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Abstract 

 

In this paper the capability of the two-fluid model to describe the transition from stratified to slug flow is investigated, by 

employing three different numerical discretization techniques: classical finite volume, discontinuous Galerkin, and a Lagrangian 

finite volume approach. It is shown that stratified wavy flow can transition from well-posed to ill-posed following the Kelvin-

Helmholtz instability mechanism. In the ill-posed regime grid convergence cannot be obtained. However, with low order 

discretization methods, or coarse grids and time steps, well-posed numerical solutions can still be obtained. Such solutions should 

however be critically assessed because they seem to be physical while in fact they are meaningless. The conditional well-posedness 

of the two-fluid model therefore requires a careful discretization in order to use it for slug capturing. 
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1. Introduction 

In the petroleum industry multiphase flow occurs when 

transporting oil and gas through long multiphase pipeline 

systems. The behaviour of the flow can take many forms, 

depending on parameters like fluid velocities, pipe properties 

and fluid properties. An important flow regime is slug flow, in 

which liquid pockets, separated by gas bubbles, propagate in an 

alternating fashion with high speed along the pipeline. Such 

slugs have a large influence on the sizing of receiving facilities 

such as slug catchers or separators. The industry uses various 

flow models for simulating slug flow, but there is a need for 

increased accuracy. A promising approach is using so-called 

slug capturing, through the accurate numerical solution of the 

one-dimensional two-fluid model. This approach is believed to 

be capable of describing the transition from stratified flow to 

slug flow, see e.g. Ref. [1]. 

One of the issues in the transition from stratified flow to 

slug flow is that the two-fluid model can become ill-posed, see 

e.g. Ref. [2] and Ref [3]. Reference [2] mainly focuses on the 

effect of the spatial discretization and employs an 

incompressible model. Reference [3] also discusses the 

incompressible model and performs linear and nonlinear 

stability analyses. In this paper we instead consider the full 

compressible model and study several spatial and the temporal 

discretization methods and on ill-posedness and on convergence 

and stability. The paper is organized as follows: in section 2 the 

two-fluid model equations are explained, in section 3 the 

different discretization methods are presented, and in section 4 

results are shown for the Kelvin-Helmholtz instability 

2. Governing equations of the two-fluid model 

The governing equations of the one-dimensional two-fluid 

model consist of a mass and momentum conservation equation 

for each phase: 
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supplemented with the constraint  k

k

A A . Here    is the is 

cross-sectional area occupied by phase  . The density and the 

velocity of phase   are denoted by    and    respectively.     

represents the hydraulic level gradient term, which can be 

expressed in conservative form by integrating the hydrostatic 

pressure over the cross-sectional phase area   . The level 

gradient term for the gas and liquid phase will thus read (van 

Zwieten et al., Ref [4]):  
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Note that this model is more complete than the one in Ref. [2] 

since we take compressibility into account in all terms, 

including the level gradient term. 

 

 
 

Figure 1: Schematic two-phase stratified pipe flow. (a) The 

cross-section shows the definition of the perimeters and the 

interface height   which is defined relative to the pipe center. 

(b) Cross-section indicating the pipe coordinate x and 

inclination angle  . 

 

We assume an isothermal system, so that the density of the gas 

and liquid phases are given by an equation of state which is a 

function of pressure only. 
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2.1. Friction models 

The wall and interfacial shear stress are expressed by the 

Fanning friction factor definition: 
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We model the friction factor    of phase   with the pipe wall 

with Churchill’s relation (Ref [5]): 

 

 

1
12 12

1.5

16
1

0.9

16

8
2

Re

7
2.457ln 0.27

Re

37530

Re

k

k hk

k

f A B

A
D

B







  
       

                  

 
  
 

  (5) 

 

Here   is the hydraulic pipe roughness, Rek  is the Reynolds 

number, 
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and hkD  is the hydraulic diameter: 
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The interfacial friction factor      is calculated by: 

 

max{  ,0.014}int Gf f   (8) 

3. Discretization techniques 

Three different numerical discretization techniques are 

investigated in this paper: classical finite volume (CFV), 

discontinuous Galerkin (DG), and a Lagrangian finite volume 

(LFV) approach. The discontinuous Galerkin method combines 

features of both finite element and finite volume methods. The 

CFV and LFV methods share many similarities, though several 

aspects like discretization, solution procedure and pressure-

velocity coupling are treated differently. The LFV model is also 

capable of employing moving control volumes, though this 

aspect of the model is not of primary focus in this study and is 

thus not described in the LFV model description. All three 

models employ a staggered grid, illustrated in Figure 2. 

 

 
Figure 2: Staggered grid lay-out that is used for the finite 

volume schemes.  

