap=0.
e Ifi > Othen
lL.a=iAATf(ai.1)=(@s) = a =aj_1as,
2.8 =2Af@i_1) =1L = o =ai_1,
3.8 €in(B) Ag(ei-1,8) =S = o =@i-1& S.

A live 1/O automaton is a pair(B, L) with B a safe 1/0 automaton and < execs(B)
such that there exists a strategylefined onB with for any finite executiorr of B and any
environment sequendefor B, O,(x,Z) € L.

Composition Let (Bg, L1) and(By, L) be live /O automata.(B1, L1) and (Bp, L) are
compatibleiff B; andB, are compatible. Theomposition (Bs, L1)|/(B2, L2) of two compat-
ible live /0O automataB;, L1) and(By, L») is the pair(B, L) defined by

e B =By|By,

o L ={0eexecs(B) | «[B1 € L1 anda[B> € Lo}.
Here«[B; is obtained by projecting each statediron thei-th component and by re-
moving each action that is not atts(B;) together with the state that follows it.

A major result of [SGSL98] is that the class of live I/0O automata is closed under composition.

Theorem A.3 Let (By, L1) and(By, L2) be compatible live I/O automata.
Then(B1, L1)]|(Bg2, L) is a live /O automaton.



A.3 Timed I/O automata 181

A.3 Timed I/O automata

A timed I/O automaton A is a safe 1/0O automaton whose set of actions inclRiesthe set

of positive reals. Actions frorR™ are referred to asme-passage actions. Other actions are
referred to agliscrete actions. Performing one or more consecutive time-passage actions is
calledidling. We letd, d’, ... range oveR™ and, more generally, t’, . .. over the seR of

real numbers. The set gifsible actions is defined byis(A) £ (in(A) U out(A)) — R™T.

We assume that a timed 1/0O automaton satisfies the following axioms.

s1 If §-95 s” ands” -9 s, thens' 94 s,

For the second axiom, an auxiliary definition is neededraectory for a steps’—d> sisa
functionw : [0, d] — states(A) such thaw(0) = s, w(d) = s, and

wt) =S w(t) forallt, t' e [0, d]with t < t'.
Now we can state the second axiom.
S2 Each stepsi> s’ has a trajectory.

Axiom S1 gives a natural property of time, namely that if time can pass in two steps, then it
can also pass in a single step. Thaectory axiom S2 is a kind of converse t&81; it says that

any time-passage step can be “filled in” with states for each intervening time, in a “consistent”
way. Executions of timed I/O automata correspond to what are csdhegling computations

in [MP93].

Timed traces The full externally visible behaviour of a timed I/O automaton can be inferred
from its executions as follows: suppase= spa;s1a82%; - - - is an execution fragment of a timed
I/0 automatorA. For each indey, lettj be given by

b = 0
tit1 = ifaj41 € RT thentj + aj41 else tj.

Thelimit time of «, notationa.ltime, is the smallest element 8£° U {co} larger than or equal
to all thetj. We sayw is admissibleif «.ltime = oo, andZeno if it is an infinite sequence but
with a finite limit time. Thetimed trace t-trace(«) associated witk is defined by

t-trace(a) = (((a1,t1)(@2, t2) - - )[(ViS(A) x RZ9), a.ltime).

Thus,t-trace(«) records the visible actions af paired with their times of occurrence, as well
as the limit time of the execution. A pafris atimed trace of A if it is the timed trace of some
finite or admissible execution &. Thus, we explicitly exclude the timed traces that originate
from Zeno executions. We writietraces(A) for the set of all timed traces @4, t-traces*(A)

for the set offinite timed traces (the timed traces derived from the finite executions), and
t-traces™ (A) for the set ofadmissible traces (the timed traces derived from the admissible
executions).

Moves We says' JLA sis at-move of A if A has a finite timed execution fragment=
Sa18] . . . S such thas’ = 5, s = s, and p = t-trace(a).



