
SIAMJ. MATH. ANAL. 
Vol. 16, No. 3, May 1985 

~ 1985 Society for Industrial and Applied Mathematics 
015 

MATRIX ELEMENTS OF IRREDUCIBLE REPRESENT A TI ONS OF 
SU(2) XSU(2) AND VECTOR-VALUED ORffiOGONAL 

POLYNOMIALS* 

TOM H. KOORNWINDERt 

Abstract. The matrix elements of irreducible representations of SU(2)XSU(2) in a diag(SU(2)XSU(2))­
basis are expressed in terms of vector-valued orthogonal polynomials, which generalize the Jacobi poly­
nomials. 

0. Introduction. It is well known (cf. Vilenkin [11, Chap. 3]) that the matrix 
elements of the irreducible representations of SU(2) in S(U(l)X U(l))-basis can be 
expressed in terms of Jacobi polynomials, such that the orthogonality relations for 
these polynomials are equivalent to Schur's orthogonality relations for the matrix 
elements. More generally, let G be a compact Lie group with closed subgroup K such 
that each irreducible representation of G, restricted to K, is multiplicity free. Consider 
the matrix elements of the irreducible representations of G in a K-basis. Is it possible to 
express them in terms of some kind of orthogonal polynomials? For the case G = S U(2) 
xSU(2), K=diagonal in G, this paper will give a positive answer. (Note that this case 
is a covering of the pair (G,K)=(S0(4),S0(3)).) The resulting polynomials are 
vector-valued and orthogonal on [ -1, l] with respect to a positive definite matrix­
valued weight function. It would be of interest to generalize these results to the cases 
(G,K)=(SO(n), SO(n-1)) or (U(n), U(n-1)). 

The topic of this paper originated from work on the global approach to the 
representation theory of a noncompact semisimple Lie group G (cf. [7]) for SL(2, R), 
Kosters [8] for SL(2,C)). In this approach one needs some knowledge of the matrix 
elements of the principal series representations of G in a K-basis ( K maximal compact 
subgroup of G). These matrix elements have integral representations in terms of the 
matrix elements of irreducible representations of K (cf. (4.1) in the case G= SL(2, C)). 
Manipulation of these integral representations will be simplified if one can express the 
matrix elements for K in terms of orthogonal polynomials. Thus the results of the 
present paper will be useful for the analysis on S00(4, 1). 

It is the author's feeling that the highly nontrivial example of vector-valued 
orthogonal polynomials presented here is interesting for its own sake. Hopefully this 
paper will also be useful for physicists, who have already studied the matrix elements 
for S0(4) for a long time (cf. for instance Freedman and Wang [3], Smorodinskil and 
Shepelev [10], Basu and Srinvasan [l]). Many authors start with the matrix elements of 
the principal series representations of S00 (3, 1) (cf. [l], [10]) and then obtain the matrix 
elements for the compact case by analytic continuation. In the present paper, with its 
emphasis on orthogonal polynomials, it seemed more natural to start with the compact 
case, but in the final §4 the noncompact analogue is briefly discussed. 

Sections 1 and 2 are of a preliminary nature. In §1 matrix elements for SU(2) are 
reviewed, both as a tool needed later and as a motivating example. In §2 Schur's 
orthogonality relations for matrix elements for SU(2)XSU(2) are expressed as an 

*Received by the editors June 7, 1983. 
tcentre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands. 

602 



VECTOR-VALUED ORTHOGONAL POLYNOMIALS 603 

orthogonality for vector-valued functions on [O, 'IT] and good candidates are selected for 
the expected vector-valued orthogonal polynomials. In §3 these polynomials are really 
obtained together with an integral representation and a power series expansion. There 
are two further matters of particular interest in §3: First, a trick to deform the integral 
of an analytic function over SU(2) into the complexification SL(2,C) by multiplication 
on the right of the integration variable with a particular element of SL(2, C) (cf. the 
transition (3.3)-+ (3.6)) and, second, an unexpected symmetry (3.11) for the vector-val­
ued polynomials. 

1. The matrix elements for SU(2). Let /E 1Z+: = {O, 1, 1, ~' · · · }. Let H1 be the 
space of homogeneous polynomials of degree 2/ in two complex variables, made into a 
Hilbert space by the choice of orthonormal basis {If;~ In= - I, - I+ 1, · · ·,I} 

(1.1) 

Define a representation T 1 of GL(2, C) on H1 by 

(1.2) ( T'( ~ ~)! )cx,y):= f(ax+yy,f3x+8y). 

