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Abstract

We investigate the Mori-Zwanzig formalism as a mathematical tool to study multi-
scale systems and project the equations of motion onto a small set of relevant variables.
This originates from statistical physics, and we explain how it can be used to derive a
generalized Langevin equation. Typically, one obtains an equation of motion for the
relevant degrees of freedom of the system that has a stochastic term, but also a memory
kernel. Especially in systems which do not have a clear scale separation this memory
kernel is important. We discuss approximations that start from the Mori-Zwanzig
formalism to find (data-driven) numerical methods for simulation and prediction of a
small number of selected degrees of freedom in high dimensional dynamical systems.
To verify the usefulness of these methods we apply them to two toy models: the Kac-
Zwanzig heat bath model and the Lorenz ‘96 model.
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Observe what happens when sunbeams are admitted into a
building and shed light on its shadowy places. You will see
a multitude of tiny particles mingling in a multitude of ways...
their dancing is an actual indication of underlying movements
of matter that are hidden from our sight... It originates with the
atoms which move of themselves. Then those small compound
bodies that are least removed from the impetus of the atoms
are set in motion by the impact of their invisible blows and in
turn cannon against slightly larger bodies. So the movement
mounts up from the atoms and gradually emerges to the level
of our senses, so that those bodies are in motion that we see in
sunbeams, moved by blows that remain invisible.

Lucretius, On the Nature of Things

Introduction

In nature one often finds complicated systems with many degrees of freedom. An
example that immediately meets the eye is the weather, and its longer term behaviour,
the climate. Its dynamics are derived from the equations for fluids and gases (the
Navier-Stokes equations), thermodynamics, and gravitational/Coriolis effects. An-
other example is the behaviour of liquids and other materials themselves. Here we
also know a description for the equations of motion of the individual molecules, which
we can consider as an N-body problem, for very large N. However, in both cases even
though a microscopic description is available, this does not mean we can easily un-
derstand the macroscopic phenomena we see. The dynamics depends very sensitively
on initial conditions (which makes numerical simulation problematic). Besides this
sensitivity we also often have incomplete knowledge of the state of the system, we
can not always measure what happens at the microscopic level. For measuring the
weather one always has to rely on only a finite number of measurement points, and
similarly it is impossible to determine the positions and velocities of all molecules in a
fluid at the same time. Finally, in practice these systems are often too large to simulate
numerically for a long enough period of time (Thijsen, 1999).

However, an exact solution of all degrees of freedom is often not that relevant if we
are interested in understanding macroscopic phenomena. For instance, in the example
of climate, we do not really care about the particular movement of each tiny volume
of the ocean or atmosphere, but we rather want to know how long term temperature
averages will evolve (under influence of external perturbations). Or maybe we are
interested in the periodic behaviour of certain oceanic currents. Also for the N-body
problem, we do not need to know the trajectory of each particle, but we rather want to
know the thermodynamic properties of the material. For example in a fluid, we might



want to be able to derive the transport coéfficients such as the diffusion constant from
the microscopic laws, or try to understand phase transitions (sudden changes in some
order parameter).

In both examples we have a very large system, but in the end we are interested only
in specific functions of all the variables that describe the system. To what extent is it
possible to derive from the microscopic description a reliable macroscopic description,
without having to solve all of the dynamics? In statistical physics many techniques
have been invented to deal with this problem, and in this thesis we will discuss one
particular method, called the Mori-Zwanzig formalism. In this procedure, one first
chooses some degrees of freedom that are thought to be of interest, and that have
behaviour on a relatively long time scale or large spatial scale. Then starting from
the equations of motion for the complete system, one projects (in a way that will be
described later) onto the relevant variables. It turns out that through formal manipu-
lations it is always possible to write the resulting equations in a particular form, where
the time derivative of the relevant variables depends on 3 terms:

1. A self-interaction part, which is a function of the relevant variables,

2. A memory part, which depends on the value of the relevant variables at all
previous times,

3. A part that depends on the remaining variables.

This will be made precise in chapter 2. The idea is that if the variables are chosen in
the right way, one may hope that the third term consists of ‘fast’ variables, and it is
reasonable to approximate it by a random noise, especially in the situation where the
initial conditions of these fast variables are not known, and they should be considered
as random variables. A situation where this approximation by a stochastic equation is
exact in an appropriate limit is discussed in section 2.4. Such a stochastic differential
equation (a generalized Langevin equation) may still be hard to solve analytically, but
it is at least more amenable to computer simulation.

Let us make this idea more concrete with a physical example, of Brownian motion.
Here the situation is that we have a pollen particle, contained in a liquid (which is a
bath of molecules). We are interested in the dynamics of the pollen particle. We can
give a microscopic description of the system that takes all the molecules into account,
but this is too hard to solve. Thus we only consider the equation of motion of the
pollen particle. Denote by v the velocity of the particle, then we want to obtain an
equation for the time derivative 9. One can see experimentally that the part of the
equation of motion that depends on v, which is the friction in the liquid, is linear.

Thus we write p
dit) = —{v+ F(t) (1.1)

where F(f) denote all the forces that come from collisions of the pollen particle with
some molecule. In this case we have a clear separation of time scales: the pollen
particle will move much slower than the molecules, and the molecules also collide



rapidly with each other. Because of this, we can make some assumptions on F(t),
namely that it is random, it has no preferred direction (so the expectation value EF(t)
is zero) and it oscillates so rapidly that there is no time correlation of F with itself.
This means that F can be seen as white noise. Moreover, in this case the memory
is very short (which is related to the fact that F has no time correlations, we will
discuss this in 2.3). With this approximation, equation (1.1) becomes the Langevin
equation, a stochastic differential equation, that describes well the process of Brownian
motion. We have dealt with the two problems: we focus on the variable of interest
(the movement of the pollen) and we do not have to solve for the movement of the
molecules. Also our ignorance of the (initial) state of the molecules is incorporated in
the randomness of the noise.

