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• A fundamental problem of Bayesian inference is solvable in a number of contexts.
• Computability assumptions turn out crucially to simplify the learning problem.
• Exceptions can be learned from positive data, a long-standing puzzle in language acquisition.
• Data alone is often sufficient to learn an underlying model in perception.
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a b s t r a c t

Within psychology, neuroscience and artificial intelligence, there has been increasing interest in the
proposal that the brain builds probabilistic models of sensory and linguistic input: that is, to infer a
probabilistic model from a sample. The practical problems of such inference are substantial: the brain
has limited data and restricted computational resources. But there is a more fundamental question: is
the problem of inferring a probabilistic model from a sample possible even in principle? We explore this
question and find some surprisingly positive and general results. First, for a broad class of probability
distributions characterized by computability restrictions, we specify a learning algorithm that will almost
surely identify a probability distribution in the limit given a finite i.i.d. sample of sufficient but unknown
length. This is similarly shown to hold for sequences generated by a broad class of Markov chains, subject
to computability assumptions. The technical tool is the strong law of large numbers. Second, for a large
class of dependent sequences, we specify an algorithmwhich identifies in the limit a computablemeasure
for which the sequence is typical, in the sense of Martin-Löf (there may be more than one such measure).
The technical tool is the theory of Kolmogorov complexity. We analyze the associated predictions in
both cases. We also briefly consider special cases, including language learning, and wider theoretical
implications for psychology.

© 2016 The Author(s). Published by Elsevier Inc.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Bayesianmodels in psychology and neuroscience postulate that
the brain learns a generative probabilistic model of a set of percep-
tual or linguistic data (Chater, Tenenbaum, & Yuille, 2006; Oaks-
ford & Chater, 2007; Pouget, Beck, Ma, & Latham, 2013; Tenen-
baum, Kemp, Griffiths, & Goodman, 2011). Learning is therefore
often viewed as an inverse problem. Some aspect of the world
is presumed to contain a probabilistic model, from which data is
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sampled; the brain receives a sample of such data, e.g., at its sen-
sory surfaces, and has the task of inferring the probabilistic model.
That is, the brain has to infer an underlying probability distribution,
from a sample from that distribution.

This theoretical viewpoint is implicit in awide range of Bayesian
models in cognitive science, which capture experimental data
across many domains, from perception, to categorization, lan-
guage,motor control, and reasoning (e.g., Chater&Oaksford, 2008).
It is, moreover, embodied in awide range of computationalmodels
of unsupervised learning in machine learning, computational lin-
guistics, computer vision (e.g., Ackley, Hinton, & Sejnowski, 1985;
Manning & Klein, 2003; Yuille & Kersten, 2006). Finally, the view
that the brain recovers probabilistic models from sensory data is
both theoretically prevalent and has received considerable empir-
ical support in neuroscience (Knill & Pouget, 2004).
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The idea that the brain may be able to recover a probabilistic
process froma sample of data from that process is an attractive one.
For example, a recovered probabilistic model might potentially
be used to explain past input or to predict new input. Moreover,
sampling new data from the recovered probabilistic model could
be used in the generation of new data from that probabilistic
process, for creating mental images (Shepard, 1984) or producing
language (Chater & Vitányi, 2007). Thus, from a Bayesian
standpoint, one should expect that the ability to perceive should
go alongside the ability to create mental images; and the ability
to understand language should go alongside the ability to produce
language. Thus, the Bayesian approach is part of the broader
psychological tradition of analysis-by-synthesis, for which there is
considerable behavioral and neuroscientific evidence in perceptual
and linguistic domains (Pickering & Garrod, 2013; Yuille & Kersten,
2006).

Yet, despite its many attractions, the proposal that the brain
recovers probabilistic processes from samples of data faces both
practical and theoretical challenges. The practical challenges in-
clude the fact that the available data may be limited (e.g., children
learn the probabilistic model of highly complex language using
only millions of words). Moreover, the brain faces severe compu-
tational constraints: even the limited amount of data encountered
will be encoded imperfectly and may rapidly be lost (Christiansen
& Chater, 2016; Haber, 1983). The brain has limited processing re-
sources to search and test the vast space of possible probabilistic
models that might generate the data available.

In this paper we explore the conditions under which exactly
inferring a probabilistic process from a stream of data is possible
even in principle, with no restrictions on computational resources
like time or storage or availability of data. If it turns out that
there is no algorithm that can learn a probabilistic structure from
sensory or linguistic experience when no computational or data
restrictions are imposed, then this negative result will still hold
when more realistic settings are examined.

Our analysis differs from previous approaches to these issues
by assuming that the probabilistic process to be inferred is, in a
way thatwill bemade precise later, computable. Roughly speaking,
the assumption is that the data to be analyzed is generated by
a process that can be modeled by a computer (e.g., a Turing
machine or a conventional digital computer) combined with a
source of randomness (for example, a fair coin that can generate
a limitless stream of random 0s and 1s that could be fed into
the computer). There are three reasons to suppose that this focus
on computable processes is interesting and not overly restrictive.
First, some influential theorists have argued that all physical
processes are computable in this, or stricter, senses (e.g., Deutsch,
1985). Second, most cognitive scientists assume that the brain is
restricted to computable processes, and hence can only represent
computable processes (e.g., Rescorla, 2015). According to this
assumption, if it turns out that some aspects of the physical
world are uncomputable, these will trivially be unlearnable simply
because they cannot be represented; and, conversely, all aspects of
learning of relevance to psychology, i.e., all aspects of the world
that the brain can successfully learn, will be within the scope of
our analysis. Third, all existing models of learning in psychology,
statistics and machine learning are computable (and, indeed, are
actually implemented on digital computers) and fall within the
scope of the present results.

1.1. Background: pessimism about learnability

Within philosophy of science, cognitive science, and formal
learning theory, a variety of considerations appear to suggest that
negative results are likely. For example, in the philosophy of sci-
ence it is often observed that theory is underdetermined by data
(Duhem, 1914–1954; Quine, 1951): that is, an infinite number of
theories is compatible with any finite amount of data, however
large. After all, these theories can all agree on any finite data set,
but diverge concerning any of the infinitely large set of possible
data that has yet to be encountered. This might appear to rule out
identifying the correct theory—and hence, a fortiori identify a cor-
rect probability distribution.

Cognitive science inherits such considerations, to the extent
that the learning problems faced by the brain are analogous to
those of inferring scientific theories (e.g., Gopnik, Meltzoff, & Kuhl,
1999). But cognitive scientists have also amplified these concerns,
particularly in the context of language acquisition. Consider,
for example, the problem of acquiring language from positive
evidence alone, i.e., from hearing sentences of the language, but
with no feedback concerningwhether the learner’s ownutterances
are grammatical or not (so-called negative evidence). It is often
assumed that this is, to a good approximation, the situation
faced by the child. This is because some and perhaps all children
receive little useful feedback on their own utterances and ignore
such feedback even when it is given (Bowerman, 1988). Yet,
even without negative evidence, children nonetheless learn their
native language successfully. For example, an important textbook
on language acquisition (Crain & Lillo-Martin, 1999) repeatedly
emphasizes that the child cannot learn restrictions on grammatical
rules from experience—and that these must therefore somehow
arise from innate constraints. For example, the English sentences
which team do you want to beat, which team do you wanna beat,
and which team do you want to win, would seem naturally to
imply that *which team do you wanna win is also a grammatical
sentence. As indicated by the asterisk, however, this sentence is
typically rejected as ungrammatical by native speakers. According
to classical linguistic theory (e.g., Chomsky, 1982), the contraction
towanna is not possible because it is blocked by a ‘‘gap’’ indicating
amissing subject—a constraint that has sometimes been presumed
to follow from an innate universal grammar (Chomsky, 1980).

The problem with learning purely from positive evidence is
that an overgeneral hypothesis, which does not include such
restrictions, will be consistentwith new data; given that languages
are shot through with exceptions and restrictions of all kinds, this
appears to provide a powerful motivation for linguistic nativism
(Chomsky, 1980). But this line of argument cannot be quite right,
because many exceptions are entirely capricious and could not
possibly follow from innate linguistic principles. For example,
the grammatical acceptability of I like singing, I like to sing, and
I enjoy singing would seem to imply, wrongly, the acceptability
of *I enjoy to sing. But the difference between the distributional
behavior of the verbs like and enjoy cannot stem from any innate
grammatical principles. The fact that children are able to learn
restrictions of this type, and the fact that they are so ubiquitous
throughout language, has even led some scholars to speak of the
logical problem of language acquisition (Baker & McCarthy, 1981;
Hornstein & Lightfoot, 1981).