 

The discrete equations for the mass and momentum equations of 

the three aforementioned models are presented in the following 

sections. Super-script n will be used to denote the time index, 

sub-script i represents the spatial index, while sub-script k 

represents the gas or liquid phase. A "hat" symbol (^) is placed 

above unknown new variables where a convection scheme like 

upwind or central difference is used. 

 

3.1. Classical Finite Volume (CFV)  

In this section the discretization of the classical finite 

volume approach will be explained. First the spatial 

discretization is discussed, followed by the temporal 

discretization. Finally, the interpolation of unknown quantities 

is discussed.   

 

Mass conservation equation: 

 

The mass conservation equation is discretized by integrating 

Eqn (1) over the p-volume 
,k iV . In our 1D framework this 

results in an integral in the x-direction which yields:  
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Momentum conservation equation: 

 

In a similar way we integrate Equation (2) over the u-volume (

, 1/2k iV 
) to obtain  
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          is the discrete level gradient. For the gas phase the 

discrete level gradient is calculated as: 
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The level gradient of the liquid phase is approximated in a 

similar fashion. For the central scheme, the unknown variables 

are calculated by: 
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For the FOU scheme, any unknown variable    is taken from 

the direction the flow is coming. Since the velocities are all 

positive in the current test case, we get: 
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Time integration: 

 

In order to advance the two-fluid model in time, a composite 

vector   which contains mass and momentum at all grid points 

is created. If we define                 and          

                         , this vector, for   grid points, will 

have the form: 
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The complete semi-discrete system can be then written as: 

( )
d

F
dt


U

U   (15) 

In this formulation we substituted the constraint to close the 

system. The temporal discretization used for the classical finite 

volume scheme is a BDF scheme: 
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We will consider two BDF schemes. The first one is a BDF1 

scheme, which is essentially a backward Euler scheme. For 

BDF1 the coefficients read:     ,      ,      and   
 . The second scheme we consider is the second order BDF2 

scheme with coefficients      ,        ,         

and       . 

 

For both the BDF1 and BDF2 scheme Eqn (16) constitutes a 

nonlinear system that needs to be solved for     , which we 

achieve by using a Newton approach. The fact that the system is 

solved for     , which contains the mass and momentum at 

each grid point, guarantees mass and momentum conservation 

independent of time step and grid size.  

 

3.2. Lagrangian Finite Volume (LFV) 

The LFV code is also a finite volume method, like the CFV 

code, but features some distinct differences:  

- Possibility to use moving control volumes (not used in the 

current study). 

- The constraint is implemented via a pressure equation. 

- The squared velocity in the convective momentum term 

consists of one central interpolation multiplied by a 

selected convection scheme, like first order upwind. The 

CFV model on the other hand uses the squared value of 

the selected convection scheme. 

Mass conservation equation: 
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Here, 
km  is the specific mass, defined by: 

k
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M
m

V
      (18) 

while 
k  and V are the hold-up fractions and total cell volume 

respectively. 

 

Momentum conservation equation: 

 

The momentum equation is solved for the change in velocity: 
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The level gradient term is discretized identical to what is done 

in the CFV method. 

 

Time integration and pressure-velocity coupling: 

 

In contrast to the CFV code, the LFV code implements the 

constraint by deriving a pressure equation. This equation is 

obtained by expanding the time derivative of mass in the 

continuous mass equation, Eqn (1), by the product rule, dividing 

by the fluid density and summing this equation over all phases:  
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The term n

i  represents a correction for a possible volume 

fraction error from the previous time step: 
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The momentum equation (Eqn (19)) first is solved for the 

change in velocity, using Eqn (20) to eliminate the unknown 

new pressure directly by substitution. After the momentum 

equation has been solved, the new velocity is inserted in the 

pressure equation (Eqn (20)) to obtain the change in pressure. 

The mass equation is then solved for the change in mass, and 

the procedure is repeated the volume fraction error (deviation 

from 1 in the sum of hold-up fractions) drops below 1e-8 in all 

simulations. 
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3.3. Discontinuous Galerkin (DG) 

The third discretization scheme is the space-time Discontinuous 

Galerkin Finite Element Method (short DG) described in Ref 

[4]. A DG scheme is similar to a (continuous) Finite Element 

scheme with the notable exception that basis functions are dis-

continuous at element edges. This enables the use of stabiliza-

tion mechanisms developed for Finite Volume schemes and 

naturally allows for nonconforming meshes. Due to being part 

of the family of Finite Element Methods it is relatively easy to 

construct a high-order scheme by increasing the order of the ba-
sis functions. 

