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Abstract We consider the problem of solving a rational matrix equation arising in the
solution of G-networks.We propose and analyze two numerical methods: a fixed point
iteration and the Newton–Raphson method. The fixed point iteration is shown to be
globally convergent with linear convergence rate, while the Newton method is shown
to have a local convergence, with quadratic convergence rate. Numerical experiments
show the effectiveness of the proposed methods.
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1 Introduction

G-networks are a class of queueing networks introduced by Gelenbe in [7], originally
inspired by the spiking behaviour of biophysical neurons. In some papers, G-networks
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are referred to as Random Neural Networks, and both the terminologies are currently
used [7–9,18]. The novelty of G-networks, compared with standard queueing mod-
els, lies in the presence of negative customers, which have the capability to destroy
usual customers and to disappear immediately after. G-networks have been applied
in a variety of areas including image processing [2,17], combinatorial optimisation
[10], and communication systems [5,14,16]. The usefulness of G-networks for these
applications stems from their ability to learn from examples [9]. Learning algorithms
require at each step the computation of the steady-state distribution π of the number
of customers in the network, so it is important to develop efficient numerical methods
for computing π .

The steady-state distributionπ of aG-network canbe expressed through the solution
of a system of rational equations. More specifically, given an integer N ≥ 1, which
represents the number of queues, and given suitable parameters of the G-network
μ j , p

+
i j , p

−
i j ,Λ

+
i , Λ

−
i ∈ R

+, for i, j = 1, . . . , N , the problem is reduced to solving
the system of rational equations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ+
i = Λ+

i +
N∑

j=1

μ j q j p
+
j i ,

λ−
i = Λ−

i +
N∑

j=1

μ j q j p
−
j i , i = 1, . . . , N ,

qi = λ+
i

μi + λ−
i

(1)

where λ+
i , λ−

i , for i = 1, . . . , N are the unknowns. When the system (1) admits a
solution such that λ+

i , λ−
i ∈ R

+ and 0 < qi < 1, for i = 1, . . . , N , the network is
stable and the steady-state distribution π can be expressed in product form, through
the solution λ+

i , λ−
i , i = 1, . . . , N .

Our goal is to compute the solution λ+
i , λ−

i , i = 1, . . . , N of (1) such that λ+
i , λ−

i ∈
R

+ and 0 < qi < 1, for i = 1, . . . , N .
We rewrite the system (1) in matrix form, yielding the equivalent rational matrix

equation

z = T (z) := Λ+ (
Dz − P+)−1

P−D−1
μ + αD−1

μ (2)

where z ∈ R
1×N is the row vector of unknowns, Λ+, α, μ ∈ R

1×N are suitable
given row vectors, P+, P− ∈ R

N×N are given nonnegative matrices and, for a given
N dimensional vector w, Dw = diag(w) ∈ R

N×N is the diagonal matrix with the
vector w on the main diagonal. The solution of interest is a vector z ∈ D, where
D = {z ∈ R

1×N : z ≥ 1}, 1 = [1, . . . , 1] ∈ R
1×N , and such that the stability

condition

q := Λ+ (
Dz − P+)−1

D−1
μ < 1 (3)
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is satisfied, where the inequalities are applied component-wise. When the G-network
is stable, there exists a unique solution z∗ ∈ D to (2) which satisfies the stability
condition (3) (see [9]).

We assume that theG-network is stable, andwe propose and analyze two algorithms
for computing the solution of (2) which satisfies the stability condition (3).

The first algorithm is a fixed point iteration, which generates the sequence of vectors
z(k+1) = T (z(k)), for k ≥ 0, starting from z(0) = 1. We prove that this sequence
converges to the sought fixed point z∗, with a linear rate of convergence given by
the spectral radius of the Jacobian matrix of the function T at z∗. These properties
are proved by using the theory of nonnegative matrices [3]. Properties of nonnegative
matrices allow also to prove that the subsequences (z(2k))k≥0 and (z(2k+1))k≥0 of even
and odd indices, respectively, satisfy

z(2k) ≤ z(2(k+1)) ≤ z∗ ≤ z2(k+1)+1 ≤ z(2k+1), k = 0, 1, . . . , (4)

i.e., the convergence is alternate around the fixed point. Therefore the difference
between two subsequent vectors yields an upper bound for the error at each step.
Moreover, each iteration requires the inversion of an M-matrix and operations among
nonnegative vectors and matrices, therefore all the computations are numerically sta-
ble.

The second algorithm is obtained by applying the Newton-Raphson method to the
equation S(z) := T (z)− z = 0. Newton’s method has proven to be useful in a variety
of problems related to Markov chains, such as [4,11,13]. In this context, the method
generates the sequence of vectors

z(k+1) = z(k) − (T (z(k)) − z(k))(T ′(z(k)) − I )−1, k = 0, 1, . . . , . (5)

starting from an initial approximation z(0), where T ′(z) is the Jacobian matrix of the
function T at z. We prove that the iteration (5) is well defined and locally convergent
to the fixed point z∗, with a quadratic rate of convergence.

We compare these two methods with the algorithm proposed in [6], which to the
best of our knowledge is the standard method used in learning algorithms involving
G-networks [18]. From the numerical experiments, the Newton-Raphson iteration
is preferable for moderate values of N . This property makes the Newton-Raphson
algorithm an advisable choice for applications where the steady-state distributions of
many moderate-sized (usually N < 100) G-networks have to be computed, which is
often the case in Communication System applications [5,14].

The paper is organized as follows. In Sect. 2 we specify the notation and recall some
basic results and definitions. In Sect. 3 we describe the G-network model and the main
existing results. In Sect. 4 we formulate the matrix-form of equations (1) and we study
several properties that will be used in Sect. 5, where we develop and analyze the two
new numerical methods for the computation of solution of (1). Section6 is devoted to
numerical experiments.
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2 Nonnegative matrices

In this section we recall some properties of nonnegative matrices that will be used
throughout the paper. For the results reported here we refer the reader to the books [3]
and [19].

A matrix A = (ai j )i j ∈ R
N×N is said to be nonnegative (positive), and we will

write A ≥ 0 (A > 0), if ai j ≥ 0 (ai j > 0) for all i, j = 1, . . . , N .
Denote by ρ(A) the spectral radius of a matrix A.

Theorem 1 (Perron–Frobenius) Let A ∈ R
N×N , A ≥ 0, be an irreducible matrix.

