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ASYMPTOTIC ANALYSIS OF A QUEUEING SYSTEM 
WITH A TWO-DIMENSIONAL STATE SPACE 

J. P. C. BLANC,* Centre for Mathematics and Computer Science, A1mterdam 

Abstract 

A technique is developed for the analysis of the asymptotic behaviour in the 
long run of queueing systems with two waiting lines. The generating function of 
the time-dependent joint queue-length distribution is obtained with the aid of 
the theory of boundary value problems of the Riemann-Hilbert type and by 
introducing a conformal mapping of the unit disk onto a given domain. In the 
asymptotic analysis an extensive use is made of theorems on the boundary 
behaviour nf such conformal mappings. 

CONFORMAL. MAPPING; RELAXATION TIME 

l. Introduction 

In the performance analysis of computer systems queueing models are 
frequently encountered which require a two- or more dimensional state space for 
their description. The mathematical analysis of such models is rather inacces
sible. Only recently fairly general techniques have been developed for the 
two-dimensional case, cf. [5], [6], [4]. The basic idea behind these techniques is 
the transformation of the functional equation from which the bivariate generat
ing function of the joint queue-length distribution has to be determined into 
boundary-value problems of the Riemann-Hilbert type. These currently avail
able techniques lead to results concerning the stationary as well as the 
time-dependent distributions of the stochastic processes involved. 

The main goal of the present paper is the development of a technique for the 
asymptotic analysis as time ---+ x of the time-dependent distributions for 
queueing models which need a two-dimensional state space for their description. 
This asymptotic analysis is important for several reasons. Firstly, for establishing 
the necessary and sufficient conditions for the process to be ergodic. Quite often 
it is not even simple to guess these conditions on the basis of intuitive arguments; 
consider e.g. the coupled processor model in (5] and the ALOHA satellite packet 
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switching models in (9]. Secondly, it is of great practical importance to obtain 
information (in the ergodic case) about the time a system needs to reach a 
situation in which it can be considered to be in stochastic equilibrium, after the 
start of, or a disturbance in, the system. As a measure for this time the concept of 
relaxation time was introduced for the one-dimensional case (see e.g. (3]). To 
determine the relaxation time of a queueing system the second term of the 
asymptotic expansion of the queue-length distribution is needed. 

The ideas and techniques which are required in the construction of such an 
asymptotic analysis will be elucidated by describing them for a particular model, 
closely related to the MIG /1 model with alternating service discipline studied in 
(4), §III.2. From a practical point of view this model is a little artificial, but its 
analysis brings clearly forward all the essential points also encountered in the 
analysis of more complicated models. In forthcoming papers, e.g. [2), the 
technique developed in this paper will be used for the asymptotic analysis of the 
time-dependent behaviour of two-node Jackson networks, cf. (8]. The ultimate 
goal of our research concerns the asymptotic analysis of time-dependent 
phenomena in many-node queueing networks. 

The organization of this paper is as follows. The queueing model to be 
investigated will be described in Section 2. It is an MIG /1 model with two types 
of customers and a paired service discipline, i.e. two customers of different type 
are served simultaneously. Section 3 is devoted to the discussion of the 
embedded queue-length process at departure instants; in Section 4 the bivariate 
generating function of the queue-length process in continuous time will be 
derived. Section 5 is concerned with the asymptotic analysis of a characteristic 
integral. The results are used in Section 6 to obtain the conditions for ergodicity 
and to investigate the relaxation time of the process. Section 7 contains remarks 
on the evaluation of the conformal mapping which occurs in the solution of the 
boundary-value problem, on the waiting-time distribution, and on a simple 
generalization of the queueing model. 

2. The model; definitions 

The following queueing model will be considered. Customers arrive at a single 
service facility according to a Poisson process with mean interarrival time a. 
With equal probabilities an arriving customer is of type 1 or of type 2. An 
arriving customer who finds the system empty is immediately taken into service; 
otherwise he joins queue 1 or 2 depending on his type. As soon as a service has 
been completed, a new service is started if any customers are present. If after the 
completion of a service two customers of different type are present, then they are 
served simultaneously. If after the completion of a service the customer 
population consists of one type, then a single customer is admitted to service. In 
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each queue customers are served in order of their arrival. Successive service 
times are independent random variables with a common distribution function 
B ( T ), for paired services as well as for individual services. 