182 A /O automata

Feasibility Let A be a timed I/O automaton. We s&y is feasible if each element of
t-traces*(A) is the prefix of some element btraces™ (A).

Giving the proof for feasibility can be hard or tiresome. However, in some cases it follows
rather straightforwardly from the definition of the timed I/O automaton. We give the following
sufficient conditions, divided over two results, of which the first is rather simple, and the second
is a bit more involved.

LemmaA.4 Let A be atimed I/O automaton with clock variabl&sand discrete variables.
If

1. The precondition of time actiathis of the following form, in whichgp, v, ..., ¥, are
Boolean expressions over variableinxy, ..., Xn € X andcy, ..., ¢, € RT:

=g AW1—>X1+d<C)A--A{Wn—> Xn+d=cn)
2. The effect of time actiod is of the following form:

Vxe X:x:=x+d
3. For eacls € reachableA):

(SkE¢) — Ja: s3> Aais discrete

4. For eacls € reachableA) and 0<i < n:
SEY AX >G) — Ja:s -3 A ais discrete

then for eacls € reachabléA) andd > 0, the following holds:

d
VvV S—

a . .
v Ja:s— Aaisdiscrete
d’ a . .
v 3d,a,s:d <dAas— s > Aaisdiscrete

Proof Supposes € reachableAr), d > 0 ands does not enabld. Thens & —(—¢ A
W1 - x1+d <c)A---AWpn = Xnp+d < ¢py)), which can easily be rewritten to
SEoVW1AXI+d>C) V-V (¥YnAXyp+d>cCp).

Suppose = ¢. By Assumption 3, there is a discrete actasuch thas 2, and the result
follows.

Supposes = —¢. Thens &= (Y1AX1+d > €1) V- - - V(¥nAXn+d > Cy). Taked to be the
set of indices for which the disjunctis true, thatids= {i|1 <i < hASE ¢j AX +d > ¢)}.

Suppose that for somiee J, s = X > ¢j. Then by Assumption 4, there is a discrete
actiona such thas >, and the result follows.

Suppose thatforaile J,s = X < ¢j. Taked’ to be the smallest value such that for some
i €J,skE=x +d =g¢. Fixi. We now have for each € J, s |= xj < ¢;j. Itis clear that for
each 1< j < nwhichisnotinJ, s = xj +d’ < c¢j. By assumptions = —¢, so we now see

thats enables!’. Lets i; s'. By Assumption 2, and = x; + d’ = ¢;, the effect ofd’ is such

thats' = x; = ¢j. Now by Assumption 4, there is a discrete actisuch thas 2 and the
result follows. X



A.3 Timed I/O automata 183

Theorem A.5 Let A be a timed I/O automaton.
If

1. For eacls € reachabléA) andd > 0, the following holds:

d
vV S—>
a . .
v Ja:s— Aaisdiscrete

d’ a . .
v 3d,a,5:d <dAs— s > aaisdiscrete

2. FunctionM : states(A) — D is a measure function is a well-founded ordering oD,

andC e Rt is a constant such that for eagls’ e reachabléA): s 2y implies that if
ais discrete and does not enabl€, thenM(s') < M(s), otherwiseM (s') < M(s).

thenA is feasible.

Proof Supposer € t-traces™(A). We define the functiori that recursively builds an admis-
sible execution from any state, as follows:

sC f(s) ifs S s

c
f(s) =1 saf(s) ifsA AsS ¢
c a
sds'af(s”) ifsA A(Va': aisdiscrete > sA) A slgly

Note thatf (s) may picka andd in an arbitrary way whes does not enabl€. For the proof
this has no consequence.

Leta = o’as and letg be the execution resulting froaiaf (s). By Assumption 18 can
be constructed.

