
Report on the First International Workshop
on Technical Debt Analytics (TDA 2016)

Aiko Yamashita Leon Moonen Tom Mens Amjed Tahir
CWI, the Netherlands & Simula Research Laboratory University of Mons Massey University

HiOA, Norway Norway Belgium New Zealand
aiko.yamashita@cwi.nl leon.moonen@computer.org tom.mens@umons.ac.be a.tahir@massey.ac.nz

Abstract—This report outlines the motivation and goals of the
First International Workshop on Technical Debt Analytics (TDA
2016), presents the workshop programme, introduces the work
accepted for presentation, and summarizes the major results
and themes that emerged from the discussion and activities
undertaken during the workshop.

I. INTRODUCTION

Technical debt (TD) is a metaphor reflecting technical com-
promises that can yield short-term benefit but may hurt the
long-term health of a software system. This metaphor has
been initially concerned with software implementation (i.e.,
code smells), but it has been extended to software design and
architecture (i.e., anti-patterns and architectural smells) as well
as documentation, requirements, and testing [1].

A systematic literature review by Li et al. [2] indicates that
the term “debt” has been used in different ways by different
software communities, leading to ambiguous interpretations of
the term. They found that code-related TD (i.e., code smells)
and its detection and resolution have gained the most attention
whilst there is a need for more empirical studies with high-
quality evidence on the whole Technical Debt Management
(TDM) process and on the application of specific TDM ap-
proaches in industrial settings. The lack of empirically rooted
evidence makes it difficult for organizations to align business
value with the intrinsic quality of the software product itself.
Zazworka et al. [3] argue that, in many projects, the cost
and benefit of software refactoring (an approach to repaying
TD) cannot be easily quantified and estimated. Consequently,
it is still an open challenge to translate TD into economic
consequences, making it difficult for development teams to
make a strong case to the business side to them to invest in
fixing technical shortcuts.

One of the major challenges rooted in the aforementioned
“ambiguity” mentioned by Li et al. [2] is the lack of an
underlying theory and models to aid TD identification and
measurement. Seaman et al. [4] argue that a comprehensive
TD theory should be developed to formalize the relationship
between the cost and benefit of the TD concept, and subse-
quently practical TDM approaches should be developed and
validated to exploit the TD theory in management decision
making.

II. ABOUT TDA 2016
TDA 2016 was held in New Zealand on 6 December 2016, in
conjunction with the 23rd Asia-Pacific Software Engineering
Conference (APSEC 2016). The goal of TDA 2016 was to
offer a specialised arena in TD to discuss about:

1) Calibrating technical debt and technical wealth related
terminologies and concepts that are used indistinctly and
interchangeably in software engineering literature.

2) Comparing, integrating, compiling and even reconciling
empirical work on the effects of technical debt/technical
wealth from economic and organisational perspectives.

To reach these goals, the workshop gathered practitioners
and researchers working in the field of TD, to share experi-
ences, concur on terminologies and evaluation guidelines, and
to build a common research agenda for the community.

TDA 2016 built further upon results proposed during the
Dagstuhl 16162 seminar on Managing Technical Debt in
Software Engineering (April 2016), and discussed during the
eighth international workshop on Managing Technical Debt
(MTD), held in October 2016 in conjunction with ICSME.

III. WORKSHOP PROGRAMME

The morning session of the workshop started with an intro-
duction by the organisers, immediately followed by an invited
keynote presentation entitled “Towards quantifying technical
debt” by Ewan Tempero, Associate Professor in the Depart-
ment of Computer Science at The University of Auckland,
New Zealand. He discussed the current status of measuring
TD and presented ideas as to what the TD community needs
to do to develop the necessary tools to properly manage TD,
and more specifically to quantify TD.

This keynote talk was followed by a short lightning talk by
Jim Buchan on the relation between technical debt and legacy
software. The extended abstract of his talk is reprinted, with
permission, in section IV-C of this report.

The remainder of the morning session was filled with
presentations of the accepted peer-reviewed contributions for
TDA 2016. These are summarised in section IV-B.

The afternoon was devoted to a moderated discussion
around the workshop goals, initiated by a brief summary
by Clemente Izurieta (Assistant Professor at Montana State
University) who presented the technical debt roadmap, future
research perspectives and open research challenges discussed
during the Dagstuhl seminar on Managing Technical Debt [5].

1st International Workshop on Technical Debt Analytics (TDA 2016)

58



This presentation was followed by an interactive working
session using discussion techniques such as card sorting and
fishbowl panels. These sessions aimed at building a common
understanding of the challenges, future directions for potential
solutions and establishing a common research agenda.