Similarly, in learning the meaning of words, it is not clear how,
without negative evidence, the child can successfully retreat for
overgeneralization. If the child initially proposes that, for exam-
ple, dog refers to any animal, or that mummy refers to any adult
female, then further examples will not falsify this conjecture. In
word learning and categorization, and in language acquisition, re-
searchers have suggested that one potential justification for over-
turning an overgeneral hypothesis is that absence-of-evidence can
sometimes be evidence-of-absence (Hahn & Oaksford, 2008; Hsu,
Horng, Griffiths, & Chater, 2016). That is, a child might take the ab-
sence of people using the word dog when referring to cats or mice;
and the absence of Mummy being used to refer to other female
friends or family members might lead to the child to be in doubt
concerning their liberal use of these terms. But, of course, this line
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of reasoning is not straightforward—for example, when learning
any category thatmay apply in an infinite number of situations, the
overwhelming majority of these will not have been encountered.
It is not immediately clear how the child can tell the difference
between benign, and genuinely suspicious, absence of evidence.
The present results show that there is an algorithm that, under
fairly broad conditions, can deal successfully with overgeneraliza-
tionwith probability 1, given sufficient data and computation time.

Previous results in the formal analysis of language learnabil-
ity have reached more pessimistic conclusions, using different as-
sumptions (Gold, 1967; Jain, Osherson, Royer, & Sharma, 1999). For
example, as quoted in Pinker (1979), the pioneer of formal learn-
ing theory E. M. Gold points that ‘‘the problem with [learning only
from] text is that if you guess too large a language, the sample will
never tell you you’re wrong’’ (Gold, 1967, p. 461). This is true if we
allow very few assumptions about the structure of the text—and
indeed negative results in this area frequently depend on demon-
strating the existence of texts (i.e., samples of the language) with
rather unnatural behavior precisely designed to mislead any pu-
tative learner. We shall see below that realistic, though still quite
mild, assumptions, are sufficient to yield the opposite conclusion:
that probability distributions, including probability distributions
over languages, can be identified from positive instances alone.

1.2. Preview and examples

Consider, first, the case of independent, identical draws from a
probability distribution. In many areas of psychology, the learning
task is viewed as abstracting some pattern from a series of
independent trials rather than picking up sequential regularities
(although the i.i.d. assumption is not necessarily explicit). The i.i.d.
case is relevant to problems as diverse as classical conditioning
(Rescorla & Wagner, 1972, where a joint distribution between
conditioned and unconditioned stimulimust be acquired) category
learning (Shepard, Hovland, & Jenkins, 1961, where a joint
distribution of category instances and labels is the target), artificial
grammar learning or artificial language learning (Reber, 1989;
Saffran, Aslin, & Newport, 1996, where a probability distribution
over strings of letters or sounds is to be learned). Similarly,
the i.i.d. assumption is often implicit in learning algorithms in
cognitive science andmachine learning, such as, for example,many
Bayesian and neural network models in perception, learning and
categorization (e.g., Ackley et al., 1985).

Learning such potentially complex patterns from examples
may seem challenging. Yet even analyzing perhaps the simplest
case, learning the probability distribution of a biased coin is not
straightforward. For concreteness, consider flipping a coin, with
probability p of coming up heads. Suppose that we can flip the
coin endlessly, and can, at every point as the sequence of data
emerges, guess the value of p; we can change our mind as often
as we like. It is natural to wonder whether there is some procedure
for guessing such that, after some point, we stick to our guess—and
that this guess is, either certainly or with high probability, correct.
So, for example, if the coin is a fair coin, such that p = 0.5, can we
eventually lock on to the conjecture that the coin is fair and, after
some point, never change this conjecture however much data we
receive?

The answer is by no means obvious, even for such simple case.
After all, the difference between the number of heads and tails
will fluctuate, and can growarbitrarily large—and such fluctuations
might persuade us, wrongly, that the coin is biased in favor, or
against, heads. How sure can we be that, eventually, we will
successfully identify the precise bias of a coin that is biased,
e.g., where p = 3/4 or p = 1/3?

Or, to step up the level of complexity very considerable, con-
sider the problem of inferring a stochastic phrase structure gram-
mar from an indefinitely large sample of i.i.d. sentences generated
from that grammar.1 Or suppose the input is a sequence of im-
ages generated drawn from a probabilistic image model such as
a Markov random field—can a perceiver learn to precisely identify
the probabilistic model of the image, given sufficient data?

As we shall see in Section 3, remarkably, it turns out that, with
fairly mild restrictions (a restricted computability), with proba-
bility 1, it is possible to infer in the limit, the correct probability
distribution exactly, given a sufficiently large finite supply of i.i.d.
samples.Moreover, it is possible to specify a computable algorithm
that will reliably find this probability distribution. A similar result
holds for ergodic Markov chains, which broadens its application
considerably.

This result is unexpectedly strong, given mild restrictions on
computability (which we describe in detail below). In particular,
it shows that there is no logical problem concerning the possibility
of learning languages, or other patterns, which contain exceptions,
from positive evidence alone. As noted above, it has been
influentially argued in linguistics and the study of language
acquisition that exceptions (examples that are not possible) cannot
be learned purely by observing their non-occurrence, because
there are, after all, infinitely many linguistic forms which are
possible but also have not been observed (e.g., Crain & Lillo-Martin,
1999). A variety of arguments and results have suggested that,
despite such arguments, languages with exceptions can be learned
successfully (Chater, Clark, Goldsmith, & Perfors, 2015; Clark &
Lappin, 2010; Pullum & Scholz, 2002).

The present result shows that with the mentioned restrictions,
given i.i.d. data it is possible exactly to learn the probability
distribution of languages from a sample; or, from Markovian
outputs, it is possible exactly to learn the Markov chain involved.
An earlier result in Chater andVitányi (2007) showed that language
acquisition with sufficient data was possible on the assumption
that an ideal learner could find the shortest description of a corpus.
But finding the shortest description is known to be uncomputable.
By contrast, the present paper focuses on what can be learned
by a computable learner, provides an explicit algorithm by which
that learner can operate, and considers exact learning rather than
approximating the language arbitrarily accurately.

We also consider what can be learned if we weaken the
i.i.d. restriction (and the mentioned Markov chain restriction)
considerably—to deal with the possibility of learning sequential
data that is generated by a computable process (we make this
precise below). Many aspects of the environment, from the flow
of visual and auditory input, to the many layers of sequential
structure relating successive sentences, paragraphs, and chapters,
while reading a novel, are not well approximated by identical
independent sampling from a fixed distribution or the output of
a small Markov chain. Nonetheless, the brain appears to be able to
discover their structure, at least to some extent, with remarkable
effectiveness.

One particularly striking illustration of the power to predict
subsequent input is Shannon’s method for estimating the entropy
of English (Shannon, 1951). Successively predicting the next letter
in a text, given previous letters, one or two guesses often suffice,
leading to the conclusion that English texts typically can be en-
coded using littlemore than one bit of information per letter (while
more than four bitswould be required if the 26 letterswere treated

1 A stochastic phrase structure grammar is a conventional phrase structure
grammar, with probabilities associated with each of the rewrite rules. For example,
a noun phrase might sometimes expand to give a determiner followed by a
noun, while sometimes expanding to give a single proper noun; and individual
grammatical categories, such as proper nouns, map probabilistically on specific
proper nouns.
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as occurring independently). The ability to predict incoming se-
quential input is, of course, important for reacting to the physi-
cal or linguistic environment successfully, by predicting dangers
and opportunities and acting accordingly. Many theorists also see
finding structure in sequential material as fundamental to cogni-
tion and learning (Clark, 2013; Elman, 1990; Hollerman & Schultz,
1998; Kilner, Friston, & Frith, 2007).