Then the following properties hold:

1. ρ(A) > 0 and it is an eigenvalue of A;
2. There exists a vector v > 0 such that Av = ρ(A)v;
3. If B ≥ A and B �= A, then ρ(B) > ρ(A);
4. ρ(A) is a simple eigenvalue.

A useful corollary is the following:

Corollary 1 Let A ≥ 0 be an irreducible matrix. Then:

1. If the row sums of A are constant, i.e.
∑N

j=1 ai j = σ ∀i = 1, . . . , N, then ρ(A) =
σ .

2. If the row sums of A have a minimum σ and a maximum σ , then σ < ρ(A) < σ .

Let B ∈ R
N×N , B ≥ 0 and let s ∈ R. The matrix A = s I − B is said to be

an M-matrix if ρ(B) ≤ s, and it is a non-singular M-matrix if ρ(B) < s. A matrix
A ∈ R

N×N is said a Z-matrix if ai j ≤ 0 for all i �= j .
It is clear that an M-matrix is also a Z-matrix. Regarding the opposite implication,

the following theorem provides useful criteria for a Z-matrix to be an M-matrix.

Theorem 2 Let A ∈ R
N×N be a Z-matrix. Then A is a non-singular M-matrix if and

only if one of the following properties holds:

1. The eigenvalues of A have positive real part;
2. A is non-singular and A−1 is non-negative;
3. There exists a vector x > 0 such that Ax > 0.

We conclude this section with the following theorem.

Theorem 3 Let A = M − N be a regular splitting of the matrix A, i.e. det M �= 0,
M−1 ≥ 0 and N ≥ 0. Then, A is nonsingular with A−1 ≥ 0 if and only if ρ(M−1N ) <

1, where

ρ(M−1N ) = ρ(A−1N )

1 + ρ(A−1N )
.
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3 The model and the matrix equation

The basic G-network model consists of an open network of N queues in which two
types of customers circulate: positive and negative ones. Each queue consists of one
server with independent exponentially distributed service times, infinite waiting room
and First In First Out (FIFO) policy for positive customers.

Positive customers obey standard service and routing disciplines as in conventional
queueing network models. Upon their arrival on a queue, if the server is idle they
immediately start being served, otherwise they queue, thus increasing the waiting line
length.

Negative customers behave in the following way: when a negative customer joins
a non-empty queue, it destroys one of the present positive customers (in the case of
FIFO policy, the destroyed positive customer will be the one who arrived last at that
queue). If the queue is empty, the negative customer simply vanishes without doing
anything else. Negative customers are not stored in the queue and they will disappear
as soon as they have accomplished their task: as a result, they can not be observed,
only the effect of their arrivals can. Finally, negative customers actions are supposed
to be taken instantaneously.

Upon completion of service in queue i , the newly served customer either reaches
queue j as a positive customer with probability p+

i j , or as a negative customer with

probability p−
i j , or it departs from the network with probability di . It is important to

note that positive customers leaving a queue can become negative when they visit the
next queue. These probabilities must sum up to one yielding

N∑

j=1

(
p+
i j + p−

i j

)
+ di = 1, i = 1, . . . , N . (6)

Let pi j = p+
i j + p−

i j for i, j = 1, . . . , N . Thematrix P = (pi j ) ∈ R
N×N represents

the movement of customers between queues.
Customers leaving a queue are not allowed to return directly back to the same

queue, i.e. pii = 0 for all i . Let P+ = (p+
i j ) ∈ R

N×N and P− = (p−
i j ) ∈ R

N×N .
The matrices P+ and P− are nonnegative, with zero diagonal entries and such that
P = P+ + P− is row substochastic, i.e.

N∑

j=1

pi j ≤ 1 i = 1, . . . , N .

We assume also that at least for one row index i the inequality in the above formula is
strict, and that P is irreducible.

Finally, positive and negative customers can also arrive to queue i from the outside
world according to independent Poisson processes with ratesΛ+

i andΛ−
i respectively.

We assume that these processes are independent of each other. To avoid trivial cases,
we suppose that both Λ+ = [Λ+

1 , . . . , Λ+
N ] and Λ− = [Λ−

1 , . . . , Λ−
N ] are different

from the zero vector. Finally, we denote by μi ∈ (0,+∞) the service rate of the
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Fig. 1 The basic G-network
model

queue i , meaning that the service time distribution of the single server in queue i has
probability density function

φ(x) =
{

μi e−μi x x ≥ 0

0 x < 0.

Figure1 represents the traffic between two queues i and j .
From a neural network perspective, positive customers represent excitation and

negative customers represent inhibition of a queue, which is usually called a neuron
in this setting. The number of positive customers at a neuron, which is a non-negative
integer, represents the potential of that neuron.

The state of queue i at time t ∈ (0,+∞) is described by the random variable
Ki (t), with support N, representing the number of customers present in queue i at
time t . These customers are necessarily positive customers, since negative customer,
by definition, are never stored in a queue.

The state of the network at time t ∈ (0,+∞) is described by the random vector
K (t) = (K1(t), . . . , KN (t)), with support NN .

Letting π(ki , t) = P(Ki (t) = ki ) and π(k, t) = P(K (t) = k), for ki ∈ N and k ∈
N

N , we are interested in determining, when they exist, the steady-state (or stationary)
probability distributions for the queues state π(ki ) = limt→+∞ π(ki , t) and for the
network state π(k) = limt→+∞ π(k, t).

To this regard, an important role is played by the the system of non-linear equations

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

xi = Λ+
i +

N∑

j=1

μ j
x j

μ j + y j
p+
j,i

yi = Λ−
i +

N∑

j=1

μ j
x j

μ j + y j
p−
j,i i = 1, . . . , N ,

(7)

in the unknowns xi , yi , i = 1, . . . , N .
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The main result regarding the stationary distribution is given in the following the-
orem, proven by Gelenbe in [7].

Theorem 4 If the system (7) admits a unique solution λ+
i , λ−

i , i = 1, . . . , N such

that λ+
i , λ−

i > 0 and 0 < qi < 1 for any i = 1, . . . , N, with qi = λ+
i

μi+λ−
i
, then the

stationary distributions π(ki ) and π(k) exist and are given by

π(ki ) = (1 − qi )q
ki
i , π(k) =

N∏

i=1

π(ki ). (8)

The above theorem states that if the system of nonlinear equations (7) admits a
positive solution with 0 < qi < 1 for all i = 1, . . . , N , then the stationary distribution
of the network state exists and it is given as a product form of the stationary distribution
of each queue. In this case the network is said to be stable and qi represents the
stationary probability that the number of customers in queue i is positive. Moreover,
the solution λ+

i , λ
−
i , i = 1, . . . , N , represents the mean arrival rates of positive and

negative customers, respectively, to queue i , in steady-state.
Concerning the existence and uniqueness of the solution of (7), we have the fol-

lowing results [7,9], that can be proved by applying the Brower theorem.