IV. WORKSHOP CONTRIBUTIONS

A. Keynote address by Ewan Tempero: Towards quantifying
technical debt

Summary: Technical debt (TD) is a metaphor that comes
from the financial world, however it breaks down almost
immediately. In the financial world when considering taking
on debt, we can use a financial planner to determine such
things as what our regular payments need to be and what the
total cost of the loan will be. In software development, those
making a decision that creates TD have no idea how much
debt they are taking on, and often do not even realise when
they are taking on some debt. For the metaphor to be useful,
we must develop the means to quantify TD, in particular to
be able to do so before we take on TD. In this talk I will
discuss the current status of measuring TD and present some
ideas as to what we have to do to develop the necessary tools
to properly manage TD, specifically what we need to do to
quantify TD.
Bio: Ewan Tempero is an Associate Professor in the Depart-
ment of Computer Science at The University of Auckland,
New Zealand. He graduated from the University of Otago,
New Zealand, with a B.Sc., (Honours) in Mathematics in 1983
and received his Ph.D. in Computer Science from the Univer-
sity of Washington, USA, in 1990. He has published over 170
papers in journals and internationally-refereed conferences,
mainly in the areas of software reuse, software tools, and
software metrics. His current research is developing metrics for
measuring the quality of software designs. He is the developer
and maintainer of the Qualitas Corpus.

B. Accepted submissions for TDA 2016

The following papers were accepted to be presented during
TDA 2016:

• Norihiro Yoshida. When, why and for whom do practi-
tioners detect technical debt? An experience report.

Based on his experience through industry-university
collaboration, the author discusses when, why and
for whom practitioners detect code clones, one of the
most common code-level notions of technical debt.

• Yasutaka Kamei, Everton Maldonado, Emad Shihab and
Naoyasu Ubayashi. Using Analytics to Quantify Interest
of Self-Admitted Technical Debt.

In this paper, the authors determined ways to mea-
sure the ‘interest’ on the debt and used these mea-
sures to see how much of the technical debt incurs
positive interest, i.e., debt that indeed costs more to
pay off in the future. To measure interest, they used
the LOC and Fan-In code metrics, and carried out a
case study on the Apache JMeter project.

• Solomon Mensah, Jacky Keung, Michael Franklin Bosu
and Kwabena Ebo Bennin. Rework Effort Estimation of
Self-admitted Technical Debt information.

Programmers unintentionally leave incomplete, tem-
porary workarounds and buggy codes that require re-
work. This phenomenon in software development is
referred to as Self-admitted Technical Debt (SATD).
The authors report on an exploratory study using
a text mining approach to extract SATD from de-
velopers source code comments and implemented
an effort metric to estimate the rework effort that
might be needed to resolve the SATD problem.
The study confirms the results of a prior study that
found design debt to be the most predominant class
of SATD. This technique could support managerial
decisions on whether to handle SATD as part of
on-going project development or defer it to the
maintenance phase.

• Aabha Choudhary and Paramvir Singh. Minimizing
Refactoring Effort through Prioritization of Classes based
on Historical, Architectural and Code Smell Information.

The authors present an approach for identifying
and prioritizing object oriented software classes in
need of refactoring by identifying the most change-
prone as well as the most architecturally relevant
classes, and by generating class ranks based on code
smell information. Also, the approach provides to
developers an estimation of maximum code smell
correction (paying off maximum technical debt) with
minimum refactoring effort.

• Johannes Holvitie, Sherlock Licorish, Antonio Martini
and Ville Leppänen. Co-Existence of the ‘Technical Debt’
and ‘Software Legacy’ Concepts.

Beyond strategic and accidental accumulation, tech-
nical debt may also occur due to delayed accumula-
tion. In addition, technical debt and software legacy
are concepts that share a lot of commonalities. Both
concepts describe a state of software that is sub-
optimal, and explain how this state can decrease an
organization’s development efficiency. The authors
report on an initial examination of technical debt
and software legacy similarities, and their somewhat
challenging co-existence.

• Clemente Izurieta, Ipek Ozkaya, Carolyn Seaman,
Philippe Kruchten, Robert Nord, Will Snipes, Paris Avge-
riou. Perspectives on Managing Technical Debt: A Tran-
sition Point and Roadmap from Dagstuhl

This paper summarizes the outcomes of a Dagstuhl
Seminar where the current state of managing tech-
nical debt in software engineering was discussed.
Participants reflected on the significant advances that
the Managing Technical Debt (MTD) community
has made since its inception in 2010; reached a
consensus on a definition, called the Dagstuhl 16K

1st International Workshop on Technical Debt Analytics (TDA 2016)

59



technical debt definition; and discussed avenues for
future progress in the area. This paper offers a
roadmap and a vision that describe the areas of
research in TD where significant challenges remain.