If we weaken the i.i.d. or above Markovian assumption, what
alternative restriction on sequential structure can we impose, and
still obtain tractable analytical results? Clearly if there are no
restrictions on structure of the process at all, then there are no
constraints between prior and subsequent material. It turns out,
though, a surprisinglyminimal restriction is sufficient: we assume,
roughly, only that the sequential material is generated by a mildly
restricted computable dependent probabilistic process (this will be
made precise below). Unlike the i.i.d. orMarkov case, different such
processes could have generated this sample; but it turns out that,
given a finite sample that is long enough and that is guaranteed
to be the initial segment of an infinite typical output of one of
those computable dependent probabilistic processes, it is possible
to infer a single process exactly (out of a number of such processes)
according to which that sample is an initial segment of an infinite
typical sample. We shall discuss these issues in Section 4.

Throughout this paper, we focus on learning probabilities
themselves, rather than particular representations of probabilities.
If there is at least one computer program representing a function,
there are, of course, infinitely many such programs (representing
the data in slightly different ways, incorporating additional null
operations, and so on). The same is true for programs representing
probability distributions. For some purposes, these differences in
representation may be crucial. For example, psychologists and
linguists may be interested in which of an infinite number of
equivalent grammars – from the point of view of the sentences
allowed – is represented by the brain. But, from the point of view
of the problem of learning, we must treat them as equivalent.
Indeed, it is clear that no learningmethod from observations alone
could ever distinguish between models which generate precisely
the same probability distribution over possible observations.

Our discussion beginswith an introduction of our formal frame-
work, in the next section. We then turn to the case of i.i.d. draws
from a computable mass function, and to runs of a computable er-
godic Markov chain, using the strong law of large numbers as the
main technical tool. The next section Computable Measures consid-
ers learning material with computable sequential dependencies;
here the main technical tool is Kolmogorov complexity theory. We
then briefly consider whether these results have implications for
the problem of predicting future data, based on past data, before
we draw brief conclusions. The mathematical details and detailed
proofs are relegated to Appendices.

2. The formal framework

We follow in the general theoretical tradition of formal learning
theory, where we abstract away from specific representational
questions, and focus on the underlying abstract structure of the
learning problem.

One can associate the natural numbers with a lexicographic
length-increasing ordering of finite strings over a finite alphabet. A
natural number corresponds to the string ofwhich it is the position
in the thus established order. Since a language is a set of sentences
(finite strings over a finite alphabet), it can be viewed as a subset of
the natural numbers. (In the same way, natural numbers could be
associated with images or instances of a concept). The learnability
of a language under various computational assumptions is the
subject of an immensely influential approach in Gold (1965)
and especially (Gold, 1967), or the review (Jain et al., 1999).
But surely in the real world the chance of one sentence of a
language being used is different from another. For example, in
general short sentences have a larger chance of turning up than
very long sentences. Thus, the elements of a given language are
distributed in a certainway. There arises the problemof identifying
or approximating this distribution.

Our model is formulated as follows: we are given a sufficiently
long finite sequence of data consisting of elements drawn from
the set (language) according to a certain probability, and the
learner has to identify this probability. In general, however much
data has been encountered, there is no point at which the
learner can announce a particular probability as correct with
certainty. Weakening the learning model, the learner might learn
to identify the correct probability in the limit. That is, perhaps
the learner might make a sequence of guesses, finally locking on
to correct probability and sticking to it forever—even though the
learner can never know for sure that it has identified the correct
probability successfully. We shall consider identification in the
limit (following, for example, Gold, 1967; Jain et al., 1999; Pinker,
1979). Since this is not enough we additionally restrict the type of
probability.

In conventional statistics, probabilistic models are typically
idealized as having continuous valued parameters; and hence
there is an uncountable number of possible probabilities. In general
it is impossible that a learner can make a sequence of guesses that
precisely locks on to the correct values of continuous parameters.
In the realm of algorithmic information theory, in particular in
Solomonoff induction (Solomonoff, 1964) and here, we reason as
follows. The possible strategies of learners are computable in the
sense of Turing (1936), that is, they are computable functions. The
set of these is discrete and thus countable. The hypotheses that
can be learned are therefore countable and computable, and in
particular the set of probabilities from which the learner chooses
must be computable. Indeed, this argument can be interpreted as
showing that the fundamental problem is one of representation:
the overwhelming majority of real-valued parameters cannot be
representedby any computable strategy; andhence a fortiori cannot
possible be learned.

Our starting point is that it is only of interest to consider
the identifiability of computable hypotheses—because hypotheses
that are not computable cannot be represented, let alone learned.
Making this precise requires specifying what it means for a
probability distribution to be computable. Moreover, it turns
out that computability is not enough, it is also necessary that
the considered set of computable probabilities is computably
enumerable (c.e.) or co-computable enumerable (co-c.e.), all of
which are explained in Appendix A. Informally, a subset of a set
is c.e. if there is a computer which enumerates all the elements
of the subset but no element outside the subset (but in the
set). For example, the computable probability mass functions (or
computable measures) for which algorithms are known can be
computably enumerated in lexicographic order of the algorithms.
Hence they satisfy Theorem 1 (or Theorem 2). A subset is co-c.e. if
all elements outside the subset (but in the set) can be enumerated
by a computer. In our case the set comprises all computable
probability mass functions, respectively, all computable measures.
Since by Lemma 1 in Appendix A this set is not c.e., a subset
that is c.e. (or co-c.e.) is a proper subset, that is, it does not
contain all computable probabilitymass functions, respectively, all
computable measures.

In the exposition below, we consider two cases. In case 1, the
data are drawn independent identically distributed (i.i.d.) from
a subset of the natural numbers according to a probability mass
function in a c.e. or co-c.e. set of computable probability mass
functions, or consist of a run of a member of a c.e. or co-c.e. set
of computable ergodic Markov chains. For this case, there is, as we
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have noted, a learning algorithm that will almost surely identify a
probability distribution in the limit. This is the topic of Section 3.

In case 2 the elements of the infinite sequence are dependent
and the data sequence is typical for a measure from a c.e. or co-c.e.
set of computable measures. For this more general case, we prove
a weaker, though still surprising result: that there is an algorithm
which identifies in the limit a computable measure for which that
sequence is typical (in the sense introduced by Martin-Löf). These
results are the focus of Section 4.

2.1. Preliminaries

Let N , Q, R, and R+ denote the natural numbers, the rational
numbers, the real numbers, and the nonnegative real numbers,
respectively. We say that we identify a function f in the limit if we
have an algorithm which produces an infinite sequence f1, f2, . . .
of functions and fi = f for all but finitely many i. This corresponds
to the notion of ‘‘identification in the limit’’ in Gold (1967), Jain
et al. (1999), Pinker (1979) and Zeugmann and Zilles (2008). In this
notion at every step an object is produced and after a finite number
of steps the target object is produced at every step. However, we
do not know this finite number. It is as if you ask directions and the
answer is ‘‘at the last intersection turn right’’, but you do not know
which intersection is last. The functions f wewant to identify in the
limit are probability mass functions, Markov chains, or measures.

Definition 1. Let L ⊆ N and its associated probability mass func-
tion p a function p : L → R+ satisfying


x∈L p(x) = 1. A Markov

chain is an extension as in Definition 2. A measure µ is a function
µ : L∗

→ R+ satisfying the measure equalities in Appendix C.

2.2. Related work

In Angluin (1988) (citing previous more restricted work) a
target probability mass function was identified in the limit when
the data are drawn i.i.d. in the following setting. Let the target
probability mass function p be an element of a list q1, q2, . . .
subject to the following conditions: (i) every qi : N → R+

is a probability mass function; (ii) we exhibit a computable
total function C(i, x, ϵ) = r such that qi(x) − r ≤ ϵ with
r, ϵ > 0 are rational numbers. That is, there exists a rational
number approximation for all probability mass functions in the
list up to arbitrary precision, and we give a single algorithm
which for each such function exhibits such an approximation. The
technical means used are the law of the iterated logarithm and
the Kolmogorov–Smirnov test. However, the list q1, q2, . . . cannot
contain all computable probability mass functions because of a
diagonal argument, Lemma 1.