Theorem 5 A non-negative solution λ+
i , λ−

i , i = 1, . . . , N, to Eq. (7) always exists.
If a positive solution λ+

i , λ−
i to Eq. (7) exists with 0 < qi < 1 for any i = 1, . . . , N,

then it is the unique solution.

By following [7], the system of equations (7) can be written in a more compact
form. Define the row vectors

x = [x1, . . . , xN ]
y = [y1, . . . , yN ]

Λ+ = [
Λ+

1 , . . . , Λ+
N

]

Λ− = [
Λ−

1 , . . . , Λ−
N

]

and let D f (y) be the N × N diagonal matrix with diagonal elements f j (y) = μ j
μ j+y j

,
j = 1, . . . , N . Equation (7) can be written as

x
(
I − D f (y)P

+) = Λ+

y = Λ− + xD f (y)P
−.

(9)

As P is irreducible andρ(P) < 1, from the Perron–Frobenius Theorem1, it follows
from P+ ≤ P , P− ≤ P and P+ �= P , P− �= P , that ρ(P+) < 1 and ρ(P−) < 1.
We restrict our attention to the case where x ≥ 0 and y ≥ 0, therefore in particular
0 ≤ f j (y) ≤ 1. Since P ≥ 0 and 0 ≤ f j (y) ≤ 1, we have 0 ≤ D f (y)P+ ≤ P+.
According to the Perron–Frobenius Theorem 1, we get ρ(D f (y)P+) ≤ ρ(P+) < 1.
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Therefore matrix I − D f (y)P+ is non-singular and we may recover y from (9) and
write

y = Λ+ (
I − D f (y)P

+)−1
D f (y)P

− + Λ−. (10)

Consider now the row vector w = y − Λ−, w = (w j ) j=1,...,N , so that f j (y) =
μ j

μ j+Λ−
j +w j

, j = 1, . . . , N . Define

Dr(w) = diag(r1(w), . . . , rN (w)), r j (w) = μ j

μ j + Λ−
j + w j

, j = 1, . . . , N .

In view of (9) and (10), the system (7) can be written in the equivalent fixed-point
form

w = G(w)

where G : R1×N → R
1×N is given by

G(w) = Λ+ (
I − Dr(w)P

+)−1
Dr(w)P

− (11)

and y = w + Λ−. We are interested in the nonnegative solutions w, since, in the
solution of interest, the vector y = (y j ) j represents the mean arrival rate λ− = (λ−

j ) j

of negative customers and we have λ− − Λ− ≥ 0.

4 The rational matrix equation

In this section wemanipulate the equationw = G(w), whereG is defined in (11). This
way, we obtain a different formulation of the matrix equation, which will be useful to
study convergence properties of iterative methods for its solution.

Since r j (w) > 0 for j = 1 . . . , N , the diagonal matrix Dr(w) is non-singular and
we can write G(w) = Λ+(D−1

r(w) − P+)−1P−. Set Dz = D−1
r(w), so that Dz = diag(z)

and

z j = 1

r j (w)
= μ j + y j

μ j
= μ j + Λ−

j + w j

μ j
= α j + w j

μ j
, (12)

where α j = μ j + Λ−
j > 0. In this way, we have w = zDμ − α, where α = (α j ) and

Dμ = diag(μ).
Therefore, the equation w = G(w) can be rewritten equivalently as

zDμ − α = Λ+ (
Dz − P+)−1

P−,

i.e., in the form z = T (z), where

T (z) = Λ+ (
Dz − P+)−1

P−D−1
μ + αD−1

μ , (13)
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and where the function T : R1×N → R
1×N is well defined for z ∈ D, where D =

{z ∈ R
1×N : z ≥ 1}. The variables w and z and the functions G and T satisfy the

relations

w = zDμ − α, (14a)

G(w) = T (z)Dμ − α. (14b)

The results of Theorem 5 immediately translate in this new formulation, yielding
the existence of a fixed point z∗ = (w∗ + α)D−1

μ ≥ 1 for the function T (z) in z ∈ D,
where w∗ = λ− − Λ−.

Observe that for any non-negative matrix P with ρ(P) < 1 and for any z ∈ D, the
matrix Dz − P is a nonsingular M-matrix, since it is a Z-matrix and 0 ≤ D−1

z P ≤ P ,
so that ρ(D−1

z P) ≤ ρ(P) < 1, whence Dz − P is invertible and (Dz − P)−1 =
(I − D−1

z P)−1D−1
z ≥ 0.

In particular, if z ∈ D, the matrices Dz − P+, Dz − P− and Dz − P+ − P− are
non-singular M-matrices. Moreover, if w, z ∈ R

1×N are such that w, z ∈ D, one has

(
Dw − P+)−1 − (

Dz − P+)−1 = (
Dz − P+)−1

(Dz − Dw)
(
Dw − P+)−1

. (15)

Therefore, the following expression for T (w) − T (z) holds:

T (w) − T (z) = Λ+ (
Dz − P+)−1

(Dz − Dw)
(
Dw − P+)−1

P−D−1
μ

= 1 diag
(
Λ+ (

Dz − P+)−1
)
diag(z − w)

(
Dw − P+)−1

P−D−1
μ

= (z − w) diag
(
Λ+ (

Dz − P+)−1
) (

Dw − P+)−1
P−D−1

μ . (16)

Proposition 1 The function T (z) of (13) satisfies the following properties:

1. 1 ≤ T (z) ≤ T (1) for any z ∈ D;
2. if x, y ∈ D are such that x ≤ y then T (x) ≥ T (y), i.e., T (z) is monotonic

non–increasing;
3. T (z) is Lipschitz continuous in D.