In this paper we use a third-order, piecewise polynomial basis in 

both space and time, which gives a fourth-order accurate 

scheme for linear pde's or non-linear pde's with sufficiently 

smooth solutions. We use a structured, equidistant mesh with 

rectangular elements encompassing the complete space-time 

domain. Due to the structure of the mesh and causality in time, 

it is not necessary to solve the discrete problem on the complete 

mesh at once. Instead we separate the mesh in a sequence of 

time-slabs consisting of all elements with the same time interval 

and solve the discrete problem per time-slab, starting with the 

first. Note that this procedure is very similar to the time step-

ping methods used for the Finite Volume schemes, with the dif-

ference that with DG a solution is obtained for an entire time-

slab at once while with the Finite Volume schemes a solution is 
obtained at a single point in time per iteration. 

The stabilization method is adaptation of Roe's method: as a 

reference state for linearization we use the average solution val-

ue at the element edges and the eigenvalue problem is solved 

numerically. The complete non-linear discrete system for one 

time-slab is solved using Newton's method and the linear 

subproblem using a sparse, direct solver. For more details we 

refer the reader to van Zwieten et al. (Ref [4]). 

4. Results 

4.1. Introduction 

The test case we discuss considers the evolution of 

stratified flow to slug flow according to the Kelvin-Helmholtz 

instability mechanism, and is the same as described in the study 

by Liao et al. (Ref [2]) and van Zwieten et al. (Ref [4]). We 

investigate the effect of the different discretization methods on 

the growth of an initially smooth wave. 

 

The pipeline and fluid properties are given in 

Table 1. L is the pipe length, D is the inner pipe diameter,   is 

the pipe inclination and   the pipe roughness.  

 

Table 1: Pipeline and fluid properties. 

L D        
l  

g   l  

[m] [m] [°] [m] [kg/m3] Pa·s Pa·s 

1 0.078 0 1e-8 1000 1.8e-5 8.9e-4 

 

The liquid phase is assumed to be incompressible with density 

l . The density of the gas phase is given by: 

 
ref

G

ref

p

p


  ,  (22) 

where refp  and ref  are 105 Pa and 1.1614 kg/m3 respectively.  

 

The initial condition is a sinusoidal wave with the mean value 

and amplitude for the primitive variables listed in Table 2. The 

wave number is 2k  1m  and the angular frequency   is 

approximately 8.484 1s . For more information we refer to van 

Zwieten et al. (Ref [4]).  

 

 

 

Table 2: Initial conditions. 

,meanGu

  

,ampGu

  

,meanLu

 

L,ampu  ,meanl

 

,ampl

 

meanP

 

ampP

 

[m/s] [m/s] [m/s] [m/s] [-] [-] [Pa] Pa 

13.82 0.25 1 7e-3 0.5 0.01 105 3.7 

 

The mean values were computed by choosing the gas velocity 

and liquid holdup, and computing the resulting liquid velocity 

and pressure gradient from the steady state momentum balance 

obtained by combining the gas and liquid momentum equations, 

eliminating the pressure gradient (balancing friction and 

gravity). These initial values result in a required pressure 

gradient of 74.23 Pa/m, which was added as driving force 

(source term) to the momentum equations. Periodic boundary 

conditions are applied. 

 

By computing the characteristic roots of the system of mass and 

momentum equations, the following well-posedness criterion 

can be obtained:  
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This criterion is identical to the Inviscid Kelvin-Helmholtz 

criterion (IKH) derived by Barnea and Taitel (Ref [6]), and 

gives the inviscid limit at which the two-fluid model becomes 

ill-posed (characteristic roots becomes complex). 

According to Eqn (23), the test case is well-posed at the initial 

conditions specified in Table 2. However, a more detailed 

eigenvalue analysis shows that the initial condition is in the 

(viscous) well-posed unstable region, and consequently the 

initial perturbations will grow.  

 

 
Figure 3: Schematic of stability and well-posedness limits for 

the two-fluid model. 

 

4.2. Convergence behaviour in well-posed and ill-posed 

regions 

Simulations were run with the different codes, with 40, 80 and 

160 grid cells. The time step for each grid is calculated based on 

the CFL criterion for the liquid velocity:
LCFL

L

x
t

u


  . The 

liquid CFL number (
LCFL ) was calculated to be approximately 

0.9875, based on the initial wave number and angular 
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frequency, so that we get an integer cycle of the sinusoidal 

wave after each 60 time steps. 