In Barron and Cover (1991) computability questions are
apparently ignored. The Conclusion states ‘‘If the true density
[and hence a probability mass function] is finitely complex [it
is computable] then it is exactly discovered for all sufficiently
large sample sizes’’. The tool that is used is estimation according
to minq(L(q) + log(1/

n
i=1 q(Xi))). Here q is a probability mass

function, L(q) is the length of its code and q(Xi) is the q-probability
of the ith random variable Xi. To be able tominimize over the set of
computable q’s, one has to know the L(q)’s. If the set of candidate
distributions is countably infinite, then we can never know when
theminimum is reached—hence at bestwehave then identification
in the limit. If L(q) is identified with the Kolmogorov complexity
K(q), as in Section 4 of this reference, then it is uncomputable as
already observed by Kolmogorov in Kolmogorov (1965) (for the
plain Kolmogorov complexity; the case of the prefix Kolmogorov
complexity K(q) is the same). Computable L(q) (given q) cannot
be computably enumerated; if they were this would constitute a
computable enumeration of computable q’s which is impossible
by Lemma 1. To obtain the minimum we require a computable
enumeration of the L(q)’s in the estimation formula. The results
hold (contrary to what is claimed in the Conclusion of Barron
and Cover (1991) and other parts of the text) not for the set of
computable probability mass functions since they are not c.e. The
sentence ‘‘you know but you don’t know you know’’ on the second
page of Barron and Cover (1991) does not hold for an arbitrary
computable mass probability.

In reaction to an earlier version of this paper with too large
claims as described in Appendix E, in Bienvenu, Monin, and Shen
(2014) it is shown that it is impossible to identify an arbitrary
computable probability mass function (or measure) in the limit
given an infinite sequence of elements from its support (which
sequence is guaranteed to be typical for some computablemeasure
in the measure case).

2.3. Results

The set of halting algorithms for computable probabilities (or
measures) is not c.e., Lemma 1 in Appendix A. This complicates
the algorithms and analysis of the results. In Section 3 there is
a computable probability mass function (the target) on a set of
natural numbers. We are given a sufficiently long finite sequence
of elements of this set that are drawn i.i.d. and are asked to identify
the target. An algorithm is presented which identifies the target in
the limit almost surely provided the target is an element of a c.e. or
co-c.e. set of halting algorithms for computable probability mass
functions (Theorem 1). This also underpins the result announced
in Hsu, Chater, and Vitányi (2011, Theorem 1 in the Appendix and
appeals to it in the main text of the reference) with the following
modification ‘‘computable probabilities’’ need to be replaced by
‘‘c.e. and co-c.e. sets of computable probabilities’’. If the target is
an element of a c.e. or co-c.e. set of computable ergodic Markov
chains then there is an algorithm with as input a sequence of
states of a run of the Markov chain and as output almost surely the
target (Corollary 1). The technical tool is in both cases the strong
law of large numbers. In Section 4 the set of natural numbers is
also infinite and the elements of the sequence are allowed to be
dependent. We are given a guarantee that the sequence is typical
(Definition 4) for at least one measure from a c.e. or co-c.e. set of
halting algorithms for computablemeasures. There is an algorithm
which identifies in the limit a computable measure for which the
data sequence is typical (Theorem 2). The technical tool is the
Martin-Löf theory of sequential tests (Martin-Löf, 1966) based on
Kolmogorov complexity. In Section 5 we consider the associated
predictions, and in Section 6we give conclusions. In Appendix Awe
review the used computability notions, in Appendix B we review
notions of Kolmogorov complexity, in Appendix C we review the
measure and computability notions that we use. We defer the
proofs of the theorems to Appendix D. In Appendix E we give the
tortuous genesis of the results.

3. Computable probability mass functions and i.i.d. drawing

To approximate a probability in the i.i.d. setting is well-known
and an easy example to illustrate our problem. One does this
by an algorithm computing the probability p(a) in the limit for
all a ∈ L ⊆ N almost surely given the infinite sequence
x1, x2, . . . of data i.i.d. drawn from L according to p. Namely, for
n = 1, 2, . . . for every a ∈ L occurring in x1, x2, . . . , xn set pn(a)
equal to the frequency of occurrences of a in x1, x2, . . . , xn. Note
that the different values of pn sum to precisely 1 for every n =

1, 2, . . . . The output is a sequence p1, p2, . . . of probability mass
functions such that we have limn→∞ pn = p almost surely, by the
strong law of large numbers (see Claim 1). The probability mass
functions considered here consist of all probability mass functions



18 P.M.B. Vitányi, N. Chater / Journal of Mathematical Psychology 76 (2017) 13–24
on L—computable or not. The probability mass function p is thus
represented by an approximation algorithm.

In this paper we deal only with computable probability mass
functions. If p is computable then it can be represented by a halting
algorithm which computes it as defined in Appendix A. Most
known probability mass functions are computable provided their
parameters are computable. In order that it is computable we only
require that the probability mass function is finitely describable
and there is a computable process producing it (Turing, 1936).

One issue is how short the code for p is, a second issue is the
computability properties of the code for p, and a third issue is
how much of the data sequence is used in the learning process.
The approximation of p above results in a sequence of codes of
probabilities p1, p2, . . . which are lists of the sample frequencies
in an initial finite segment of the data sequence. The code length
of the list of frequencies representing pn grows usually to infinity
as the length n of the segment grows to infinity. The learning
process involved uses all of the data sequence and the result is
an encoding of the sample frequencies in the data sequence in the
limit. The code for p is usually infinite. This holds as well if p is
computable. Such an approximation contrasts with identification
in the following.

Theorem 1 (i.i.d. Computable Probability Identification). Let L be a
set of natural numbers and p be a probability mass function on L.
This p is described by an element of a c.e. or co-c.e. set of halting
algorithms for computable probability mass functions. There is an
algorithm identifying p in the limit almost surely from an infinite
sequence x1, x2, . . . of elements of L drawn i.i.d. according to p. The
code for p via an appropriate Turing machine is finite. The learning
process uses only a finite initial segment of the data sequence and takes
finite time.

We do not know how large the finite items in the theorem are.
The proof of the theorem is deferred to Appendix D. The intuition
is as follows. By assumption the target probability mass function
is a member of a linear list of halting algorithms for computable
probability mass functions listed as list A. By the strong law of
large numbers we can approximate the target probability mass
function by the samplemeans. Since themembers ofA are linearly
ordered we can after each new sample compute the least member
which agrees best according to a certain criterionwith the samples
produced thus far. At some stage this least element does not change
any more.

Example 1. Since the c.e. and co-c.e. sets strictly contain the
computable sets, Theorem 1 is strictly stronger than the result in
Angluin (1988) referred to in Section 2.2. It is also strictly stronger
than Barron and Cover (1991) that does not give identification in
the limit for classes of computable functions.

Define the primitive computable probability mass functions
as the set of probability mass functions for which it is decidable
that they are constructed from primitive computable functions.
Since this set is computable it is c.e. The theorem shows that
identification in the limit is possible for members of this set.
Define the time-bounded probability mass functions for any fixed
computable time bound as the set of elements for which it is
decidable that they are computable probability mass functions
satisfying this time bound. Since this set is computable it is c.e.
Again, the theorem shows that identification in the limit is possible
for elements from this set.

Another example is as follows. Let L = {a1, a2, . . . , an} be a fi-
nite set. The primitive recursive functions f1, f2, . . . are c.e. Hence
the probability mass functions p1, p2, . . . on L defined by pi(aj) =

fi(j)/
n

h=1 fi(h) are also c.e. Let us call these probabilitymass func-
tions simple. By Theorem 1 they can be identified in the limit. ♦
The class of probability mass functions for which the present
result applies is very broad. Suppose, for example, that we frame
the problem of language acquisition in the following terms: a
corpus is created by i.i.d. sampling from some primitive recursive
language generation mechanism (for example, a stochastic phrase
structure grammar (Charniak, 1996) with rational probabilities, or
an equivalent, but more cognitively motivated formalism such as
tree-adjoining grammar (Joshi & Schabes, 1997) or combinatory
categorical grammar (Steedman, 2000). That is, the algorithm
described here will search possible programs which correspond
to generators of grammars, and will eventually find, and never
change from, a stochastic grammar that precisely captures the
probability mass function that generated the linguistic data. That
is, the present result implies that there is a learning algorithm
that identifies in the limit the probability mass function according
to which these sentences are generated with probability 1. Of
course, theremay, in general, within any reasonably rich stochastic
grammar formalism, bemanyways of representing the probability
distribution over possible sentences (just as there are many
computer programs that code for the same function). Of course, no
learning process can distinguish between these, precisely because
they are, by assumption, precisely equivalent in their predictions.
Hence, an appropriate goal of learning can only be to find the
underlying probability mass function, rather than attempting the
impossible task of inferring the particular representation of that
function.