Proof If z ∈ D then Dz − P+ is a nonsingular M-matrix, therefore (Dz − P+)−1 ≥ 0.
Since Λ+, P−, α, D−1

μ ≥ 0, we have

T (z) = Λ+ (
Dz − P+)−1

P−D−1
μ + αD−1

μ ≥ αD−1
μ = 1 + Λ−D−1

μ ≥ 1,

where the latter inequality follows from the fact that α = μ+Λ− andΛ− ≥ 0, D−1
μ ≥

0. The function T (z) is monotonic non–increasing since the matrix (Dz − P+)−1 =
(I − D−1

z P+)−1D−1
z = ∑

n≥0(D
−1
z P+)nD−1

z is non–increasing. In particular, we
have

(
Dz − P+)−1 ≤ (I − P+)−1 ∀z ∈ D, (17)
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yielding T (z) ≤ T (1) for z ∈ D. Concerning the Lipscthiz continuity, from (16)
and (17), we have ‖T (x) − T (y)‖∞ ≤ K‖x − y‖∞ for a suitable costant K , which
completes the proof. �

Equation (15) in particular implies that for any z ∈ D

lim
w→z
w∈D

∥
∥
∥
(
Dw − P+)−1 − (

Dz − P+)−1
∥
∥
∥ = 0 (18)

since (Dz − P+)−1 is bounded for all z ∈ D.

Theorem 6 The function T (z) of (13) is Fréchet differentiable for z ∈ D and its
Fréchet derivative is

T ′(z) := −diag
(
Λ+ (

Dz − P+)−1
) (

Dz − P+)−1
P−D−1

μ . (19)

Moreover, T ′(z) ≤ 0, T ′(z) ≤ T ′(w)wheneverw, z ∈ D and z ≤ w, and the function
T ′(z) is Lipschitz continuous for z ∈ D.

Proof From (16), for any row vector h ∈ R
1×N such that z + h ∈ D, we have

T (z + h) − T (z) = −h diag(Λ+(Dz − P+)−1)(Dz+h − P+)−1P−D−1
μ .

Therefore, setting Az = (Dz − P+)−1, we have

T (z + h) − T (z) − hT ′(z) = h diag
(
Λ+ (

Dz − P+)−1
)

(Az+h − Az)P
−D−1

μ ,

hence, from (17) and from the boundedness of Λ+(Dw − P+)−1, we have

lim
h→0

‖T (z + h) − T (z) − hT ′(z)‖∞
‖h‖∞

= 0,

which shows that T (z) is Fréchet differentiable and that T ′(z) given in (19) is its
derivative. The matrix T ′(z) is nonpositive since all the involved matrices in (19) are
nonnegative. Moreover, if w, z ∈ D and z ≤ w, then (Dz − P+)−1 ≥ (Dw − P+)−1,
hence T ′(z) ≤ T ′(w). Now we prove that T ′(z) is Lipschitz continuous. Let h be a
nonnegative row vector. By means of simple computations we find that

T ′(z) − T ′(z + h)

= −
(
diag(Λ+Az+h)(AzDh Az+h) − diag(Λ+AzDh Az+h)Az

)
P−D−1

μ .

Taking norms, since Az is bounded for z ∈ D, yields

‖T ′(z) − T ′(z + h)‖∞ ≤ C‖h‖∞

for a suitable constant C , which completes the proof. �
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The following result will allow us to study the convergence properties of the com-
putational methods described in the next section.

Theorem 7 Let z ∈ D be such that

Λ+ (
Dz − P+)−1

D−1
μ < 1. (20)

Then ρ(T ′(z)) < 1 and ρ(T ′(w)) ≤ ρ(T ′(z)) < 1 for any w ≥ z.

Proof By (20), diag(Λ+(Dz − P+)−1) ≤ Dμ. Consequently, from (19), we have

0 ≤ −T ′(z) ≤ Dμ

(
Dz − P+)−1

P−D−1
μ ,

therefore we have

ρ(T ′(z)) ≤ ρ
(
Dμ

(
Dz − P+)−1

P−D−1
μ

)
= ρ

((
Dz − P+)−1

P−)
.

Since Dz − P+ − P− is a nonsingular M-matrix, then ρ((Dz − P+)−1P−) < 1 for
Theorem 3. Since the matrix −T ′(z) is nonnegative and monotonic non–increasing in
D, for the Perron–Frobenius Theorem, we have ρ(T ′(w)) ≤ ρ(T ′(z)) if w ≥ z. �

Recall that the condition for a G-network to be stable is qi = λ+
i

μi+λ−
i

< 1 for all

i = 1, . . . , N . Since zi = μi+λ−
i

μi
from (12), we have qi = λ+

i

μi+λ−
i

= λ+
i

ziμi
. In view of

(9), we have

λ+ = Λ+ (
I − D f (y)P

+)−1 = Λ+ (
I − D−1

z P+)−1

therefore the row vector q = (qi )i can be rewritten as

q = Λ+ (
I − D−1

z P+)−1
D−1
z D−1

μ = Λ+ (
Dz − P+)−1

D−1
μ ,

and the stability condition becomes

Λ+ (
Dz∗ − P+)−1

D−1
μ < 1, (21)

where z∗ is the fixed point of the function T (z) inD. Therefore, we have the following
corollary.

Proposition 2 Suppose that the G-network is stable, and let z∗ be the fixed point of
the function T (z) in D. Then ρ(T ′(z∗)) < 1.

The above result, together with Theorem 7, implies that, if the G-network is stable,
then ρ(T ′(z)) < 1 for and z ≥ z∗.
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5 Numerical methods

In this section we present two numerical methods for solving the equation z = T (z)
in D, with T (z) given in (13). In the following we will assume that the G-network is
stable. The stability condition implies that there exists a unique solution z∗ in D of
the equation z = T (z), and the inequality Λ+(Dz∗ − P+)−1D−1

μ < 1 holds.

5.1 Fixed-point iteration

The first method we consider is the fixed point iteration:

{
z(k+1) = T (z(k)), k ≥ 0,

z(0) ∈ R
1×N .

(22)

In view of Proposition 1, if z(0) ∈ D, the iteration (22) is well defined and z(k) ∈ D
for any k ≥ 1. Moreover T (z) �= 1, since P−, D−1

μ , (Dz − P+)−1 �= 0 and Λ+,Λ−
are different from zero. As a consequence, also the fixed point z∗ is such that z∗ ≥ 1,
z∗ �= 1.