The idea to use statistical processes to replace certain degrees of freedom is an old idea
in nonequilibrium statistical physics (Einstein, 1905), and has much later been realized
to also be of use in climate dynamics (Hasselman, 1976):

The essential feature of stochastic climate models is that the non-averaged
“weather” components are also retained. They appear formally as random
forcing terms. The climate system, acting as an integrator of this short-
period excitation, exhibits the same random-walk response characteristics
as large particles interacting with an ensemble of much smaller particles in
the analogous Brownian motion problem.

This is a line of research continuing to this day (Palmer and Williams, 2010), (Imkeller
and Storch, 2001). In the case of Brownian motion we saw that there was not really
any memory. This is due to the large scale separation between the pollen particle and
the molecules in the liquid. Such a process without memory is called a Markov process.
The Mori-Zwanzig method of dimension reduction however leads in general to sys-
tems that do have a non-trivial memory term which need not be Markovian. This is
especially true in the context of climate dynamics, where there is typically not a large
scale separation between the different processes (Nastrom and Gage, 1985). This sug-
gests that investigating these memory terms is very relevant to the project of improving
weather and climate models by including stochastic processes. This procedure is often
called stochastic parametrization and in chapter 3 we will suggest some methods to es-
timate memory effects in estimation procedures for stochastic parametrization, and in
chapter 4 we apply these ideas to a simple heat bath model from statistical physics and
to the Lorenz 96 model, a toy model for the dynamics of atmospheric phenomena.

The Mori-Zwanzig formalism already dates back from the 1960s (Zwanzig, 1961),
(Mori, 1965a), but using it in order to design numerical schemes for multi-scale dy-
namical systems is a recent development (Chorin et al., 2000). Most of the work in
this thesis is not original, but an overview of existing literature. The application to
the Lorenz ‘96 model however is to our best knowledge not present in the current
literature.



Non-Markov is the rule, Markov is the exception.

Van Kampen, Remarks on non-Markov Processes

The Mori-Zwanzig formalism

To get an idea of what we want to achieve we will first consider an easy example, a
linear ordinary differential equation:

()=20)

A— <ﬂ11 6112> _
a1 a2
Of course we know the solution of the system, but we now try to find it in a different

way. Consider the equation for y which is ¥ = a»;1x + a»y, which we can solve if we
assume x to be some given function:

with A an arbitrary 2 x 2 matrix

y(t) = e™'y(0) + /Oteazz“_s)amx(s)ds.
Inserting this in the equation for x we obtain
X(t) = ajx(t +/ 1262 7%) gy, x(s)ds 4 a1pe™2'y(0)
= ayx(¢ —|—/ (t —s)x(s)ds + F(t)

so we obtain a single equation for x, which consists of three terms, a "‘Markovian’
term which just depends on x(t), a term which depends on the values of x(s) for s



at previous times (here K(s) = a1pe"2°ay; is called the ‘memory kernel’) and finally
an ‘external’ term F(t) = ajpe™'y(0) which does not depend on x but only on the
initial condition of y. What we have done in this way is that we have taken a system
of differential equations for some variables (x and y), and projected onto an equation
for only a subset of the variables (x), so we have fewer equations. The price we pay for
doing this is that we get a memory term in our equation, and a term that depends on
the ‘orthogonal dynamics’ (the dynamics of y). We managed to get from 2 equations
to 1, but it is a much more complicated looking one! In this chapter we will generalize
this procedure to arbitrary ODE’s, and explain how this procedure can be used as
a starting point to approximate the dynamics of the system. If the system is not as
easy to solve as our example (where we can explicitly describe the solutions of the full
system) this may be a valuable way to approximate the original problem by solving a
simpler one with fewer variables.

2.1 Derivation of the Mori-Zwanzig formalism

In this section, we will describe the Mori-Zwanzig procedure, in which we take a
system of differential equations and rewrite it in a form that resembles a general-
ized Langevin equation, as formulated by Zwanzig (Zwanzig, 1973a) and Mori (Mori,
1965a). The derivation is standard, we more or less follow (Chorin et al., 2000). Thus,
we start to consider the following problem on M = R":

2 _ rx) (21)

where x € R" and R : R” — R” is a function which we assume to be such that the
problem is well posed, and has a unique solution on some time interval given initial
conditions (so R should for instance be uniformly Lipschitz continuous). This gives
rise to a solution for every initial condition. We capture this with a flow x(¢) which is
such that x(0) = x (so the variable x represents the initial condition), and for fixed x
is a solution to (2.1).

Next we want to know how a function evolves along this flow. For this we define a time
evolution operator S which is such that for any function f we have S'f(x) = f(x(t)).
The equation of motion for this time evolution of functions is given by

0
55 f (%) = (R(x) - V)S'f(x).
Writing L = R(x) - V we thus get the Liouville equation
dctr_ rat
gs f=LSf
Sf=f

(2.2)



Now S' is a semigroup with generator L, and we may write S = ¢! (but it is good to
keep in mind that this is only notation). Since L is the generator of the semigroup we
know that S'L = LS.