Let Yi (t), t s 0, j = 1, 2, be the number of type j customers present in the 
system at time t, and let Yi (0) = 0. Our aim is to study the time-dependent 
behaviour of the process {(y1(t ), y 2(t )), t s O}, especially its asymptotic behaviour 
as t---'> x. In order to obtain the distribution of this process first the embedded 
process at departure instants will be analysed, and then the continuous-time 
distribution will be derived with the aid of renewal functions, in analogy with the 
analysis of the standard M/G/l model, cf. [3], §II.4.3. Denote by dn, n = 
0, 1,- · ·, the nth departure instant, and by xi (n ), n = 0, 1, .. " j = 1, 2, the 
number of type j customers left behind in the system at the nth departure 
instant. Let do= 0, x1(0) = xAO) = 0, in agreement with the assumption that the 
process starts at t = 0 with an empty system. It is readily seen that the process 
{(x1(n ), X2(n ), d" ), n = 0, 1, ···}is an embedded Markov chain which is irreduci
ble and aperiodic. This Markov chain was analysed in [1]. The results are 
summarized in the next section (see also Section 7). For the analysis of the 
queueing system the following functions and quantities are defined: for I r I< 1, 
lz1l~L lz2l~l, RepsO, 

(1) 

(2) 

(3) 

(4) 

(5) 

x 

,+,( . )· "' "£{ x 1(n) x,(n) ( d )} '¥ r,z1,Z2,p .= £., r Z1 Z2· exp -p n. , 
n =O 

{3(():= r e-''dB(T), Re l' ~ 0; 

{3k:=J~ rkdB(r), k=l,2,···; 
() 

a:= {3i/a. 

It will be assumed that {3 3 < x (see Remark 1 in Section 6). 

3. The embedded Markov chain 
For the transform (1) the following functional equation can be derived in a 

similar way as that of the common M/G/l queueing model, cf. [3], §II.4.3: for 
lrl<l, lz1J~l, lz2l~l, Rep~O, 

[ Z1Z2 - rf3 (p + l -!~ -hz)] <P(r; Z1, Z2, p) = Z1Z2 + r{3 (p + l -h~ -h:) 
(6) x [cz2 - l)<P(r; zi, 0, p) + (z1 - l)<P(r;O, z2, p) 

+ ( 1 - Z1 - Z2 + l ~~p) <P(r; 0, 0, p)] . 
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Below we describe briefly how this functional equation can be transformed into a 

boundary-value problem; for details see [1]. 
From now on it will be assumed that r and p are real, 0 < r < 1, p > 0. In the 

functional equation (6) let z1 = w, z2 = w, and let w be in the set 

(7) 

For this choice of Z1 and Z2 the generating function <P(r; z1, z2, p) is finite, while 

its coefficient in the functional equation (6) vanishes; hence the functional 

equation reduces to: for w EL (r; p ), 

(8) <f>(r;w,O,p)+<f>(r;O,~,p)= 1 ,+[l- lwl2 ,~]<t>(r"O,O ). 
1 - w 1 - w I 1 - w 1- I l - w 1- 1 + exp ' ' p 

From the properties of the Laplace-Stieltjes transform f3 ((), cf. (3), it is readily 

seen that L (r; p) is a contour (i.e. it is a closed curve which does not intersect 

itself) which has the real axis as an axis of symmetry. Therefore it is possible to 

introduce the conformal mapping g (r; p; z) of the unit disk I z I < l onto the 

domain L +(r; p ), the interior of the contour L (r; p ), which is uniquely deter

mined by the conditions (cf. [10], Theorem 1.2, 1.3): 

(9) 
a 

g(r;p;O)=O, az g(r;p;z)>O, at z = 0. 

By [10], Theorem 2.24, the conformal mapping g(r; p; z) is continuous in the 

region I z I~ 1, and maps the unit circle I z I= 1 one-to-one onto the contour 

L (r; p ). Moreover, the symmetry of L (r; p) leads to the property: for I z I~ 1, 

(10) g(r; p; z) = g(r; p; z ). 

By inserting w = g(r; p; u ), I u I= 1, so that w = g(r; p; 1/ u) by (10), Equation 

(8) becomes: for I u I= 1, 

cf>( r; g ( r; p; u ), 0, p) + <f>(r; 0, g (r; p ; 1/ u ), p) 
l-g(r;p;u) 1-g(r;p;l/u) 

= 1 +[1- lg(r;p;u)l2·_!El_]<t>(r·OO) 
ll-g(r;p;u)l2 ll-g(r;p;uW 1+cxp '' ,p · 

( 11) 

Because L+(r;p)C{w;lw/< l}, the first term at the left-hand side of (11) is 

regular for/ u I< 1, the second term for I u I> 1. Hence, relation (11) forms the 

boundary condition of a coupling problem (or Hilbert problem), cf. [11], §37. It 

is easily solved by applying the operator 

(12) 
du 

... u -z' C:={u;lul=l}, 
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on both sides of Equation (11 ), for I z I < 1 as well as for I z I > 1. The last 
unknown <t>(r; 0, 0, p) is obtained by taking z = 0. By introducing the inverse 
conformal mapping go(r; p; w) of g(r; p; z) the functions <t>(r; z i, 0, p) and 
<t>( r; 0, z2, p) can be obtained. Substitution of these functions into the functional 
equation (6) leads to the following result. 