We are now able to prove that the iteration (22) is locally convergent:

Theorem 8 Suppose that the G-network is stable. Then:

1. The function T : R1×N → R
1×N is contractive in a neighbourhood of z∗, i.e.

there exists a norm ‖ · ‖ on R1×N , a neighbourhood I (z∗) ⊂ D of z∗ and a scalar
0 ≤ γ < 1 such that for all z, w ∈ I (z∗)

‖T (z) − T (w)‖ ≤ γ ‖z − w‖; (23)

2. For all z(0) ∈ I (z∗), the sequence (22) converges to z∗, which is the unique fixed
point of T in I (z∗).

Proof Since ρ(T ′(z∗)) < 1 (see Theorem 2), there exists a norm ‖ · ‖ on R
N such

that the induced matrix norm satisfies ‖T ′(z∗)‖ < 1. Since z∗ ≥ 1, by continuity of
T ′ (see Theorem 6) there exists a compact neighbourhood I (z∗) ⊂ D of z∗ , such
that ‖T ′(z)‖ < 1 ∀z ∈ I (z∗), so that γ := supz∈I (z∗) ‖T ′(z)‖ < 1. By using the
mean value theorem we obtain (23). The local convergence and the uniqueness are
straightforward applications of the Contraction Mapping Theorem [12, Chap. 7]. �

The above result states that the fixed point iteration (22) converges to the sought
solution z∗, provided that the stability condition is satisfied. Indeed, the stability con-
dition guarantees that the spectral radius of the Jacobian of T (z∗) is less than one. If
the stability condition is not satisfied, the sequence {z(k)}k may or may not converge;
if it converges, the limit is a solution of the equation T (z) = z which does not ver-
ify the stability condition (21), and does not have a physical meaning. Therefore, in
the case where we do not know a priori whether the system is stable or not, we may
compute the sequence {z(k)}k and, if it converges to a solution satisfying (21), then the
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G-network is stable. However, in practice, some sufficient conditions for the network
stability, which can be checked a priori, are available in the literature (see for example
the concept of damped network in [8]).

Theorem8 is a local convergence result: it states that, if z(0) is sufficiently close to z∗,
then the sequence {z(k)}k convergences to z∗. Instead, the following theorem provides
a global convergence result, i.e., the choice z(0) = 1 guarantees the convergence of
the sequence {z(k)}k .
Theorem 9 Assume that the G-network is stable. Take z(0) = 1 and define

Hk = −diag
(
Λ+ (

Dz∗ − P+)−1
) (

Dz(k) − P+)−1
P−D−1

μ .

Then the sequence (22) satisfies the following properties:

z(k) − z∗ = (z(0) − z∗)H0H1 · · · Hk−1, (24)

and

1 ≤ z(2k) ≤ z(2(k+1)) ≤ z∗ ≤ z(2(k+1)+1) ≤ z(2k+1), (25)

for k ≥ 0. Moreover limk→∞ z(k) = z∗ and limk→∞ Hk = T ′(z∗).

Proof From (16), we have

z(k) − z∗ = T (z(k−1)) − T (z∗) = (z(k−1) − z∗)Hk−1,

therefore Eq. (24) follows by induction on k. Now we prove (25). First observe that, if
1 ≤ z ≤ w then 1 ≤ T (T (z)) ≤ T (T (w)), since T (z) in monotonic non–increasing
and bounded thanks to Proposition 1. We show that inequality (25) holds for k = 0.
Since 1 = z(0) ≤ z∗ then 1 ≤ T (T (z(0))) ≤ T (T (z∗)), i.e., 1 = z(0) ≤ z(2) ≤ z∗.
From the monotonicity of T (z) it follows that T (z(0)) ≥ T (z(2)) ≥ T (z∗), i.e., z∗ ≤
z(3) ≤ z(1). Therefore (25) holds for k = 0. We assume that it holds for k ≥ 0 and we
show that it is true for k + 1. Since 1 ≤ z(2k) ≤ z(2(k+1)) ≤ z∗, from the monotonicity
of T (T (z)) we have 1 ≤ T (T (z(2k))) ≤ T (T (z(2(k+1)))) ≤ T (T (z∗)), i.e., 1 ≤
z(2(k+1)) ≤ z(2(k+2)) ≤ z∗. Similarly, we show that z∗ ≤ z(2(k+2)+1) ≤ z(2(k+1)+1).
Since the sequences {z(2k)}k and {z(2k+1)}k are monotonic and bounded, there exist
limk→∞ z(2k) = z and limk→∞ z(2k+1) = z̄, with z = T (T (z)), z̄ = T (T (z̄)) and
z ≤ z∗ ≤ z̄. We show that z = z∗ = z̄. Let w = z̄ − z∗. In view of (16), one has

w = T (T (z̄)) − T (T (z∗)) = (T (z∗) − T (z̄))R1 = wR2R1,

with

R1 = diag
(
Λ+ (

Dz∗ − P+)−1
) (

DT (z̄) − P+)−1
P−D−1

μ ,

R2 = diag
(
Λ+ (

Dz̄ − P+)−1
) (

Dz∗ − P+)−1
P−D−1

μ .
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Ifw �= 0, thenw is an eigenvector of thematrix R2R1, corresponding to the eigenvalue
1. Since 1 ≤ z∗ ≤ z̄ and 1 ≤ T (z̄) ≤ z∗, we deduce that R1 ≤ R and R2 ≤ R, where

R = diag
(
Λ+ (

Dz∗ − P+)−1
)

(I − P+)−1P−D−1
μ .

Since 0 ≤ R ≤ (I − P+)−1P−, by using the same arguments of the proof of
Theorem 7, we deduce that ρ(R) < 1. By the Perron–Frobenius Theorem we
have ρ(R2R1) ≤ ρ(R2) < 1, therefore w cannot be an eigenvector correspond-
ing to the eigenvalue 1, hence w = 0. Finally, from continuity of the function
h(z) := −diag(Λ+(Dz∗ − P+)−1)(Dz − P+)−1P−D−1

μ in D, it follows that
limk→∞ Hk = T ′(z∗). �

The alternating property stated by Theorem 9 is useful also from a practical stand-
point, since it allows to upper bound the error of each component at each step. In fact,
the following bound holds:

∣
∣
∣z

(k)
i − z∗i

∣
∣
∣ ≤

∣
∣
∣z(k)i − z(k−1)

i

∣
∣
∣ ∀i = 1, . . . , N .

Therefore, the absolute value of the difference between the i-th component of two
subsequent vectors is an upper bound to the approximation error of z∗i .

The next theorem shows that the fixed point iteration (22) has a linear rate of
convergence and the asymptotic reduction of the error is bounded by the spectral
radius of the Jacobian T ′(z∗).

