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Preface
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their willingness to judge this thesis and take part in the committee. Hubert and Joost-Pieter
have helped in improving the presentation with numerous useful comments.
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in South Korea of the work presented in Chapter 4. The hard labour one faces when trying
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At CWI, I have had four very good years, for which nice surroundings and colleagues are
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Chapter 1

Introduction

This thesis is about the application of formal methods. It lists and evaluates the results obtained
in a project which was carried out at the Centre of Mathematics and Computer Science (CWI)
in Amsterdam for the Philips Research Laboratories in Eindhoven. It is organised as follows.
This chapter contains short introductions to formal methods, the project and its scope, the
methods used, and the case studies performed. Chapters 2 to 7 contain the scientific papers
written in the scope of this project. Chapter 8 presents an evaluation of the results and some
directions for future research.

1.1 Industrial scope

The present In modern households, many devices are controlled by computer technology
(embedded systems). The type of devices controlled by embedded systems varies from elec-
tronic devices such as audio equipment to something as simple as a coffee machine. By adding
software and/or hardware, more and more intelligence and functionality is added to the devices.
An example of this is a coffee machine with a clock that can be used to have the machine make
coffee autonomously at a certain time of the day. The next step in the development of such
embedded systems is to allow the embedded systems in different devices to communicate with
each other. For instance, it is already possible to buy a multi-purpose remote control that is
able to operate audio, video and other equipment from various vendors.

The future Let us consider a future household in which all embedded systems are able to
communicate, which is shared by Jane and Ken. Jane is at work, and suddenly is inspired to
prepare a certain dish for dinner. Since she is not sure of the contents of the refrigerator, she
phones home to find out what is in stock. Her answering machine gets all the information
from a camera installed in the refrigerator, including the expiry dates that Jane should take
into account. On her way home she buys the groceries that she needs. When she enters her
apartment, she is recognised by the sound of her voice and greeted with information on her
favourite news items, on the people that phoned or visited the apartment, and on what the cat
has been up to. She asks for a cd to be played, and automatically her profile is checked to find
out which tracks to play in what order. While she goes into the kitchen, the music is redirected

1



2 1 Introduction

to the kitchen speaker set. Now Ken comes home with a new cd player. He connects the device
to a power outlet and to the video recorder, and puts in one of his favourite cds. The cd player
says hello to the other devices in the network and obtains Ken’s profile for the cd that it is
supposed to play.

Should we classify this story as science fiction? It is clear that today’s state of technology
is not able to support the scenario sketched in a generic way. However, producers of consumer
electronics are currently developing architectures that enable products of multiple vendors to
communicate when combined in a network. These architectures are expected to be applied in
products and have the above scenario become reality in just a few years. Two examples of
such architectures are HAVi [GHM+98] and Jini [Sun99]. HAVi is a joint effort by several
companies to solve audio/video interoperability in home networks, with IEEE 1394 FireWire
[IEE96] as underlying medium. Jini is an initiative by Sun Microsystems, which is based on
Java and supposed to connect arbitrary electronic devices.

How? As may be clear from our peep into the future, there are several advantages to such
networks of devices controlled by intelligent embedded systems:

• Globally available user profiles. The preferences of each person need to be stored only
once, and all devices in the household can afterwards access this information and operate
according to the preferences.

• Plug and play with little user interaction. Whenever a device is added to the household,
it is able to get acquainted with the other devices its new environment by itself, the user
of the equipment only needs to connect the device to a power source and the network
of devices already present. Removing a device leads to immediate notification of the
parties that should be informed.

• Dynamic services from the network. When a user wants to operate a certain device, it
may interact with another device that passes the message on to the actual destination.
One could for instance ask the computer in the study to have the cd player in the living
room skip the next track of the cd which is being played.

• Future proof. If the embedded systems are intelligent enough, they can learn about
functionalities or services developed later, by communicating with devices with newer
versions or finding information on the internet. Hence the need for the user to upgrade
things vanishes.

While apparently desirable, the features described are quite hard to establish. We list some
technical points that need to be addressed, and which are of crucial importance to the proper
functioning of the technology:

1. Plug and play. It is important to know at all times which devices are present in the
network. Whenever a device is introduced or taken away, the other devices should be
informed about this, so they can act according to the new situation. It is not trivial to
ensure that the information about the devices present is up to date when many changes
follow each other in a short period of time.

2. Bandwidth requirements. A fair division of the bandwidth over the different applica-
tions, each with their own requirements, is complicated. Audio and video applications



1.2 Formal methods 3

need a large amount of bandwidth on the connecting medium, in order to guarantee a
good service. Communication that concerns control can usually be done with less band-
width, but requires acknowledgements and such.

3. Robustness. The products to be sold are destined for end users with possibly little tech-
nical knowledge. It is important that the operation of the network is transparent to and
capable of handling errors by the user.

When solutions for these issues are devised, the question will remain whether the solutions
work in all imaginable situations. This is where formal methods may help. The remainder of
this chapter explains what formal methods are about and how they may be used, and gives an
introduction to the research presented in this thesis.

1.2 Formal methods

Formal methods are the applied mathematics of computer system engineering, and are used
to construct and/or make judgements about computer system artefacts. By artefacts we mean
designs as well as implementations, and software as well as hardware. Examples of mathe-
matical techniques used by formal methods are predicate calculus (first order logic), recursive
function theory, lambda calculus, programming language semantics, and discrete mathematics
(number theory, abstract algebra, etc).

We now explain the basic terminology of formal methods by giving examples whole of
what can be done with formal methods, inspired by [WM97, WM98]. Note that our interpre-
tation of the terminology is one in a range of (subtly) different interpretations. Therefore this
section also serves to fix the starting point and avoid confusion.

Suppose we start with a set of requirements, and an artefact, which should have some
relation with the requirements:

artefact requirements
?

The requirements give the intended functionality and the artefact is the proposed recipe for ob-
taining that functionality. With formal methods we try to characterise the relationship between
the requirements and the artefact.

Another possibility is to start with just requirements and derive an artefact from these that
provides the required functionality, which is calledengineering. When using formal methods
to do this, we speak ofcorrectness by design:

artefact requirements
engineering

Finally, if we start with an artefact, and want to derive requirements from these, this is
calledreengineering or reverse engineering.

artefact requirements
reengineering

In this thesis, the research is restricted to the use of formal methods where the requirements
and artefact are given.



4 1 Introduction

Formalisation In practice, the requirements and artefact tend to be described in an informal
and equivocal manner and often have (too) many details. Such descriptions are not suitable
for using formal methods because they are not sufficiently precise or too complicated or too
large. In order to obtain descriptions that are suitable for formal methods, we mayformalise
the requirements and the artefact:

formal/mathematical world

informal world

model

artefact

specification

requirements

formalisationformalisation

?

Formalisation means translating a description in an informal language to a description in a
formal language. A formal language is defined by a formal syntax, and often has associated
semantics, which give precise meaning to expressions in the syntax. Different kinds of formal
languages are suitable for expressing different kinds and different aspects of artefacts. In the
formalisation decisions like the following often have to be made: details of the informal de-
scription are omitted (abstraction), assumptions are made and equivocal parts of the description
are disambiguated. Even if a language is not completely formal, then it can still be possible
to give very precise descriptions in that language. In such a case formalisation is easy. With
the termspecification, we refer to the formal representation of the requirements. With the term
model, we refer to the formal representation of the artefact.

Validation The formalisation of requirements or artefact may not be correct, because of the
abstractions, assumptions and/or interpretations made. The task of establishing whether the
formalisation is correct is often referred to asvalidation. In the following figure, the dashed
arrows depict the formalisation performed earlier.

formal/mathematical world

informal world

model

artefact

specification

requirements
?

validation validation

In many cases, validation means that the formal and informal descriptions are compared by
manual study, or that people responsible for the informal description are consulted. If there
is tool support for the language of the formal descriptions, then features like syntax checking,
type checking or simulation can support the validation.

Verification When we are interested in the correctness of an artefact with respect to require-
ments, we may establish a formal relation between the formal representations of these, i.e.
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between the model and the specification. When this relation is given by mathematical proof,
we speak ofverification. In the following figure, the dashed arrows depict the formalisation
performed earlier.

formal/mathematical world

informal world

model

artefact

verification
specification

requirements
?

The relation between the specification and model says something about the behaviour that is
allowed by the specification and the behaviour that the model exhibits. It may be that one is
included in the other, or that they are equal. We distinguish two main approaches to establish
the relation by verification, namelytheorem proving andmodel checking. These are the expo-
nents of a spectrum of mixed approaches. With theorem proving we denote the construction
of a mathematical proof, which can involve all sorts of proof techniques such as proof by con-
tradiction, by induction, etc. With model checking we denote the exhaustive exploration of
all possible behaviours to show that the relation holds. Both kinds of verification may be sup-
ported by tools: model checking by model checkers, and theorem proving by proof checkers,
proof assistants or theorem provers. Proof checkers take a complete proof as input and check
whether all the steps in this proof are mathematically sound. Proof assistants are interactive
proof checkers: the tool is able to check steps and provide suggestions, but the user has to
direct the proof in an interactive way. Theorem provers attempt to find a proof without user
guidance, with techniques like resolution. Proof assistants are expensive inhuman effort, in
that it takes relatively much user interaction to construct a proof. Theorem provers and model
checkers are expensive inmachine effort, in that it it takes relatively much machine resources
(memory/disk space, computing power) to construct and explore a proof tree, or to explore all
possible behaviours of a model or specification.

When it has been established that a certain relation holds between specification and model,
it remains to be seen whether this is also true at the informal level, between the requirements
and the artefact. The validation of the formalisation is often used as a justification that indeed
the relation in the formal world implies the relation in the informal world.

Conformance testing When a relation between any two of the entities artefact, requirements,
model and specification is established by experiment, we speak oftesting. Experiments are
conducted by executing or simulating an artefact. Testing can support validation or substitute
verification. There are many different kinds of testing, based on what the purpose of testing is.
Some examples are functional, performance, reliability, and robustness testing. When testing
is used to establish the relation between an artefact and requirements, by conducting experi-
ments on the artefact, then we speak ofconformance testing. When using formal methods for
conformance testing, the relation is established between the artefact and the formal representa-
tion of the requirements, i.e. the specification. In the following figure, the dashed arrow depicts
the formalisation performed earlier.
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Formal methods for testing consist of methods forgenerating andimplementing experiments
andevaluating the outcomes. Test generation is done using the specification. In most cases,
test evaluation just says whether the artefact passes or fails. The methods are almost always
based on thetest hypothesis, which states that the system to be tested can be modelled in the
formal language of the test method.

Testing is influenced by many factors, e.g. whether one has access to the structure/contents
of the artefact (white box testing) or not (black box testing), in what environment the artefact
must be tested and how it can be observed.

In most cases, exhaustive tests of an artefact are not feasible since this generally requires a
very large, or even infinite, number of test cases to be executed. Therefore, the actual test set
is usually constructed under a number of additional assumptions regarding the occurrence of
errors in the form of a fault model or test hypotheses. In such cases, complete test coverage
can be obtained only relative to the assumptions made. Because of these restrictions, testing
typically aims at the exposure of errors and increasing the confidence in the correctness of
artefacts, but is generally too weak to guarantee absence of errors.

1.3 Protocols

The focus of this thesis is on artefacts which areprotocols. A protocol is an agreed-upon
method of communicating information between two or more entities, using an underlying ser-
vice or medium. There are three basic ingredients for a protocol: (1) the messages, and their
intended meaning, (2) the order in which messages should be exchanged, and (3) the way in
which the underlying service or medium is used.

Many protocols start with a connecting phase, followed by a phase in which important in-
formation is passed, followed by a termination phase, each with their associated messages. For
instance, consider a telephone conversation. The telephone medium indicates the conversation
request by ringing. The phone is unhooked and the conversation is started with some opening
message like ‘hello’, and both the caller and the person called give their name. After this ini-
tial phase, some information is exchanged until one of the two indicates that the conversation
must end. At this point, some terminating message like ‘goodbye’ is used by both parties, after
which the phones are put on hook again.

Note that a protocol does not necessarily define equipment or specific software.
An open protocol is a set of detailed, published rules for communications. Open protocols

are available for public use and implementation. These protocols are often developed by the
joint effort of a group of vendors and/or individuals.

A standard protocol is an open protocol which is in many cases globally accepted and
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used. Standard protocols are often published by a standards organisation, such as IEEE, ISO
and ITU.

1.4 The project

The general goal of the project can be found in the following quotation from the project pro-
posal:

The primary objective of the proposed project is to demonstrate and assess the
effectiveness of using formal methods in the software development process within
Philips. This goal is to be achieved by a consortium of three well-established re-
search groups on formal methods with complementary expertise. Together these
groups will validate (critical parts of) the software for a number of selected appli-
cations within Philips.

This is a rather ambitious goal for a project in which the manpower is planned as follows:
one PhD student funded full-time, and four people supervising of which one promotor and
two project managers, not funded by the project and geographically far apart. Given that the
duration of the project was only four years, it is fair to have modest expectations of the outcome
of the research and the degree to which the aforementioned demonstration and assessment can
take place.

The central hypothesis We formulate a hypothesis which expresses the goal of the project
proposal in a modest way. The research presented in this thesis is supposed to give evidence
that supports or refutes this hypothesis.

Using formal methods to support the industrial software development process can
be effective.

There is a wide range of articles on the use of formal methods in the industrial software
development process. Of these, we only refer to [BH95b, BH95a, CW96, Hal90, Rus95].

Concrete project objectives, case studies The general goal of the project does not lead to
a straightforward research plan. The project proposal suggests some concrete objectives and a
plan, as follows.

Concretely the project will address the following more specific goals:

1. Development of heuristics about when formal methods should be applied.

2. Improvement of methods and tools so that bigger applications can be dealt
with faster.

3. Integration of complementary approaches within formal methods research.

4. Improvement of technology transfer process from formal methods research
to practice.
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In order to achieve the goals described, it is planned that during the three first
years of the project six applications will be dealt with. The fourth year is reserved
to write a PhD thesis.

Ideally, the selection of case studies would take the relation to the project objectives into ac-
count: a case study that is expected to contribute to one (or more) of the goals mentioned
should get preference over case study from which no such contribution is expected. Such ex-
pectations are not easy to come up with, especially for Items 1 and 4. Moreover, it turned out
that the selection of case studies was limited by the availability of suitable industrial devel-
opment projects, the possibility of applying formal methods and the estimation of the effort
required, to such a degree that preference with respect to the concrete objectives has not been
taken into account in practice. Hence, it is only afterwards (at the time of writing of this the-
sis), that it is evaluated how these case studies do or do not contribute to the concrete objectives
of the project. This is done in detail in Chapter 8. The case studies were proposed by Frits
Vaandrager (Case 1, 4) and Ron Koymans (Case 2, 3, 5, 6).

1.5 The formal methods and tools that were used

This section shortly introduces the formal methods and tools that were used. The verifications
involve models in the formal languages I/O automata, Promela and Lotos and the tools Spin
and Cæsar/Ald´ebaran. The testing theory and experiments involve Mealy machine models and
the tool KNP Conformance Kit.

The differences between I/O automata, Promela and Lotos are found mostly in the verifi-
cation approaches. The expressivity of the languages is comparable, which is illustrated by the
translation from I/O automata descriptions to Promela presented in [Jen99].

A mathematical notion that is often used for the interpretation or comparison of models in
formal methods is thelabelled transition system. A labelled transition system is a set of states
with labelled transitions between them. Each transition is supposed to represent an indivisible
or atomic event, and the label indicates what the event is. One or more states may be designated
as initial state, meaning that behaviour may start from these states.

I/O automata The input/output automaton model [LT87, LT89], developed by Lynch and
Tuttle, is a labelled transition system model for components in asynchronous concurrent sys-
tems. The actions of an I/O automaton are classified as input, output and internal actions, where
input actions are required to be always enabled. The output action of one I/O automaton may
be the input action of one or more other I/O automata, which can be used to enforce multi-way
synchronisation. An I/O automaton has “tasks”; in a fair execution of an I/O automaton, an
enabled task cannot be ignored indefinitely. The behavior of an I/O automaton is describable
in terms of traces, or alternatively in terms of fair traces.

I/O automata are mostly described in a precondition/effect style with state variables, where
a state is a valuation of the state variables. It is often straightforward to model behaviour in
terms of state variables and actions.

Verification on I/O automata is done with both model and specification described as I/O au-
tomata, with theorem proving techniques. The verification relation between the I/O automata
is based on the behaviour of the I/O automata: trace inclusion. Given the I/O automata de-
scriptions in precondition/effect style, the common approach to establish this is by means of
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simulation relations [LV95]. With a simulation relation one shows that any observable event
from one I/O automaton can always be imitated with some activity by the other I/O automaton.
The simulation relation is stronger than trace inclusion in the sense that the former implies the
latter, but not vice versa.

It is possible to include timing requirements in I/O automata and in simulation relations to
establish that the timed behaviour of one I/O automaton is included in the timed behaviour of
another I/O automaton [LV96].

The presentation of I/O automata can be done in the IOA language [GLV97], which facil-
itates the precondition/effect style and manipulation of data. Tool support is currently worked
on, in the form of a simulator and translations to Promela, Java and the input language for the
Larch theorem prover [GH93].

In my experience, the examples I worked on could be easily modelled as (timed) I/O au-
tomata. The proof techniques could almost always be used in a straightforward manner, and if
this was not the case, it was not hard to find a small extension of the theory that supported my
needs. The IOA language allows for natural representation of I/O automata.

Promela, Spin Promela (a Process Meta Language) [Hol91] is a non-deterministic language,
loosely based on Dijkstra’s guarded command language notation and Hoare’s language CSP,
extended with other constructs. It is the input language to the tool Spin [Hol91, Hol97]. Mod-
els in Promela consist of definitions of process behaviour, with variable assignments, sequen-
tial and alternative composition, repetition and dynamic process creation. Communication
between processes happens on synchronous or asynchronous channels. Synchronous commu-
nication always involves two processes. The support of data types is limited: basic types are
booleans and naturals, from which arrays and record structures can be built.

The tool Spin facilitates simulation and verification of Promela models. Different simula-
tion possibilities are random, guided and interactive. Simulating behaviour of Promela models
helps in understanding what has been modelled.

Verification is supported in Spin through model checking. Here the model is encoded in
Promela and the specification in linear temporal logic (LTL, [Pnu77, MP92]). The verification
is done on the fly: the global state space is not constructed, but explored directly from an
interpreted version of the Promela code. This means that for each new verification run, the
effort of constructing the state space while exploring has to be done anew, but also that only
that part of the behaviour has to be constructed and explored which influences the validity of
the property checked.

In my experience, Promela is easy to use when one has experience with imperative pro-
gramming languages. The Spin tool support is good and the interfaces are very user-friendly.
However, it can be hard to decide how to model complicated behaviour. Different choices may
have a great impact on the tractability of the model by Spin, and combinations of synchronous
communication and other language constructs can cause rather obscure behaviour. When the
complexity of the behaviour that is modelled increased, I had to consult the semantic defini-
tion of the language more often. When modelling a property to be checked, it can be hard to
determine a proper formula in LTL that captures the property precisely if the property is a little
complex.

Lotos, Cæsar/Aldébaran Lotos [ISO89] is a message passing process algebra with two
parts: a process algebra based on CCS [Mil89] which is used to describe the flow of control in
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a system, and an abstract data type language to describe the information manipulated by that
system. Together the two parts are known as full Lotos. The data part is expressed in ACT-
ONE, an algebraic formalism for abstract data types, and the behaviour part is expressed in
process algebra with sequential, alternative and parallel composition, and recursion. Commu-
nication happens on synchronous gates and can involve more than two processes. Verification
is mostly done by comparison of behaviour using (bi)simulation relations with theorem prov-
ing techniques or (when using tools) with model checking, or by checking properties expressed
in temporal logic with model checking.

Cæsar/Ald´ebaran [FGK+96] is a tool set that supports simulation and model checking of
Lotos specifications. The model is given in Lotos, the specification can be either a Lotos de-
scription or a property expressed in temporal logic. Cæsar/Ald´ebaran has tools for simulation,
generation, minimisation, comparison and checking temporal properties on labelled transition
systems. Cæsar accepts Lotos as input language and generates a labelled transition system
and simulates both Lotos models and labelled transition systems. Ald´ebaran composes, com-
pares and minimises labelled transition systems. Xtl checks properties expressed in a choice
of several temporal logics on labelled transition systems.

In my experience, each given Lotos model has a clear meaning which is easy to grasp.
The Cæsar/Ald´ebaran tool support is good and the interfaces are user-friendly. When starting
to use Lotos, I needed a good description of the semantics. As soon as familiarity with all
Lotos operators was obtained, the references were used less often. However, it is not always
easy to express desired behaviour in Lotos since (1) there are no global variables, (2) the data
types are rather restricted, (3) all activity must be modelled as communication, and (4) each
processes that can communicate on a gate,must participate in any communication occurring
on that gate (enforced synchronisation)1. When modelling a property to be checked, it can
be hard to determine the proper formula in one of the temporal logics supported by Xtl if the
property is a little complex. This is not just because of the nature of temporal logics, but also
because in the formula, there is no way to access the value of parameters to a Lotos process,
and since there is no notion of (global) state variables in Lotos.

Mealy machines, conformance test methods A Finite State Machine (FSM) is a finite la-
belled transition system. A Mealy machine is an FSM where each transition is labelled with
an input/output pair. The idea of the Mealy machine model is that the behaviour of reactive
systems can be modelled as follows: if the system is in a states and inputi is applied, then
an outputo may occur and the system may go to statet. This is reflected in the transition

s
i/o→ t in the corresponding Mealy machine. When a Mealy machine isdeterministic, the next

state is determined by the current state, the input and the output. When a Mealy machine is
input deterministic, the next state is determined by only the current state and the input. When
a Mealy machine isinput enabled, then in each state there is an outgoing transition for each
input in the input alphabet.

Black box conformance testing on Mealy machines can be done with theautomata theo-
retic method [Cho78], also referred to as theW-method [Vas73]. This method is based on the
comparison of two input deterministic, input enabled Mealy machines, i.e. it is assumed that
the specification is an input deterministic, input enabled Mealy machine and that the artefact to

1This is illustrated by any design in which three identical processes want to have synchronous communication
occur between each combination of two of them
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be tested can be modelled as an input deterministic, input enabled Mealy machine. The latter
assumption is often referred to as thetest hypothesis [Tre92]. Note that with black box testing,
the structure of the artefact to be tested is not known; it suffices to estimate the number of states
of the artefact. From the specification, a set of test sequences is derived, which can be applied
to the artefact. The test derivation is based on the notion ofcharacterising sets which contain
for each pair of states with different behaviour, a test sequence to distinguish these states. The
other ingredient of the test derivation is thetransition cover which contains for each state a test
sequence that brings the system to that state from the start state.

The test method is complete in the sense that it has been proved in [Cho78] that if the
number of states of the artefact is estimated correctly and the behaviour of the specification
and artefact is equal for all test sequences, then the specification and artefact are equal.

The advantage of the test method over other state based test methods is that it is able
to detect many kinds of errors such as output errors, next-state errors, and missing or extra
states. Difficulties with the method are that it may be hard to estimate the number of states
of the artefact, and that the number of test sequences produced with this method becomes
unproportionally high when the number of states in specification and artefact increase.

A variant of the automata theoretic approach is the UIO method [ADLU91, SD88] which
has the same ingredients except for the characterising set. Instead, a Unique Input Output
(UIO) sequence is associated with each state in the specification, such that the behaviour of
the state under this sequence is different from any other state in the Mealy machine. The
advantage of this method is that the number of test sequences becomes smaller, since in each
state that must be distinguished from another, only one sequence will be used instead of all the
sequences in the characterising set. The difficulty with this method is that the UIO sequence
does not always exist and that the error detecting power is smaller.

Tool support for test generation in this fashion exists in the form of the KPN Conformance
Kit [KWKK91]. This tool supports the automatic test generation from input deterministic,
input enabled Mealy machines for the UIO method.

1.6 The case studies

In Figure 1.1 a time schedule is shown of the actual work on each of the case studies within the
project. One should interpret this figure as follows. The lines in the figure indicate research
activity. If there is no line for a certain case at a certain time, this means that at that moment
no activity was taking place for that case. If there are several lines at a certain time, this means
that the time was divided over these cases. This division was not always equal. The moment on
which the last activity line for a case ends means that the case was ended with a final version
of a paper to be published (Cases 1, 3), the case was terminated unsuccessfully (Case 5), the
last tool experiments took place (Case 4), or a paper was finished for which publication and
finalising has yet to take place, which is expected not to take longer than two weeks (Case 2,
6). Time spent on holidays, conference visits, school/course participation and illness has not
been included in the figure for sake of readability. Over the period displayed, the time not
spent on the project adds up to a total of 6 months.
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1 jan 19991 jan 1996 1 jul 1996 1 jan 1997 1 jul 1997 1 jan 1998 1 jul 1998

Case 1
Case 2
Case 3
Case 4
Case 5
Case 6

1 aug 1995: 1 mar 1999:
start of first case end of last case

Figure 1.1: An overview of the work on the different case studies

1.6.1 Case 1: The RPC/Memory specification problem

problem A case study in distributed systems formalisation created by Leslie Lamport and
Manfred Broy [BL96] for a workshop in Dagstuhl, Germany in September 1994. The
problem contains formalisation and verification tasks and has failure, fairness and real
time aspects.

goal To solve the problem with either I/O automata orµCRL theory, two methods not yet
applied to this problem. To gain experience in protocol verification by doing the proofs
manually.

method I/O automata for formalisation, (timed) invariants/simulations for proving safety as-
pects, fair trace inclusion for proving liveness

duration 10.5 months (total), 6.5 months (effectively)

findings All tasks in the problem statement have been solved completely. During the construc-
tion of the proof it turned out that the theory of I/O automata was not general enough
if the problem statement was followed, because the cardinality of one of the parameters
was not given. Also, the problem statement called for strong fairness restrictions. In this
situation, the existing I/O automata theory did not guarantee the liveness of the models
with respect to the desired fairness restrictions. However, Frits Vaandrager and I found
sufficient conditions for liveness that were more general. It was easy to show that these
conditions were true for the RPC/Memory models. This result led to the writing of a
separate paper.
Two years after the paper with the solution was published, the proofs were checked in
PVS [ORSH95] by Archer and Riccobene with the tool TAME [AH96]. Results ap-
peared in [RAH98]. Some minor errors, one type inconsistency, and four proof errors
were found which were repaired easily. One extra invariant was used, which could have
been circumvented. The proof checking effort took about three weeks.
Note that the terminology in this case does not conform to our introduction in Sec-
tion 1.2. For the termspecification one should readformalisation.

papers (1) The solution to the problem with I/O automata [Rom96] which appeared in the
LNCS volume with many different solutions for the case study, (2) The extension of I/O
automata theory [RV96] which appeared in the journal Information Processing Letters.
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in this thesis Chapter 3 is [Rom96] slightly adjusted: the errors found in [RAH98] were fixed.
Chapter 2 is [RV96] with an addition: the proof for Theorem 2.

1.6.2 Case 2: IEEE 1394 verification

problem The IEEE 1394-1995 standard document describes an architecture for a high speed
serial bus. The transaction, link and physical layer contain some protocols. Do these
protocols behave correctly under the given assumptions?

goal To verify that (part of) one of the 1394 layers works correct.

method I/O automata for formalisation, IOA language for presentation, (timed) invariants/
simulations for proving safety aspects, fair trace inclusion for proving liveness

duration 3 years and 2 months (total), 8.5 months (effectively)

findings The research soon focused on the tree identify phase in the physical layer. The plan
was to give a model that could be checked for syntactic correctness, and a manual veri-
fication (sketch).
The first attempt at specifying the tree identify phase resulted in a huge model which
could not even be type checked completely in PVS because of the difficult conditions on
the passage of time. Manual verification of this model was not feasible.
Late 1997, Frits Vaandrager suggested a layered verification, which could start with a
very abstract version of the protocol, and then refine this stepwise to reach the amount
of detail given in the standard document. The essence of the tree identify phase was
extracted, specified at a very high level of abstraction and verified manually. The safety
part of the proof was checked in PVS.
Following this verification effort, David Griffioen and Frits Vaandrager started refining
the abstract model in order to prove correctness for behaviour with more details from the
IEEE 1394 tree identify phase. They introduced a new type of simulation, useful for the
verification of the refined tree identify phase model, and checked the proofs in PVS.
Following up on the work of David Griffioen and Frits Vaandrager, I refined the model
of the tree identify phase even further to include timing information, and gave a manual
proof of correctness. Timing is used to signal whether the network topology contains a
cycle (which is an error) and to model the delay of messages in the network. Further
refinement is necessary in order to obtain a correctness statement that includes all detail
of the IEEE 1394 documentation.
Since the start of this case study, other researchers have studied (parts of) the IEEE
tree identify phase as well. The relation between the different papers is explained in
[Rom99b].

papers Two papers appeared of which I was (co-)author: (1) the formalisation and verification
at a very abstract level of the tree identify phase [DGRV97], and (2) the formalisation
and verification of the tree identify phase with more detail [Rom99b].

in this thesis Chapter 7 is [Rom99b].
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1.6.3 Case 3: Automatic VHDL testing

problem In 1996, Olaf Sies graduated at the University of Eindhoven on the design and im-
plementation of a test environment for conformance testing of VHDL designs [Sie96].
However, the test environment had not actually been used. Philips was interested in the
conformance of some link layer code with respect to the IEEE 1394 standard.

goal To test the link layer code for conformance with respect to the IEEE 1394 standard in the
test environment, and to show that testing in this manner is feasible.

method Test method: generation of abstract tests from an FSM model, translation of the ab-
stract tests to the VHDL level, execution of the VHDL tests on a VHDL design.
Test strategy for link layer code: (1) construct an FSM model of the input/output be-
haviour of the link layer from the IEEE 1394 standard (a preliminary version by Sies
existed), (2) make a translation from abstract input and output events as used in the
FSM, to concrete VHDL input and output for the design to be tested (3) generate tests
from the FSM model (4) translate the abstract tests to VHDL input and output (5) in-
stantiate the VHDL test code with the link layer code (6) execute the VHDL tests (7)
conclude whether the link layer code conformed to the IEEE 1394 standard

duration 1 year (total), 5.5 months (effectively)

findings The test environment consists of several tools of which only one was provided by a
third party (the KPN Conformance Kit [KWKK91]). The fact that the test environment
had not been used before (hence contained various errors) combined with the complexity
of the interface behaviour of the link layer code and the lack of precision in the descrip-
tion of this behaviour in the IEEE 1394-1995 standard made it impossible to obtain
meaningful test runs for the link layer code. Half-way through the planned time for the
case, it was decided to switch to a different test case for which I constructed the FSM
model and VHDL implementation. The insight in the VHDL code enabled the under-
standing of the several tools in the test environment and the components in the VHDL
test software. The correction of several errors finally led to successful testing of the
VHDL code, meaning that conformance was shown for a correct implementation, and
errors were found for an incorrect implementation.
Following up on this research, other projects have worked with the test environment. In
1997, the test environment was used to test an MPEG2 decoder chip in the DIVA project
[FMMW98]. In 1998, the test environment was used to test a 64 inch projection TV
produced by Philips Consumer Electronics [Hol98a, TLH+99].

papers Three papers were written: (1) the presentation of the integrated test method and
the results obtained [MRS+97a], (2) a manual on all of the tools and the VHDL code
[MRS+97b], and (3) a manual for the demonstration workshop held at the Philips Re-
search lab [MRS+96]

in this thesis Chapter 4 is [MRS+97a].
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1.6.4 Case 4: Symmetry reduction in test generation

problem Building on the experiences of Case 3, Jan Springintveld and I felt that there is a huge
need for reduction of tests that are generated when one is testing for conformance. In
practice, one assumes that certain test scenarios are similar and will therefore skip some
of these. On the other hand, conformance testing without a measure for coverage is not
convincing enough. In model checking, partial orders and data and other symmetries
are criterions used to reduce the part of the state space that is actually being explored.
The question is whether the same can be done for conformance testing, that is, whether
a formal basis can be given for not generating/executing some test scenarios and still
having complete coverage with the smaller set of tests, when the criterion for reduction
is based on some sort ofsymmetry.

goal To construct a formal basis for a notion of symmetry that makes it possible to test with a
smaller test set and still have complete coverage.

method (1) Find a criterion under which behaviours of a FSM can be considered to be sym-
metric, (2) find a way to construct a kernel FSM for the FSM to be tested such that for
each behaviour of the original FSM, a symmetric behaviour is in the kernel, (3) find a
test generation method for the kernel FSM, (4) show the generated tests are exhaustive
and complete for any implementation tested with them, and (5) show that the kernel is
smaller than the original FSM and (hence) the generated test set is smaller than tests
generated from the original FSM.

duration 1 year and 8 months (total), 8.5 months (effectively)

findings The starting points for the research were: black box conformance testing in the
Chow/Vasilevskii [Cho78, Vas73] fashion, symmetry in terms of transactions, i.e. small
patterns of actions, as few assumptions as possible on the implementation to be tested.
First a proper definition of symmetry had to be invented. This turned out to be a quite
difficult task, since the kernel construction and test method depended heavily on the
choices made in the basic definitions. The nature of the Chow test methods implied that
some equivalence between states was needed, whereas in black box testing, too strong
assumptions on the inner structure of the implementation are not desirable. Therefore
we formulated symmetry in terms of equivalence of observable traces. The resulting
symmetry definition enabled a straightforward algorithm for constructing a kernel FSM
and a Chow-like test method, all of which have been proved correct. The assumption
on the implementation implied only completeness of its observable behaviour under the
symmetry equivalence, on the specification more assumptions were made.
Some experiments were done with the kernel construction algorithm, in the tool set
Cæsar/Ald´ebaran [FGK+96]. This showed that for some toy examples, significant re-
ductions in the kernel sizes and thus the test sets could be obtained.
Due to lack of time we have not yet experimented with real designs or programs, so test
execution still remains to be explored.

papers One paper has been written in a report (full) and a conference (short) version [RS98].

in this thesis Chapter 5 is the full version of [RS98] without the code listings.
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1.6.5 Case 5: A software architecture

problem In 1997, the Philips Multimedia Center in Palo Alto was working on the development
of a communication architecture for supporting distributed applications. A team of four
people at the Philips Research Lab in Eindhoven was to cooperate and help with the
development of this architecture in several ways. My involvement in this project was to
search protocols in the formal methods literature in order to guarantee a certain desired
but not yet implemented functionality in the architecture.

goal To help in the development of a new product, with a protocol from literature, such that a
correctly operating part of functionality can be guaranteed.

method Literature study, and if desired, fine tuning of the candidate protocol for the given
situation and formal verification, possibly automated by the use of model checking tools

duration 7.5 months (total), 1.5 months (effectively)

findings The architecture development was in the hands of the Palo Alto team. They provided
documentation about the architecture design. Of course the design changed a lot over the
months, which made it hard to find functionality in the architecture for which a protocol
should be found. Also, the desired functionality was not clear or stable. The distance
between the Eindhoven and Palo Alto locations made communication hard. The focus
of the Palo Alto team was most on getting a prototype to work before anything else,
which really hampered the cooperation. This attitude was shown most explicitly when
the opportunity arose to verify an algorithm for logical addressing/routing. The person
working on this algorithm preferred to implement the algorithm before any formalisation
or verification would take place.
In September 1997, it was decided that the focus of the two teams had diverged too much
for further cooperation. The Eindhoven team joined the HAVi architecture development
activities.

papers None

in this thesis None

1.6.6 Case 6: HAVi DCM Management

problem During 1997, the Philips Research Labs in Eindhoven became involved in the HAVi
standard activity. The HAVi standard defines communication architecture for audio/vid-
eo applications in the home environment. The involvement of this project was to for-
mally prove that a leader election/resource allocation protocol in the HAVi architecture
works correctly.

goal To guarantee that part of the HAVi standard operates correctly, by either finding and
eliminating errors, or showing their absence, and to demonstrate the effectiveness of
model checking and/or theorem proving tools.

method Formalisation in a suitable formal language, verification by model checking and/or
theorem proving
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duration 1 year (total), 6.5 months (effectively)

findings The first activity was to capture the leader election part of the protocol in a formal
model. This activity was hampered by the lack of precision of the natural language de-
scription in the HAVi document. The first model was made in Promela [Hol91], the input
language for the model checking tool Spin [Hol91, Hol97]. A second model was made in
the language Lotos [ISO89]. Both models were to be checked for correctness with model
checking tools. The Promela model was checked in Spin, the Lotos model with the tools
Cæsar, Ald´ebaran and Xtl [MG98] in the Cæsar/Ald´ebaran tool set. Safety properties
of the models were written down, in Promela this was very straightforward. For the
Lotos model this had to be done in the temporal logic ACTL [DNV90], which meant
that some requirements engineering was necessary. One liveness property was required,
which could only be expressed in temporal logic. This was done in ACTL without too
much trouble. In LTL (the only temporal logic accepted by Spin) the property could
not be expressed. The property was checked by changing the models and looking for
invalid end states. In the model checking process it turned out that only one of the pure
safety properties as expressed in the Promela model was satisfied, and the liveness prop-
erty was not satisfied. For the Lotos model, only some of the safety violations detected
with Spin were found with model checking, but the liveness violation was found using
the temporal property. All erroneous behaviour found with Spin could be reproduced in
the corresponding Lotos models by simulation. The errors were caused by scenarios in
which the protocol (as presented in the HAVi documentation) indeed behaved incorrect.

It has been acknowledged by Philips that the description of the protocol in the HAVi
documentation was indeed not sufficiently precise to be error free, but it is expected
that due to timing requirements (not expressed in the HAVi standard) the erroneous be-
haviour will not occur in implementations of the protocol. In the meantime, the HAVi
specification has altered such that the initiative for communication in the leader election
protocols now works the other way around. We believe that this alone is not enough to
avoid the type of error that we found.

papers One paper has been written of which a short version has been submitted [Rom99a].

in this thesis Chapter 6 is [Rom99a] without the appendices and the detailed description of
the Promela and Lotos models.



18 1 Introduction



Chapter 2

A note on fairness in I/O automata

Summary

Notions of weak and strong fairness are studied in the setting of the I/O automaton model of
Lynch & Tuttle. The concept of afair I/O automaton is introduced and it is shown that a fair
I/O automaton paired with the set of its fair executions is a live I/O automaton provided that
(1) in each reachable state at most countably many fairness sets are enabled, and (2) input ac-
tions cannot disable strong fairness sets. This result, which generalises previous results known
from the literature, was needed to solve a problem posed by Broy & Lamport for the Dagstuhl
Workshop on Reactive Systems.

2.1 Introduction

Many specification formalisms for reactive systems incorporate notions of weak and strong
fairness (see, for instance, [Jon94, Lam94a, LT87, MP92]). Informally, the requirement of
weak fairness disallows executions in which certain sets of transitions are continually enabled
but not taken beyond a certain point, whereas the requirement of strong fairness disallows
executions in which certain sets of transitions are enabled infinitely often but taken only finitely
many times. A natural criterion that any acceptable notion of fairness should satisfy is that
it induces liveness properties in the sense of [AS85]: it should be possible to extend every
finite execution to a fair one. Several authors have observed that weak and strong fairness
induce liveness properties if the number of fairness sets (sets of transitions for which fairness
is required) is countable [AL94, LT87]. If this number is uncountable then one does not obtain
liveness properties in general: since in a transition system each execution contains at most a
countable number of transitions, it is impossible to give fair turns to uncountably many fairness
sets.

In most practical cases, the restriction to a countable number of fairness sets is unproblem-
atic. However, there are classes of applications where this restriction cannot be made. A nice
example here is the RPC-Memory specification problem proposed by Broy & Lamport [BL96]
for the Dagstuhl Workshop on Reactive Systems. In this problem, there is a set of processes
that can concurrently issue procedure calls to a memory component, which responds to these
calls by issuing returns. Because there are no constraints on the number of processes and each
call should eventually lead to a corresponding return, it is impossible to specify the required
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liveness properties using only a bounded number of fairness sets. Essentially, the main result
of this note is that liveness is also ensured if one does not impose a global constraint on the
number of fairness sets, but instead assumes that in each reachable state only a countable num-
ber of fairness sets is enabled. The latter restriction applies to the Dagstuhl example since in
each reachable state the number of outstanding calls is finite. The key argument in our proof is
not difficult, but distinctly different from the arguments used in the proofs of [AL94, LT87].

We have stated our results in terms of the I/O automaton model [SGSL98, LT87], since
it was needed for this I/O automata solution to the Dagstuhl problem (See Chapter 3). We
propose a model offair I/O automata, which is a generalisation of the original I/O automaton
model of [LT87]. Our main result is that under certain assumptions fair I/O automata can be
viewed as a special case of thelive I/O automata of [SGSL98], another generalisation of the
original model. Roughly speaking, this result says that each finite execution can be extended
to a fair one independently of the inputs provided by the environment. The notion of a live
I/O automaton is very general but its definition is complex and cumbersome to use: in order to
prove that a certain structure is a live I/O automaton one has to exhibit a winning strategy in an
infinite two-player game. Since it appears that all liveness properties that one needs in practice
can be specified using weak and strong fairness properties only [Jon94, Lam94a, MP92] and
since it is usually trivial to check that a structure is a fair I/O automaton, we think that there
will be many situations where, after one has described a system as a fair I/O automaton, our
result provides one with a live I/O automaton description almost for free.

The outline of this chapter is as follows. In Section 2.2, we introduce fair I/O automata. In
Section 2.3 we prove that a fair I/O automaton paired with the set of its fair executions is a live
I/O automaton provided that (1) in each reachable state at most countably many fairness sets
are enabled, and (2) input actions cannot disable strong fairness sets. In Section 2.4, we define
a composition operation on fair I/O automata and show that this operation is compatible with
the composition operation on live I/O automata defined in [SGSL98].

2.2 Definitions

In this section we define the model offair I/O automata, which is a generalisation of the
original I/O automaton model of [LT87]: whereas the I/O automata of [LT87] only allow for
weak fairness, fair I/O automata permit both weak and strong fairness. See Appendix A for
definitions of safe I/O automata.

Fair I/O automata A fair I/O automaton A is a triple consisting of

• a safe I/O automatonsafe(A), and

• setswfair(A) andsfair(A) of subsets oflocal(safe(A)), called theweak fairness sets and
strong fairness sets, respectively.

In the rest of this note we writelocal(A) for local(safe(A)), steps(A) for steps(safe(A)), etc.
Also, we fix a fair I/O automatonA.

Enabling Let U be a set of actions ofA. ThenU is enabled in a states if and only if an
action fromU is enabled ins. SetU is input resistant if and only if, for each pair of reachable
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statess, s′ and for each input actiona,

s enablesU ∧ s a−→ s′ ⇒ s′ enablesU.

So onceU is enabled, it can only be disabled by the occurrence of a locally controlled action.

Fair executions and traces An executionα of A is weakly fair iff the following conditions
hold for eachW ∈ wfair(A):

1. If α is finite thenW is not enabled in the last state ofα.

2. If α is infinite then eitherα contains infinitely many occurrences of actions fromW , or
α contains infinitely many occurrences of states in whichW is not enabled.

Executionα is strongly fair iff the following conditions hold for eachS ∈ sfair(A):

1. If α is finite thenS is not enabled in the last state ofα.

2. If α is infinite then eitherα contains infinitely many occurrences of actions fromS, orα
contains only finitely many occurrences of states in whichS is enabled.

Executionα is fair iff it is both weakly and strongly fair. Finite executions are fair only if in the
last state, no weak or strong fairness sets are enabled anymore. The intuition is that it would
not be fair to stop execution otherwise. In an infinite fair execution, each weak fairness set gets
turns if enabled continuously, and each strong fairness set gets turns if enabled infinitely many
times. We writefairexecs(A) for the set of fair executions ofA. We writefairtraces(A) for the
set of traces of fair executions of a fair I/O automatonA.

Implementation relation Let A andB be fair I/O automata.
A implements B if fairtraces(A) ⊆ fairtraces(B).

Fairness as a liveness condition We write live(A) for the underlying safe I/O automaton of
A paired withfairexecs(A): live(A)

	= (safe(A), fairexecs(A)).

2.3 Main Result

In [SGSL98], live I/O automata are introduced as a generalisation of the I/O automata of
[LT87] with general liveness properties (see also Appendix A). Our main result, stated below,
says that, if fair I/O automataA satisfies two conditions then the pair(safe(A), fairexecs(A))
is a live I/O automaton. The first condition states that in each reachable state at most count-
ably many weak and strong fairness sets are enabled. This cardinality assumption allows us to
define, via a diagonalisation construction, a strategy for the I/O automaton that gives fair turns
to each fairness set. The second condition states that all strong fairness sets are input resistant.
This technical assumption excludes situations where the environment gives turns to the system
only when some strong fairness set is not enabled. As an example, consider the fair I/O au-
tomaton of Figure 2.1. In this I/O automaton the strong fairness set{o} is not input resistant.
As a result the I/O automaton is not live: for each strategyρ, the outcomeOρ(s, λ i i λ i i λ · · ·)
equals the unfair executions i s′ i s i s′ · · ·. It seems that most applications with strong fairness
aspects meet this requirement.
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Figure 2.1: A fair I/O automaton that is not live.

Theorem 2.1 Suppose that fair I/O automatonA satisfies the following conditions: (1) each
reachable state ofA enables at most countably many sets inwfair(A) ∪ sfair(A), and (2) each
set insfair(A) is input resistant. Thenlive(A) is a live I/O automaton.

Proof With each finite executionα we associate an infinite two-dimensional arrayAα of weak
and strong fairness sets. The array contains all the weak or strong fairness sets that are enabled
at some point in executionα but from which no action has been executed in the subsequent
part ofα. We will use arrayAα to define a strategy that treats each fairness set in a fair manner
and thus establishes thatlive(A) is a live I/O automaton. The array is defined by induction on
the length ofα:

• If α consists of a single states, thenAα is constructed by filling the first row with the sets
in wfair(A) andsfair(A) that are enabled ins. While filling, the sets are alternatingly
taken fromwfair(A) andsfair(A). Remaining positions are filled with the symbol.
If s enables 6 weak fairness sets and 2 strong fairness sets, thenAα might look like this:

1 2 3 4 5 6 7 8 9 · · ·
1 W11 S11 W12 S12 W13 W14 W15 W16 · · ·
2 · · ·
...

...
...

...
...

...
...

...
...

...
. . .

Note that by Condition (1) we are able to squeeze all the enabled sets in a single row.

• If α containsn > 1 states and is of the formα′ a s, thenAα is constructed fromAα′ by
replacing each fairness set that contains actiona by , and filling then-th row with the
sets inwfair(A) andsfair(A) that are enabled ins, as in the previous case.
The array for an executionα with 4 states might look like this:

1 2 3 4 5 6 7 8 · · ·
1 W11 S11 S12 W15 · · ·
2 S21 W22 S22 W23 S23 · · ·
3 S31 S34 S35 S36 · · ·
4 W41 S41 W42 S42 W43 S43 W44 S44 · · ·
5 · · ·
...

...
...

...
...

...
...

...
...

. . .
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Let ρ = (g, f ) be any strategy defined onsafe(A) that satisfies the following conditions:

1. If f (α) = ⊥ then the last state ofα enables no set inwfair(A) ∪ sfair(A).

2. If f (α) = (a, s) then the last state ofα enables a set inwfair(A) ∪ sfair(A), anda
is member of the first setU that is enabled in the last state ofα and that occurs in the
sequence


(α)
	= Aα[1,1]

Aα[1,2] Aα[2,1]

Aα[1,3] Aα[2,2] Aα[3,1]

Aα[1,4] Aα[2,3] Aα[3,2] Aα[4,1]
...

Note that a strategyρ satisfying these properties exists since by construction the arrayAα

contains at least all the weak and strong fairness sets that are enabled in the last state ofα, and
sequence
(α) enumerates all elements ofAα.

We show thatlive(A) is a live I/O automaton by proving that the outcomeα′ = Oρ(α,I)
is fair for each finite executionα and each environment sequenceI.

Assume thatα′ is a finite execution. ThenI contains only finitely many input actions and,
for s the last state ofα′, f (α′) =⊥. Therefore, by the first assumption about strategyρ, the
last state ofα′ enables no set inwfair(A) or sfair(A). Henceα′ is fair.

Thus we may assume thatα′ is infinite. We prove thatα′ is fair by contradiction. Suppose
α′ is not fair. We distinguish between two cases:

1. α′ is not strongly fair.
Then some strong fairness setS is enabled in an infinite number of states ofα′ andα′
contains only finitely many occurrences of actions inS.

SinceS is input resistant, it is enabled in an infinite number of states in which a system
move is allowed byI. From the definition of strategyρ it follows thatS is enabled in an
infinite number of states in which a locally controlled action occurs. Sinceα′ contains
only finitely many occurrences of actions inS, there is a state inα′ after which no action
in S occurs. Nevertheless, there is a subsequent state ofα′, say thei -th state, in which
S is enabled. Therefore, there is a position [i, j ] such that, ifαk is the finite prefix ofα′
with k states,Aαk [i, j ] = S, for all k ≥ i . Let l = i + j − 1. Then, for eachn ≥ l, each
position preceding [i, j ] in the strategy’s sequence that is filled within the arrayAαn ,
is also filled with in any arrayAαm with m > n. Each locally controlled action that
occurs after thel-th state from a state that enablesS causes a fairness set at a position
preceding [i, j ] in the strategy’s sequence to be replaced byin the array. This happens
infinitely many times. But this is a contradiction since the number of preceding positions
is finite.

2. α′ is not weakly fair.
Then some weak fairness setW is enabled in all states of an infinite suffix ofα′ with
only finitely many occurrences of actions fromW .
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By an argument that is almost identical to the one used in the previous case we arrive at
a contradiction.

Henceα′ is fair and we may conclude thatlive(A) is a live I/O automaton. �

2.4 Composition

Building on the work of [SGSL98, LT87], there is an obvious way to define composition of
fair I/O automata.

We say that two fair I/O automataA1 and A2 arecompatible if safe(A1) andsafe(A2) are
compatible. Suppose thatA1 and A2 are compatible fair I/O automata. Then thecomposition
A1‖A2 is the fair I/O automatonA given by

• safe(A) = safe(A1)‖safe(A2),

• wfair(A) = wfair(A1) ∪ wfair(A2) andsfair(A) = sfair(A1) ∪ sfair(A2).

Thus we simply compose the underlying safe I/O automata and take the unions of the weak
and strong fairness sets. The following theorem, which is easy to prove, states that the above
composition operation for fair I/O automata is compatible with the composition operation for
live I/O automata of [SGSL98].

Theorem 2.2 Suppose thatA1 andA2 are compatible fair I/O automata. Then

live(A1‖A2) = live(A1)‖live(A2).

Proof By definition, live(A1‖A2) = ((safe(A1)‖safe(A2)), fairexecs(A1‖A2)). By Defini-
tion 3.19 in [SGSL98],live(A1)‖live(A2) = ((safe(A1)‖safe(A2)),F), whereF = {α ∈
execs(safe(A1)‖safe(A2))|(α�safe(A1)) ∈ fairexecs(A1) ∧ (α�safe(A2)) ∈ fairexecs(A2)}.
It remains to be proved thatF = fairexecs(A1‖A2).

⊆ Supposeα ∈ F .
Letα1 = α�safe(A1) andα2 = α�safe(A2). Then by definition ofF , α1 ∈ fairexecs(A1)

andα2 ∈ fairexecs(A2).