Supposes is not admissible. Then there is an infinite suffixdiin which each occurrence
of a time step implies that the time passing is smaller fBaWithout loss of generality we
assume that the suffix starts after the prefixthat is, in the part which is constructed by
f. By definition of f, no state in this suffix enabl&s, so there are no two adjacent time
steps in this suffix. We see that there are infinitely many occurrences of discrete actions in the
suffix. Combining this with the fact that each state in the suffix does not eahkle have
a contradiction with Assumption 2, our decreasing measure function. We conclugkithat
admissible. X

Implementationrelation Let AandB be timed I/O automatad implements B if t-traces(A) C
t-traces(B).

Refinements Let A and B be timed I/O automata. Aimed refinement from A to B is a
functionr : states(A) — states(B) that satisfies:

1. If s e start(A) thenr (s) € start(B).

2. Ifs —a>A sthenr (s «%B r (s), wherep = t-trace(s'as).



184 A /O automata

Let A and B be timed I/O automata with invarianB and Q, respectively. Aweak timed
refinement from A to B, with respect td® and Q, is a functiorr : states(A) — states(B) that
satisfies:

1. If s e start(A) thenr (s) € start(B).
2. Ifs —a>A s, s € P, andr (s € Q, thenr (s) «%B r (s), wherep = t-trace(s'as).

Theorem A.6 Let A andB be timed I/O automata. If there exists a (weak) timed refinement
from A to B, thent-traces(A) C t-traces(B).

Using abstract and refined invariantsin a timed refinement We now present the timed
version of Lemma A.2, since the timed version is used in the verification in Chapter 7.

LemmaA.7 Let A, B be timed I/O automata. L&D be invariant forB and P, be inductive
relative toP; for A. Letr : states(A) — states(B) such that

1. r(s) € Q impliess € Py,

2. s e start(A) impliesr (s) € start(B), and

3.5 € P,,r(s) e Qands —a>A simpliesr (s) ﬂ,B r (s), wherep = t-trace(s'as).
Then

1. P1, P, are invariant forA.

2. r is a weak timed refinement frod to B with respect toP, and Q.

Proof Similar to the proof for Lemma A.2. X

A.4 Fair Timed I/O automata

In Problem 5 in the RPC-Memory specification problem in Chapter 3, a timed implementation
is required for an untimed specification. In our model, this means that we have to compare the
admissible behaviour of a timed specification with the fair behaviour of an untimed specifica-
tion. This may be solved by adding time to the untimed specification. However, the fairness
restrictions are lost in this manner, and we may prove the wrong implementation relation. Our
final solution is to consider the traces that are both admissible, and fair in the sense that we
know from the untimed model. For this purpose, we defindahdimed |/O automaton, which

is a timed I/O automaton with additional fairness requirements.

Although carrying fairness semantics over from the untimed model to a timed model is
very tricky in general, we can get away with the same definition as for the untimed case as
long as the discrete actions used in the fairness sets cannot be overruled by the passage of time.
This property is known agersistency [Yi90] and can be summarised as follows:

If a discrete actiom is enabled in statg, thena is enabled in each staséthat
can be reached fromby idling.



A.4 Fair Timed |/O automata 185

All fair timed 1/0O automata in Chapter 3 meet the persistency requirement.
We now list the basic definitions that enable us to use fairness for timed 1/0 automata.
A fair timed 1/O automaton A is a triple consisting of

e atimed I/O automatotimed(A), and
e setswfair (A) andsfair (A) of subsets ofocal (timed(A)), called theweak fairness sets

andstrong fairness sets, respectively.

Enabling of sets Let U be a set of locally controlled actions of a fair timed 1/O automaton
A. ThenU is enabled in a states iff an action fromU is enabled irs. SetU isinput resistant if

and only if, for each pair of reachable stages’ and for each input actioa, s enables) and
s-2> ¢ impliess’ enabledJ. So oncdJ is enabled, it can only be disabled by the occurrence
of a locally controlled action.

Fair executions An executiornx of a fair timed 1/0 automato# is weakly fair if the follow-
ing conditions hold for eaclV € wfair(A):

1. If o is finite thenW is not enabled in the last statewf

2. If « is infinite then eithew contains infinitely many occurrences of actions fravn or
« contains infinitely many occurrences of states in whiglis not enabled.