Theorem 10 If z(0) = 1 the sequence (22) satisfies

lim sup
k→∞

k
√

‖z(k) − z∗‖∞ ≤ ρ(T ′(z∗)). (26)

Proof For z ∈ D, let h(z) = −diag(Λ+(Dz∗ − P+)−1)(Dz − P+)−1P−D−1
μ , so

that Hk = h(z(k)) and T ′(z∗) = h(z∗). Denote J∗ = T ′(z∗). The function h is
component-wise non-decreasing. Applying h to (25) yields

H2k−1 ≤ H2k+1 ≤ J∗ ≤ H2(k+1) ≤ H2k, k ≥ 1. (27)

Therefore, from (24), we obtain

z(k+1) − z∗ = (z(0) − z∗)H0 . . . Hk = (z(0) − z∗)H0 . . . H2(l−1)H2l−1H2l . . . Hk

where 0 ≤ l < �k/2� is a fixed nonnegative integer. Setting wl := (z(0) −
z∗)H0 . . . H2(l−1), and thanks to (27), we obtain

z(k+1) − z∗ ≤ wl (J∗H2l)(J∗H2l) . . . (J∗H2l)︸ ︷︷ ︸
�k/2�−l+1 times

= wl(J∗H2l)
�k/2�−l+1Sk
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where

Sk =
{
I if k is even

J∗ if k is odd.

Taking norms yields

‖z(k+1) − z∗‖∞ ≤ Cl‖(J∗H2l)
�k/2�+1‖∞

and

k
√

‖z(k+1) − z∗‖∞ ≤ k
√
Cl

k
√

‖(J∗H2l)�k/2�+1‖∞

where

Cl = ‖wl‖∞‖S‖∞‖(J∗H2l)
−l‖∞.

Taking the limit for k → ∞ yields

lim sup
k→∞

k
√

‖z(k+1) − z∗‖∞ ≤ lim
k→∞

k
√
Cl

︸ ︷︷ ︸
=1

lim
k→∞

k
√

‖(J∗H2l)�k/2�+1‖∞ = ρ(J∗H2l)
1/2

where we used Gelfand’s formula. Taking now the limit for l → ∞ yields

lim sup
k→∞

k
√

‖z(k+1) − z∗‖∞ ≤ lim
l→∞ ρ(J∗H2l)

1/2 = ρ(J 2∗ )1/2 = ρ(J∗)

where we used the continuity of the spectral radius and of the function h. �
Concerning the computational cost, each iteration requires the computation of the

vector T (z(k)) = Λ+(Dz(k) − P+)−1P−D−1
μ + αD−1

μ . The matrices P+, P−, D−1
μ

and the vectors Λ+, α are given parameters. The only costly operation that we have to
perform at each step is the solution of the linear system v(Dz(k) − P+) = Λ+, since
the other multiplications are just vector-matrix products, yielding a cost of O(N 3)

time per step. Moreover, the matrix Dz(k) − P+ is a nonsingular M-matrix, and all the
vectors involved in the iteration are nonnegative, therefore each step can be performed
in a numerically stable way by exploiting the properties of M-matrices [1].

5.2 Newton–Raphson iteration

In this section we will focus on the equation S(z) := T (z) − z = 0. As usual we will
suppose that the system is stable, therefore the unique fixed point z∗ of T in D is the
unique row vector in D such that S(z) = 0.
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Since T is Fréchet differentiable in D, also S is Fréchet differentiable in D and its
derivative is S′(z) = T ′(z) − I .

The Newton-Raphson iteration applied to the equation S(z) = 0 generates the
sequence of row vectors

z(k+1) = z(k) − S(z(k))S′(z(k))−1

= z(k) − (T (z(k)) − z(k))(T ′(z(k)) − I )−1, k ≥ 0.
(30)

We can show that the function S(z) is order–convex on the set D ⊂ R
1×N , i.e.,

S(λz + (1 − λ)w) ≤ λS(z) + (1 − λ)S(w),

whenever z, w ∈ D are comparable (z ≤ w or w ≤ z) and 0 < λ < 1. Unfortunately,
S′(z)−1 does not have in general sign properties, therefore we cannot immediately
use the results of Sect. 13.3 of [15], to derive global convergence properties for the
sequence (30).

However, under the stability condition, we can show that the sequence (30) is
locally convergent, well defined and has a quadratic rate of convergence, as stated by
the following result.

Theorem 11 Suppose that the G-network is stable and let ‖ · ‖ be an operator norm.
Then there exist δ, M > 0 such that, for all z(0) ∈ D such that ‖z(0) − z∗‖ ≤ δ, the
iteration (30) is well-defined, limk→∞ z(k) = z∗ and

‖z(k+1) − z∗‖ ≤ M‖z(k) − z∗‖2 ∀k ≥ 0.

Proof Since ρ(T ′(z∗)) < 1 by Theorem 7, S′(z∗) = T ′(z∗) − I is non-singular and,
by Lemma 6, S′(z) is also Lipschitz continuous for z ∈ D. Therefore, there exists
a neighbourhood B ⊂ D of z∗ such that S′(z) is Lipschitz continuous, non-singular
and such that ‖S′(z)−1‖ is uniformly bounded for any z belonging to B. Therefore the
thesis follows from general convergence properties of Newton’s method (see Theorem
12.6.2 of [15]). �
Regarding the choice of the initial point z(0), we point out that in all the numerical
experiments performed in Sect. 6 it was sufficient to choose z(0) = T (T (1)) to achieve
convergence.

Concerning the computational cost, each step of the Newton-Raphson method
requires the computation of the vector T (z(k)) = Λ+(Dz(k) − P+)−1P−D−1

μ +αD−1
μ

and of the matrix (I − T ′(z(k)))−1 = (I + diag(Λ+(Dz(k) − P+)−1)(Dz(k) −
P+)−1P−D−1

μ )−1. In practice it is convenient to first compute the inverse (Dz(k) −
P+)−1. Then we obtain T (z(k)) = Λ+(Dz(k) − P+)−1P−D−1

μ + αD−1
μ and

I −T ′(z(k)) = I +diag(Λ+(Dz(k) − P+)−1)(Dz(k) − P+)−1P−D−1
μ with just vector-

matrix products, matrix-matrix product with a diagonal factor and matrix sums. The
overall cost is O(N 3) arithmetic operation, with an overall multiplicative constant
greater than in the fixed point iteration. However, in general, the quadratic rate of
convergence of Newton-Raphson makes it preferable to the fixed point iteration.
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6 Numerical results

We compare the fixed point iteration and the Newton-Raphson method with the iter-
ative method proposed by Forneau in [6], which, as far as we know, is the standard
method used in learning algorithms involving G-networks.