– Supposeα is finite.
Thenα1 andα2 are also finite. By definition,last(α1) = π1(last(α)) andlast(α2) =
π2(last(α)). Sinceα1 ∈ fairexecs(A1), last(α1) does not enableW or S for any
W ∈ wfair(A1) and anyS ∈ sfair(A1). Likewise,α2 ∈ fairexecs(A2), so last(α2)

does not enableW or S for any W ∈ wfair(A2) and anyS ∈ sfair(A2). We see
thatlast(α) does not enableW or S for anyW ∈ (wfair(A1)∪wfair(A2)) and any
S ∈ (sfair(A1) ∪ sfair(A2)), henceα ∈ fairexecs(A1‖A2).

– Supposeα is infinite.

∗ Supposeα1 is finite.
Then for an infinite suffixs0a1s1a2s2 . . . of α, π1(si ) = π1(si+1) with i ≥
0, that is, the state ofA1 remains the same in this suffix ofα. Sinceα1 ∈
fairexecs(A1), none of the statesπ1(si ), π1(si+1), . . . enableW or S for any
W ∈ wfair(A1) and anyS ∈ sfair(A1). We see that for eachW ∈ wfair(A1),
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α contains infinitely many states in whichW is not enabled, and for each
S ∈ sfair(A1), α contains only finitely many states in whichS is enabled,
henceα ∈ fairexecs(A1‖A2).

∗ Supposeα1 is infinite.
Sinceα1 ∈ fairexecs(A1), for eachW ∈ wfair(A1), α1 contains infinitely
many states in whichW is not enabled, and for eachS ∈ sfair(A1), α1 con-
tains only finitely many states in whichS is enabled. We see that for each
W ∈ wfair(A1), α contains infinitely many states in whichW is not enabled.
Since for eachS ∈ sfair(A1), α1 contains only finitely many states in which
S is enabled,α1 contains an infinite suffix in which eachS ∈ sfair(A1) is
permanently disabled. From the definition ofα1, we see thatα must contain
an infinite suffix in which eachS ∈ sfair(A1) is permanently disabled. We see
that for eachS ∈ sfair(A1), α contains only finitely many states in whichS is
enabled, henceα ∈ fairexecs(A1‖A2).

Forα2 we can reason likewise. We conclude thatα ∈ fairexecs(A1‖A2).

⊇ Supposeα ∈ fairexecs(A1‖A2).
Let α1 = α�safe(A1) andα2 = α�safe(A2).

– Supposeα is finite.
Thenα1 andα2 are also finite. By definition,last(α1) = π1(last(α)) andlast(α2) =
π2(last(α)). Sinceα ∈ fairexecs(A1‖A2), last(α) does not enableW or S for any
W ∈ (wfair(A1) ∪ wfair(A2)) and anyS ∈ (sfair(A1) ∪ sfair(A2)). We see that
last(α1) does not enableW or S for any W ∈ wfair(A1) and anyS ∈ sfair(A1),
henceα1 ∈ fairexecs(A1). Likewise, we see thatlast(α2) does not enableW or S
for anyW ∈ wfair(A2) and anyS ∈ sfair(A2), henceα2 ∈ fairexecs(A2).

– Supposeα is infinite. Sinceα ∈ fairexecs(A1‖A2), for eachW ∈ (wfair(A1) ∪
wfair(A2)), α contains either infinitely many occurrences ofW , or infinitely many
states in whichW is not enabled, and for eachS ∈ (sfair(A1) ∪ sfair(A2)), α
contains either infinitely many occurrences ofS, or only finitely many states in
which S is enabled.

∗ Supposeα contains infinitely many occurrences ofW (S), with W ∈ wfair(A1)

(S ∈ sfair(A1)).
Thenα1 is infinite and contains infinitely many occurrences ofW (S), hence
α1 ∈ fairexecs(A1).

∗ Supposeα contains infinitely many states in whichW is not enabled, with
W ∈ wfair(A1).

· Supposeα1 contains infinitely many states in whichW is not enabled.
Thenα1 is infinite, henceα1 ∈ fairexecs(A1).

· Supposeα1 contains only finitely many states in whichW is not enabled.
It is easy to see thatα1 must be finite and thatα must contain an infinite
suffix s0a1s1a2s2 . . . in which W is permanently disabled. Also,last(α1)

cannot enableW , otherwise this state would be different fromπ1(si ) for
eachi ≥ 0. Soα1 is finite, andlast(α1) does not enableW , henceα1 ∈
fairexecs(A1).
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∗ Supposeα contains only finitely many states in whichS is enabled, withS ∈
sfair(A1).
Thenα contains an infinite suffixs0a1s1a2s2 . . . in which S is permanently
disabled.
· Supposeα1 is finite.

Then from some state inα onwards, the state forA1 remains the same, so
last(α1) = π1(si ) for somei ≥ 0, hencelast(α1) does not enableS, so
α1 ∈ fairexecs(A1).
· Supposeα1 is infinite.

Thenα1 contains only finitely many states in whichS is enabled, hence
α1 ∈ fairexecs(A1).

We conclude thatα1 ∈ fairexecs(A1). Forα2 we can reason likewise.

�



Chapter 3

Tackling the RPC-Memory
specification problem

with I/O automata

Summary

An I/O automata solution to the problem posed in 1994 by Broy & Lamport at the Dagstuhl
Workshop on Reactive Systems is presented. The problem calls for specification and verification
of memory and remote procedure call components. The problem specification consists of an
untimed and a timed part. In this chapter, both parts are solved completely.

3.1 Introduction

An example of an distributed system specification problem was stated at the Workshop on
Reactive Systems, held in Dagstuhl, Germany in September 1994. The problem concerned the
specification of a memory component and a remote procedure call (RPC) component, and the
implementation of both.

The workshop’s main intention was to compare different formalisms by applying them
to this example, in order to understand the similarities and differences of the various ap-
proaches, as well as their strengths and weaknesses. The problem has been solved completely
in [ALM96, Bro96, CBH96, Hoo96, KS96, LSW96, Stø96]. Other papers on this topic are
[AR96, Bes96, BJ96b, Got96, Hun96, KNS96, UK96] which only solve the untimed part.

This chapter is the result of a successful attempt to model and verify the RPC-Memory
problem with the I/O automata model [SGSL98, Lyn96, LT89, LV95, LV96, RV96]. It is
organised as follows. The remainder of this section lists the problem statement, taken from
[BL96], some notes on the problem statement and on the merits of I/O automata. Section 3.2
lists some preliminaries which are necessary for a good understanding of the specifications, as
well as the proofs. Sections 3.3 to 3.7 solve parts 1 to 5 of the problem consecutively.

27
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3.1.1 Specification problem

This section is quoted from [BL96] with permission from Springer-Verlag.

The procedure interface The problem calls for the specification and verification of a series
of components. Components interact with one another using a procedure-calling interface.
One component issues acall to another, and the second component responds by issuing a
return. A call is an indivisible (atomic) action that communicates a procedure name and a list
of arguments to the called component. A return is an atomic action issued in response to a call.
There are two kinds of returns,normal andexceptional. A normal call returns avalue (which
could be a list). An exceptional return also returns a value, usually indicating some error
condition. An exceptional return of a valuee is calledraising exception e. A return is issued
only in response to a call. There may be “syntactic” restrictions on the types of arguments and
return values.

A component may contain multipleprocesses that can concurrently issue procedure calls.
More precisely, after one process issues a call, other processes can issue calls to the same com-
ponent before the component issues a return from the first call. A return action communicates
to the calling component the identity of the process that issued the corresponding call.

A memory component The component to be specified is a memory that maintains the con-
tents of a setMemLocs of locations. The contents of a location is an element of a setMemVals.
This component has two procedures, described informally below. Note that being an element
of MemLocs or MemVals is a “semantic” restriction, and cannot be imposed solely by syntactic
restrictions on the types of arguments.

Name Read
Arguments loc : an element ofMemLocs
Return Value an element ofMemVals
Exceptions BadArg : argumentloc is not an element ofMemLocs.

MemFailure : the memory cannot be read.
Description Returns the value stored in addressloc.

Name Write
Arguments loc : an element ofMemLocs

val : an element ofMemVals
Return Value some fixed value
Exceptions BadArg : argumentloc is not an element ofMemLocs, or

argumentval is not an element ofMemVals.
MemFailure : the writemight not have succeeded.

Description Stores the valueval in addressloc.

The memory must eventually issue a return for everyRead andWrite call.
Define anoperation to consist of a procedure call and the corresponding return. The oper-

ation is said to besuccessful iff it has a normal (nonexceptional) return. The memory behaves
as if it maintains an array of atomically read and written locations that initially all contain the
valueInitVal, such that:

• An operation that raises aBadArg exception has no effect on the memory.
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• Each successfulRead(l) operation performs a single atomic read to locationl at some
time between the call and return.

• Each successfulWrite(l, v) operation performs a sequence of one or more atomic writes
of valuev to locationl at some time between the call and return.

• Each unsuccessfulWrite(l, v) operation performs a sequence of zero or more atomic
writes of valuev to locationl at some time between the call and return.

A variant of the memory component is the reliable memory component.In this component, no
MemFailure exceptions can be raised.

Problem 1 (a) Write a formal specification of the memory component and of the reliable
memory component.

(b) Either prove that a reliable memory component is a correct implementation of a memory
component, or explain why it should not be.

(c) If your specification of the memory component allows an implementation that does
nothing but raiseMemFailure exceptions, explain why this is reasonable.

Implementing the memory

The RPC component The RPC component interfaces with two environment components,
a sender and areceiver. It relays procedure calls from the sender to the receiver, and relays
the return values back to the sender. Parameters of the component are a setProcs of proce-
dure names and a mappingArgNum, whereArgNum(p) is the number of arguments of each
procedurep. The RPC component contains a single procedure:

Name RemoteCall
Arguments proc : name of a procedure

args : list of arguments
Return Value any value that can be returned by a call toproc
Exceptions RPCFailure : the call failed

BadCall : proc is not a valid name orargs is not a
syntactically correct list of arguments forproc.

Raises any exception raised by a call toproc
Description Calls procedureproc with argumentsargs

A call of RemoteCall(proc, args) causes the RPC component to do one of the following:

• Raise aBadCall exception ifargs is not a list ofArgNum(proc) arguments.

• Issue one call to procedureproc with argumentsargs, wait for the corresponding return
(which the RPC component assumes will occur) and either (a) return the value (normal
or exceptional) returned by that call, or (b) raise theRPCFailure exception.

• Issue no procedure call, and raise theRPCFailure exception.

The component accepts concurrent calls ofRemoteCall from the sender, and can have multiple
outstanding calls to the receiver.

Problem 2 Write a formal specification of the RPC component.
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The implementation A memory component is implemented by combining an RPC com-
ponent with a reliable memory component as follows. ARead or Write call is forwarded to
the reliable memory by issuing the appropriate call to the RPC component. If this call returns
without raising anRPCFailure exception, the value returned is returned to the caller. (An excep-
tional return causes an exception to be raised.) If the call raises anRPCFailure exception, then
the implementation may either reissue the call to the RPC component or raise aMemFailure ex-
ception. The RPC call can be retried arbitrarily many times because ofRPCFailure exceptions,
but a return from theRead or Write call must eventually be issued.

Problem 3 Write a formal specification of the implementation, and prove that it correctly
implements the specification of the memory component of Problem 1.

Implementing the RPC component

A lossy RPC The Lossy RPC component is the same as the RPC component except for the
following differences, whereδ is a parameter.

• TheRPCFailure exception is never raised. Instead,theRemoteCall procedure never re-
turns.

• If a call to RemoteCall raises aBadCall exception, then that exception will be raised
within δ seconds of the call.

• If a RemoteCall(p, a) call results in a call of procedurep, then that call ofp will occur
within δ seconds of the call ofRemoteCall.

• If a RemoteCall(p, a) call returns other than by raising aBadCall exception, then that
return will occur withinδ seconds of the return from the call to procedurep.

Problem 4 Write a formal specification of the Lossy RPC component.

The RPC implementation The RPC component is implemented with a Lossy RPC compo-
nent by passing theRemoteCall call through to the Lossy RPC, passing the return back to the
caller, and raising an exception if the corresponding return has not been issued after 2δ + ε
seconds.

Problem 5 (a) Write a formal specification of this implementation.
(b) Prove that, if every call to a procedure inProcs returns withinε seconds, then the

implementation satisfies the specification of the RPC component in Problem 2.

3.1.2 Notes on the problem specification

Ambiguities The informal descriptions of the memory component in Problem 1 and the RPC
component in Problem 2 are slightly ambiguous. It is not clear whether these components may
issue a failure when a bad call is received. In both cases we have chosen to allow this, because
it yields a more general specification. For the memory component this decision conforms with
the implementation proposed in Problem 3.
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Observable versus internal behaviour Problem 3 requires a proof that a composition of
components implements the memory component. The memory component can perform at
most one internal read action between call and return. The proposed implementation, however,
can do this an arbitrary (but finite!) number of times. The proof for the implementation relation
is simplified substantially if one assumes that the memory component can perform an arbitrary
number of internal read actions instead of at most one. The solution of Abadi, Lamport &
Merz [ALM96] uses such a more convenient memory component, and thus implicitly assumes
that the two memory components are observationally equivalent. We prove formally that this
assumption is correct, which requires a backward simulation proof of about four pages.

In the solution of Hooman [Hoo96] the correctness of this assumption is also proved, with
seemingly much less effort. This is due to a difference in view on executions. Hooman in-
troduces safety restrictions on the set of all possible executions. In this manner, unwanted
behaviour is avoided. His approach also allows executions with an infinite number of internal
actions between two external actions. Our executions are built in an operational manner by
concatenating states and transitions. Hence safety restrictions are posed only on single actions,
and not on executions. Besides, since each execution contains at most a countable number of
actions, there is at most a finite number of actions between any two actions. We feel that the
operational view is more natural and closer to any real-world implementation of this problem
specification.

Fairness and real time In Problem 5, a timed implementation is compared with an untimed
specification. The untimed behaviour is restricted by fairness, whereas the timed behaviour
is completely determined by timing constraints. To be able to compare these behaviours, we
defined thefair timed I/O automaton. This notion is explained in Appendix A.4.

3.1.3 Notes on the I/O automata model

Benefits I/O automata provide a natural way to describe processes with an input/output be-
haviour. Most distributed systems can be specified in this way. The specifications are highly
readable, and can be explained without too much trouble to most non-experts.

In the untimed part of our solution, simulation relations provide the major part of proofs
for implementation relations, the rest is taken care of by inclusion of fairness properties. All
these are standard ingredients of verifications with I/O automata.

Real time aspects of specifications are also captured in I/O automata quite easily. When
comparing timed specifications, simulation relations can be used to prove implementation re-
lations in a straightforward way.

Imperfections When reasoning about an I/O automaton with more than five state variables
and more than five locally controlled actions, proofs for safety properties involve an enormous
amount of tedious detail, and are prone to typos and more serious errors. The amount of paper
needed to get these proofs done in a semi-readable way is terrifying, whereas in general the
properties being proved seem so trivial and intuitively correct. However, we are not aware of
the existence of a similar formalism without this problem.

I/O automata theory lacks a proof system for fairness proofs. Many fairness proofs are
constructed in an intuitive, ad-hoc manner and thus are error prone. The construction of a
formal framework for this certainly qualifies as future research.
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Another gap in current I/O automata theory is that it is not possible to impose restrictions
on the behaviour of the environment. Especially when using timed I/O automata, one some-
times needs to assume that events controlled by the environment will occur within certain time
bounds. This is another potential benefit deserving further investigation.

What we added to the classic model A desired property of any specification with fairness
requirements is liveness (receptivity, machine closure). In the I/O automata model proposed
by Lynch & Tuttle [LT87], liveness is guaranteed for any weak fairness restriction that holds
a countable number of actions. However, the RPC-Memory problem requires strong fairness
restrictions on the behaviour of the proposed implementation of the memory component in
Problem 3. Secondly, this problem holds a parameter whose cardinality is unknown, namely
the number of calling processes for a memory or RPC component. Well-known results for
liveness with respect to fairness conditions deal with at most a countable number of fairness
sets or actions, and cannot be applied to this problem.

The desire to establish liveness for any specification with uncountably many fairness sets
has led to the invention of thefair I/O automaton [RV96]. This is a slight variant of the
I/O automaton in [LT87], and a special case of the live I/O automaton in [SGSL98] provided
that two conditions hold. These conditions require that each reachable state enables at most a
countable number of fairness sets, and that input actions do not disturb the enabledness of these
sets. In this chapter, each specification is proved to be a live I/O automaton by checking these
two conditions. To our knowledge, no other solution to the RPC-Memory problem includes
proofs of this kind.

Since endless listings of highly detailed proofs guarantee a boring story instead of a higher
degree of understanding, we have omitted unnecessary detailed proofs and replaced some by
sketches. The full formal proofs can be obtained by e-mail request.

3.2 Preliminaries

3.2.1 Fair I/O automata

The set-up of specification and verifications is as follows. All untimed specifications use the
fair I/O automata model from [RV96], which is explained in Chapter 2. The model is a gen-
eralisation from the classic model by Lynch & Tuttle [LT87], and, under two restrictions, a
special case of the live I/O automaton model by Gawlick et al. [SGSL98].

The timed specifications use thefair timed I/O automata model, which extends the timed
I/O automata model of [LV96] with an ad hoc notion of fairness in the timed setting. The basics
of this model are listed in Appendix A.4. Section 3.7 explains why we need to use fairness in
the timed setting.

3.2.2 Details on fair I/O automata

Specification Each action is indexed with the process, for which this action is performed.
Some of the state variables are also indexed with a process. The state space is roughly parti-
tioned by the value of theprogram counters, the state variablespcP. These variables keep track
of what the automaton should be doing for processP. All automata initially wait for some ac-
tion by the environment, and eachpcP has a value that expresses this waiting condition. As
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soon as input is received for processP, pcP changes accordingly, and each next input forP
is discarded (the state is not changed), ifpcP does not satisfy the waiting condition. For each
internal action, the precondition requirespcP to have a specific value in order to ensure that
the right actions are taken at the right moment. After the input for some processP has been
handled,pcP is set to the waiting condition again.

To give the values of each program counter the right meaning, we assume that the inter-
pretation of the domain of each program counter is free, in the sense that different constant
symbols are mapped to different elements in its domain (“no confusion”), and each element in
the domain is denoted by some constant symbol (“no junk”).

Presentation The following conventions are used.

• We omit the precondition of an input action (since this equalstrue by definition).

• In the effect part of transition types we omit assignments of the formx := x .

• We write if c then [z1 := f1, . . . , zk := fk ] as an abbreviation for

z1 := if c then f1 else z1

...

zk := if c then fk else zk

• We writex ∈ {A, B,C} for x=A ∨ x=B ∨ x=C, etc.

• To improve readability we often use Lamport’s list notation for conjunction or disjunc-
tion. Thus we write

∧ b1
∧ b2
...

∧ bn

for b1 ∧ b2 ∧ · · · ∧ bn .

Proofs We prove an implementation relation between two fair I/O automataA and B by
proving thatfairtraces(A) ⊆ fairtraces(B). To ease this proof, we mostly start out by proving
inclusion on the ordinary and quiescent traces ofA andB using refinements and simulations.

Since the only difference between the fair and classic I/O automata model lies in the fair-
ness properties, all results in the latter that do not concern fairness carry over to the fair I/O
automata model. This is used when proving ordinary and quiescent trace inclusion.

3.3 Specifications and verifications for Problem 1

3.3.1 Problem 1(a): Specification of two memory components

In this section, we present the formal specification of the memory component and the reliable
memory component.
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Data types We start the specification with a description of the various data types that play
a role. We assume a typed signature�1 and a�1-algebraA1 which consist of the following
components:

• a typeBool of booleans with constant symbolstrue andfalse, and a standard repertoire
of function symbols (∧,∨,¬,→), all with the standard interpretation over the booleans.
Also, we require, for all typesS in �, an equality, inequality, and if-then-else function
symbol, with the usual interpretation:

.=. : S×S→ Bool

. �=. : S×S→ Bool

if . then . else . : Bool×S×S→ S

Note the (harmless) overloading of the constants and function symbols of typeBool with
the propositional connectives used in formulas. We will frequently view boolean valued
expressions as formulas, i.e., we useb as an abbreviation ofb=true.

• a typeProcess of process identifiers. We frequently use the variableP ranging over
Process as a subscript.

• a typeMemLocs of legal memory locations.

• a typeMemVals of legal memory values, with constant symbolInitVal. None of the
memory values is equal toBadArg.

• a typeLocs of memory locations, such thatMemLocs ⊆ Locs, and a functionmemloc :
Locs→ Bool, telling us whether an element ofLocs is also an element ofMemLocs.

• a typeVals of memory values, such thatMemVals ⊆ Vals, and a functionmemval :
Vals→ Bool, telling us whether an element ofVals is also an element ofMemVals.

• a typeAck of acknowledgement values, such thatAck =MemVals ∪ {WriteOk}.
• a typeMemory of functions fromMemLocs to MemVals. We need two functions

to actually access the memory:find : Locs×Memory → MemVals and change :
Locs×Vals×Memory → Memory. These operations are fully characterised by the
axioms:

find(l,m) = if memloc(l) then m(l) else InitVal

change(l, v,m) = if memloc(l) ∧memval(v) then m′ else m

wherem′(l)=v ∧ ∀l ′ : (l ′ �= l → m′(l ′)=m(l ′))

(l, l ′ are variables of typeLocs, v is a variable of typeVals, andm,m′ are variables of
typeMemory)

• a typeMpc of program counter values of the memory component, with constant symbols
WC, R andW. The intended meaning of these constants will be explained further on in
this section.
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The memory component
We present the fair I/O automatonMemory, which models a memory component. The state
variablepcP of Memory gives the current value of the program counter of the memory compo-
nent for calling processP. Note that there are as many program counters as calling processes.
Each of them may have one of the following values:

• WC: Waiting for aREADP or WRITEP call,

• R: Reading from memory,

• W: Writing to memory.

Initially, the program counter value isWC for every processP.

Every possible action ofMemory is indexed with the process that issued the call leading to
this action. Since the state variables are also indexed in this manner (except formemory!), we
can determine in any situation what is going on for each processP.

READP andWRITEP model an incoming read or write call from a processP. They do not
change the state whenMemory is still handling a previous call from the same process. In this
case, we call the input actiondiscarded. If Memory is ready for handling an incoming call, its
state is updated according to the parameter(s) of the call.

GETP actions model an atomic read operation,PUTP actions model an atomic write oper-
ation. Reading is allowed only once between call and return, writing is allowed for an arbitrary
number of times.

A MEM FAILUREP action can occur in any ‘busy’ state.
BAD ARGP is the only action enabled if the parameters of the call from processP were not

legal.RETURNP delivers the requested memory value or a generalWriteOk acknowledgement,
afterperformedP has been set totrue by aGETP or PUTP action. The fact thatPUTP actions
are in another weak fairness set thanRETURNP andMEM FAILUREP, ensures that writing
will stop at some point.

The code forMemory is listed in Figure 3.1.

Liveness We show that fair I/O automatonMemory is a live I/O automaton in the sense of
[SGSL98]. To do this, we have to check thatMemory satisfies two conditions. After this,
Theorem 1 from [RV96] applies immediately.

The next lemma checks a restriction of one of the two conditions.

Lemma 3.1 Each reachable state inMemory enables at most finitely many locally controlled
actions.

Proof For each processP, locally controlled actions can only be enabled ifpcP �=WC. Suppose
there is an execution withn actions leading to states. Then there are at mostn processesP
such thats |= pcP �=WC, hences enables at most 5n locally controlled actions. �

Proposition 3.2 live(Memory) is a live I/O automaton.

Proof We can apply Theorem 1 in [RV96] if we can show that (1) each reachable state of
Memory enables at most countably many weak and strong fairness sets, and (2) each set in
sfair(Memory) is input resistant.



36 3 The RPC-Memory specification problem

Input: READP,WRITEP
Output: RETURNP,BAD ARGP,MEM FAILUREP
Internal: GETP,PUTP
WFair:

⋃
P{{GETP,PUTP}, {BAD ARGP,MEM FAILUREP,RETURNP}}

SFair: ∅
State Variables: pcP: Mpc

locP: Locs
valP: Vals
memory: Memory
performedP: Bool
legalP: Bool

Initial:
∧

P pcP=WC∧
l find(l,memory)=InitVal

READP(l : Locs)
Effect:

if (pcP=WC) then [locP := l
performedP := false
legalP := memloc(l)
pcP := R]

BAD ARGP
Precondition:
∧ pcP ∈ {R,W}
∧ ¬legalP

Effect:
pcP :=WC

WRITEP(l : Locs, v : Vals)
Effect:

if (pcP=WC) then [locP := l
valP := v
performedP := false
legalP := memloc(l) ∧memval(v)
pcP :=W]

MEM FAILUREP
Precondition:

pcP ∈ {R,W}
Effect:

pcP :=WC

GETP
Precondition:
∧ pcP=R
∧ legalP
∧ ¬performedP

Effect:
valP := find(locP,memory)
performedP := true

PUTP
Precondition:
∧ pcP=W
∧ legalP

Effect:
memory := change(locP, valP,memory)
performedP := true

RETURNP(a : Ack)
Precondition:
∧ pcP ∈ {R,W}
∧ performedP
∧ a=if (pcP=R) then valP else WriteOk

Effect:
pcP :=WC

Figure 3.1: Fair I/O automatonMemory
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Condition (1) is satisfied by Lemma 3.1, since each locally controlled action is in exactly
one weak fairness set. Condition (2) is trivially satisfied, since there are no strong fairness sets.
�

The reliable memory component
We present the fair I/O automatonRelMemory, which models a reliable memory component.
This component behaves exactly like the memory component, except that it can never issue a
MEM FAILURE.

Since the code forRelMemory can be obtained from the code forMemory by omitting the
MEM FAILURE action,wfair(RelMemory) becomes⋃

P{{GETP,PUTP}, {BAD ARGP,RETURNP}}

Liveness Knowing thatMemory is a live I/O automaton, it is easy to prove thatRelMemory
is also a live I/O automaton.

Proposition 3.3 live(RelMemory) is a live I/O automaton.

Proof The proof is almost identical to the proof of Proposition 3.2, since the only difference
betweenMemory andRelMemory is the absence ofMEM FAILUREP actions. �

3.3.2 Problem 1(b): RelMemory implements Memory

We show thatfairtraces(RelMemory) ⊆ fairtraces(Memory), using the properties safety and
deadlock freeness.

Safety SinceRelMemory andMemory are so very much alike, a weak refinement appears the
most natural construction for proving safety.

Theorem 3.4 The function REF, which is the identity function on state variables with the
same name, is a weak refinement fromRelMemory to Memory, with respect to the reachable
states in bothRelMemory andMemory.

Proof The requirements in [LV95] are trivially fulfilled, since REF is the identity function,
and the actions inRelMemory form a subset of those inMemory. �

Corollary 3.5 RelMemory is safe with respect toMemory.

Proof Directly from Theorem 3.4 in this chapter and Theorem 6.2 in [LV95]. �

Deadlock freeness

Theorem 3.6 For each reachable and quiescent states of RelMemory, REF(s) is a quiescent
state ofMemory.

Proof Supposes is a quiescent state ofRelMemory. Observing the preconditions ofRelMemory,
we see thats |=∧

PRelMemory.pcP=WC.
Clearly, REF(s) |=∧

PMemory.pcP=WC, hence REF(s) is quiescent. �

Corollary 3.7 RelMemory is deadlock free with respect toMemory.
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Proof By Theorems 3.4 and 3.6 we can, for each quiescent execution ofRelMemory, construct
a corresponding quiescent execution ofMemory with the same trace. �

Implementation

Theorem 3.8 RelMemory implementsMemory.

Proof We provefairtraces(RelMemory) ⊆ fairtraces(Memory).
Assume thatβ ∈ fairtraces(RelMemory). Let α be a fair execution ofRelMemory with trace
β.

If α is finite thenα is quiescent and it follows by Corollary 3.7 thatMemory has a qui-
escent execution with traceβ. Since each quiescent execution is also fair, this impliesβ ∈
fairtraces(Memory). So we may assume without loss of generality thatα is infinite.

Using the fact that REF is a weak refinement (Theorem 3.4) we can easily construct an
executionα′ of Memory with traceβ. It remains to prove thatα′ is fair.

The only case in whichα is fair butα′ is not, is obtained as follows. In a infinite suffixβ ′
of α′, for someP, MEM FAILUREP is enabled continuously, but no action from{RETURNP,

BAD ARGP,MEM FAILUREP} is performed. In this case,α must contain an infinite suf-
fix β in which no action from{RETURNP,BAD ARGP} is performed. Sinceα is weakly
fair, β is also weakly fair. Since inβ ′, MEM FAILUREP is enabled continuously, by defi-
nition of REF, inβ, the set{GETP,PUTP,RETURNP,BAD ARGP} is enabled continuously.
Since bothRETURNP and BAD ARGP, once enabled, can only be disabled by being per-
formed and since no action from{RETURNP,BAD ARGP} occurs inβ andβ is fair, the set
{RETURNP,BAD ARGP} is not enabled in any state inβ. So the set{GETP,PUTP} is enabled
continuously inβ. Since any occurrence of an action from{GETP,PUTP} enablesRETURNP,
no action from{GETP,PUTP} occurs inβ. Sinceβ is fair and{GETP,PUTP} is enabled
continuously but no action from{GETP,PUTP} is performed inβ, we have a contradiction.

The interpretation of all the other actions are equal in both automata, even with respect
to the weak fairness sets, so the weak fairness requirements forα′ are satisfied by the weak
fairness requirements forα.

SinceMemory has no strong fairness sets, the above shows thatα′ is fair. �

3.3.3 Problem 1(c): Nothing but MEM FAILUREP actions?

We can construct a very trivial automaton that implementsMemory, and does nothing but raise
MEM FAILUREP actions. It can have the same state variables asMemory, but only actions
READP, WRITEP andMEM FAILUREP. A weak refinement like REF will provide us safety
and deadlock freeness results. Such a refinement is even enough to show that this automaton
implementsMemory, since each fair execution in this automaton can be imitated by a fair
execution inMemory, using the refinement.

Is it reasonable that such an implementation is possible? Since the specification of the
memory component is presented as a black box that does not remember success nor failure, it
is reasonable to think of it as a dice, harbouring the same chances at success with every throw.
So while one can expect such a memory component to yield the right return at some time in an
infinite sequence of trials, the possibility of infinitely many failures exists and must therefore
be included in the specification we have presented here.
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3.4 Specifications and verifications for Problem 2

3.4.1 Problem 2: Specification of the RPC component

Data types We assume a typed signature�2 and a�2-algebraA2 which consist of the fol-
lowing components:

• the typeBool as defined in Section 3.3.1

• a typeNat of natural numbers

• a typeProcs of procedure names

• a typeNames, such thatProcs ⊆ Names, and a functionlegal proc : Names→ Bool,
telling us whether a given name is a legal procedure name (that is, an element ofProcs),
and a functionarg num : Names→ Nat, giving the expected number of arguments for
each name.

• a typeArgs of function arguments, and a functionnum : Args → Nat, giving the
number of actual arguments.

• a functionlegal call : Names×Args→ Bool, such thatlegal call(p, a) = legal proc(p)∧
(arg num(p)=num(a)) for eachp in Names anda in Args.

• a typeReturnVal of possible return values. All exceptions raised by remote procedure
calls are expected to be included in this type.

• a typeRpc of program counter values of the RPC component, with constant symbols
WC, IC, WR andIR.

Specification We present the fair I/O automatonRPC, which models an RPC component.
RPC stands for Remote Procedure Call. The program counters inRPCmay have one of the
following values:

• WC: Wait for remote calls from the sender

• IC: Issue a call to the receiver or an exceptional return to the sender

• WR: Wait for a return from the receiver

• IR: Issue a return (possibly exceptional) to the sender

Initially, the program counter value isWC for every processP.
The code forRPC is listed in Figure 3.2.

Liveness RPC is a live I/O automaton.

Lemma 3.9 Each reachable state inRPC enables at most finitely many locally controlled ac-
tions.

Proposition 3.10 live(RPC) is a live I/O automaton.
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Input: REM CALLP, I RETURNP
Output: I CALLP,REM RETURNP,BAD CALLP,RPC FAILUREP
WFair:

⋃
P{{I CALLP,REM RETURNP,BAD CALLP,RPC FAILUREP}}

SFair: ∅
State Variables: pcP: Rpc

procP: Names
argsP: Args
legalP: Bool
returnP: ReturnVal

Initial:
∧

P pcP=WC

REM CALLP(p : Names, a : Args)
Effect:

if (pcP=WC) then [procP := p
argsP := a
legalP := legal call(p, a)
pcP := IC]

RPC FAILUREP
Precondition:

pcP ∈ {IC, IR}
Effect:

pcP :=WC

BAD CALLP
Precondition:
∧ pcP=IC
∧ ¬legalP

Effect:
pcP :=WC

I CALLP(p : Names, a : Args)
Precondition:
∧ pcP=IC
∧ legalP
∧ p=procP
∧ a=argsP

Effect:
pcP :=WR

I RETURNP(r : ReturnVal)
Effect:

if (pcP=WR) then [pcP := IR
returnP := r ]

REM RETURNP(r : ReturnVal)
Precondition:
∧ pcP=IR
∧ r=returnP

Effect:
pcP :=WC

Figure 3.2: Fair I/O automatonRPC
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3.5 Specifications and verifications for Problem 3

3.5.1 Problem 3: Specification of the composition

Data types We reuse�1 (section 3.3.1) and�2 (section 3.4.1) to obtain a typed signature
�3 and a�3-algebra, such that:

• Read andWrite are different constants of typeProcs (and therefore also of typeNames)

• arg num(Read) = 1, andarg num(Write) = 2

• the domain ofReturnVal is equal to the domain ofAck, plus an extra constantBadArg

• for eachl, l ′ of type Locs andv, v′ of type Vals, (l) and (l, v) are elements of type
Args, (l) = (l ′) → l = l ′, (l, v) = (l ′, v′) → l = l ′ ∧ v = v′, num((l)) = 1 and
num((l, v)) = 2.

A front end for the RPC component We need another component to make the RPC com-
ponent retry a call to the reliable memory component. This component is a clerk, which can
translate incoming calls to the format accepted byRPC, and reissue such a call ifRPC should
fail. Therefore we present the fair I/O automatonClerkR, which models a front end to the RPC
componentRPC. The program counters ofClerkR are of typeRpc, and therefore have the
same possibilities as the program counters ofRPC. Initially, the program counter value isWC
for every processP.
The code forClerkR is listed in Figure 3.3.

Liveness Fair I/O automatonClerkR is a live I/O automaton.

Lemma 3.11 Each reachable state inClerkR enables at most finitely many locally controlled
actions.

Proposition 3.12 live(ClerkR) is a live I/O automaton.

Proof As before, we apply Theorem 1 in [RV96] after showing that (1) each reachable state
of RPC enables at most countably many weak and strong fairness sets, and (2) each set in
sfair(ClerkR) is input resistant.

Condition (1) is satisfied by Lemma 3.11, since each locally controlled action is in exactly
one weak fairness set.

Condition (2) relies upon the input resistance of actionMEM FAILURE. Suppose that
MEM FAILUREP is enabled in the reachable states. Clearly, s |= ClerkR.pcP=IC. If an
input actiona for P occurs ins, by definition ofClerkR the transitions a−→ s is taken, and
MEM FAILUREP is still enabled. If an input actiona for anotherP ′ occurs ins, the transition
taken does not affectClerkR.pcP. HenceMEM FAILUREP is input resistant and the second
condition is satisfied. �

Renaming component RelMemory The front endClerkR is not enough to establish the in-
tended implementation. We also need to renameRelMemory to avoid name clashing, and
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Input: READP,WRITEP,REM RETURNP,BAD CALLP,RPC FAILUREP
Output: REM CALLP,RETURNP,BAD ARGP,MEM FAILUREP
WFair:

⋃
P{{REM CALLP,RETURNP,BAD ARGP,MEM FAILUREP}}

SFair:
⋃

P{{MEM FAILUREP}}
State Variables: pcP: Rpc

procP: Names
locP: Locs
valP: Vals
failedP: Bool
returnP: ReturnVal

Initial:
∧

P pcP=WC

READP(l : Locs)
Effect:

if (pcP=WC) then [procP := Read
locP := l
failedP := false
pcP := IC]

WRITEP(l : Locs, v : Vals)
Effect:

if (pcP=WC) then [procP :=Write
locP := l
valP := v
failedP := false
pcP := IC]

REM CALLP(p : Names, a : Args)
Precondition:
∧ pcP=IC
∧ p=procP
∧ a=if (procP=Read) then (locP) else (locP, valP)

Effect:
pcP :=WR

BAD CALLP
Effect:

if (pcP=WR) then [returnP := BadArg
pcP := IR]

BAD ARGP
Precondition:

pcP=IR ∧ returnP=BadArg
Effect:

pcP :=WC

RPC FAILUREP
Effect:

if (pcP=WR) then [failedP := true
pcP := IC]

MEM FAILUREP
Precondition:

pcP=IC ∧ failedP
Effect:

pcP :=WC

REM RETURNP(r : ReturnVal)
Effect:

if (pcP=WR) then [returnP := r
pcP := IR]

RETURNP(r : ReturnVal)
Precondition:
∧ pcP=IR
∧ returnP �=BadArg
∧ r=returnP

Effect:
pcP :=WC

Figure 3.3: Fair I/O automatonClerkR
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to get the proper synchronisation. So we define a new fair I/O automatonRMemory′ 	=
rename(RelMemory), where for everyP:

rename(READP(l)) = I CALLP(Read, (l))
rename(WRITEP(l, v)) = I CALLP(Write, (l, v))
rename(RETURNP(a)) = I RETURNP(a)
rename(BAD ARGP) = I RETURNP(BadArg)
rename(x) = x otherwise

(l is a variable of typeLocs, v is a variable of typeVals, a is a variable of typeAck, andx is a
action variable)

The code forRMemory′ is listed in Figure 3.4.

Liveness It is easily shown thatRMemory′ is a live I/O automaton.

Proposition 3.13 live(RMemory′) is a live I/O automaton.

Proof Trivially, live(RMemory′) = rename(live(RelMemory)). Combining this with Theo-
rem 3.3 in this chapter and Proposition 3.23 in [SGSL98], we obtain thatlive(RMemory′) is a
live I/O automaton. �

The implementation MemoryImp is defined as the parallel composition of I/O automata
ClerkR, RPC andRMemory′, with all communication between those components hidden:

MemoryImp
	= HIDE I IN (ClerkR‖RPC‖RMemory′)

whereI
	=⋃

P{REM CALLP(p, a),REM RETURNP(r),BAD CALLP,

RPC FAILUREP, I CALLP(p, a), I RETURNP(r)
| p in Names, a in Args, r in ReturnVal}.

The behaviour ofRPCImp is illustrated in the following figure.

ClerkR RPC RMemory’
-

READ,
WRITE

�

RETURN,
BAD ARG,

MEM FAILURE

-
REM CALL

�

REM RETURN,
BAD CALL,

RPC FAILURE

-
I CALL
�

I RETURN

Liveness

Proposition 3.14 live(MemoryImp) is a live I/O automaton.

Proof (Sketch) We use Propositions 3.10, 3.12 and 3.13 in this chapter, Propositions 3.22 and
3.28 in [SGSL98], and Theorem 2 in [RV96]. �
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Input: I CALLP
Output: I RETURNP
Internal: GETP,PUTP
WFair:

⋃
P{{GETP,PUTP}, {I RETURNP}}

SFair: ∅
State Variables: pcP: Mpc

locP: Locs
valP: Vals
memory: Memory
performedP: Bool
legalP: Bool

Initial:
∧

P pcP=WC∧
l find(l,memory)=InitVal

I CALLP(Read, (l : Locs))
Effect:

if (pcP=WC) then [locP := l
performedP := false
legalP := memloc(l)
pcP := R]

I RETURNP(BadArg)
Precondition:
∧ pcP ∈ {R,W}
∧ ¬legalP

Effect:
pcP :=WC

I CALLP(Write, (l : Locs, v : Vals))
Effect:

if (pcP=WC) then [locP := l
valP := v
performedP := false
legalP := memloc(l) ∧memval(v)
pcP :=W]

GETP
Precondition:
∧ pcP=R
∧ legalP
∧ ¬performedP

Effect:
valP := find(locP,memory)
performedP := true

PUTP
Precondition:
∧ pcP=W
∧ legalP

Effect:
memory := change(locP, valP,memory)
performedP := true

I RETURNP(a : Ack)
Precondition:
∧ pcP ∈ {R,W}
∧ performedP
∧ a=if (pcP=R) then valP else WriteOk

Effect:
pcP :=WC

Figure 3.4: Fair I/O automatonRMemory′
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3.5.2 Set-up for the verification

A direct proof of trace inclusion betweenMemoryImp andMemory is not very straightforward.
This stems from the fact thatMemory can only read its memory once for every read call.
However, by the fail/retry mechanism ofMemoryImp, it is able to read multiple times for one
read call.

An intermediate automaton To show trace inclusion, we seem to need a forward backward
simulation. However, since this is rather complicated, and Theorem 4.1 in [LV95] states that
we can just as well look for an intermediate automaton, we will keep things clear by construct-
ing an intermediate automaton, which we allow to read its memory multiple times for one read
call. This intermediate automaton will be calledMemory∗, the∗ indicating the possibility of
multiple reads instead of one. The code forMemory∗ is obtained fromMemory as follows. The
precondition forGETP is weakened, and a new state variablehistP is added, in which the value
of valP is stored each time a return is issued. Figure 3.5 lists the code for fair I/O automaton
Memory∗. Boxes highlight the places where the code forMemory∗ differs fromMemory.

A forward simulation establishes trace inclusion betweenMemoryImp and Memory∗; a
backward simulation does the same forMemory∗ and Memory. The use of the new state
variableMemory∗.histP substantially simplifies the backward simulation and also makes it
image-finite.

Liveness Fair I/O automatonMemory∗ is a live I/O automaton.

Lemma 3.15 Each reachable state inMemory∗ enables at most finitely many locally con-
trolled actions.

Proposition 3.16 live(Memory∗) is a live I/O automaton.

3.5.3 Problem 3: MemoryImp implements Memory

In this section, we will first show thatMemory∗ implementsMemory, then we will show that
MemoryImp implementsMemory∗. Both results are reached via safety and deadlock freeness.
Transitivity of the implementation relation yields the desired result in Section 3.5.3.

Memory∗ implements Memory We need an invariant to show that between the previous out-
put action and the next internal action, the history variablehistP in Memory∗ is up to date with
respect tovalP for eachP.

Lemma 3.17 The following property Inv1 is an invariant ofMemory∗.
∧

P (pcP ∈ {WC,R} ∧ ¬performedP)→ valP=histP

The next invariant expresses thatMemory∗ will not read or write if it has received illegal
arguments.

Lemma 3.18 The following property Inv2 is an invariant ofMemory∗.
∧

P pcP �=WC→ (¬legalP → ¬performedP)
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Input: READP,WRITEP
Output: RETURNP,BAD ARGP,MEM FAILUREP
Internal: GETP,PUTP
WFair:

⋃
P{{GETP,PUTP}, {BAD ARGP,MEM FAILUREP,RETURNP}}

SFair: ∅
State Variables: pcP: Mpc

locP: Locs
valP: Vals
memory: Memory
performedP: Bool
legalP: Bool
histP: Vals

Initial:
∧

P pcP=WC∧
l find(l,memory)=InitVal∧
P histP=valP

READP(l : Locs)
Effect:

if (pcP=WC) then [locP := l
performedP := false
legalP := memloc(l)
pcP := R]

BAD ARGP
Precondition:

pcP ∈ {R,W} ∧ ¬legalP
Effect:

pcP :=WC
histP := valP

WRITEP(l : Locs, v : Vals)
Effect:

if (pcP=WC) then [locP := l
valP := v
performedP := false
legalP := memloc(l) ∧memval(v)
pcP :=W]

MEM FAILUREP
Precondition:

pcP ∈ {R,W}
Effect:

pcP :=WC
histP := valP

GETP
Precondition:

pcP=R ∧ legalP
Effect:

valP := find(locP,memory)
performedP := true

PUTP
Precondition:

pcP=W ∧ legalP
Effect:

memory := change(locP, valP,memory)
performedP := true

RETURNP(a : Ack)
Precondition:
∧ pcP ∈ {R,W}
∧ performedP
∧ a=if (pcP=R) then valP else WriteOk

Effect:
pcP :=WC
histP := valP

Figure 3.5: Fair I/O automatonMemory∗
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A weak backward simulation enables us to construct the behaviour ofMemory, given the be-
haviour ofMemory∗. We can start in the last state of such a sequence, and work our way back
to the beginning. The relation that induces this simulation needs to be image-finite.

Lemma 3.19 The relation BACK defined by the following formula is an image-finite relation
overrstates(Memory∗) andstates(Memory).∧

P Memory.pcP = Memory∗.pcP∧
P Memory.locP = Memory∗.locP∧
P Memory.valP = if Memory.pcP=R ∧¬Memory.performedP

thenMemory∗.histP
elseMemory∗.valP∧

P Memory.legalP = Memory∗.legalP
∧ Memory.memory = Memory∗.memory∧

P ¬Memory∗.performedP →¬Memory.performedP∧
P Memory∗.pcP �=R→ (Memory∗.performedP → Memory.performedP)

Theorem 3.20 Relation BACK is a weak backward simulation fromMemory∗ to Memory,
with respect to the reachable states inMemory∗.

Proof (Sketch) We satisfy the three requirements in [LV95], which is a bit complicated and
takes a lot of paper. The most difficult part is caused by theGET action, sinceMemory does
not always perform this action along withMemory∗. Here, the history variable ofMemory∗
proves its value. �

Corollary 3.21 Memory∗ is safe with respect toMemory.

Proof Combining Lemma 3.19 and Theorem 3.20 in this chapter with Theorem 6.2 in [LV95],
we obtain the desired result. �

Theorem 3.22 For each reachable, quiescent states of Memory∗, each stater ∈ BACK(s) is
a quiescent state ofMemory.

Proof Considering the preconditions ofMemory∗, in each quiescent states, Memory∗.pcP
must be equal toWC for everyP. For eachr ∈ BACK(s) : r |=∧

PMemory.pcP=WC, hence
r is quiescent. �

Corollary 3.23 Memory∗ is deadlock free with respect toMemory.

Proof By Theorems 3.20 and 3.22 we can construct, for each quiescent execution ofMemory∗,
a corresponding quiescent execution ofMemory with the same trace. �

Theorem 3.24 Memory∗ implementsMemory.

Proof (Sketch) Assume thatβ ∈ fairtraces(Memory∗). Letα be a fair execution ofMemory∗
with the same traceβ. If α is finite thenα is quiescent and it follows by Corollary 3.23 that
Memory has a quiescent execution with traceβ. Since each quiescent execution is also fair,
this impliesβ ∈ fairtraces(Memory). So we may assume without loss of generality thatα is
infinite.

Using the fact that BACK is a weak image-finite backward simulation (see Lemma 3.19,
Theorem 3.20), we can easily construct an executionα′ of Memory with traceβ. It remains to
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prove thatα′ is fair.
We need to show thatα′ must be infinite. Again, theGETP action causes trouble, since

Memory does not always perform it whenMemory∗ does. However, fairness helps us establish
the fact thatMemory∗ cannot perform infinitely manyGETP actions forP, without performing
other actions forP in between. SinceMemory imitates each of these other actions, the infinity
of α′ is inevitable.

Using the above, the fairness ofα′ is satisfied quite trivially because of three facts. Firstly,
wfair(Memory) = wfair(Memory∗) andsfair(Memory) = sfair(Memory∗) = ∅. Secondly, if
a weak fairness set is not enabled inMemory∗, it is certainly not enabled inMemory. Thirdly,
infinitely many occurrences of actiona in α cause infinitely many occurrences ofa in α′. �

MemoryImp implements Memory∗

Invariants The following list of invariants is rather dull. They are necessary for ensuring
that the arguments of an incoming call are transmitted properly among the components of
MemoryImp, and no component will act before it receives permission to do so.

ComponentRPC will remain quiescent until a request is issued by componentClerkR:

Lemma 3.25 The following property Inv3 is an invariant ofMemoryImp.
∧

P ClerkR.pcP �=WR→ RPC.pcP=WC

ComponentRMemory′ will remain quiescent until a request is issued by componentRPC:

Lemma 3.26 The following property Inv4 is an invariant ofMemoryImp.
∧

P RPC.pcP �=WR→ RMemory′.pcP=WC

ComponentClerkR only handles read or write calls:

Lemma 3.27 The following property Inv5 is an invariant ofMemoryImp.
∧

P ClerkR.pcP �=WC→∨∧ ClerkR.procP=Read
∧ ∃l : ClerkR.locP=l
∨ ∧ ClerkR.procP=Write
∧ ∃l : ClerkR.locP=l
∧ ∃v : ClerkR.valP=v

ComponentRPC receives the same calls and arguments fromClerkR, asClerkR received from
the environment:

Lemma 3.28 The following property Inv6 is an invariant ofMemoryImp.
∧

P RPC.pcP �=WC→∧ RPC.procP=ClerkR.procP
∧ RPC.argsP= if ClerkR.procP=Read

then (ClerkR.locP)

else (ClerkR.locP,ClerkR.valP)

ComponentRPC only receives read or write calls:
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Corollary 3.29 The following property Inv7 is an invariant ofMemoryImp.
∧

P RPC.pcP �=WC→∨ RPC.procP=Read∧ ∃l : RPC.argsP=(l)
∨ RPC.procP=Write∧ ∃l, v : RPC.argsP=(l, v)

Proof Directly from invariants Inv3, Inv5 and Inv6. �

SinceRead andWrite are proper procedure names, andRPC receives no other procedure calls,
the actionBAD CALLP is never enabled:

Corollary 3.30 The following property Inv8 is an invariant ofMemoryImp.
∧

P ¬enabled(BAD CALLP)

If RMemory′ is busy, it is by request ofRPC, and the arguments have been transmitted properly:

Lemma 3.31 The following property Inv9 is an invariant ofMemoryImp.
∧

P RMemory′.pcP=R →∧ RPC.pcP=WR
∧ RPC.procP=Read
∧ RPC.argsP=(l)→ RMemory′.locP=l∧

P RMemory′.pcP=W→∧ RPC.pcP=WR
∧ RPC.procP=Write
∧ RPC.argsP=(l, v)→ ∧ RMemory′.locP=l

∧ RMemory′.valP=v
RPC can only issue a return toClerkR, following a (possibly exceptional) return byRMemory′,
and the return value is transmitted properly:

Lemma 3.32 The following property Inv10 is an invariant ofMemoryImp.
∧

P RPC.pcP=IR→∨∧ RMemory′.performedP
∧ RPC.returnP= if RPC.procP=Read

then RMemory′.valP
else WriteOk

∨ ∧ ¬RMemory′.legalP
∧ RPC.returnP=BadArg

Inv11 states the same result as Inv10, for componentClerkR:

Lemma 3.33 The following property Inv11 is an invariant ofMemoryImp.
∧

P ClerkR.pcP=IR→∨∧ RMemory′.performedP
∧ ClerkR.returnP= if ClerkR.procP=Read

then RMemory′.valP
else WriteOk

∨ ∧¬RMemory′.legalP
∧ ClerkR.returnP=BadArg

RMemory′.legalP behaves just like we expect it to, as long asRMemory′ is busy:

Lemma 3.34 The following property Inv12 is an invariant ofMemoryImp.
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∧
P RMemory′.pcP=R → RMemory′.legalP=memloc(RMemory′.locP)∧
P RMemory′.pcP=W→ RMemory′.legalP=∧memloc(RMemory′.locP)

∧memval(RMemory′.valP)

RMemory′.legalP is not changed afterRMemory′ returns toRPC:

Lemma 3.35 The following property Inv13 is an invariant ofMemoryImp.∧
P RPC.pcP∈{WR, IR} ∨ ClerkR.pcP=IR
→∨∧ ClerkR.procP=Write

∧ RMemory′.legalP=∧memloc(ClerkR.locP)

∧memval(ClerkR.valP)
∨ ∧ ClerkR.procP=Read
∧ RMemory′.legalP=memloc(ClerkR.locP)

Memory∗.legalP behaves just like we expect it to, as long asMemory∗ is busy:

Lemma 3.36 The following property Inv14 is an invariant ofMemory∗.∧
P pcP=R → legalP=memloc(locP)∧
P pcP=W→ legalP=memloc(locP) ∧memval(valP)

Safety We use a weak forward simulation, instead of a weak refinement. In fact, a weak
refinement does not exist fromMemoryImp to Memory∗. SupposeClerkR receives a read call
for P for the first time, andMemoryImp transits to states. Memory∗ imitates this step, and
ends up in an image state ofs with Memory∗.performedP equal tofalse. SupposeClerkR
forwards the call toRPC, which forwards it toRMemory′. SupposeRMemory′ performs some
reading activity. We can only ensure thatMemory∗ returns the same value asRMemory′ if they
read and write simultaneously. So in the image state ofs, Memory∗.performedP must befalse.
Suppose after this reading activity,RPC returns a fail toClerkR. This may lead to the same
states again. However,Memory∗ has imitated the read actions performed byRMemory′, and
Memory∗.performedP must therefore betrue. So a refinement should maps onto a state in
which Memory∗.performedP is bothtrue andfalse, which is a contradiction.