The T 1's form a complete system of representatives for (SU(2))A (cf. Vilenkin [11, 
Chap. 3]). 

Write T 1(g)(ge GL(2, C)) as a matrix (t~n(g)) with respect to the basis functions 

I 

(1.3) T1(g)lf;~= L t~n(g)l[;~, geGL(2,C). 
m=-1 

If g is a diagonal matrix then so is (t~n(g)). It follows from (1.1), (1.2), (1.3) that 

Expansion of the left-hand side of (1.4) yields 

(1.5) / (a 
tmn Y ~) = ((1-m )!(/+ m )!(1-n )!(/+ n )!) 112 

(1-n)/\(/-m) a'/31-m-ryl- n-ram+n+r 

L r!(l-m-r)!(l-n-r)!(m+n+r)! · r=OV(-n-m) 

This implies the symmetries 

(1.6) 

(1.7) /J) / (a 8 =tnm {3 
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From (1.4) and (l.7) we obtain the integral representation 

(1.8) t (a 
tmn Y 

/3)=( (l-n)!(/+n)! )1;2 
8 (l-m)!(l+m)! 

1 12"( .,,. .,,.)1-m( .,,. .,_)/+m 2. _. ·- ae 1"'+/3e- 1"' ye'"'+se- 1"' e'n"'dcp. 
2'1T 0 

The following symmetry is apparent from (1.8). 

(1.9) 

Now specialize to SU(2). We will use the notation 

(l.10) 

(l.11) 

(l.12) 

Note that 

(1.13) 

k(a,{3):= ( a_ ~) whereJaJ 2 +l/31 2 =1, 
-{J a 

b0 : = k (cos % , sin % ) , 

m<P:= k(ei<f>/2 ,0). 

t l ( )- -in<f>S! 
mn m<P -e umn· 

By the Cartan decomposition each element of SU(2) can be written as m<Pbem..;, and the 
corresponding integration formula reads 

f 1 [" [4" [41T dcp dif 
(l.14) /(g)dg=2 lo lo l, f(m<Pb0mil,) sinOd0-4 4' 

SU(2) 0 0 0 '1T '1T 
/EC(SU(2)). 

By Schur's orthogonality relations, (1.13) and (1.14) we obtain 

["t~n(b0 )t~ n(b0 ) sinOdO=O, l=Fl'. lo , 

Suppose that m+n~O, m-n~O. Then the "lowest" element of the orthogonal system 
{ t~nll=m,m + 1, ···}is t;::n. From (1.5) we obtain 

(l.15) 

Hence, if l =F l ', then 

(' t~n(b0 ) t~n(b8 ) ( . !!_)2m-2n+l( !!_)2m+2n+l" _ 
Jn m(b) m(b) sm 2 cos 2 d0-0. 

0 t mn 0 t mn e 

By (1.5) t~n(be)Jt;::nCbe) is a polynomial in cosO of degree 2:1-m. It follows that 

t~n (be )Jt;::n (be)= const. P/_m,;;n' m+nl( cosO), 

where the Jacobi polynomial P/_m;;n, m+n) is an orthogonal polynomial of degree /- m 
with respect to the weight function (l-x)m-n(l+x)m+n on the interval (-1,1). Of 
course, this result has been derived in many other ways (cf. Vilenkin [11, Chap. 3]). 
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2. The matrix elements for SU(2)XSU(2). Let K:= SU(2), G:= KXK, K* := 
diag(KXK), A:= {a8 := (m 8,m_8)} (m 8 is defined by (1.12)). Then G=K*AK* is a 
Cartan decomposition. The corresponding integral formula is 

(2.1) fE C( G), 

which is a special case of Helgason [5, Prop. X.l.19]. 
A complete system of representatives for G is given by the representations 

T 11 • 12 (/1,/2 E fl+): 

(2.2) 

The representation space H11 ®H12 of T 11 • 12 can be identified with the space of poly­
nomials in four complex variables x, y, u, v, homogeneous of degree 2/1 in x, y and 
homogeneous of degree 2/2 in u, v. An orthonormal basis of H1, ® H 12 is given by the 
polynomials 

(x,y,u, v )~iti)~(x,y )iii)~ ( u,v ). 