Theorem 1. For O<r<l, pGO, z1EL+(r;p), z2EL+(r;p), 

l (1- z,)(1- z2)rf3 (p + l -~~ -~z2) 
x -z1z2+ J 1 d 

1+~ 2 
27Ti c Jl-g(r;p;u)J2 u 

x{[ ap -l]-1 j 1 du 
(l-z1)(l-z2) 27ri c Jl-g(r;p;u)J2 u 

+ 2~; L 11- g(,i;p; •ll' [. - g"(; ;pt.) J 
+u-go(r;p;z2)]du} · 

Note that the generating function <t>(r;z1,Z2,p), JrJ<l, lz1J~l, lzzl~l, 
Rep G 0, is determined by analytic continuation from the above expression. 

4. The continuous-time process 

By using a relation similar to [3], formula (Il.4.45), between the distribution of 
(y,(t ), Yz(t )), t G 0, and that of (x1(x ), X2(n ), d.), n = 0, 1, · · ., the following 
relation between the generating functions 'l'(p; Zi, z2) and <t>(r; zi, z2, p) is 
obtained: for lzil~l, lz2J~l, Rep>O, 

(13) 

Hence, the function 'lt(p; Zi, z2) is also determined by Theorem 1. This function 
can also be obtained with the aid of two supplementary variables, see [1], 
Chapter III. Introducing for real p, p > 0, the abbreviations, 

(14) y(p;z):=g(l;p;z), Jzl~l, A(p):=L(l;p), 

it follows from (13) and Theorem 1 that for p > 0, 
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a J 1 du 
'I'( . 0 o) = hi c 11 - y(p; u )fu-

p, ' J 1 d . 1 + ap_ '_!:! 
2m c I 1 - y(p; u) 1- u 

(15) 

In the next sections the asymptotic behaviour of the process { (y 1 (t ), y2(t) ), t ~ O}, 

as t -Ht:J will be studied. Similarly as for the common M / G /1 queueing system it 

can be proved with the aid of the key renewal theorem, cf. [3], p. 102, p. 246, that 

the limits 

lim Pr{y1(t) = ki, Y2(t) = ki}, 
1~~ 

k1 = 0, 1, ... ' ki = 0, 1, ... ' 

exist. Hence, the generating function of this limiting distribution can be obtained 

from 'lt(p; Zi, z2) with the aid of an Abelian theorem, in particular, 

(16) 1/;o:= lim Pr {y1(t) = 0, y2(t) = o} =Jim p'l'(p;O,O). 
t-oo µto 

5. Asymptotic analysis 

In order to study the asymptotic behaviour of Pr{y1(t) = y2(t) = O} as t -7 XJ this 

section is devoted to the investigation of the limit, cf. (16 ), (15), 

(17) Jim ap_ J 1 , du . 
r ! u 2 m c I I - y (p; u) 1- u 

For the determination of this limit the behaviour of the contour A(p) and of the 

conformal mapping y(p; z) as p l 0 will be considered first. In order to obtain a 

parametric equation for the contour A(p) the following result is needed. 

Lemma 1. For p > 0, u ~ 1, and for p ~ 0, u < 1, the equation 

has exactly one root a = a (p ; u) on the real interval 0 < u < l. This root er (p ; u) 

is an infinitely differentiable function of p and u, with 

(19) 
a a 

op u(p;u)<O, au u(p;u)>O, for p > 0, u ~ 1. 

Further, 

(20) er ( u): = lim u (p; u) { = l, 
" ! 0 E (0, 1 ), h . ot erwzse; 

if u = 1, a~ 2, 

(21) 
? 2 

cr'(l) = 2 ~a , cr"(l) = (2~a)d2/3),Bi+1 - a), if a< 2, 
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(22) 

(23) 

(24) 
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u i 1, if a = 2; a-(u) = 1-)2(3 2/~i- l ~+ 0(1- u), 

lim aa a(p;l)=2-(3l' 
p!O p -a if a< 2, 

a(p; 1) = 1- ~2{3J~f- l + O(p), pt 0, if a = 2. 