We can make the above formulation a bit more general, by considering other manifolds
than R". Let M be any manifold, then corresponding to 2.1 we have a vector field X
that defines a flow equation on M:

d
5 01(%) = X((x))
¢o(x)

The corresponding Liouville operator will just be the Lie derivative, so the evolution
of functions along the flow satisfies the Liouville equation

X

aatsff:cxsff
Sf=f.

In the particular case of Hamiltonian dynamics we have a symplectic manifold (M, w)
and a Hamiltonian function H : M — R with Hamiltonian vector field Xy. In this
situation the Lie derivative is given by a Poisson bracket:

S8 = Lx,S'f = {11}

Next we use an idea from statistical physics. We want to be able to deal with a situation
where we do not know the initial conditions of all variables. Thus we suppose that
the initial conditions are drawn from some probability distribution p. This allows us
to consider the Hilbert space L?(M, ) with inner product given by

(£,8) = | fE)g(xn(ax).

We want to project the dynamics onto some subspace of L?(M, i), so we choose an
orthogonal projection P : L?(M,u) — L?(M,u). We can split the operator L in the
following way:

L=PL+(1-P)L

We let Si be the time evolution operator corresponding to the orthogonal dynamics,
that is, S is the solution of the orthogonal dynamics equation

9
5518 =(1-P)LS' g

Slg=g

(2.3)

As a remark, the existence of the solution of these equations is nontrivial, even if the
original problem is well-posed. In (Givon et al., 2005) the existence (or weak existence)

10



is shown for some specific projection operators. In semigroup notation, one would
write S = e(=P)L "and from the equation it is easy to see that if g starts out in
the null space of P, it will remain in this null space. We can now derive the Dyson
formula:

t
St=st + / StSPLS ds. (2.4)
0
Let us check this by differentiation of the right hand side:

5 to,
S(sth+ /O S*SPLS, ds)

3 ) o,
= 254+ S PLS oo + /O 28! PLS|ds

t
= (1—-P)LS| +PLS| + /0 LS"SPLS ds
ot
_ (s, + /0 S'=PLSS ds)

so we see that ' + fot S!™SPLS ds satisfies the Liouville equation (2.2) and since at
t = 0 we clearly have that both sides are the identity operator, we conclude equality
by the uniqueness of the solution of (2.2).

With the projection we split the time evolution of a function in 2 parts:
S'f=S'"Pf+S'(1-P)f

We can use the Dyson formula (2.4) to rewrite the second term, and for notational
convenience we let F = (1 — P)f (and we will often use the notation F(t) = S F):

t
S{(1-P)f=S'F=5\F +/O S"SPLSS Fds.
Taking this together we get
t
Stf— S'PF+ / S"SPLSY Fds + S' F. (2.5)
0

The main interest of this equation is in the case where we consider the function Lf in
which case S'Lf = %St f so (2.5) becomes

t
;tsf f=SPLf+ /0 SI™SPLS% Fds + S' F (2.6)

now with F = (1 —P)Lf. How to interpret this equation? The first term is the
Markovian part of the equation, which just depends on f at time t. The second term
is a memory term, which depends on f throughout the interval [0, f], we will often
denote PLS% F by K(f,s) and call it the memory kernel. It is in the image of the
projection P. Finally the third term describes the dynamics orthogonal to the image

11



of P. Indeed, it is easy to see that PS'F = 0 from the definition of F. Often in
physical systems (we will see some examples later on), we do not know the initial
conditions for the orthogonal term, and we can approximate F by a stochastic process
(see (Kubo et al., 1985) for discussions about the legitimacy of such an approximation
in a statistical physics context). If one indeed does so, the above derivation can be seen
as a derivation of a generalized Langevin equation.

The issue is now to choose the projection P in such way that (2.6) becomes an inter-
esting formula that allows making good approximations. Notice that (2.6) is still exact
and is only a reformulation of the Liouville equation (2.2). Also, at this point we can
still plug in any function f, but mostly we will want to use this formalism to study
the behaviour of functions that are in the image of the projection P.

Choice of projection operator

There are two choices of projection operator that are most common:

1. One way to get a projection in L?(M, u) is by using conditional expectations.
Given functions f,¢ € L?(M, u) the conditional expectation value

Pf = E(flg)

is defined to be the orthogonal projection of f onto L?(M,o(g), ). Here o(g)
denotes the o-algebra generated by ¢, and L*(M,c(g), ) denotes the square-
integrable functions on M that are measurable with respect to the measure space
(M,o(g),1t) (where u of course should be read as the restriction of u to o (g)).
This definition maybe does not really give too much insight in the nature of
the projection, but rewriting the definitions one finds that L2(M,c(g), 1) can
be identified with the functions of g, so L>(M,o(g),u) = {h € L2 (M, u)|h =
kog,k:R — R}. In the physics literature this projection is called the ‘nonlinear
projection” (the projector itself is of course linear, but it projects onto a space
of nonlinear functions)(Chorin et al., 2000). We can also do this for multiple
functions and define E(f|g1,...,9m) to be the orthogonal projection onto the
space of all functions of the g;. For notational convenience we will consider in
this case ¢ = (g1,...,9m) as a vector valued function and write E(f|g).