PROPOSITION 2.1 (cf. [6, Thms. 3.1, 3.2]). The functions it>?,·j2 (ll1 -/21~/~/1 +/2, 
ljl ~/)defined by 

(2.3) '·'2(x u v):= (-1)1,+12-1( (2/+1){211)!(2/2)! )1/2 
4>'1. 1 ,y, ' U1+12-l)!(l1+12+1+1)! 

~) 
form an orthonormal basis of H1, ® H12 such that 

(2.4) kEK. 

Define the matrix elements of T 11• 12 with respect to this K*-basis { cp?,·j2 } by 

11 +/2 I 

(2.5) T'1,/2(g)cp'i;)= L L tf:'/21,,j'(g)it>'i:J2, gEG. 
1=111 -/21 J= -I 

Since the elements of A commute with the elements (m 8 ,m 8 ) in K* and since 

T''·'2(m m )"''J·'2=e-iJ8,-1.J'l,12 
8• 8 't"/,j 'I" ,j 

by (2.4) and (1.12), we conclude that 

(2.6) 

By (2.4), (2.6) and the decomposition G = K* AK* the matrix elements tf;·/21',J' will be 
known if we know the functions tf;'.b',JIA· 

PROPOSITION 2.2 (cf. [3]). There are the orthogonality relations 

(2.7) 

IL/\m 1"' I I ( ) I' I' ( ) . 2'(}d(J (2/+1)(2m+l) ~ ~ 11.,2 a t''.2 .a sin = o ,u '· 2'1T . l,1;m,1 8 l,J;m,J 8 (21 + 1)(2/ + 1) /1 ,11 12,/2 
J= -(1/\m) 0 l 2 

1 
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Proof. It follows from Schur's orthogonality relations, (2.1), (2.4) and (2.6) that 

1 //'\m 1 " 
= " -1111·.12 .(a )11{._15. .(a ) sin2(Jd(J. 

(21+ 1)(2m+ 1) . £...,, 2'17 l,J;m,; IJ l,;;m,; IJ 
1--(lt-.m) 0 

It follows from (2.5) and (2.3) that tf;j~2,,,ja 9 ) is real. D 

1 
m 

m ---+ 

FIG. 1. 

From now on fix I and m (/,mE!Z+,1-mEZ) such that /;;[;.m. (Because of 
unitariness of T 11· 12 this last condition is not an essential restriction). Then the indices 
/ 1, / 2 in tf;~/2,,,jae) can assume all values in !Z+ such that (cf. Fig. 1) 

(2.8) 

andjE { -/, - I+ 1, ···,I}. Thus, (2.7) can be viewed as the orthogonality relations for 
the vector-valued functions 

where (/1,/2 ) run through all values satisfying (2.8). Like at the end of §1 we pick the 
"lowest" elements of this orthogonal family. Candidates for these elements are all 
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functions of the form (2.9) with / 1+/2 = m. Suppose that we can prove that for all (} in 
(0, 7T) the matrix 

(2.10) ( 1(m+p)/2(m-p)/2(a )) 
l.1;m.1 B j,p= -1,-1+1.-··,I 

is nonsingular. Then, for n = 0, 1, 2, · · · and k = - I, - I+ 1,. · . , I we can define the real 
vector-valued functions 

(2.11) x ~ P::'!:(x) = ( P::'!:.-1( x ), P::'!:.-1+ 1 (x ), ... ,P::r. 1( x)) 

on (-1, 1) by 

I 

(2.12) tfi·l2 .(a.)= " t<m.+p)/21m-p)/2(a )P'·m (cos8) 
,j,m,J • ,t_, l,J,m,J B /1 +/2 -m,12 -/1,p · 

p= -l 

Also define 

I 

(2.13) wi,m(cos()):= sin(} " t<m.+p)/2(m-p)/2(a )t<m+q)/2(m-q)/2(a) 
p,q ,t_, l,j,m,J B l,j;m,J B • 

j= -I 

Then 

(2.14) w1·m(cos8):= (w1·m(cos8)) 
p,q p,q= -1.-··.I 

is a positive definite real symmetric matrix for all 8 in (0,7T) and it follows from (2.7), 
(2.12), (2.13) that the vector-valued functions P:·?: satisfy the orthogonality relations 

(2.15) 
1 I 1 - L J pl,m (x)P 1;m, (x)W'·m(x)dx 27T n,k,p n ,k ,q p,q 

p,q=-1 -1 

(21+1)(2m+l) 0 0 
( ) 2 2 n,n' k,k'' 
n+m+l -k 

In this paper we will show that the matrix (2.10) is indeed nonsingular for (} in 
(0, 7T) and that P ~: k, P is a polynomial of degree n - Ip+ k 1. Hence the orthogonality 
relations (2.15) will characterize the vector-valued functions P:· '!: up to constant fac­
tors. 