Proof. The proof is left to the reader. It is very similar to that of the lemma of 
Takacs, cf. [3]. See also [1], Lemma lll.4.1. 

With the aid of the function a(p; u) the contour /\.(p) can be described by, cf. 
(14), (7), (18), for p > 0, 

(25) /\.(p) = { w ; w = (}' (p ; cos e) e ;o' - 11" 2 e ;;; 7T}. 

As p t 0 the contour A(p) expands, cf. (19), to the contour /\. given by: 

(26) A : = { w ; w = (}' (cos e ) e ;e, -- 11" 2 e ;;; 11"}. 

Lemma 2. The contour /\.(p ), p > 0, possesses a tangent at every point. The 
contour A possesses a tangent at every point, except in the case a = 2 at the point 
w = 1; it has then at w = l a corner point with inner angle w7T, 

(27) w7r: = 2 arctan Y2{32/ {3 ~ - 1, 

Proof. See the appendix. 

Next the conformal mapping y(z) of the unit disk I z I< 1 onto the interior/\.+ 
of the contour A, satisfying y(O) = 0, y'(O) > 0, cf. (9), (14), is introduced. 
Because A(p) expands continuously to the contour A as p t 0, cf. (25), (19), it 
follows by Caratheodory's mapping theorem, cf. [10], Theorem 2.1, that 

(28) lim y(p; z) = y(z ), 
p j () 

uniformly for I z I < I; because y (p; z ), p > 0, and y (z) are continuous for 
I z I 2 1, cf. Section 3, this limit also holds for I z I= 1. 

Lemma 3. For p >0 the derivative (a/az)y(p;z) is continuous and non
vanishing for I z I 2 1. The derivative y'(z) is continuous and non -vanishing for 
/ z I 2 I, except in the case a = 2 at z = 1. In the case a < 2, for every 8, 0 < 8 < 1, 

(29) y(z) = 1 +(z - l)y'(l)+ O(j 1-z /2- 8 ), z~l, lzl21; 

in the case a = 2 there exist positive constants Ni, Nz, such that 

(30) N1I1-z I 2/l-y(z)/;;;N2~, /zl;;;l. 
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Proof. See the appendix. 

With the aid of the foregoing lemmas the following theorems on the limit (17) 

can be proved. 

Theorem 2. In the case a > 2 the limit 

(31) Jim~ J 1 , du 
p j 0 2 7Tl c j 1 - y (p ; u) 1- u ' 

is .~nite; in the case a = 2 this limit is in.~nite. 

Proof. Because y (p; u) E A(p) for Ju I= 1, it follows from Lemma 1, cf. (19), 

(25), (26), that jy(p;u)J<l for p>O, Juj~l, and that ly(u)l<l for/u/~1, 

except in the case a ~ 2 at u = 1; then y (1) = cr(l) = 1. Hence, in the case a > 2 

the integrand, and therefore also the integral, in (31) remain finite as p t 0. 

Consider further the case a = 2. The integral in (31) is equal to 

(32) 

From the above it follows that the integrand of this integral remains finite as 

p t 0 for every 8 except e = 0. Lemma 3 implies that there exists a positive M 

independent of e and p such that for p > 0, 0 ~ e ~ rr, 
(33) 

This implies the inequality: for p > 0, 0 ~ e ~ rr, 

(34) 11 - Y (p; e i&) I ~ j 1 - Y (p ; 1) I+ M J 8 I 112. 

This inequality leads to the following lower bound for the integral in (32): for M 

independent of p, p > 0, 

1 17" d8 1 JTC d8 
rr 0 Jl-y(p;ern)i2~rr a {l-y(p;l)+My8}2 

(35) = rr~2 [1og{l-y(p;l)+My'1T}-log{l-y(p;l)} 

1 - y (p ; l) + M V 1T . 

Because M is positive and y(p; 1) t 1 as p t 0, it is clear that this lower bound 

tends to x as p t 0. This proves the assertion in the case a = 2. 

Theorem 3. 

{
O, if a= 2. 

. ap J 1 du_ 1 

(36) 11ru 21Ti c J 1- y(p; u)l 2 -; - ~;g)' if a< 2. 
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Proof. First consider the case a = 2. As in the proof of Theorem 2 the 
integral in (36) is rewritten as (32). From Lemma 3 it follows that for, say, 
0 < p < 1 there exists a positive K independent of p and 8 such that for 
() ~ 8 ~ 7T, 

(37) 11' (p ; 1) - I' (p ; e ;e) I ~ K f () f . 