Let us give a more explicit formula for E(f|g), denote by C, = M;g; '(g;(x)) for
x € M, then for all x such that u(Cy) # 0 we have

d
PA(x) = B(flg) ) = 6TV

Notice that the value of Pf on sets of measure o is not very important since we
work in L2(M, u). A (formal) way to write this is using delta functions:

Pi(x) = B(flg)(x) = LSS SO @

12



2. Another way to construct a projection is by taking a set of functions hy, ..., hy
and projecting onto the linear span of these functions (this is known as the ‘linear
projection”). Explicitly the projection is then given by

Pf= Y i (f

ij=1

where h™! is the inverse of the matrix with entries h;; = (h;, hj) (with respect
to the inner product on L?(M, u)). From the construction it is immediate that
this is an orthogonal projection. If we choose the functions /; orthonormally the
expression becomes conveniently

m

Pf =Y _(f hi)h;.

i=1

We can also use this projection to approximate the nonlinear projection, by taking
the h; to be a such that for m going to infinity, the h; span L?(M, c(g), ). This
can be useful in numerical simulations.

Both these projections depend on the choice of measure y. What measure should be
chosen? The best situation is if the measure is time invariant, which means that S is a
unitary operator with respect to the L? inner product for all times ¢ > 0. Equivalently
the measure y; defined by

[ Fom(ax) = [ 8 f(x)p(a)

is constant in time, so y; = p. Unitarity of Stis equivalent with skew-adjointness of
L by Stone’s theorem. In general if U is unitary and Px is a projection onto X, then
UPx = PuxU. Thus if we consider the conditional expectation with respect to an
invariant measure we have

S'E(f|g) = E(S'f|S'g)

which means that we can rewrite the Markovian term in (2.6) as S'E(Lf|¢) = E(LS'f|S'g).

For the first choice, the most common situation is where we let M = R". We write z =
(X1, Xm, Y1, - - -, Yn—m) for the coordinates and we take yi(dz) = p(x,y)dxy ...dxpdy; .
as a measure. We project onto the space of functions of coordinate functions x =
(x1,...,%p), and we obtain

(x,y)p(x,y)dy; ... dy,—
Pf) () = LIEYe dy yd Yn-m
Joxy)dy ... dynn
In this specific case, where the projection P should be thought of as projecting onto

the functions of the first m variables, we can consider the Mori-Zwanzig equation (2.6)
for the coordinate function x; to find equations for the flow (denoting S'x; = x;(t)):

d

gxi(t) = Ri(x(t)) + /Ot Ki(x(t —s),s)ds + Fi(t) (2.8)

13
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where we let R = E(R|x) and F and K are defined in the usual way. We have assumed
invariance of the measure to commute S! with R. Now we can apply the projection P
once more to both sides of the equation, and using that F; will be in the null space of

P we obtain 3
S Pxilt) = PRi(x(1) + / PSIK; (x, 5)ds. (2.9)

This equation tells us the expected evolution of the relevant variables x given initial
conditions for x and initial conditions for y drawn from a distribution (with respect to
the invariant measure, and conditioned on the initial condition of x). Equation (2.9) is
known as optimal prediction with memory (Chorin et al., 2002).

The most crude approximation of the Mori-Zwanzig equation is to throw away the
memory and the orthogonal part, leaving only the Markovian part. If we use the
conditional expectation as projection operator this approximation is called optimal pre-
diction. By definition of the projection operator R(x(t)) = E(Lx(t)|x(t)) is the best
approximation of Lx(t) by a function of x(t). A discussion of the error of optimal
prediction with respect to the original system can be found in (Hald and Kupferman,
2001). The term R can be found from a time series, provided that the measure y is
ergodic (with respect to S):

lim% OT S'f(x)dt = /Mf(W(dy) (2.10)

T—o0

for almost all x and for any f € LY(M, ).

Lemma 2.1.1. Assume that the system (2.1) has an invariant ergodic measure p, and we
project onto a set of functions § = (g1, ..,§m), Which are such that g,Lg € L*(M, ). Then
for almost all initial data x we get

argmin (fim 7 LD e = Bglg) @

fel2(Mo(g)u) 17

Proof. Define ¢ to be the function ¢(x) = ||Lg(x) — f(g(x))||>. Then ¢ € L'(M, )
since f € L?(M,o(g),u) and Lg € L?>(M, u). That means we can use the ergodicity to
see that for almost all initial conditions x

1T
lim - [ [IL8'g(x) = F(S'g () IPat = [ lILg(x) = Fls)IPuldy)  (212)
and g(x) = E(Lx|x) is precisely the minimizer of this last expression. O
The implication is that if we have a time series for the projected variables g, we can

find the optimal prediction term E(Lg|g) by making a least squares fit to the data for
the derivatives of g.

14



2.2 Hamiltonian systems

Suppose the equation (2.1) we start with is Hamiltonian, for some Hamiltonian func-
tion H : R>" — R. Then we have a natural choice of measure to draw initial conditions
from, the canonical ensemble with density function p(x) = Ze PH (%) (with Z a normal-
ization constant). Here we remark that this choice of measure means we are in an equi-
librium situation (S’ is unitary for all #). In this case the Markovian part of the Mori-
Zwanzig equation will be Hamiltonian again if we project onto a canonical set of vari-

ables. To see this, let us write the coordinates on R?" as (1, Gms P10 P Gt ds - -+ Qs Pty - -

such that the equations of motion are

. 0H
qi_api
)
P e

For notational convenience we let Q = (91,...,9m), § = (Gm+1,---,q9n) and similarly
for P and p. We let the projection operator P be the conditional expectation with
respect to the first 2m variables Q and P. Because we are in an equilibrium state we
have unitary S' and hence S'E(f|Q,P) = E(S'f|S'Q, S'P). If we ignore the memory
and orthogonal term for the moment we get

95'Q; = S'PLQ; = SE(LQIQ P) = E(S'LQ[S'Q,5'P)

Inserting the definitions and writing Q;(¢) and P;(t) for S'Q; and S'P; we find

Q1) = E(Gp1Q(1), P(1)

e Mdgdp

~ [eHdgdp
=/ e =5
where H = —log [ e Hdgdp. Similarly we can derive the equation for P; and we find

that the optimal prediction is Hamiltonian with reduced Hamiltonian function H.