The result applies, of course, not just to language but to learning
structure in perceptual input, such as visual images. Suppose
that a set of visual images is created by i.i.d. sampling from a
Markov random field with rational parameters (Li, 2012); then
there will be a learning algorithm which identifies in the limit
the probability distribution over these images with probability
1. The result applies, also, to the unsupervised learning of
environmental structure from data, for example by connectionist
learning methods (Ackley et al., 1985) or by Bayesian learning
methods (Chater et al., 2006; Pearl, 2014; Tenenbaum et al., 2011).

3.1. Markov chains

I.i.d. draws from a probability mass function is a special case
of a run of a discrete Markov chain. We investigate which Markov
chains have an equivalent of the strong law of large numbers.
Theorem 1 then holds mutatis mutandis for these Markov chains.
First we need a few definitions.

Definition 2. A sequence of random variables (Xt)
∞

t=0 with out-
comes in a finite or countable state space S ⊆ N is a discrete time-
homogeneous Markov chain if for every ordered pair i, j of states
the quantity qi,j = Pr(Xt+1 = j|Xt = i) called the transition prob-
ability from state i to state j, is independent of t . If M is such a
Markov chain then its associated transition matrix Q is defined as
Q := (qi,j)i,j∈N . The matrix Q is non-negative and its row sums
are all unity. It is infinite dimensional when the number of states
is infinite.

In the sequel we simply speak of ‘‘Markov chains’’ and assume they
satisfy Definition 2.

Definition 3. A Markov chain M is ergodic if it has a stationary
distribution π = (πx)x∈S satisfying πQ = π and for every
distribution σ ≠ π holds σQ ≠ σ . This stationary distribution
π satisfies πx > 0 for all x ∈ S and


x∈S πx = 1. With Xt being the

state of the Markov chain at epoch t starting from X0 = x0 ∈ S we
have

lim
n→∞

1
n

n
t=1

Xt = Eπ [X] =


x∈S

πxx, (3.1)
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approximating theoretical means by sample means. An ergodic
Markov chain is computable if its transition probabilities and
stationary distribution are computable.

Corollary 1 (Identification Computable ErgodicMarkov Chains).Con-
sider a c.e. or co-c.e. set of halting algorithms for computable ergodic
Markov chains. Let M be an element of this set. There is an algorithm
identifying M in the limit almost surely from an infinite sequence
x1, x2, . . . of states of M produced by a run of M. The code for M
via an appropriate Turing machine is finite. The learning process uses
only a finite initial segment of the data sequence and takes finite time.

Example 2. Let M be an ergodic Markov chain with a finite set S
of states. There exists a unique distribution π over S with strictly
positive probabilities such that

lim
s→∞

qsi,j = πj,

for all states i and j. In this case we have that π0Q t
→ π pointwise

as t → ∞ and the limit is independent of π0. The stationary
distribution π is the unique vector satisfying πQ = π , where

i πi = 1. (Necessary and sufficient conditions for ergodicity
are that the chain should be irreducible, that is, for each pair of
states i, j there is an s ∈ N such that qsi,j > 0 (state j can be
reached from state i in a finite number of steps); and aperiodic, the
gcd{s : qsi,j > 0} = 1 for all i, j ∈ T .)

Equation πQ = π is a system of N linear equations in N
unknowns (the entries πj). We can solve the unknowns by a
computable procedure: in the first equation express one variable
in terms of the others; substitute the expression into the remaining
equations; repeat this process until the last equation; solve it and
then back substitute until the total solution is found.

Since π is unique, the system of linear equations has a unique
solution. If the original entries of Q are computable, then this
process keeps the entries of π computable as well. Therefore, if
the transition probabilities of the Markov chain are computable,
then the stationary distributionπ is a computable probabilitymass
function. We now invoke the Ergodic Theorem approximating
theoretical means by sample means (Feller, 1968; Lange, 2005) as
in (3.1). ♦

4. Computable measures

In the i.i.d. case we dealt with a process where the future was
independent of the present or the past, in the Markov case we
extended this independence such that the immediate future is
determined by the present but not by the past of too long ago.
What can be shown if we drop the assumption of independence
altogether? Then we go to measures as defined in Appendix C.
As far as the authors are aware, for general measures there exists
neither an approximation as in Section 3nor an analog of the strong
law of large numbers. However, there is a notion of typicality of an
infinite data sequence for a computable measure in the Martin-Löf
theory of sequential tests (Martin-Löf, 1966) based on Kolmogorov
complexity, and this is what we use.

Let L ⊆ N and µ be a measure on L∞ in a c.e. or co-c.e. set
of halting algorithms for computable measures. In this paper, in-
stead of the common notation µ(Γx) we use the simpler notation
µ(x). We are given a sequence in L∞ which is typical (Definition 4
in Appendix C) for µ. The constituent elements of the sequence
are possibly dependent. The set of typical infinite sequences of a
computable measure µ have µ-measure one, and each typical se-
quence passes all computable tests for µ-randomness in the sense
of Martin-Löf. This probability model is much more general than
i.i.d. drawing according to a probability mass function. It includes
stationary processes, ergodic processes, Markov processes of any
order, andmany othermodels. In particular, this probabilitymodel
includesmany of themodels used inmathematical psychology and
cognitive science.
Theorem 2 (Computable Measure Identification). Let L be a set of
natural numbers. We are given an infinite sequence of elements from
L and this sequence is guaranteed to be typical for at least one
measure in a c.e. or co-c.e. set of halting algorithms for computable
measures. There is an algorithmwhich identifies in the limit (certainly)
a computable measure in the c.e. or co-c.e set above for which the
sequence is typical. The code for this measure is an appropriate Turing
machine and is finite. The learning process takes finite time and uses
only a finite initial segment of the data sequence.

The proof is deferred to Appendix D.2 We give an outline of the
proof of Theorem 2. Let B be a list of a c.e. or co-c.e. set of halting
algorithms for computable measures. Assume that each measure
occurs infinitely many times in B. For a measure µ in the list B
define

σ(j) = log 1/µ(x1 . . . xj) − K(x1 . . . xj).

By (C.2) in Appendix C, data sequence x1, x2, . . . is typical for µ iff
supj σ(j) = σ < ∞. By assumption there exists ameasure inB for
which the data sequence is typical. Letµh be such ameasure. Since
halting algorithms for µh occur infinitely often in the list B there
is a halting algorithm µh′ in the list B with σh′ = σh and σh < h′.
This means that there exists a measure µk in B for which the data
sequence x1, x2, . . . is typical and σk < k with k least.

Example 3. Let us look at some applications. Define the primitive
recursive measures as the set of objects for which it is decidable
that they are measures constructed from primitive recursive
functions. Since this set is computable it is c.e. The theorem shows
that identification in the limit is possible for primitive recursive
measures.

Define the time-bounded measures for any fixed computable
time bound as the set of objects for which it is decidable that
they are measures satisfying this time bound. Since this set is
computable it is c.e. Again, the theorem shows that identification
in the limit is possible for elements from this set.