We briefly recall this method. Consider, for each index i = 1, . . . , N , the six
sequences of real numbers

{(qi )k}k≥0, {(qi )k}k≥0,
{(

λ+
i

)

k

}

k≥0
,

{(
λ+
i

)

k

}

k≥0
,

{(
λ−
i

)

k

}

k≥0
,

{(
λ−
i

)

k

}

k≥0

defined by induction on k ≥ 0 as follows:

(
λ+
i

)

k
= Λ+

i +
N∑

j=1

μ j p
+
j,i (q j )k (31a)

(
λ+
i

)

k
= Λ+

i +
N∑

j=1

μ j p
+
j,i (q j )k (31b)

(
λ−
i

)

k
= Λ−

i +
N∑

j=1

μ j p
−
j,i (q j )k (31c)

(
λ−
i

)

k
= Λ−

i +
N∑

j=1

μ j p
−
j,i (q j )k (31d)

(qi )k+1 = min
(
1,

(
λ+
i

)

k
/
(
μi +

(
λ−
i

)

k

))
(31e)

(qi )k+1 = min
(
1,

(
λ+
i

)

k
/
(
μi +

(
λ−
i

)

k

))
(31f)

with the following initial values:

(qi )0 = 1, (qi )0 = 0. (32)

For each k ≥ 0, the iteration proceeds as follows: first compute the (λ+
i )k , (λ+

i )k ,

(λ−
i )k , (λ−

i )k from the Eqs. (31a)–(31d), which only depends on the kwnon values
(qi )k and (qi )k , then compute (qi )k+1 and (qi )k+1 through (31e)–(31f). The following
convergence result holds (see [6]):

Theorem 12 Assume that, for any i = 1, . . . , N, one of the two following assumption
is satisfied:

– There is a strictly positive probability that a positive customer leaves the queue to
go outside, i.e. di > 0;
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– There is a strictly positive probability that a customer, either positive or negative,
joins a queue j where the rate of negative customers coming from the outside is
strictly positive, i.e. p+

i j + p−
i j > 0 and Λ−

j > 0.

Then the sequences {(qi )k}k and {(qi )k}k defined in (31a) converge, from above and

from below respectively, to qi , where qi = λ+
i

μi+λ−
i
.

Regarding the convergence rate, it is proven in [6] that the sequences (qi )k and
(qi )k are respectively upper and lower bounds for the qi and that

N∑

i=1

μi [(qi )k+1 − (qi )k+1] ≤ ε

N∑

i=1

μi [(qi )k − (qi )k] (33)

where

εi =
N∑

j=1

(
p+
i j + p−

i j

) μ j

μ j + Λ−
j

, ε = max
i=1,...,N

εi < 1,

yielding that the sequence
∑N

i=1 μi [(qi )k − (qi )k] converges linearly to zero.
Let (q(k))k≥0, (z

(k)
FP )k≥0, (z

(k)
NR )k≥0 be the Fourneau (31a)–(31f), Fixed Point (22)

and Newton-Raphson (30) iterations, respectively. The starting approximation for the
Fourneau iteration is given by (32), for the Fixed Point we set z(0) = 1 (see 9) and for
the Newton-Raphson we set z(0) = T (T (1)).

In the following the three algorithms will be denoted by FRN, FP, NR. The relative
errors for the three methods are denoted by

e(k)
FRN = ‖q(k) − q∗‖∞

‖q∗‖∞
, e(k)

FP = ‖z(k)FP − z∗FP‖∞
‖z∗FP‖∞

, e(k)
NR = ‖z(k)NR − z∗NR‖∞

‖z∗NR‖∞
(34)

for k ≥ 0, where q∗, z∗FP and z∗NR are the approximations to solutions computed by each
of the three methods.

The algorithms have been implemented in Matlab ver. 7.5.0. We performed the
experiments with a AMD Athlon II X 4 640, clockspeed 3, 0 GHz.

We generate a stochastic matrix A with uniformly distributed psuedo-random ele-
ments in the interval (0, 1) and, for a given x ∈ (0, 1), we set

D = diag(a11, . . . , aNN )

P+ = x(A − D)

P− = (1 − x)(A − D)

so that P+ + P− +D = A is stochastic. In this way P+ and P− are both full matrices,
and varying x we control the internal flow of customers in the network: the larger x ,
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Fig. 2 Relative errors for the three methods. a x = 0.5, θ = 1, γ = 0.01. b x = 0.05, θ = 1, γ = 0.01. c
x = 0.95, θ = 1, γ = 1. d x = 0.95, θ = 100, γ = 1

the larger the probability that a customers, after being served, leaves a queue as a
positive customer rather than as a negative one. We set, for a given θ, γ ∈ R+,

μ = θ1, Λ+ = 1, Λ− = γ 1.

The external arrival rate of positive customers Λ+ is kept fixed. We perform various
experiments varying the weights of the convex combination for matrices P+, P− and
the magnitude of the vectors μ,Λ−. Varying γ we can control the amount of negative
customers arriving in the network from the outside, while varying θ we control the
service rate of the queues. The parameters x, θ, γ have been selected in such a way
that the computed probabilities qi are strictly less than one, ensuring the stability of
the network.

6.1 Convergence

In Fig. 2 we have reported the relative errors e(k)
FRN, e

(k)
FP , e(k)

NR in typical scenarios. We
used N = 10 in all the experiments.

These plots confirm that FRN and FP have linear rate of convergence, while the
Newton-Raphson iteration has quadratic convergence rate. In all cases FP converges
faster than FRN, but the two methods perform differently: for small x (see Fig. 2b)
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Table 1 Convex combination structure