Theorem 3.37 The relation SIM defined by the following formula is a weak forward simula-
tion from MemoryImp to Memory∗, with respect to the reachable states in bothMemoryImp
andMemory∗.

∧
P Memory∗.pcP = if ClerkR.pcP=WC

then WC
else if ClerkR.procP=Read then R else W∧

P Memory∗.locP = ClerkR.locP
∧ Memory∗.memory = RMemory′.memory∧

P ClerkR.procP=Write→ Memory∗.valP=ClerkR.valP∧
P RMemory′.performedP ∧ ∨ RPC.pcP∈{WR, IR}

∨ ClerkR.pcP=IR
→∧Memory∗.performedP
∧Memory∗.valP=RMemory′.valP
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Proof (Sketch) We use the following property.
For each two reachable statess in MemoryImp, r in Memory∗:

r, s |=∧
P Memory∗.pcP=R →Memory∗.legalP=memloc(ClerkR.locP)∧
P Memory∗.pcP=W→Memory∗.legalP=∧memloc(ClerkR.locP)

∧memval(ClerkR.valP)

This follows directly from Inv5, Inv14 and the definition of SIM. Using this property, and the
invariants Inv3, Inv5, Inv6, Inv8, Inv9, Inv11 and Inv13, the proof is obtained by fulfilling the
two requirements in [LV95] in a straightforward manner. �

Corollary 3.38 MemoryImp is safe with respect toMemory∗.

Proof Directly from theorem 3.37 and Theorem 6.2 in [LV95]. �

Deadlock freeness In order to establish thatMemoryImp is deadlock free with respect to
Memory∗, we need an additional invariant. It expresses that as long asClerkR is waiting for a
return,RPC is busy. Likewise, ifRPC is waiting for a return,RMemory′ is busy.

Lemma 3.39 The following property Inv15 is an invariant ofMemoryImp.

∧
P ClerkR.pcP=WR→ RPC.pcP �=WC∧
P RPC.pcP=WR → RMemory′.pcP∈{R,W}

Theorem 3.40 For each reachable and quiescent states of MemoryImp, each reachable state
r ∈ Memory∗ such thatr, s |= SIM is a quiescent state ofMemory∗.

Proof (Sketch) From the action types ofMemoryImp and Inv15, we see thatMemoryImp is
quiescent in states iff s |= ClerkR.pcP=WC. Sincer, s |= SIM, obviouslyr |= Memory∗.pcP
=WC, hencer is quiescent. �

Corollary 3.41 MemoryImp is deadlock free with respect toMemory∗.

Proof By Theorems 3.37 and 3.40 we can construct for each quiescent execution ofMemory-
Imp, a corresponding quiescent execution ofMemory∗ with the same trace. �

Theorem 3.42 MemoryImp implementsMemory∗.

Proof (Sketch) We provefairtraces(MemoryImp) ⊆ fairtraces(Memory∗).
Assume thatβ ∈ fairtraces(MemoryImp). Let α be a fair execution ofMemoryImp with
traceβ. If α is finite thenα is quiescent and it follows by Corollary 3.41 thatMemory∗ has
a quiescent execution with traceβ. Since each quiescent execution is also fair, this implies
β ∈ fairtraces(Memory∗). So we may assume without loss of generality thatα is infinite.

Using the fact that SIM is a weak forward simulation (Theorem 3.37) we can easily con-
struct an executionα′ of Memory∗ with the same traceβ. It remains to prove thatα′ is fair.

First we show thatα′ is infinite. Then we observe that each non-discarded call toMemory-
Imp will lead to a return within a finite number of steps. Using these two facts, we can easily
show for each class inwfair(Memory∗), thatα′ satisfies the requirements for weak fairness.
Sincesfair(Memory∗) is empty, this is enough to show thatα′ is fair. �
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The main result

Theorem 3.43 MemoryImp implementsMemory.

Proof Theorems 3.24, 3.42 yieldfairtraces(MemoryImp) ⊆ fairtraces(Memory). �

3.6 Specifications for Problem 4

3.6.1 Problem 4: Specification of a lossy RPC

The lossy RPC is a timed component whose behaviour is similar to the behaviour of the RPC
component from section 3.4.1.

The difference between timed and untimed I/O automata is that time-passage is made ex-
plicit by the actionTIME, and that the fairness constraints are translated into timing restric-
tions. However, we will see in Section 3.7 that fairness restrictions are still needed for a timed
I/O automaton. To avoid comparing different types of timed I/O automata, all specifications
are in the format of thefair timed I/O automaton. Brief introductions to ordinary and fair timed
I/O automata are given in Appendices A.3 and A.4.

Data types We reuse the ingredients of�2 andA2, given in section 3.4.1, and add the data
typeTime to obtain a typed signature�4 and a�4-algebraA4. Time is the setR+ of nonnega-
tive real numbers, with the usual interpretation and functions for addition (+) and multiplication
(.).

We now present the fair timed I/O automatonLossy, which models a lossy RPC component.
It has a new state variableclockP for each calling process, to keep track of the time elapsed
since the last call was received from the sender, or issued to the receiver. Its behaviour is
almost equal to that of the fair I/O automatonRPC component, except that the output action
RPC FAILURE is replaced by an internal actionLOSE. After eachLOSEP action,Lossy is
ready for a new call from the sender for processP. Also a time-passing actionTIME is added.
We let time pass without bounds, except in states where a certain output action should be
issued withinδ seconds. Here we forbid time passing if it violates this bound. Clocks are only
updated in states where their value is actually used. Since all fairness restrictions have been
replaced by timing constraints, bothwfair(Lossy) andsfair(Lossy) are empty.

The code forLossy is given in Figure 3.6. Boxes highlight the places where the code differs
from the code forRPC.

3.7 Specifications and verifications for Problem 5

To model an implementation as specified, we need more than the specification ofLossy. There
has to be some sort of clerk component, that signals the need for a failure output action and
issues this failure.

SupposeLossy performs aLOSEP action. Now,Lossy.pcP = WC, and new calls from the
sender for processP can be handled. However, the clerk will wait until the 2δ + ε bound
is reached to issue the necessaryRPC FAILUREP. Before thisRPC FAILUREP, all calls for
processP should be discarded. So the clerk must also monitor the calls from the sender to
Lossy.
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Input: REM CALLP, I RETURNP
Output: I CALLP,REM RETURNP,BAD CALLP

Internal: LOSEP

WFair: ∅
SFair: ∅
State Variables: pcP: Rpc

procP: Names
argsP: Args
legalP: Bool
returnP: ReturnVal
clockP: Time

Initial:
∧

P pcP=WC

REM CALLP(p : Names, a : Args)
Effect:

if (pcP=WC) then [procP := p
argsP := a
legalP := legal call(p, a)
pcP := IC
clockP := 0 ]

LOSEP
Precondition:

pcP∈{IC, IR}
Effect:

pcP :=WC

BAD CALLP
Precondition:
∧ pcP=IC
∧ ¬legalP

Effect:
pcP :=WC

I CALLP(p : Procs, a : Args)
Precondition:
∧ pcP=IC
∧ legalP
∧ p=procP
∧ a=argsP

Effect:
pcP :=WR

I RETURNP(r : ReturnVal)
Effect:

if (pcP=WR) then [pcP := IR
returnP := r

clockP := 0 ]

REM RETURNP(r : ReturnVal)
Precondition:
∧ pcP=IR
∧ r=returnP

Effect:
pcP :=WC

TIME(t : Time)
Precondition:∧

P pcP∈{IC, IR} → clockP + t < δ
Effect:

for P in {Q | pcQ ∈ {IC, IR}}
do clockP := clockP + t

Figure 3.6: I/O automatonLossy
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3.7.1 Problem 5(a): The RPC implementation RPCImp

Data types We reuse the ingredients of�4 andA4, given in Section 3.6.1, and add the data
typeCpc to obtain a typed signature�5 and�5-algebraA5. Cpc contains the constantsWC,
IC andWR. Note that the domain ofCpc is included in the domain ofRpc.

Specification We will now present the fair timed I/O automatonClerkL, which models a
clerk for the lossy RPC componentLossy.

ClerkL catches eachREM CALL from the sender. If it is ready for an incoming call, then
this call is forwarded withPASS to Lossy. At the moment of forwarding, a clock is started
to check the response time ofLossy. If ClerkL is busy, incoming calls are discarded.ClerkL
signals all output actions fromLossy, to ensure that, whenever the 2δ + ε bound is reached,
the correspondingRPC FAILUREP is really needed. To signal the 2δ + ε bound,ClerkL has
a clock for each processP. Time action may pass without bounds, except when the clerk is
waiting for a return fromLossy, or when an incoming call should be forwarded. In the last
case, the boundζ is used, which has no other purpose than to ensure that the call toLossy is
forwarded within some time limit. The delay of forwarding the call is not added to the response
time ofLossy.

The code forClerkL is listed in Figure 3.7.

The composition SinceREM CALL is an input action for bothLossy andClerkL, but should
only be received by the latter, we need to renameLossy:

Lossy′ 	= rename(Lossy)

where rename(REM CALLP(p, a)) = PASSP(p, a)
rename(x) = x otherwise

Note that the output actionsBAD CALL, I CALL andREM RETURN should be received by
bothClerkL and the environment. The only output action which must be hidden isPASS.

The implementationRPCImp is defined as follows:

RPCImp
	= HIDE (

⋃
P

{PASSP}) IN (ClerkL‖Lossy′)

The behaviour ofRPCImp is illustrated in the following figure.

ClerkL Lossy’
-REM CALL

�
RPC FAILURE

-PASS -I CALL
�

I RETURN

� �

�

?

� �
6�

BAD CALL,
REM RETURN
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Input: REM CALLP,BAD CALLP, I CALLP,REM RETURNP
Output: PASSP,RPC FAILUREP
WFair: ∅
SFair: ∅
State Variables: pcP: Cpc

procP: Names
argsP: Args
callP: Bool
clockP: Time

Initial:
∧

P pcP=WC

REM CALLP(p : Names, a : Args)
Effect:

if (pcP=WC) then [pcP := IC
procP := p
argsP := a
clockP := 0]

PASSP(p : Names, a : Args)
Precondition:
∧ pcP=IC
∧ p=procP
∧ a=argsP

Effect:
pcP :=WR
callP := false
clockP := 0

BAD CALLP
Effect:

pcP :=WC

I CALLP(p : Procs, a : Args)
Effect:

callP := true

REM RETURNP(r : ReturnVal)
Effect:

if (pcP=WR ∧ (clockP < 2δ+ε))
then [pcP :=WC]

RPC FAILUREP
Precondition:
∧ pcP=WR
∧ clockP=2δ+ε

Effect:
pcP :=WC

TIME(t : Time)
Precondition:∧

P pcP=IC→ clockP+t < ζ∧
P pcP=WR→ clockP+t ≤ 2δ+ε

Effect:
for P in {Q | pcQ∈{IC,WR}}
do clockP := clockP+t

Figure 3.7: Timed I/O automatonClerkL
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Note that in the behaviour ofRPCImp, the following scenario is included.ClerkL issues a
RPC FAILUREP andLossy′ issues aREM RETURNP for a call from processP, that is, one
call leads to two returns. This situation arises whenever the receiver takes too long before
returning a procedure call toLossy′. However, since the specification is only required to im-
plement specificationRPC under the assumption that eachI CALL from Lossy′ is followed by
a I RETURN within ε seconds, this situation is excluded from the desired behaviour.

3.7.2 Problem 5(b): RPCImp implements RPC

At this point we have an implementationRPCImp with real-time aspects, and an untimed
specificationRPC. To be able to compare these, we can add time toRPC and prove admissible
trace inclusion. Since we already specified all components as fair timed I/O automata, we are
able to keep the weak and strong fairness sets inRPC.

The timed I/O automatonTimeRPC combines the code forRPC with the actionTIME(t :
Time). The precondition ofTIME is true, the effect is empty (no state variables change).

If we could prove that each fair admissible trace ofRPCImp is in the intersection of the
admissible traces and fair timed traces ofTimeRPC, we would be done. However, we still
need to formalise the restriction on the environment, namely that the receiver will return each
forwarded procedure-call withinε seconds.

Since there is no straightforward way to express this type of restrictions in I/O automata
theory, we choose to specify a very general receiver by means of the fair timed I/O automaton
Rec. Rec returns some answer for each call fromLossy′ within ε seconds.
Now, RPCImp implementsTimeRPC if the behaviour ofRPCImp is included in the fair be-
haviour ofTimeRPC, provided that both are communicating with the receiverRec.

The code forRec is listed in Figure 3.8.

A new implementation and specification For the new implementation and specification, we
take two copies ofRec, and call themRecLossy andRecRPC.
The composition for the implementation is

Imp
	= HIDE I IN (RPCImp‖RecLossy)

whereI
	=⋃

P {IC(p, a), IR(r) | p in Names, a in Args, r in ReturnVal}.

The composition for the specification is

Spec
	= HIDE I IN (TimeRPC‖RecRPC)

whereI
	=⋃

P {IC(p, a), IR(r) | p in Names, a in Args, r in ReturnVal}.

Note that each discrete action inSpec is persistent, and that each admissible execution of
Imp is fair. Using these two facts, the implementation relation is proved by the inclusion

t-traces(Imp) ⊆ (t-traces(Spec) ∩ fair-t-traces(Spec))

First we provet-traces(Imp) ⊆ t-traces(Spec), by means of a weak refinement, and then
t-traces(Imp) ⊆ fair-t-traces(Spec).
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Input: I CALLP
Output: I RETURNP
WFair: ∅
SFair: ∅
State Variables: busyP: Bool

clockP: Time
Initial:

∧
P ¬busyP

I CALLP(p : Procs, a : Args)
Effect:

if ¬busyP then [clockP := 0
busyP := true]

I RETURNP(r : ReturnVal)
Precondition:

busyP
Effect:

busyP := false

TIME(t : Time)
Precondition:∧

P busyP → clockP + t < ε
Effect:

for P in {Q | busyQ}
do clockP := clockP + t

Figure 3.8: Timed I/O automatonRec

In the remainder, we will mostly reason about ‘sampling’ executions instead of timed ex-
ecutions. Since Lemmas 2.11 - 2.13 in [LV96] state that both induce the same set of timed
traces, and we only consider inclusion on sets of traces, this does not make a difference.

Admissible trace inclusion Some invariants are needed to enable the use of a weak timed
refinement. The first one states that in the particular states, no clocks violate their bounds.

Lemma 3.44 The following property InvT1 is an invariant ofImp:
∧

P ClerkL.pcP=IC → (ClerkL.clockP<ζ)∧
P ClerkL.pcP=WR → (ClerkL.clockP≤2δ+ε)∧
P Lossy′.pcP∈{IC, IR} → (Lossy′.clockP<δ)∧
P Lossy′.pcP=WR → (RecLossy.clockP<ε)

The next invariant states that all components synchronise in some way, which is reflected
in their program counters and clocks. The formula looks rather complicated, but readability
cannot be improved by splitting it into smaller pieces. This is due to the precondition of action
RPC FAILURE.

Lemma 3.45 The following property InvT2 is an invariant ofImp:
∧

P Lossy′.pcP �=WC→ ClerkL.pcP=WR∧
P Lossy′.pcP=WR↔ RecLossy.busyP∧
P Lossy′.pcP=IC → (ClerkL.clockP=Lossy′.clockP)∧
P Lossy′.pcP=WR→ (ClerkL.clockP<RecLossy.clockP+δ)
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∧
P Lossy′.pcP=IR → (ClerkL.clockP<Lossy′.clockP+δ+ε)

WheneverLossy′ or ClerkL is ready to issue a return to the sender, the other of the two is not
doing something unexpected.

Corollary 3.46 The following property InvT3 is an invariant ofImp:
∧

P enabled(BAD CALLP) → ClerkL.pcP=WR∧
P enabled(RPC FAILUREP)→ Lossy′.pcP=WC∧
P enabled(REM RETURNP)→∧ ClerkL.pcP=WR

∧ (C.clockP<2δ+ε)
ClerkL records every call fromLossy′ to RecLossy correctly.

Lemma 3.47 The following property InvT4 is an invariant ofImp:
∧

P Lossy′.pcP=IC →¬ClerkL.callP∧
P Lossy′.pcP∈{IR,WR} → ClerkL.callP

Lossy′ does not unexpectedly change its state variables.

Lemma 3.48 The following property InvT5 is an invariant ofLossy’:
∧

P pcP �=WC→ legalP=legal call(procP, argsP)

Lossy′ andClerkL agree on the arguments of the last call.

Lemma 3.49 The following property InvT6 is an invariant ofImp:
∧

P Lossy′.pcP �=WC→∧ Lossy′.procP=ClerkL.procP
∧ Lossy′.argsP=ClerkL.argsP

Corollary 3.50 The following property InvT7 is an invariant ofImp:
∧

P Lossy′.pcP �=WC
→ Lossy′.legalP=legal call(ClerkL.procP,ClerkL.argsP)

Weak refinement The weak timed refinement does not look very straightforward. This is
due to the possibility ofLossy′ to LOSE every now and then. If this happens, the program
counter value inTimeRPC suddenly relies on the information inClerkL.

Theorem 3.51 The function TREF, which is defined by the identity function on variables
with the same name fromRecLossy to RecRPC and by the following formula, is a weak timed
refinement fromImp to Spec, with respect to the reachable states inImp andSpec.

∧
P TimeRPC.pcP = if Lossy′.pcP �=WC

then Lossy′.pcP
else if ClerkL.pcP∈{WC, IC}

then ClerkL.pcP
else if ClerkL.callP

then IR
else IC
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∧
P TimeRPC.procP = ClerkL.procP∧
P TimeRPC.argsP = ClerkL.argsP∧
P TimeRPC.legalP = legal call(ClerkL.procP,ClerkL.argsP)∧
P TimeRPC.returnP = Lossy′.returnP

Proof (Sketch) Using the invariants, this is not too hard. We simply check the requirements in
[LV96]. �

Corollary 3.52 t-traces(Imp) ⊆ t-traces(Spec)

Proof Directly from Theorem 3.51 in this chapter and Theorem 8.2 in [LV96]. �

Fairness is preserved We prove that eachREM CALL to Imp leads to a return (BAD CALL,
REM RETURN or RPC FAILURE) within bounded time.

Lemma 3.53 Let α = s0a1s1a2s2 . . . be an admissible execution ofImp.
Thenai = REM CALLP andsi−1 |= pcP=WC implies that there is somej such thatj > i ,
a j ∈ {BAD CALLP,REM RETURNP,RPC FAILUREP}, and the sum of time elapsing be-
tweensi−1 ands j is bounded.

Proof First we observe that all discrete actions inImp are persistent. This is easily checked by
examining the effect ofTIME, the preconditions of the discrete actions and invariant InvT1.

Supposeα = s0a1s1a2s2 . . . is an admissible execution ofLossy’,
ai = REM CALLP andsi−1 |= pcP=WC.

Clearly,si |= pcP=IC ∧ clockP=0. So eithersi enablesTIME, BAD CALLP andLOSEP

or si enablesTIME, I CALLP andLOSEP. By persistency, InvT1, InvT2 and the action types
we know that idling after statesi can only disableTIME, but not enable other discrete actions.
Sinceα is admissible, time must pass without bound. So within bounded time, one of the
discrete actions mentioned must be performed:

∃k : ∧ k > i
∧ ak ∈ {BAD CALLP, I CALLP,LOSEP}
∧ the sum of time elapsing betweensi−1 andsk is bounded

Take such ak.

1. Supposeak = BAD CALLP. The lemma is fulfilled.

2. Supposeak = I CALLP.
Thensk |= RecLossy.busyP∧RecLossy.clockP=0, sosk enablesI RETURNP andTIME.
As before, idling after statesk can only disableTIME, but not enable other discrete
actions. So within bounded time,I RETURNP must be performed:

∃l : ∧ l > k
∧ al = I RETURNP
∧ the sum of time elapsing betweensk andsl is bounded

Take such anl.
We know thatsl |= Lossy′.pcP=IR ∧ Lossy′.clockP=0 andsl enablesREM RETURNP,
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LOSEP andTIME. Again we see that within bounded time,REM RETURNP or LOSEP
must be performed:

∃m : ∧ m > l
∧ am ∈ {REM RETURNP,LOSEP}
∧ the sum of time elapsing betweensl andsm is bounded

Take such anm.

(a) Supposeam = REM RETURNP. The lemma is fulfilled.

(b) Supposeam = LOSEP. We know thatm > l > k > i , so Case 3 applies.

3. Supposeak = LOSEP.
Thensk |= ClerkL.pcP=WR∧Lossy′.pcP=WC. Nowsk enables onlyTIME, but idling is
only allowed up to (and not beyond!) the state that enablesRPC FAILUREP. So within
bounded time,RPC FAILUREP must be performed:

∃l : ∧ l > k
∧ al = RPC FAILUREP

∧ the sum of time elapsing betweensk andsl is bounded

The lemma is fulfilled.

�

Theorem 3.54 t-traces(Imp) ⊆ fair-t-traces(Spec)

Proof Supposeβ is a timed trace ofImp, andα = s0a1s1a2s2 . . . is an admissible execu-
tion of Imp such thatt-trace(α) = β. Using the fact that TREF is a weak timed refine-
ment (Theorem 3.51), we can easily construct an admissible executionα′ of Spec such that
t-trace(α′) = β. It remains to prove thatα′ is fair.

Initially, Lossy′.pcP=WC for each P. WheneverLossy′.pcP=WC, the first action that
changesLossy′.pcP must beI CALLP. By Lemma 3.53, we know that each occurrence of
I CALLP is followed within bounded time by a state in whichLossy′.pcP = WC. Combining
this with InvT2 and the fact thatα is admissible, we see that for eachP, α must contain in-
finitely many occurrences of states such that bothLossy′.pcP=WC andRecLossy.busyP=false.

Using the above and the fact thatα′ is admissible, we see that for eachP, α′ must contain
infinitely many occurrences of states such thatTimeRPC.pcP=WC andRecRPC.busyP=false.
Since in such a state no locally controlled actions are enabled forP, α′ must be weakly fair.
Combining this with the fact that there are no strong fairness sets inSpec, we obtain thatα′ is
fair. �



Chapter 4

A two-level approach to automated
conformance testing of

VHDL designs

Summary

For manufacturers of consumer electronics, conformance testing of embedded software is a vi-
tal issue. To improve performance, parts of this software are implemented in hardware, often
designed in the Hardware Description Language VHDL. Conformance testing is a time con-
suming and error-prone process. Thus automating (parts of) this process is essential.
There are many tools for test generation and for VHDL simulation. However, most test gener-
ation tools operate on a high level of abstraction and applying the generated tests to a VHDL
design is a complicated task. For each specific case one can build a layer of dedicated circuitry
and/or software that performs this task. It appears that the ad-hoc nature of this layer forms a
bottleneck of the testing process. We propose ageneric solution for bridging this gap: a generic
layer of software dedicated to interface with VHDL implementations. It consists of a number
of Von Neumann-like components that can be instantiated for each specific VHDL design.
This chapter reports on the construction of and some initial experiences with a concrete tool
environment based on these principles.

4.1 Introduction

As is well-known, the software embedded in consumer electronics is becoming increasingly
voluminous and complex. Accordingly, testing the software takes up an increasing part of the
product development process – and hence of the costs of products. Therefore, Philips considers
automating (parts of) the test process a vital issue.

More and more, manufacturers of consumer electronics do not completely develop the
software themselves but import parts from other manufacturers. To guarantee well-functioning
and interoperability of these parts, it is essential that they are tested for functional confor-
mance w.r.t. internationally agreed standards. Therefore, testing efforts in this area concentrate
on functional conformance testing (see [Hol91, ISO91, Kni93] for testing terminology and
methodology).

61
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To optimise performance (in terms of speed or bandwidth), the lower layers of protocol
stacks are often implemented directly in hardware. Testing these layers would imply hardware
testing. However, Philips is interested in detecting design errorsbefore implementation in
silicon, which would mean testing hardwaredesigns rather than their implementations.

Nowadays, hardware is designed using internationally standardised Hardware Description
Languages. Testing a design then is testing a program in the description language at hand.
Among the Hardware Description Languages, VHDL [IEE93] is prominent.

There are many tools for test generation on the one hand and VHDL simulation, analysis
and synthesis on the other hand. Moreover a lot of effort is put into extending and refining
these tools. Ideally, therefore, the testing process could be automated by generating tests with
a test generation tool, and then executing these tests using a simulation tool. However, most
test generation tools expect behaviour to be modelled in clean-cut events with a high level
of abstraction. Applying such tests to a VHDL design whose interface behaviour consists of
complex patterns of signals on ports is by no means a trivial task. Now, it is always possible to
solve this problem by adding a layer of dedicated circuitry and/or software to bridge the gap
between low-level events and high-level events, but it appears that the ad-hoc nature of this
dedicated circuitry and software forms one of the bottlenecks of the testing process.

We propose ageneric solution for bridging the gap between generating tests on the abstract
level and executing tests on the simulation level. This makes it possible for each of the two
different tasks (test generation and test execution) to be performed at the appropriate level
within one test trajectory, with a higher degree of automation. The idea is to build a generic
layer of software (written in VHDL), dedicated to interface with VHDL implementations. We
call this layer thetest bench. It consists of a number of components that fulfill various tasks:
to offer inputs to interfaces of the implementation, to observe outputs at these interfaces and to
supervise the test process. The components are Von Neumann-like in the sense that for each
specific VHDL design they are loaded with sets of instructions. These sets are compiled from
user-supplied mappings between high level and low level events and abstract test cases derived
from the specification. In order to be maximally generic, the test bench should accept tests
described in a standardised test language. In this way, any tool that complies with this test
description language can be used for test generation.

Of course, this test bench will not solve all the problems involved in interpreting abstract
tests. But by performing many of the routine (and repetitive) tasks, it enables the tester to
concentrate on the specific properties of the interface behaviour of the protocol under test.

This chapter reports on the construction of and some initial experiences with a concrete
tool environment based on these principles. This prototype tool environment is calledPhact
and has been developed at Philips Research Laboratories Eindhoven, in cooperation with CWI
Amsterdam and the universities of Eindhoven and Nijmegen. It consists of a test generation
part and a test execution part. The intermediate language between the two parts is the standard-
ised test description language TTCN (Tree and Tabular Combined Notation [ISO91, Part 3]).
In the test execution part we find the test bench written in VHDL, with a front-end that accepts
TTCN test suites.

In our tool environment, test generation is done by theKPN Conformance Kit [BKKW90,
KWKK91]. This tool takes as input a specification in the form of an Extended Finite State
Machine (EFSM) and generates a TTCN test suite for the specification. TheLeapfrog tool
from [Cad] is used for VHDL simulation.
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This chapter is organised as follows. In Section 4.2, we globally describe the tool environ-
ment and the testing process it supports. Section 4.3 highlights each important step in the test
process. In Section 4.4, we describe our experiences with the use of the environment and dis-
cuss its limits. In Section 4.5, we compare our approach with other approaches for analysis of
VHDL designs. Finally, Section 4.6 gives a short account of what happened after this research
was published.

4.2 Global description of test environment and test process

In this section, we give an overview of the tool environment and the testing process it sup-
ports. The next section treats some interesting aspects in more detail. We begin with a short
digression onfunctional conformance testing.

Conformance testing aims to check that an implementation conforms to a specification.
Functional conformance testing only considers the external (input/output) behaviour of the
implementation. Often the implementation is given as ablack box with which one can only
interact by offering inputs and observing outputs.

In the theory of functional conformance testing many notions of conformance have been
proposed. The differences between these notions arise from (at least) two issues. The first issue
is the language in which the specification is described (and the (black box) implementation
is assumed to be described). Specifications can be described, e.g., by means of automata,
labelled transition systems, or by temporal logic formulas. Secondly, the differences arise
from the precise relation between implementation and specification that is required. Typically
the different conformance notions differ in the extent to which the external behaviour of the
implementation should match the specification.

Thus conformance testing always assumes a specific notion of conformance. However, for
most conformance relations, exhaustive testing is infeasible in realistically sized cases: some
kind of selection on the total test space is inevitable. So it is generally not possible to fully
establish that an implementation conforms to the specification; the selected tests rather aim
to show that the implementation approximately conforms to the specification. Conformance
then simply means: the resulting test method has detected no errors. An appropriate mixture
of theoretical considerations and practical experience should then justify this approach. This
holds in particular for the test process supported by our tool environment.

Following ISO methodology [ISO91, Kni93], the conformance test process can be divided
in the sequence of steps given in Figure 4.1.

Our prototype tool environment automates the test generation and test execution phases
and to a lesser extent the test realisation phase. It expects two inputs: the VHDL code for
the Implementation Under Test (henceforth called IUT) and the (abstract, formal) functional
specification, in the form of a deterministic Extended Finite State Machine (EFSM). From the
EFSM specification abstract test cases are derived. These test cases are translated to the VHDL
level and executed on the IUT. The history of the test execution is written to a log file and the
analysis phase just consists of inspecting this file and the verdicts it contains.

Note that the EFSM is required to be deterministic. We believe that the restriction to
deterministic machines is not a real restriction since we are mostly interested in testing a single
deterministic VHDL implementation.
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functional specification

?

1. test generation

abstract test cases

?

2. test realisation

executable test cases

?

3. test execution

test results log

?

4. test analysis

conformance verdict

Figure 4.1: Global conformance testing process

The tool environment consists of two parts, taking care of test generation and test execu-
tion, respectively. Each one contains an already existing tool. Test generation is done by the
Conformance Kit, developed by Dutch PTT Research [BKKW90, KWKK91]. When given an
EFSM as input, this tool returns a test suite for this EFSM in TTCN notation. The user can to a
certain extent determine the parts of the EFSM that are tested and the particular test generation
method used. We elaborate on this in Section 4.3.1.

The test cases in the test suite are applied to the IUT by atest bench, which is, like the
IUT, written in VHDL. The Leapfrog tool from [Cad] simulates the application of the test
suite to the IUT using the test bench. Thus testing an IUT here means: simulating it together
with the test bench. The test bench, which is described in more detail in Section 4.3.3 and in
[Sie96], consists of several components connected by abus: the stimulators, theobservers,
and thesupervisor take care of feeding input to the IUT, observing output from the IUT, and
coordinating the test cases and handing out the verdict, respectively. The test bench has been
designed generically and only needs to be instantiated for each particular IUT.

Compilers connect the test generation part, the output of which is in TTCN notation, to the
test execution part, the input of which must be readable for VHDL programs. There are three
compilers, one for each type of component of the test bench. The compiler for the supervisor
translates the TTCN test suite to an executable format. The compilers for the stimulators
and observers map abstract events from the EFSM to patterns of bit vectors at the VHDL
level. They require user-supplied translations (comparable to PIXITs in ISO terminology).
Section 4.3.2 discusses this in more detail.

Given an IUT written in VHDL and a specification or standard to test against, the global
test set-up from Figure 4.1 leads in our setting to the following sequence of steps, also depicted
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Figure 4.2: Overview of the test trajectory usingPhact

in Figure 4.2:

0. (Manual) Write an abstract specification EFSM of the IUT.

1. (Automatic) Use the Conformance Kit to derive a test suite for this EFSM, specifying
which parts of the EFSM must be tested and what test generation method must be used.

2. (a) (Automatic) Compile the test suite to the executable format for the supervisor.

(b) (Manual) Define translations between abstract events and patterns of bit vectors (in
Figure 4.2 called PIXITs).

(c) (Automatic) Compile the translations to input files for the stimulator and observer,
respectively.

(d) (Manual) Instantiate the test bench as appropriate for the IUT. That is: enter the
number of stimulator/observer pairs, the precise name and location of the compiled
translation files, etc.

3. (Automatic) Run the Leapfrog tool on the instantiated test bench together with the IUT.

4. (Manual) Inspect the resulting conformance log file.

We end this section by remarking that the Leapfrog tool also allows the use of the Hardware
Description LanguageVerilog [IEE95]. In particular, the Leapfrog can simulate combinations
of VHDL and Verilog programs, which makes it possible to plug a Verilog program as IUT
into the VHDL test bench.

4.3 Stepwise through the testing process

The following sections explain the consecutive steps in the testing process more thoroughly.

4.3.1 Generating tests with the Conformance Kit

The Conformance Kit consists of a collection of tools for test generation.
The Extended Finite State Machine model supported by the Kit is a slight extension of the

traditional Mealy-style FSM model. Transitions are labelled with input/output pairs, where
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input and output are treated as simultaneous events (inputs without outputs are allowed). In
addition to states and transitions, an EFSM may contain a finite set of variables that range
over the booleans or over finite, convex subsets of the integers. Transitions may modify the
values of the variables and may be guarded by simple formulas over the variables. There is
also the option to mark transitions. For instance, it often happens that certain transitions are
added to the EFSM only to make it complete. These transitions are artificial and should not be
tested. This is achieved by marking them with a certain marker and excluding all transitions
marked thus from the test generation. Finally, it is possible to specify Points of Control and
Observation (PCOs) where inputs and outputs occur. They correspond to interfaces of the IUT.

To allow for test generation, the EFSM should be deterministic. Given a deterministic
EFSM, one of the tools in the tool set builds a deterministic, trace-equivalent, and minimal
FSM (i.e., the FSM exhibits the same external behaviour as the EFSM and contains no pair of
distinct but trace-equivalent states). Test generation tools proper take this FSM as input and
return a TTCN test suite.

We highlight two of the test generation methods (for more information on test generation
methods in general we refer to [FBK+91, Hol91]).

• TheTransition Tour method. This method yields a finite test sequence (i.e., a sequence
of input/output pairs) that performs every transition of the FSM at least once. Thus it
checks whether there are no input/output errors.

• ThePartition Tour method. In addition to the previous method this method also checks
for each transition whether the target state is correct. It is similar to the UIO-method
[ADLU91, SD88] which in its turn is a variant of the classical W-method [Cho78,
Vas73]. Unlike the Transition Tour method, this method yields a number of finite test se-
quences, one for each transition of the FSM. Each one is a concatenation of the following
kinds of sequences:

– A synchronising sequence, that transfers the FSM to its (unique) start state. The-
oretically, such a sequence need not always exist. In practice however, most ma-
chines have a reset option and hence a synchronising sequence.

– A transferring sequence, that transfers the FSM from the start state to the initial
state of the transition to be tested.

– The input/output pair of the transition.

– A Unique Input/Output sequence (UIO) which verifies that the target state is correct
(that is, all other states will show different output behaviour when given the input
sequence corresponding to the UIO). If this sequence does not exist it is omitted.

Although theoretically the fault-coverage of this method is not total, not even when one
correctly estimates the number of states of the implementation [CVI89], the counter-
examples are academic and we expect that the fault coverage in practice is quite satis-
factory.

4.3.2 From abstract tests to executable tests

In the EFSM specification the input and output events of the IUT are described at a very
abstract level. For instance, a complicated pattern of input vectors, taking several clock cycles,
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Figure 4.3: An example IUT

may have been abbreviated to a single eventInput Datum 1. The abstraction is needed to
get a manageable set of meaningful tests. But when one wants to use the TTCN test suite
derived from the EFSM to execute tests on the IUT, one has to go back from the abstract level
of the EFSM to the concrete level of the VHDL implementation. This translation must be such
that the VHDL test bench knows for each abstract event exactly what input should be fed to
the IUT or what output from the IUT should be observed. For stimulators, the abstract input
events have to be translated to patterns of input bit vectors. For the observers we have to write
parser-code to recognise a pattern of output bit vectors as constituting a single abstract output
event.

These user-supplied translations may be quite involved and hence sensitive to subtle errors.
We expect that in the approach outlined here, this is the part that consumes most of the user’s
effort.

The translation is constructed in four steps:

1. All abstract events used in the EFSM are grouped per PCO in input and output event
groups.

2. All ports of the IUT are grouped into the input or output port group of one interface.
Each interface should be associated with exactly one PCO.

3. Each event of an input (output) event group at one PCO is translated to sequences of
values of the ports in the input (output) port group at the associated IUT interface. This
is done for each interface.

4. All event translations are fed to the compilers that generate code which is understood by
the test bench during simulation.

We will give a very simple example of a user-supplied translation that is input for the
observer compiler.

The IUT for which the example file is intended is a protocol that transfers data from a
Sender to a Receiver and, when successful, sends an acknowledgement back to the Sender.
For synchronisation purposes, the acknowledgement is an alternating bit. The IUT has two
interfaces (PCOs):Sender andReceiver. We consider the observer at theSender interface,
which should observe acknowledgement events. This situation is depicted in Figure 4.3.
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TheSender interface has two output ports (which are connected to the input ports of the
observer):s bit, through which the alternating bit is delivered, ands ack, through which
arrival and presence of an acknowledgement is indicated. Furthermore, the interface has two
input ports:s data, a 4 bit wide port through which theSender communicates data to the
IUT, ands reset, which has the value1 whenever theSender resets the IUT.

An acknowledgement event consists of an announcement that an acknowledgement is com-
ing, followed by the acknowledgement itself. The announcement is indicated by the signal at
s ack having the value1; the value at thes bit port is not yet relevant. Subsequently, the
acknowledgement is delivered: ports ack still carries1, and ports bit has the value0 or
1 for the alternating bit.

Now we have all information needed to construct the translation that is input for the ob-
server compiler. The translation code is given in Figure 4.4. Note that the lines preceded with
// are comments.

First, the translation contains two so-calledqualifiers, conditions that determine when the
parsing of the output of the IUT at this interface should be started or aborted. Parsing should
start when an acknowledgement is coming, so the start qualifier uses the value of thes ack
port. Parsing should be aborted whenever the IUT is reset, so the abort qualifier uses the value
of thes reset port.

Next, the event translation proper is given. Bit masks are defined to recognise individual
output bit vectors. In this case the vectors represent two one-bit ports withs bit at the first
position ands ack at the second. So maskack coming has1 for s ack, andx for s bit,
indicating that both11 and01 match here. Maskack 0 only matches whens bit is 0
ands ack is 1. Output events are defined as regular expressions over the (names for the) bit
masks. Here, the arrival of an acknowledgement is recognised by consecutive matching of the
two relevant bit masks. This two-phase definition of events reflects the way the observer parses
the output from the IUT during execution.

4.3.3 Executing tests at the VHDL level

In order to test the VHDL implementation with the generated tests, we need to execute the
VHDL implementation. Executing VHDL code means hardware simulation, for which we use
the Cadence Leapfrog tool.

When simulating a VHDL program, which models a reactive system, the program should
be surrounded by an environment that behaves – from the program’s point of view – exactly
like the environment in which the program eventually must operate. This environment should
also be able to observe whether the program is operating correctly, and to hand out verdicts
reflecting these observations. Finally, since the execution is done by VHDL simulation, the
environment itself should be programmed in VHDL too.

Creating the proper environment in VHDL is hard work. However, many tasks remain the
same when testing different IUTs. We have therefore created ageneric VHDL environment,
which can easily be instantiated to suit any IUT. The environment we created to perform these
tasks is referred to as thetest bench.

The test bench consists of three kinds of components: a supervisor, some stimulators and
some observers. The components communicate with each other by means of a bus. Figure 4.5
shows the structure of the test bench.

Each component type is dedicated to perform its particular task for any IUT. To achieve
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// Observer bit patterns for the PCO at the Sender side

// Observed ports, with number of bits:
// s_bit(1) s_ack(1)

PCO Sender

QUALIFIERS

// Start parsing output when this qualifier is true
[(:s_ack = ’1’)]

// Abort parsing when this qualifier is true
[(:s_reset = ’1’)]

MASKS

ack_coming = ’x1’
ack_0 = ’01’
ack_1 = ’11’

EVENTS

ACK_OUT_0 = ack_coming ack_0;
ACK_OUT_1 = ack_coming ack_1;

Figure 4.4: Example user-supplied translation for observer

this, each component type has its own instruction set. When plugging an IUT into the test
bench, each component is loaded with a sequence of instructions which are specific to the IUT
in question. Thus the components can be viewed as small Von Neumann machines.

In the following paragraphs we explain the task of each component type in detail. There-
after, we describe how the generic test bench is instantiated for testing a certain IUT.

The supervisor component has control over the whole test bench. It takes the generated
TTCN test suite as input, works its way through each test case and outputs a log file with the
verdict and some simulation history. While traversing a test case, it steers the stimulator and
observer components and uses a number of timers. Each test case is executed in the following
way.

When the current TTCN test case states that input should be provided to the IUT, the
supervisor notifies the stimulator at the designated interface. After the stimulator indicates that
it has completed this task, the supervisor goes on with the remainder of the test case.

When the TTCN test case states that output should be generated by the IUT, the supervisor
checks with the observer at the designated interface to see if this output has been observed. If
the output has been observed, the supervisor goes on with the remainder of the test case. If
nothing was observed, the supervisor will wait for the observer’s notification of new output
from the IUT. If output other than the desired output is observed, the TTCN code indicates
what action should be taken. The TTCN generated by the Conformance Kit typically hands
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Figure 4.5: Structure of the VHDL test bench

out the verdictfail in such a situation.
When the TTCN test case states that a verdict should be handed out, the supervisor logs

this verdict to the output file, and quits the current test case.
The other TTCN commands handled by the supervisor are timer commands. TTCN offers

the possibility to use timers for testing timing aspects of the behaviour of a system. These
timers may be started, stopped and checked for a time-out. At the start of the TTCN test
suite, all timers with their respective duration are declared. The supervisor handles these timer
instructions in the obvious way. It can instantiate any number of timers with different durations
and use them in the prescribed way.

The TTCN produced by the Conformance Kit, however, employs the timer construction in
only two ways. It uses one timer for the maximum time a test case should take. This ensures
that the test bench will not get stuck in the simulation. A second timer is used to test transitions
from the EFSM that have an input event but no output. Since no output event is specified, the
IUT should not generate one. This is tested by letting a timer run for some time, during which
the IUT should not generate output. Any output observed before the timer expires is considered
erroneous and leads to the verdictfail. The precise value to which the no-output timer should
be set is gleaned from the specification.

The stimulator component provides input to the IUT. It waits until the supervisor com-
mands it to start providing a certain abstract event, then drives the input ports of the IUT with
the appropriate signals. It has access to the user-defined translation of abstract input events to
VHDL input signals.

Theobserver component observes output from the IUT and notifies the supervisor of the
abstract events it has observed. Like the stimulator component, it has access to the user-defined
translation of VHDL output signals to abstract output events.

Observing the ports of a VHDL component and recognising certain predescribed events is
no trivial task. The observer must parse the output of the IUT such that the patterns provided
by the user are recognised. Parsing is done with the help of a parser automaton, constructed
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with the UNIX tool Lex (and the user-defined translation). The observer uses this automaton
to decide which event matches the current output. When the IUT outputs a sequence of values
that does not fit into any of the patterns, the supervisor is notified of an error using a special
error event.

The supervisor and stimulators communicate directly in a synchronous way – the supervi-
sor always waits for the stimulators to end their activity before resuming its own task – while
the supervisor and observers communicate in an asynchronous way via FIFO queues.

In order to plug an arbitrary VHDL implementation into the test bench as the current IUT,
someinstantiating has to take place. The test bench must have as many instantiations of the
observer and the stimulator component as the IUT has interfaces. These instantiations must
each be connected to the proper interface of the IUT. The IUT may need some external clock
inputs, these have to be provided with the correct speed. The supervisor must have the desired
number of timers at its disposal, as specified in the TTCN test suite. Each observer (stimulator)
must be given access to the compiled version of the user-defined translation. Likewise, the
supervisor must be given access to the compiled version of the TTCN test suite.

When these instantiating actions have been performed, the test bench is ready for simula-
tion.

4.4 Experiences

We experimented with our tool environment by running it on a small protocol example. The
protocol was derived from the Alternating Bit Protocol [BSW69], with some modifications to
test crucial features of the test bench. The features tested mostly concerned the synchronising
mechanisms in the test bench.

During the test runs, the VHDL implementation we constructed for the example protocol
proved not to conform to its abstract specification. Among other things, the toggling of the
alternating bit was not implemented correctly. Already in this small protocol, multiple errors
were detected that were subtle enough to escape a manual inspection of the VHDL code.

After conformance was shown for the corrected implementation, we modified the abstract
specification EFSM to have discrepancies the other way around. All of these were detected.

Besides this small protocol, we considered a fair-sized, more complex and industrially
relevant design. For this we selected a part of the 1394 Serial Bus Protocol, which has been
standardised in [IEE96]. The 1394 protocol implements a high speed, low cost bus that can
handle communication between video and audio equipment, computers, etc. It supports multi-
media applications, allows for “plug-and-play”, and provides data transfer rates ranging from
100 Mbit/s to 400 Mbit/s.

The experiments were not carried to completion, because of several problems encountered
along the way. We started off with a natural and abstract specification EFSM suggested by
the standard document. However, when constructing the translation from abstract events to
low-level events, we found that the interface behaviour of the implementation had a very high
degree of interleaving of input and output events at different interfaces. In fact, the low-level
representation of one abstract event often turned out to be a complete protocol in itself, involv-
ing low-level synchronisation schemas and corresponding handshake mechanisms. To enable
the test bench to deal with this behaviour, these protocols should be encoded into the stimula-
tor and observer components. Given the simple, generic set-up of the stimulator and observer
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components, this appeared to be virtually impossible. This problem was worsened by the fact
that the documentation of the protocol and the PIXIT information both lacked the degree of
precision required to construct the translation. It remains to be investigated whether the prob-
lems encountered with the complicated interface behaviour are specific to the 1394 protocol or
occur more frequently and require a refinement or extension of the test bench.

The remainder of this section is devoted to the limits of the test generation method sup-
ported by the Conformance Kit.

The EFSM specification format imposes certain restrictions. It has difficulties in modelling,
e.g., output events without an input, events occurring simultaneously at multiple interfaces,
data parameters of events, and timers. Solutions here require more research in the theory of
testing.

Regarding the Conformance Kit itself, it would be convenient if the test generation process
could be steered more directly by the user. For instance, one may want to transfer the imple-
mentation to a certain interesting state, and perform certain experiments in that state, whereas
the Kit moves in a completely autonomous way through the state space.

4.5 Related work

Our tool environment has a modular structure and integrates two well-known techniques: one
for automatic generation of TTCN test suites based on finite state machines and the other for
the simulation of VHDL hardware designs.

Prior to this research, a number of papers that employ similar techniques for analysing
VHDL designs have appeared. From these, only [GFL+96] seems to follow a similar approach
to conformance testing. When keeping the phased trajectory from Figure 4.1 in mind, the fo-
cus in [GFL+96] is on the test generation phase, the other phases are not described in detail.
The method used for test generation is quite different from the classical graph-algorithmic ap-
proach such as applied by the Conformance Kit. Model checking techniques are used to derive
the tests automatically from an FSM model of either the implementation or the specification.
To test a certain transition, a model checking tool is fed with the FSM and a query asserting
the non-existence of this transition. The tool derives a counterexample containing the path to
the transition. This path is then used as a test sequence. More general temporal formulas can
be used to direct the counterexample to check certain situations. Selection of interesting tran-
sitions is based on a ranking of state variables, as opposed to the transition marking supported
by the Kit (see Section 4.3.1). Although coverage is obtained w.r.t. the ‘interesting’ state vari-
ables, there is no measure for coverage w.r.t. exhaustive testing. It seems that theoretic support
for dealing with the state explosion problem is as much an issue for this approach, as it is for
ours.

In [HYHD95] a tool is described for exhaustive state exploration and simulation of VHDL
designs. The VHDL design is transformed into an FSM for which a transition tour is generated
(see Section 4.3.1). This tour induces a finite set of finite sequences of bit vectors which
together exercise every transition of the VHDL design. As this tool only concerns simulation,
there is no notion of conformance w.r.t. a specification, or a mechanism for automatic error
detection.

In [WH96] a tool environment is described for the automatic execution of test scripts on
VHDL components. There is no support for the automation of test script generation itself.
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Finally, there exist many tools for theverification of VHDL designs (e.g., [BBDEL96,
BJ96a, BBD+96]). Each of them maps VHDL code to some semantical domain, on which the
verification algorithms operate. It may be worthwhile to see whether our approach can benefit
from techniques used in these tools.

4.6 Later developments

Following up on this research, other projects have worked with the test environment. In 1997,
the test environment was used to test an MPEG2 decoder chip in the DIVA project [FMMW98].
In 1998, the test environment was used to test a 64 inch projection TV produced by Philips
Consumer Electronics [Hol98a, TLH+99]. Further developments and experiments are still
taking place at Philips.

After the research presented here was published, some very similar research was presented
in [KVZ98, KVZ99]. In these papers, the test generation tool TGV [FJJV96] is used to gener-
ate high-level tests which are translated and executed at the VHDL/Verilog level. The structure
of the test environment is based on three component types which seem to have the same tasks
as the supervisor, stimulator and observer in our test bench. A difference with our method
is that test generation is done on-the-fly, such that the selection of the next test step depends
on the results of executing the last test step. The test generation method is based on Lotos
[ISO89].
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Chapter 5

Exploiting symmetry in
protocol testing

Summary

Test generation and execution are often hampered by the large state spaces of the systems in-
volved. In automata (or transition system) based test algorithms, taking advantage of symmetry
in the behaviour of specification and implementation may substantially reduce the amount of
tests. We present a framework for describing and exploiting symmetries in black box test deriva-
tion methods based on finite state machines (FSMs). An algorithm is presented that, for a given
symmetry relation on the traces of an FSM, computes a subautomaton that characterises the
FSM up to symmetry. This machinery is applied to the classical W-method [Vas73, Cho78] for
test derivation. Finally, we focus on symmetries defined in terms of repeating patterns.

5.1 Introduction

It has long been recognised that for the proper functioning of components in open and dis-
tributed systems, these components have to be thoroughly tested for interoperability and con-
formance to internationally agreed standards. For thorough and efficient testing, a high degree
of automation of the test process is crucial. Unfortunately, methods for automated test gen-
eration and execution are still seriously hampered by the often very large state spaces of the
implementations under test. One of the ways to deal with this problem is to exploit structural
properties of the implementation under test that can be safely assumed to hold. In this chapter
we focus on taking advantage ofsymmetry that is present in the structure of systems. The sym-
metry, as it is defined here, may be found in any type of parameterised system: such parameters
may for example range over IDs of components, ports, or the contents of messages.