Let L be a finite set of cardinality l, and f1, f2, . . . be a c.e. set
of the primitive recursive functions with domain L. Computably
enumerate the strings x ∈ L∗ in lexicographical length-increasing
order. Then every string can be viewed as the integer giving its
position in this order. Let ϵ denote the empty word, that is, the
string of length 0. Confusion with the notation ϵ equals a small
quantity is avoided by the context. Define µi(ϵ) = fi(ϵ)/fi(ϵ) =

1, and inductively for x ∈ L∗ and a ∈ L define µi(xa) =

fi(xa)/


a∈L fi(xa). Then µi(x) =


a∈L µi(xa) for all x ∈ L∗.
Therefore µi is a measure. Call the c.e. set µ1, µ2, . . . the simple
measures. The theorem shows that identification in the limit is
possible for the set of simple measures. ♦

5. Prediction

In Section 3 the data are drawn i.i.d. according to an appropriate
probability mass function p on the elements of L. Given p, we can
predict the probability p(a|x1, . . . , xn) that the next draw results
in an element a when the previous draws resulted in x1, . . . , xn.
(The resulting measure on L∞ is called an i.i.d. measure.) Once we
have identified p, prediction is possible (actually after a finite but
unknown running time of the identifying algorithm). The same
holds for ergodic Markov chains (Corollary 1). This is reassuring

2 Theorems 2 and 1 are incomparable although it is tempting to think the latter is
a corollary of the former. The infinite sequences considered in Theorem2 are typical
for some computable measure. Restricted to i.i.d. measures (the case of Theorem 1)
such sequences are a proper subset from those resulting from i.i.d. draws from
the corresponding probability mass function. This is the reason why the result of
Theorem 2 is ‘‘certain’’ and the result from Theorem 1 is ‘‘almost surely’’.
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for cognitive scientists and neuroscientists who see prediction as
fundamental to cognition (Clark, 2013; Elman, 1990; Hollerman &
Schultz, 1998; Kilner et al., 2007).

For general measures as in Section 4, allowing dependent data,
the situation is quite different. We can meet the so-called black
swan phenomenon of Popper (1959). Let us give a simple example.
The data sequence is a, a, . . . is typical (Definition 4) for the mea-
sure µ1 defined by µ1(x) = 1 for every data sequence x consisting
of a finite or infinite string of a’s and µ1(x) = 0 otherwise. But
a, a, . . . is also typical for the measure µ0 defined by µ0(x) =

1
2

for every string x consisting of a finite or infinite string of a’s, and
µ0(x) =

1
2 for a string x consisting of initially a fixed number n

of a’s followed by a finite or infinite string of b’s, and 0 otherwise.
Then, µ1 and µ0 give different predictions with an initial n-length
sequence of a’s. But given a data sequence consisting initially of
only a’s, a sensible algorithm will predict a as the most likely next
symbol. However, if the initial data sequence consists of n symbols
a, then for µ1 the next symbol will be awith probability 1, and for
µ0 the next symbol is a with probability 1

2 and b with probability
1
2 . Therefore, while the i.i.d. case allows us to predict reliably, in
the dependent case there is in general no reliable predictor for the
next symbol. In Blackwell and Dubins (1962), however, Blackwell
and Dubin show that under certain conditions predictions of two
measures merge asymptotically almost surely.

6. Conclusion

Many psychological theories see learning from data, whether
sensory or linguistic, as a central function of the brain. Such
learning faces great practical difficulties—the space of possible
structures is very large and difficult to search, the computational
power of the brain is limited, and the amount of available datamay
also be limited. But it is not clear under what circumstances such
learning is possible even with unlimited data and computational
resources. Here we have shown that, under surprisingly general
conditions, some positive results about identification in the limit
in such contexts can be established.

Using an infinite sequence of elements (or a finite sequence of
large enough but unknown length) from a set of natural numbers,
algorithms are exhibited that identify in the limit the probability
distribution associated with this set. This happens in two cases.
(i) The underlying set is countable and the target distribution
is a probability mass function (i.i.d. measure) in a c.e. or co-
c.e. set of computable probability mass functions. The elements
of the sequence are drawn i.i.d. according to this probability
(Theorem1). This result is extended to computable ergodicMarkov
chains (Corollary 1). (ii) The underlying set is countable and
the infinite sequence is possibly dependent and is typical for a
computablemeasure in a c.e. or co-c.e. set of computablemeasures
(Theorem 2).

In the i.i.d. case and the ergodic Markov chain case the target
is identified in the limit almost surely, and in the dependent case
the target computable measure is identified in the limit surely—
however it is not unique but one out of a set of satisfactory com-
putable measures. In the i.i.d. case and Markov case we use the
strong law of large numbers. For the dependent case we use typi-
cality according to the theory developed by Martin-Löf in Martin-
Löf (1966) which is embedded in the theory of Kolmogorov com-
plexity.

In both the i.i.d., the Markovian, and the dependent settings,
eventually we guess an index of the target (or one target out of
some possible targets in the measure case) and stick to this guess
forever. This last guess is correct. However, we do not know when
the guess becomes permanent. We use only a finite unknown-
length initial segment of the data sequence. The target for which
the guess is correct is described by an appropriate Turing machine
computing the probability mass function, Markov chain, or mea-
sure, respectively.

These results concerning algorithms for identification in the
limit consider what one might term the ‘‘outer limits’’ of what
is learnable, by abstracting away from computational restrictions
and a finite amount of data available to human learners. Nonethe-
less, such general results may be informative when attempting
to understand what is learnable in more restricted settings. Most
straightforwardly, that which is not learnable in the unrestricted
casewill, a fortiori, not be learnablewhen computational or data re-
strictions are added. It is also possible that some of the proof tech-
niques used in the present context can be adapted to analyzemore
restricted, and hence more cognitively realistic, settings.
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Appendix A. Computability

We can interpret a pair of integers such as (a, b) as rational a/b.
A real function f with rational argument is lower semicomputable
if it is defined by a rational-valued computable function φ(x, k)
with x a rational number and k a nonnegative integer such that
φ(x, k + 1) ≥ φ(x, k) for every k and limk→∞ φ(x, k) = f (x).
This means that f can be computably approximated arbitrary
closely from below (see Li & Vitányi, 2008, p. 35). A function
f is upper semicomputable if −f is semicomputable from below.
If a real function is both lower semicomputable and upper
semicomputable then it is computable. A function f : N → R+ is
a probability mass function if


x f (x) = 1. It is customary to write

p(x) for f (x) if the function involved is a probability mass function.
A set A ⊆ N is computable enumerable (c.e.) when we can

compute the enumeration a1, a2, . . . with ai ∈ A (i ≥ 1). A c.e. set
is also called recursively enumerable (r.e.). A co-c.e. set B ⊆ N is a
set whose complementN \B is c.e. (A set is c.e. iff it is at level60

1 of
the arithmetic hierarchy and it is co-c.e. iff it is at level 50

1.) If a set
is both c.e. and co-c.e. then it is computable. A halting algorithm for
a computable function f : N → R is an algorithm which given an
argument x and any rational ϵ > 0 computes a total computable
rational function f̂ : N × Q → Q such that |f (x) − f̂ (x, ϵ)| ≤ ϵ.

Example 4. We give an example of the relation between co-c.e.
and identification in the limit. Consider a c.e. set A of objects and
the co-c.e. set B such that N \ B = A. We call the members
of B the good objects and the members of A the bad objects.
We do not know in what order the bad objects are enumerated
or repeated; however we do know that the remaining items are
the good objects. These good objects with possible repetitions
form the enumeration B. It takes unknown time to enumerate
an initial segment of B, but we are sure this happens eventually.
Hence to identify the kth element in the enumeration B requires
identification of the first 1, . . . , k − 1 elements. This constitutes
identification in the limit. ♦

Example 5. It is known that the overwhelming majority of real
numbers are not computable. If a real number a is lower semi-
computable but not computable, then we can computably find
nonnegative integers a1, a2, . . . and b1, b2, . . . such that an/bn ≤

http://arxiv.org/1208.5003
http://arxiv.org/1311.7385
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an+1/bn+1 and limn→∞ an/bn = a. If a is the probability of success
in a trial then this gives an example of a lower semicomputable
probability mass function which is not computable. ♦

Suppose we are concerned with all and only computable probabil-
ity mass functions. There are countably many since there are only
countably many computable functions. But can we computably
enumerate them?

Lemma 1. (i) Let L ⊆ N and infinite. The computable positive
probability mass functions on L are not c.e.

(ii) Let L ⊆ N with |L| ≥ 2. The computable positive measures on L
are not c.e.

Proof. (i) Assume to the contrary that the lemma is false and
the computable enumeration is p1, p2, . . . . Compute a probability
mass function pwith p(ai) ≠ pi(ai) where ai ∈ L is the ith element
of L as follows. If i is odd then p(ai) := pi(ai) + pi(ai)pi+1(ai+1)
and p(ai+1) := pi+1(ai+1) − pi(ai)pi+1(ai+1). By construction p is a
computable positive probability mass function but different from
any pi in the enumeration p1, p2, . . . .