Another option is to use a microcanonical ensemble, that is, the model is restricted
to a fixed energy surface (Zwanzig, 1961). Keeping the notation as above, the corre-
sponding projection operator P can (formally) be written as

_ [ f(Q,P,q,p)5(H(Q,P,q,p) — E)dgdp
PHQP) = J6(H(Q,P,q,p) — E)dqdp
Jezn ) f(a,p)de

fH[;}Q(E) do

15

< Pn)



with Hpo(p,q) = H(P,Q,p,q) and with do the area element on H;, b(E ), provided
that these hypersurfaces are sufficiently smooth.

2.3 Fluctuation-dissipation theorem

In physics, one often encounters relations between fluctuations (perturbations) of a
system and dissipation (response). In our derivation of a generalized Langevin equa-
tion we also encounter such a relation, if we take the term F to represent the fluctu-
ations, and the memory kernel K(f,s) measuring the dissipation (the memory term
will generally have a dampening effect, as the motion ‘leaks” out of the subspace we
are projecting upon. We have the following formula for K:

K(t) = PLS| F = PLF(t)

If we take the projection P to be the linear projection onto a function f, we have an

equilibrium measure (so L = —L*) and we consider the time evolution of f we find
(LE(), f) o (E(t),Lf)
=" =g !

_(A=P)F(),Lf)
(f, f)
_ (FLF0)
(f, f)
using that F(t) = (1 — P)F(t) and the fact that (1 — P) is an orthogonal projection.
Thus we conclude

(F(t), (1 = P)Lf)
(f, f)

f= f

K(£,0) = (PO, FO) 5 213)

which is a fluctuation-dissipation relation where we see that the memory kernel (the
dissipation) is related to the time correlation of the fluctuations. In this view it is not
surprising that we did not have a memory kernel in the example of Brownian motion
in equation (1.1): we assumed that the noise was not time-correlated.

As a remark, there are quite a few statements that go under the name ‘fluctuation-
dissipation theorem’ in statistical physics, and most of them are related to linear re-
sponse theory, where the reaction to a weak external perturbation of the system is
expressed in term of the autocorrelation of the system. For some low order pertur-
bative results on the relation between linear response theory and the Mori-Zwanzig
formalism, see (Lucarini and Wouters, 2012).

Another case that allows a fluctuation-dissipation theorem is the projection of a Hamil-
tonian system onto a canonical set of variables (as in the previous section). We then
have:
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Theorem 2.3.1. Suppose we have a Hamiltonian system where we use the canonical measure to
project onto a set of canonical variables P, Q, and with remaining canonical variables p, q, with
Hamiltonian H and reduced Hamiltonian H. Then the memory kernel allows the following
expression:

Kx(P,Q,t) = (Vp,g — Vr,0H) - P(Ep(0)Fx () (2.14)
where X is a function of P and Q.

This theorem is discussed in a more general form in (Darve et al., 2009) for the case of
conservative dynamics (so V - R = 0). Our proof is an adaptation of their arguments.

Proof. Writing L = R -V, we know that V- R =0, so
Kx(P,Q,t) = PLFx(t / R - VFxR(H)ePH-H) dgdp
= /V : RFX(t))eﬁ(H_H)dqdp
= [ Vg (RegPx(t))e ™ Mdgdp
=Vpo- /RP,QFX(f)eﬁ(H_H)dqu - /RP,QFX(f) - Vp,geP - Hdgdp

where in the third equality we have written V = (Vp o,V ;) and integrated by parts

/vm  (RpqFx(t))ePH~Hdgdp = /RmFx(t)‘Vp,qeﬁ(H_H)dqu

= /PX(t)RW, (VpqH ),Beﬁ dqdp =0

since Ry ;- V,,H =0 (as R; = aa% and R, = —%—I;). Finally we write
PLEx(t) = (Vpg — BVpoH) - /Rp oFx(HeP - H gy
= (Ve = BVroH) - P(RpgFx(t))
= (Vpo = BVpoH) - P((1 = P)Rpg)Fx(t))
= (Veg = BVroH) - P(Fro(0)Fx(t))
where we used that P(fF(t)) = P(((1 —P)f)F(t)) for any function f since PF(t) =0
(an easy consequence of the definition of the conditional expectation). O

2.4 The Kac-Zwanzig heat bath model

We will now consider a classical model in which the Mori-Zwanzig equation can be
worked out completely explicitly. It is a mechanical model for a heavy particle in a
heat bath (Ford et al., 1965) (Zwanzig, 1980), in which a particle in some potential
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has a linear interaction with a system of harmonic oscillators. The idea is that this
represents an approximation of a very general class of systems, where a particle has
an interaction with a large system, and the interaction has been approximated to linear
order. The Hamiltonian is given by

2
_ 1, Pi ki o
H= 5?) + U(X) + ]221’11] + E(q] X) (2.15)

where (x,v) are the position and momentum of the distinguished particle, and (g;, p;)
are the positions and momenta of the harmonic oscillators that form the heat bath,

with frequencies defined by wl-z = % This leads to the equations of motion:

X=v
o= —U'(x) + ) k(g
4i = %
pi = —ki(gi — x)
and we see that the Liouvillian is given by
_,9 / )9 Pi 9 (o9
L=v5 (u'( Zk av + Z;[m] 9, (ki) x))apj]

In this case we are interested in the movement of the distinguished particle, and we
consider the heat bath to consist of unresolved variables, which start out in an equi-
librium distribution. From this it is clear which projection we should take: we want
to project onto the functions of x and v, and hence we use the conditional expectation
value with respect to x and v, using the canonical distribution as measure, so we are
in the situation of 2.2, and the projection is given by

[ feHT1dg;dp;
Je~HT1dg;dp;

It is easy to check that Px = x, PU'(x) = U'(x), Pv = v, Pq; = x and Pp; = 0. Thus
we can write down the equations for the orthogonal dynamics (2.3)

Pf =

;)tS x=0

ﬂ’ = Ek SL% )
8 t Sj_pl
atslq m;

9
55upi = —ki(S'4i =S\ x)
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in addition to the initial condition S°f = f for all variables. In this particular case we
can actually solve these equations (which is very fortunate, in general this is almost
never the case) to find

Shx=x
pi

wim;

S' ;i = (q; — x) cos(w;t) + sin(w;t) + x

and the solutions for v and p; can also be found easily from this (but we do not need
them explicitly). We want to get the Mori-Zwanzig equations for x and v. For x the
orthogonal dynamics are trivial (since the equation was already completely formulated
in terms of functions of x and v), and hence the Mori-Zwanzig equation is just the
original equation for x, %Stx = v. For v we first find the orthogonal fluctuation
function F(t) = S' (1 — P)Lv (or e!~P)L(1 — P) Lo in semigroup notation). From the
above explicit solution we see that

I

= 81(1=P)(U'(x) — Lkig; —x)) = S1 (T ki — )
] )

= Ykl = x) cos(awjt) + L sin(coyt)]

7 (U]'m]

Next we may use this to compute the memory kernel, which is given by

K(v(t—s),s) = S"°PLS° (1 — P)Lv = S"°PLF(s)
_ pi .
=S'"PL ij[(q]- — x) cos(wjs) + —;ﬂ] sin(wjs)]
]
= St*SP(Z:k‘[(ﬁ —v) cos(wjs) — L(q — x) sin(wjs)])
T U — j
= —5'"°) kjcos(wjs)v
= —) kjcos(wjs)v(t —s)
where in the second line the definition of L is used, in the third line we just apply the
projection P, using that Pv = v, Pp; = 0 and P(g; — x) = 0 and then rearrange terms
and apply S'°. From all this we conclude the following equations for x and v:

X =0
o=-U'(x)— /OtIZ(s)v(t —s)ds + F(t)

or, rewriting to one equation:

F=—U'(x) - /OtK(s)x(t —s)ds + E(t) (2.16)
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with K(s) = Y k;cos(wjs) and F(t) = ¥; k;[(q; — x) cos(wjt) + & sin(w;t)] as above.

At this point, we should think about the meaning of equation (2.16). As suggested in
the introduction, we may hope that the term F(f) represents a noise if the time scales
on which the (unresolved) orthogonal dynamics occur are much shorter than the time
scales of the resolved variables. We are interested in the situation where we do not
know the initial conditions of all the variables p; and g;, so we draw them from the
canonical distribution (given the initial values of x and v), with inverse temperature

B which means that the initial value of p; is distributed as N (0, ;m) (Gaussian
]

with mean zero and standard deviation ﬁ), while g; has a Gaussian distribution
]

N(x, ﬁ), as we easily read off from the Hamiltonian. We can verify the fluctuation-
]

dissipation theorem explicitly here and we find

PE(F(t)F(s)) = K(s — 1) (2.17)

which is the same expression one finds from (2.14).

A limit theorem for the heat bath model

The original idea of the Mori-Zwanzig formalism in statistical mechanics, is that the
Mori-Zwanzig equation may be replaced by a generalized Langevin equation. That is,
the orthogonal dynamics may be replaced by a stochastic process. In most situations
it is very hard to show that the orthogonal dynamics in the MZ formalism indeed lead
to a process that is stochastic. In the particular case of the heat bath model however,
limit theorems for an infinite number of heat bath modes, the thermodynamic limit,
have been proven. We will discuss such a theorem, and closely follow the exposition
of (Kupferman et al., 2002). The situation is as above where the initial conditions of
the heat bath particles are drawn from the canonical distribution (that is, Gaussian).
We start with a heat bath consisting of N modes, and then take a limit N — co.

To understand the limit as a stochastic equation we need to reformulate the problem
(2.16) in integral notation:

AN = N(0) +/Ot U’ (XN (s))ds — /Ot KN (E— )2V (s)ds + oV (#)
where
N (E) = /0 "KM (5)ds
o) = [ PN)as
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The subscript N is used to keep track of the number of heat bath modes. From this
definition and using (2.17) we find that

EpN (1™ (s) = B (o™ (1) + pN(s) = p™ (t —5))
oN(t) = /0 kN (s)ds.

Now the idea is the following: we select the frequencies w; such that they have a broad
and dense spectrum, and then choose an appropriate function f to let

ki = f(w))Aw

with Aw ™! the mean density of the frequencies. Then KN will approximate an integral
(the Fourier cosine transform of f) in the limit N — oo

N

KN(t) = Y f(w;) cos(wit) Aw ~ /Ooof(w) cos(wt)dw.

i=1

To get a good spectrum one could take for instance evenly spaced w; = j* with a €
(0,1)(Hald and Kupferman, 2002), but we will consider the case where the w; are
uniform random variables on [0, N*] so w; = N*¢; (Kupferman et al., 2002), where the
¢ are IID U(0,1) random variables. Denote

K(t) = /O " £(w) cos(wt)dew
K(t) = / K (s)ds

0

and let ¢ be the Gaussian process with autocorrelation
Ep(t)p(s) = B~ (o(t) +p(s) — p(t = 5)).