We will work in the setting of test theory based on finite state machines (FSMs). Thus,
we assume that the specification of an implementation under test is given as an FSM and the
implementation itself is given as a black box. From the explicitly given specification automaton
a collection of tests is derived that can be applied to the black box. Exploiting symmetry will
allow us to restrict the test process to subautomata of specification and implementation that
characterise these systems up to symmetry and will often be much smaller. The symmetry is

75
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defined in terms of an equivalence relation over the trace set of the specification. This definition
is inspired by symmetry-based reductions in the field of verification [AHI98, CFJ93, EJP97,
ES93, ES97, God96, GS97, ID96]. Some requirements are imposed to ensure that such a
symmetry indeed allows to find the desired subautomata. We instantiate this general framework
by focusing on symmetries defined in terms of repeatingpatterns. Some experiments with
pattern-based symmetries, supported by a prototype tool implemented using the OPEN/CÆSAR

tool set [Gar98], have shown that substantial savings may be obtained in the number of tests.
Since we assume that the black box system has some symmetrical structure (cf. theunifor-

mity hypothesis in [CG97, Gau95]), it is perhaps more appropriate to speak ofgray box testing.
For the specification FSM it will generally be possible toverify that a particular relation is a
symmetry on the system, but for the black box implementation one has toassume that this is the
case. The reliability of this assumption is the tester’s responsibility. In this respect, one may
think of exploiting symmetry as a structured way of test case selection [BTV91, FBK+91]
for systems too large to be tested exhaustively, where at least some subautomata are tested
thoroughly.

This research is not the first to deal with symmetry in protocol testing. In [MAD96], similar
techniques have been developed for a test generation methodology based on labeled transition
systems, success trees and canonical testers [Bri88, Tre89]. Like in our case, symmetry is an
equivalence relation between traces, and representatives of the equivalence classes are used for
test generation. Since our approach and the approach in [MAD96] start from different testing
methodologies, it is not easy to compare them. In [MAD96], the symmetry relation is defined
through bijective renamings of action labels; our pattern-based definition generalises this ap-
proach. On the other hand, since in our case a symmetry relation has to result in subautomata
of specification and implementation that characterise these systems up to the symmetry, we
have to impose certain requirements, which are absent in [MAD96].

In [KK97], symmetrical structures in the product automaton of interoperating systems are
studied. It is assumed that the systems have already been tested in isolation and attention is
focused on pruning the product automaton by exploiting symmetry arising from the presence
of identical peers. In the present approach, we abstract away from the internal composition of
the system and focus on defining ageneral framework for describing and using symmetries on
FSMs.

This chapter is organised as follows. Section 5.2 contains some basic definitions concern-
ing FSMs and their behaviour. In Section 5.3, we introduce and define a general notion of trace
based symmetry. We show how, given such a symmetry on the behaviour of a system, a subau-
tomaton of the system can be computed, a so-calledkernel, that characterises the behaviour of
the system up to symmetry. In Section 5.5 we apply the machinery to the classical W-method
[Cho78, Vas73] for test derivation. In Section 5.6 we will instantiate the general framework
by focusing on symmetries defined in terms of repeating patterns. Section 5.7 contains an
extensive example, inspired by [TPHT96]. Finally, we discuss future work in Section 5.8.

5.2 Finite state machines

In this section, we will briefly present some terminology concerning finite state machines and
their behaviour, that we will need in the rest of this chapter.
We letNat denote the set of natural numbers. (Finite) Sequences are denoted by Greek letters.
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Concatenation of sequences is denoted by juxtaposition;ε denotes the empty sequence and the
sequence containing a single elementa is simply denoteda. If σ is non-empty thenfirst(σ )
returns the first element ofσ andlast(σ ) returns the last element ofσ .

If V and W are sets of sequences andσ is a sequence, thenσ W = {σ τ | τ ∈ W }
and V W = ⋃

σ∈V σ W . For X a set of symbols, we defineX0 = {ε} and, for i > 0,
Xi = Xi−1 ∪ X Xi−1. As usual,X∗ =⋃

i∈Nat Xi .

Definition 5.1 A finite state machine (FSM) is a structureA = (S,�, E, s0) where

• S is a finite set ofstates

• � a finite set ofactions

• E ⊆ S ×� × S is a finite set ofedges

• s0 ∈ S is theinitial state

We require thatA is deterministic, i.e., for every pair of edges(s, a, s′), (s, a, s′′) in E , s′ = s′′.
We writeSA,�A, etc., for the components of an FSMA, but often omit subscripts when they
are clear from the context. We lets, s′ range over states,a, a′, b, c, . . . over actions, ande, e′

over edges. Ife = (s, a, s′) thene = a. We writes
a−→ s′ if (s, a, s′) ∈ E and withs

a−→ we
denote thats

a−→ s′ for some states′. A subautomaton of an FSMA is an FSMB such that
s0
B
= s0

A
, SB ⊆ SA,�B ⊆ �A, andEB ⊆ EA.

An execution fragment of an FSMA is a (possibly empty) alternating sequenceγ =
s0 a1 s1 · · · an sn of states and actions ofA, beginning and ending with a state, such that for

all i , 0 ≤ i < n, we havesi
ai+1−→ si+1. If s0 = sn thenγ is a loop, if n �= 0 thenγ

is a non-empty loop. An execution of A is an execution fragment that begins with the ini-
tial state ofA. The trace for execution fragmentγ = s0 a1 s1 · · · an sn of A is defined as
trace(γ ) = a1 a2 · · · an. If σ is a sequence of actions, then we writes

σ−→ s′ if A has an
execution fragmentγ with first(γ ) = s, last(γ ) = s′, andtrace(γ ) = σ . If γ is a loop, then
σ is a loop-inducing trace. We writes

σ−→ if there exists ans′ such thats
σ−→ s′, and write

traces(s) for the set{σ ∈ (�A)∗ | s σ−→}. We writetraces(A) for traces(s0
A
).

5.3 Symmetry

In this section we introduce the notion of symmetry.
We want to be able to restrict the test process to subautomata of specification and imple-

mentation that characterise these systems up to symmetry. In papers on exploiting symmetry in
model checking [AHI98, CFJ93, EJP97, ES93, ES97, God96, GS97, ID96], such subautomata
are constructed for explicitly given FSMs by identifying and collapsing symmetricalstates.
We are concerned with black box testing, and, by definition, it is impossible to refer directly
to the states of a black box. In traditional FSM based test theory, FSMs are assumed to be
deterministic and hence a state of a black box is identified as the unique state of the black box
that is reached after a certain trace of the system. Thus it seems natural to define symmetry as
a relation overtraces.
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For our basic notion of symmetry on an FSMA, we use an equivalence relation on(�A)∗,
such thatA is closed under the relation, i.e., if a sequence of actions is related to a trace ofA

then the sequence is a trace ofA too.
The idea is to construct from the specification automaton an automaton such that its trace

set is included in the trace set of the specification and contains a representative trace for each
equivalence class of the equivalence relation on the traces of the specification. In order to
be able to do this, we define a symmetry to be the pair consisting of the equivalence relation
and a representative-choosing function. We impose some requirements on the symmetry. For
the specification we demand (1) that each equivalence class of the symmetry is represented
by a unique trace, (2) that prefixes of a trace are represented by prefixes of the representing
trace, and (3) that representative traces respect loops. The third requirement means that if a
representative trace is a loop-inducing trace, then removing the loop-inducing part also yields
a representative trace. This requirement introduces some state-based information in the defini-
tion of symmetry.

These requirements enable us to construct a subautomaton of the specification, a so-called
kernel, such that every trace of the specification is represented by a trace from the kernel. Of
course, it will often be the case that the symmetry itself is preserved under prefixes and respects
loops, so the requirements will come almost for free.

For the black box implementation, we will, w.r.t. symmetry, only demand that it is closed
under symmetry. So if tests have established that the implementation displays certain be-
haviour, then by assumption it will also display the symmetrical behaviour. In Section 5.5,
where the theory is applied to Mealy machines, we will in addition need a way to identify a
subautomaton of the implementation that is being covered by the tests derived from the kernel
of the specification.

Definition 5.2 A symmetry S on an FSMA is pair 〈", ()r 〉 where" is a binary equivalence
relation on(�A)∗, and()r : (�A)∗ → (�A)

∗ is arepresentative function for" such that:

1. A is closed under": If σ ∈ traces(A) andσ " τ , thenτ ∈ traces(A).

2. Only traces of the same length are related: Ifσ " τ , then|σ | = |τ |.
3. ()r satisfies:

(a) σ r " σ
(b) τ " σ ⇒ τ r = σ r

(c) ()r is prefix closed onA: If σ a ∈ traces(A) and(σ a)r = τ b, thenσ r = τ
(d) ()r is loop respecting on representative traces: If(σ1 σ2 σ3)

r = σ1 σ2 σ3 ∈ traces(A)
andσ2 is a loop-inducing trace, then(σ1 σ3)

r = σ1 σ3.

As mentioned above, we will demand that there exists a symmetry on the specification, while
the implementation under test is required only to be closed under the symmetry.

Proposition 5.3 (σ r )r = σ r

Definition 5.4 Let S = 〈", ()r 〉 be a symmetry on FSMA. A kernel ofA w.r.t. S is a minimal
subautomatonK of A, such that for everyσ ∈ traces(A), σ r ∈ traces(K).

Note that although the kernel is unique since it is minimal, the unicity is relative to the
representative function.
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5.4 Construction of a kernel

In this section, we fix an FSMA and a symmetryS = 〈", ()r 〉 onA. Figure 5.1 presents
an algorithm that constructs a kernel ofA w.r.t. S. It basically explores the state space ofA,
while keeping in mind the trace that leads to the currently visited state. As soon as such a trace
contains a loop, the algorithm will not explore it any further.

In Figure 5.1,enabled(s,A) denotes the set of actionsa such thatEA contains an edge
(s, a, s′), and for such ana, eff (s, a,A) denotess′. Furthermore,repr(σ, E) denotes the set
F of actions such thata ∈ F iff there exists an actionb ∈ E such thatσ r a = (σ b)r , that
is, all candidate actions that extendσ r to a greater representative trace. We will only call this
function forσ such thatσ r = σ (see Lemma 5.7). By definition of()r , for some actionc,
(σ b)r = σ r c = σ c. So, sinceA is deterministic and closed under", F ⊆ E and if E is
non-empty,F is non-empty. This justifies the functionchoose(F) which nondeterministically
chooses an element fromF . In the algorithm, the global variableK is the growing state space
which is returned at the end of the algorithm, and updated during the execution of the procedure
Build It. The local variableF for Build It is not significant for the execution of the algorithm
but is useful for proving correctness.

The remainder of this section is devoted to the correctness of algorithm Kernel. In order
to prove that the algorithm works properly, we first prove that it terminates, that it creates a
subautomaton ofA and that BuildIt uses its parameters properly.

Lemma 5.5 The execution of the algorithm Kernel(A, S) terminates.

Proof The number of states inA is finite, and for each nested call of BuildIt(s′, σ ′, Seen′)
within Build It(s, σ, Seen), Seen′ = Seen ∪ {s′} with s′ �∈ Seen. So there can be only finitely
many levels of such nested calls. Furthermore, the number of enabled transitions ins is finite,
so the while loop that emptiesE (E decreases strictly monotonically during this loop until it’s
empty) can make finitely many nested calls to BuildIt. �

Lemma 5.6 During execution of BuildIt(s0
A

,ε,∅), automatonK is a subautomaton ofA, and
K grows monotonically.

Proof Obvious from the algorithm. �

The following lemma concerns the value of the variableK at the moment that the call to
Build It is made.

Lemma 5.7 When Kernel(A,S) during its execution calls BuildIt(s,σ ,Seen), then at that mo-
ments0

K

σ−→K s andσ r = σ .

Proof By induction on the lengthn of σ .

• n = 0. Thenσ = ε. From observing the algorithm Kernel and procedure BuildIt, it
is clear that the only call of BuildIt(s,ε,Seen) is with s = s0

A
andSeen = ∅. In the

initialisation ofK, s0
K

has been defined equal tos0
A

. As s0
K

ε−→K s and(ε)r = ε, the
result follows.

• n = m + 1.



80 5 Exploiting symmetry in protocol testing

1 function Kernel(A, S): FSM;
2 var K: FSM;
3
4 procedure Build It(s, σ , Seen);
5 var a, b, s′, E , F ;
6 begin
7 if s �∈ Seen then
8 E := enabled(s,A);
9 F := ∅;

10 while E �= ∅ do
11 a := choose(repr(σ, E));
12 s′ := eff (s, a,A);
13 SK := SK ∪ {s′};
14 �K := �K ∪ {a};
15 EK := EK ∪ {(s, a, s′)};
16 Build It(s′, σ a, Seen ∪ {s});
17 F := F ∪ {a};
18 for each b ∈ E . σ a " σ b do
19 E := E \ {b};
20 od;
21 od;
22 fi;
23 end;
24
25 begin
26 s0

K
:= s0

A
;

27 SK := {s0
A
};

28 �K := ∅;
29 EK := ∅;
30 Build It(s0

A
, ε, ∅);

31 return K;
32 end.

Figure 5.1: The algorithm Kernel
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Supposeσ = σ ′ a is a trace of lengthm + 1 and Kernel(A,S) calls Build It(s,σ , Seen).
Sinceσ �= ε, the call Build It(s,σ ,Seen) must occur within the execution of a call

Build It(s′,σ ′,Seen′). By the induction hypothesis, we know thats0
K

σ ′−→K s′. When
Build It(s′,σ ′,Seen′) calls Build It(s,σ ′ a,Seen) then (s′, a, s) has just been added to
EK, with a from enabled(s,A) ands = eff (s′, a,A). So s′ a−→K s when the call
Build It(s,σ ,Seen) is made, and it follows thatσ ∈ traces(K).

As toσ r = σ . When Build It(s′,σ ′,Seen′) calls Build It(s,σ ′ a,Seen) then by definition
of choose(repr(σ ′, E)), (σ ′)r a = (σ ′ a)r . Since, by induction hypothesis,(σ ′)r = σ ′,
(σ ′ a)r = σ ′ a, which completes the proof.

�

Lemma 5.8 If Kernel(A,S)=K and during its execution has called BuildIt(s,σ ,Seen), then
s0
K

σ−→K s andσ r = σ .

Proof Follows immediately from Lemmas 5.6 and 5.7. �

Lemma 5.9 If Kernel(A,S)=K and s
a−→K t then there is aσ such thats0

K

σ−→K s and
(σa)r = σa.

Proof If s
a−→K t, then we know by Lemma 5.6 and by the fact that execution starts with

K empty, that the transition(s, a, t) has been added toK by execution of line 15 of algorithm
Kernel. This happens during the execution of the call BuildIt(s,σ ,Seen) for someσ and some
Seen, so by Lemma 5.8 we may conclude that upon completion,s0

K

σ−→K s andσ r = σ .
By the definition ofa during execution of the call BuildIt(s,σ ,Seen) at line 11, we see that
(σa)r = σa. �

Lemma 5.10 When Kernel(A,S) calls Build It(s,σ ,Seen), then during the execution of BuildIt
the following holds:

1. at termination of the while loop, the following property holds:

a ∈ F ⇒ Kernel(A, S) has called BuildIt(eff (s, a,K), σ a, Seen ∪ {s})

2. at termination of the while loop, the following property holds:

s
b−→A⇒ ∃a ∈ F. σ a = (σ b)r

Proof

1. When the while loop is started,F is empty. The only statement that addsa to F is at
line 17, which is executed after lines 12 through 16 have been executed, hence the edge
(s, a, s′) has been added toEK and Build It(s′, σa, Seen ∪ {s}) has been called.

2. At the start of the while loop,E = enabled(s,A,), sob ∈ E at the start of the while
loop. At termination of the while loop,E is empty. Actions are never added toE , only
removed fromE at line 19. So during the execution of the while loop, certainlyE ⊆
enabled(s,A,). We observe that during the execution of the while loop for eacha, if a ∈
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repr(σ, E), thena ∈ repr(σ, enabled(s,A, )). At the moment thatb is removed fromE
(at line 19), the condition thatσ a " σ b holds. Sincea was defined at line 11 and has
not changed since, and by our observation, it holds thata ∈ repr(σ, enabled(s,A, )). So
there is ac ∈ enabled(s,A,) such thatσ a = (σ c)r . Sinceσ a " σ b, and by definition
of representative,σ b " σ c. By uniqueness of representative,σ a = (σ b)r , and the
result follows.

�

Lemma 5.11 If Kernel(A,S) during execution calls BuildIt(s,σ ,Seen) with σ = a1a2 . . . an,

s0
a1−→A s1

a2−→A s2 . . .
an−→A sn, ands0 = s0

A
, then

1. Kernel(A,S) calls Build It(s0,ε,∅)
2. for 0≤ i < n, Build It(si ,σi ,Seeni ) calls Build It(si+1,σi+1,Seeni+1) with σi = a1a2 . . . ai

and for 0≤ i ≤ n, Seeni =
⋃

j∈{0,1,...,i−1}{s j }
3. s = sn andSeen = Seenn

Proof By induction on the lengthn of σ .

• n = 0. Thenσ = ε, and the result follows immediately.

• n = m + 1.

Supposeσ = a1a2 . . . am+1 and Kernel(A,S) calls Build It(s,σ ,Seen) with s0
a1−→A

s1
a2−→A s2 . . .

am+1−→A sm+1 ands0 = s0
A

. Let σ ′ = a1a2 . . . am . Sinceσ �= ε, the call
Build It(s,σ ,Seen) must occur within the execution of a call BuildIt(s′,σ ′,Seen′) and
Seen = Seen′∪{s′}. By the induction hypothesis, we know thatSeen′ = Seenm , thats′ =
sm , that Kernel(A,S) calls Build It(s0,ε,∅), that for 0≤ i < m, Build It(si ,σi ,Seeni )
calls Build It(si+1,σi+1,Seeni+1) with σi = a1a2 . . . ai and that for 0≤ i ≤ m, Seeni =⋃

j∈{0,1,...,i−1}{s j }.
So Build It(sm ,σm ,Seenm) calls Build It(sm+1,σm+1,Seen), and we need to prove that
s = sm+1 and Seenm+1 = Seen = ⋃

j∈{0,1,...,m}{s j }. Looking at the statements in
Build It(sm ,σm ,Seenm) that call Build It(sm+1,σm+1,Seen), we see thats = sm+1 and
Seen = Seenm ∪ {sm}. SoSeen = (⋃ j∈{0,1,...,m−1}{s j }) ∪ {sm} =

⋃
j∈{0,1,...,m}{s j } and

the result follows.

�

Lemma 5.12 If Kernel(A,S) during execution calls BuildIt(s,σ ,Seen), then

s ∈ Seen⇔ ∃σ1, σ2. σ = σ1 σ2 ∧ σ2 �= ε ∧ s0
A

σ1−→A s
σ2−→A s

Proof From Lemmas 5.6 and 5.8 it follows thatσ ∈ traces(A). The lemma then follows from
Lemma 5.11. �

The next theorem completes the proof of the fact that the algorithm Kernel(A,S) returns a
kernel forA w.r.t. S.

Theorem 5.13 LetK = Kernel(A,S).
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1. If K′ is a subautomaton ofA such that∀σ ∈ traces(A), σ r ∈ traces(K′), then thenK is
a subautomaton ofK′.

2. If σ ∈ traces(A), thenσ r ∈ traces(K).

Proof First we prove Item 1. From the algorithm Kernel it is obvious that for each states inK,
eithers is the initial state, or there is a transition leading tos. SinceK andK′ are subautomata
of A, their initial states are equal. SinceK andK′ are deterministic and representative traces
are unique, and since by Lemma 5.9 each transition inK is part of a representative trace, we
see that each transition inK must be present inK′. Combining all these observations, we see
that each state inK is present inK′. We conclude thatK is a subautomaton ofK′.

As to Item 2. Letτ = σ r . SinceA is closed underS, τ ∈ traces(A); say thats0
A

τ−→A t.
We prove a stronger propertyInv(τ ) by induction on the lengthn of σ (= the length ofτ ).

Inv(τ )=∧ τ ∈ traces(K)
∧ ∃ Seen.
∨ Kernel(A, S) during execution calls BuildIt(t, τ, Seen)
∨ ∧ τ = τ1 τ2 a τ3
∧ s0
A

τ1−→A t ′ τ2a−→A t ′ τ3−→A t
∧ τ1 τ2 contains no non-empty loop-inducing trace inA
∧ Kernel(A, S) during execution calls BuildIt(t ′, τ1 τ2 a, Seen)

• n = 0.

Thenσ = ε, and alsoτ = ε. So t = s0
A

. Sinces0
A
∈ SK, ε ∈ traces(K). It suffices to

observe that Kernel(A,S) calls Build It(s0
A

,ε,∅).
• n = m + 1.

Induction Hypothesis (IH): 0≤ |ρ| ≤ m ⇒ Inv(ρr )

Supposeσ = σ ′ b, τ = τ ′ c, and|σ | = |τ | = m + 1. Since()r is prefixed closed,
(σ ′)r = τ ′. Sinceτ ∈ traces(A), τ ′ ∈ traces(A). We distinguish two cases.

– τ ′ does not contain a non-empty loop-inducing trace.

We show that, for some setSeen, Kernel(A, S) calls Build It(t, τ ′ c, Seen). By
Lemma 5.8 we then know thatτ ′ c ∈ traces(K), which provesInv(τ ).

Assumes0
A

τ ′−→A t ′. Since(σ ′)r = τ ′, Inv(τ ′) holds by IH, soτ ′ ∈ traces(K).
There is no loop-inducing trace inτ ′, and byInv(τ ′), for someSeen′, Kernel(A, S)
calls Build It(t ′, τ ′, Seen′). We now inspect the execution of procedure BuildIt
for this call. By Lemma 5.12, we know thatt ′ �∈ Seen′. By Lemma 5.10 we
know that upon completion of the while loop BuildIt(t ′′,τ ′ c′,Seen′ ∪ {t ′}) has

been called, for some statet ′′ and actionc′ such thatt ′ c′−→K t ′′ and(τ ′c)r = τ ′c′.
By Lemma 5.3, we know that(τ ′c)r = τ ′c, soc′ = c and hencet ′′ = t. Thus,
Build It(t,τ ′ c,Seen′ ∪ {t ′}) has been called.

– τ ′ contains a non-empty loop-inducing trace.

Then there existτ1, τ2, τ3, σ1, σ2, σ3, a, andt ′ such that
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∧ τ = τ1 τ2 a τ3 c ∧ σ = σ1 σ2 σ3
∧ |τ1| = |σ1| ∧ |τ2 a| = |σ2| ∧ |τ3 c| = |σ3|
∧ s0

τ1−→A t ′ τ2a−→A t ′ τ3c−→A t
∧ τ1τ2 contains no non-empty loop-inducing trace inA

We show that, for some setSeen, Kernel(A, S) calls Build It(t ′, τ1 τ2 a, Seen), and
thatτ ∈ traces(K). Trivially, |τ1 τ2 a| < |τ1 τ2 a τ3 c|, and|τ1 τ3 c| < |τ1 τ2 a τ3 c|.
Since()r is prefix closed andτ r = τ , τ1 τ2 a = (τ1 τ2 a)r . Since()r is loop
respecting,τ1 τ3 c = (τ1 τ3 c)r . So we may apply IH and obtain thatInv(τ1 τ2 a)
andInv(τ1 τ3 c) hold. This means thatτ1 τ2 a ∈ traces(K), τ1 τ3 c ∈ traces(K), and
since there is no loop-inducing trace inτ1 τ2, that, for some setSeen, Kernel(A, S)
calls Build It(t ′, τ1 τ2 a, Seen). SinceK is a subautomaton ofA (Lemma 5.6), we
know thats0

K

τ1−→K t ′ τ2a−→K t ′ τ3c−→K t, and henceτ1 τ2 aτ3 c ∈ traces(K).

�

5.5 Test derivation from symmetric Mealy machines

In this section we will apply the machinery developed in the previous sections to Mealy ma-
chines. There exists a wealth of test generation algorithms based on the Mealy machine model
[ADLU91, Cho78, CVI89, Vas73]. We will show how the classical W-method [Cho78, Vas73]
can be adapted to a setting with symmetry. The main idea is that test derivation is not based on
the entire specification automaton, but only on a kernel of it. A technical detail here is that we
do not require Mealy machines to be minimal (as already observed by [PHK95] for the setting
without symmetry). We will use the notation from Chow’s paper.

Definition 5.14 A Mealy machine is a (deterministic) FSMA such that

�A = {(i/o) | i ∈ IA ∧ o ∈ OA}
where IA and OA are two finite and disjoint sets ofinputs and outputs, respectively. We
require thatA is input enabled andinput deterministic, i.e., for every states ∈ SA and input

i ∈ IA, there exists precisely one outputo ∈ OA such thats
(i/o)−→.

Input sequences of A are elements of(IA)∗. Forξ an input sequence ofA ands, s′ ∈ SA, we

write s
ξ&⇒A s′ if there exists a traceσ such thats

σ−→A s′ andξ is the result of projecting
σ onto IA. In this case we writeoutcomeA(ξ, s) = σ , and the execution fragmentγ with
first(γ ) = s andtrace(γ ) = σ is denoted byexecA(s, ξ). A distinguishing sequence for two
statess, s′ of A is an input sequenceξ such thatoutcomeA(ξ, s) �= outcomeA(ξ, s′). We say
thatξ distinguishess from s′.

In Chow’s paper, conformance is defined as the existence of an isomorphism between specifi-
cation and implementation. Since we do not assume automata to be minimal, we will show the
existence of abisimulation between specification and implementation. Bisimilarity is a well-
known process equivalence from concurrency theory [Mil89]. For minimal automata, bisimi-
larity is equivalent to isomorphism, while for deterministic automata, bisimilarity is equivalent
to equality of trace sets.
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Definition 5.15 LetA andB be FSMs. A relationR ⊆ SA × SB is abisimulation on A and
B iff

• R(s1, s2) ands1
a−→A s′1 implies that there is as′2 ∈ SA such thats2

a−→B s′2 and
R(s′1, s′2),

• R(s1, s2) ands2
a−→B s′2 implies that there is as′1 ∈ SA such thats1

a−→A s′1 and
R(s′1, s′2).

A andB arebisimilar, notationA ↔ B, if there exists a bisimulationR onA andB such
that R(s0

A
, s0
B
). We call two statess1, s2 ∈ SA bisimilar, notations1 ↔A s2, if there exists a

bisimulationR onA (andA) such thatR(s1, s2). The relation↔A is an equivalence relation
on SA; abisimulation class of A is an equivalence class ofSA under↔A.

The main ingredient of Chow’s test suite is acharacterising set for the specification, i.e., a set
of input sequences that distinguish inequivalent states by inducing different output behaviour
from them. In our case, two states are inequivalent if they are non-bisimilar, i.e. have different
trace sets. In the presence of symmetry we will need a characterising set not for the entire
specification automaton but only for a kernel of it. However, a kernel need not be input enabled,
so two inequivalent states need not have a common input sequence that distinguishes between
them. Instead we will use a characterising set that contains for every two states of the kernel
that are inequivalent in the original specification automaton, an input sequence that these states
have in common in the specification and distinguishes between them.

Constructing distinguishing sequences in the specification automaton rather than in the
smaller kernel is of course potentially as expensive as in the setting without symmetry, and
may lead to large sequences. However, if the number of states of the kernel is small we will not
need many of them, so testexecution itself may still benefit considerably from the restriction
to the kernel. Moreover, we expect that in most cases distinguishing sequences can be found
in a subautomaton of the specification that is easily identified and that envelopes the kernel.

Definition 5.16 A test pair for a Mealy machineA is a pair〈K,W 〉 whereK is a kernel ofA
andW is a set of input sequences ofA such that the following holds. For every pair of states
s, s′ ∈ SK such thats �↔A s′, W contains an input sequenceξ such thatoutcomeA(ξ, s) �=
outcomeA(ξ, s′).

The proof that Chow’s test suite has complete fault coverage crucially relies on the assumption
that (an upper bound to) the number of states of the black box implementation is correctly
estimated. Since specification and implementation are also assumed to have the same input
sets and to be input enabled, this is equivalent to a correct estimate of the number of states
of the implementation that can be reached from the start state by an input sequence from the
specification. Similarly, we will assume that we can give an upper bound to the number of
states of the black box that are reachable from the start state by an input sequence from the
kernel of the specification. We call the subautomaton of the implementation generated by these
states theimage of the kernel.

Technically, the assumption on the state space of the black box is used in [Cho78] to bound
the maximum length of distinguishing sequences needed for a characterising set for the imple-
mentation. Since, like the kernel, the image of the kernel need not be input enabled, it may be
that distinguishing sequences for states of the image cannot be constructed in the image itself.
Thus, it is not sufficient to estimate the number of states of the image, but we must in addition
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estimate how long the suffix of a distinguishing sequence can be which starts with the first step
outside the image of the kernel.

Definition 5.17 LetA andB be Mealy machines with the same input set and letK be a kernel

of A. A K-sequence is an input sequenceξ such thats0
K

ξ&⇒K. A states of B is called

K-related if there exists aK-sequenceξ such thats0
B

ξ&⇒B s.
We defineimK(B) as the subautomaton(S,�, E, s0) of B defined by:

• S = {s ∈ SB | s isK-related}
• E = {(s, a, s′) ∈ EB | s, s′ ∈ S}
• � = {a ∈ �B | ∃ s, s′. (s, a, s′) ∈ E}
• s0 = s0

B

In the following definition, the parametern is the upper bound to the length of that part of the
distinguishing sequence which steps outside the image of the kernel.

Definition 5.18 A subautomatonB of a Mealy machineA is n-self-contained in A when the
number of bisimulation classesQ ofA such thatQ ∩ SB �= ∅ is m, and for every pair of states
s, s′ of B such thats �↔A s′, there exist input sequencesξ1, ξ2 of A of length at mostm, n,

respectively, such thats
ξ1&⇒B, s′ ξ1&⇒B, andoutcomeA(ξ1ξ2, s) �= outcomeA(ξ1ξ2, s′).

The next lemma is a generalisation of [Cho78]’s Lemma 0.

Lemma 5.19 LetA andB be Mealy machines with the same input setI and let〈K,W 〉 be a
test pair forA. Let C = imK(B). Suppose that:

1. The number of bisimulation classesQ of B such thatQ ∩ SC �= ∅ is bounded bym1.

2. C is m2-self-contained inB.

3. W distinguishes betweenn bisimulation classesQ of B such thatQ ∩ SC �= ∅.
Then for every two statess ands′ of C such thats �↔B s′, I m1−n I m2 W distinguishess from
s′.

Proof By induction onj ∈ {0, . . . ,m1−n}we prove that there existj+n bisimulation classes
Q ofBwith Q∩SC �= ∅ such thatI j I m2 W distinguishes between them. This proves the result,
since, by assumption 2, the number of bisimulation classesQ of B such thatQ ∩ SC �= ∅ is
bounded bym1.

• j = 0. By assumption 3,W already distinguishes betweenn bisimulation classes ofB
with Q ∩ SC �= ∅, so surelyI m2 W distinguishes at least thesen classes.

• j = k + 1. If I k I m2 W already distinguishes betweenk + n + 1 bisimulation classes
Q of B such thatQ ∩ SC �= ∅, we are done. So suppose not. Then there exist two
distinct bisimulation classesQ1 andQ2 of B whose intersection withSC is non-empty,
such thatI k I m2 W does not distinguishQ1 from Q2. So there exist statess1 ∈ Q1∩ SC
ands2 ∈ Q2 ∩ SC of C such thats1 �↔B s2 but I k I m2 W does not distinguishs1 from s2.
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SinceC is m2-self-contained inB, we can define the smallest numberl ≤ m1 such that
I l I m2 W contains an input sequenceξ such thatoutcomeB(ξ, s1) �= outcomeB(ξ, s2).
So there exist statest1 andt2 of C (among the(l − (k + 1))th successors ofs1 ands2,
respectively) such thatI k I m2 W does not distinguisht1 from t2 whereasI k+1 I m2 W
does distinguisht1 from t2. HenceI k+1 I m2 W distinguishes the bisimulation classes of
B to whicht1 andt2 belong.

�

This result allows us to construct a characterising setZ = I m1−n I m2 W for the image of
the kernel in the implementation. The test suite resulting from the W-method consists of all
concatenations of sequences from atransition cover P for the specification with sequences
from Z .

Definition 5.20 A transition cover for the kernel of a Mealy machineA is a finite collection

P of input sequences ofA, such thatε ∈ P and, for all transitionss
(i/o)−→ s′ of K, P contains

input sequencesξ andξ i such thats0
K

ξ&⇒K s.

Now follows the main theorem.

Theorem 5.21 Let Spec andImpl be Mealy machines with the same input setI , and assume
〈", ()r 〉 is a symmetry onSpec such thatImpl is closed under". Let 〈K,W 〉 be a test pair for
Spec. Write C = imK(Impl). Suppose

1. The number of bisimulation classesQ of Spec such thatQ ∩ SK �= ∅ is n.

2. The number of bisimulation classesQ of Impl such thatQ ∩ SC �= ∅ is bounded bym1.

3. C is m2-self-contained inImpl.

4. For allσ ∈ P andτ ∈ I m1−n I m2 W

outcomeSpec(σ τ, s0
Spec) = outcomeImpl(σ τ, s0

Impl) (�)

ThenSpec ↔ Impl.

Proof Spec andImpl are deterministic, so it suffices to provetraces(Spec) = traces(Impl).
SinceSpec is input enabled andImpl is input deterministic, it then suffices to prove that
traces(Spec) ⊆ traces(Impl). Using thatImpl is closed underS, this follows immediately
from the first item of the following claim.
Claim For everyσ ∈ traces(Spec), with σ r = τ ands0

K

τ−→K r we have:

1. τ ∈ traces(Impl)

2. For everyξ ∈ P such thats0
K

ξ−→K r : if s0
Impl

τ−→Impl u ands0
Impl

ξ&⇒Impl u′ then
u ↔I u′.

whereI abbreviatesImpl.
Proof of claim Write Z = I m1−n I m2 W . Note that, by construction ofW , W distinguishes
betweenn bisimulation classes ofSpec whose intersection withSK is non-empty. So, since
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(�) holds,W distinguishes between at leastn bisimulation classes ofImpl whose intersection
with SC is non-empty. Thus we can use Lemma 5.19.

The proof of the claim proceeds by induction on the lengthn of σ .

• n = 0. Soσ = ε = τ . Then certainlyτ ∈ traces(Impl). As to item 2). Consider an

input sequenceξ ∈ P such thats0
K

ξ&⇒K s0
K

and assumes0
Impl

ξ&⇒Impl u′. We have to

show thats0
Impl

↔
I u′.

Sinceξ andε are elements ofP and lead inSpec to the same state, it follows from(�)
that for allρ ∈ Z , outcomeImpl(ρ, s0

Impl) = outcomeImpl(ρ, u′). Hence, by Lemma 5.19,

s0
Impl

↔
I u′.

• n > 0. Write σ = σ ′ (i/o). By induction hypothesis(σ ′)r = τ ′ ∈ traces(K) ∩
traces(Impl). Say thats0

K

τ ′−→K r ′. SinceK is a kernel ofSpec, there exists an action

(i ′/o′) such that(σ ′ (i/o))r = τ ′ (i ′/o′) and, for some stater , r ′
i ′/o′−→K r . Sincer ′ ∈ SK,

there exist input sequencesξ ′, ξ ′ i ′ ∈ P such thats0
K

ξ ′&⇒K r ′.

Let s0
Impl

τ ′−→Impl u ands0
Impl

ξ ′&⇒Impl u′. By induction hypothesis, item 3),u ↔I u′.
SinceoutcomeSpec(ξ

′ i ′, s0
Spec) = outcomeImpl(ξ

′ i ′, s0
Impl), there exists a (unique) state

v′ such thatu′
i ′/o′−→I v

′. Sinceu ↔I u′, there exists a (unique) statev such thatu
i ′/o′−→I

v. Soτ ′ (i ′/o′) ∈ traces(Impl). BecauseImpl is input deterministic,v ↔I v′.

Finally, we have to prove, for allξ ∈ P such thats0
K

ξ&⇒K r : for the unique statew

such thats0
Impl

ξ&⇒Impl w, we havew ↔I v. Consider such aξ . Sincev′ ↔I v it suffices
to prove thatw ↔I v′. Sinceξ ′ i ′ andξ are elements ofP and lead to the same state in
Spec, it follows from (�) that, for allρ ∈ Z , outcomeImpl(ρ, v) = outcomeImpl(ρ,w).
Hence, by Lemma 5.19,v′ ↔I w.

�

�

5.6 Patterns

In this section we describe symmetries based onpatterns. A pattern is an FSM, together with a
set of permutations of its set of actions, so-calledtransformations. The FSM is atemplate for
the behaviour of a system, while the transformations indicate how this template may be filled
out to obtain symmetric variants that cover the full behaviour of the system.

In [KK97] an interesting example automaton is given for a symmetric protocol, represent-
ing the behaviour of two peer hosts that may engage in the ATM call setup procedure. This
behaviour is completely symmetric in the identity of the peers. An FSM representation is
given in Figure 5.2. Here, !<action>(i) means output of the ATM service to caller i, and
?<action>(i) means input from caller i to the ATM service. So, action ?setup(1) denotes the
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00000000000000000

11111111111111111

22222222222222222

33333333333333333

55555555555555555

44444444444444444

66666666666666666

77777777777777777

1111111111111111111111111111111111

88888888888888888

99999999999999999

1010101010101010101010101010101010

1212121212121212121212121212121212

1313131313131313131313131313131313
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Figure 5.2: The ATM call setup protocol
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Figure 5.3: A template

request from caller 1 to the ATM service, to set up a call to caller 2. A setup request is fol-
lowed by an acknowledgement in the form of callproc if the service can be performed. Then,
action conn indicates that the called side is ready for the connection, which is acknowledged by
connack. A caller may skip sending callproc, if it can already send conn instead (transition
from state 3 to 5 and from 10 to 12 in Figure 5.2).

Here, a typical template is the subautomaton representing the call set up as initiated by
a single initiator (e.g. caller 1), and the transformation will be the permutation of actions
generated by swapping the roles of initiator and responder. Such a template is displayed in
Figure 5.3.

In the example of Section 5.7, featuring achatbox that supports multiple conversations be-
tween callers, the template will be the chatting between two callers, while the transformations
will shuffle the identity of the callers.

The template FSM may be arbitrarily complex; intuitively, increasing complexity indicates
a stronger symmetry assumption on the black box implementation.

Definition 5.22 A pattern P is a pair〈T ,�〉 whereT is an FSM, called thetemplate of P ,
and� is a finite set of permutations of�T , which we calltransformations.

Given a sequence〈 f1, . . . , fn〉 of (partial) functionsf1, . . . , fn : � → ET , we denote
with exec(〈 f1, . . . , fn〉, π) the sequence of edges obtained by taking for each functionfi ,
0≤ i ≤ n, the edgee (if any) such thatfi (π) = e.

In the example in Figures 5.2 and 5.3, the set of permutations is{{1 '→ 1,2 '→ 2}, {1 '→
2,2 '→ 1}}.

In the remainder of this section, we fix an FSMA and a patternP = 〈T ,�〉. Below we
will explain howP defines a symmetry of the behaviour ofA. Each transformationπ ∈ �
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gives rise to a copyπ(T ) of T obtained by renaming the actions according toπ . Each such
copy is a particular instantiation of the template. Intuitively, the trace set ofA is included in
the trace set of the parallel composition of the copiesπ(T ), indexed by elements of�, with
enforced synchronisation over all actions ofA. Using that traces ofA are traces of the parallel
composition, we will define the symmetry relation on traces in terms of the behaviour of the
copies and permutations of the index set�.

The following definition rephrases the intuitive requirement above in such a way that the
relation" and a representative function for it can be formulated succinctly. In particular,
if A is the parallel composition of the copies ofT , both the intuitive requirement and the
formal rephrasing apply. In this definition (and the remainder of this section), the following
terminology for partial functions and multisets is used. Iff : A→ B is a partial function and
a ∈ A, then f (a) ↓ means thatf (a) is defined, whilef (a) ↑means thatf (a) is not defined.
A multiset over A is a set of the form{(a1, n1), . . . , (ak, nk)} where, for 1≤ i ≤ k, ai is an
element ofA andni ∈ Nat denotes itsmultiplicity. We use [f (x)| cond(x)] as a shorthand
for the multiset overA that is created by adding, for every singlex ∈ A, a copy of f (x) if the
condition cond(x) holds.

Definition 5.23 Letσ = a1 · · · an be an element of(�A)∗. A covering of σ byP is a sequence
〈 f1, . . . , fn〉 of partial functionsfi : � → ET with non-empty domain such that for every
π ∈ � and 1≤ i ≤ n:

1. If fi (π) = e thenai = π(e).
2. The sequenceexec(〈 f1, . . . , fi 〉, π) induces an executionγi of T .

3. If the sequencetrace(γi−1) ai is a trace ofπ(T ) then fi (π) ↓.

We say thatP coversσ if there exists a covering ofσ byP .

We callP loop preserving when the following holds. Supposeσ1 σ2 ∈ traces(A) is covered
by 〈 f1, . . . , fn, g1, . . . , gm〉 andσ2 is a loop-inducing trace. Then for allπ ∈ �,

last(exec(〈 f1, . . . , fn〉, π)) = last(exec(〈 f1, . . . , fn, g1, . . . , gm〉, π))
Intuitively, these requirements mean the following. The ‘non-empty domain’ requirement for
the partial functionsfi ensures the inclusion of the trace set ofA in the trace set of the parallel
composition of copies ofT . Requirements 1 and 2 express that a covering should not contain
‘junk’. Requirement 3 corresponds to the enforced synchronisation of actions of the parallel
composition.

Lemma 5.24 For every traceσ , there exists at most one covering ofσ byP .

Proof SinceT is deterministic, coverings ofσ are uniquely determined byT . �

Two tracesσ andτ of the same lengthn that are covered byP , arevariants of each other
if at each positioni , 1 ≤ i ≤ n, of σ andτ the following holds. The listings forσ andτ ,
respectively, of the copiesπ(T ) that participate in the action at positioni , the states these
copies are in before participating, and the edge they follow by participating, are equal up to a
permutation of�. Then, two traces of the same length aresymmetric iff they are either both
not covered byP or are covered by coverings that are variants of each other.
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Definition 5.25 Let σ andτ be elements of(�A)n , whichP covers bycov1 = 〈 f1, . . . , fn〉
andcov2 = 〈g1, . . . , gn〉, respectively. Thencov1 andcov2 are said to bevariants of each other
if for every 1≤ i ≤ n, [ fi (π) | π ∈ �] = [gi (π) | π ∈ �].
We define the binary relation"P on (�A)∗ by:

σ "P τ ⇔ ∧ |σ | = |τ |
∧ ∨ bothσ andτ are not covered byP
∨ P coversσ andτ by variant coverings

It is easy to check that"P is an equivalence relation. As in Section 5.3, we will write"
instead of"P .

An important special case is the following. SupposeA consists of the parallel composition of
componentsCi , indexed by elements of a setI , that are identical up to their indices (which
occur as parameters in the actions). Letσ andτ be traces ofA. If there exists a permutation
ρ of the index setI such that for all indicesi ∈ I , σ induces (up to renaming of indices in
actions) the same execution ofCi asτ induces inCρ(i), thenσ andτ are symmetric.

Lemma 5.26 If P coversσa by 〈 f1, . . . , fn〉, thenP coversσ by 〈 f1, . . . , fn−1〉.
Lemma 5.27 If P coversσ a andτ b andσ a " τ b, thenσ " τ .

Proof Let σ a andτ b be covered by〈 f1, . . . , fn〉 and〈g1, . . . , gn〉, respectively. By Lemma
5.26, these coverings induce the coverings〈 f1, . . . , fn−1〉 and 〈g1, . . . , gn−1〉 of σ and τ ,
respectively, which are clearly variants of each other. �

The previous two lemmas together imply the following result.

Corollary 5.28 The relation" is prefix closed on A, i.e., for every two tracesσ a, τ b ∈
traces(A), if σ a " τ b thenσ " τ .

Given the definition of", it is reasonable to demand that every trace ofA is covered by
P . We will also need the following closure property. We call a binary relationR on (�A)∗
persistent on A when R(σ, τ ) andσ a ∈ traces(A) implies that there exists an actionb such
that R(σ a, τ b).
Now we define a representative function for". We assume given a total, irreflexive ordering
< on�A. Such an ordering of course always exists, but the choice for<may greatly influence
the size of the kernel constructed for a symmetry based onP .

Definition 5.29 Let< be a total, irreflexive ordering on�A. This ordering induces a reflexive,
transitive ordering≤ on traces of the same length in the following way:

a σ ≤ b τ ⇔ a < b ∨ (a = b ∧ σ ≤ τ)
We defineσ r as the least element of{τ |σ " τ } under≤.

We will show that()r is a representative function for". First we prove that()r is prefix closed.

Lemma 5.30 Suppose" is persistent onA andA is closed under". If (τ b)r = σ a ∈
traces(A), then(τ )r = σ .

Proof Suppose that there exists a traceρ such thatρ = (τ )r . Note that, sinceA is closed
under", τ b ∈ traces(A). By persistence of", ρ " τ implies that there exists an actionc
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such thatρ c " τ b. Since" is prefix closed onA (Corollary 5.28) andσ a " τ b, it follows
thatσ " τ . By definition of()r , ρ ≤ σ . On the other hand,σa ≤ ρc, and, by definition of≤,
σ ≤ ρ. Soρ = σ . �

To show that()r is loop respecting, we first prove two auxiliary results.

Lemma 5.31 If P coversσ andτ by 〈 f1, . . . , fn〉 and〈g1, . . . , gn〉, respectively, andσ " τ ,
then for every 1≤ i ≤ n:

[last(exec(〈 f1, . . . , fi 〉, π)) | π ∈ � ∧ fi (π) ↓]

= [last(exec(〈g1, . . . , gi 〉, π)) | π ∈ � ∧ gi (π) ↓]

Proof Sinceσ " τ we know that for every 1≤ i ≤ n, [ fi (π) | π ∈ �] = [gi (π) | π ∈ �].
Now the result follows immediately. �

Lemma 5.32 SupposeP is a loop preserving pattern onA and let< be a total, irreflexive
ordering on�A. Let ()r be as in Definition 5.29. Suppose every trace ofA is covered byP ,A
is closed under", and" is persistent onA. If σ1 σ2 σ3 ∈ traces(A) andσ2 is a loop-inducing
trace, then

σ1 σ3 " σ1 τ iff σ1 σ2 σ3 " σ1 σ2 τ.

Proof Write |σ1| = n, |σ2| = m, and|σ3| = |τ | = k.
Let 〈 f1, . . . , fn , g1, . . . , gm, h1, . . . , hk〉 coverσ1 σ2 σ3.
By Lemma 5.26,〈 f1, . . . , fn, g1, . . . , gm〉 coversσ1 σ2 and〈 f1, . . . , fn〉 coversσ1. Since"
is loop preserving onA, we know that for everyπ ∈ �

last(exec(〈 f1, . . . , fn〉, π)) = last(exec(〈 f1, . . . , fn, g1, . . . , gm〉, π)) (5.1)

So〈 f1, . . . , fn , h1, . . . , hk〉 coversσ1 σ3.

“⇒” Sinceσ1 σ3 " σ1 τ andσ1 σ3 ∈ traces(A), σ1 τ ∈ traces(A).
Let 〈 f1, . . . , fn, h′1, . . . , h′k〉 coverσ1 τ .
From Equation 5.1 and the fact that〈 f1, . . . , fn, g1, . . . , gm〉 coversσ1 σ2, it follows
that〈 f1, . . . , fn, g1, . . . , gm, h′1, . . . , h′k〉 coversσ1 σ2 τ . Sinceσ1 σ3 " σ1 τ , we obtain,
for every 0≤ i ≤ k:

[hi (π) | π ∈ �] = [h′i (π) | π ∈ �] (5.2)

Now it follows thatσ1 σ2 σ3 " σ1 σ2 τ .

“⇐” Sinceσ1 σ2 σ3 " σ1 σ2 τ andσ1 σ2 σ3 ∈ traces(A), σ1 σ2 τ ∈ traces(A).
Let 〈 f1, . . . , fn, g1, . . . , gm, h′1, . . . , h′k〉 coverσ1 σ2 τ . From Equation 5.1, it follows
that〈 f1, . . . , fn, h′1, . . . , h′k〉 coversσ1 τ . Sinceσ1 σ2 σ3 " σ1 σ2 τ , we obtain, for every
0≤ i ≤ k:

[hi (π) | π ∈ �] = [h′i (π) | π ∈ �] (5.3)

Now it follows thatσ1 σ3 " σ1 τ .
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�

Finally, we prove that()r is loop respecting.

Lemma 5.33 SupposeP is a loop preserving pattern onA and let< be a total, irreflexive
ordering on�A. Let ()r be as in Definition 5.29. Suppose every trace ofA is covered byP ,
A is closed under", and" is persistent onA. If (σ1 σ2 σ3)

r = σ1 σ2 σ3 ∈ traces(A) andσ2 is
a loop-inducing trace, then(σ1 σ3)

r = σ1 σ3.

Proof By contradiction. Suppose that(σ1 σ3)
r = τ1 τ3 andτ1 τ3 �= σ1 σ3. By Lemma 5.30,

(σ1)
r = σ1, andτ1 = (σ1)

r , soτ1 = σ1. By definition of()r , σ1 τ3 ≤ σ1 σ3 andσ1 τ3 " σ1 σ3.
By Lemma 5.32,σ1 σ2 σ3 " σ1 σ2 τ3. Sinceσ1 σ2 σ3 = (σ1 σ2 σ3)

r , σ1 σ2 σ3 ≤ σ1 σ2 τ3, and
by definition of≤, σ1 σ3 ≤ σ1 τ3. Since alsoσ1 τ3 ≤ σ1 σ3, σ1τ3 = σ1σ3, and we have a
contradiction. Soσ1 σ3 = (σ1 σ3)

r . �

The next result allows us to use the pattern-approach for computing a kernel. In our ex-
ample of the ATM switch, we have computed the kernel from the FSM in Figure 5.2, using
the symmetry induced by the template in Figure 5.3 and an ordering< that obeys the relation
?setup(1)< ?setup(2). Not surprisingly, the resulting kernel is identical to the template.

Theorem 5.34 SupposeP is a loop preserving pattern onA and let< be a total, irreflexive
ordering on�A. Let ()r be as in Definition 5.29. Suppose every trace ofA is covered byP ,
A is closed under", and" is persistent onA. Then〈", ()r 〉 is a symmetry onA.

Proof We have to show that()r is a representative function for". It is immediate thatσ r " σ
and for allτ such thatσ " τ , τ r = σ r . The requirement that()r is prefix closed follows from
Lemma 5.30. That()r is loop respecting follows from Lemma 5.33. �

The following two lemmas give the justification for making the implementation of the
algorithm Kernel from Section 5.4 more efficient. The implementation itself is described in
Section 5.7. Lemma 5.36 enables us to stop exploring as soon as states is visited for traceσ ,
under the condition thats has been visited already by the algorithm for another traceτ , andσ
andτ steer each copy of the template to the same state.