C. Lightning talk by Jim Buchan: TD and legacy code

Many organisations have software that has evolved over many
years and much of their focus is on enhancing and modifying
this existing software product, some of which may be based
on older technology. Although the older code may represent
the company’s core intellectual property, representing previous
innovations, its age often introduces constraints and com-
promises on the continued evolution of the product. Over
time, the proportion of the code judged as “legacy” grows,
resulting in increased effort and uncertainty in expanding,
testing and modifying the legacy code. At some point in time
this may become untenable, with lost opportunity offered by
new technologies, shortage of expertise in the legacy system,
or unacceptable levels of bugs. Often this will trigger a full or
partial re-write of the system to replace parts of the code.

The growth of the legacy code can be viewed as increasing
technical debt (TD) in the sense that the software design has
become sub-optimal over time and the interest in not paying
back the legacy code debt may increase. The past decisions to
incur debt may have a component that is deliberate, with the
acceptance of compromises to new code, due to constraints
of the legacy code. There is also a component of the TD that
is not deliberate, with the emergence of new, unforeseeable
technologies that offer new design and business opportunities.

I present a brief case study of an organization in New
Zealand and its challenges and issues related to dealing with
TD in the form of legacy code. The case organisation has a
software product that grew very quickly in the size of the client
base as well as the code base in the late 90s early 2000s. It
was largely based on technology written in a 4GL language
common at the time, with an integrated database and (limited)
GUI input and output.

Over recent years the user interface and new modules were
refreshed for a more modern look and feel, as well as to
take advantage of the performance gains of new technologies.
The changes were typically wrappers for the underlying 4GL
code introducing new layers of processing, conversion, and
presentation. There are over 1 million lines of code in the 4GL
language and expertise in the 4GL language was becoming
scarce. Extensions to the product were becoming increasingly
difficult to develop and test with a high degree of uncertainty
in dependencies and redundancies. After around 15 years of
growth, the decision was made to initiate a project to port the
existing product to a new technology stack, adding some new
features at the same time.

In this presentation I will firstly establish a common vocabu-
lary by exploring the meanings (and ambiguity) in the concepts
of legacy code and TD and their relationship. Analysis of
the case organization provides some grounded insights into
some of the challenges and consequences of managing a
large proportion of legacy code, as well as suggesting some
recommendations for managing the legacy code debt. Based
on the case study, as well as related research-based theory, I
will address questions that include:

• When does code become “legacy”?
• How can the need to replace legacy code be identified?
• How can the economic value of a legacy code re-write

be evaluated?
• What is the best way to approach the large re-write of a

legacy code-base?

V. THEMES THAT EMERGED FROM THE WORKSHOP

The following research challenges and open issues emerged
via discussions during the keynote, presentations, lightning
talk and afternoon activities.

A. Heterogeneity of TD Definitions

One of the major obstacles to build a unified approach to
quantify TD was found to be the lack of consensus on what
constitutes TD. There are many different definitions of TD,
leading to many different interpretations. For example, one
way to define TD is do what you need to do to get a release
on time. However, the interpretation of this definition is highly
context-dependent and misses some important details on the
potential effects of TD. It is widely believed that TD does
not have a commonly agreed vocabulary (i.e., different terms
can mean the same things). The SonarQube tool is a typical
example of this issue, as it indicates TD for each rule vio-
lation. However, these violations are often project-dependent,
making the tool displaying misleading or inaccurate results to
determine TD.

B. Immature Measurement Theory in TD Studies

Another challenge for quantifying TD is the lack of un-
derstanding of general measurement theory and empirical as-
sessment of software measurements [6]. For example, there is
frequent misunderstanding or confusion between what metrics
constitute in contrast to measurements.

C. Unclear Relation between TD and Legacy Systems

Another challenge raised was the difficulty of relating prob-
lems stemming from legacy systems with problems stemming
from TD. What are the boundaries and the differences between
both phenomena? It appears that managers in industry are
unsure of what these boundaries are. During the workshop,
a literature review was presented which constituted a mapping
study to verify if the terms legacy and debt have been used
together in previous studies.

1st International Workshop on Technical Debt Analytics (TDA 2016)

60



D. Moderator and Contextual Factors

Another issue is the influence of moderator variables over
TD. One of the case studies presented during the workshop
indicated that the type of programming language used will
highly influence the presence of code clones, thus one should
be careful when assessing TD based on code cloning, for
example by taking into consideration the language used, the
framework available, etc.