In the remainder of this section E denotes the expectation with respect to the variables
¢. We must assume a convergence condition on the function f, so we assume that f is
bounded (by c1) and also bounded by cow ™", with A > 1 (so f € L?[0,c0)). With our
choice of frequencies KN becomes a Monte Carlo approximation of the integral, which
is expressed by the following lemma:

Lemma 2.4.1. Almost surely with respect to the choice of frequencies kN
L?(0, T] (and hence also converges weakly) for any time T > 0.

converges to K in

This lemma can be used to prove convergence of the orthogonal dynamics to a stochas-
tic process:
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Lemma 2.4.2. Almost surely with respect to the choice of frequencies the processes ¢pN converge
weakly to ¢ in C[0, T] for any time T > 0.

The resulting kernel and stochastic process of course depend on the choice of function

f. For example,
20

)

leads to K(t) = e * and ¢ is in that case an OU process (Kupferman et al., 2002). A
slight modification (introducing a cut-off near o for the spectrum) allows to take

flw) = 2 - sin(T) 1

with T the Gamma function and «y € (0,1), which leads to K(t) = % and ¢ fractional
Brownian motion with Hurst parameter  (Kupferman, 2004). From the two lemmas
the following theorem follows (Kupferman et al., 2002):

Theorem 2.4.3. Let xN be the solution to (2.16). Assume that V' is globally Lipschitz. Then
almost surely with respect to the frequencies xN converges weakly in C'[0, T] for any time
T > 0 to the solution x of

x=x(0)+ /Ot U'(x(s))ds — /OtK(t —s)x(s)ds + ¢(t) (2.18)

Proof. First of all, the assumption that V' is globally Lipschitz ensures existence and
uniqueness of a C'[0, T] solution x given (x,¢) € L'[0,T] x C[0, T]. Thus we get a
map from L'[0, T] x C[0, T] to C![0, T], sending (x, ¢) to x (as defined by (2.18)). This
mapping is continuous, as the defining equation is an equation of Volterra type (see
(Kupferman et al., 2002) for details on this). From the lemmas 2.4.1 and 2.4.2 we
know that (xV, $N) converges weakly in L'[0, T] x C[0, T] to (x, ¢) (since N converges
in L2[0,T] it also converges in L![0,T], and weak convergence is preserved under
products), and because continuous mappings preserve weak convergence, this implies
that xN converges weakly to x in C![0, T]. O

The main work is in proving the lemmas 2.4.1 and 2.4.2.

Proof of lemma 2.4.1. Firstly, we know that

sin(wt)
w

dw

-
BN = [ flw)

As N goes to infinity, ExN converges in L?[0,T] to x. So it suffices to show that
almost surely xV converges to Ex". Using Borel-Cantelli we know that it suffices to
show that P(||xN — Ex"| ’%2[0 r) > €) is summable (with respect to N) to get almost
sure convergence. Using the Chebyshev inequality it is thus sufficient to show that
oN = E||xN — ExN| |ir2)[0,T] is summable for some positive integer p.
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Write

_/ / — ExN(8)[2)dty .. dt,

(exchanging integration order using Tonelli) and let g(w,t) = w ! f(w)sin(wt) (so
kN (t) = Z}il g(wj, t)Aw), and let N (t) = Eg(w, t). Then xN (t) — ExN(t) = Aw Z]-I\Ll h(wj, t) —
(t) and we may rearrange

Apr/ / EV] tl,..., dtl d

with J = (jy, .. ,]zp) _, a multi-index, and

Vi(ty,... tp) = E(H \W(wiy ) — u(ti)|[h(wiy,, t) — p(ti)])-

To estimate the sum over these terms, we regroup them by the number of distinct
indices k in J. If an index occurs, it must occur at least twice (since the moments are
centered around the mean). This implies that k < p. The number of terms with k
distinct indices can be bounded by CN* with k a constant C that counts the number of
partitions of p and does not depend on N or k. Finally we notice that we may estimate
any of the V; with k distinct indices as

Vi(ti, ...t HN / w) + plNE)m

where 1, is the number of times the index corresponding to r occurs in V}, and ¢*(w) is
an upper bound for g(w, t), which we may choose to be integrable by our assumptions
on f, and uN* = E¢*(w). Notice that this means that uN* scales N~%. These upper
bounds exist and are integrable by our assumptions on f. Finally we estimate the last
expression by

/O'N"(g*(w) = 3 <]Zr> Gy /ONH(S*(w))l’ <D

=0

with D a constant that does not depend on N (uN* scales as N4, so if I, = 0 the factor
N is compensated by this, and if I, > 0 the integral is bounded). Thus we conclude

Vi(ty,...,tp) <CN M

SO
p
oN < AWPTP Y CNF« N7 < eNZE-DNPI-0) = cNpe-D)
k=1

-1

and choosing p > (1 —a)~! ensures that ¢ is summable, concluding the proof. [
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Proof of lemma 2.4.2. The proof has two ingredients:

e Firstly we use the previous lemma 2.4.1 to show that the autocorrelation function
pN converges to p pointwise. Indeed:

t
o™ (1) —p(t)] = I/O (M (s) = (s))ds| < [|x" = &||1p07y
which goes to zero as kN converges to x in the L?[0, T] norm and hence also in
the L'[0, T] norm. Since ¢N and ¢ are Gaussian processes, this implies that for
all finite collections of times {#, ..., t;} the joint probability density functions of
(¢N(t1), ..., ¢N(tr)) converge pointwise to the density functions of (¢(t1), ..., p(t)).