Lemma 5.35 SupposeP = 〈T ,�〉 is a pattern onA, that coversσ andτ by 〈 f1, . . . , fn〉 and
〈g1, . . . , gm〉, respectively.
If s0
A

σ−→A s, s0
A

τ−→A s and for eachπ in �: last(exec(〈 f1, . . . , fn〉, π)) = last(exec(〈g1,

. . . , gm〉, π)), then for eachρ such thats
ρ−→A:

〈 f1, . . . , fn, h1, . . . , hk〉 coversσρ ⇔ 〈g1, . . . , gm, h1, . . . , hk〉 coversτρ

Lemma 5.36 Suppose〈P, ()r 〉 is a symmetry onA, ()r is as in Definition 5.29, andP =
〈T ,�〉 coversσ andτ by 〈 f1, . . . , fn〉 and〈g1, . . . , gm〉, respectively.
If s0

A

σ−→A s, s0
A

τ−→A s, for eachπ in �: last(exec(〈 f1, . . . , fn〉, π)) = last(exec(〈g1,

. . . , gm〉, π)), andσ = σ r andτ = τ r , then for eachρ such thats
ρ−→A:

σρ = (σρ)r ⇔ τρ = (τρ)r

Proof We only prove “⇒”, the other direction then follows immediately.
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Join

userA userB userC
Leave

userA userB userC
DReq

userA userB userC
DInd

Figure 5.4: The chatbox protocol service

By contradiction. Supposes
ρ−→A, σρ = (σρ)r and (τρ)r = τρ′ with ρ �= ρ′. By

definition of()r , we know thatτρ " τρ′. By Lemma 5.35, we know that the covering of the
ρ-part inτρ must be equal to the covering of theρ-part inσρ, and likewise for theρ′-part in
τρ′ andσρ′. Then certainlyσρ " σρ′ must hold. By unicity of representatives,σρ = (σρ′)r .
From Definition 5.29 we then obtain thatσρ ≤ σρ′ andτρ′ ≤ τρ, soρ ≤ ρ′ andρ′ ≤ ρ. This
yields a contradiction with the assumption thatρ �= ρ′. �

5.7 Examples

In this section we report on some initial experiments in the application of symmetry to the
testing of two examples. Section 5.7.1 presents the example of a chatbox, and Section 5.7.2
presents the example of a cyclic train.

Part of the test generation trajectory was implemented: we used the tool environment
OPEN/CÆSAR[Gar98] for prototyping the algorithm Kernel from Section 5.3. Section 5.7.3
relates some prototyping experiences.

We work with a pattern based symmetry (Section 5.6) and apply the test derivation method
from Section 5.5.

5.7.1 A chatbox service

In this section we report on some experiments in the application of symmetry to the testing of
a chatbox.

A chatbox offers the possibility to talk with users connected to the chatbox. After one
joins (connects to) the chatbox, one can talk with all other connected users, until one leaves
(disconnects). One can only join if not already present, and one can leave at any time. For
simplicity, we assume that every user can at each instance talk with at most one user. Moreover,
we demand that a user waits for a reply before talking again (unless one of the partners leaves).
Finally, we abstract from the contents of the messages, and consider only one message. The
service primitives provided by the chatbox are thus the following; Join, Leave, DReq, and
DInd, with the obvious meaning (see Figure 5.4). For lack of space, we do not give the full
formal specification of the chatbox or its template.

What we test for is the service of the chatbox as a whole, such as it may be offered by
a vendor, rather than components of its implementation, which we (the “customers”) are not
allowed to, or have no desire to, inspect.
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des (0, 20, 3)
(0, "1 !DREQ !0 !1 !MES !DIND", 1)
(0, "3 !DREQ !1 !0 !MES !DIND", 1)
(0, "9 !DREQ !0 !1 !MES !NO_OUTPUT", 0)
(0, "10 !DREQ !0 !1 !ACK !NO_OUTPUT", 0)
(0, "11 !DREQ !0 !0 !MES !NO_OUTPUT", 0)
(0, "12 !DREQ !0 !0 !ACK !NO_OUTPUT", 0)
(1, "2 !DREQ !1 !0 !ACK !DIND", 0)
(1, "4 !DREQ !0 !1 !ACK !DIND", 0)
(1, "5 !DREQ !1 !0 !MES !DIND", 2)
(1, "7 !DREQ !0 !1 !MES !DIND", 2)
(1, "13 !DREQ !0 !1 !MES !NO_OUTPUT", 1)
(1, "14 !DREQ !0 !1 !ACK !NO_OUTPUT", 1)
(1, "15 !DREQ !0 !0 !MES !NO_OUTPUT", 1)
(1, "16 !DREQ !0 !0 !ACK !NO_OUTPUT", 1)
(2, "6 !DREQ !0 !1 !ACK !DIND", 1)
(2, "8 !DREQ !1 !0 !ACK !DIND", 1)
(2, "17 !DREQ !0 !1 !MES !NO_OUTPUT", 2)
(2, "18 !DREQ !0 !1 !ACK !NO_OUTPUT", 2)
(2, "19 !DREQ !0 !0 !MES !NO_OUTPUT", 2)
(2, "20 !DREQ !0 !0 !ACK !NO_OUTPUT", 2)

Figure 5.5: The template for a chatbox with three users and no joining/leaving

This example was inspired by the conference protocol presented in [TPHT96]. Some
changes were made, all stemming from the need to keep the protocol manageable for experi-
ments without losing the symmetry pursued. We mention the absence of queues and multicasts
and the restriction to the number of outstanding messages. Also, we ignore the issues of test
contexts, test architectures, and points of control and observation. A Lotos [ISO89] model and
aµCRL [GP95] model were constructed for 3 and 4 users.

The symmetry inherent in the protocol is immediate: pairs of talking users can be replaced
by other pairs of talking users, as long as this is done systematically according to Defini-
tions 5.23 and 5.25. As an example, the trace in which user 1 joins, leaves and joins again, is
symmetric to the trace in which user 1 joins and leaves, after which user 2 joins. The essence
is that after user 1 has joined and left, this user is at the same point as all the other users that
are not present, so all new join actions are symmetric. Note that this symmetry is more general
than a symmetry induced solely by a permutation of actions or IDs of users. Thus the template
T used for the symmetry basically consists of the conversation between two users, including
joining and leaving, while the transformationsπ in the set� shuffle the identity of users. We
feel that it is a reasonable assumption that the black-box implementation offering the service
indeed is symmetric in this sense.

We have applied the machinery to chatboxes with up to 4 users. We also considered a
(much simpler) version of the protocol without joining and leaving.

In Figure 5.5, we display the template for the chatbox with three users and no joining/leaving.
The template is in the Ald´ebaran state space format, in which(i,<label>,j) indicates
the transition from statei to statej with action label<label>. The set of permutations is
{{1 '→ 1,2 '→ 2}, {1 '→ 2,2 '→ 1}, {1 '→ 1,2 '→ 3}, {1 '→ 3,2 '→ 1}, {1 '→ 2,2 '→
3}, {1 '→ 3,2 '→ 2}}. So, the template gives the chatting between user 0 and 1, from the
point of view of user 0. There are three states, namely where no message has been sent (or all
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model kernel
states trans minimal? states trans

3 users 512 12288 yes 213 3722
4 users 65536 2621440 yes 16385 263000

no joining/leaving
3 users 64 1152 yes 10 84
4 users 4096 131072 yes 112 1296

Table 5.1: Kernel statistics for the chatbox

messages have been acknowledged), a state in which a message has been sent from one to the
other, which has not yet been acknowledged, and a state in which two messages have been sent
(in the two different directions) which have not been acknowledged. The self-loops are there
to cover unsuccessful chatting attempts. The permutations shuffle the identities such that all
possibilities are covered.

We start the test generation by computing a kernel for these specifications. In Table 5.1,
the results of applying our prototype implementation of the algorithm Kernel can be found.
Our prototype is able to find a significantly smaller Mealy machine as a kernel for each of
the models, provided that it is given a suitable ordering< (see Definition 5.29) on the actions
symbols for its representative function. The kernels constructed consist of interleavings of
transformations of the pattern, constrained by the symmetry and the ordering<.

For instance, in a chatbox with 3 users and no joining and leaving, we take the ordering<

defined as follows. “Sending a message fromi1 to j1” < “sending a message fromi2 to j2” if
(i1 < i2) or if (i1 = i2 and j1 < j2), and “sending a reply fromi1 to j1” < “sending a reply
from i2 to j2” if ( i1 > i2) or if (i1 = i2 and j1 > j2).

Using this ordering, the kernel only contains those traces in which first messages from user
1 are sent, then messages from user 2 and finally messages from user 3, while the sending of
replies is handled in the reverse order. Each trace with different order of sending messages can
then be computed from a trace of this kernel, which is exactly what Theorem 5.13 states. This
technique of dealing with traces is reminiscent of partial ordering techniques [God96].

From Table 5.1 we see that the kernel size is relatively smaller when considering chatboxes
without joining and leaving. This difference is due to the fact that, since one cannot send a
message to a user that has left, joining and leaving obstructs the symmetry in messages being
sent.

Given the computed kernels, we can construct test pairs by determining for each kernel
a set of input sequencesW that constitutes acharacterising set for the kernel (as defined in
Definition 5.16). Although this part has not yet been automated, it is easily seen by a generic
argument that for every pair of inequivalent (non-bisimilar) states very short distinguishing
sequences exist. It is easy to devise a transition cover for a kernel, the size of which is propor-
tional to the size of the kernel.

As shown in Theorem 5.21, the size of the test suite to be generated will depend on the
magnitude of two numbersm1 andm2, indicating the search space for distinguishing sequences
for the image of the kernel in the implementation. This boils down to the following questions:
(1) What is the size of the image part of the implementation for this kernel? (2) What is the
size of a minimal distinguishing experience for each two inequivalent (non-bisimilar) states in
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Station 1Station 3

Station 0

Station 2

Figure 5.6: A cyclic train with 4 stations

the image part of the implementation? (3) How many steps does a distinguishing sequence
perform outside the image of the kernel? These questions are variations of the classical state
space questions for black box testing. For practical reasons, these numbers are usually taken
to be not much larger than the corresponding numbers for the specification.

5.7.2 A cyclic train

In this section we report on some initial experiments in the application of symmetry to the
testing of acyclic train. This example was inspired by the elevator specification used by
Frits Vaandrager in the course ‘Declarative Specifications and Systems’ at the University of
Nijmegen in spring 1998. Since the symmetry in an elevator obviously must be sought in the
floor numbers, and at the lowest (highest) floor it is not possible to go any lower (higher), we
modified the example a little to make the elevator cyclic: from the lowest floor, the elevator
can reach the highest floor by moving one floor down, and vice versa. To make the example a
bit more intuitive, we rename the cyclic elevator to a cyclic train, and floors to stations.

See Figure 5.6. The train runs on a cyclic track, from station to station. It can change
direction if needed, and can be sent to a destination if a button inside the train is pressed, and
called to a station if a button in the station is pressed. We consider as running example a cyclic
train running between four stations. In Figure 5.6, the train is moving from station 3 to station
2.

The symmetry inherent in the protocol is immediate: the behaviour of the train requested
to go to a station or moving from one station to another is symmetric to the same behaviour
when other stations are involved. As an example, the trace in which the train starts at station
1, is called to station 2 and then sent to station 0 is symmetric to the trace in which the train
starts at station 3, is called to station 0 and then sent to station 2. Thus the templateT used for
the symmetry basically consists of the train arriving at the current station (from left or right),
opening its doors, closing its doors and moving away again, while the transformationsπ in the
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des (0, 20, 5)
(0, "1!REQUEST(CALL,1)", 1)
(0, "2!REQUEST(SEND,1)", 1)
(0, "3!MOVELEFT(1)", 2)
(0, "4!MOVERIGHT(1)", 2)
(1, "5!REQUEST(CALL,1)", 1)
(1, "6!REQUEST(SEND,1)", 1)
(1, "7!MOVELEFT(1)", 3)
(1, "8!MOVERIGHT(1)", 3)
(2, "9!REQUEST(CALL,1)", 3)
(2, "10!REQUEST(SEND,1)", 3)
(2, "11!MOVELEFT(0)", 0)
(2, "12!MOVERIGHT(2)", 0)
(3, "13!REQUEST(CALL,1)", 3)
(3, "14!REQUEST(SEND,1)", 3)
(3, "15!MOVELEFT(0)", 1)
(3, "16!MOVERIGHT(2)", 1)
(3, "17!OPENDOOR(1)", 4)
(4, "18!REQUEST(CALL,1)", 4)
(4, "19!REQUEST(SEND,1)", 4)
(4, "20!CLOSEDOOR(1)", 2)

Figure 5.7: The template for a train with three stations

set� shuffle the identity of the station.

In Figure 5.7, we display the template for a train with three (or more) stations. Again,
the template is in the Ald´ebaran state space format, in which(i,<label>,j) indicates the
transition from statei to statej with action label<label>. The set of permutations is{{0 '→
0,1 '→ 1,2 '→ 2}, {0 '→ 1,1 '→ 2,2 '→ 0}, {0 '→ 2,1 '→ 0,2 '→ 1}}. So, the template
gives the possibilities for the train arriving at station 1, and passing by or opening and closing
its doors. The neighbour stations are 0 and 2. The permutations shuffle these station identities
in a roundabout way.

We have applied the machinery to trains with up to 8 stations. We also considered a version
of the train in the Mealy style, where each transition consists of an input and an output action.
Here we have assumed that in each state, one can give an input by pressing a button, and that
the output for such an input depends on the state of the train. If no input is given, the train may
still want to move from station to station. This is modeled with the input actionWAIT.

In Table 5.2, the results of applying our prototype implementation of the algorithm Kernel
can be found. We work with state spaces generated fromµCRL code which have not been
minimised. The kernel is significantly smaller for each of the models, provided that it is given a
suitable ordering< (see Definition 5.29) on the actions symbols for its representative function.
The orderings in the table refer to the ordering of symmetric request actions for the train to go
to a certain station. The numbers indicate the identity of the station to which the train should
go. For the Mealy style models, it turns out that the orderings listed in the table work better
than others. For the models with 4 and 5 stations these are in fact the best orderings. For the
other models, only some orderings were tested. Naturally, if the state space from which the
kernel is constructed and the kernel itself get larger, the process takes longer.
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model kernel
states trans minimal? states trans representative ordering

7 stations 286725 4300874 no 12685 79594 6<5<4<3<2<1<0
8 stations 1310725 22282324 no 30945 195404 7<6<5<4<3<2<1<0

Mealy style
4 stations 2808 24312 no 1548 0<2<1<3
5 stations 13950 148650 no 5193 0<2<4<3<1
6 stations 72036 912276 no 16959 0<2<5<3<4<1
7 stations 336042 4927734 no 49941 79594 0<3<6<4<5<2<1
8 stations 1563696 26060592 no 146394 887208 0<2<7<3<6<4<5<1

Table 5.2: Kernel statistics for the cyclic train

5.7.3 Implementing the algorithm Kernel

The algorithm Kernel (see Figure 5.1) was implemented using the OPEN/CÆSAR[Gar98] tool
set. An exploration algorithm like this is implemented by writing the essence of the algorithm
in C, using library functions and data types from the OPEN/CÆSARinterface in the prescribed
manner. The routines and datatypes from the OPEN/CÆSAR library take care of the data
structures for exploring the state space. The core of this is a table of states with two pointers,
one pointing at the state that is being explored, and one pointing at the end of the table, where
new states may be inserted. As soon as the first pointer passes the second one, the exploration
is finished.

Since we based our implementation on the pattern approach, the input to the algorithm
consists of two finite state machines: one for the specification that is reduced to a kernel,
and one for the template of the symmetry, which is used to determine (as an oracle) whether
two traces are symmetric. To enable this, the OPEN/CÆSAR interface had to be generalised
somewhat so that it is now able to explore several labeled transition systems at the same time.

Our implementation differs a little from the presentation in Figure 5.1, in that it does not
only keep track of the trace that it is exploring, but also of the current state for each copy of
the template. This enables us to use Lemma 5.36, and search in the part of the table that was
already explored for the current state, together with the current set of states for the copies of
the template. Also, the set of possible representative actions leading from the current state is
not determined using the trace leading to the current state, but using the state of each copy of
the template.

The implementation was tried on the examples described in Sections 5.7.1 and 5.7.2, giving
the results mentioned in Tables 5.1 and 5.2.

We have the experience that OPEN/CÆSAR is suitable for prototyping exploration algo-
rithms such as Kernel.

5.8 Future work

We have introduced a general, FSM based, framework for exploiting symmetry in specifica-
tions and implementations in order to reduce the amount of tests needed to establish correct-
ness. The feasibility of this approach has been shown in a few experiments.
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However, a number of open issues remain. We see the following steps as possible, nec-
essary and feasible. On the theoretical side we would like to (1) construct algorithms for
computing and checking symmetries, and (2) determine conditions that are on the one hand
sufficient to guarantee symmetry, and on the other hand enable significant optimisations of the
algorithms. On the practical side we would like to (1) generate and execute tests for real-life
implementations, and (2) continue prototyping for the whole test generation trajectory.



Chapter 6

Model checking the HAVi
leader election protocol

Summary

The HAVi specification [GHM+98] proposes an architecture for audio/video interoperability in
home networks. Part of the HAVi specification is a distributed leader election protocol. We have
modelled this leader election protocol in Promela and Lotos and have checked several properties
with the tool Spin and the tool Xtl (from the Cæsar/Ald´ebaran package).
It turns out that the protocol does not meet some safety properties and that there are situations
in which the protocol may never converge to designate a leader. Our conclusion is that realis-
tic timing requirements on sending and processing of messages should be added to the HAVi
specification. Then a (timed) formal verification could give a definite answer with respect to
correctness of the leader election protocol.

6.1 Introduction

The Home Audio/Video Interoperability (HAVi) project [GHM+98] is a joint effort by eight
consumer electronics companies to solve interoperability problems for audio/video networks
in the home environment.

The HAVi specification specifies a set of Application Programming Interfaces (APIs) and
protocols that allow consumer electronics manufacturers and third parties to develop appli-
cations for the home network. Thus the home network is viewed as a distributed computing
platform, and the primary goal of the HAVi architecture is to assure that products from differ-
ent vendors can cooperate to perform application tasks. The HAVi architecture is supposed to
work on top of an IEEE 1394 serial bus [IEE96, IEE99].

There are two types of HAVi devices: controllers and controlled devices. The controller
acts as a host for controlled devices via a Device Control Module (DCM). Installation and al-
location of such DCMs is done by a HAVi software element which is called the Device Control
Module Manager (DCM Manager). Each controller is supposed to have a DCM Manager. All
DCM Managers have to cooperate with each other to ensure that the installation and allocation
of DCMs works properly. A complicating factor here is the dynamic plug-and-play character

101
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of the 1394 network. Each time when a change in the 1394 network occurs, the DCM Man-
agers restart their activities by first choosing a leader among them, and then under the control
of the designated leader, complete their DCM controlling tasks.

The purpose of the leader election is that the DCM Manager with the best capabilities
will play a central role in the DCM controlling tasks. Since not all of these capabilities are
persistent and globally available, the DCM Managers need to communicate to find out which
one is the best candidate for leadership.

In this chapter, we study the leader election protocol between the DCM Managers. Our goal
is to analyse this protocol with several model checking tools, to determine whether the protocol
is correct, and to compare the model checking tools. Our approach is to construct a model of
the behaviour of the protocol in a suitable formal language, and to establish certain properties
through model checking. Model checking is a verification approach where one checks whether
a property holds by exploring the reachable state space of the model. The manual construction
of such proofs is a tedious and error-prone process. Nowadays, there are several tools that fully
automate the model checking process.

We present several models of the protocol leader election protocol in the formal languages
Promela [Hol91] and Lotos [ISO89]. Several properties have been checked with the model
checking tools Spin [Hol91, Hol97] and Xtl [Mat98, MG98] (part of the Cæsar/Ald´ebaran
distribution [FGK+96]).

We have found errors in the formal models with both Spin and Xtl. It turns out that some
safety properties are not met by the protocol and that there are situations in which the protocol
may never converge to designate a leader. The cause of these errors is that the HAVi speci-
fication is not detailed enough to ensure that HAVi compliant implementations are faultless.
The errors occur when communication between different devices is faster than communication
between components in one device. Besides our conclusions on the correctness of the HAVi
protocol, we compare the two model checking tools.

As far as we know, the only other paper in which the HAVi leader election protocol between
DCM Managers is studied is [Use99]. Here, a comparison is made between the performance
of state space exploration of Spin and theµCRL tool set [GP95]. The model of the protocol
differs from ours and no model checking has been performed.

It should be noted that although [GHM+98] is not the most recent version of the HAVi
specification, it is the only version publicly available. Newer versions are subject to constant
change and confidential. Therefore this research is based on [GHM+98].

This chapter is organised as follows. Section 6.2 gives an informal description of the HAVi
leader election protocol. Section 6.3 introduces the tools and languages used. Section 6.4
describes our model of the protocol. Section 6.5 gives the details of all the model checking
experiments. Finally, Section 6.6 gives several conclusions that we drew from this experiment.

The full version of the research presented in this chapter is available as CWI report SEN-
R9915. It contains relevant excerpts from the HAVi and 1394 specifications and several code
listings.

6.2 The DCM Manager leader election protocol

The DCM Manager leader election protocol is described in the HAVi specification [GHM+98]
at page 160. The protocol tries to find a suitable leader that can manage the actual task of the
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Figure 6.1: The HAVi architecture

DCM Managers, which is performed in the autonomous operation phase. We only study the
leader election phase.

The parts of the HAVi specification and the IEEE 1394 standard that are relevant for this
protocol can be found in the report version. Here, we give an informal explanation of the
protocol, and the services that it requires from several HAVi components. We start with the
latter.

6.2.1 HAVi components

In Figure 6.1, the HAVi architecture is depicted. The different services in the middle layer of
the architecture are described in the HAVi specification; they are referred to as HAVi elements.
Local elements reside in the same device. The DCM Managers use the services of the local
elements Messaging System, Communication Media Manager, and Event Manager. These
elements will be available at each HAVi device that contains a DCM Manager.

The Messaging System provides two services and two modes of sending messages to
software elements, whether local or not. The service choices are to block while waiting for a
response by the receiver or not to wait for a response. The modes are reliable or simple. The re-
liable mode implicates that the sender is informed by the Messaging Systems involved whether
the message reached the receiver. The sender is blocked until such an acknowledgement arrives
or a timeout occurs. The simple mode implicates no acknowledgement information from the
Messaging Systems is given to the sender. The Messaging System on the device of the receiver
delivers the message to the receiver via a call back function, which the receiver has dispensed
to the Messaging System at start-up time. The Messaging System uses the 1394 network for
the actual message passing. From the 1394 specification we learn that at the 1394 level, no
messages can be sent between different devices while a bus reset is taking place.
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Figure 6.2: A bus reset scenario

The DCM Managers communicate with each other using the reliable method and the re-
sponse service. The HAVi specification does not limit the nature of the call back function that
the DCM Managers use. The DCM Managers use a timeout of 3 seconds on all messages.

TheEvent Manager accepts requests to post events and sends a message with the event
through the Messaging System to every local software element that has subscribed to the event.
A posting request must be sent through the Messaging System. The DCM Managers all sub-
scribe to the BusReset event during initialisation.

TheCommunication Media Manager provides information on the network configuration
which it gets from the 1394 layer. Upon the start of a bus reset phase, it posts the event
BusReset. Since each FAV or IAV device has its own Communication Media Manager to
signal the bus reset start, the BusReset event only needs to be sent to software elements on
the same device. This means that the Messaging System can at all times deliver the messages
containing this event to the interested parties, as long as the device is powered up.

The Communication Media Manager also allows software elements to request network in-
formation in the form of a GUIDList. This service is only available outside bus reset phases,
after the Communication Media Manager has received the information from 1394. This infor-
mation is to be asked with a message through the Messaging System.

An example scenario In Figure 6.2 we show an example scenario in which the following
happens. A bus reset period starts. The Communication Media Manager posts the BusReset
to the Event Manager. The Event Manager delivers the BusReset to the DCM Manager. The
DCM Manager reacts by requesting the GUIDList from the Communication Media Manager.
This list is available only when the bus reset period has ended.
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6.2.2 Protocol

Each DCM Manager enters the leader election phase upon initialisation and each time a bus
reset event is received. First it obtains information on the current network topology, by sending
a request to another HAVi element, the Communications Media Manager, which returns a list
with all the devices that are active in the (1394) network. The list contains the Global Unique
ID (GUID) of all devices in the network. The DCM Manager then questions the 1394 level of
each active device to find out some more information. The information needed for this protocol
is the HAVi type of the device (FAV, IAV, BAV or LAV), and whether there is a DCM Manager
present at the device (at FAV compulsory, at IAV optional). Based on this information, the
DCM Manager selects an initial leader from the GUIDs of devices on which a DCM Manager
is present. Since each DCM Manager uses the same procedure for the selection, all of them
choose the same initial leader without communicating with each other. Each DCM Manager
which is not the initial leader is called initial follower.

The initial leader waits for initialisation requests from all initial followers, in which they
state their capability. Using this new information and the HAVi type of the devices, the initial
leader decides which DCM Manager is the best candidate for the final leadership. One of the
criterions is the HAVi controller type, which is found in the (static) information of the HAVi
device and which can be accessed from outside the device. The other criterion is Internet access
which is found in the request messages from the followers. Each initial follower is informed
of the decision with an initialisation reply, and the DCM Manager that has been elected as the
final leader is informed last. After this, the leader election phase ends and the autonomous
operation phase is entered. Here, each DCM Manager which is not the final leader is called
final follower.

During or after the leader election phase, the network topology may change, which causes a
bus reset phase to start. Whenever this happens, the DCM Managers should start anew with the
leader election because the previously elected leader may have disappeared from the network
or a more suitable candidate may have appeared. The DCM Managers are informed of a bus
reset phase by the Communications Media Manager with an event. The HAVi specification
does not lay down any implementation rules for the delivery of this event, such as timing
requirements. So it is possible that the bus reset event is delivered after the bus reset phase
has already ended. If multiple bus reset phases occur (almost) adjacently, the DCM Managers
may get out of phase in their leader election. Then one DCM Manager might be sending its
initialisation request to an initial leader which is not aware of any bus reset phase having taken
place, or vice versa. To keep things in order, the DCM Manager which is to be the initial
leader, must remember this role and answer initialisation requests with an initialisation reply,
even after leader election has ended. During and after the protocol, all unexpected messages
are ignored.

6.3 Languages and tools

This section gives a short introduction to the languages and tools used for formalisation and
verification of the leader election protocol. For details we refer to the documentation cited
below.
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6.3.1 Spin and Promela

Spin [Hol91, Hol97] is a tool that supports simulation and verification of Promela [Hol91]
models of distributed systems. Models in Promela (a Process Meta Language) consist of def-
initions of process behaviour, with variable assignments, sequential and alternative compo-
sition, repetition and dynamic process creation. Communication between processes happens
on synchronous or asynchronous channels. Synchronous communication always involves two
processes. The support of data types is very limited: basic types are booleans and naturals,
from which arrays and record structures can be built.

Verification is supported through detection of deadlocks, invalid end-states or non-progress
loops, through violation of assertions and through LTL [Pnu77, MP92] properties. The verifi-
cation is done on the fly: the global state space is not constructed, but explored directly from
an interpreted version of the Promela code.

6.3.2 Lotos, Cæsar/Aldébaran and Xtl

Lotos [ISO89] is a standardised language for abstract modelling of distributed systems. Lotos
models consist of a data part and a behaviour part: the data part is expressed in ACT-ONE,
an algebraic formalism for abstract data types, and the behaviour part is expressed in process
algebra with sequential, alternative and parallel composition, and recursion. Communication
happens on synchronous gates and can involve more than two processes.

The Cæsar/Ald´ebaran tool set [FGK+96] facilitates simulation and verification of Lotos
models. Simulation and detection of deadlocks, livelocks et cetera can be done on the fly.

The Xtl tool [Mat98, MG98] (which is part of the Cæsar/Ald´ebaran tool set) facilitates
the verification of temporal properties over Lotos models. First the global state space must be
generated (with Cæsar), then Xtl can verify a property given in one of the following logics:
HML [HM85], CTL [CES86], LTAC [QS83], ACTL [DNFGR93, DNV90] and the modalµ-
calculus [Koz83]. It is even possible to define one’s own modal logic in terms of the libraries
provided by Xtl (including greatest and least fixpoint operators).

6.4 Modelling decisions

In this section, our model of the protocol is explained. What is presented here is the result
of a process of experimenting with different models, imposing and lifting restrictions until a
satisfactory model with a manageable size was obtained.

In the remainder of this section we abbreviate DCM Manager (DM), Communication Me-
dia Manager (CMM), and Messaging System (MS).

Restrictions on the network Each of the following choices is a restriction on what is allowed
by the HAVi model. These restrictions are imposed in order to obtain a model of manageable
size.

We study only situations with one network in which maximally three devices are active,
and demand that in the start state no device is powered on.

The HAVi device types are FAV, IAV, BAV and LAV. We assume that there only are FAV
devices in the network, and that on each of these devices, a DM is present.
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A bus reset in the 1394 network may be caused by a change in the network topology (a
device being added to or removed from the network), by a device in the network being powered
up or down, by race conditions in the 1394 protocol or by other error situations. We model
the cause of a bus reset as the power change of zero or more devices in the network. Here,
zero power changes represent some other cause of bus reset, and the power change of a device
also represents the connecting or disconnecting of that device (when a device is disconnected
but still powered up, it operates in a new network consisting of just itself; we only study one
network). The network behaviour is modelled with the process BusReset.

From IEEE 1394 we learn that the worst-case time delay between the start of the bus reset
phase and the moment that the last device in the network notices the bus reset is less than 167
microseconds. The duration of the bus reset phase until normal operation resumes is at least
414 and maximally 581 microseconds. We restrict the bus reset phase delay to zero, which
means that the bus reset phase starts at the same time at all devices in the network. For our
verification purposes we only want to consider properties that concern situations in which a
bus reset is not taking place. Therefore it is convenient to have the start of the bus reset phase
actually precede the change of network which causes the bus reset phase.

In the HAVi design, each DM uses a capability and a preference in the leader election
protocol. We restrict ourselves to the capability UrlCapable, which indicates whether a device
has Internet access (true) or not (false). We assume that the value of UrlCapable does not
change.

In a 1394 network a device may be unplugged (powered off), and then plugged back in
(powered on). This may cause the device to get a different 1394 physical ID and HAVi SEID
(Software Element ID) once it is back in the network, than the 1394 and HAVi IDs it had
before. Since each device has a globally unique ID (GUID) which does not change, and other
devices can find out about this through the GUIDList which is managed by their CMM, we
only identify devices with their GUID and do not model the physical ID.

Which HAVi components? We model the DM, the MS and the CMM with separate pro-
cesses, which are described below. We do not include a process for the Event Manager. The
only event posted to this component will be the BusReset, and all different scenarios of deliv-
ery of this event can be modelled by one synchronous communication between the CMM and
the DM. If the delivery is unsuccessful, the communication does not occur. An extra process
Bus Reset is needed to model the behaviour of the 1394 network.

Process Bus Reset This process determines whether a new bus reset period will start, and
which devices (hence which DMs and CMMs) will be powered up or down. Both of these
choices are non-deterministic, hence in a verification all possibilities will be considered. When-
ever a device is powered up or down, the DM, CMM and MS on that device are informed by
Bus Reset in a synchronous manner. The power changes are determined in increasing order of
device ID.

Process CMM This process controls the GUIDList, in which all devices present in the net-
work are listed. It also signals any start or end of a bus reset period on the 1394 network, and
passes this information on to the DM and the MS on the same device.
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Figure 6.3: DCM Manager to DCM Manager communication

When several bus reset periods follow each other with little time in between, it is possible
that a CMM has not posted the occurrence of a previous bus reset, when the next is already
taking place. The HAVi specification does not define whether both bus reset events should be
posted or just one. We choose to have the new bus reset overrule the previous one, and have
only the last bus reset notification being posted and delivered.

Process MS This process takes care of the communication between the DMs and acts as
a buffer. All message transfers that use the MS, are performed in reliable mode, therefore
we model such a message transfer as one communication involving just the sending and the
receiving component. The message transfer is shown in Figure 6.3.

The HAVi design is that DM 1 sends a message, intended for DM 2, to the MS 1 (which
is on the same device as DM 1). MS 1 sends the message on the network to MS 2, which
delivers it to DM 2. After sending the message, DM 1 will wait for an error message, a timeout
or an acknowledgement of successful delivery to DM 2. DM 1 only continues its operation
after such a notification/timeout. In Figure 6.3, continuous arrows show how a message is
transported through the HAVi architecture from DM 1 to DM 2, and the dashed arrows show
how the notifications are generated and returned. In case of erroneous transfer, the message
may not reach MS 2 or DM 2, but DM 1 is aware that something is wrong because the proper
acknowledgement was not received. Successful delivery to DM 2 means that either DM 2 is
interrupted to receive the message (synchronous communication) or the message is put into a
buffer designated by DM 2 (asynchronous communication).

We have modelled the synchronous version of this communication with direct synchronous
communication between DM 1 and DM 2 (and then there is no need for any MS process), and
the asynchronous version by synchronous communication between DM 1 and MS 2. In the
latter case, DM 2 can get the message from MS 2 by synchronous communication. Note that
MS 1 is not used in this communication scheme. This modelling choice is made to limit the
possibilities for the communication, which is reasonable since we are only interested in the
communication succeeding (modelled by the message put into the buffer) or failing (modelled
by the communication not occurring at all). Of course, the size of the buffer maintained by the
MS limits the number of messages that can be sent to a DM before it actually receives them.

So, in short, in the case of synchronous communication between DMs, there will be no MS
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process in our model. In the case of asynchronous communication between DMs, there will be
an MS process which acts as a buffer for incoming messages directed to the DM at the same
device. The buffer size is a parameter for the model; in all our models the buffer size is 1. In
case of asynchronous communication, the DM will empty the buffer in the event of a bus reset
period or whenever the power is switched off.

Process DCM Manager The general task of the DM is explained in Section 6.2. Our model
follows this procedure as closely as possible, except for a few modelling choices.

1. In our model we skip the subscription that the DM uses to inform the Event Manager
that it wants to receive all bus reset events. We also skip the registration of the call back
function that the DM must dispense to the MS.

2. From the two parameters that the DM uses in the protocol, we only consider UrlCapable
(Internet access).

3. The HAVi method of electing the initial leader, is to choose the DM on the device with
the highestbit order reversed ID. Since our assignment of IDs to DMs is arbitrary, we
just choose the DM with the lowest ID for initial leader.

4. The selection of the final leader in the HAVi design should be an arbitrary choice of the
devices with the best capabilities. We study networks with only FAV devices on which
a DM is present, hence we let the device with the lowest ID and UrlCapable set to true
be the final leader (which is not arbitrary, but does limit the size of the state space). If
no device has special capabilities, the HAVi design allows the initial leader to elect an
arbitrary device for final leader. In this case, we have the initial leader elect itself for
final leader (which also limits the state space size).

5. In the HAVi protocol, each initial follower will send its initialisation request to the initial
leader, and will resend the request if a reply was not received before a timeout occurs
(which is after 3 seconds). All our models are without timing information. Hence we
let the initial follower choose arbitrarily between resending the request and receiving the
reply. In this manner we cover all possibilities. Note that this choice does not introduce
new behaviour, that is, behaviour that is not permitted by the HAVi specification.

6.5 Model checking experiments

In order to check that the protocol works as intended, we have checked four properties on
several models of the protocol. Each of the following sections is dedicated to one property. The
properties are listed in this section in an informal manner and in a notation slightly different
from the actual input for the tools. For the exact definitions of the properties, we refer to the
report version.

The properties presented here were devised after the models of the protocol had been con-
structed. This has both advantages and disadvantages. A disadvantage is that it turns out to
be rather difficult to express properties for our specific models. In fact we have had to change
them slightly to make some information visible. An advantage is that the models have not
been tailored towards the properties that should be checked except the changes mentioned. A
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potential danger is that the model does not resemble the protocol close enough anymore, and
the properties to be checked trivially hold.

Since the behaviour of the protocol is unpredictable during bus resets or the period that
the CMMs need to deliver the bus reset event, we only demand that the properties be true for
stable situations, that is, in states where it is not the case that a bus reset is taking place or a
bus reset event should still be delivered. Since a new bus reset period may start at any moment
after the previous bus reset has ended and since we have included this possibility in our models
with non-deterministic choice, we get the behaviour depicted in Figure 6.4 from our models.
Suppose thats1, s2, s3, . . . , sn in Figure 6.4 are stable states, which means that no bus reset
is taking place, and all events concerning the last bus reset have been delivered. We see that
from s1 it is possible that a new bus reset period starts, but it is also possible that some other
behaviour takes place on the transition tos2. If we establish a property in terms of behaviour,
we can only capture the desired behaviour froms1 by using anexists quantifier: froms1 there
exists a behaviour which satisfies a certain requirement. Moreover, in our models the amount
of activity that concerns the protocol is bounded. After a certain point, the protocol is stuck
or completed, and the only possible behaviour is that a new bus reset period starts. So it is
not possible to express a property as follows: “for all behaviours: if no bus reset starts in this
behaviour then fulfill a requirement”.

Expressing properties for Promela models Safety properties can be checked in Spin through
the use ofassertion statements. We use a process with only such an assertion statement
in the verification for checking whether there is a state in which the assertion is false. If this
happens, Spin reports this as an error and stops the verification. An error trace is saved which
can be used for diagnostic purposes.

Liveness properties can be checked in Spin through the use of LTL [Pnu77, MP92] for-
mulas, which are translated intonever claims. A never claim is a process which will only
terminate if the corresponding LTL formula was violated. Actually, never claims represent
ω-regular properties. Spin checks whether never claims hold in the initial state. This means
that if a never claim is already satisfied by the initial state, no further exploration of the state
space is needed.

Both assertions and LTL formulas are expressed in terms of predicates, which range over
values of variables. It is also possible to check a pattern of communications, but not in com-
bination with checks of state variable values. Since in our case, it is by far the easiest to find
error situations by referencing the state variable values, we stick to the assertions and never
claims.

start
bus reset

start
bus reset

start
bus reset

start
bus reset

s1 s2 s3 sn

Figure 6.4: Protocol behaviour
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Expressing properties for Lotos models We express safety and liveness properties in ACTL
[DNFGR93, DNV90]. A property is checked by Xtl on the reachable state space, by checking
for each reachable state whether the property holds in that state.

Since the model checker Xtl is only used on state spaces which have been generated from
the Lotos model, the information of state variables is lost. Actually, the states are identified
by natural numbers in the state graph accepted by Xtl. This means that we cannot express
properties in terms of values of state variables, but can only observe the occurrences of actions.
A consequence of this approach is that some safety properties are expressed with patterns of
action occurrences, which are normally only used for liveness properties. With the ACTL
logic we are able to observe such patterns. In order to still reference state variable values, one
could build self-loops into the Lotos model, which give the values of the state variables in the
corresponding state. However, this was not a feasible approach in our case (See the discussion
in Section 6.6).

An action can be observed by comparing an action label from a transition to a label set in
the property that is being checked. Comparing an action label to the label setT (F) always suc-
ceeds (fails). Label sets can be constructed from syntactic expressions that capture one or more
action labels, and boolean operators. For instance, it is straightforward to construct a label set
that succeeds when compared to the labelBUS_RESET_START or the labelPOWER_CHANGE
and fails otherwise.

In order to enable the checking of not just communications between the DCM Managers,
but also other important actions, the model contains a few extra observable events. These are
modelled by the occurrences of communication on the special gateGEvent. In this way we
observe a DCM Manager electing itself for initial or final leader.

We now give an overview of the ACTL operators used, and their informal meaning1.

T,¬,∧,∨,→ Boolean true, negation, and, or, implication

[a] φ For every transitions
a→ t from the current state: formulaφ must hold in the target state

t

∀Gaφ For each (possibly finite) path from the current state where all actions are eithera or τ ,
formulaφ must hold in every state

∃(φaUbψ) There exists a path from the current state along which for a finite fragment formula
φ holds in each state and all actions are eithera or τ , and this fragment is immediately

followed by a transitions
b→ t, and in statet formulaψ holds.

For a complete list of ACTL operators and a formal definition, we refer to [DNFGR93, DNV90,
HM85].

The standard library in the Cæsar/Ald´ebaran distribution for using these operators is the
actl.xtl library (implemented by Mateescu [Mat98, MG98]) which establishes the validity
of a formula by checking whether the formula holds in all reachable states of the Lotos model.
This library is not implemented in such a way that it gives diagnostics in case a property is
not true. Diagnostics can be obtained by using thewalk_actl.xtl library (implemented

1Note that here, [] is not a pure ACTL operator, but an operator from the Hennessy-Milner modal logic [HM85].
Since the Xtl library for ACTL is defined using the Xtl libraries for the Hennessy-Milner modal logic and the modal
µ-calculus [Koz83], we can use operators from these logics in any ACTL expression.
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by Pecheur [Pec98]), which also implements the ACTL operators mentioned, and which tries
to find an error trace. This implementation establishes the validity of a formula by checking
whether the formula holds in the initial state of the Lotos model. Of course, in general the use
of this library is more costly since there is more administration involved in finding the trace,
and a lot of backtracking occurs.

6.5.1 Safety: At most one leader

It is never the case that more than one DCM Manager is a (initial or final) leader.

Spin We use anassertion statement, and check the following formula:

∀d,d ′.(¬bus reset ∧ leader(d) ∧ leader(d ′) → (d = d ′))

This property does not hold for any of the models. In Figure 6.5 an error trace constructed by
Spin for the model with two DCM Managers and synchronous communication is listed2. This
trace describes the following behaviour. In the first bus reset period both DCM Managers are
powered up. They start the leader election protocol, in which DCM Manager A is the initial
leader and DCM Manager B is the initial follower. B is UrlCapable and A is not. B sends A an
InitRequest, A computes the final leader which is B, and sends the InitReply to B. A new bus
reset period starts and ends without change in the network topology. The CMM on the device
of B delivers the bus reset event to B, and B starts the leader election protocol anew. B is again
initial follower and sends A an InitRequest. A does not know about the second bus reset period
so it is in its final follower phase where it answers any InitRequest with the same InitReply as
before. A sends B the InitReply and B concludes it is the final leader. Now the CMM on the
device of A delivers the bus reset event to A, and A starts the leader election protocol anew. A
is again initial leader and does not know the identity of the final leader to be elected, while B
still thinks it is final leader. In this state the property checked is violated.

The question is now whether this scenario is also possible within the HAVi specification.
The problems apparently arise when the delivery of a bus reset event message is delayed be-
yond the duration of both a message and a response between different devices, and when the
GUIDList is available before the corresponding bus reset event has been delivered. It may
be argued that such delays are not ‘realistic’ and ‘will not occur in practice’. However, since
the HAVi specification does not put constraints on the duration of communication between
devices, or on the delay between posting and delivery of the bus reset event, it is possible that
the bus reset event is delivered first to other HAVi elements which have subscribed to it, before
the DCM Manager receives it. Thus, it seems that in HAVi compliant implementations this
erroneous scenario may occur, and we conclude that this error indeed traces back to a design
flaw. We refer to Section 6.5.5 for a more elaborate discussion whether the HAVi protocol is
wrong.

Xtl What we want to establish, is that there are not multiple InitialLeader or FinalLeader
events in between of bus reset periods. Since we can check for patterns of actions, we formulate
the property as follows: if a bad pattern of Initial or FinalLeader events occurs, then we are

2In fact, this trace was generated when model checking the property from Section 6.5.3. It turns out that it is also
an error trace for the property discussed here.
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not in a stable situation (where no bus reset is taking place and the last bus reset events have
all been delivered). This boils down to expressing that when a bad pattern does occur outside
bus reset periods, apparently a bus reset event must still be delivered.

We check the following formula:

([b1] ∀Gi1([i3] ∀Gi1([i3] ∃(Ti2Ub2T))) ∧ ([b1] ∀Gi1([ f ] ∀Gi1([i4] ∃(Ti2Ub2T)))

where b1 = BusResetEnd

b2 = BusResetEvent

i1 = Ignore1 = ¬(BusResetEvent ∨ BusResetStart ∨ Initleader ∨ FinalLeader)

i2 = Ignore2 = ¬(BusResetEvent ∨ BusResetStart)

i3 = InitLeader

i4 = InitLeader ∨ FinalLeader

f = FinalLeader

This formula expresses two patterns that should be followed by a bus reset event being deliv-
ered. Both patterns start with the end of a bus reset period, and do not allow the start of a new
bus reset period by the use of the action label sets Ignore1 and Ignore2. The first pattern checks
the double occurrence of the InitialLeader event. The second pattern checks the occurrence of
a FinalLeader event, followed by either an InitialLeader or FinalLeader event. The action label
sets in the subscript of theG andT symbols enable the actions in the subscripts to occur in any
sequence in between.

This property holds for all models. Since we found errors in the Promela models for this
property using Spin (See earlier in this section) two questions remain, namely whether the er-
ror behaviour found with Spin also occurs here and if so, why it is not found with the ACTL
formula used. Simulating the behaviour from the Spin error trace is possible for the Lotos
model with two DCM Managers and synchronous behaviour. As to the second question. The
answer is that the label set Ignore1 is too restrictive. The idea of checking a pattern when a
bus reset event has completed turns out counterproductive. We might have checkedall occur-
rences of the FinalLeader event followed by bad patterns, and qualified the occurrence of a
BusResetStart, BusResetEnd or BusResetEvent as a good pattern. In any case, it appears that
the formulation of the property in this setting is very complicated. We refer to Section 6.5.5
for the discussion whether the HAVi protocol is wrong.

6.5.2 Safety: Best candidate becomes final leader

It is never the case that a final leader is selected which is not UrlCapable, while there is a DCM
Manager active in the network which is UrlCapable.

Spin We use anassertion statement, and check the following formula:

¬bus reset ∧ ∀d.((f leader(d) ∧ ¬url capable(d)) → ∀d ′.(up(d ′)→ ¬url capable(d ′)))

This property holds for all models except for the setting with three DCM Managers and asyn-
chronous communication. However, the error found here reveals problems with the interpre-
tation and execution of the Promela code rather than an error in the protocol. In fact, we can
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reason why in our model the property should be true for any number of DCM Managers with
either synchronous or asynchronous communication. The idea is that upon receipt of a bus
reset event, each DCM Manager will clear the information of being final leader and ask for the
new network topology (the GUIDList). Since the start of a bus reset period causes the delivery
of a bus reset event at some time, in a stable situation all bus reset events have been delivered,
and each DCM Manager must have the correct network topology information. So after the last
bus reset event delivery to a DCM Manager, it cannot choose a non UrlCapable final Leader
if there is a UrlCapable DCM Manager present. So the only way in which a non UrlCapable
DCM Manager can still be the final leader in a stable situation, while a UrlCapable DCM
Manager is present, is to receive an InitReply with its identity from the initial leader, when the
initial leader has not received the latest bus reset event. But we have modelled the final leader
election by having the initial leader choose itself, if no UrlCapable Manager is present. So it
cannot ever send an InitReply with the identity of another, non UrlCapable DCM Manager. It
is clear that although the property must hold in our models, it does not hold when we lift the
restriction that the initial leader chooses itself for final leader when no UrlCapable DCM Man-
ager is present. Since there is no such restriction in the HAVi specification, we expect that this
property does not hold for HAVi compliant implementations in general. As in Section 6.5.1
the error scenarios require that the delivery of a bus reset event message is delayed beyond the
duration of the sending and delivery of both a message and a response between different de-
vices, and possibly also that the GUIDList is available before the delivery of the corresponding
bus reset event. We refer to Section 6.5.5 for a more elaborate discussion whether the HAVi
protocol is wrong.

Xtl The situation that a DCM Manager is up and UrlCapable is signalled by the request
from such a DCM Manager to the initial leader, in which the UrlCapable parameter is true.
Whenever such a request is followed by the election of a final leader which is not UrlCapable,
there must be a bus reset event pending that needs to be delivered.

We check the following formula:

[u] ∀Gi1([ f ] ∃(Ti2UbT))

where b = BusResetEvent

i1 = Ignore1 = ¬(BusResetEvent ∨ BusResetStart ∨ BusResetEnd ∨ FinalLeader)

i2 = Ignore2 = ¬(BusResetEvent ∨ BusResetStart)

f = FinalLeaderNotUrlCapable

u = RequestUrlCapable

This property holds for all models. We refer to the paragraph above on Spin experiments for
this property, for a discussion whether this property holds in general or not, and to Section 6.5.5
for the discussion whether the HAVi protocol is wrong.

6.5.3 Safety: All agree on the final leader

Whenever a final leader is selected, all DCM Managers agree on the identity of this leader.
Of course this can only be checked as soon as all DCM Managers have been informed of
the decision of the initial leader. Since the final leader is informed last of the decision (and
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whenever this happens to be also the initial leader, it will ‘inform itself last’), this can be
checked as soon as one of the DCM Managers has been elected for final leader.

Spin We use anassertion statement, and check the following formula:

∀d.(¬bus reset ∧ f leader(d) → ∀d ′.(up(d ′)→ leader id(d ′) = d))

This property does not hold for any of the models. The error trace constructed by Spin for
the model with two DCM Managers and synchronous communication, which is depicted in
Figure 6.5, is discussed in Section 6.5.1. We refer to Section 6.5.5 for the discussion whether
the HAVi protocol is wrong.

Xtl We can only check that everyone has the same leader identity by checking the parameters
of messages/events concerning the final leader. We require the leader identity parameter to be
equal for all such actions in stable situations. So the property must express that whenever two
actions carry a different leader identity outside a bus reset period, apparently a bus reset event
must still be delivered.

We check the following formula:

∀d. [ld ] ∀Gi1([l¬d ] ∃(Ti2UbT))

where b = BusResetEvent

i1 = Ignore1

= ¬(BusResetEvent ∨ BusResetStart ∨ BusResetEnd ∨ InitReply ∨ FinalLeader)

i2 = Ignore2 = ¬(BusResetEvent ∨ BusResetStart ∨ BusResetEnd)

ld = (InitReply ∨ FinalLeader) with leader identityd

l¬d = (InitReply ∨ FinalLeader) with leader identity not equal tod

This property holds only when communication between DCM Managers is synchronous.
In the asynchronous case an erroneous initialisation reply may be lingering in someones input
queue, after the corresponding bus reset event has been handled by the sender of the erroneous
message. In Figure 6.6 an error trace constructed with thewalk_actl library is listed. The
behaviour described by this trace is as follows. In the first bus reset period DCM Manager A
is powered up. A is not UrlCapable. A starts the leader election protocol and elects itself for
initial leader. In the second bus reset period DCM Manager B is powered up. B is UrlCapable.
After the second bus reset, A has not received the bus reset event yet. A elects itself for final
leader which completes the leader election. B elects A for initial leader and sends an InitRe-
quest. A receives the InitRequest from the MS and sends an InitReply with its own identity for
final leader. Now A receives the bus reset event and starts the leader election protocol anew. B
has not received the InitReply from the MS yet and sends a second InitRequest to A. Now B
receives the InitReply from the MS and concludes that A is the final leader. A elects itself for
initial leader, and receives the second InitRequest that B sent from the MS. A elects B for final
leader and sends an InitReply with the identity of B for final leader. The property is violated.