E. Self-Admitted Technical Debt

Some advances presented and discussed during the work-
shop was the usage of text mining approach to identify
instances of self-admitted technical debt (SATD), which can
also lead to modelling and understanding better instances of
TD, the context in which they were identified, as well as for
estimations of reworks as result of SATD.

F. Technical Dept Research Community Agenda

During the workshop, the major outcomes from the
Dagstuhl seminar on Managing Technical Debt were pre-
sented. That seminar tried to achieve the following goals:

• Identify the most pressing industry problems
• Identify the most promising research approaches
• Identify the “hard” research questions

A new definition of TD was proposed, focusing particularly
on two quality aspects: maintainability and evolvability. The
definition underscored the importance of the domain (ex.
design or implementation issue) and the technical context (ex.
degree of uncertainty, development and organisational context,
time, causal chains).

Concerning a TD community agenda, it was deemed that the
research and development of TD should lead to the following
picture:

• More effort needs to be spent to develop a clear oper-
ational definition of minimum viable quality levels that
can reconcile both technical and economic perspectives.

• There should be a clear way to translate developer con-
cerns into manager concerns, which can be used as a basis
for making decisions on investing on TW.

• TD would be incurred unintentionally most of the time.

VI. RESULTS FROM THE CARD SORTING ACTIVITY

All participants were asked to post the TD terminologies
that they were aware of on the whiteboard. We suggested
three categories to classify terms: TD (Technical Debt), TW
(Technical Wealth), and “Others” to mark relevant terms that
did not directly contribute to TD or TW. For each single card
it was discussed with the whole audience why this term should
be included/excluded. We then mapped similar terms together,
resulting in the following concept map of Figure 2.

Many of the participants suggested a wide variety of do-
mains that they believe to be related to TD/TW, ranging
from requirement gathering and analysis to deployment and
maintenance. As shown in Figure 2, the majority of included
TD terms are related to design TD. This has been referred
to as anti-patterns, architectural smells, design flaws or poor

Fig. 1. TDA participants during the card sorting activity

architectural decisions. Some of the terms used by participants
referred to coding-related TD issues such as code smells,
ignoring standards, and poor programming practices.

For TW, participants suggested that good design practices
are the key to TW. Participants suggested that the use of design
patterns and refactoring are considered valuable for achieving
TW. A suggested example was the use of aspects (as in Aspect-
Oriented Programming) and the implementation of the “sepa-
ration of concerns” principle. Other suggestions that are likely
to contribute to TW were the use of proper documentation,
comments in the code, and applying coding standards. Many
organisational factors are also considered valuable for TW.
Examples are the awareness and acknowledgment of TD, the
acknowledgment of additional maintenance cost and the risk
of immature refactoring decisions.

VII. RESULTS FROM THE PANEL DISCUSSION

A panel discussion was moderated by Jim Buchan, fea-
turing three panelists: Ewan Tempero, Clemente Izurieta and
Yasutaka Kamei. The discussion focused on two out of seven
topics selected by participants. The audience voted for the
following questions: What is needed beyond more empirical
studies? and What are the likely reasons studies appear to
display contradictory results on the same smells (TD)?
Question 1: What is needed beyond more empirical studies?
Ewan asserted the need to think more about how to do studies
and how to replicate some of these studies. He asserted that
current studies in the SE community lack sufficient details to
make replication of results possible. Clemente asserted that
the goal of empirical studies needs to be clearly outlined, as
well as their motivation. Yasutaka added that is important to
have actionable results from these studies so that they can be
used in industry.
Question 2: What are the likely reasons studies appear to
display contradictory results on the same smells (TD)?
Ewan asserted that this is related to the first question and thus,
the answer is the same. Good study design should show similar
results. In order to do that, the experimental design should

1st International Workshop on Technical Debt Analytics (TDA 2016)

61



Existing Definitions of Technical Debt
(Code smells, Anti-patterns...)

Existing Definitions of Technical Wealth
(Design patterns, refactoring)

Design
Code

O
thers

Domains 
of usage

Brown Anti-
pattern

Code 
Refactoring

Design FlawArchitectural 
smells

Code smells

Non-necessary
complexity

Poor programming 
practices resulting in 

extra work

Anti-pattern

Poor trail of 
decisions

Financial cost of TD
(Ampatozoglou)

TD Estimates
-Cast

-SQUALE
-SonarQube

-Nugroho

Testing
Debt

TD in Product 
Lines

Design 
Pattern

Aspect

Customer's
Value of Refactoring

Design Model

Architectural 
Style

Awareness of the 
potential Risk of 

Refactoring

Comments

Opportunity of Value

Minimum Viable 
Product

Documentation
(Javadoc, train of 

thought, etc)

Uncommented 
code

Lack of 
documentations

Poor planning

Separation of 
concern printiple

Design 
Refactoring

Proper use of 
documentation

Coding 
standards

Awareness of possible 
maintenance cost

Fig. 2. Concept Map resulting from Sorting Activity

be clear enough. He remarked that in general, “. . . we usually
have issues as software engineers to compare results of similar
studies as we do not take other factors into consideration. . . ”
Clemente asserted that there are too many reasons, such as
context, benchmark, no repository, poor methodology. He
added that the question should be the opposite: how to show
similar results? Yasutaka indicated that contradictory results
are due to the studies depending on the context. If the context
is different, then the results will look different.