(ii) The set L∗ is c.e. Hence the set of cylinders in L∞ is c.e.
Therefore (ii) reduces to (i). •

Remark 1. Every probability mass function is positive on some
support L ≠ ∅ and 0 otherwise. Hence Lemma 1 holds for all
probability mass functions. ♦

Appendix B. Kolmogorov complexity

We need the theory of Kolmogorov complexity (Li & Vitányi,
2008) (originally in Kolmogorov, 1965 and the prefix version we
use here originally in Levin, 1974). A prefix Turing machine is
a Turing machine with a one-way read-only input tape with a
distinguished tape cell called the origin, a finite number of two-
way read–write working tapes on which the computation takes
place, an auxiliary tape on which the auxiliary string y ∈ {0, 1}∗ is
written, and a one-way write-only output tape. At the start of the
computation the input tape is infinitely inscribed from the origin
onwards, and the input head is on the origin. Themachine operates
with a binary alphabet. If themachine halts then the input head has
scanned a segment of the input tape from the origin onwards. We
call this initial segment the program.

By the construction above, for every auxiliary y ∈ {0, 1}∗, the
set of programs is a prefix code: no program is a proper prefix of
any other program. Consider a standard enumeration of all prefix
Turing machines

T1, T2, . . . .

Let U denote a prefix Turing machine such that for every z, y ∈

{0, 1}∗ and i ≥ 1 we have U(i, z, y) = Ti(z, y). That is, for each
finite binary program z, auxiliary y, and machine index i ≥ 1, we
have that U ’s execution on inputs i and z, y results in the same
output as that obtained by executing Ti on input z, y. We call such
a U a universal prefix Turing machine.

However, there are more ways a prefix Turing machine can
simulate other prefix Turing machines. For example, let U ′ be such
that U ′(i, zz, y) = Ti(z, y) for all i and z, y, and U ′(p) = 0 for
p ≠ i, zz, y for some i, z, y. Then U ′ is universal also. To distinguish
machines like U with nonredundant input from other universal
machines, Kolmogorov (1965) called them optimal.

Fix an optimal machine, say U . Define the conditional prefix
Kolmogorov complexity K(x|y) for all x, y ∈ {0, 1}∗ by K(x|y) =

minp{|p| : p ∈ {0, 1}∗and U(p, y) = x}. (Here U has two argu-
ments rather than three. We consider the first argument to encode
the first two arguments of the previous three.) For the same U ,
define the time-bounded conditional prefix Kolmogorov complexity
K t(x|y) = minp{|p| : p ∈ {0, 1}∗and U(p, y) = x in t steps}. To
obtain the unconditional versions of the prefix Kolmogorov com-
plexities set y = ϵ where ϵ is the empty word (the word with
no letters). It can be shown that K(x|y) is uncomputable (Kol-
mogorov, 1965). Clearly K t(x|y) is computable if t < ∞. Moreover,
K t ′(x|y) ≤ K t(x|y) for every t ′ ≥ t , and limt→∞ K t(x|y) = K(x|y).

Appendix C. Measures and computability

Let L ⊆ N . Given a finite sequence x = x1, x2, . . . , xn of
elements of L, we consider the set of infinite sequences starting
with x. The set of all such sequences is written as Γx, the cylinder
of x. We associate a probability µ(Γx) with the event that an
element of Γx occurs. Here we simplify the notation µ(Γx) and
write µ(x). The transitive closure of the intersection, complement,
and countable union of cylinders gives a set of subsets of L∞. The
probabilities associated with these subsets are derived from the
probabilities of the cylinders in standardways (Kolmogorov, 1933).
A measure µ satisfies the following equalities:

µ(ϵ) = 1 (C.1)

µ(x) =


a∈L

µ(xa).

Let x1, x2, . . .be an infinite sequence of elements of L. The sequence
is typical for a computable measure µ if it passes all computable
sequential tests (known and unknown alike) for randomness with
respect to µ. These tests are formalized by Martin-Löf (1966). One
of the highlights of the theory of Martin-Löf is that the sequence
passes all these tests iff it passes a single computable universal test,
Li and Vitányi (2008, Corollary 4.5.2 on p 315), see also Martin-Löf
(1966).

Definition 4. Let x1, x2, . . . be an infinite sequence of elements
of L ⊆ N . The sequence is typical or random for a computable
measure µ iff

sup
n


log

1
µ(x1 . . . xn)

− K(x1 . . . xn)


< ∞. (C.2)

The set of infinite sequences that are typical with respect to amea-
sure µ have µ-measure one. The theory and properties of such se-
quences for computable measures are extensively treated in Li and
Vitányi (2008, Chapter 4). There the term K(x1 . . . xn) in (C.2) is
given as K(x1 . . . xn|µ). However, since µ is computable we have
K(µ) < ∞ and therefore K(x1 . . . xn|µ) ≤ K(x1 . . . xn) + O(1).

Example 6. Let k be a positive integer and fix an a ∈ {1, . . . , k}.
Define measure µk by µk(ϵ) = 1 and µk(x1 . . . xn) = 1/k for
n ≥ 1 and xi = a for every 1 ≤ i ≤ n, and µk(x1 . . . xn) =

(1 − 1/k)/(kn − 1) otherwise. Then K(a . . . a) (a sequence of n
elements a) equals K(a, n) + O(1) = O(log n+ log k). (A sequence
of n elements a is described by n in O(log n) bits and a in O(log k)
bits.) By (C.2)we have supn∈N {log 1/µk(a . . . a)−K(a . . . a)} < ∞.
Therefore the infinite sequence a, a, . . . is typical for every µk.
However, the infinite sequence y1, y2, . . . is not typical forµk with
yi ∈ {1, . . . , k} (1 ≤ i ≤ k) and yi ≠ yi+1 for some i. Namely,
supn∈N {log 1/µk(y1y2 . . . yn) − K(y1y2 . . . yn)} = ∞. ♦

Since k can be any positive integer, the example shows that an in-
finite sequence of data can be typical for more than one measure.
Hence our task is not to identify a single computable measure ac-
cording to which the data sequence was generated as a typical
sequence, but to identify a computable measure that could have
generated the data sequence as a typical sequence.
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Appendix D. Proofs of the theorems

Proof of Theorem 1 (i.i.d. Computable Probability Identification).
Let L ⊆ N , and X1, X2, . . . be a sequence of mutually independent
random variables, each of which is a copy of a single random
variable X with probability mass function P(X = a) = p(a) for
a ∈ L. Without loss of generality p(a) > 0 for all a ∈ L. Let
#a(x1, x2, . . . , xn) denote the number of times xi = a (1 ≤ i ≤ n)
for some fixed a ∈ L.

Claim 1. If the outcomes of the random variables X1, X2, . . . are
x1, x2, . . . , then almost surely for all a ∈ L we have

lim
n→∞


p(a) −

#a(x1, x2, . . . , xn)
n


= 0. (D.1)

Proof. The strong law of large numbers (originally in Kolmogorov,
1930, see also Cantelli, 1917 and Kolmogorov, 1933) states that if
we perform the same experiment a large number of times, then
almost surely the number of successes divided by the number of
trials goes to the expected value, provided the mean exists, see
the theorem on top of page 260 in Feller (1968). To determine the
probability of an a ∈ L we consider the random variables Xa with
just two outcomes {a, ā}. This Xa is a Bernoulli process (qa, 1− qa)
where qa = p(a) is the probability of a and 1 − qa =


b∈L\{a} p(b)

is the probability of ā. If we set ā = min (L \ {a}), then the mean
µa of Xa is

µa = aqa + ā(1 − qa) ≤ max{a, ā} < ∞.