Since we found errors for the Promela models with synchronous communication using
Spin, two questions remain, namely whether the error behaviour found with Spin also occurs
here and if so, why it is not found with the ACTL formula used. In Section 6.5.1 we mention
that it is possible to simulate the Lotos model with two DCM Managers and synchronous
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Figure 6.5: The Spin error trace for ‘one leader’ and ‘same final leader’



6.5 Model checking experiments 117

AG_A(A, F) is FALSE
0:(0, "GBUSRESET !BUS_RESET_START", 5036)
1:(5036, "GUPDOWN !1 !POWER_CHANGE", 3437)
2:(3437, i, 4798)
3:(4798, "GBUSRESET !BUS_RESET_END !CONSNET(CONSN(TRUE),CONSN(FALSE))", 4797)
4:(4797, "GINFO !1 !GUID_LIST !CONSNET(CONSN(TRUE),CONSN(FALSE))", 4790)
5:(4790, "GBUSRESET !BUS_RESET_START", 4789)
6:(4789, "GEVENT !INIT_LEADER !1", 4769)
7:(4769, i, 133)
8:(133, "GUPDOWN !2 !POWER_CHANGE", 142)
9:(142, "GBUSRESET !BUS_RESET_END !CONSNET(CONSN(TRUE),CONSN(TRUE))", 658)
10:(658, "GEVENT !FINAL_LEADER !1 !FALSE", 150)
11:(150, "GINFO !2 !GUID_LIST !CONSNET(CONSN(TRUE),CONSN(TRUE))", 2542)
12:(2542, "GDMOUT !1 !CONSM(DMINITREQUEST,2,TRUE)", 552)
13:(552, "GDMIN !1 !CONSM(DMINITREQUEST,2,TRUE)", 2524)
14:(2524, "GDMOUT !2 !CONSM(DMINITREPLY,1,FALSE)", 316)
15:(316, "GINFO !1 !BUS_RESET_EVENT", 303)
16:(303, "GDMOUT !1 !EMPTY", 1924)
17:(1924, "GDMOUT !1 !CONSM(DMINITREQUEST,2,TRUE)", 1921)

Box(A, F) is FALSE
18:(1921, "GDMIN !2 !CONSM(DMINITREPLY,1,FALSE)", 1909)

AG_A(A, F) is FALSE
19:(1909, "GINFO !1 !GUID_LIST !CONSNET(CONSN(TRUE),CONSN(TRUE))", 1486)
20:(1486, "GEVENT !INIT_LEADER !1", 1662)
21:(1662, "GDMIN !1 !CONSM(DMINITREQUEST,2,TRUE)", 1507)

Box(A, F) is FALSE
22:(1507, "GDMOUT !2 !CONSM(DMINITREPLY,2,FALSE)", 1548)

EU_A_B(F, A, B, G) is FALSE
*Failure.*

Figure 6.6: The Xtl error trace for ‘same final leader’

communication and reproduce the error behaviour found by Spin and depicted in Figure 6.5.
As to the second question. The ACTL formula used only checks communication involving
leader identities. Here we are really hampered by the fact that for the current Lotos models it
is not possible to include state information in the formula. It turns out that in the synchronous
Lotos models a bus reset event will appear in between of the two events carrying a different
leader identity. Since such a pattern is in general not erroneous, it is not possible with this
approach to find the erroneous behaviours constructed with Spin. We refer to Section 6.5.1 for
a discussion of the behaviour that violates this property, and to Section 6.5.5 for the discussion
whether the HAVi protocol is wrong.

6.5.4 Liveness: Eventually there will always be a final leader

Whenever there is at least one DCM Manager active in the network, there should eventually
be a final leader. The property we check is whether from each stable state in which at least one
DCM Manager is up there exists a path on which no bus reset period starts and a final leader
is chosen. It may be argued that this property is too strong since it assumes that there exists a
path on which bus reset periods can be delayed until after the election of the final leader. If the
environment would violate this assumption, the property would be false even when the protocol
was correct. There are two reasons for our approach. First, we know that in our models the
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choice between a bus reset period starting and any other activity is non-deterministic. So
bus reset periods can be delayed as long as other activity is possible. Second, the alternative
property to be checked would be: ‘After the handing out of the GUIDList, each path leads
to a new bus reset period or a final leader being elected’. This formula requires that during
and after the leader election activity, the DCM Managers can perform idle/internal actions
indefinitely, in order to distinguish between situations where leader election is interrupted by a
bus reset period and situations where leader election does not terminate for some other reason,
i.e. livelock rather than deadlock, since in case of a deadlock a bus reset period is forced to
start. Moreover, the models already contain a livelock when there are more two initial followers
of which one keeps sending InitRequests and the other never gets a turn. The problem with
livelocks is that the property should then be checked under certain fairness aspects. This makes
the situation increasingly complex, and we have chosen to stick with the first formulation.

Spin The only way to model a liveness property like this and have Spin check its validity, is
with an LTL formula. We have been able to express this without too much trouble in ACTL,
as can be seen below. However, the expressivity of LTL and branching time logics like ACTL
is not comparable [Sti92]. When we try to express the property to be checked in LTL and
formulate it as follows, we get an expression which is not in LTL syntax:

2((¬bus reset ∧ (∃d. up(d))) → ∃(¬bus reset U¬bus reset ∧ ∃d. f leader(d)))

Because of the∃ operator, this is not an LTL formula. However, we do need an∃ operator to
express the behaviour that the Promela models should have (See also Figure 6.4). The reason
is that an LTL formula is interpreted to be true if and only if it holds for each behaviour of the
model. So if it is only possible to express desired or undesired properties for one behaviour.
But the property that we desire to have is that there always exists a good path. The property
that we desire not to have is that there is no state from which there are only bad paths. This
cannot be expressed in LTL. This problem has been discussed via e-mail [Dam98, Hol98b], but
no solution was found, other than to change the model such that there is a fixed number of bus
reset periods, after which the network remains stable. Then Spin’s capability to find invalid end
states can be used to check that the protocol ends up with a leader, or identify a finite path as
undesirable with LTL. A drawback of this approach is that it is not a priori clear how many bus
reset periods should be allowed to obtain correctness for the more general model. However,
we already found errors in the Spin models for other properties, and in the Lotos models for
this property. In the Spin models, errors occur already after two bus reset periods. We have
changed all models such that at most two bus reset periods can take place, and added labels
to indicate what states in the model are valid end states. Then it turns out that all new models
have an invalid end state, which indicates that the protocol ends without electing a final leader
even though at least one DCM Manager is up.

In Figure 6.7 the error trace constructed by Spin for the model with two DCM Managers
and synchronous communication is listed. This trace describes the following behaviour. In the
first bus reset period DCM Manager A is powered up. The first bus reset period is immediately
followed by a second, in which DCM Manager B is powered up. A and B are both not UrlCa-
pable. After the end of the second bus reset period, A does not receive the bus reset event yet.
Now both A and B start the leader election protocol, in which DCM Manager A is the initial
leader and DCM Manager B is the initial follower. B sends A an InitRequest, A computes the
final leader which is A, and sends the InitReply to B. B concludes that A is the final leader
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<show>

BusResetPeriod 1

Bus_Reset:1

15

DCM_Manager:3

16

3!power_change

17CMM:2

18 1!power_change
BusResetPeriod 0

BusResetPeriod 1

60 DCM_Manager:5

61

4!power_change

62CMM:4

63 2!power_change

BusResetPeriod 0

7071
5!DMInitRequest,1

74 75
6!DMInitReply,0

85 86
1!bus_reset

BusResetPeriod 0

109

109

109

109

109

:init::0

109

Figure 6.7: The Spin error trace for ‘always final leader’

which completes the leader election. Now the CMM on the device of A delivers the bus reset
event to A, and A starts the leader election protocol anew. A is again initial leader and waits for
the InitRequest from B, while B has already completed leader election. Since there is no action
possible we are in an end state, and since for A the leader election has not been completed, it
is an invalid end state.

As in Section 6.5.1 the error scenario requires that the delivery of a bus reset event message
is delayed beyond the duration of the sending and delivery of both a message and a response
between different devices, and that the GUIDList is available before the delivery of the cor-
responding bus reset event. In Section 6.5.1, we argue that this behaviour is allowed by the
HAVi specification and hence may occur in HAVi compliant implementations. We refer to
Section 6.5.5 for a more elaborate discussion whether the HAVi protocol is wrong.

Xtl We check whether a DCM Manager is up in a stable state by observing the transaction
in which the CMM hands out the GUIDList. We check whether a final leader is elected by
observing the FinalLeader event. We demand that there exists a path from each GUIDList
transaction on which no bus reset period starts and on which a FinalLeader event occurs.

We check the following formula:

[g] ∃(Ti U f T)

where i = Ignore = ¬(BusResetStart ∨ FinalLeader)

g = GetGUIDList

f = FinalLeader
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AG_A(A, F) is FALSE
0:(0, "GBUSRESET !BUS_RESET_START", 962)
1:(962, "GUPDOWN !1 !POWER_CHANGE", 72)
2:(72, i, 1024)
3:(1024, "GBUSRESET !BUS_RESET_END !CONSNET(CONSN(TRUE),CONSN(FALSE))", 1023)
4:(1023, "GBUSRESET !BUS_RESET_START", 820)
5:(820, i, 612)
6:(612, "GUPDOWN !2 !POWER_CHANGE", 542)
7:(542, "GBUSRESET !BUS_RESET_END !CONSNET(CONSN(TRUE),CONSN(TRUE))", 288)
8:(288, "GINFO !2 !GUID_LIST !CONSNET(CONSN(TRUE),CONSN(TRUE))", 97)
9:(97, "GINFO !1 !GUID_LIST !CONSNET(CONSN(TRUE),CONSN(TRUE))", 335)
10:(335, "GEVENT !INIT_LEADER !1", 231)
11:(231, "GDM !1 !2 !DMINITREQUEST !FALSE", 199)
12:(199, "GDM !2 !1 !DMINITREPLY !1", 995)
13:(995, "GINFO !1 !BUS_RESET_EVENT", 95)

Box(A, F) is FALSE
14:(95, "GINFO !1 !GUID_LIST !CONSNET(CONSN(TRUE),CONSN(TRUE))", 1003)

EU_A_B(F, A, B, G) is FALSE
*Failure.*

Figure 6.8: The Xtl error trace for ‘always final leader’

This formula does not hold for any of the models.
In Figure 6.8 an error trace constructed with thewalk_actl library is listed. By coin-

cidence, the behaviour described by this trace is the same as the behaviour described by the
error trace found by Spin for this property. See earlier in this section for an explanation of the
behaviour. We refer to Section 6.5.5 for the discussion whether the HAVi protocol is wrong.

6.5.5 Is the HAVi protocol wrong?

The error traces given in Figures 6.5, 6.6, 6.7 and 6.8 show that either our model of the protocol
or the HAVi specification itself must be wrong.

The error traces indicate that problems occur when the delivery of a bus reset event message
is delayed beyond the duration of the sending and delivery of both a message and a response
between different devices. In the case of synchronous communication, another cause of prob-
lems is the availability of the GUIDList before the delivery of the corresponding bus reset
event.

If all assumptions and restrictions that we made in our model are correct, then these sce-
narios may occur in an implementation that is totally compliant with this version of the HAVi
specification, because of two reasons. First, the HAVi specification does not lay down how
long messages may be on their way in the system. Second, the delivery of any event has to
go through the Event Manager. The Event Manager may cause a delay of the event for several
reasons. It is not known how many events the Event Manager may get due to a bus reset pe-
riod, which need to be delivered, and in what manner these events are processed. Furthermore,
there may be many components that listen to the bus reset event and in a sequential approach
to delivery of the events, the DCM Manager may very well be the last of them to receive this
message.

If our assumptions are not correct, then obviously it is hard to say whether the protocol
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would be correct or not. However, all of the assumptions we made are restrictions on con-
figurations or scenarios permitted by the HAVi document which means that we only exclude
some HAVi behaviour. So the error behaviour we found would almost certainly be present in
a model with fewer restrictions. In fact, the chances are high that with fewer restrictions more
erroneous behaviour could be found in the protocol. We already argued in Section 6.5.2 that
lifting the restriction that the initial leader chooses itself for final leader when no UrlCapable
DCM Managers are present, will lead to violations of the property ‘the best candidate becomes
final leader’. Other generalisations we could make are: several types of devices in the network,
physical IDs that change, bus reset periods that start and end at different moments in different
devices, no difference between processing of events and messages, et cetera. Also, it may still
be the case that one or more of the software elements used for this protocol have a potential
deadlock in their behaviour, and thus prevent the DCM Managers from completing their leader
election.

Our conclusion is that for the HAVi leader election protocol to be correct (meaning that
any implementation that complies with HAVi works correctly), the HAVi specification should
have requirements added on the duration of delivery of events related to the duration of com-
munication between devices. Since the disruption by bus reset periods makes it difficult to
establish such requirements, we think the easiest solution is to establish real-time constraints
on the duration of sending and processing messages and events, which are realistic for HAVi-
compliant implementations. This information should then be checked in a timed formal verifi-
cation. Since timed model checking is beyond the scope of this experiment, we cannot give an
estimate of time bounds that would work, or say whether such time bounds exist.

6.5.6 Statistics

The statistics for model checking the different models with the Spin tool set (version 3.2.4, ver-
sion 3.3.0 beta-13 May 1999) and the Cæsar/Ald´ebaran tool set (Cæsar version 5.3, Ald´ebaran
version 6.4, Xtl version 1.1) are given in Tables 6.1, 6.2 and 6.3. All experiments with Spin
were done on an SGI IRIX64 6.5 machine with 48 Gbyte of memory. All Cæsar/Ald´ebaran
experiments were done on a SUN Ultra 510 SunOS 5.6 machine with 1 Gbyte of memory.

A few remarks are in order.

• All memory entries are in Megabyte. All time entries are inhours:minutes:seconds
format.

• Spin, Cæsar, Ald´ebaran and Xtl all generate C code which after compilation performs
the state space generation, minimisation and/or exploration.

• The memory numbers mentioned in Table 6.3 indicate the amount of memory used by
the verifier generated by Xtl in C code, compiled to executable form. However, C com-
pilation takes at least 6 Mb. For thewalk_actl library, C compilation takes at least
12 Mb for the models with 2 DCM Managers.

• For the Spin experiments, the memory usage is provided in the output of Spin. Note that
this is always a little higher than the memory usage observed with the UNIX command
‘top’. For the Cæsar, Ald´ebaran and Xtl experiments, the memory usage is obtained by
observing the outcome of the UNIX command ‘top’.
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• For all experiments, the timing information is obtained by the UNIX command ‘time’.

• Normally, Lotos state space generation is done with Cæsar in the.bcg format, which is
very compact. However, Cæsar sometimes creates a state space of much greater size than
the corresponding minimal state space under strong bisimulation, and for the models
in our case this means that state space generation gets stuck at an unknown portion
of the desired total, and fails due to lack of memory. So we turned to an alternative
route, and generated the state spaces separately for each instance of each process in
the main parallel composition expression. This again is done with Cæsar. The state
spaces generated are first minimised with respect to strong bisimulation equivalence
(with Aldébaran and the bmin criterion), which is also done in the.bcg format. Then
these minimised state spaces must be combined into one state space. This is done with
Aldébaran and works only if the separate state spaces are in the.aut format. The target
state space is then also in the.aut format. The.bcg version is computed and then
minimised.

When generating the state space for one of the communicating processes, often the re-
ceipt of a message is not constrained other than by all possible instantiations of the
parameters of the communication. This means for instance that when a parameter is of
type Natural, that this parameter is instantiated with all constructor values provided by
the library for type Natural, when in fact there are only a few values possible in the con-
text of two or three communicating DCM Managers. These parameter values had to be
constrained in the separate process definitions to make state space generation manage-
able. This was done by making a new library for the data types used, and by modifying
some conditions on communications, for instance by ruling out the receipt of messages
from oneself. Without such constraints, it was not possible to generate a state space
for the DCM Manager process with the lowest identity, in the case of asynchronous
communication and three DCM Managers.

• All state space generation sizes in Table 6.2 are for a state space in the.bcg format,
except thecomb network entries which represent a state space in the.aut format. Min-
imised state spaces are always in the.bcg format. In some cases, the.bcg version has
fewer states for the same state space than the original.aut version.

• In Table 6.3, the full state space size is listed for each model. When using theactl
library, the full state space is explored, even when errors are found. When using the
walk_actl library, the verification stops after the construction of the first diagnostic
trace. We do not know how many states and transitions were explored bywalk_actl
to construct the diagnostic traces.

• The Promela models for 2 DCM Managers are more efficient than the ones with 3 DCM
Managers in the sense that they use the data typebit instead ofbyte for the Id param-
eter in the general processDCM_Manager.

• With Spin we first tried to explore the whole state space. Whenever an error was found,
we reran the verification with a smaller search depth (option ‘-m’ at run time) to see if a
smaller error trail could be found. In this way we found the trails reported in Table 6.1,
which are the shortest trails we could find. Sometimes the search for a shorter trail
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involves the exploration of more states and transitions, due to the order in which the
depth-first search is performed.

Only after completing the verification experiments, we learned that option ‘-DREACH’
(to be used at compile time) guarantees a complete search of the truncated state space.
This explains why we found a shorter error trail with Spin version 3.2.4 in one case
than with Spin version 3.3.0 beta. The ‘-DREACH’ option may increase memory usage
and duration of verification experiments. It is very well possible that with this option
we would have been able to find the error in the model with three DCM Managers and
asynchronous communication for the property ‘best final leader’ with a much smaller
search depth. Without the ‘-DREACH’ option we did not find an error with search depth
‘-m1000’ but ran out of memory.

• Checking the property ‘best final leader’ for the Promela model with 3 DCM Managers
and asynchronous communication was done with the new Spin 3.3.0 beta option ‘-DSC’
to keep the major part of the depth first search stack on disk, and not in memory. Other-
wise this experiment would have taken much more memory. The stack file size was 281
Mbyte.

• All experiments with Spin were first done on Promela models in which the global vari-
ablem was ‘hidden’, which means that it is not part of the state vector. In this situation
Spin did not explore the entire state space. Major parts of the code were unreachable
because of using the hidden variable inside two branches of an ‘if’ statement inside an
atomic statement. The predicate ‘hidden’ should not be used this way but this was not
listed in the manuals (it is in the Spin on-line manual now). The difference in semantics
between the simulator and the verifier made the situation increasingly unclear, since the
parts of the state space that were unreachable to the verifier, were reachable in simu-
lation. Some improvements have been made in Spin 3.3.0 beta to the semantics of the
simulator.

• All experiments in Spin were done without partial order reduction by using the com-
pile time option ‘-DNOREDUCE’. The reason for this is that the use of synchronous
communication in the escape guard of an unless command is not compatible with the
partial order reduction, hence when using partial order reduction it is possible that error
behaviour is missed.

• The error traces produced by Spin can be simulated interactively. The figures in this
section are the message sequence charts that were created during such simulation. The
figures have been adjusted a little to improve the presentation in black and white. Each
thin vertical line in the figure refers to a process in the Promela model, arrows between
process lines refers to communication. The thick vertical line refers to the global variable
BusResetPeriod in the Promela model. The numbers in the figures refer to steps in the
error trail.

• The error traces produced by Xtl were found with the use of thewalk_actl library.
Traces are only produced in case of a universal property that does not hold, or an exis-
tential property that does hold. Since we used universal properties, we got traces only
in case of an error. The error traces were constructed from end to beginning, and have
been reversed in the figures to improve the presentation. The layout of the steps is:
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<step nr>:(<source state>, <transition label>, <target state>)

The transition labels consist of the gate and the offers exchanged at the gate (each offer
is preceded by!). In between of the steps, messages occur that indicate that a temporal
operator from the formula checked does not hold at that point.

one leader
model states trans holds? memory time Spin
2 sy 18K 93K F 136 0:00:04 3.2.4
2 as 23K 108K F 135 0:00:06 3.3.0 beta
3 sy 781K 4.7M F 161 0:03:59 3.3.0 beta
3 as 2.8M 18M F 230 0:15:30 3.3.0 beta

best final leader
2 sy 167K 806K T 140 0:00:43 3.3.0 beta
2 as 418K 2.1M T 149 0:01:57 3.3.0 beta
3 sy 44M 279M T 1767 7:32:22 3.3.0 beta
3 as 194M 3.8G F 7778 49:43:03 3.3.0 beta

same final leader
2 sy 16K 77K F 135 0:00:04 3.3.0 beta
2 as 19K 91K F 135 0:00:05 3.3.0 beta
3 sy 407K 2.5M F 148 0:02:05 3.3.0 beta
3 as 1.7M 10M F 190 0:08:54 3.3.0 beta

always final leader
2 sy 17K 58K F 135 0:00:04 3.3.0 beta
2 as 27K 98K F 135 0:00:06 3.3.0 beta
3 sy 674K 3.2M F 134 0:03:32 3.3.0 beta
3 as 1.5M 7.5M F 182 0:07:52 3.3.0 beta

Table 6.1: Spin statistics: state space generation + model checking

6.6 Conclusions

We have modelled the leader election protocol among DCM Manager components in the HAVi
architecture, and found that this protocol does not meet some safety requirements and that
it does not always converge to a situation with a leader actually elected. The errors are due
to the absence of requirements on how long it takes for messages and events to reach their
destination. It is expected that if these requirements are added, a formal verification will be
able to show whether the restricted protocol works correctly.

6.6.1 Concerning Spin

Using Promela and Spin Promela is an easy language at first, and more difficult at second
sight. The basic language constructs have an intuitive meaning, but combining many aspects
such as rendez-vous communication, the atomic and the unless construct makes behaviour
more fuzzy. The treatment of data is manageable as long as the data is not too involved. In
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2 DCM Managers, synchronous
generating minimising

per process states trans memory time states trans memory time
DM 1 16K 79K 3 0:00:11 32 144 9 0:00:04
DM 2 1.0K 5.4K 3 0:00:03 21 96 4 0:00:02
Bus Reset 46 59 3 0:00:02 16 24 4 0:00:01
CMM 1,2 12K 55K 3 0:00:09 12 49 5 0:00:02
Other 1,2 2 8 3 0:00:02 1 4 4 0:00:01
comb network 1.5K 5.0K 5 0:00:01 1.2K 4.0K 4 0:00:01

2 DCM Managers, asynchronous
DM 1 404K 3.0M 28 0:05:12 37 233 183 0:01:18
DM 2 2.1K 18K 3 0:00:05 27 170 4 0:00:01
Bus Reset 46 59 3 0:00:02 16 24 4 0:00:01
CMM 1,2 12K 55K 3 0:00:09 12 49 5 0:00:02
MS 1,2 2.3K 19K 3 0:00:04 27 159 4 0:00:02
comb network 6.3K 23K 7 0:00:07 5.1K 19K 5 0:00:02

3 DCM Managers, synchronous
DM 1 2.1M 16M 140 0:43:46 63 474 897 0:08:52
DM 2 177K 1.4M 12 0:02:31 37 255 92 0:00:39
DM 3 4.6K 38K 3 0:00:07 25 174 4 0:00:02
Bus Reset 186 243 2 0:00:02 40 64 3 0:00:02
CMM 1,2,3 297K 2.1M 79 0:14:00 20 93 139 0:00:49
Other 1,2,3 2 40 2 0:00:02 1 20 3 0:00:01
comb network 58K 247K 47 0:00:52 44K 193K 24 0:00:21

3 DCM Managers, asynchronous
DM 1 2.0M 11M 109 0:24:29 55 360 620 0:05:33
DM 2 509K 3.8M 31 0:06:52 35 199 233 0:01:36
DM 3 9.8K 105K 3 0:00:13 31 254 10 0:00:03
Bus Reset 186 243 3 0:00:02 40 64 4 0:00:02
CMM 1,2,3 297K 2.1M 111 0:13:57 20 93 139 0:00:47
MS 1,2,3 3.9K 47K 3 0:00:08 35 279 6 0:00:02
comb network 1.0M 5.2M 358 0:31:12 748K 3.9M 423 0:10:21

Table 6.2: Cæsar/Ald´ebaran statistics: state space generation

our case, we are clearly overstepping the bounds of the type of model for which Promela was
designed.

The graphical interface of Spin is attractive, and it is easy to use. The semantics of the
simulator and the verifier have been made more alike recently, which is very important since
simulation is often used as a justification for having modelled things right. We are in favour of
the semantics being exactly the same for simulator and verifier. After a while, we turned to the
command-line use of the tools rather than the graphical interface. This was partly due to the
experimental use of Spin on a 64 bit machine.

Expressing safety properties in assertions is very straightforward. Expressing liveness
properties in LTL is rather cumbersome and proved impossible in our case, mostly because
of the nature of LTL and the nature of the protocol. However, the possibility to track invalid
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one leader
model states trans holds? memory time
2 sy 1.2K 4.0K T 3 0:00:08
2 as 5.1K 19K T 3 0:00:13
3 sy 44K 193K T 4 0:05:11
3 as 748K 3.9M T 68 25:12:18

best final leader
2 sy 1.2K 4.0K T 3 0:00:05
2 as 5.1K 19K T 3 0:00:08
3 sy 44K 193K T 4 0:02:17
3 as 748K 3.9M T 68 10:31:08

same final leader
2 sy 1.2K 4.0K T 3 0:00:05
2 as 5.1K 19K F 3 0:00:11
3 sy 44K 193K T 4 0:05:51
3 as 748K 3.9M F 69 29:05:41

error trace same fleader
2 as 5.1K 19K F 5 0:00:26
3 as 748K 3.9M F 199 15:22:48

always final leader
2 sy 1.2K 4.0K F 3 0:00:05
2 as 5.1K 19K F 3 0:00:08
3 sy 44K 193K F 4 0:03:28
3 as 748K 3.9M F 69 18:57:39

error trace always final leader
2 sy 1.2K 4.0K F 3 0:00:05
2 as 5.1K 19K F 3 0:00:08
3 sy 44K 193K F 6 0:05:32
3 as 748K 3.9M F 199 14:16:50

Table 6.3: Xtl statistics: model checking

end states was a simple way around this, although it implied changing the models.

Performance of Spin As can be seen in Table 6.1, the performance of Spin is quite good, as
long as the number of DCM Managers remains small, and there are no asynchronous channels.
We achieved the best performance by using all the advice given in Spin’s Help Section on
reducing the state space size. Of course, when the communication channels in a Promela
model are asynchronous rather than synchronous, the state space grows tremendously because
of all possibilities of interleaving the sending and receiving of messages with other activities.
Spin uses a partial order reduction technique [HP94] to reduce the model checking effort.
This technique identifies transitions as independent and takes only one of the many orders in
which these transitions might be explored. The independence criterion holds for transitions
that (1) access only local variables, (2) access only communication channels to which the
executing process has exclusive read or write access. In our case, we could not use the partial
order reduction because we had synchronous communication in the escape guard of an unless
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command. If we had been able to use partial order reduction, then we would not have had a
great benefit for the following reasons. In our models, most variables have to be used in the
verification and are global, and all communication channels for which exclusive read or write
access can be guaranteed, are declared as arrays of channels which prohibits the use of the
exclusive access declaration construct. The latter is a syntactical restriction for which some
escape routes are available, such as the creation of a process where a channel from an array
is bound to an ordinary channel, on which the exclusive read or write access can be declared.
The other restriction is at the core of the reduction method, and cannot be lifted.

Another important memory usage-increasing factor for our models is probably that, whereas
usingatomic sequences does reduce the number of states, still the number of steps performed
in one suchatomic sequence is reflected in the ‘search depth’ of the tool. This search depth
is limited by the user, and determines the portion of the state space to be explored, the size of
the heap that is to be allocated for the search, and hence the amount of memory used for the
verification.

What one would like to have (and what might help to improve the performance of Spin
tremendously) is to be able to define functions that perform computations without adding to
the state space size, andatomic sequences to be truly atomic. One would then lose the
possibility of exactly tracing down a statement where error situations occur or simulating per
statement, but we feel that when usingatomic sequences, it is fair to not have those possibil-
ities anymore. Since the focus of Spin is on synchronisation and not on computation, there is
no plan to improve Spin in this respect [Hol99].

Multi-way synchronisation It is difficult to model multi-way synchronisation in Promela
and keep the state space small. Channels are by definition one-to-one, and several processes
glancing a global variable or a channel cannot be forced to do this in one atomic action. There
is no plan to improve Spin in this respect [Hol99].

Data structures Spin forbids the initialisation of processes with a parameter which is a non-
basic data structure, such as an array or record. This hampers the construction of generic
models. Recently, the sending of messages with an array as parameter became possible.

Never claims and traces A mixture of ‘never claim’ and ‘trace’ processes will probably
affect the performance of Spin very badly. Nevertheless, the possibility to use assertions (that
reference global state variables) in the ‘trace’ process seems like a desirable and useful feature
for Spin. This is also a planned improvement for Spin [Hol99].

6.6.2 Concerning Cæsar/Aldébaran and Lotos

Using Lotos, Cæsar, Aldébaran and Xtl Lotos is a hard language at first, and a precise
language at second sight. It can be hard to grasp the meaning of the language constructs at
first, but they have a clear semantics and do not become more complicated when combined.
Modelling data is not very hard as long as the data is of a constructive and simple nature.
Constructions like sets are not easy to model, but lists are.

The graphical interface of the tool set is easy to use. The simulator has the same semantics
as the verifiers, which makes simulation a good means for validation of models. After a while,
we turned to the command-line use of the tools rather than the graphical interface.
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Expressing properties in an action based logic like ACTL turned out to be quite hard. This
is partly due to the nature of the protocol, with bus reset periods disrupting normal behaviour,
and partly due to the fact that we cannot use state information in the formulas. Using ACTL,
we were not able to find some violations of safety properties which we found with assertions
in the Promela models.

Performance of Cæsar For this protocol, the performance of the Cæsar generator is poor. It
does not produce the minimal graph under strong bisimulation equivalence, but generates far
more states. Judging from the Lotos code and Table 6.2, we think this may be caused by the
use of the abstract data types. Perhaps terms which are equal on the basis of the data models
are not recognised as such during state space generation.

If it were not for the Aldébaran possibility to compose several communicating components,
we would not have been able to construct a complete state space even for 2 DCM Managers.
Actually, for the Lotos model with synchronous communication between DCM Managers, and
2 DCM Managers in the network, Cæsar generated about 1.3M states and 2.5M transitions in
one hour, and then got stuck due to lack of memory. It is hard to say whether the error traces
present in this model, would have been found with a far more restricted model of the protocol.

In order to use the Ald´ebaran facility of combining state spaces, we had to enumerate
some data types, which affected the genericity of the Lotos model. We also had to restrict the
possibilities for communication, which proved essential when generating the state space for
the asynchronous case with 3 DCM Managers.

6.6.3 Comparison of the tools

Models, state spaces The models in Promela or Lotos are hard to compare. Some tasks can
be performed in oneatomic sequence in Promela (but do increase the size of the verification
itself), which takes several atomic actions in Lotos. In Lotos, the data types and process param-
eters allow for computations being made without state space enlargement. In Promela, most
computations must be translated into (parts of)atomic sequences. In Promela one would like
a little more support for data types and functions. The Lotos models with asynchronous com-
munication and 3 DCM Managers are about as general as they can be. With the current tool
support, state space generation becomes impossible with any generalisation of the behaviour.

LTL versus CTL We have found an error in the protocol with an ACTL property which
we cannot express in LTL, and which we could only find with Spin by changing the models.
The LTL versus CTL issue is the inspiration of many papers and discussions of which we
only cite [EL87, KV98, Pnu85, Sti92]. Some attempts have been made at unification of the
two approaches (See for instance [KV98]). However, the property that we expressed in ACTL
turns out to be a classical example of the difference in expressivity between the two paradigms.

State space sizes The state spaces are smaller for the Lotos models than for the Promela
models, when the models are fully explored. On the one hand, this definitely is a flattered
view, since generating the state space for a complete Lotos model as such gives tremendously
high numbers. On the other hand, the Spin sizes hide the actual number of statements that
must be executed to reach a certain state. Because of theatomic predicate, the number of



6.6 Conclusions 129

statements may be much higher. This does not affect the state space size, but it does affect the
amount of memory used for the verification.

When errors are found, Spin stops immediately, hence explores only part of the state space.
In Xtl, the libraryactl always explores the full model. The librarywalk_actl stops im-
mediately when a diagnostic trace is constructed.

Memory usage when model checking It turns out that we needed much less memory for the
Xtl verifications than with the Spin tool, which is probably due to the state space sizes being
larger for Promela, andatomic sequences consisting of more steps causing more memory to
be used than one statement. When verifying a property with thewalk_actl library, much
more memory is used than with theactl library, which we think is due to backtracking and
overhead for the diagnostic trace.

Size of generated code The size of C code generated by Spin is manageable considering
the state space size. For state space generation from Lotos models, the C files become larger.
Finally, large state spaces cause Xtl to generate very large C files in which very many variables
are allocated (a stack size greater than 2 Gbyte).

Expressing the properties to be checked The properties verified with Spin and with Xtl are
not comparable. In Spin we used assertions (and tried in vain to use LTL) in terms of state
variable values. In Xtl we used ACTL properties in terms of observable actions.

We would like to use state information from the Lotos process parameters in the properties
to be verified with Xtl.

In Spin one would like to reference the values of state variables in atrace process, where
the occurrences of communications can be checked. The combination of these features, which
is as yet forbidden, would be very useful. This is a planned improvement.

Comparing model checking times When errors can be found, Spin is overall faster than
Xtl except when the models become very large. For full state space exploration, Xtl is faster,
probably due to the state space sizes. It should be noted that Spin builds the state space anew
during exploration whereas Xtl checks properties on state spaces that have already been built,
so in this case one should add the state space generation times to the model checking time.
Both approaches have advantages and drawbacks in terms of efficiency.

Tailoring models for model checking We had slightly different Promela models depending
on whether we were checking properties concerning final leadership, properties concerning
any type of leadership, or the property which we could not express in LTL. In the former two
cases, differences were only in the variables used for observation. In the latter, a fundamental
change was made to the environment behaviour by having maximally two bus reset periods
instead of arbitrarily many. If we had used one general model for all properties, we would
have had a much larger state space. This was not necessary with the Lotos model because the
experiments there were based on observing actions rather than state variable values and it was
possible to express all properties in ACTL. The addition of the events that signal the election
of a leader in the Lotos models do not seem to enlarge the state space size as much as the state
variables in the Promela models do.
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Efficiency of model checking When verifying an ACTL property with theactl.xtl li-
brary, Xtl visits all reachable states, thus verification does not stop as soon as the property
is found to be false, and it cannot become true anymore, or vice versa. When using the
walk_actl.xtl library, Xtl will stop as soon as a diagnostic trace has been constructed.
This will be a trace showing truth in the case of an ‘exists’ property, and it will be a trace
showing falsity in the case of a ‘for all’ property.

Spin uses partial order reduction [HP94] to improve efficiency. We already mentioned that
a small change in the Promela syntax accepted by Spin can increase the benefit of this reduction
technique. In our case the partial order reduction cannot be exploited because of the combina-
tion of rendez-vous communication and unless constructs. This may be a consideration when
constructing models.

Spin stops the verification as soon as an error is found. A diagnostic trace leading to the
error situation is presented to the user. The trace may reveal the falsity of the property to be
checked, but also a dynamic error because an array index is out of range, et cetera.

6.6.4 Concerning this experiment

It appears that the combined approach of having different models of the same protocol and
different verification techniques, gives better results, for several reasons:

1. The restrictions of the different modelling languages force one to think carefully about
how to model all the aspects of the protocol.

2. The different verification techniques enable establishing different kinds of properties for
the protocol.

3. One approach acts as a debugger for the other, in the sense that

• Mistakes at the syntactic or semantic level are generally not made in the exact same
manner during the different modelling efforts.

• Results can be checked in two different situations.

• Negative results obtained on one side and not on the other can still be ‘checked’ by
simulating with the counterexample, and validating whether the error behaviour is
also present in the model for which this could not be verified.

Thus, the results are more convincing than when only one modelling/verification approach
is applied.



Chapter 7

A timed verification of the IEEE
1394 leader election protocol

Summary

The IEEE 1394 architecture standard defines a high performance serial multimedia bus that
allows several components in a network to communicate with each other at high speed. In the
physical layer of the architecture, a leader election protocol is used to find a spanning tree with
a unique root in the network topology. If there is a cycle in the network, the protocol treats this
as an error situation. This chapter presents a formal model of the leader election protocol in the
language IOA as well as a correctness proof. The verification shows that under certain timing
restrictions the protocol behaves correctly. The timing constants proposed in the IEEE 1394
standard documentation obey the requirements found in this proof.

7.1 Introduction

The IEEE 1394-1995 serial bus standard [IEE96] defines an architecture that allows several
components to communicate at very high speed. Originally, the architecture was designed by
Apple (FireWire). Currently, more than 70 companies are involved in the standardisation effort.
Although the IEEE 1394-1995 standard has been finalised, the architecture is still being refined
and adapted. Part of this ongoing work is reflected in the IEEE P1394a standard proposal
document [IEE99], which is intended to be a supplement to IEEE 1394-1995. In this chapter,
1394 will refer to IEEE 1394-1995 unless otherwise stated.

The IEEE 1394 standard allows several components to be connected either with cables
and IEEE 1394 chips (cable environment), or with an IEEE 1394 backplane in one physical
device (backplane environment). We restrict our attention to the cable environment situation,
and refer to the whole of components, cables, etc. asthe network.

Like in the OSI model, the IEEE 1394 architecture has several layers of which the physical
layer is the lowest. This layer takes care of the actual communication on the bus, which
happens by sending signals on a wire by asserting voltages. The physical layer is responsible
for the knowledge that a component has of the network topology and of components present,
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and for issues such as timing of asynchronous and synchronous communication and arbitration
for use of the bus. These tasks are taken care of in several phases.

The first phase in the physical layer is thebus reset phase, which is entered whenever a
component is powered up, when the network topology changes or an error is discovered, or
on request of higher layers in the architecture. After completion of the bus reset phase, the
tree identify phase starts. In the three identify phase the network topology is determined by
spanning a tree in the network. The root of the tree will act as the bus master. After the tree
identify phase, theself identify phase follows in which all components inform the rest of the
network of their capabilities and get a unique ID. Finally, in thenormal operation phase, the
arbitration for and actual use of the bus by higher layers and applications takes place.

In this chapter we study the tree identify phase in the physical layer. The components
employ a leader election protocol to span a tree in the network, with the root acting as the
leader. A side effect of the protocol is that it detects whether there is a cycle in the network,
and if so, does not terminate with a leader but halts in the initial phase of the protocol and
issues error messages. Our intention is to prove that an abstraction of the protocol, which is
as close as possible to the description in the IEEE 1394 documents [IEE96, IEE99], works
correctly. There already are some correctness proofs for other abstractions of this protocol
[DGRV97, GV98, SV99, SZ98]. We reuse part of this work for proving the correctness of our
model of the protocol. This is done by establishing an implementation relation between the
most detailed model from [GV98] and our more detailed model of the protocol. In this way,
our verification adds to a stepwise refinement of IEEE 1394 in which more detail is added to
models in each step.

The verification is carried out by establishing timed trace inclusion between timed I/O
automata through a timed refinement [LT87, LT89, LV96]. The I/O automata are presented
in the IOA language [GLV97]. We reuse an untimed I/O automaton from [GV98] to which
we add a harmless time-passage action to turn it into a timed I/O automaton and use timed
refinements as presented in [LV96]. As mentioned in [LV96], we could equally well establish
an untimed refinement between the timed I/O automata, so timed trace inclusion follows if
the time-passage action is visible in both models. Some related work that is interesting in the
timed vs. untimed respect is the work presented in [Sch97], which discusses safety and failure
refinements between timed and untimed CSP models [DS95]. Some results are presented
for failure refinements between communicating processes, which may be useful in the I/O
automata setting.

The proofs show that under the assumptions made, the behaviour of the models is correct
when we use the timing constants proposed in IEEE 1394-1195 and IEEE P1394a. It still
remains to be seen whether further refinement of the models preserves the correctness.

This chapter is organised as follows. Section 7.2 explains the IEEE 1394 tree identify,
discusses related verifications and presents our abstraction. Section 7.3 introduces our I/O
automata models of the tree identify protocol and shortly discusses the IOA language. Sec-
tion 7.4 is an intermezzo about network topologies, in which general results are derived, which
we need in the verification. Section 7.5 presents the formal verification of the protocol. In
Section 7.6 we sum up the conclusions that can be drawn from this exercise.

Note that to improve readability, we often use Lamport’s list notation [Lam94b] for con-
junction or disjunction in formulas.
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7.2 The protocol

In this section, the IEEE 1394 tree identify phase is described, other verifications of this pro-
tocol are discussed, and our abstraction is introduced. The IOA models are presented in Sec-
tion 7.3. The tree identify phase has already been described in several articles. The following
text and pictures are borrowed from [DGRV97].

7.2.1 The IEEE 1394 tree identify phase

We refer to the components connected to 1394 bus asdevices. Each device has a number of
ports, which are used for bidirectionalconnections to other devices. Each port has at most
one connection. The device at the other side of the connection is called thepeer device. The
tree identify phase follows on completion of the bus reset phase, which is started as soon
as a total reset of the network is demanded. This can occur on request of applications, or
because the network configuration has changed or an error situation has been detected. The
bus reset phase clears all topology information except local information on a device, namely
which ports have connections. During the tree identify phase a spanning tree is constructed
in the network. After the tree identify phase completes, the tree structure will be used in the
normal bus operation. An example of a network topology at the start of the tree identify phase
is presented in Figure 7.1.

Figure 7.1: Initial network topology

parent?

Figure 7.2: Intermediate configuration

Informally, the basic idea of the protocol is as follows: each device starts in the initial
phase, in which it may receive a “parent request” on from a peer device on one of its ports.
The receiving device then sends an acknowledgement message to the peer device and adds
the port to its collection of children. A peer device which is connected to the child port, is
then considered to be a child in the tree structure (See Figure 7.2). When a device is in the
initial phase and has no more than one port left on which no communication has taken place
yet, it can send a parent request on that port and leave the initial phase. It is obvious that leaf
devices (i.e. devices with a single connected port) have exactly one such port at the start of the
protocol, so they can send their parent request and leave the initial phase immediately. In this
manner, a tree is constructed that grows from the leaves inward, until all ports of one device
are children, and that device is theroot of the tree (See Figure 7.4).

It is possible that two devices end up asking each other to be the parent. This situation
is called “root contention”. The devices both signal the reception of a parent request on a
port on which they already sent a parent request, and turn to a symmetry breaking protocol in
which random bits are used (See Figure 7.3). This root contention protocol has been formally
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parent?

Figure 7.3: Two contending devices Figure 7.4: Final spanning tree

specified and verified in [SV99].
When a cycle is present in the network, all the devices that are on such a cycle will not get

a parent request from their peers on the cycle. So they will have more than one port on which
no parent request was received, and can therefore not send a parent request themselves or leave
the initial phase. Devices that are not on a cycle, but are wedged between two or more cycles
will not get a parent request either on at least two ports, and will not send a parent request
themselves or leave the initial phase. Such a situation is solved by a timer, which is started at
the start of the tree identify phase, and which is supposed to expire only in the situation of a
cycle in the network. When there is a cycle in the network, a root should not be elected, since
the operation of the bus in the following phases relies on the topology being a tree structure.

A device may influence its own chances at becoming root by waiting for some time before
sending the parent request, even if it is already possible to proceed. A device will only do so if
it has the flag forceroot set to true.

Devices may enter the tree identify phase at different times. This is due to the difference
in the moments at which different devices signal that the bus reset phase (preceding the tree
identify phase) should be entered.

7.2.2 Other verifications of the protocol

Parts of the IEEE 1394 architecture have been formally specified and/or verified in several arti-
cles [DGRV97, GV98, KHR97, Lut97, SM98, SV99, SZ98]. Of these, [KHR97, Lut97, SM98]
focus on the link layer. The articles [DGRV97, GV98, SV99, SZ98] study the tree identify
phase of the physical layer, like we do. In Figure 7.5 we give an overview of the results of
these articles, and their relation to the research presented here. The results of the different
articles are in the dashed boxes. The names of the formal models are listed, arrows between
these indicate a (proved) implementation relation. The vertical position of a model name indi-
cates the level of abstraction of that model with respect to the IEEE 1394 documentation. Very
abstract models do not consider implementation details such as timing, signals etc. The most
detailed models incorporate more detail from the IEEE 1394 documentation. In the picture,
we have given some models the same vertical position to indicate that they have a comparable
degree of detail. We now explain the results of each article in short.

Devillers, Griffioen, Romijn and Vaandrager [DGRV97] have shown that the election in
the tree identify phase works correctly, under the assumption that there are no cycles in the
network, that the network topology is fixed throughout the protocol, that a root contention
situation is solved in one atomic step, and that no device tries to become root by having the
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Figure 7.5: An overview of research on the IEEE 1394 tree identify phase

corresponding forceroot flag set to true. The models are at a high level of abstraction: there
is no timing and communication is modelled with finite queues. The models are I/O automata
[LT87, LT89] presented in a precondition/effect style. The proofs use invariants and simula-
tion techniques from [LV95]. The proofs have been checked with the theorem prover PVS
[ORSH95].

Shankland and van der Zwaag [SZ98] have also shown that the election in the tree identify
phase works correctly, under the assumption that there are no cycles in the network, that the
network topology is fixed throughout the protocol, and that no device tries to become root
by having the corresponding forceroot flag set to true. The models are at a high level of
abstraction: there is no timing and communication is modelled with finite queues. The models
are presented inµCRL [GP95], a process algebra language with data. The proofs use invariants
and the cones and foci method from [GS]. Note that the paper gives no proof that the root
contention protocol actually terminates within bounded time, since for the verification it is
enough to show that itcan terminate.

Griffioen and Vaandrager [GV98] have shown that the election in the tree identify phase
works correctly, under the assumption that the network topology is fixed throughout the pro-
tocol, that a root contention situation is solved in one atomic step, and that no device tries
to become root by having the corresponding forceroot flag set to true. The models are at a
high level of abstraction: there is no timing and communication is modelled with finite queues.
The models are I/O automata [LT87, LT89] presented in the IOA language [GLV97]. The
paper introduces a new simulation proof technique, callednormed simulations. The proofs
use invariants and the proposed simulation technique. The proofs have been checked with the
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theorem prover PVS [ORSH95]. Note that cycle detection is done with a predicate that takes
the structure of the whole network into account, and does not use timing information, as in
IEEE 1394. The predicate used implies that nodes that are part of a cycle will detect this with
an error message. In IEEE 1394 (and in the models presented here), the error situation is also
detected by nodes that are not part of a cycle themselves, but wedged in between of two cycles.

Stoelinga and Vaandrager [SV99] have shown that the root contention solving protocol in
the tree identify phase works correctly under the assumption that the network topology is fixed
throughout the protocol. The models are at an intermediate level of abstraction: on the one
hand timers and probabilities are used, but on the other hand communication is modelled with
finite queues. The models are probabilistic timed I/O automata [Seg95, SL95] presented in
the IOA language [GLV97]. The paper introduces two simulation proof techniques, which are
special cases of the simulation techniques in [Seg95, SL95]. The proofs use invariants and the
proposed simulation techniques.

The model of the protocol that is presented in [DGRV97] is essentially the same as one
of the I/O automata examples in the bookDistributed Algorithms by Lynch [Lyn96]. A cor-
rectness proof of this protocol is not given in [Lyn96]. The models that either include cycle
detection or the root contention protocol can be considered refinements of the protocol in
[Lyn96].

7.2.3 This verification

As can be seen in Figure 7.5, we aim to give an implementation relation between the most
detailed model from [GV98] and a more detailed model. In this way, our verification adds to
a layered verification of IEEE 1394 in which models are refined, that is, more and more detail
is added in each step. In order to keep our proof obligations manageable, we do not add too
much detail, and hence our model has an intermediate degree of detail with respect to IEEE
1394.

The verification is carried out by establishing trace inclusion between timed I/O automata
through a refinement [LT87, LT89, LV96]. The I/O automata are presented in the IOA language
[GLV97].

The most detailed model of [GV98] is an untimed model. This means that the cycle detec-
tion is done with a predicate that takes the structure of the whole network into account. In this
verification, we want to establish that cycle detection based on the timing in IEEE 1394 works
correctly. In order to do this, we add timers to the model which expire when the leader election
takes too much time. We also add timing information to the messages sent, in order to model
the delay in communication in IEEE 1394. As argued above, we use a different predicate for
cycle detection than the one used in [GV98], in order to conform to the error behaviour of IEEE
1394. As in [GV98] we assume that the network topology is fixed throughout the protocol, that
a root contention situation is solved in one atomic step that no device has the forceroot flag
set to true, and that communication can be modelled with finite queues.

Since our aim is to show that whenever timers in the model expire, there is indeed a cycle
in the network, and that the timers will expire in case of a cycle in the network, we are trying
to show that the timers do not expire too soon or too late. In our proofs we use invariants that
express worst case scenarios in terms of delay. So we are actually performing a worst case
analysis on the timing proposed in IEEE 1394. In this way, we establish a relation between the
parameters of the protocol in terms of minimal and maximal values.
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We expect that in a next refinement step it is possible to include the result from [SV99], to
get closer to the IEEE 1394 behaviour without much effort. The next refinement step could then
be to add a forceroot flag to the model, thus expressing that devices behave a little different
to increase their chances at leadership. In order to obtain a correctness statement about IEEE
1394 with all its detail, it still has to be shown that modelling the IEEE 1394 communication of
voltages on wires by messages and finite queues is correct. We expect that in this situation, we
will not just have a judgement on correctness, but we will also be able to say how the timing
constants in IEEE 1394 could/should be adjusted.

Our assumptions As a specification of the desired behaviour, we have taken the most de-
tailed model TIP3 from [GV98]. In [GV98] it is shown that the behaviour of TIP3 meets the
requirements for the tree identify phase.

TIP3 is a very abstract model of the tree identify phase, in the sense that it abstracts from
a lot of details. We introduce a model TIP4, which is more detailed than TIP3, and prove that
it is a refinement of TIP3. In this way, the correctness of the behaviour of TIP4 can be derived
from the correctness of the behaviour of TIP3.

Our justification for still leaving out many implementation details that may affect the cor-
rectness of the protocol, is that we intend to reuse as much as possible of the proofs already
established. This can only be done in a manageable way if we do not add too many details at
once. As it is, the proofs for our verification are already quite lengthy and involved. See also
Section 7.6 for a discussion of our results.

The abstractions have been chosen as follows.

• In TIP3, it is assumed that the devices signal a cycle by merely checking the network
topology. In TIP4, the devices use a timer, which conforms to IEEE 1394.

• In both TIP3 and TIP4, communication between devices is modelled by sending mes-
sages on queues. In a IEEE 1394 network, the devices communicate by asserting signals
(defined in terms of voltages) on wires for a certain time.

• In both TIP3 and TIP4, it is assumed that no device has the forceroot flag set to true.

• In both TIP3 and TIP4, the network is assumed to be connected and to be fixed through-
out the protocol. There may be cycles in the topology.

• In both TIP3 and TIP4, the root contention situation is solved in one atomic step, as
opposed to the IEEE 1394 protocol which involves picking random bits, and which
repeats until the symmetry is broken. Note that the root contention protocol has been
formally specified and proved correct in [SV99].

• In both TIP3 and TIP4, all devices enter the tree identify phase at the same time.

• In TIP3, no timing is used whatsoever. In TIP4, timing is used for determining whether
the network topology contains a cycle (see above), and for determining the actual de-
livery time of messages. The IEEE 1394 delay between the moment of sending and
reception and processing of a signal is caused by difference in clocks of the devices, the
length and propagation delay of the wires, and the difference in the tree identify phase
enter moment of the sending and receiving device. In TIP4, the delay of message is
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determined at the moment that the message is being received. This delay may vary be-
tween the bounds caused by difference in clocks of the devices, and by the length and
propagation delay of the wires. Although the second factor is constant, we have mod-
elled the choice of delay to be completely free for each receive operation. Since we are
after the bounds on the timing constants in relation to the network topology with respect
to detecting cycles, we are establishing the property that the cycle detection timer will
not expire too soon or too late. Therefore we are actually performing a worst case anal-
ysis. The worst case scenarios for IEEE 1394 and our model are the same, under the
assumption that all devices enter the tree identify phase at the same moment.

7.3 IOA models

We present two models in the IOA language [GLV97] of the tree identify protocol, namely
TIP3 and TIP4. The IOA model for TIP3 comes (almost) literally from [GV98] and gives an
abstract and untimed model of the protocol behaviour. It has been shown in [GV98] that this
model has the desired behaviour of electing exactly one device for root if there is no cycle in
the network. If there is a cycle in the network, all devices that are part of this cycle will detect
this and give an error message.