Clemente added that there is a problem with students that
are poorly prepared on how to conduct empirical studies, as
well as to correctly produce and perform replication studies.
This statement was confirmed by Ewan: students should learn
more about research design/methods in order to be able to
produce good empirical studies.

VIII. WORKSHOP SUMMARY

We summarise the main conclusions from the workshop in
terms of identified challenges and subsequent strategies.

A. Challenges:

• We need a better classification of TD and standardise
terminology to avoid confusion and quantify TD more
accurately.

• Study replication is quite important in any empirical
software engineering study, including TD. We should be
able to replicate TD studies in order to be able to correctly
compare results.

• More high quality empirical studies and evidence are
needed, making replications possible and establishing an
empirical basis and data science for TD.

• We need to better understand the interplay between model
TD and implementation TD from methodological and
instrumentation perspectives.

• Effective tooling needs to be developed to assist industry
with assessing TD.

B. Strategy/Approach:

• Standardization efforts with members cross-cutting differ-
ent TD domains are needed, via coordinated action events
and/or a standardization task force. This should be initi-
ated alongside cooperation with industrial practitioners.

• Incentives, frameworks and infrastructure need to be
developed for facilitating the proliferation of Open Data,
alongside support for describing the Methods used to
Collect and Analyse the data. This can support and
facilitate replication culture in SE research.

• Better preparation and culture for empirical replication
must be supported by network actions and alongside
industry-focused conferences (e.g., the XP conference).

• Better quantification (and tool support development) of
TD can potentially be attained by:
– Finding, curating, and providing accessibility to exper-

imental artefacts
– Reducing confounding factors by explicitly describing

them and, when possible, controlling for them in
empirical studies

IX. ACKNOWLEDGEMENTS

Our sincere gratitude goes to the PC members who helped in
peer-reviewing the workshop submissions.

• Francesca Arcelli Fontana,University of Milano Bicocca
• Paris Avgeriou, University of Groningen
• Andrea Capiluppi, Brunel University
• Alexander Chatzigeorgiou, University of Macedonia
• Eleni Constantinou, University of Mons
• Steve Counsell, Brunel University
• Davide Falessi, California Polytechnic State University
• Yann-Gaël Guéhéneuc, École Polytechnique de Montréal
• Marouane Kessentini, University of MichiganDearborn
• Foutse Khomh, École Polytechnique de Montréal
• Ipek Ozkaya, Software Engineering Institute - Carnegie Mellon

University
• Fabio Palomba, University of Salerno
• Gregorio Robles, Universidad Rey Juan Carlos
• Diomidis Spinellis, Athens University of Economics & Business
• Nikolaos Tsantalis, Concordia University
• Mel Ó Cinnide, University College Dublin

1st International Workshop on Technical Debt Analytics (TDA 2016)

62



REFERENCES

[1] N. Brown et al. “Managing technical debt in software-
reliant systems”. In: FSE/SDP workshop on Future of
Software Engineering Research (2010), p. 47.

[2] Z. Li, P. Avgeriou, and P. Liang. “A systematic mapping
study on technical debt and its management”. In: J.
Systems and Software 101.11 (2015), pp. 193–220.

[3] N. Zazworka, C. Seaman, and F. Shull. “Prioritizing
design debt investment opportunities”. In: 2nd Workshop
on Managing Technical Debt. New York, New York,
USA: ACM Press, 2011, p. 39.

[4] C. Seaman and Y. Guo. “Measuring and monitoring
technical debt”. In: Advances in Computers 82.25-46
(2011), p. 44.

[5] P. Avgeriou et al. “Managing Technical Debt in Software
Engineering (Dagstuhl Seminar 16162)”. In: Dagstuhl
Reports 6.4 (2016), pp. 110–138.

[6] N. Fenton and J. Bieman. Software Metrics: A Rigorous
and Practical Approach. CRC Press, Nov. 2014.

1st International Workshop on Technical Debt Analytics (TDA 2016)

63