3. The vector-valued orthogonal polynomials. First we derive an integral represen­
tation for the canonical matrix elements. Consider (2.5) with g = a0 and evaluate both 
sides for (x,y,u,v)=(a,/3, -ft,a), where laf+i/31 2 =1. In view of (2.3) and (2.6) we 
obtain 



608 TOM H. KOORNWINDER 

Hence, by Schur's orthogonality relations: 

Next, by some manipulations we will modify this integral representation into a 
form which is more suitable for our purpose. Substitution of (1.7) into (3.1) yields 

I 1 J 12"( .9 2 .0 2)1, +12-m 
t 11 ·/2 .(a ) =c 1 •.12 .- e' lal + e-' lfil l,;,m.; 0 l,;,m,; 27T KO 

• ( aei(<i>+0/2)+ f3e-i(q,+9/2)) m+l, -/2 

. ( -'j3ei(<f>-0/2l+aei(-<t>+0/2l) m-t, +/2 

· e 2 iJ<t>if2 _ 11 ,1 ( k( a, ff)) dk( a, {3) dcf>, 

where 

(3.2) 

1,,.12 .=(- )/-m((2/+1)(2m+l)(/1 +l2 -/)!(/1 +/2 +l+l)!(m-j)!(m+j)! )112. 
Ct,;;m,; l (11 +/2 -m)!(l1 +12+m+ l)!(m+/1-/2 )!(m-/1 +/2)! 

In this last integral representation consider the K-integral as the inner integral and 
make the transformation of integration variable k(a,/3) ~k(a,'jj)m_ 2 <t>. Then the 
integrand no longer depends on cf> and we obtain 

(3 .3) 

· tf2 _ 1,,) k( a, [3)) dk (a, {3). 

LEMMA 3.1. Let K be a connected compact Lie group which has a complexification 

Kc. Let f be a complex analytic function on an open connected left-K-invariant subset V of 
Kc containing K. Then 

(3.4) /.f(k)dk= jf(kk')dk, 
K K 

k'EV. 

Proof. The right-hand side is a complex analytic function of k' on V which is 
constant on K. D 
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N_ow obs~rve that the integrand in (3.3) is the restriction to S U(2) of the complex 
analytic funct10n 

( ~ ~) >-+ ( e;oal) _ e-;of3y) 11 +12-m ( ae;o;2_ /3e-;0;2) m-11 +12 

·(- -;012+ 0 ;0;2)m+11-11 1 (a /3) ( ) ye e t1 _1 1. ~ on SL 2, C . 
I 2• y () 

For 0 < () < 7T apply Lemma 3.1 to this function with K' chosen as 

(3.5) g : = e'"/4 (2sin()) . -1;2(e-;0;2 
o e;o;2 

We obtain 

(3.6) 

1'1·~2 .(a )=c'1·/2 .e3wim/2(2sin8)m 
/,;,m,; (J l,;,m,; 

PROPOSITION 3.2. We have 

(3.7) t<m+p)/2(m-p)/2(a ) = ( (21+ l)(m-J)!(m+ J)!(m-p )!(m+p )! ) 112 

l,;;m,; 8 (2m)!(m-l)!(m+l+l)! 

·(-1)1+me3,,;m/2(2sin())mt~J(g9). 

For 0 < () < 7T the matrix (t<m+pJ/2.<m-p)/2(a8 )). is nonsingular. 
l,;;m,; ;.p- -/,.··,/ 

Proof. Formula (3.6), together with (1.13) and the invariance of the integral in (3.6) 

under right multiplication by m<t> yields 

t<m.+ p)(2£m-p)/2(a ) = c<m.+pJ/2(m-p)/2e3.,,;m;2(2 sinO) m 
l,J,m,; (I l,;,m,; 

The integral can be evaluated by using (1.5), (1.14), the beta integral and the 

Chu- Vandermonde sum 

(c-b)n 
(3.8) 2 F1(-n,b; c; 1) ( ) , 

C n 

n=O,l,···; c-b,c=P0,-1,···,-n+l. 