Because the point w = I' (p; 1) = <T (p; 1) is the point on A(p) with the largest 
absolute value (cf. (25), u(p; u) is for fixed p, p > 0, an increasing function of u, 
u ~ 1, cf. (18)), the angle which the line joining the points I' (p; 1) and /'(P; e ;e) 
makes with the positive direction on the real axis is obtuse. Hence, the cosine 
rule implies for p > 0, 0 ~ 8 ~ 7T, 

From (37), (38), the following upper bound for the integral (32) is obtained: for 
0 < p < 1 and for K independent of p, 

1 J" de 1 J" de 
7T o fl-)'(p;e;")i2<7T o fl-l'(p;l)l 2 +K2 8 2 

(39) 
1 [ rrK ] = 7TK{l-)'(p;l)}arctan l-y(p;l) . 

Because y(p; 1) = a(p; 1), cf. (25), it follows from (24) that 

(40) lim 1 ~ l)=O, limarctan[ 1 7rf l)J=~7T. 
p)tl -yp; p)O -yp; 

Hence, the upper bound for the integral (32) given in (39), multiplied by p, 

vanishes as p J 0. This proves the assertion for the case a = 2. 
Next consider the case a < 2. Because for p > 0 the function u(p; u) is an 

infinitely differentiable function of u, u ~ 1, cf. Lemma 1, A(p) is an analytic 
contour, cf. (12], p. 186. This implies that the conformal mapping y(p;z) is 
regular on the boundary I z I = 1, cf. [ 12], p. 186, so that it can be continued 
analytically into a part of the region I z I> 1. Further, because the derivative 
(cl I rlz )y(p; z) is non-vanishing at z = I by Lemma 3, and since y (p; 1) j I as 
p J 0, it follows (see [ l], §II.5 for more details) that for p close to 0 there exists a 
value uo(p) > 1 such that 

(41) y(p; Uo(p )) = 1, and Uo(p )J 1 as p J 0. 

With this Uo(P) the integral in (36) is rewritten as: for p close to 0, 

(42) f 1 ,du=f K( ·u) 1 . du 
c fl-y(p;u)I- u c p, {u-uo(p)}{uuo(p)-1} u' 
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here 

(43) K ( . u). = U - Uo(p) UUo(P) - 1 
p' . l - 'Y (p ; u) 1 - 'Y (p; 1 / u) ' I u I= i. 

From (41) it follows by using y(p;l)=a-(p;l) and (23) that 

(44) Ii111 dd Uo(p)= -lim aa y(p;l)/y'(l)= (2 13) '(1). 
p;O p pjO p -Q '}' 

This implies that, cf. (43), 

(45) Iim K(p;l)= -{y'(I)r2 • 
f' ! () 

Moreover, it follows from (29) and the fact that for p > 0 the conformal mapping 

y(p;z) is regular at z=l, that for every S, 0<8<1, there exists an M 

independent of u and p such that for I u I = 1 and p close to 0, 

(46) I K (p; u) - K (p; 1) I< M I u - 118 • 

This implies that by splitting up the second integral in (42) as 

(47) 1 [ J K ( . ) 1 du_ J K ( . ) uo(P) du] 
U~(p) - 1 c p' U U - Uo(p) U c p' U UUu(p) - 1 U ' 

on both these integrals an extended version of the Sochozki-Plemelj formulas 

( cf. [11], § 16, [1], Lemma l.3.6) may be applied. This leads to 

. 1 J 1 du 1 . 1 J I du hm-2 . K(p;u) ( )-=-2K(O;l)+-2 . K(O;u)--1-, 
P Lo 7TI c U - Uo p U 7Tl c U - U 

<48) . _I_ J . u0(p) du_ 1 . _1_ J . _1_ du 
hm 2 . K(p,u) () l - 2K(O,l)+?. K(O,u) l . 
µ l O 7T! c UUo p - U -1Tl c U - U 

The integrals on the right-hand sides of ( 48) have to be understood as principle 

values. Finally, by using, cf. (44), that 

(49) I. ap 2 - a '(I) 
!ill 2( ) ·1 = -?- 'Y , r1ou 0 p- _a 

the assertion for the case a < 2 follows from (42), (47), (48) and (45). 

6. Asymptotic behaviour of the queueing process 

With the aid of the analysis of the preceding section the main theorem on the 

ergodic properties of the queueing system described in Section 2 can be 

formulated. Let y0(w) be the inverse of the conformal mapping y(z ). 