Executionx is strongly fair if the following conditions hold for eacB € sfair (A):
1. If ¢ is finite thenSis not enabled in the last statemf

2. If w is infinite then eithew contains infinitely many occurrences of actions frenor «
contains only finitely many occurrences of states in wi8ét enabled.

Executiona is fair if it is both weakly and strongly fair. In a fair execution each weak fair-
ness set gets turns if enabled continuously, and each strong fairness set gets turns if enabled
infinitely many times. We writdairexecs(A) for the set of fair executions d&.

Fair timed traces We writefair-t-traces(A) for the set of timed traces derived from the fair
executions of fair timed I/0O automatak

Implementation relation Let A and B be fair timed I/O automata.A implements B if
(t-traces™ (A) N fair-t-traces(A)) C (t-traces™ (B) N fair-t-traces(B)).



186 A /O automata




Samenvatting

Dit proefschrift gaat over de analyse van indwed&iprotocollen met behulp van formele me-
thoden. De resultaten van een project, uitgevoerd op het Centrum voor Wiskunde en Informa-
tica (CWI) in Amsterdam voor het Philips Natuurkundig Laboratorium (Eindhoven), worden
gepresenteerd en beoordeeld.

I ndustriedl kader

Tegenwoordig bevatten huishoudelijke apparaten meer en meer elektronica, waardoor de func-
tionaliteit van de apparaten groter en meer divers wordt. Een voorbeeld is een koffiezetapparaat
met een ingebouwde klok waarin men kan vastleggen dat het apparaat op een bepaalde tijd uit
zichzelf koffie moet gaan zetten. De volgende stap in de ontwikkeling van de systemen die
dergelijke apparaten besturen, is om de elektronica in verschillende apparaten te laten commu-
niceren. Het is bijvoorbeeld al mogelijk om een multifunctionele afstandsbediening te kopen
die audio, video en andere apparatuur van verschillende merken bestuurt. In de zeer nabije
toekomst zal het mogelijk worden om apparaten binnen een huishouden te koppelen tot een
intelligent netwerk dat uiteenlopende diensten aanbiedt. Momenteel wordt gewerkt aan di-
verse technologii om dit mogelijk te maken. Twee voorbeelden zijn HAVI [GFEB] en
Jini [Sun99]. HAVI, een initiatief van acht bedrijven, is gericht op de interoperabiliteit tussen
audio- en videoapparatuur. Jini, een initiatief van een computerfabrikant, is gericht op het
koppelen van willekeurige elektronische apparaten.

Het is de bedoeling dat binnen enkele jaren netwerken kunnen worden gerealiseerd die de
volgende diensten leveren:

e Gebruikersprofielen. De voorkeuren van iedere persoon in het huishouden kunnen op
€én plaats worden bijgehouden, en door elk apparaat in het netwerk worden opgevraagd.
Vervolgens gedraagt elk apparaat zich per gebruiker precies zoals die dat graag heeft.

e Dynamische netwerkstruktuur. Het is mogelijk om een nieuw apparaat aan te sluiten,
waarna, zonder verdere interactie met de gebruiker, het apparaat zelf kennismaakt met
het netwerk en alle benodigde informatie kan vinden. Het weghalen van een apparaat
wordt gesignaleerd en automatisch doorgegeven aan alle applicaties die hiervan op de
hoogte dienen te zijn.

187



188 Samenvatting

e Dynamische dienstverlening. Wanneer een gebruiker een bepaalde dienst nodig heeft,
kan deze dat aan een willekeurig aanspreekpunt in het netwerk doorgeven. Het aan-
spreekpunt zorgt vervolgens dat de juiste partijen aan het werk worden gezet.

e Ontwikkelingsbestendigheid. Nieuwe soorten van diensten of apparatuur die nu nog niet
bestaan kunnen zonder problemen in het netwerk worden ingevoegd, omdat de apparaten
op een van tevoren afgesproken manier hierover kunnen “leren”.