Finally use (3.2). D 
THEOREM 3.3. Formula (2.12) holds with 

(3.9) 

P~: '/:,p(x) =A~',"/,,p J (21/3( X + aft-ii/3) n pm+k( - ft) m-kt£,p(k( a,/3)) dk(a,{3), 
K 
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where 

(3.10) 

At, m . = ( -1)21( (2m + l)!(n + m- l)!{n + m +I+ l)!(m- /)!(m +I+ 1)! )1/2 

n,k,p' n!(n+2m+l)!(m-k)!(m+k)!(m-p)!(m+p)! . 

There are the symmetries 

(3.11) 

(3.12) 

pt.m =Pl,m =Pl,m =P!,m 
n,k,p n,p,k n,-k,-p n,-p,-k' 

pt.m (-x)=(-l)n+k+ppf.m (x). 
n,k,p n,k,p 

Proof. Formula (3.9) follows from (3.7), (3.6) and (3.2). The symmetries are 
derived from (3.9) by the use of (1.6) and (1.9) in the case of (3.11) and by (1.13) in the 
case of (3.12). D 

Of course, by the use of (2.12) and (3.7), the symmetries (3.11) imply certain 
symmetries for the matrix elements t f:J\J A. It would be interesting to get a deeper 
understanding of the first of these symmetries. 

Now expand the integrand in (3.9) with respect to x and use the invariance of the 
integral under right multiplication with mq, and (1.13). We obtain 

(3.13) 

where 

(3.14) 

n 
pt. m (x) =Al· m " di• m Xn-q 

n,k,p n,k,p £..., n,k,p,q ' 
q=ip+kl 

q+k+k even 

( - l) m-k+(q-k-p)/22 n-qn ! 
dl,m =---'---'---------

n • k • P' q ( ( q - k - p ) /2) ! ( ( q + k + p ) /2) ! ( n - q ) ! 

. f a(q+k+p)/2a_(q-k-p)/213m+n+(k-p-q)/2 

K 

· pm+n +(-k+p-q)/Ztkp ( k( a, f3)) dk (a, /3). 

By using (1.5), (1.14) and the beta integral we obtain, fork+ p ~ 0 

(3.15) 

( -l)l+m+(q+k+p)/22n-q !(/+ + -( +k+ )/2)1 
d/,m =dl,m = n. m n q p . 

n,k,p ,q n,-k,-p,q ((q-k-p )/2)!(n-q )!(k+ p )!(/+ m +n+ l)! 

(I+ k), u + p) ( - / + k. - I+ p. ( q + k + p) /2 + 1 I l 
(I- k) ! (/-p) 3 F2 k + p + 1, - I - m - n + ( q + k + p) /2 1 · 

For q= p + k use (3.8). Then, fork+ p ~ 0 

(3.16) 

( l)l+m+p+k2n-p-k 1( k)'( )1 
dt,m =dt.m = - n. m+n- . m+n-p . 

n, k,p,k+p n,-k,-p,k+p (m-1+ n )!(m + l+ n + l)!( p + k )!(n -p-k )! 

. ( (I+ k) ! (l + p) ! ) 1/2 * 0 
(/-k)!(l-p)! . 
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Hence P :: k, P is a polynomial of degree n - Ip + k j. 
THEOREM 3.4. The vector-valued polynomial P:: k' satisfies the conditions 

(3.17) pl,m (x)= (-l)l-m2n(m-k+l)n(m+k+l)nSk,-pxn 
n)k,p 

(n!(2m + 2) n(m-1+ 1) n(m +I+ 2) n) 112 

+polynomial of degree less than n, 

I 1 
(3.18) L J pt.m (x)xn'wl,m(x)dx=O n,k,p p,q 

p= -I -1 

for all q in { - /, · · ·, l} and all n' in {O,. · -,n -1 }. 
Proof. Use (3.13), (3.16) and (3.10) for (3.17), and (2.15) together with (3.17) for 

(3.18). 0 
Note that (3.17) and (3.18) completely determine P:: k'· They also imply (2.15) for 

n =/= n'. However, from the point of view of Theorem 3.4, the orthogonality relations 
(2.15) for n =n', k=l=k' are rather unexpected. 