Theorem 4. The MIG/ 1 queueing system with two types of customers and 
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paired services is transient if a > 2, it consists of null states if a = 2, and it is 
ergodic if a < 2. Further, in the case a< 2, for J Z1 J ~ 1, J z2 J ~ 1, 

(51) 

(52) lim E{y1(t)} = lim E{y2(t)} =~a [i + 11 - t 0 k2{322] . 
r-rx, /-+IX -2a I 

Proof. If is easy to see that for the queueing process defined in Section 2 each 
state in the space {O, 1, 2, · · ·} x {O, 1, 2, · · ·} has the same classification, and that 
this process is aperiodic. In the case a > 2 it follows from Theorem 2, (15) and (2) 
that 

l ~ Pr{y1 (t) = 0, y2(t) = O}dt < oo, 
) 

so that the process is transient. In the case a = 2, Theorem 2 and Theorem 3 
imply respectively, cf. (15), (16), 

r Pr{y1 (t) = 0, y2(t) = O}dt = oo, 

lim Pr{y1(t) = 0, J2(t) = O} = 0, 
r~~ 

so that the queueing system consists of null states. Finally, in the case a < 2 
Theorem 3 leads with (16) and (15) to (51), thus showing that the process is 
ergodic. With the same technique as applied in the proof of Theorem 3 the 
generating function \{r( z i, z 2) in (50) can be obtained from ( 13) and Theorem l 
for z 1 EA+, z2 EA+, and by analytic continuation in the whole region J z 1 J ~ 1, 
J z2 J ~ l. The moments (52) follow in a standard way from the generating 
function \{r(z1, z2). 

Remark I. In order to obtain the above result it was assumed that {3 3 < x, 

cf. Section 2. Theorem 4 also holds without this assumption, but the proof 
becomes more tedious. Because the expansion (22) is not valid if {3 3 = :o, more 
general theorems than Kellogg's theorem have to be applied in order to prove 
the inequalities (30), cf. [1], Theorem II.8.2, [13], Chapter IX, Part I. 
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Next, the relaxation time of the queueing system will be discussed, cf. [3], 

§III.7.3. The relaxation time T of the probability that the system is empty is by 

definition the smallest positive value for which it holds that 

(53) Pr{y1(t) = 0, y2(t) = 0}- !/lo= O(e 117 ), t ~ rx. 

It is determined by the abscissa of convergence Pc of the Laplace transform 

'l'(p; 0, 0) - !/lo/ p, in fact T = - 1/ Pc. The discussion will be restricted to the fairly 

general case that the Laplace-Stieltjes transform f3 (n has an abscissa of 

convergence (c < 0, and that f3 (()too as [ t [c. In this case the function u(p; u ), 

u 2i 1, cf. Lemma 1, can be continued analytically to the region Rep> po; here 

Po is the largest real value for which Equation (18) has a double root. By 

considering the functions a 2 and {3 (p + (1 - uu )! a) for real values of a, cf. ( 19), 

it is not difficult to see that this largest value P11 is attained for u = l. Hence p" is 

the largest real value for which there exists a cr" such that 

(54) 2 ( l - <ro) - 1 1 ( 1 - U11) 
(Jo = /3 P11 +-a- , 2u11 =--;- f3 Po +-a- . 

Note that <ro > 1 if a < 2, that O"o < l if a > 2, and that <ro = 1, po= 0 in the case 

a = 2. The above implies that the contour A(p) and the conformal mapping 

y(p; z ), I z I 2i 1, can be continued over the interval po~ p 2i 0. As in Lemma 2 it 

can be proved that A(p) possesses a tangent at every point, except in the case 

p=po at w=uo. Because ly(p;z)l~O"o<l for p~po, lzl~l, in the case 

a > 2, relation (15) can be continued over the interval Po< p ~ 0. This implies 

that Pc =po if a> 2. In the case a < 2, when O"o > l, the analytic continuation of 

the function 'l'(p; 0, 0) is more difficult to obtain. 

Lemma 4. In the case a < 2, for p < 0, 

(55) 

a J 1 du 2a 
'I'( . O O) = 2;f JI - y(p; U )1 2 U + Uo(p )y'(p; Uo(p)){l - v(p )} , 

P' ' .!E!._ f 1 du 2ap 
l+27Ti c ll-y(p;u)l2 u+ uo(p)y'(p;uo(p)){l-v(p)} 

here uo(p) < 1 is de.fined by y(p; u0(p )) = 1 and P = t1(p) is the smallest positive 

root of the equation 

(56) v = {3 (p + 12~v) . 
Proof. See the appendix. 