Thus, every a ∈ L is associated with a random variable Xa with a
finitemean. Therefore, (1/n)

n
i=1(Xa)i converges almost surely to

qa as n → ∞. The claim follows. •

Let A be a list of a c.e. or co-c.e. set of halting algorithms for the
computable probability mass functions. If q ∈ A and q = p then
for every ϵ > 0 and a ∈ L holds p(a)−q(a) ≤ ϵ. By Claim 1, almost
surely

lim
n→∞

max
a∈L


q(a) −

#a(x1, x2, . . . , xn)
n


= 0. (D.2)

If q ∈ A and q ≠ p then there is an a ∈ L and a constant δ > 0
such that |p(a) − q(a)| > δ. Again by Claim 1, almost surely

lim
n→∞

max
a∈L

q(a) −
#a(x1, x2, . . . , xn)

n

 > δ. (D.3)

In the proof (Feller, 1968, p. 204) of the strong law of large numbers
it is shown that if we draw x1, x2, . . . i.i.d. from a set L ⊆ N
according to a probability mass function p then almost surely the
size of the fluctuations in going to the limit (D.2) satisfies |np(a) −

#a(x1, x2, . . . , xn)|/
√
np(a)p(ā) <

√
2λ lg n for every λ > 1 and n

is large enough, for all a ∈ L. Here lg denotes the natural logarithm.
Since p(a)p(ā) ≤

1
4 and with λ =

√
2 it suffices that |p(a) −

#a(x1, x2, . . . , xn)/n| <
√

(lg n)/n for all but finitely many n.
Let q ∈ A. For q ≠ p there is an a ∈ L such that by (D.3) and

the fluctuations in going to that limit we have |q(a) − #a(x1, x2,
. . . , xn)/n| > δ −

√
(lg n)/n for all but finitely many n. Since δ > 0

is constant, we have 2
√

(lg n)/n < δ for all but finitely many n.
Hence |q(a)−#a(x1, x2, . . . , xn)/n| >

√
(lg n)/n for all but finitely

many n.
Let A = q1, q2, . . . and p = qk with k least. We give an algo-

rithm with as output a sequence of indexes i1, i2, . . . such that all
but finitely many indexes are k. If L = {a1, a2, . . .} is infinite then
the algorithm will only use a finite subset of it. Hence we need to
define this finite subset and show that the remaining elements can
be ignored. Let An = {a ∈ L : #a(x1, x2, . . . , xn) > 0}. In case a ∈ L
but a ∉ An we still have |qk(a)−#a(x1, x2, . . . , xn)/n| ≤
√

(lg n)/n
for all but finitely many n.

Now define the following sets. For each qi ∈ A the set Bi,n
= {a1, . . . , am} with m least such that


∞

j=m+1 qi(aj) = 1 −m
j=1 qi(aj) <

√
1/n. Therefore, if a ∈ L \ Bi,n then qi(a) <

√
1/n.

In contrast to the infinity of L the sets An and Bi,n are finite for all n
and i.

Define Li,n = An


Bi,n. Since Li,n ⊆ L we have for every a ∈ Li,n
that |qk(a) − #a(x1, x2, . . . , xn)/n| ≤

√
(lg n)/n for all but finitely

many n. However, for qi ≠ qk there is an a ∈ Li,n but no a ∈ L \ Li,n
such that |qi(a) − #a(x1, x2, . . . , xn)/n| >

√
(lg n)/n for all but

finitely many n. This leads to the following algorithmwith I the set
of indexes of the elements in A:

for n := 1, 2, . . .
I := ∅; for i := 1, 2, . . . , n

if maxa∈Li,n |qi(a) − #a(x1, x2, . . . , xn)/n| <
√

(lg n)/n
then I := I


{i};

in := min I .

With probability 1 for every i < k for all but finitely many nwe
have i ∉ I while k ∈ I for all but finitely many n. (Note that for
every n = 1, 2, . . . the main term in the above algorithm is com-
putable even if L is infinite.) The theorem is proven. •

Proof of Theorem 2 (Computable Measure Identification). For the
Kolmogorov complexity notions see Appendix B. For the theory of
computable measures, see Appendix C. In particular we use the
criterion of Definition 4 in Appendix C to show that an infinite
sequence is typical in Martin-Löf’s sense. The given data sequence
x1, x2, . . . is by assumption typical for some computable measure
µ in a c.e. or co-c.e. set of computablemeasures and hence satisfies
(C.2) with respect to µ. We stress that the data sequence is
possibly typical for different computable measures. Therefore we
cannot speak of the single true computable measure, but only of a
computable measure for which the data is typical.

Let B be an enumeration of halting algorithms for a c.e.
or co-c.e. set of computable measures such that each element
occurs infinitely many times in the list. If the enumeration is
such that each element occurs only finitely many times, then the
enumeration can be changed into one where each element occurs
infinitely many times. For instance, by repeating the first element
after every position in the original enumeration, repeating the
second element in the original enumeration after every second
position in the resulting enumeration, and so on.

Claim 2. There is an algorithm with as input an enumeration B =

µ1, µ2, . . . and as output a sequence of indexes i1, i2, . . . . For every
large enough n we have in = k with µk a computable measure for
which the data sequence is typical.

Proof. Define for µ in B

σ(j) = log 1/µ(x1 . . . xj) − K(x1 . . . xj).

Since K is upper semicomputable and µ is computable, the
function σ(j) is lower semicomputable for each j. Define the nth
value in the lower semicomputation of σ(j) as σ n(j). By (C.2), the
data sequence x1, x2, . . . is typical forµ if supj≥1 σ(j) = σ < ∞. In
this case, sinceµ is lower semicomputable,max1≤j≤n σ n(j) ≤ σ for
alln. In contrast, the data sequence is not typical forµ ifσ(n) → ∞

with n → ∞ implying σ n(n) → ∞ with n → ∞.
By assumption there exists a measure in B for which the

data sequence is typical. Let µh be such a measure Since halting
algorithms forµh occur infinitely often in the enumerationB there
is a halting algorithm µh′ in the enumeration B with σh′ = σh and
σh < h′. Therefore, there exists a measure µk in B for which the
data sequence x1, x2, . . . is typical and σk < k with k least. The
algorithm to determine k is as follows.
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for n := 1, 2, . . .
if i ≤ n is least such that max1≤j≤n σ n

i (j) < i
then output in = i else output in = 1.

Eventually max1≤j≤n σ n
k (j) < k for large enough n, and k is

the least index of elements in B for which this holds. Hence there
exists an n0 such that in = k for all n ≥ n0. •

For large enough n we have by Claim 2 a test such that we can
identify in the limit an index of a measure in B for which the
provided data sequence is typical. Hence there is an n0 such that
in = k for all n ≥ n0. We do not care what i1, . . . , in−1 are. This
proves the theorem. •

Appendix E. Genesis of the result

At the request of a referee we give a brief account of the genesis
of the result. In version arXiv:1208.5003 we assumed that we
were dealing with all computable probabilities and the necessary
extensions to measures. The first part of the technical results
dealt with i.i.d. drawing and ergodic Markov chains. Here a main
ingredient was to appeal to the known result that computable
semiprobability mass functions (those summing to 1 or less than
1) are computably enumerable in a linear list. By some tricks
we sought to computably extract the probabilities proper from
among them and use the Law of Large Numbers. For the more
difficult dependent case we resorted to measures. Here we used
a known result that the computable semimeasures (where the
equality signs in themeasure conditions are replaced by inequality
≤ signs) are computably enumerable as well in a linear list.
Again we sought to computably extract the measures proper
from this list and use a (known) criterion that says that the
measures for which the provided infinite sequence of examples
is random (typical) keeps a certain quantity finite. The proof
in arXiv:1208.5003 entailed to separate the finite sequences of
this quantity from the infinite ones. This took a long time and
great effort. Subsequently in Bienvenu et al. (2014) it was shown
that the approach of arXiv:1208.5003 was in error: they showed
by a very technical argument that identification of computable
probabilities and computable measures by infinite sequences of
examples was impossible. Extensive email contact with one of
the authors, Laurent Bienvenu, showed that the essential point
was the extraction of probabilities and measures from the above
computable enumerations of all computable semiprobabilities
and computable semimeasures. It turned out that we required
computable enumerations or co-computable enumerations of
computable probabilities and computable measures at the outset.
This was done in arXiv:1311.7385. That is, the identification does
not hold for all computable probabilities and computablemeasures
as in the too large claims of arXiv:1208.5003 but for the subclass
of computable enumerations or co-computable enumerations of
them. Furthermore the very difficult argument separating bounded
infinite sequences from unbounded ones (in the dependent case)
was replaced by a simple one reminiscent of the h-index in
citation science. Namely, a bounded infinite sequence has a(n
unknown) bound. But if the measures involved are enumerated
then eventually the index of one (there are infinitelymany of them)
for which the bound is relevant will pass this bound.
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