Remark 3.5. Lemma 3.1 can also be applied in order to extract the factor r:;:n(b0 ) 

from the integral representation (1.8) for t~n( b9 ). Substitute a:= cos( B /2), /3 : = 
sin( B /2) in (1.8) and make the successive transformations of integration variable 
<f> -z -if; -x, where e 2;"'=z=eill'cot(B/2), x=21/;: 

( (1-m)!(l+m)! )1;2' 
(l-n)!(/+n)! tmn(be) 

= 2
1 . ~ ( zcos( B /2) +sin(() /2)) /-m ( - z sin( 8 /2)) +cos( B /2) l+m zn- 1- 1 dz 
'TT l (0) 

= (sin(B/2))m-n(cos(B/2))m+n 

1 12 ,,.( "" 2 {I · 2 () ) / - m · 1 ( /) { · .1.) I+ m ·- e'"'cos-+sill- e'"'n- l-e'"' do/ 
2?T 0 2 2 

( o)m-n( ())m+n =(-2i) 1+m sin2 cos2 

11,,.( . ())1-m 2nix( · )l+md 
• - COS X + i Sill X COS e Sill X X · 

?T 0 

Now assume m ~ n and use [2, 1.5(29)]. Then 

(3.19) t~n ( b0 )/t;;:n ( b9 ) = const.1,,. (cos X + i sinx cos()) l-m e2nix (sinx) t+m dx 
0 

with nonzero constant. Again by [2, 1.5 (29)], the right-hand side of (3.19) is a 
polynomial of degree / - m in cos B which takes a nonzero value if cos B = 1. In Greiner 
and Koomwinder [4, §1.3] the integral representation for Jacobi polynomials resulting 
from (3.19) is obtained in a quite different context. 

4. The noncompact analogue. Let now G: = SL(2, C) with Iwasawa decomposi­
tion G = KAN such that 

{ ( 
e112 

K=SU(2), A= a,:= O 
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Let k( a, {3) in K be defined by (1.10) and m<P by (l.12). M: = { m.p/O;;;;; et>< 4?T} is the 

centralizer of A in K. 
Let 'Tl'>..,k(A.EC,kE fl) be the representation of G which is induced by the repre­

sentation m<Pa,n -e-ik<t>e>..1 of MAN: a principal series representation. Then ?T>..,klK is 

unitary and decomposes as E9 l=k, k+i, ... T 1. Choose a K-basis for which'"-,.., k has matrix 

elements '"/f,~m,q(l,m=k,k+ 1, ... ; p= -!, · · ·,!; q= -m, · · ·,m) such that 

kEK. 

Then 

et/2{3 ) I _ 
_ 112_ tkAk(a,f3))dk(a,/J), 

e a 

cf. Ruhl [9, §3-5], Kosters [8, §3.1]. 
Similarly to (3.3) we derive from ( 4.1) that 

(4.2) 

where 

(4.3) ·-( (2/+1)(2m+l)(m-j)!(m+j)! ) 112 

ck,l,m,J'- (m-k)!(m+k)! 

For s>O let 

(4.4) h := (2shs)- 112( e•/2 

s e-s/2 

Then we can apply Lemma 3.1 to (4.2) with k': =h. for 0 < t <s. We obtain 

(4.5) 

A,k ( )- 2m( h )-m 
'"1.J;m,J a, -ck,l,m,J S s 

I 

· L t~1 ( h.) J. (cht- coths sh t( lal 2 - lf31 2) + ( a,B- f3a) sht )->..- m- l 

p= -1 K shs 

· (ash t(s-t )-{3 sh !{s + t)) m+k 

. ( ash ! ( s - t) + .B sh l ( s + t ) ) m - k 

·tip( k( a,{3)) dk( a,[3), 0 < t<s. 
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If Re A.~ m -1 then the limit passages ! t is certainly allowed in ( 4.5). 

(4.6) 

Closer examination of the integral, using (1.14), shows that (4.6) holds with convergent 
integral if Re A. < 0. Thus it is meaningful to study the vector-valued function x -
(P:: ';:,p(x)) p= _ 1,. .. ,1, defined by (3.9), for complex n, Ren> 0, and for x > 1. In particu­
lar, this function has a nice asymptotics as x ~ oo. 
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