Om dit soort intelligente netwerken mogelijk te maken, moeten veel technische vraagstukken
worden opgelost. De vraag is of de ontwikkelde technolagieél in alle situaties zullen
werken. Hierbij kunnen formele methoden van nut zijn.

Formele methoden

Formele methoden zijn de wiskundige gereedschappen bij het ontwerpen van computersyste-
men. We gebruiken de terartefact om een systeem of een ontwerp (zowel apparatuur als
programmatuur) aan te duiden. Formele methoden kunnen worden gebruikt:

e 0m een bepaalde relatie tussen een artefact en een verzameling vereisten vast te stellen,
e 0m Uit een verzameling vereisten een artefact te onwikkelen,
e 0m uit een artefact de vereisten te reconstrueren.

In dit proefschrift ligt de nadruk op de eerstgenoemde mogelijkheid.

De mogelijkheden van formele methoden, zoals toegepast in dit onderzoek, kunnen worden
opgesomd als formalisatie, validatie, verificatie en conformance-testen.

Formalisatie is het maken van een formele beschrijving uitgaande van een informele be-
schrijving. Een formele beschrijving van een artefact noemen weredsl, een formele
beschrijving van vereisten noemen we epecificatie. Enerzijds bevatten de informele be-
schrijvingen vaak onduidelijkheden, dubbelzinnigheden en erg veel details, anderzijds moet
de formalisatie een precieze, eenduidige en niet te ingewikkelde of te grote beschrijving ople-
veren. Daarom wordt bij onduidelijkheden een aanname gemaakt, bij dubbelzinnigheden voor
een interpretatie gekozen, en van bepaalde details geabstraheerd.

Validatieis het vaststellen of een formalisatie klopt. Veelal komt validatie neer op het hand-
matig vergelijken van de informele en formele beschrijving, of het raadplegen van deskundigen
of de makers van de informele beschrijving. Als er tool-ondersteuning is voor de taal waarin
de formele beschrijving gesteld is, kunnen controles op de syntactische of type-correctheid en
simulatietechnieken helpen bij de validatie.

\erificatie is het vaststellen van een relatie tussen twee formele beschrijvingen met een
wiskundig bewijs. In dit proefschrift gaat het om de relatie tussen de specificatie en het model.
De relatie zegt iets over het gedrag dat het model vertoont, en het gedrag dat de specificatie
toelaat. Er zijn grofweg twee verificatie-methoden te onderscheiden, nathediflem proving
enmodel checking. Bij theorem proving wordt een bewijs geconstrueerd met bewijstechnieken
zoals inductie of bewijs uit het ongerijmde. Bij model checking wordt voor ieder gedrag dat
het model vertoont nagegaan of het voldoet aan wat de specificatie voorschrijft. Voor beide
methoden zijn tools ontwikkeld. Theorem proving tools zijn onder te verdelen in tools die
een gegeven bewijs controleren (checkers), tools die de gebruiker op een interactieve manier



Samenvatting 189

helpen bij het construeren van een bewijs (assistants), en tools die autonoom proberen een
bewijs te vinden (provers). Theorem proving met behulp van een assistant vereist meer tijd en

inspanning van de gebruiker dan van de computer waarop het tool draait. Theorem proving

met behulp van een prover en model checking met behulp van een tool, vereisen meer tijd en
inspanning (geheugenruimte, opslagruimte) van de computer dan van de gebruiker.

Wanneer een relatie tussen de specificatie en het model is bewezen, moet nog worden
vastgesteld of deze relatie ook op het informele niveau geldt, tussen de vereisten en het artefact.
De eerder gemaakte validatie wordt vaak gebruikt als rechtvaardiging hiervoor.