The IOA language The IOA language facilitates precise and readable descriptions of I/O
automata [LT87, LT89]. Since our models are timed, we have added atime action, according
to the definition in [LV96].

IOA contains the basic types Bool, Nat, Int and Real with their standard operators. In
addition type constructors Array, Seq (finite sequences) and Set (finite sets) are part of the
language. The notation[ ] is used for array subscripting, an array with a value e in all cells
is denoted by const(e). The operation+ appends an element at the end of a sequence and
the operations head and tail have the usual meaning. We assume the type Time which is the
(predefined) type Real restricted to nonnegative values.

We assume the extra types Mes to represent the different message contents that may be
exchanged between devices, as follows:

Type Mesenumeration of parent, ack

In Section 7.4 we give several definitions and operations that concern network topologies.
Given a networkN = 〈D, P,dev,peer〉, we assume the types Dev=D and Port=P and all
operations as defined in Section 7.4.

The TIP models The signature part for both models is shown in Figure 7.6. The connected
network N = 〈D, P,dev,peer〉 is a parameter for both models. In addition, the constants
MinDelay, MaxDelay, MinLpdtime, and MaxLpdtime are parameters for TIP4. We assume
MinDelay≤ MaxDelay and MinLpdtime≤ MaxLpdtime. Any message sent at timet, arrives
in the intervalt + [MinDelay,MaxDelay]. If a loop is signalled, then this happens in the
interval [MinLpdtime,MaxLpdtime].

The IOA description of TIP3 is shown in Figure 7.7. The action definitions are almost
equal to those of TIP4, so we refer to the explanation below. The model TIP3 comes (almost)
literally from [GV98]. The first change is the addition of the time action, whose precondition
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signature
internal childrenknown(d: Dev),

addchild(d:Dev, p:Port),
receivemes(d:Dev, p:Port, m:Mes),
solverootcontent(d:Dev, p:Port)

output root(d:Dev),
loopdetect(d:Dev)

time δ

Figure 7.6: Signature for TIP3 and TIP4.

is true, and whose effect is empty. The second change is the use of the oncycle predicate,
which recognises not just devices that are on an ordinary cycle, but also devices that are on
a path between two cycles (see Section 7.4). Our verification shows that these devices also
detect a cycle in the protocol and give an error message (see propertyI12 in Definition 7.10,
Section 7.5.1).

The IOA description of TIP4 is shown in Figure 7.8. The model TIP4 is a proper timed IOA
model: there is a state variable time which is used as a global clock, and per message queue
there is a variable delay that is reset for each message sent on the corresponding queue. A mes-
sage is available at least after MinDelay time units have passed or ultimately after MaxDelay
time units have passed. The condition for detecting a cycle in the network also depends on
time, and not (as in TIP3) on the predicate oncycle which is based on the structure of the net-
work. It is our goal to show that cycle detection will occur if and only if there really is a cycle
present in the network.

We now give a short explanation of each action of TIP4. Whether a device is in the ini-
tial phase is reflected in the state variable init. When init is true, only actions addchild and
childrenknown can be enabled. With addchild a parent request may be received (if the value
of delay indicates that the parent request is available) and the corresponding port is added to
the collection of children. The action childrenknown marks the end of the init phase. It can
only be performed when there is at most one port left which is not a child port, and when
it is performed, an acknowledgement is sent to all peer devices that are connected to a child
port and a parent request is sent to the peer device connected to the port that is not a child, if
any. If a device is on a cycle, then it does not ever reach the state in which childrenknown is
enabled, because two of its ports are connected to peer devices which are also on a cycle. In
this situation, the action loopdetect should be performed. In TIP3, the cycle is detected with
the oncycle predicate. In TIP4, a timer signals that the device stays in the init phase too long,
and therefore must be on a cycle.

As soon as a device has left the init phase, it must wait for a message on the one remaining
port that is not a child. If there is no such port, then the device is the root of the tree, and can
perform the root action. If there is such a port, then the action receivemes can be performed as
soon as the message is available. The expected message is an acknowledgement, after which
the contribution of the device to the leader election is over. If an unexpected parent request is
received, then the device is in root contention with the peer device that sent the parent request.
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automaton TIP3
states

child: Set[Port] := {}
mq: Array[Port,Seq[Mes]] := const({})
init: Array[Dev,Bool] := const(true)
rc, root, lpd: Array[Dev,Bool] := const(false)

transitions
internal childrenknown(d)

pre init[d] ∧ size(ports(d)-child)≤ 1
eff init[d] := false;

for p in ports(d)do if p ∈ child
then mq[p] := mq[p]+ ack
else mq[p] :=mq[p]+ parentfi od

internal addchild(d,p)where d = dev(p)
pre init[d] ∧ head(mq[peer(p)]) = parent
eff child := insert(p, child);

mq[peer(p)] := tail(mq[peer(p)])
internal receivemes(d,p,m)where d = dev(p)

pre ¬ init[d] ∧ ports(d)-child ={p} ∧ head(mq[peer(p)]) = m
eff if m = parentthen rc[d] := truefi;

mq[peer(p)] := tail(mq[peer(p)])
internal solverootcontent(d,p)where d = dev(p)

pre rc[d] ∧ rc[dev(peer(p))]
eff child := insert(p,child);

rc[d] := false;
rc[dev(peer(p))] := false

output root(d)
pre ¬ init[d] ∧ ¬ root[d]∧ ports(d)⊆ child
eff root[d] := true

output loopdetect(d)
pre oncycle(d)∧ ¬ lpd[d]
eff lpd[d] := true

time δ where δ > 0
pre true
eff

Figure 7.7: Automaton TIP3.
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automaton TIP4
states

child: Set[Port] := {}
mq: Array[Port,Seq[Mes]] := const({})
delay: Array[Port,Time] := const(0)
init: Array[Dev,Bool] := const(true)
rc, root, lpd: Array[Dev,Bool] := const(false)
time: Time := 0

transitions
internal childrenknown(d)

pre init[d] ∧ size(ports(d)-child)≤ 1
eff init[d] := false;

for p in ports(d)do delay[p] := 0;
if p ∈ child
then mq[p] := mq[p]+ ack
else mq[p] := mq[p]+ parentfi od

internal addchild(d,p)where d = dev(p)
pre init[d] ∧ head(mq[peer(p)])=parent∧ delay[peer(p)]≥Mindelay
eff child := insert(p, child); mq[peer(p)] := tail(mq[peer(p)])

internal receivemes(d,p,m)where d = dev(p)
pre ∧ ¬ init[d] ∧ ports(d)-child ={p}
∧ head(mq[peer(p)])=m∧ delay[peer(p)]≥ Mindelay

eff if m = parentthen rc[d] := truefi;
mq[peer(p)] := tail(mq[peer(p)])

internal solverootcontent(d,p)where d = dev(p)
pre rc[d] ∧ rc[dev(peer(p))]
eff child := insert(p,child);

rc[d] := false; rc[dev(peer(p))] := false
output root(d)

pre ¬ init[d] ∧ ¬ root[d]∧ ports(d)⊆ child
eff root[d] := true

output loopdetect(d)
pre init[d] ∧ ¬ lpd[d] ∧ time≥ MinLpdtime
eff lpd[d] := true

time δ where δ > 0
pre ∀ d,p:
∧ ¬ pre(childrenknown(d))∧ ¬ pre(root(d))
∧ if init[d] ∧ ¬ lpd[d] then time+δ ≤MaxLpdtimefi
∧ if mq[p]�={} then delay(mq[p])+δ ≤MaxDelay fi

eff time := time+δ
for p in Portdo delay[p] := delay[p]+δ od

Figure 7.8: Automaton TIP4.
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The peer device has received or will receive the parent request that was sent earlier, and thus
has signalled or will signal the root contention. As soon as both devices have signalled root
contention, the action solverootcontent can be performed to break the symmetry and add one
of the two ports involved to the child collection. The device whose port is added to child can
then perform the root action.

The time action signals the passing of time, by increasing the value of time. Time passage
may not occur if there are other actions that cannot be delayed any further. Actions children-
known and root are urgent, which means that they should happen at the first moment when
they are enabled. Actions addchild and receivemes are also urgent, but they are enabled only
when a message becomes available. Since the message is available only when the value of
delay is in the interval [MinDelay,MaxDelay], we require that the value of delay does not pass
beyond the right-hand border of this interval. The action loopdetect depends on the value of
time and can happen anywhere in the interval [MinLpdtime,MaxLpdtime], so we require that
time does not pass beyond MaxLpdtime. The only action that is not mentioned in the pre-
condition of the time action, is solverootcontent. The reason for this is that in the IEEE 1394
documentation, there is a small sub-protocol with timers that is used to break the symmetry,
instead of the one action that represents this sub-protocol in TIP4. Since this sub-protocol is
not guaranteed to end in finite time (due to randomly drawn bits), we cannot say at what time
the action solverootcontent will take place. Hence we have put not requirement on the time ac-
tion for solverootcontent. The root contention solving protocol is discussed and proved correct
in [SV99].

7.4 Network preliminaries

This section gives some definitions and properties of network topologies which are needed in
the verification.

7.4.1 Networks

Definition 7.1 A network is a quadruple〈D, P,dev,peer〉, where

• D is a non-empty set of devices.

• P is a set of ports.

• dev : P → D.

• peer :P → P with for all p: peer(peer(p)) = p and p �= peer(p).

For d ∈ D, we define the abbreviation ports(d) = {p ∈ P|dev(p) = d}.
GivenD′ andd ∈ D′, the predicate leaf(D′, d) holds iff∀p1, p2 ∈ ports(d) : dev(peer(p1)) ∈
D′ ∧ dev(peer(p2)) ∈ D′ → p1 = p2.

The network consists of a collection of devices, each of which has a set of ports. Each port is
connected to one other port with a cable, which is captured by the function peer. Each port has
a connection and no port is connected to itself. The cable connection itself is referred to as a
cable hop. Since for eachp ∈ P, dev(p) is defined, it follows thatP =⋃

d∈D ports(d).
Throughout this paper, we fix a networkN = 〈D, P,dev,peer〉 and let variablesp, p′, p′′,

p0, . . . range over ports inP, andd, d ′, d0, . . . over devices inD.
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7.4.2 Paths, cycles

The following definitions and lemmas are necessary to identify paths, cycles, etc. in the net-
work.

Definition 7.2 A path π is a non-empty sequence of portsπ = p0p1 . . . pn, such that:

• n is odd

• p0 �= pn

• for all i > 0, if i is odd thenpi−1 = peer(pi ) else dev(pi−1) = dev(pi ))

We denote the first and last port ofπ with first(π) = p0 and last(π) = pn. We denote the
length ofπ with length(π) = (n + 1)/2. We denote the path obtained by reversingπ with
reverse(π) = pn . . . p0.
Pathπ is a pathfrom d1 to d2 if dev(first(π)) = d1 and dev(last(π)) = d2. We say that a
deviced is on π iff there is a portp in π such thatd = dev(p). A cycle is a pathπ = p0 . . . pn

such that dev(p0) = dev(pn).
The predicate oncycle(p) is true iff there is a cycle such thatp is on it. The predicate
oncycle(d) is true iff there is a portp ∈ ports(d), such that oncycle(p) holds.

A path reflects a walk through the network by the concatenation of cable hops, in which ap1 p2
cable hop may not be followed immediately by the reverse hopp2p1. The length of a path is
the number of cable hops included in that path. A cycle may include a pathπ which is wedged
in between smaller cyclesρ andτ , resulting in the shape of a pair of glasses:ρπτ reverse(π).
Ports that are part of a cycle (of whatever shape) remain inactive during the protocol, as we
will show later.

Lemma 7.3 If π = p0 p1p2 . . . pn is a cycle, thenp2 . . . pn p0 p1 and reverse(π) are also
cycles.

Lemma 7.4 oncycle(p)→ oncycle(peer(p))

Lemma 7.5 oncycle(p)→ size({p′|p′ ∈ ports(dev(p)) ∧ oncycle(p′)}) ≥ 2

Proof Let π = p0 p1 . . . pn be a cycle such thatp = pi .
If i = 0, then by definition of a cycle, dev(pn) = dev(p), and by definition of a path,pn �= p.
If i is even andi > 0, then by definition of a path, dev(pi−1)− dev(p) and pi−1 �= p.
If i = n, then by definition of a cycle, dev(p0) = dev(p), and by definition of a path,p0 �= p.
If i is odd andi < n, then by definition of a path, dev(pi+1)− dev(p) and pi+1 �= p. �

Lemma 7.6 Let N = 〈D, P,dev,peer〉 be a connected network, andd1, d2 ∈ D.
If oncycle(d1), oncycle(d2), andπ is a path fromd1 to d2, then for eachp ∈ π : oncycle(p)

Proof Let ρ be a cycle such thatd1 is on it. Letτ be a cycle such thatd2 is on it. We will
show for each portp in π that oncycle(p), as follows.

Letπ = p0 . . . pn. If pi is in ρ or τ , then oncycle(pi ). We take a fragmentπ ′ = pi . . . p j

from π such thati > 0 implies thatpi−1 in ρ or in τ , and j < n implies thatp j+1 in ρ or in
τ , and for each portp onπ ′, p is not onρ and not onτ . If we can construct a cycle such that
the fragmentπ ′ is part of it, we are done.

Note that by definition, dev(pi ) is onρ or onτ , and dev(p j ) is onρ or onτ .
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In the following case distinction we leave out all cases which are symmetric to a case
proved earlier.

1. pi = p j .
We assume w.l.o.g. that dev(pi) is onρ. Letρ = ρ1ρ2 such that dev(pi ) = dev(last(ρ1)) =
dev(first(ρ2)) and length(ρ1) is even. By assumption, last(ρ1) �= pi = p j �= first(ρ2).
We construct the pathρ2ρ1π

′ and see that it is a cycle.

2. pi �= p j .
We assume w.l.o.g. that dev(pi ) is on ρ and dev(p j ) is on τ . Let ρ = ρ1ρ2 such
that dev(pi ) = dev(last(ρ1)) = dev(first(ρ2)) and length(ρ1) is even. Letτ = τ1τ2
such that dev(p j ) = dev(last(τ1)) = dev(first(τ2)) and length(τ1) is even. By assump-
tion, last(ρ1) �= pi �= first(ρ2) and last(τ1) �= p j �= first(τ2). We construct the path
ρ2ρ1π

′τ2τ1reverse(π ′) and see that it is a cycle.

�

7.4.3 Connected networks

The following definitions and lemmas are necessary to identify the distance of devices in the
network to the edge of the network, that is, how many times we have to take all the leaf devices
away before a device becomes a leaf in the remaining set. The distance measure defined here
will be used in the protocol to quantify the worst-case time that it takes for a device to complete
its part in the protocol.

Definition 7.7 N is connected if for each two devicesd, d ′ ∈ D there is a path fromd to d ′.
If N is connected, we denote the maximum length of the shortest path inN between any two
devices by MaxHop= max({n|d1, d2 ∈ D ∧ n = min({length(π)|π is path fromd1 to d2})}).
The function Steps is defined by the following equation:

Steps(D′, d) =
{

0 if leaf(D′, d) or oncycle(d)
1+ Steps(D′′, d) otherwise

where D′′ = D′ − {d ′ ∈ D′|leaf(D′, d ′)}
We abbreviate Steps(d) = Steps(D, d).
The function Shrink is defined by the following equation:

Shrink(D′, n′) =
{

D′ if n′ = 0
Shrink(D′′, n′ − 1) otherwise

where D′′ = D′ − {d ′ ∈ D′|leaf(D′, d ′)}
We abbreviate Shrink(n) = Shrink(D, n).

The value MaxHop, which is an upper bound to the minimum number of cable hops between
any two devices, is used in the IEEE documentation as a restriction on the networks on which
the protocol is to operate.

The function Steps gives the one but greatest distance between a device and a leaf in the
network. This number is determined by the number of steps it takes for such a device to become
a leaf, when in each step all leafs are removed. For a device that is part of a cycle, the value of
Steps has no meaning and will not be used.
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The function Shrink gives the set of devices that remains when in each step the leaf de-
vices are removed and this is repeated for the indicated number of times, starting with the
given set. The correspondence between Steps and Shrink is obvious: if Steps(d) = n then
leaf(Shrink(n), d) holds and if Steps(d) ≥ n thend ∈ Shrink(n).

In the remainder of this paper, we assume thatN is connected.

Lemma 7.8 Let d ∈ D such that¬oncycle(d).
If Steps(d) = n then size({p′ ∈ ports(d)|oncycle(dev(peer(p′)) ∨ Steps(dev(peer(p′))) ≥
n}) ≤ 1.

Proof By contradiction. Assume¬oncycle(d) and Steps(d) = n. Let p, p′ ∈ ports(d) such
that p �= p′ and oncycle(dev(peer(p))∨Steps(dev(peer(p))) ≥ n and oncycle(dev(peer(p′))∨
Steps(dev(peer(p′))) ≥ n. Since Steps(d) = n, either oncycle(d) or leaf(Shrink(n), d). Since
we assumed¬oncycle(d), apparently leaf(Shrink(n), d). By our assumption dev(peer(p)) and
dev(peer(p′)) are both in Shrink(n). But p �= p′, which contradicts leaf(Shrink(n), d). We
conclude that size({p′ ∈ ports(d)|oncycle(dev(peer(p′)) ∨ Steps(dev(peer(p′))) ≥ n}) ≤ 1.
�

Lemma 7.9 For eachd ∈ D

Steps(d) ≤
{ ,MaxHop/2- if ∀d ′ ∈ D : ¬oncycle(d ′)

max(0,MaxHop− 1) otherwise

Proof By contradiction.

1. Suppose∀d ∈ D : ¬oncycle(d).
Suppose Steps(d) = m > ,n/2-. We show that we can construct a shortest pathπ with
length(π) > n, by starting withd and extending the path in each step with one cable
hop in two directions. We use induction onn′ ∈ {1, . . . ,m} in the following hypothesis:
There is a pathp0 . . . p4n′−1 with Steps(dev(p0)) ≥ m − n′ and Steps(dev(p4n′−1)) ≥
m − n′ and there is no other path from dev(p0) to dev(p4n′−1).

• (Base step)n′ = 1
Sincem > 0, certainly¬leaf(Shrink(m − 1), d), and since leaf(Shrink(m), d),
there must bep, q ∈ ports(d) such thatp �= q and dev(peer(p)) and dev(peer(q))
in Shrink(m − 1). Fix p, q.
Clearly, Steps(dev(peer(p))) ≥ m − 1 and Steps(dev(peer(q))) ≥ m − 1. Con-
sider peer(p)pqpeer(q). This is a path if peer(p) �= peer(q). Since¬oncycle(d ′)
for all d ′ ∈ D, we see that dev(peer(p)) �= dev(peer(q)), so peer(p) �= peer(q).
If was another path from dev(peer(p)) to dev(peer(q)) then this would contra-
dict the assumption that¬oncycle(d ′) for all d ′ ∈ D. We conclude thatπ =
peer(p)pqpeer(q) is a path that meets the requirements.

• (Induction step)n′ = n′′ + 1≤ m and the hypothesis holds forn′′
Letπ = p0 . . . p4n′′−1 such that Steps(dev(p0)) ≥ m−n′′ and Steps(dev(p4n′′−1))

≥ m − n′′ and there is no other path from dev(p0) to dev(p4n′′−1). We abbrevi-
ated1 = dev(p0) andd2 = dev(p4n′′−1) for the first and last device ofπ . Since
n′′ < m, Steps(d1) > 0 and Steps(d2) > 0. So¬leaf(Shrink(m − n′′ − 1), d1)

and¬leaf(Shrink(m − n′′ − 1), d2). So there must bep, p′ ∈ ports(d1) and
q, q ′ ∈ ports(d2) such thatp �= p′, q �= q ′, and dev(peer(p)), dev(peer(p′))
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dev(peer(q)), and dev(peer(q ′)) in Shrink(m − n′′ − 1). Fix p, p′, q andq ′. Now
for x ∈ {p, p′, q, q ′} : Steps(dev(peer(x))) ≥ m−n′′−1= m−(n′′+1) = m−n′
We assume without loss of generality thatp �= p0 andq �= p4n′′−1. Consider
peer(p)pπqpeer(q). This is a path if peer(p) �= peer(q). Since¬oncycle(d ′) for
anyd ′ ∈ D, we see that dev(peer(p)) �= dev(peer(q)), so peer(p) �= peer(q). If
there was another path from dev(peer(p)) to dev(peer(q)) then this would contra-
dict the assumption that¬oncycle(d ′) for all d ′ ∈ D. So, peer(p)pπqpeer(q) is a
path that meets all the requirements for the induction step.

We conclude that there is a shortest path in the network of length 2m. Sincem > ,n/2-,
certainly 2m > (2,n/2-)+ 1≥ n. So 2m > n and we have a contradiction.

2. Suppose∃d ′ ∈ D : oncycle(d ′).
Suppose Steps(d) = m > max(0, n − 1). Thenm > 0 and by definition of Steps,
certainly¬oncycle(d). We show that we can construct a pathπ with length(π) > n,
by starting withd and a neighbour ofd on a cycle, and extending the path in each
step with one cable hop to a neighbour which is not on a cycle. We use induction on
n′ ∈ {0, . . . ,m} in the following hypothesis:
There is a pathp0 p1 . . . p2n′+1 with oncycle(dev(p0)), Steps(dev(p2n′+1)) ≥ m−n′ and
for all 1 ≤ i ≤ 2n′ + 1: ¬oncycle(dev(pi)), and there is no shorter path from dev(p0)

to dev(p2n′+1).

• (Base step)n′ = 0
Suppose there is nop ∈ ports(d) such that oncycle(dev(peer(p))). SinceN is
connected, there must beπ , d ′ such thatπ is a pathπ = p0 . . . pn fromd ′ to d with
oncycle(d ′) and for eachi > 0 : ¬oncycle(dev(pi )). Fix d ′, π . Since oncycle(d ′)
and¬oncycle(dev(p1)), we can use Lemma 7.8 to conclude that Steps(dev(p1)) >

max({Steps(dev(p′)|p′ ∈ ports(dev(p1)) ∧ p′ �= p1}). Then it is not hard to show
(using induction and Lemma 7.8) that∀i ∈ {1,3, . . . , n − 2} : Steps(dev(pi)) ≥
Steps(dev(pi+2)). Then we easily have∀i ∈ {1,3, . . . , n} : Steps(dev(pi )) ≥ m.
Sinced is chosen arbitrarily with Steps(d) > n − 1, any of the devices onπ
except dev(p0) would do. So we assume without loss of generality that there is a
p ∈ ports(d) such that oncycle(dev(peer(p))). Fix p.
We now have Steps(d) ≥ m,¬oncycle(d), and oncycle(dev(peer(p)). We see that
peer(p)p is a path that meets the requirements, since there cannot be a shorter path
from dev(peer(p)) to d.

• (Induction step)n′ = n′′ + 1≤ m and the hypothesis holds forn′′
Letπ = p0 . . . p2n′′+1 such that oncycle(dev(p0)) , Steps(dev(p2n′′+1)) ≥ m− n′′
and for all 1≤ i ≤ 2n′′ + 1: ¬oncycle(dev(pi ), and there is no shorter path
from dev(p0) to dev(p2n′′+1). We abbreviated ′ = dev(p2n′′+1) to indicate the
last device inπ . Sincen′′ < m, Steps(d ′) > 0. So¬leaf(Shrink(m − n′′ −
1), d. So there must bep, p′ ∈ ports(d ′) such thatp �= p′, and dev(peer(p))
and dev(peer(p′)) in Shrink(m − n′′ − 1). Fix p, p′. Now for x ∈ {p, p′} :
Steps(dev(peer(x))) ≥ m− n′′ − 1= m− (n′′ + 1) = m− n′. We assume without
loss of generality thatp �= p2n′′+1.
Considerπppeer(p). This is a path if peer(p) �= p0. Suppose that peer(p) = p0.
Then p = p1 and dev(p1) = d1, hencep2 . . . pn is a cycle, which contradicts our
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assumption. We conclude that peer(p) �= p0 andπppeer(p) is a path.
Suppose that oncycle(dev(peer(p))). Then by Lemma 7.6 we have that for all
1 ≤ i ≤ 2n′′ + 1, oncycle(dev(pi )), which contradicts our assumption. So we
conclude that¬oncycle(dev(peer(p))).
Suppose a shorter path thanπppeer(p) exists from dev(p0) to dev(peer(p)). This
enables us to conclude that oncycle(dev(peer(pi )))with pi ∈ π , which contradicts
our assumptions. So we conclude that no shorter path thanπppeer(p) exists from
dev(p0) to dev(peer(p)).
We see that the pathπppeer(p)meets all the requirements for the induction step.

So there is a shortest path in the network of lengthm + 1. Sincem > n − 1, m + 1> n
and we have a contradiction.

�

7.5 Verification

In this section we prove that the IEEE 1394 tree identify protocol is correct relative to our
model. In Section 7.5.1 some properties are given which have been proved invariant for the
model TIP3in [GV98]. Some additional properties are given, which are be proved invariant
for the model TIP4, provided that the invariants for TIP3 are also invariant for TIP4. This
provision is solved in the next section, Section 7.5.2, in which it is proved that under certain
timing restrictions the behaviour of TIP4 is included in the behaviour of TIP3. The proofs in
Section 7.5.2 allow us to conclude that the safety aspects of cycle detection and root election
in TIP4 meet the IEEE 1394 requirements. In Section 7.5.3 we prove some liveness properties
for TIP4. Finally, in Section 7.5.4 we discuss whether the IEEE 1394 timing constants obey
the restrictions that we found in Section 7.5.2.

The proofs in Sections 7.5.1 and 7.5.2 use simulation techniques from [LV96] which are
listed in Appendices A.1 and A.3. These appendices also present a new result for using invari-
ants in stepwise refinement, which is useful for this verification because it allows us to reuse
invariants properties from [GV98] without extra effort. In Appendix A.3, some new sufficient
conditions for feasibility can be found. These lessen the proof burden when proving that there
are no time deadlocks in the model.

Throughout this section we fix a connected networkN = 〈D, P,dev,peer〉 as the param-
eter for TIP4. We lets,t range over states of TIP4,δ over Time, andm over Mes.

7.5.1 Invariants for TIP3 and TIP4

We first define the properties, of which some are taken from the PVS code used to check the
proofs for [GV98]. All of the following properties are necessary for the proofs in Sections 7.5.2
and 7.5.3.

Definition 7.10 I1(d)
	= init[d]→ ¬rc[d]

I2(p)
	= init[dev(p)] → mq[p] = {}

I3(p)
	= init[dev(p)] → peer(p) �∈ child
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I4(d)
	= init[d] ∨ size(ports(d)− child) ≤ 1

I5(p)
	= length(mq[p]) ≤ 1

I6(p)
	= p ∈ child→ mq[peer(p)] = {}

I7(p)
	= rc[dev(p)]→ mq[peer(p)] = {}

I8(p)
	= rc[dev(p)]→ peer(p) �∈ child

I9(p)
	= ∨ init[dev(p)]
∨ head(mq[p]) = parent
∨ peer(p) ∈ child
∨ rc[dev(peer(p))]
∨ p ∈ child

I10(p)
	= mq[p] �= {} → delay[p] ≤ MaxDelay

I11(d)
	= ∧ ¬oncycle(d) ∧ init[d]→ time≤ Steps(d) ∗MaxDelay
∧ ¬oncycle(d) ∧ time> Steps(d) ∗MaxDelay
→∀p′∈ ports(d) :

head(mq[p′]) = parent
→ time− delay[p′] ≤ Steps(d) ∗MaxDelay

I12(d)
	= ∧MinLpdtime> max(0,MaxHop− 1) ∗MaxDelay
∧ init[d]
∧ ¬oncycle(d)
→ time< MinLpdtime

I13(d)
	= oncycle(d)→ init[d]

I14(d)
	= oncycle(p) ∧¬lpd[d]→ time≤ MaxLpdtime

We let I1
	=∧

d I1(d), I2
	=∧

p I2(p), et cetera.

Some of the properties in Definition 7.10 have been taken from [GV98], from which we also
repeat the following result.

Lemma 7.11 PropertiesI1, I2, I3, I4, I5, I6, I7, I8, andI9 are invariant for TIP3.

Even though the predicate oncycle has a different meaning in [GV98], we can assume that the
proofs [GV98] still hold here, since the oncycle predicate is not used in the proofs.

Now we prove that under the assumption that some of the properties from Definition 7.10
hold in each reachable state for TIP4, it follows that others hold in each reachable state for TIP4
as well. In Section 7.5.2, the assumptions will be fulfilled by the corresponding properties for
TIP3.

Lemma 7.12 1. I10 is inductive relative to(I2 ∧ I5) for TIP4.

2. I11 is inductive relative to(I1 ∧ I3 ∧ I5 ∧ I9) for TIP4.

3. For eachs ∈ reachable(TIP4), s |= I11 impliess |= I12.
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4. I13 is inductive relative toI3 for TIP4.

5. I14 is inductive relative toI13 for TIP4.

Proof

1. Trivial.

2. Suppose¬oncycle(d).
Initially, s.time= 0 and∀p : s.mq[p] = {}. Since Steps(d) ≥ 0, Steps(d)∗MaxDelay≥
0= s.time. Since∀p ∈ ports(d) : s.mq[p] = {}, it follows thats |= I11.

Suppose froms
a→ t ands |= I1∧ I3∧ I5∧ I9∧ I11. We have to show thatt |= I11. Fix

n such thatn ∗MaxDelay≤ s.time< (n + 1) ∗MaxDelay.

We make the following case distinction.

(a) s.time> Steps(d) ∗MaxDelay
By s |= I11 we see that¬s.init[d]. By the effect ofa, we conclude that¬t.init[d].
Now we just need to show for eachp′ ∈ ports(d) that if head(t.mq[p′]) = parent,
then t.time− t.delay[p′] ≤ Steps(d) ∗ MaxDelay. Assumep′ ∈ ports(d) and
head(t.mq[p′]) = parent. By¬s.init[d], s |= I5 and the precondition and effect of
a, head(s.mq[p′]) = parent. Sinces |= I11, it follows thats.time− s.delay[p′] ≤
Steps(d) ∗MaxDelay.

i. ∀δ > 0 : a �= δ
Then by the effect ofa, t.time = s.time, and by¬s.init[d] and the precon-
dition and effect ofa, t.delay[p′] = s.delay[p′]. So t.time− t.delay[p′] =
s.time− s.delay[p′] ≤ Steps(d) ∗MaxDelay and it follows thatt |= I11(d).

ii. a = δ
Then t.time = s.time+ δ, andt.delay[p′] = s.delay[p′] + δ. So t.time−
t.delay[p′] = s.time + δ − (s.delay[p′] + δ) = s.time− s.delay[p′] ≤
Steps(d) ∗MaxDelay and it follows thatt |= I11(d).

(b) s.time≤ Steps(d) ∗MaxDelay

i. ¬s.init[d]
By the effect ofa,¬t.init[d]. The remainder is equal to the proof for Step 2a.

ii. s.init[d]

A. ∀δ > 0 : a �= δ
Then by the effect ofa, t.time= s.time, sot.time≤ Steps(d)∗MaxDelay,
hence for eachp′ ∈ ports(d), trivially t.time− t.delay[p′] ≤ Steps(d) ∗
MaxDelay and it follows thatt |= I11(d).

B. a = δ ∧ s.time+ δ ≤ Steps(d) ∗MaxDelay
Then for eachp′ ∈ ports(d), trivially t.time− t.delay[p′] ≤ Steps(d) ∗
MaxDelay and it follows thatt |= I11(d).

C. a = δ ∧ s.time+ δ > Steps(d) ∗MaxDelay
The effect ofa leads to a violation of propertyI11, so we have to show
that our assumption ona leads to a contradiction.
First we prove by contradiction that for eachd ′ with ¬oncycle(d ′) and
Steps(d ′) < Steps(d), it follows that∀p′ ∈ ports(d ′) : s.mq[p′] = {} ∨
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head(s.mq[p′]) = ack. Suppose¬oncycle(d ′), Steps(d ′) < Steps(d) and
head(s.mq[p′]) = parent. Bys |= I11, we see thats.time− s.delay[p′] ≤
Steps(d ′)∗MaxDelay. Ast.time−t.delay[p′] = s.time+δ−(s.delay[p′]+
δ) = s.time−s.delay[p′] ≤ Steps(d ′)∗MaxDelay, and sinces.time+δ >
Steps(d)∗MaxDelay≥ (Steps(d ′)+1)∗MaxDelay, we gets.delay[p′]+
δ > MaxDelay, which in contradiction with our assumption thats enables
δ.
Now we prove by contradiction that for eachd ′ with ¬oncycle(d ′) and
Steps(d ′) ≤ Steps(d), it follows that ¬s.init[d ′]. Fix a d ′ such that
¬oncycle(d ′), s.init[d ′] and there is nod ′′ with Steps(d ′′) < Steps(d ′)
and s.init[d ′′]. Let P ′ = {p′ ∈ ports(d ′)|¬oncycle(dev(peer(p′))) ∧
Steps(dev(peer(p′))) ≤ Steps(d ′)− 1}. By Lemma 7.8, size(ports(d ′)−
P ′) ≤ 1. Fix p′ ∈ P ′ andd ′′ = dev(peer(p′)). Note that Steps(d ′′) <
Steps(d ′) ≤ Steps(d). By our assumption,¬s.init[d ′′]. By s.init[d ′] and
s |= I3, we see peer(p′) �∈ s.child. By s.init[d ′] and s |= I1, we see
¬s.rc[d ′]. Combining all of this with our observations.mq[peer(p′)] =
{} ∨ head(s.mq[peer(p′)] = ack ands |= I9, we get p′ ∈ s.child. So
size(ports(d ′))−s.child= 1. Sinces.init[d ′], s enables childrenknown(d ′)
which is in contradiction with our assumption thats enablesδ. We con-
clude that¬s.init[d ′].
From this observation, it trivially follows that¬s.init[d] which is in con-
tradiction with our assumption. It follows thata �= δ ∨ s.time+ δ ≤
Steps(d) ∗MaxDelay.

3. Lets ∈ reachable(TIP4) such thats |= I11. Assume MinLpdtime> max(0,MaxHop−
1) ∗ MaxDelay∧ s.init[d] ∧ ¬oncycle(d). By s.init[d] ∧ ¬oncycle(d) ands |= I11,
s.time ≤ Steps(d) ∗ MaxDelay. Note that for eachn ≥ 0, ,n/2- ≤ max(0, n − 1).
Combining this with Lemma 7.9, we get Steps(d) ≤ max(0,MaxHop−1). Sos.time≤
max(0,MaxHop− 1) ∗MaxDelay< MinLpdtime and it follows thats |= I12.

4. Suppose oncycle(d).

Initially, s.init[d], hences |= I13.

Supposes
a→ t ands |= I3 ∧ I13. By oncycle(d) ands |= I13, we see thats.init[d].

If a �= childrenknown(d) then t.init[d] = s.init[d], so it suffices to show thata �=
childrenknown(d). By Lemma 7.5 and oncycle(d), there must bep1, p2 ∈ ports(d) such
that p1 �= p2 and oncycle(dev(peer(p1))) and oncycle(dev(peer(p2))). Sinces |= I13,
we see thats.init[dev(peer(p1))] and s.init[dev(peer(p2))]. Sinces |= I3, we see that
p1 �∈ s.child andp2 �∈ s.child. Sincep1 �= p2, we see that size(ports(d)− s.child ≥ 2,
hences does not enable childrenknown(d).

5. Trivial.

�

Note that by Items 2 and 3 it follows thatI12 is inductive relative to(I1 ∧ I3 ∧ I5 ∧ I9 ∧ I11)

for TIP4.
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7.5.2 TIP4 implements TIP3

We use the properties established in Section 7.5.1 to obtain that TIP4 implements TIP3. As an
implementation relation we take inclusion of admissible timed traces. From Section 7.5.1, it
follows that the behaviour of TIP4 meets these properties only when the parameters obey the
following relation: MinLpdtime> max(0,MaxHop− 1) ∗MaxDelay. Therefore, we assume
throughout this section that this relation holds.

In order to obtain the implementation relation, we construct a function that is to be proved a
weak timed refinement from TIP4 to TIP3. Given the complicated relations between the invari-
ants for TIP3 and the properties for TIP4, we have been forced to either prove the properties
for TIP4 that depend on invariants for TIP3 anew, or to prove the invariance of the properties
for TIP4 and the weak refinement in one proof, or to come up with a more elegant solution.
The latter approach has given rise to some new sufficient conditions, which are presented in
Appendices A.1 and A.3.

To avoid confusion, all state variables from TIP3 are subscripted with3, and all state vari-
ables from TIP4 are subscripted with4. Since the action signatures are equal, we do not use
these subscript on the action names.

Definition 7.13 The function ref from states of TIP4 to states of TIP3 is defined to be the
identity function on state variables with the same name.

Lemma 7.14 Let s ∈ states(TIP3). For all I ∈ {I1, I2, I3, I4, I5, I6, I7, I8, I9}, ref(s) |= I
impliess |= I .

Proof Trivial. �

Lemma 7.15 1. s ∈ Start(TIP4) implies ref(s) ∈ Start(TIP3).

2. s
a→TIP4 t, s |= I10∧ I11∧ I12∧ I13∧ I14 and ref(s) |= I1∧ I2∧ I3∧ I4∧ I5∧ I6∧ I7∧ I8∧ I9

implies ref(s)
a→TIP3 ref(t).

Proof

1. Supposes ∈ Start(TIP4).

Since the initial requirements are the same for every state variable in TIP3 as for the state
variable with the same name in TIP4, and the state variables with the same name have
the same value ins and in ref(s), ref(s) ∈ Start(TIP3) follows froms ∈ Start(TIP4).

2. Supposes
a→TIP4 t s |= I10∧ I11∧ I12∧ I13∧ I14 and ref(s) |= I1∧ I2∧ I3∧ I4∧ I5∧

I6 ∧ I7 ∧ I8 ∧ I9. s ∈ reachable(TIP4) and ref(s) ∈ reachable(TIP3).

Since for eacha, the effect in TIP3 is equal to the effect in TIP4 on all state variables
from TIP3, it follows that whenever ref(s)

a→TIP3 t ′, thent ′ = ref(t).

If a �∈ ⋃
d loopdetect(d), then we see that the precondition ofa in TIP4 trivially implies

the precondition ofa in TIP3, hence ifs
a→TIP4, then ref(s)

a→TIP3. So we just need to
show that ifa = loopdetect(a), then ref(s)

a→TIP3.

Supposea = loopdetect(a). By precondition ofa in TIP4,¬s.lpd4[d] and s.time4 ≥
MinLpdtime. From¬s.lpd4[d] we see¬ref(s).lpd3[d]. By s.time4 = lpdtime4[d] and
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s |= I12 we see that either¬s.init4[d] or oncycle(d). By precondition ofa in TIP4 we
see thats.init4[d], and we conclude that oncycle(d). Hence ref(s) enablesa.

�

Corollary 7.16 I1, I2, I3, I4, I5, I6, I7, I8, I9, I10, I11, I12, I13 andI14 are invariant for TIP4.

Proof By Lemmas 7.11, 7.12, 7.14 and 7.15 we can use Lemma A.2. �

Corollary 7.17 The function ref is a weak timed refinement from TIP4 to TIP3 with respect
to (I10∧ I11∧ I12∧ I13∧ I14) and(I1 ∧ I2 ∧ I3 ∧ I4 ∧ I5 ∧ I6 ∧ I7 ∧ I8 ∧ I9)

Proof By Lemmas 7.11, 7.12, 7.14 and 7.15 we can use Lemma A.2. �

The implementation relation now follows easily.

Theorem 7.18 t-traces(TIP4) ⊆ t-traces(TIP3).

Proof Combine Corollary 7.17 with Theorem 6.14 from [LV96]. �

7.5.3 Liveness results for TIP4

In this section we show some liveness results for model TIP4. As in Section 7.5.2, we assume
that the parameters of TIP4 meet the following relation: MinLpdtime> max(0,MaxHop−
1) ∗MaxDelay.

The liveness results are the following. We first show that TIP4 has no time deadlocks. For
this, some new sufficient conditions are used, which are presented in Appendix A.3. Then we
prove that when a cycle is present, it will be detected, and that otherwise a root will be elected.
Notice that we cannot use results from TIP3, since notions as quiescence and fairness are not
present at the timed level.

First we need to define a measure on reachable states, to indicate the number of discrete
actions that must be performed before passing of time will be enabled again.

Definition 7.19 The function Measure gives a pair for each states from TIP4, as follows:

Measure(s) = 〈I,C + R + M + L〉
where

I = size({d|s.init[d]})
C = size(P − s.child)

R = size({d|¬s.root[d]})
M = size({p|s.mq[p] �= {}})
L = size({d|¬s.lpd[d]})

The ordering≺ is the lexicographic ordering on pairs of naturals, based on the ordering< on
naturals.

Since< is well-founded,≺ is also well-founded.
Now we prove the properties that we need for deadlock freedom, namely that when no

discrete action is enabled, then the passage of time is enabled, and that at every moment in
time at most a finite amount of discrete activity can occur.
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Lemma 7.20 For eachs ∈ reachable(TIP4) the following holds:

1. s enables an action fromacts(TIP4).

2. If s
a→ t and∀δ > 0 : a �= δ, then Measure(t) ≺ Measure(s) otherwise Measure(t) =

Measure(s).

Proof

1. It suffices to show that ifs does not enablea for all a ∈ acts(T i pvier)−⋃
δ>0{δ}, then

s enablesδ for someδ > 0, which we prove by contradiction.

Suppose that for alla ∈ acts(TIP4), s does not enablea. Apparentlys does not enable
any δ > 0, so eithers.time = MaxLpdtime and∃d : s.init[d] ∧ ¬s.lpd[d], or ∃p :
s.mq[p] �= {} ∧ s.delay([ p]) ≥ MaxDelay.

Supposes.time= MaxLpdtime,s.init[d] and¬s.lpd[d]. Thens enables loopdetect(d)
and we have a contradiction.

Supposes.mq[p] �= {} ands.delay[p] ≥ MaxDelay. Let head(s.mq[p]) = m. Since
MaxDelay ≥ MinDelay, s.delay[p] ≥ MinDelay. Using InvariantI2, we see that
¬s.init[dev(p)], and using InvariantI6 we get peer(p) �∈ s.child. Supposep ∈ s.child.
Using InvariantI3 we get¬s.init[dev(peer(p))]. So,s enables receivemes(dev(peer(p)),
peer(p),m) and we have a contradiction. Sop �∈ s.child. Using InvariantI7, we see
that¬s.rc[dev(peer(p))]. Combining all of this with I9 we getm = parent. Sup-
poses.init[dev(peer(p))]. Thens enables addchild(dev(peer(p)),peer(p)) and we have
a contradiction. So¬s.init[dev(peer(p))]. Then s enables receivemes(dev(peer(p)),
peer(p),parent) and we have a contradiction.

2. Let Measure(s) = 〈Is ,Cs + Rs +Ms + Ls〉 and Measure(t) = 〈It ,Ct + Rt +Mt + Lt 〉.

(a) a = childrenknown(d)
By precondition ofa, ¬s.init[d] and by effect ofa, t.init[d]. So It < Is . We
conclude that Measure(t) ≺ Measure(s).

(b) a = addchild(d, p)
By effect of a, t.init = s.init, t.root = s.root andt.lpd = s.lpd, henceIt = Is ,
Rt = Rs and Lt = Ls . By precondition ofa, head(s.mq[peer(p)] = parent.
Combining this with InvariantI5, we gets.mq[peer(p)] = {} + parent. By the
effect ofa, t.mq[peer(p)] = tail(s.mq[peer(p)]) = {}, so Mt = Ms − {peer(p)},
henceMt < Ms . Combining head(s.mq[peer(p)] = parent with InvariantI6 we
get p �∈ s.child. By effect ofa, t.child = s.child∪ {p}. SoCt < Cs . By effect of
a We conclude that Measure(t) ≺ Measure(s).

(c) a = receivemes(d, p,m)
By effect of a, t.init = s.init, t.child = s.child, t.root = s.root andt.lpd =
s.lpd, henceIt = Is , Ct = Cs , Rt = Rs and Lt = Ls . By precondition ofa,
head(s.mq[peer(p)] = m. Using InvariantI5, we gets.mq[peer(p)] = {} + m.
By the effect ofa, t.mq[peer(p)] = tail(s.mq[peer(p)]) = {}, so Mt = Ms −
{peer(p)}, henceMt < Ms . We conclude that Measure(t) ≺ Measure(s).
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(d) a = solverootcontent(d, p)
By effect of a, t.init = s.init, t.root = s.root, t.mq = s.mq andt.lpd = s.lpd,
henceIt = Is , Rt = Rs , Mt = Ms and Lt = Ls . By precondition ofa,
s.rc[dev(peer(p))]. Combining this with InvariantI8 we get p �∈ s.child. By
effect ofa, t.child = s.child∪ {p}. SoCt < Cs . We conclude that Measure(t) ≺
Measure(s).

(e) a = root(d)
By effect ofa, s.init = t.init, s.child = t.child, t.mq = s.mq andt.lpd = s.lpd,
henceIt = Is , Ct = Cs , Mt = Ms andLt = Ls . By precondition ofa,¬s.root[d],
and by effect ofa, t.root[d]. So Rt < Rs . We conclude that Measure(t) ≺
Measure(s).

(f) a = loopdetect(d)
By effect of a, s.init = t.init, s.child = t.child, s.root = t.root ands.mq =
t.mq, henceIt = Is , Ct = Cs , Rt = Rs and Mt = Ms . By precondition
of a, ¬s.lpd[d], and by effect ofa, t.lpd[d]. So Lt < Ls . We conclude that
Measure(t) ≺ Measure(s).

(g) a = δ
By effect ofa, s.init = t.init, s.child = t.child, s.root= t.root, s.mq= t.mq and
t.lpd = s.lpd. HenceIt = Is , Ct = Cs , Rt = Rs , Mt = Ms andLt = Ls , and we
conclude that Measure(t) = Measure(s).

�

Now we show that TIP4 cannot get into a time deadlock by its own discrete activity. A timed
I/O automaton that has this property is calledfeasible.

Theorem 7.21 TIP4 is feasible.

Proof It can easily be seen that TIP4 fulfills the requirements for Lemma A.4. This lemma
fulfills one of the requirements in Theorem A.5. The other requirement is fulfilled by the
Measure function and the result in Proposition 7.20. It follows from Theorem A.5 that TIP4 is
feasible. �

We now show that whenever there is a cycle in the network, it is detected by the protocol.

Theorem 7.22 Let α be an admissible execution of TIP4.
If oncycle(d) thenα contains an occurrence of lpd(d).

Proof Since time proceeds inα without bound, and since initiallys.lpd[d] is false and since
s.lpd[d] can only be made true by an occurrence of lpd(d), it suffices to show that for each
reachable states in TIP4, if s.time > MaxLpdtime, thens.lpd[d]. This follows easily from
InvariantI14. �

Unfortunately, it is not possible to prove that if there is no cycle in the network, then within
finite time a root will be elected. This is due to the unknown duration of the root contention
solving sub-protocol. The following theorem shows that if no root contention occurs, then
indeed a root is elected in finite time.
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Theorem 7.23 Let α = s0a1s1 . . . be an admissible execution of TIP4.
If ∀d : ¬oncycle(d) and∀i, d : ¬si .rc[d], then ∃d such thatα contains an occurrence of
root(d).

Proof Assume∀d : ¬oncycle(d). We observe the following:

1. Time proceeds inα without bound.

2. In each reachable states in TIP4 the following holds. For alld: if s is an initial state then
¬s.root[d], and if s.root[d], then each execution leading tos must contain an occurrence
of root(d).

3. If there is a states in α and ad such that ports(d) − s.child = {}, thenα contains an
occurrence of root(d).

This is easily seen by a few observations. Fixs andd such that ports(d)− s.child= {}.
First,s.init[d] or s.root[d] or s enables root(d). If s.root[d], then by Item 2 we conclude
thatα contains an occurrence of root(d). If s.init[d] thens enables childrenknown(d).
If s enables childrenknown(d) or root(d), thens does not enable anyδ > 0. If s enables
childrenknown(d) ands

a→ t then eithera = childrenknown(d) andt enables root(d)
or t enables childrenknown(d). If s enables root(d) ands

a→ t thena = root(d) or t
enables root(d).

4. In each reachable states in TIP4 the following holds. If∀p ∈ P either p ∈ s.child or
peer(p) ∈ s.child, then there exists ad such that ports(d)− s.child= {}.
Suppose∀p ∈ P either p ∈ s.child or peer(p) ∈ s.child and there is nod such that
ports(d) − s.child = {}. Construct a longest pathπ = p0 . . . pn such that for eachi ∈
{0,2, . . . , n−1} : pi �∈ s.child and for alli, j ∈ {0,1,3,5, . . . , n} : i �= j → dev(pi) �=
dev(p j ). Sincepn−1 �∈ s.child, andpn = peer(pn−1) certainly pn ∈ s.child. Suppose
that p ∈ dev(pn) : p �∈ s.child. If dev(peer(p)) = dev(pi) for somei ∈ {0, . . . , n}, then
we can construct a cycle, and we have a contradiction. So dev(peer(p)) �= dev(pi ) for all
i ∈ {0, . . . , n}. But then we can construct a longer path thanπ to meet the requirements,
and we have a contradiction. So we conclude that there is nop ∈ dev(pn) : p �∈ s.child,
hence ports(dev(pn))− s.child= {}.

We now show that there is a states in α and ad such that ports(d) − s.child = {}. By
definition ofα, there exists ani such thatsi .time> (,MaxHop/2+ 1- + 1) ∗MaxDelay and
∀ j < i : s j .time≤ (,MaxHop/2- + 1) ∗MaxDelay. Fixi .
By Lemma 7.9 and∀d : ¬oncycle(d), we have∀d : Steps(d) ≤ ,MaxHop/2-, hence∀d :
(Steps(d) + 1) ∗ MaxDelay< si .time. Using invariantI11 we get∀d : ¬si .init[d]. Using
invariantI4 we get∀d : size(ports(d)− si .child) ≤ 1.
Suppose∃d : size(ports(d)− si .child) = 0. Fix d. It follows that ports(d)− si .child= {}. By
Item 3 we may conclude thatα contains an occurrence of root(d).
Suppose∀d : size(ports(d)− si .child) = 1. Suppose∃p : p �∈ si .child∧ peer(p) �∈ si .child.
Fix p. By our assumption we have¬s.rc[dev(peer(p))]. Combining this with¬s.init[dev(p)]
and By invariantI9, we get head(si .mq[p]) = parent. Combining this with¬oncycle(dev(p))
and InvariantI11, we getsi .time− si .delay[p]) ≤ Steps(dev(p))∗MaxDelay. Sincesi .time>
(Steps(dev(p))+ 1) ∗MaxDelay, we havesi .delay[p] > MaxDelay which is in contradiction
with InvariantI10. We conclude that there is nop such thatp �∈ si .child∧ peer(p) �∈ si .child.
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constant value reference

min cable length 0 no restriction specified
max cable length 4.5 m Section 1.1, Page 1, 1394-1995
max cable hops 16 Section 1.1, Page 1, 1394-1995
propagation delay ≤5.05 ns/m Section 4.2.1.4.3, Page 74, 1394-1995
min CONFIGTIMEOUT 166.6µs Table 7-14, Page 89, 1394-1995

166.6µs Table 8-14, Page 90, P1394a
max CONFIGTIMEOUT 166.9µs Table 7-14, Page 89, 1394-1995

166.9µs Table 8-14, Page 90, P1394a

Table 7.1: IEEE 1394 timing constants

Since∀p : p ∈ si .child∨ peer(p) ∈ si .child we can use Item 4 to conclude that there is a
d such that ports(d) − si .child = {}. Fix d. By Item 3 we may conclude thatα contains an
occurrence of root(d).