On the left side of Figure 4 the liquid hold-up at different time 

instances is shown, corresponding to 1, 4 and 7 cycles of the 

wave moving through the domain. In black the exact analytical 

solution to the linearized system is added as a reference (note 

that this is only valid for small times). On the right side two of 

the four eigenvalues of the two-fluid model are shown (the 

other two correspond to fast pressure waves associated with 

acoustics, which are of less importance here). It can be seen that 

when time increases, the amplitude of the hold-up wave starts to 

grow. In Figure 4 (a) and (b) we clearly see convergence upon 

mesh refinement. We also observe that the higher order 

methods are much more accurate, although a fair comparison 

requires that we take into account the effect of computational 

time. In Figure 4 (c) the wave steepens and nonlinear effects are 

important. It can be seen that in the neighbourhood of the 

steepening, the real part of the eigenvalues are becoming equal. 

Closer inspection reveals that the eigenvalues are forming a 

complex conjugate pair. This indicates that the two-fluid model 

is not hyperbolic anymore and it therefore becomes ill-posed; 

Eqn (23) is violated. Related to this is that in the ill-posed 

region the different discretizations do not converge upon mesh 

refinement. This means that in essence the results of the two-

fluid model have become meaningless. It can be noted that the 

fourth-order DG scheme already shows ill-posedness for the 

medium grid N=80, while the other schemes are still well-posed 

for N=80. 

 

 
 

Figure 4: Wave evolution in terms of liquid hold-up and real 

part of eigenvalues after (a) 1, (b) 4 and (c) 7 cycles. LFV 

results are depicted with circles (○), CFV (BDF2) results are 

depicted with squares (□), and DG results are depicted with 

triangles ().  

 

4.3. Influence of discretization method on predicting ill-

posedness 

We further investigate the effect of the discretization on ill-

posedness by comparing the time instance at which complex 

eigenvalues first appear, 
Ct . For this study we focus on 

different discretization techniques using solely the CFV 

scheme. Figure 5 shows that, when the time step goes to zero, 

all methods converge towards the same 
Ct . Note that the grid is 

refined simultaneously with the time step since the CFL number 

is kept fixed.  

When the time step increases, we observe that the lowest order 

methods start to deviate first. 
Ct  rapidly increases, until a time 

step is reached for which complex eigenvalues are not found 

anymore. For time steps larger than this critical time step the 

simulations are well-posed, even though a refined – and 

therefore more accurate – simulation would indicate an ill-

posed problem. 

It is clear that this is an undesirable situation, since one can 

obtain seemingly meaningful results with a coarse grid or a low 

order discretization method, that are in fact meaningless. The 

advantage of higher order methods such as BDF2 instead of 

BDF1 (Backward Euler) is very clear here: with BDF2 we still 

obtain the ‘correct’ ill-posedness at time steps and grid sizes 

that are around 10 times larger than with BDF1. The advantage 

of BDF2 is not only apparent in terms of improved accuracy, 

but also, and maybe more importantly, in capturing the correct 

mathematical properties of the two-fluid model. 

 
Figure 5: Time instance at which complex eigenvalues first 

appear, as function of time step, for different discretization 

methods. 

 

5. Conclusions 

In this paper we have investigated the growth of waves in 

stratified flow as a model for the transition of stratified flow to 

slug flow in multiphase flow pipelines. In particular, we have 

studied the effect of different discretization methods on the 

wave growth and on the onset of ill-posedness. 

By studying the behaviour of the eigenvalues of the system 

of equations in space and time, it appears that during wave 

steepening the eigenvalues become complex. When 

simultaneously refining grid and time step, subsequent solutions 
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do not converge, i.e. they do not become grid independent when 

the eigenvalues are complex. However, given the same initial 

conditions, well-posed solutions can still be obtained when 

using low order discretization methods or coarse grids or time 

steps, although this is undesirable. 

The current paper therefore indicates that initially well-

posed, but unstable, waves in a stratified flow can grow to 

become ill-posed, before they have reached the top of the pipe, 

i.e. before stratified flow has transitioned to slug flow. This 

indicates that the transition from stratified flow to slug flow, at 

least for the conditions investigated in this paper, cannot be 

captured with the two-fluid model, since the model becomes ill-

posed. The ill-posedness of the model manifests itself in a lack 

of convergence upon grid and time step refinement, which 

essentially renders the simulation results in the ill-posed regime 

useless. We have shown in this paper that, depending on the 

discretization method employed, well-posed solutions might 

still be obtained when using low order discretizations or coarse 

grids, as typically used in practical studies with commercial 

simulators. Such solutions should however be critically assessed 

because they can appear to be physical while in fact they are 

meaningless. 

A number of options are available in literature to 

circumvent the ill-posedness of the two-fluid model, e.g. the 

inclusion of surface tension, axial diffusion, a virtual mass 

force, or a momentum flux parameter. For future work we 

recommend to investigate the effect of such terms on the 

transition from stratified to slug flow. 
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