Conformance-testen is het vaststellen van een relatie tussen vereisten en een artefact door
het uitvoeren van experimenten op het artefact. Wanneer we formele methoden gebruiken
voor conformance-testen, wordt de relatie vastgesteld tussen het artefact en de formele repre-
sentatie van de vereisten, namelijk de specificatie. De formele testmethoden worden gebruikt
voor hetgenereren enuitvoeren van tests en haetvalueren van de uitkomsten. De test worden
gegenereerd uit de specificatie. De evaluatie geeft aan of het artefact juist op de tests heeft
gereageerd of niet. De meeste testmethoden zijn gebaseerdesplypothese, dit is de aan-
name dat het artefact waarop de experimenten worden uitgevoerd, gemodelleerd kan worden
in de formele taal van de test methode.

Meestal is het niet mogelijk of wenselijk om een artefact volledig te testen, omdat de
verzameling tests te groot of zelfs oneindig is. Dan wordt getest onder aannames die het op-
treden van fouten betreffen, en is de uitkomst altijd relatief ten opzichte van de aannames.
Testen is dus veelal gericht op het vinden van fouten en het vergroten van het vertrouwen in de
correctheid van het artefact, en kan de afwezigheid van fouten niet garanderen.

Protocollen

In dit proefschrift ligt de nadruk op de analyse vantocollen. Een protocol is een afgespro-

ken methode om informatie tussen twee of meer entiteiten uit te wisselen, waarbij van een
onderliggende dienst of medium gebruik wordt gemaakt. De drie basis-iegtedivoor een
protocol zijn: (1) de boodschappen en hun betekenis, (2) de volgorde waarin de boodschap-
pen uitgewisseld worden, en (3) de manier waarop een onderliggende dienst of medium wordt
gebruikt. Veel protocollen beginnen bijvoorbeeld met een kennismakingsfase, gevolgd door
een fase waarin belangrijke informatie wordt uitgewisseld, gevolgd door eémdigingsfase,
waarbij iedere fase zijn eigen boodschappen gebruikt.

Eenopen protocol is gepubliceerd en daardoor beschikbaar voor publiek gebruik. In de
meeste gevallen worden deze protocollen ontwikkeld door een gemeenschappelijke inspanning
van een groep firma'’s en/of individuen. Egtandaard-protocol is een open protocol dat vaak
wereldwijd is geaccepteerd, en meestal is gepubliceerd door een standaardiserings-organisatie.

Het onder zoek

Er zijn zes deelonderzoeken gedaan, waarvan er vijf succesvol zijn afgerond. Hoofdstukken 2

t/m 7 zijn gebaseerd op de artikelen die uit de deelonderzoeken zijn voortgekomen.
Hoofdstuk 2 presenteert een uitbreiding van de theorie van I/O automaten, welke nodig was

voor de verificatie die in Hoofdstuk 3 wordt gepresenteerd. De uitbreiding is een generalisatie



190 Samenvatting

voor het gebruik van zwakke en sterke fairness in I/O automaten modellen, waarbij liveness
kan worden afgeleid met twee condities die simpel te controleren zijn.

Hoofdstuk 3 presenteert de formalisatie en verificatie van een protocol uit de literatuur,
bedoeld om ervaring op te doen. De formalisatie is gedaan met I/O automaten, en de verificatie
met theorem proving zonder tools. De verificatie laat zien dat het protocol correct werkt.

Hoofdstuk 4 beschrijft de ervaringen opgedaan bij de constructie van een test-omgeving
voor hardware-ontwerpen. Bij het testen wordt uitgegaan van een abstracte specificatie voor de
test-afleiding, en een hardware-ontwerp waar de tests op worden uitgevoerd. Het centrale pro-
bleem is enerzijds de vertaling van de abstracte tests naar het niveau van het hardware-ontwerp,
en anderzijds een generieke opzet voor het uitvoeren van tests op het hardware-ontwerp. De
geconstrueerde test-omgeving bestaat uit een verzameling tools en is uitgeprobeerd op twee
protocollen: een industrieel protocol en een klein protocol uit de literatuur.