From (55) it follows that in the case a < 2 the abscissa of convergence Pc of 

'l'(p; 0, 0) is equal to the maximum of po, cf. (54 ), and of the largest branch point 

Pi of the function v(p ). 
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Theorem 5. The relaxation time T of the MJG/1 queueing system with two 
types of customers and paired services is equal to - 1/ Pi if a < 2, to - 1/ po if 
a > 2, and it is infinite if a = 2. 

Proof. The cases a = 2 and a > 2 were completely discussed above. In the 
case a < 2 the maximum of Po and Pi has to be determined. By substituting 
v = 2<J' - 1 Equation (56) can be written in the form 

(57) 

By using the inequality 1(x + 1) > yx, which holds for x > 0, x ~ 1, and the 
monotonicity of the Laplace-Stieltjes transform {3 ((), ~ > ~c, it follows readily 
from (54) and (57) that p, >po, so that T = -1/pi if a< 2. 

Remark 2. In the case a < 2 the relaxation time T is equal to the relaxation 
time of a common M/G/l system with mean interarrival time 2a and service
time distribution B(T), cf. (56) and [3], §III.7.3. 

Example. In the case of an Erlang service-time distribution with k phases 
(k = 1, 2, · · ·) Po and pi can be easily calculated: 

Po= ~il {k +a - (2 + k )(4a )2112+kl}, 

Pi= ~il {k +4a -(1 + k)(4a)iin+ki}. 

7. Additional results 

In order to obtain numerical values for the stationary distribution of the 
queue-length process the conformal mapping y(z) or its inverse yo( w) has to be 
determined. In [4], Part IV, and in [1], §IV.3, it is shown how the conformal 
mapping y(z) and its moments can be determined in general by a numerical 
procedure. In two cases, that of a negative exponential and that of a degenerate 
service-time distribution, an explicit expression for the inverse Yo( w) has been 
found from (7). When the service times are negative exponentially distributed 

o(w) = 1 _28(1- w): 1-4aw [l +.!. w - 8 /1 -1aw8 2
] 

y w (1-8) 1-~a8 81-w \J 1-~aw ' 

,1, _ (1 -4a )Y(l -4a )(1-4a8 2) • 

'1'
0 

- ~a(l - 8)(1-4a8)+(1-4a)Y(l -4a)(l -4a8 2) ' 

here 8:= <J'(-1) = {1 -V1+4a}/2a, cf. (18), (20). When the service times are 
constant 
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( 
1a(I w) 

Yow)= we' , 

In these two cases w is rational (~J), cf. Lemma 2. In general w is not rational, 

which makes it hard to find explicit expressions for y0( w ). 
In [1], §11.8, the asymptotic behaviour of the embedded process (xi(n ), x2(n )), 

cf. Sections 2, 3, as n ~ oo, has been studied. The main result is that if a < 2, 

lim E{z~ 1 (" 1z~'(n)} 
n-oc 

(58) 

(59) 
. . 1-~a 

</>o: = hm Pr{x 1 (n) = 0, X2(n) = O} = -,-(l-) . 
n-~ Y 

Note the difference between the limiting distribution of the embedded process 

and that of the continuous-time process, cf. Theorem 4. From (51) and (58) the 

stationary waiting-time distribution can be derived. Clearly, this distribution is 

the same for both types of customer. Let w be the waiting time for an arriving 

customer. Because the arrival process is a Poisson process, it follows that 

Pr{ w = O} = lj;0 • Further, for j = 1, 2, the number of type j customers left behind 

in the queue by a type j customer at the instant at which his service commences 

is equal to the number of type j customers that arrived during his waiting time, 

cf. [3], p. 256. Let x be a random variable with distribution the limiting marginal 

distribution (n ~ x) of xi (n ), j = l, 2. Then application of the foregoing argu

ment at departure instants leads to: for I z I~ I, 

With (58) the above leads to: in the case a < 2, for Re?~ 0, 

The model as described in Section 2 can be generalized by the assumption that 

an arriving customer is with probability ci of type j, j = 1, 2, C1 + C2 = 1. For the 

asymmetric case the analysis is somewhat simpler, cf. [1 ]. The asymptotic 

analysis leads to the following main result: the asymmetric system is ergodic iff 

max{c1, c2}a < 1, and in the ergodic case the relaxation time is equal to that of a 

common MIG /1 system with mean interarrival time a /max{ c1, c2} and service

time distribution B ( r ), cf. Remark 2 in Section 6. 
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Appendix 

Proof of Lemma 2. Because the root cr(p; u) of Equation (18) is simple, 
except in the case a = 2 for p = 0, u = 1, it follows with (25) and (26) that the 
contours A(p ), p > 0, and A possess a tangent at every point, with the possible 
exception for A at w = 1 when a = 2. In this case it follows from (22) that 

lim dd8 cos 8cr(cos 8) = - lim dd8 cos 8cr(cos 8) = {2{3c/{3~ -1} 112 , •TD ojo 

lim dd8 sin 8cr(cos e) = lim ddf) sin 8cr(cos 8) = 1. •TD ejo 

Hence, the left-hand and right-hand tangents at w = 1 have different directions, 
with inner angle w1T, cf. (27); ~ ~ w < 1 since in general /32 ~ f3i. 