�

7.5.4 Are the IEEE 1394 timing constants correct?

Table 7.1 gives the IEEE 1394 timing constants, and a reference to where they are to be found
in the documentation. Here, 1394-1995 refers to [IEE96] and P1394a refers to [IEE99]. Note
that the constants are the same for 1394-1995 and P1394a. From these numbers, we get the
constants used for the formal verification as follows:

MinDelay = min cable length∗ propagation delay= 0ns

MaxDelay = max cable length∗ propagation delay= 22.72ns

MinLpdtime = min CONFIGTIMEOUT = 166.6µs

MaxLpdtime = max CONFIGTIMEOUT = 166.9µs

MaxHop ≤ max cable hops= 16

The question is then, do these constants meet the requirements for a correct implementa-
tion? We found in Theorem 7.18 that the model behaves correctly if the relation MinLpdtime>

max(0,MaxHop−1)∗MaxDelay holds. Since(16−1)∗22.72 ns= 340.80 ns < 166.9µs,
the answer is yes. If the devices in IEEE 1394 enter the tree identify phase at the same time,
if there is no device with the forceroot flag set to true, and if our model of the IEEE 1394
communication is correct, then we can say the following with certainty: If a loop is in the
network, it is detected, and that if there is no loop in the network, no loop will be detected and
a root will be chosen.

The difference between the actual MinLpdtime value and the minimal value as required by
our relation is rather large. One could wonder whether this implies that the limitations set by
IEEE 1394 and P1394a can be tightened. This could be done by decreasing the MinLpdtime
value, increasing the number of nodes allowed, increasing the delay between nodes (by allow-
ing greater cable lengths), or a combination of these. However, the times at which the tree
identify phase is entered can differ among nodes. The constant responsible for the duration of
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the bus reset signal being sent is based on a worst-case scenario for any node to notice that a
bus reset period has started. This constant has a value of about 166µs, and can be used as
an indication of the difference in starting times for the tree identify phase. If the times can
indeed be that far apart for peer nodes, the loop detection timer should be in the same order
of magnitude to not run the risk of detecting a loop when it is not there. Moreover, the use of
the force root flag increases the delay in participating in the tree identify phase even further.
We conclude that it is not yet clear whether the IEEE 1394 and P1394a bounds are correct and
may be tightened.

7.6 Conclusions

The verification shows that under the assumptions made, the IEEE 1394 definition of the tree
identify phase meets the requirements. Exactly one root is chosen when there is no cycle
present, and a cycle is detected if and only if there is a cycle present in the network. It is
obvious from the proofs that the refinement step from an untimed model to a timed model in
combination with the desired property of correct cycle detection is a complicated one. More
proofs about network topologies are needed to make a quantitative analysis of the worst case
scenarios. Also, the invariants that are specific to the model TIP4 are more complicated than
the invariants for TIP3. The effort invested in the construction of these proofs adds up to about
two months. We hope that in further refinement steps these proofs can be reused with little
effort.

As to the remaining IEEE 1394 details that we have not considered, we believe that the
addition of the root contention solving protocol with its verification from [SV99] will probably
not touch the critical behaviour parts of the root election or cycle detection. However, the
correctness of a new model, obtained by adding the delay in entering the tree identify phase or
by adding the forceroot flag, and the correctness of the assumption that the message queues
model the IEEE 1394 signal communication are not that obvious. An extension of this work
may show that either IEEE 1394 timing bounds can be tightened or should be loosened.

The advantage of the layered verification in this case is that we do not need to prove any-
thing about the safety properties of root election, since our refinement proof gives us safety
immediately. Establishing the refinement was not as easy as expected, because of the compli-
cated reuse of invariants at the abstract level. The extra lemma that was needed shows that the
proof obligations can still be divided over small, clear proof steps.

The desired liveness properties, which express that a cycle is detected when there is a
cycle in the network topology and a root is elected otherwise, cannot be established with the
‘implements’ relation alone, since we have only proved inclusion of admissible traces. In an
untimed verification, liveness properties are proved by showing afair trace inclusion, that is,
each fair trace from the more detailed model is also a fair trace in the more abstract model.
In most cases, the liveness property holds trivially for any fair trace of the abstract model,
and therefore also for any fair trace of the detailed model. In a timed verification, liveness is
often expressed in terms of timing bounds. Then again the (admissible) trace inclusion yields
correctness. In our case, neither of these methods works. We are comparing a timed model
to an essentially untimed model and hence have no fairness that carries over from the more
abstract level to the (timed) detailed level. On the other hand, we have no timing requirement
stating when the root should be elected. So, we had to prove the liveness completely on the
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level of model TIP4, without reusing proofs from the level of TIP3. For proving feasibility (i.e.
no time deadlocks) we added a small result to the I/O automata theory, consisting of sufficient
conditions, mostly of a syntactical nature.

We conclude that for proving safety and liveness properties in a situation with only un-
timed models or with only timed models, a layered verification is a very suitable proof method
which allows one to ‘divide and conquer’ the proof obligations. In a situation where timed
and untimed behaviour are compared, we think that other methods should be used in addition,
or the degree of refinement should be very low in order for a layered verification to diminish
the amount of work to be done in each layer. It would be very useful if the proofs constructed
for this verification were checked with a proof checker. Careful manual inspection can never
replace the confidence obtained by such automated inspection. Some results have been ob-
tained in checking invariant proofs for I/O automata, both timed and untimed, as can be seen
in [AH96], and several papers which are under construction [Arc99]. We expect that such an
effort will be considerable, but manageable.



Chapter 8

Conclusions

In this chapter, the results of the project are evaluated with respect to the project objectives and
the central hypothesis from Section 1.4. The hypothesis is:

Using formal methods to support the industrial software development process can
be effective.

The project objectives are:

1. Development of heuristics about when formal methods should be applied.

2. Improvement of methods and tools so that bigger applications can be dealt with faster.

3. Integration of complementary approaches within formal methods research.

4. Improvement of technology transfer process from formal methods research to practice.

In the following sections, I discuss first per project objective how the cases have or have not
contributed to this objective. Then I give my position with respect to the general hypothesis.
Finally, I list some directions for the future of this kind of research.

8.1 Project objectives

1. Development of heuristics about when formal methods should be applied.

None of the cases have given quantifiable information from which such heuristics could
be deducted. However, from the experience with Case 2, 3, 5 and 6 it can be concluded
that formal methods are not (yet) to be applied to complete designs of the size of IEEE
1394 or HAVi. They are suitable to show or refute correctness of small, self-contained
parts of such designs. So, if one is interested in applying formal methods to a large
design, it is sensible to try to find a small self-contained part of the design with some
critical function for the whole design. In Case 2 this was the tree identify phase, since the
rest of the protocol depends heavily on the correct completion of this phase. In Case 3
one of the reasons for not being able to test the link layer of 1394 was that this part is
not self-contained enough to enable testing in isolation.

159
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Another criterion for applying formal methods is of course the suspicion of errors. When
a design looks complicated, correctness is usually not obvious, and errors may be found
already in a very abstract formalisation of the design. When constant values are used
such as the time bounds in Case 2, a verification may show whether these values are
correct or not, and in addition, fault-tolerance bounds may be found which improve the
overall effectiveness of the design.

2. Improvement of methods and tools so that bigger applications can be dealt with faster.

Case 3 and 4 are clear attempts at this objective, each from their own specific angle.

After the completion of Case 3, other projects have been able to test real-life designs in
VHDL, in several stages of the development. So it can be concluded that indeed this
case has contributed to this objective.

Case 4 can be seen as the formalisation of a common practice in testing, where one
reasons in an ad hoc manner to justify the selection of tests and not execute the whole
set. The good news in Case 4 is that a suitable formal basis was found for such reasoning
and it does help in eliminating a significant part of the test obligation. A limiting factor
is that the symmetry definition and the conditions on the implementation are currently
rather complicated, hence engineers cannot be expected to use this method in practice
straightaway. We expect that further research will lead to definitions and conditions
which are simpler to apply.

The extension of I/O automata theory that was established during Case 1 is an improve-
ment for problems with possibly uncountable action sets or strong fairness requirements.
It remains to be seen how often such problems are encountered in practice, but I ex-
pect strong fairness aspects occur more often than uncountable action sets. The proof-
checking efforts on my work for Case 1 show that such manual proofs need not be
trusted as such, but can be checked in a fairly efficient way to obtain more confidence in
the results.

3. Integration of complementary approaches within formal methods research.

In spite of the aim at the start of the project, none of the cases have used complementary
approaches to tackle a problem. In Case 6 the following approach was considered: first
perform model checking to obtain correctness for finite instances of the HAVi leader
election protocol, and then use these results in a formal proof that the protocol is correct
for all instances (e.g. with the help of a theorem proving tool). However, since the
protocol was not correct and model checking already took up more time than planned,
this approach was not feasible.

4. Improvement of technology transfer process from formal methods research to practice.

Both Case 3 and Case 6 aimed at this objective.

For Case 3 the transfer has clearly succeeded since the tool environment has been used in
several projects on industrial designs. The use of the tool environment requires academic
skills.

The results of Case 6 could be used by Philips in two ways: one is to see how protocols
can be specified and verified formally, and another is to improve this particular leader
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election protocol or tighten the assumptions under which the protocol should behave cor-
rect. The latter option implies imposing restrictions on the environment of the protocol
in the HAVi environment. It remains to be seen whether this transfer will actually take
place.

The ultimate transfer of formal methods research to practice can be achieved when eval-
uations like in this thesis find their way to the industrial public, and both positive and
negative results are used to improve the software development process.

8.2 Does the hypothesis hold?

Now I will discuss the most important conclusion of this thesis, whether using formal methods
to support the industrial software development process can be effective. I think the hypothesis
is true and will gain strength over the coming years. I have three arguments to support my
position:

1. The potential of formal methods will increase significantly in the coming years.

2. The applications of formal methods in this project have given useful results.

3. Formal methods can be applied more effectively still than in this project.

Argument 1 can be justified by several developments. In the academic world, much attention is
given to the application of formal methods to industrial cases of increasing size and complexity,
and one is working constantly on the improvement of theory and tools. In fact, there is a
competition going on in which tool developers will go to great lenghts to be able to handle
larger or more complex cases than the rest of the community. The quest for improvement is
supported by the ever-growing capacities of computer systems in terms of speed, memory and
storage. I think the current trend of growing potential will continue for at least another ten
years.

The justification for Argument 2 can be found in Section 1.6. The work on the different
case studies has taken a long (effective) time, and neither the results, nor their scope are over-
whelming. However, in five out of six case studies, formal methods have given an answer that
can or does support the software/hardware development process in Philips. Given the limiting
factors of the project, the outcomes are rather good.

Argument 3 is inspired by our experiences with such limiting factors. We list them below
since they may help to improve the conditions for applying formal methods and increasing
effectivity. In the following list, the symbol• indicates a cause that is related to academic
expertise, experience and more whimsical causes like personal taste. The symbol∗ indicates a
cause arising from external factors.

• The learning curve of methods and tools.
Delay in the project was caused by the time I needed to learn to work with several formal
methods and tools. It seems such learning curves can only be shortened by involving
people more experienced, which may imply more funding.

• Underestimation of the formalisation effort.
Understanding the behaviour and properties that are to be formalised and making the
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right abstractions is a tough job. Especially the task of finding proper requirements
and expressing these in a temporal logic was underestimated. What may help in such
situations is the approach proposed in [DAC98], where patterns are given for classes of
properties in different temporal logics.

The two next items contributed to the complexity of the formalisation task.

• Ad hoc abstraction methods.
Once the proper model and specification have been obtained, in many cases the model is
too complex for verification by hand or with tools. The abstractions performed to make
the model manageable, were in all cases done during the formalisation itself, in an ad
hoc manner and justified with intuitive arguments. Only in Case 2 there has been an
attempt at undoing some abstractions through the use of refinements. However, when
formalising, one should work in the other direction first, by starting to give the most
detailed model and then use abstraction methods to obtain more abstract models which
are suitable for verification. After establishing verification relations at the abstract level,
one could then obtain similar relations at the more detailed level as presented here or as
proposed in [KP98].

• Choosing the proper paradigm.
It is not always clear what formal language paradigm fits a particular case best. Most
formal languages are rather disjunct in the sense that none of them have all the prop-
erties that a particular case calls for. A good cooperation with the industrial partner is
indispensable for this effort.

∗ Lack of precision in standard documents.
Standard documents often describe protocols in natural language. This gives rise to
ambiguities, errors and unclear statements, hence this hampers the formalisation effort.
Also, the people who write standards often have implicit ideas about how the standard
should be implemented. Even when a standard attempts to be more precise and clear
(e.g. the IEEE 1394 standard documents [IEE96, IEE99]), many mistakes and unclarities
remain.

∗ The limiting conditions of the project.
As mentioned in Section 1.4, not much funded manpower was involved in the project,
and the cooperating institutes were geographically far apart. This made intense coop-
eration very hard. For such a modest project, the priority with the Philips Research
Laboratories was naturally not very high. So in most cases, the analysis was performed
after the development of the corresponding system had already completed. This means
that the results of the analysis could only be used for a posteriori evaluation. Also, the
cooperation with people from the Philips Research Laboratories who were not involved
in the project but acted as external experts, was limited to one person per case. It is
desirable to have more people involved with such expertise, because this is beneficial for
the availability and objectivity of the information and advice exchanged.
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8.3 Future directions

What can be done to improve the effectiveness of using formal methods? The first important
point is the improvement of formal methods themselves. The second is to induce industry
to use formal methods, for instance by investing in projects like these. The third is the im-
provement of the application of formal methods in projects like these by meeting some prior
conditions.

Much has been said about the road ahead for formal methods. Judging from the experiences
gained in this project, I think there are many directions for research which are valuable for the
application of formal methods in projects like these.

It seems that in this project, the verification techniques theorem proving and model check-
ing have given different benefits and are both suitable to be used in the future. The advantage
of theorem proving is that proofs, once constructed, can be reused and often easily adapted if
models are slightly changed. Also it is possible to construct proofs for models of infinite size,
which cannot (yet) be done with model checking. The advantage of model checking is that it
requires less expertise and is easier to present to industrial partners. The choice between the
two approaches may depend on the expected variety in models, the expected size of the mod-
els, and the number of people involved that are skilled in constructing proofs. I conclude that
extensive research into improvements of both model checking and theorem proving is desired.
Issues like composition (of methods, models, proofs), abstraction and refinement, reduction
through confluence, and the like are important for both approaches.

As to conformance testing, I think the application to industrial case studies teaches us
that complete coverage is too much to ask for. In order to be used in industry, research must
be performed in two directions. The first is the quantification of coverage. Testers want to
have percentages of errors found or behaviour tested. The assumptions under which such
percentages are given, should have a clear, intuitive meaning to people from industry. The
other direction is the approach to test by exhaustive exploration, where e.g. artefacts are model
checked.

The second item for improving effectiveness, the inducement of industry to invest in for-
mal methods, is perhaps the toughest task. The Philips Research Laboratories have repeatedly
shown their interest in formal methods in terms of funding and cooperation, and their willing-
ness to use the outcomes of such cooperation. How can we convince more industrial partners
of their need for using formal methods? I think researchers like me are not and should not be
qualified for convincing industry that they should use formal methods, and how they should
do this. The priorities, budgets, time schedules, working atmosphere, hierarchy, protocols, and
such that prevail in an industrial environment are very different from the scientific environ-
ment. The expected counter argument is “But you have all these success stories of finding
bugs in very important software and hardware designs”. There are indeed a number of success
stories, but academic researchers do not have the skill to drive the point home, that is, to teach
industry how to use which formal method for which problem, how to keep doing this, and how
to do this on a large scale. Therefore I think it would be useful (and in the long term indispen-
sible) to cooperate with experts on business processes in order to find the most effective way
to train industry, and to find what still needs to be added to formal methods.

As to the prior conditions to projects like this one, my views are as follows.
The industrial partners must

• Study this project: both results and evaluation.
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• Put in more manpower.

• Assign greater priority to possible results.

• Be very clear in what is desired on the whole and per case study.

On the other hand, the researchers from academia must

• Gather and classify results of applications of formal methods and work towards a li-
brary in which one can hope to find the appropriate method for specific problems. Cur-
rently, this is being attempted on an Internet site which can be found through the URL
http://vlib.org/.

• Put in more manpower.

• Put in more effort to cooperate among research institutes and projects.

• Be clear and honest in what is currently possible for different types of case studies.

If and only if the majority of these suggestions for improvement are picked up and imple-
mented, it can be expected that in about ten years, significant parts of the software/hardware
development will be analysed formally, and therefore of better quality.
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Appendix A

I/O automata

In this appendix we review some basic definitions from [SGSL98, LV95, LV96, MP95], and
we give some new sufficient conditions. The sufficient conditions for including invariants in
refinement proofs, when the invariants at the refined level depend on invariants at the abstract
level, are presented in Lemma A.2 and Lemma A.7. The sufficient conditions for feasibility
are presented in Lemma A.4 and Theorem A.5. In Appendix A.4, we introduce thefair timed
I/O automaton, which extends the timed I/O automaton in [LV96] with fairness properties.

A.1 Safe I/O automata

A safe I/O automaton B consists of the following components:

• A setstates(B) of states (possibly infinite).

• A nonempty setstart(B) ⊆ states(B) of start states.

• A setacts(B) of actions, partitioned into three setsin(B), int(B) andout(B) of input,
internal andoutput actions, respectively.
Actions inlocal(B)

	= out(B) ∪ int(B) are calledlocally controlled.

• A setsteps(B) ⊆ states(B)× acts(B)× states(B) of transitions, with the property that
for every states and input actiona ∈ in(B) there is a transition(s, a, s′) ∈ steps(B).

We lets, s′,.. range over states, anda,.. over actions. We writes
a→B s′, or justs a−→ s′ if B

is clear from the context, as a shorthand for(s, a, s′) ∈ steps(B).

Enabling of actions An actiona of a safe I/O automatonB is enabled in a states iff s a−→ s′
for somes′. Since every input action is enabled in every state, safe I/O automata are said to be
input enabled. The intuition behind the input-enabling condition is that input actions are under
control of the environment and that the system that is modeled by a safe I/O automaton cannot
prevent the environment from doing these actions.

177



178 A I/O automata

Executions An execution fragment of a safe I/O automatonB is a finite or infinite alternating
sequences0a1s1a2s2 · · · of states and actions ofB, beginning with a state, and if it is finite also
ending with a state, such that for alli , si

ai+1−→ si+1. An execution is an execution fragment that
begins with a start state. We writeexecs∗(B) for the set of finite executions ofB, andexecs(B)
for the set of all executions ofB. A states of B is reachable if it is the last state of some finite
execution ofB. We writerstates(B) for the set of reachable states ofB.

Traces Supposeα = s0a1s1a2s2 · · · is an execution fragment ofB. Let γ = a1a2 · · ·. Then
the trace of α is the sequence(γ �in(B) ∪ out(B)), denoted byγ̂ . With traces(B) we denote
the set of traces of executions ofB. For s, s′ states ofB andβ a finite sequence of input and

output actions ofB, we defines
β⇒B s′ iff B has a finite execution fragment with first states,

last states′ and traceβ.

Implementation relation Let A andB be safe I/O automata.
A implements B if traces(A) ⊆ traces(B).

Invariants Let P, Q ⊆ states(B). P is invariant for B if it is a superset of the reachable
states ofB, i.e. rstates(B) ⊆ P. P is inductive relative to Q if start(B) ⊆ P and if for each
s′ ∈ P ∩ Q: s′ a→B s impliess ∈ P.

Refinements Let A and B be safe I/O automata. Arefinement from A to B is a function
r : states(A)→ states(B) that satisfies:

1. If s ∈ start(A) thenr(s) ∈ start(B).

2. If s′ a→A s thenr(s′) β⇒B r(s), whereβ = â.

Let A andB be safe I/O automata with invariantsP andQ, respectively. Aweak refinement
from A to B, with respect toP andQ, is a functionr : states(A)→ states(B) that satisfies:

1. If s ∈ start(A) thenr(s) ∈ start(B).

2. If s′ a→A s, s′ ∈ P, andr(s′) ∈ Q, thenr(s′) β⇒B r(s), whereβ = â.

Theorem A.1 Let A andB be safe I/O automata. If there exists a (weak) refinement fromA
to B, thentraces(A) ⊆ traces(B).

Using abstract and refined invariants in a refinement Let A, B be safe I/O automata. The
following lemma gives sufficient conditions for a weak refinement fromA to B when one
wants to useP1, P2, Q such thatQ is invariant forB, P1 is invariant forA depending onQ
and the definition of the refinement function, andP2 is invariant forA depending onP1.

Lemma A.2 Let A, B be safe I/O automata. LetQ be invariant forB and P2 be inductive
relative toP1 for A. Let r : states(A)→ states(B) such that

1. r(s) ∈ Q impliess ∈ P1,

2. s ∈ start(A) impliesr(s) ∈ start(B), and
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3. s′ ∈ P2, r(s′) ∈ Q ands′ a→A s impliesr(s′) β⇒B r(s), whereβ = â.

Then

1. P1, P2 are invariant forA.

2. r is a weak refinement fromA to B with respect toP2 andQ.

Proof

1. By induction.
IH(n) = ∀s, α : (s ∈ rstates(A) ∧ α ∈ execs(A) ∧ α = s0a1s1 . . . sn ∧ s = sn)

→ (r(s) ∈ rstates(B) ∧ s ∈ (P1 ∩ P2))

• Base step:n = 0.
By definition ofα, s ∈ start(A). By definition ofr , r(s) ∈ start(B) so certainly
r(s) ∈ rstates(B). SinceQ is invariant forB, r(s) ∈ Q. By definition ofr , s ∈ P1.
Sinces ∈ start(A), and sinceP2 is inductive relative toP1 for A, s ∈ P2.

• Induction step:∀n ≤ n′ : IH(n).
Let s ∈ rstates(A)∧α ∈ execs(A)∧α = s0a1s1 . . . sn′an′+1sn′+1∧s = sn′+1. Since
s0a1s1 . . . sn′ ∈ execs(A), certainlysn′ ∈ rstates(A). Combining this withn′ ≤ n′,
we get IH(n′). Since IH(n′), r(sn′ ) ∈ rstates(B) ∧ sn′ ∈ (P1 ∩ P2). Sincer(sn′) ∈
rstates(B) and Q is invariant forB, r(sn′) ∈ Q. Sincesn′

an′+1→ A sn′+1 and by

definition ofr , r(sn′)
β⇒B r(sn′+1) with β =[an′+1, hencer(sn′+1) ∈ rstates(B),

hencer(sn′+1) ∈ Q. By definition ofr , sn′+1 ∈ P1. Sincesn′ ∈ (P1 ∩ P2) and

sn′
an′+1→ A sn′+1 and sinceP2 is inductive relative toP1 for A, sn′+1 ∈ P2.

2. By Item 1, the assumption thatQ is invariant forB and by definition ofr .

�

Composition Two safe I/O automataB1 andB2 arecompatible iff out(B1) ∩ out(B2) = ∅,
int(B1) ∩ acts(B2) = ∅, andint(B2) ∩ acts(B1) = ∅. Thecomposition B1‖B2 of compatible
safe I/O automataB1 andB2 is the safe I/O automatonB defined by

• states(B) = states(B1)× states(B2),

• start(B) = start(B1)× start(B2),

• acts(B) = in(B) ∪ out(B) ∪ int(B), where

in(B) = (in(B1) ∪ in(B2))− (out(B1) ∪ out(B2)),

out(B) = out(B1) ∪ out(B2),

int(B) = int(B1) ∪ int(B2),

• steps(B) is the set of triples((s1, s2), a, (s′1, s′2)) in states(B)×acts(B)×states(B) such
that, fori ∈ {1,2}, if a ∈ acts(Bi ) thensi

a−→Bi s′i elsesi = s′i .
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A.2 Live I/O automata

Intuitively, a live I/O automaton is a pair of a safe I/O automatonB and a setL of executions
of B such thatB can always generate an execution inL independently of the input provided
by its environment. Formally, live I/O automata can be defined in terms of a two person
game between a system player and an environment player. The goal of the system player is to
construct an execution inL, and the goal of the environment player is to prevent this. The pair
(B, L) is a live I/O automaton iff there exists a strategy by which the system player can always
win the game, irrespective of the behaviour of the environment player.

A strategy defined on a safe I/O automatonB is a pair of functions(g, f ) whereg :
execs∗(B)× in(B)→ states(B) and f : execs∗(B)→ (local(B)× states(B)) ∪ {⊥} such that

1. g(α, a) = s ⇒ α a s ∈ execs∗(B),

2. f (α) = (a, s) ⇒ α a s ∈ execs∗(B).

An environment sequence for B is an infinite sequence of symbols fromin(B) ∪ {λ} with
infinitely many occurrences ofλ. The symbolλ represents the points at which the system is
allowed to move. The occurrence of infinitely manyλ symbols in an environment sequence
guarantees that each environment move consists of only finitely many input actions.

Letρ = (g, f ) be a strategy defined onB, I = a1a2a3 · · · an environment sequence forB,
andα a finite execution ofB. Then theoutcomeOρ(α,I) is the limit of the sequence(αi )i≥0
of finite executions defined inductively by

• α0 = α.

• If i > 0 then

1. ai = λ ∧ f (αi−1) = (a, s) ⇒ αi = αi−1 a s,

2. ai = λ ∧ f (αi−1) =⊥ ⇒ αi = αi−1,

3. ai ∈ in(B) ∧ g(αi−1, ai ) = s ⇒ αi = αi−1 ai s.

A live I/O automaton is a pair(B, L) with B a safe I/O automaton andL ⊆ execs(B)
such that there exists a strategyρ defined onB with for any finite executionα of B and any
environment sequenceI for B,Oρ(α,I) ∈ L.

Composition Let (B1, L1) and (B2, L2) be live I/O automata.(B1, L1) and (B2, L2) are
compatible iff B1 andB2 are compatible. Thecomposition (B1, L1)‖(B2, L2) of two compat-
ible live I/O automata(B1, L1) and(B2, L2) is the pair(B, L) defined by

• B = B1‖B2,

• L = {α ∈ execs(B) | α�B1 ∈ L1 andα�B2 ∈ L2}.
Hereα�Bi is obtained by projecting each state inα on thei -th component and by re-
moving each action that is not inacts(Bi) together with the state that follows it.

A major result of [SGSL98] is that the class of live I/O automata is closed under composition.

Theorem A.3 Let (B1, L1) and(B2, L2) be compatible live I/O automata.
Then(B1, L1)‖(B2, L2) is a live I/O automaton.
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A.3 Timed I/O automata

A timed I/O automaton A is a safe I/O automaton whose set of actions includesR+, the set
of positive reals. Actions fromR+ are referred to astime-passage actions. Other actions are
referred to asdiscrete actions. Performing one or more consecutive time-passage actions is
calledidling. We letd, d ′, . . . range overR+ and, more generally,t, t ′, . . . over the setR of
real numbers. The set ofvisible actions is defined byvis(A)

	= (in(A) ∪ out(A))− R+.
We assume that a timed I/O automaton satisfies the following axioms.

S1 If s′ d−→ s′′ ands′′ d ′−→ s, thens′ d+d ′−→ s.

For the second axiom, an auxiliary definition is needed. Atrajectory for a steps′ d−→ s is a
functionw : [0, d]→ states(A) such thatw(0) = s′, w(d) = s, and

w(t) t ′−t−→w(t ′) for all t, t ′ ∈ [0, d] with t < t ′.

Now we can state the second axiom.

S2 Each steps d−→ s′ has a trajectory.

Axiom S1 gives a natural property of time, namely that if time can pass in two steps, then it
can also pass in a single step. Thetrajectory axiom S2 is a kind of converse toS1; it says that
any time-passage step can be “filled in” with states for each intervening time, in a “consistent”
way. Executions of timed I/O automata correspond to what are calledsampling computations
in [MP93].

Timed traces The full externally visible behaviour of a timed I/O automaton can be inferred
from its executions as follows: supposeα = s0a1s1a2s2 · · · is an execution fragment of a timed
I/O automatonA. For each indexj , let t j be given by

t0 = 0,

t j+1 = if a j+1 ∈ R+ then t j + a j+1 else t j .

Thelimit time of α, notationα.ltime, is the smallest element ofR≥0∪ {∞} larger than or equal
to all thet j . We sayα is admissible if α.ltime = ∞, andZeno if it is an infinite sequence but
with a finite limit time. Thetimed trace t-trace(α) associated withα is defined by

t-trace(α)
	= (((a1, t1)(a2, t2) · · ·)�(vis(A)× R≥0), α.ltime).

Thus,t-trace(α) records the visible actions ofα paired with their times of occurrence, as well
as the limit time of the execution. A pairβ is atimed trace of A if it is the timed trace of some
finite or admissible execution ofA. Thus, we explicitly exclude the timed traces that originate
from Zeno executions. We writet-traces(A) for the set of all timed traces ofA, t-traces∗(A)
for the set offinite timed traces (the timed traces derived from the finite executions), and
t-traces∞(A) for the set ofadmissible traces (the timed traces derived from the admissible
executions).

Moves We says′ p
;A s is a t-move of A if A has a finite timed execution fragmentα =

s0a1s1 . . . sn such thats′ = s0, s = sn and p = t-trace(α).
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Feasibility Let A be a timed I/O automaton. We sayA is feasible if each element of
t-traces∗(A) is the prefix of some element oft-traces∞(A).

Giving the proof for feasibility can be hard or tiresome. However, in some cases it follows
rather straightforwardly from the definition of the timed I/O automaton. We give the following
sufficient conditions, divided over two results, of which the first is rather simple, and the second
is a bit more involved.

Lemma A.4 Let A be a timed I/O automaton with clock variablesX and discrete variablesY .
If

1. The precondition of time actiond is of the following form, in whichφ,ψ1, . . . , ψn are
Boolean expressions over variables inY , x1, . . . , xn ∈ X andc1, . . . , cn ∈ R+:

¬φ ∧ (ψ1→ x1+ d ≤ c1) ∧ · · · ∧ (ψn → xn + d ≤ cn)

2. The effect of time actiond is of the following form:

∀x ∈ X : x := x + d

3. For eachs ∈ reachable(A):

(s |= φ)→ ∃a : s
a→ ∧ a is discrete

4. For eachs ∈ reachable(A) and 0≤ i ≤ n:

(s |= ψi ∧ xi ≥ ci )→ ∃a : s
a→∧ a is discrete

then for eachs ∈ reachable(A) andd > 0, the following holds:

∨ s
d→

∨ ∃a : s
a→∧ a is discrete

∨ ∃d ′, a, s′ : d ′ < d ∧ s
d ′→ s′ a→∧a is discrete

Proof Supposes ∈ reachable(A), d > 0 ands does not enabled. Thens |= ¬(¬φ ∧
(ψ1 → x1 + d ≤ c1) ∧ · · · ∧ (ψn → xn + d ≤ cn)), which can easily be rewritten to
s |= φ ∨ (ψ1 ∧ x1+ d > c1) ∨ · · · ∨ (ψn ∧ xn + d > cn).

Supposes |= φ. By Assumption 3, there is a discrete actiona such thats
a→, and the result

follows.
Supposes |= ¬φ. Thens |= (ψ1∧x1+d > c1)∨· · ·∨(ψn∧xn+d > cn). TakeJ to be the

set of indices for which the disjunct is true, that is,J = {i |1≤ i ≤ n∧s |= ψi ∧ xi +d > ci )}.
Suppose that for somei ∈ J , s |= xi ≥ ci . Then by Assumption 4, there is a discrete

actiona such thats
a→, and the result follows.

Suppose that for alli ∈ J , s |= xi < ci . Taked ′ to be the smallest value such that for some
i ∈ J , s |= xi + d ′ = ci . Fix i . We now have for eachj ∈ J , s |= x j ≤ c j . It is clear that for
each 1≤ j ≤ n which is not inJ , s |= x j + d ′ ≤ c j . By assumption,s |= ¬φ, so we now see

thats enablesd ′. Let s
d ′→ s′. By Assumption 2, ands |= xi + d ′ = ci , the effect ofd ′ is such

thats′ |= xi = ci . Now by Assumption 4, there is a discrete actiona such thats
a→, and the

result follows. �
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Theorem A.5 Let A be a timed I/O automaton.
If

1. For eachs ∈ reachable(A) andd > 0, the following holds:

∨ s
d→

∨ ∃a : s
a→∧ a is discrete

∨ ∃d ′, a, s′ : d ′ < d ∧ s
d ′→ s′ a→∧a is discrete

2. FunctionM : states(A)→ D is a measure function,≺ is a well-founded ordering onD,
andC ∈ R+ is a constant such that for eachs, s′ ∈ reachable(A): s

a→ s′ implies that if
a is discrete ands does not enableC, thenM(s′) ≺ M(s), otherwiseM(s′) 1 M(s).

thenA is feasible.

Proof Supposeα ∈ t-traces∞(A). We define the functionf that recursively builds an admis-
sible execution from any state, as follows:

f (s) =




s C f (s′) if s
C→ s′

s a f (s′) if s
C
�→ ∧ s

a→ s′

s d s′ a f (s′′) if s
C�→ ∧ (∀a′ : a is discrete→ s

a′�→) ∧ s
d→ s′ a→ s′′

Note that f (s) may picka andd in an arbitrary way whens does not enableC. For the proof
this has no consequence.

Let α = α′as and letβ be the execution resulting fromα′a f (s). By Assumption 1,β can
be constructed.

Supposeβ is not admissible. Then there is an infinite suffix inβ in which each occurrence
of a time step implies that the time passing is smaller thanC. Without loss of generality we
assume that the suffix starts after the prefixα′, that is, in the part which is constructed by
f . By definition of f , no state in this suffix enablesC, so there are no two adjacent time
steps in this suffix. We see that there are infinitely many occurrences of discrete actions in the
suffix. Combining this with the fact that each state in the suffix does not enableC we have
a contradiction with Assumption 2, our decreasing measure function. We conclude thatβ is
admissible. �

Implementation relation Let A andB be timed I/O automata.A implements B if t-traces(A) ⊆
t-traces(B).

Refinements Let A and B be timed I/O automata. Atimed refinement from A to B is a
functionr : states(A)→ states(B) that satisfies:

1. If s ∈ start(A) thenr(s) ∈ start(B).

2. If s′ a→A s thenr(s′) p
;B r(s), wherep = t-trace(s′as).
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Let A and B be timed I/O automata with invariantsP and Q, respectively. Aweak timed
refinement from A to B, with respect toP andQ, is a functionr : states(A)→ states(B) that
satisfies:

1. If s ∈ start(A) thenr(s) ∈ start(B).

2. If s′ a→A s, s′ ∈ P, andr(s′) ∈ Q, thenr(s′) p
;B r(s), wherep = t-trace(s′as).

Theorem A.6 Let A andB be timed I/O automata. If there exists a (weak) timed refinement
from A to B, thent-traces(A) ⊆ t-traces(B).

Using abstract and refined invariants in a timed refinement We now present the timed
version of Lemma A.2, since the timed version is used in the verification in Chapter 7.

Lemma A.7 Let A, B be timed I/O automata. LetQ be invariant forB and P2 be inductive
relative toP1 for A. Let r : states(A)→ states(B) such that

1. r(s) ∈ Q impliess ∈ P1,

2. s ∈ start(A) impliesr(s) ∈ start(B), and

3. s′ ∈ P2, r(s′) ∈ Q ands′ a→A s impliesr(s′) p
;B r(s), wherep = t-trace(s′as).

Then

1. P1, P2 are invariant forA.

2. r is a weak timed refinement fromA to B with respect toP2 andQ.

Proof Similar to the proof for Lemma A.2. �

A.4 Fair Timed I/O automata

In Problem 5 in the RPC-Memory specification problem in Chapter 3, a timed implementation
is required for an untimed specification. In our model, this means that we have to compare the
admissible behaviour of a timed specification with the fair behaviour of an untimed specifica-
tion. This may be solved by adding time to the untimed specification. However, the fairness
restrictions are lost in this manner, and we may prove the wrong implementation relation. Our
final solution is to consider the traces that are both admissible, and fair in the sense that we
know from the untimed model. For this purpose, we define thefair timed I/O automaton, which
is a timed I/O automaton with additional fairness requirements.

Although carrying fairness semantics over from the untimed model to a timed model is
very tricky in general, we can get away with the same definition as for the untimed case as
long as the discrete actions used in the fairness sets cannot be overruled by the passage of time.
This property is known aspersistency [Yi90] and can be summarised as follows:

If a discrete actiona is enabled in states, thena is enabled in each states′ that
can be reached froms by idling.
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All fair timed I/O automata in Chapter 3 meet the persistency requirement.
We now list the basic definitions that enable us to use fairness for timed I/O automata.

A fair timed I/O automaton A is a triple consisting of

• a timed I/O automatontimed(A), and

• setswfair(A) andsfair(A) of subsets oflocal(timed(A)), called theweak fairness sets
andstrong fairness sets, respectively.

Enabling of sets Let U be a set of locally controlled actions of a fair timed I/O automaton
A. ThenU is enabled in a states iff an action fromU is enabled ins. SetU is input resistant if
and only if, for each pair of reachable statess, s′ and for each input actiona, s enablesU and
s a−→ s′ impliess′ enablesU . So onceU is enabled, it can only be disabled by the occurrence
of a locally controlled action.

Fair executions An executionα of a fair timed I/O automatonA is weakly fair if the follow-
ing conditions hold for eachW ∈ wfair(A):

1. If α is finite thenW is not enabled in the last state ofα.

2. If α is infinite then eitherα contains infinitely many occurrences of actions fromW , or
α contains infinitely many occurrences of states in whichW is not enabled.

Executionα is strongly fair if the following conditions hold for eachS ∈ sfair(A):

1. If α is finite thenS is not enabled in the last state ofα.

2. If α is infinite then eitherα contains infinitely many occurrences of actions fromS, orα
contains only finitely many occurrences of states in whichS is enabled.

Executionα is fair if it is both weakly and strongly fair. In a fair execution each weak fair-
ness set gets turns if enabled continuously, and each strong fairness set gets turns if enabled
infinitely many times. We writefairexecs(A) for the set of fair executions ofA.

Fair timed traces We write fair-t-traces(A) for the set of timed traces derived from the fair
executions of fair timed I/O automatonA.

Implementation relation Let A and B be fair timed I/O automata.A implements B if
(t-traces∞(A) ∩ fair-t-traces(A)) ⊆ (t-traces∞(B) ∩ fair-t-traces(B)).
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Samenvatting

Dit proefschrift gaat over de analyse van industri¨ele protocollen met behulp van formele me-
thoden. De resultaten van een project, uitgevoerd op het Centrum voor Wiskunde en Informa-
tica (CWI) in Amsterdam voor het Philips Natuurkundig Laboratorium (Eindhoven), worden
gepresenteerd en beoordeeld.

Industrieel kader

Tegenwoordig bevatten huishoudelijke apparaten meer en meer elektronica, waardoor de func-
tionaliteit van de apparaten groter en meer divers wordt. Een voorbeeld is een koffiezetapparaat
met een ingebouwde klok waarin men kan vastleggen dat het apparaat op een bepaalde tijd uit
zichzelf koffie moet gaan zetten. De volgende stap in de ontwikkeling van de systemen die
dergelijke apparaten besturen, is om de elektronica in verschillende apparaten te laten commu-
niceren. Het is bijvoorbeeld al mogelijk om een multifunctionele afstandsbediening te kopen
die audio, video en andere apparatuur van verschillende merken bestuurt. In de zeer nabije
toekomst zal het mogelijk worden om apparaten binnen een huishouden te koppelen tot een
intelligent netwerk dat uiteenlopende diensten aanbiedt. Momenteel wordt gewerkt aan di-
verse technologie¨en om dit mogelijk te maken. Twee voorbeelden zijn HAVi [GHM+98] en
Jini [Sun99]. HAVi, een initiatief van acht bedrijven, is gericht op de interoperabiliteit tussen
audio- en videoapparatuur. Jini, een initiatief van een computerfabrikant, is gericht op het
koppelen van willekeurige elektronische apparaten.

Het is de bedoeling dat binnen enkele jaren netwerken kunnen worden gerealiseerd die de
volgende diensten leveren:

• Gebruikersprofielen. De voorkeuren van iedere persoon in het huishouden kunnen op
één plaats worden bijgehouden, en door elk apparaat in het netwerk worden opgevraagd.
Vervolgens gedraagt elk apparaat zich per gebruiker precies zoals die dat graag heeft.

• Dynamische netwerkstruktuur. Het is mogelijk om een nieuw apparaat aan te sluiten,
waarna, zonder verdere interactie met de gebruiker, het apparaat zelf kennismaakt met
het netwerk en alle benodigde informatie kan vinden. Het weghalen van een apparaat
wordt gesignaleerd en automatisch doorgegeven aan alle applicaties die hiervan op de
hoogte dienen te zijn.
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• Dynamische dienstverlening. Wanneer een gebruiker een bepaalde dienst nodig heeft,
kan deze dat aan een willekeurig aanspreekpunt in het netwerk doorgeven. Het aan-
spreekpunt zorgt vervolgens dat de juiste partijen aan het werk worden gezet.

• Ontwikkelingsbestendigheid. Nieuwe soorten van diensten of apparatuur die nu nog niet
bestaan kunnen zonder problemen in het netwerk worden ingevoegd, omdat de apparaten
op een van tevoren afgesproken manier hierover kunnen “leren”.

Om dit soort intelligente netwerken mogelijk te maken, moeten veel technische vraagstukken
worden opgelost. De vraag is of de ontwikkelde technologie¨en wel in alle situaties zullen
werken. Hierbij kunnen formele methoden van nut zijn.

Formele methoden

Formele methoden zijn de wiskundige gereedschappen bij het ontwerpen van computersyste-
men. We gebruiken de termartefact om een systeem of een ontwerp (zowel apparatuur als
programmatuur) aan te duiden. Formele methoden kunnen worden gebruikt:

• om een bepaalde relatie tussen een artefact en een verzameling vereisten vast te stellen,

• om uit een verzameling vereisten een artefact te onwikkelen,

• om uit een artefact de vereisten te reconstrueren.

In dit proefschrift ligt de nadruk op de eerstgenoemde mogelijkheid.
De mogelijkheden van formele methoden, zoals toegepast in dit onderzoek, kunnen worden

opgesomd als formalisatie, validatie, verificatie en conformance-testen.
Formalisatie is het maken van een formele beschrijving uitgaande van een informele be-

schrijving. Een formele beschrijving van een artefact noemen we eenmodel, een formele
beschrijving van vereisten noemen we eenspecificatie. Enerzijds bevatten de informele be-
schrijvingen vaak onduidelijkheden, dubbelzinnigheden en erg veel details, anderzijds moet
de formalisatie een precieze, eenduidige en niet te ingewikkelde of te grote beschrijving ople-
veren. Daarom wordt bij onduidelijkheden een aanname gemaakt, bij dubbelzinnigheden voor
een interpretatie gekozen, en van bepaalde details geabstraheerd.

Validatie is het vaststellen of een formalisatie klopt. Veelal komt validatie neer op het hand-
matig vergelijken van de informele en formele beschrijving, of het raadplegen van deskundigen
of de makers van de informele beschrijving. Als er tool-ondersteuning is voor de taal waarin
de formele beschrijving gesteld is, kunnen controles op de syntactische of type-correctheid en
simulatietechnieken helpen bij de validatie.

Verificatie is het vaststellen van een relatie tussen twee formele beschrijvingen met een
wiskundig bewijs. In dit proefschrift gaat het om de relatie tussen de specificatie en het model.
De relatie zegt iets over het gedrag dat het model vertoont, en het gedrag dat de specificatie
toelaat. Er zijn grofweg twee verificatie-methoden te onderscheiden, namelijktheorem proving
enmodel checking. Bij theorem proving wordt een bewijs geconstrueerd met bewijstechnieken
zoals inductie of bewijs uit het ongerijmde. Bij model checking wordt voor ieder gedrag dat
het model vertoont nagegaan of het voldoet aan wat de specificatie voorschrijft. Voor beide
methoden zijn tools ontwikkeld. Theorem proving tools zijn onder te verdelen in tools die
een gegeven bewijs controleren (checkers), tools die de gebruiker op een interactieve manier
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helpen bij het construeren van een bewijs (assistants), en tools die autonoom proberen een
bewijs te vinden (provers). Theorem proving met behulp van een assistant vereist meer tijd en
inspanning van de gebruiker dan van de computer waarop het tool draait. Theorem proving
met behulp van een prover en model checking met behulp van een tool, vereisen meer tijd en
inspanning (geheugenruimte, opslagruimte) van de computer dan van de gebruiker.

Wanneer een relatie tussen de specificatie en het model is bewezen, moet nog worden
vastgesteld of deze relatie ook op het informele niveau geldt, tussen de vereisten en het artefact.
De eerder gemaakte validatie wordt vaak gebruikt als rechtvaardiging hiervoor.

Conformance-testen is het vaststellen van een relatie tussen vereisten en een artefact door
het uitvoeren van experimenten op het artefact. Wanneer we formele methoden gebruiken
voor conformance-testen, wordt de relatie vastgesteld tussen het artefact en de formele repre-
sentatie van de vereisten, namelijk de specificatie. De formele testmethoden worden gebruikt
voor hetgenereren enuitvoeren van tests en hetevalueren van de uitkomsten. De test worden
gegenereerd uit de specificatie. De evaluatie geeft aan of het artefact juist op de tests heeft
gereageerd of niet. De meeste testmethoden zijn gebaseerd op detest hypothese, dit is de aan-
name dat het artefact waarop de experimenten worden uitgevoerd, gemodelleerd kan worden
in de formele taal van de test methode.

Meestal is het niet mogelijk of wenselijk om een artefact volledig te testen, omdat de
verzameling tests te groot of zelfs oneindig is. Dan wordt getest onder aannames die het op-
treden van fouten betreffen, en is de uitkomst altijd relatief ten opzichte van de aannames.
Testen is dus veelal gericht op het vinden van fouten en het vergroten van het vertrouwen in de
correctheid van het artefact, en kan de afwezigheid van fouten niet garanderen.

Protocollen

In dit proefschrift ligt de nadruk op de analyse vanprotocollen. Een protocol is een afgespro-
ken methode om informatie tussen twee of meer entiteiten uit te wisselen, waarbij van een
onderliggende dienst of medium gebruik wordt gemaakt. De drie basis-ingredi¨enten voor een
protocol zijn: (1) de boodschappen en hun betekenis, (2) de volgorde waarin de boodschap-
pen uitgewisseld worden, en (3) de manier waarop een onderliggende dienst of medium wordt
gebruikt. Veel protocollen beginnen bijvoorbeeld met een kennismakingsfase, gevolgd door
een fase waarin belangrijke informatie wordt uitgewisseld, gevolgd door een be¨eindigingsfase,
waarbij iedere fase zijn eigen boodschappen gebruikt.

Eenopen protocol is gepubliceerd en daardoor beschikbaar voor publiek gebruik. In de
meeste gevallen worden deze protocollen ontwikkeld door een gemeenschappelijke inspanning
van een groep firma’s en/of individuen. Eenstandaard-protocol is een open protocol dat vaak
wereldwijd is geaccepteerd, en meestal is gepubliceerd door een standaardiserings-organisatie.

Het onderzoek

Er zijn zes deelonderzoeken gedaan, waarvan er vijf succesvol zijn afgerond. Hoofdstukken 2
t/m 7 zijn gebaseerd op de artikelen die uit de deelonderzoeken zijn voortgekomen.

Hoofdstuk 2 presenteert een uitbreiding van de theorie van I/O automaten, welke nodig was
voor de verificatie die in Hoofdstuk 3 wordt gepresenteerd. De uitbreiding is een generalisatie
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voor het gebruik van zwakke en sterke fairness in I/O automaten modellen, waarbij liveness
kan worden afgeleid met twee condities die simpel te controleren zijn.

Hoofdstuk 3 presenteert de formalisatie en verificatie van een protocol uit de literatuur,
bedoeld om ervaring op te doen. De formalisatie is gedaan met I/O automaten, en de verificatie
met theorem proving zonder tools. De verificatie laat zien dat het protocol correct werkt.

Hoofdstuk 4 beschrijft de ervaringen opgedaan bij de constructie van een test-omgeving
voor hardware-ontwerpen. Bij het testen wordt uitgegaan van een abstracte specificatie voor de
test-afleiding, en een hardware-ontwerp waar de tests op worden uitgevoerd. Het centrale pro-
bleem is enerzijds de vertaling van de abstracte tests naar het niveau van het hardware-ontwerp,
en anderzijds een generieke opzet voor het uitvoeren van tests op het hardware-ontwerp. De
geconstrueerde test-omgeving bestaat uit een verzameling tools en is uitgeprobeerd op twee
protocollen: een industrieel protocol en een klein protocol uit de literatuur.

Hoofdstuk 5 presenteert een uitbreiding van conformance-test-theorie, gebaseerd op sym-
metrie-eigenschappen in de specificatie en het te testen artefact. Een algoritme wordt ge-
presenteerd dat uit de toestandsruimte van een specificatie een zogenaamde kernel selecteert,
dusdanig dat voor ieder gedrag van de specificatie een symmetrische variant van dit gedrag
in de kernel bestaat. Testafleiding kan dan gebeuren op grond van de kernel in plaats van de
hele specificatie. Wanneer de kernel aanzienlijk kleiner is dan de specificatie, zal men met
veel minder tests toch een oordeel over het hele artefact kunnen geven. De methode voor
testafleiding en een correctheidsbewijs worden in dit hoofdstuk gegeven.

Hoofdstuk 6 beschrijft de formalisatie en verificatie van een industrieel protocol uit de
HAVi-specificatie, een architectuur die momenteel gestandaardiseerd wordt door acht verschil-
lende electronicabedrijven. Het protocol is in twee talen geformaliseerd, en de verificatie
is gedaan met behulp van twee model checking tools. Een aantal eigenschappen is gefor-
maliseerd in temporele logica, de formele representaties zijn als specificatie gebruikt bij het
model checken. Het is gebleken dat sommige eigenschappen niet gelden voor de modellen, en
dat dit kan worden terugvertaald naar fouten in het protocol.

Hoofdstuk 7 presenteert de formalisatie en verificatie van een industrieel protocol uit de
IEEE 1394-standaard (FireWire). Het protocol is geformaliseerd met I/O automaten, en een
verificatie is gedaan door theorem proving zonder tools. Het model van het protocol is gede-
tailleerder dan andere modellen van dit protocol, en de verificatie bouwt verder op een serie
van verificaties die steeds meer details uit de IEEE-standaard in acht nemen. Hierbij worden
steeds resultaten van het meer abstract niveau hergebruikt op het niveau met meer details.

Conclusies

In Hoofdstuk 8 wordt geconcludeerd dat formele methoden zeker effectief kunnen worden
toegepast, op grond van drie observaties, namelijk (1) de kracht van formele methoden zal
ongetwijfeld significant toenemen in de komende jaren, (2) de toepassingen van formele meth-
oden in dit project hebben bruikbare resultaten opgeleverd, en (3) formele methoden kunnen
effectiever worden toegepast dan in dit project al is gebeurd. Er is sprake van beperkende fac-
toren waar veel aan te verbeteren is, vanuit zowel de academische als de industri¨ele wereld,
en als de verbetering van die factoren serieus wordt aangepakt, zal de effectiviteit van het
toepassen van formele methoden bij het ontwikkelen van industri¨ele protocollen alleen maar
groter worden.
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