Hoofdstuk 5 presenteert een uitbreiding van conformance-test-theorie, gebaseerd op sym-
metrie-eigenschappen in de specificatie en het te testen artefact. Een algoritme wordt ge-
presenteerd dat uit de toestandsruimte van een specificatie een zogenaamde kernel selecteert,
dusdanig dat voor ieder gedrag van de specificatie een symmetrische variant van dit gedrag
in de kernel bestaat. Testafleiding kan dan gebeuren op grond van de kernel in plaats van de
hele specificatie. Wanneer de kernel aanzienlijk kleiner is dan de specificatie, zal men met
veel minder tests toch een oordeel over het hele artefact kunnen geven. De methode voor
testafleiding en een correctheidsbewijs worden in dit hoofdstuk gegeven.

Hoofdstuk 6 beschrijft de formalisatie en verificatie van een industrieel protocol uit de
HAVi-specificatie, een architectuur die momenteel gestandaardiseerd wordt door acht verschil-
lende electronicabedrijven. Het protocol is in twee talen geformaliseerd, en de verificatie
is gedaan met behulp van twee model checking tools. Een aantal eigenschappen is gefor-
maliseerd in temporele logica, de formele representaties zijn als specificatie gebruikt bij het
model checken. Het is gebleken dat sommige eigenschappen niet gelden voor de modellen, en
dat dit kan worden terugvertaald naar fouten in het protocol.

Hoofdstuk 7 presenteert de formalisatie en verificatie van een industrieel protocol uit de
IEEE 1394-standaard (FireWire). Het protocol is geformaliseerd met I/O automaten, en een
verificatie is gedaan door theorem proving zonder tools. Het model van het protocol is gede-
tailleerder dan andere modellen van dit protocol, en de verificatie bouwt verder op een serie
van verificaties die steeds meer details uit de IEEE-standaard in acht nemen. Hierbij worden
steeds resultaten van het meer abstract niveau hergebruikt op het niveau met meer details.

Conclusies

In Hoofdstuk 8 wordt geconcludeerd dat formele methoden zeker effectief kunnen worden
toegepast, op grond van drie observaties, namelijk (1) de kracht van formele methoden zal
ongetwijfeld significant toenemen in de komende jaren, (2) de toepassingen van formele meth-
oden in dit project hebben bruikbare resultaten opgeleverd, en (3) formele methoden kunnen
effectiever worden toegepast dan in dit project al is gebeurd. Er is sprake van beperkende fac-
toren waar veel aan te verbeteren is, vanuit zowel de academische als de érelustreld,

en als de verbetering van die factoren serieus wordt aangepakt, zal de effectiviteit van het
toepassen van formele methoden bij het ontwikkelen van inélesfprotocollen alleen maar
groter worden.



Titlesin the | PA Dissertation Series

J.O. Blanco. The Sate Operator in Process Algebra.

Faculty of Mathematics and Computing Science, TUE.

1996-1

A.M. Geerling. Transformational Development of
Data-Parallel Algorithms. Faculty of Mathematics and
Computer Science, KUN. 1996-2

P.M. Achten. Interactive Functional Programs. Mod-
els, Methods, and Implementation. Faculty of Mathe-
matics and Computer Science, KUN. 1996-3

M.G.A. Verhoeven. Paralld Local Search. Faculty of
Mathematics and Computing Science, TUE. 1996-4

M.H.G.K. Kessdler. The Implementation of Functional
Languages on Parallel Machines with Distrib. Memory.
Faculty of Mathematics and Computer Science, KUN.
1996-5

D. Alstein. Distributed Algorithms for Hard Real-Time
Systems. Faculty of Mathematics and Computing Sci-
ence, TUE. 1996-6

J.H. Hoepman. Communication, Synchronization, and
Fault-Tolerance. Faculty of Mathematics and Computer
Science, UVA. 1996-7

H. Doornbos. Reductivity Arguments and Program
Construction. Faculty of Mathematics and Computing
Science, TUE. 1996-8

D. Turi. Functorial Operational Semantics and its De-
notational Dual. Faculty of Mathematics and Computer
Science, VUA. 1996-9