Proof of Lemma 3. First consider the case a I- 2, p = 0. Let w (s) be the 
parametric equation of A with as parameter its arc length s measured from the 
point w = - er( - 1 ), cf. (26 ). By using the properties of the function er ( u) given 
in Lemma 1 it is straightforward to show (for details see [ l ], Theorem II.8.2) that 
there exists a constant M 1 such that for every s1, s2, 0 ~Si~ s2 ;2 so (s,, is the 
length of A), 

lw'(s1)-w'(s2)!<M1/s1-s2!. 

By Kellogg's theorem, cf. [13], Theorem IX.7, this inequality implies that y'(z) 
exists and is non-vanishing for I z 'I~ 1, and that for every 8, 0 < o < 1, there 
exists a constant M: such that for every 81, 82, - 1T ~ 81 ~ 82 ~ 1T, 

Jy'(exp(i8,))-y'(exp(i82))J < M1l 81 - 82! 1- 8 • 

By a theorem of Hardy and Littlewood, cf. [7], §IX.5, Satz 4, it then follows that 
for some constant M3 for every z, I z I~ 1, 

!y'(z)-y'(l)l<MJll-zJ1-8 • 

This inequality implies (29). A similar argument shows that (a/ az )y(p; z ), p > 0, 
exists and does not vanish for I z I~ 1, for every traffic intensity a. Next consider 
the case a = 2, p = 0. Because the contour A has a corner point at w = 1 with 
inner angle W1T, cf. Lemma 2, the region A+ U A is mapped conformally onto a 
region x+ u x by 

g(w) = 1-(1- w)' 1w, ~(O) = 0. 

Then the contour X possesses a tangent at every point. Let f (z) be the 
conformal mapping of the region I z I~ 1 onto x+ U X with f(O) = 0, f'(O) > 0. 
Similarly to the above, it can be shown with the aid of (22) that f'(z) exists and is 
non-vanishing for I z I~ 1. Further, by the uniqueness of conformal mapping, 
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y(z) = 1-[l -f(z)t, lz I~ i. 
Hence, the existence of f'(l) r£ 0 and the inequalities~~ w < 1, cf. (27), imply 
(30). Further, the existence of f' (z) r£ 0, I z I = 1, z 11, implies the existence of 
y'(z)r£0, lzl=l, zr£1. 

Proof of Lemma 4. Let a < 2 and consider the first integral in (47). Asp i 0, 
uo(P) i 1 and the integral becomes singular, cf. (48). Because y(z) is regular at 
z = 1, the latter can be avoided by deforming the path of integration for small 
values of p to a contour Ci which includes the points z = 1 and z = uo(P) in its 
interior. Then, for p close to 0, 

_1_ J K(p; u) du __ 1_ J K(p; u) du_ K(p; Uo(p)) 
27Ti c U - Uo(p) U - 27Ti c, U - Uo(p) U Uo(p) . 

The integral on the right-hand side can be continued to negative values of p 

without encountering any singularities until po. For p0 < p < 0 the integral over 
C, is equal to that over C. The second integral in (47) can be treated similarly. 
This implies (55) with v(p): = y(p; 1/ uo(p )), cf. (42), (47), and (43) which implies 

K( ·ua( ))= -1 u5(p)-l 
p' p y'(p; uo(p )) 1- y(p; l/uo(P )) · 

Since y(p; u) E A(p) for I u I= 1, it follows from (7), cf. (14), (10), that 

( 1-~y(p· u)-~y(p· l/u)) 
y(p;u)y(p;l/u)=f3 p+ _,a_, , lul=l. 

Because y(p; u) is regular for I u I= 1 (cf. the proof of Theorem 3), this relation 
also holds in some strip 1 - c ~I u I~ 1 -I t:. By substituting u = uo(P) into the 
above relation and by using y(p; ua(p)) = 1 it follows that y(p; 1/ Uo(P )) satisfies 
Equation (56), and the proof of (55) is ready. 
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