θ γ FRN FP NR max qi ρ(T ′(z∗)) RFRN

x = 0.05

1 10−2 38 36 6 7.39 × 10−1 3.58 × 10−1 3.7 × 10−1

1 1 22 20 5 4.49 × 10−1 1.58 × 10−1 1.73 × 10−1

1 102 7 6 4 1 × 10−2 8 × 10−5 5 × 10−4

102 10−2 15 9 4 1.05 × 10−2 9.2 × 10−3 5.42 × 10−2

102 1 15 9 4 1.1 × 10−2 9 × 10−3 5.4 × 10−2

102 102 13 6 3 5 × 10−3 2 × 10−3 2 × 10−4

x = 0.5

1 10−2 68 45 6 9.94 × 10−1 4.39 × 10−1 6.11 × 10−1

1 1 30 19 5 5.65 × 10−1 1.39 × 10−1 3.11 × 10−1

1 102 9 5 4 1 × 10−2 4 × 10−5 4 × 10−3

102 10−2 52 11 5 1.94 × 10−2 1.4 × 10−2 4.46 × 10−1

102 1 50 10 5 1.91 × 10−2 1.3 × 10−2 4.44 × 10−1

102 102 28 6 3 7 × 10−3 2 × 10−3 2.18 × 10−1

x = 0.95

1 1 46 12 5 9.35 × 10−1 3.17 × 10−2 4.53 × 10−1

1 102 12 5 4 1 × 10−2 6 × 10−6 9 × 10−3

102 10−2 207 10 5 7.22 × 10−2 1.65 × 10−2 8.38 × 10−1

102 1 175 9 5 6.4 × 10−2 1.12 × 10−2 8.06 × 10−1

102 102 50 5 3 1 × 10−2 4 × 10−4 4.36 × 10−1

Performance measures

FRN is particularly fast, reaching the same rate of FP, while for large x (see Fig. 2d)
FP nearly reaches NR rate. In all cases NR requires only a few iterations to reach
convergence, outperforming FP since both methods requires O(N 3) time per step. In
Sect. 6.2 a performance comparison between NR and FRN will be carried out: since
FRN requires only O(N 2) time per step, there will be a threshold N such that NR
converges faster than FRN for N ≤ N . FRN requires a particular large number of
iterations when x is close to one and the service rateμ is large, as we can see in Fig. 2d.

Table1 reports, for x = 0.05, 0.5, 0.95, θ = 1, 100 and γ = 0.01, 1, 100, the
number of iterations necessary to reach a relative error of the order of 10−16, the value
maxi=1,...,N qi , the spectral radius ρ(T ′(z∗)) of the Jacobian matrix of T (z) in z∗ and
the convergence ratio of the Fourneau iteration

RFRN = lim
k→∞

‖q(k+1) − q∗‖∞
‖q(k) − q∗‖∞

for k ≥ 0. The convergence ratio of the fixed point iteration is not reported as in
all cases it resulted equal to the upper bound ρ(T ′(z∗)) (see Theorem 10) up to four
decimal digits.
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The rows in bold correspond to the plots in Fig. 2. We make the following remarks:

– The smaller the negative customers outside arrival rate γ , the higher the steady-
state occupation probabilities qi -s, and the smaller the positive customers traffic
inside the network x the smaller the qi -s;

– ρ(T ′(z∗)) is decreasing in γ ;
– The number of iteration of FRN is increasing in x , while the number of iterations
of FP is decreasing in x ;

– Increasing the service rate (θ = 100) reduces the occupation probabilities qi -s, as
one would expect, and it has opposite effects on the performance of FNR: for small
x (i.e. the internal traffic is mostly constituted by negative customers), it reduces
the number of iterations, while for large x , it increases it.

We conclude that the smaller the value of Λ−, the slower the convergence of FP
and FRN. In particular, FRN performs better for small x , while FP performs better for
large x . In any case, FP requires less iterations than FRN. Moreover, FRN performs
particularly well for small x and large μ, and particularly bad for large x and large μ.
Finally, NR requires sensibly less iterations than FRN and FP in all cases.

6.2 CPU time

In this section we will compare the CPU time requested by the Fourneau and the
Newton-Raphson iteration for several values of the dimension N . We have shown that
NR requires just a few iterations to reach convergence, while FRN, in some cases, can
be very slow. This is due to the fact that NR has a quadratic rate of convergence, while
FRN has a linear rate, where the reduction of the error at each step can be close to 1.
However, FRN has a computational cost per step which grows as N 2, while NR has
a cost per step which grow as N 3, therefore we expect that there will be a threshold
N such that NR is preferable for the dimensions N ≤ N . This property will make NR
a suitable algorithm for applications such as the ones in [5,14], where the need is to
solve a huge number of different nonlinear equations (7) with small size N .

We do not perform the same comparison between FRN and FP as they are both
linearly convergent methods, while FP has a greater cost per step than FRN, making
it slower in almost all cases.

Below we report the results for the following case studies, where FRN performs
differently.

– Case A: x = 0.05, μ = 102 · 1, Λ+ = Λ− = 1 (FRN performance is particularly
good).

– Case B: x = 0.5, μ = 1 · 1, Λ+ = 1, Λ− = 10−2 · 1 (FRN performance is
average).

– Case C : x = 0.95, μ = 102 · 1, Λ+ = Λ− = 1 (FRN performance is particularly
bad).

For each case and for each value of N , many simulations have been performed and
the average CPU time over all the simulations is taken.

We observe that in Case A (Fig. 3a), the threshold is N = 14 and for smaller values
of N NR is slightly faster than FRN. In case B (Fig. 3b), the threshold is N = 44:
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Fig. 3 CPU time comparison between NR and FRN. a Case A. b Case B. c Case C . d Case C , zoom

NR is faster than FRN for small values of N . For N = 10, the dimension used in the
experiments in Sect. 6.1, NR is around 4 times faster than FRN. In caseC (Fig. 3c), the
threshold is around N = 620: FRN is very slow in this case, making NR a preferable
choice for moderate/large values of N . In particular, as reported in Fig. 3c, NR is
around 13 times faster than FRN for N = 10, 7.5 times faster for N = 40, 3.5 times
faster for N = 70 and roughly 2 times faster for larger values of N up to 300.

These results encourage the use of NR in problems where the computation of the
steady-state distributions of aG-networkmust be carried out a large number of times, as
in the context of supervised learning. This is because learning algorithms, as described
in [18], requires at each step the computation of the steady-state distribution of a
suitable G-network. In [18] it is advised to use the Fourneau algorithm, due to its
O(N 2) cost per step. However, as we have shown in this section, there are cases in
which the Newton-Raphson method is several times faster than the Fourneau iteration,
improving the performance of the learning algorithm. For instance, in [5] the authors
tackle the TrafficMatrix Estimation problem bymeans of training several G-networks,
each having dimension ranging from 9 to 14. They trained a total of m = 132 G-
network using a learning dataset composet of 288 input-output pairs, and according
to the gradient descent methods described in [9] this means that the system (7) must
be solved a number of times proportional to 132 × 288 = 38,016. In [5] the authors
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used particularly simple networks with three-layer feed-forward structure, for which
no particular algorithm is required in order to solve the correspondent systems (7). The
results obtained in [5] suggest that the approach can be refined by employing fully
recurrent G-networks, without restricting only to feed-forward structure. For such
networks efficient algorithms for the solution of the system (7) are needed, and given
the small dimension of the G-networks, employing the Newton-Raphson algorithm in
this setting can substantially improve the performances.
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