A.M.G. Peeters. Sngle-Rail Handshake Circuits. Fac-
ulty of Mathematics and Computing Science, TUE.
1996-10

N.W.A. Arends. A Systems Engineering Specification
Formalism. Faculty of Mechanical Engineering, TUE.
1996-11

P. Severi de Santiago. Normalisation in Lambda Cal cu-
lus and its Relation to Type Inference. Faculty of Math-
ematics and Computing Science, TUE. 1996-12

D.R. Dams. Abstract Interpretation and Partition Re-
finement for Model Checking. Faculty of Mathematics
and Computing Science, TUE. 1996-13

M .M. Bonsangue. Topological Dualities in Semantics.
Faculty of Mathematics and Computer Science, VUA.
1996-14

B.L.E. de Fluiter. Algorithms for Graphs of Small
Treewidth. Faculty of Mathematics and Computer Sci-
ence, UU. 1997-01

W.T.M. Kars. Process-algebraic Transformations in
Context. Faculty of Computer Science, UT. 1997-02

P.F. Hoogendijk. A Generic Theory of Data Types.
Faculty of Mathematics and Computing Science, TUE.
1997-03

T.D.L. Laan. The Evolution of Type Theory in Logic
and Mathematics. Faculty of Mathematics and Comput-
ing Science, TUE. 1997-04

C.J. Bloo. Preservation of Termination for Explicit Sub-
stitution. Faculty of Mathematics and Computing Sci-
ence, TUE. 1997-05

J.J. Vereijken. Discrete-Time Process Algebra. Faculty
of Mathematics and Computing Science, TUE. 1997-06

F.A.M. van den Beuken. A Functional Approach to
Syntax and Typing. Faculty of Mathematics and Infor-
matics, KUN. 1997-07

A.W. Heerink. Insand Outs in Refusal Testing. Faculty
of Computer Science, UT. 1998-01

G. Naumoski and W. Alberts. A Discrete-Event Sm-
ulator for Systems Engineering. Faculty of Mechanical
Engineering, TUE. 1998-02

J. Verriet. Scheduling with Communication for Mul-
tiprocessor Computation. Faculty of Mathematics and
Computer Science, UU. 1998-03

J.SH. van Gageldonk. An Asynchronous Low-Power
80C51 Microcontroller. Faculty of Mathematics and
Computing Science, TUE. 1998-04

A.A.Basten. In Termsof Nets: System Design with Petri
Nets and Process Algebra. Faculty of Mathematics and
Computing Science, TUE. 1998-05

E. Voermans. Inductive Datatypes with Laws and Sub-
typing — A Relational Model. Faculty of Mathematics
and Computing Science, TUE. 1999-01

H. ter Doest. Towards Probabilistic Unification-based
Parsing. Faculty of Computer Science, UT. 1999-02

J.P.L. Segers. Algorithms for the Smulation of Surface
Processes. Faculty of Mathematics and Computing Sci-
ence, TUE. 1999-03

C.H.M. van Kemenade. Recombinative Evolutionary
Search. Faculty of Mathematics and Natural Sciences,
Univ. Leiden. 1999-04

E.l. Barakova. Learning Reliability: a Sudy on Inde-
cisiveness in Sample Selection. Faculty of Mathematics
and Natural Sciences, RUG. 1999-05

M.P. Bodlaender. Schedulere Optimization in Real-
Time Distributed Databases. Faculty of Mathematics
and Computing Science, TUE. 1999-06



M.A. Reniers. Message Sequence Chart: Syntax and JM.T. Romijn. Analysing Industrial Protocols with
Semantics. Faculty of Mathematics and Computing Sci- Formal Methods. Faculty of Computer Science, UT.
ence, TUE. 1999-07 1999-09

J.P. Warners. Nonlinear approaches to satisfiability P.R. D’ Argenio. Algebras and Automata for Timed and
problems. Faculty of Mathematics and Computing Sci- Stochastic Systems. Faculty of Computer Science, UT.
ence, TUE. 1999-08 1999-10