e Using Cauchy-Schwarz

t
V(0 =) = | [ 1V (s)ds| < It = sl V]2

so pV(t) (and by a similar argument p(t)) are Holder continuous with exponent
3, and this is uniformly in N (since |[xV| |12[0,7] is bounded). We conclude that
also the autocorrelation functions of ¢ and ¢ are Holder continuous, and the
Kolmogorov continuity theorem tells us that this means that ¢ and ¢ are almost

surely continuous.

We combine these ingredients by using a theorem (Gikhman and Skorokhod, 1969,
theorem 1 in section 9.2) that derives from Prokhorov’s theorem on weak convergence,
which states that if ¢V is a collection of real valued continuous stochastic processes,
for which the finite dimensional distributions converge to that of an almost surely
continuous process ¢, and which satisfy the following tightness condition

limsup P( sup [pN(t) —pN(s)| >€) =0 (2.19)
u=0 N psefo,T)
[t—s|<u

for all € > 0, then ¢V converges weakly to ¢. Our first ingredient shows the conver-
gence of the finite dimensional distributions, and the second ingredient shows that
¢ is almost surely continuous. The tightness condition also follows from the uni-
form Holder continuity: since pN(0) = 0 we may write pN(u) < C lu|2 and since
|pN () — ¢N(s)| has a normal distribution with variance B'p™(t —s) we may esti-
mate (2.19) by

lim P(|X,| > ¢€)

u—0

where X, is a NV (0, ﬁ_1C|u|%) normal variable, and this limit is indeed zero (follows
from Chebyshev inequality). O

We thus see that for the heat bath model, the project of reducing a large deterministic
system to a small stochastic system can be fully performed. In this section we have

24



proven weak convergence, in some cases it is actually also possible to prove strong
pathwise convergence, that is

sup lim E(|x™(t) — x(t)[* + |2V (1) — 2(£)*) = 0
t<T N—oo

see (Hald and Kupferman, 2002) for the case w; = j~* and (Ariel and Vanden-Eijnden,
2008) for the case with randomly distributed w (but constant k;).

2.5 Approximations for the memory kernel

Since the Mori-Zwanzig formalism really consists in a rewriting of the original equa-
tions, the result will still be just as complicated as the problem we started with. The
two main issues are that we still have to solve the orthogonal dynamics to find the
‘noise’ term, and that it is very hard in general to come up with an explicit expression
for the memory kernel without solving the orthogonal dynamics. However, we get a
good opportunity to start making approximations. With respect to the first problem
we can try to approximate the orthogonal term by a noise (which may indeed be rea-
sonable if the variable we projected on are slow). However, this does not immediately
help us in finding the memory kernel. There are two situations for which method
to approximate the kernel are known which are very general. The first is when the
memory is very short, and the second one if the memory is very long and the kernel
varies slowly. These approximations are given in (Chorin et al., 2002).

Short-memory approximation
Consider the expression for K(f,s)
t t
/0 StSPLS (1 — P)Lfds = /0 StSPL(1— P)SS (1 — P)Lfds
where we used that S maps the null space of P onto itself. We write

PL(1-P)S5(1—-P)Lf =PL(1-P)S°(1—P)Lf+PL(1—P)(S, —S°)(1—P)Lf.

By differentiation one sees that (1 —P)(S5 — S%) = O(s?) as §Y — S° = 0 and and
2(1—P)(S5, — S*)|s=0= (1=P)((1 —P)L— L) = 0 and thus we conclude

K(f,s) = /Ot SISPL(1—P)S*(1 — P)Lfds + O(). (2.20)

In principle this is now just a short time approximation, but it may also be valid over
longer times if the term PLS% (1 — P)Lf decays fast, in that case we have a short-
memory approximation. We see that in (2.20) we do not have to solve the orthogonal
dynamics equation (as S° does not appear).
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Long-memory approximation

Another situation where we can actually make a reasonable approximation for the
memory kernel which does not demand the solution of the orthogonal dynamics is in
the case where the memory decays only slowly. In this case we write

t t t
/ StSPLSS (1— P)Lfds = / StSLS% (1— P)Lfds — / St5(1— P)LSS (1 — P)Lfds
0 0 0
t t
- /0 LSI58% (1 — P)Lfds — /0 51555 (1— P)L(1 — P)Lfds

using that L commutes with S’ and (1 — P)L commutes with S, . Now we approximate
by letting S5 ~ S° (so e(1=P)Ls ~ el%) to get

/Ot LS{(1 — P)Lfds — /Ot S'(1—P)L(1 — P)Lfds = tS'PL(1 — P)LF.

Alternatively, one could also expand the expression for the integrand in the memory
kernel around s = 0 to find

/Ot S'SPLSY (1 — P)Lfds = /Ot S'PL(1—P)Lf + O(s)ds
=tS'PL(1— P)Lf + O(t?).

When is the error small in this case? This happens if the integrand stays closely to its
initial value at s = 0, so the memory kernel is ‘slowly decaying’. This is the opposite
situation of the previous approximation, where we assumed that the memory kernel
decayed very fast. This approximation is also known as the t-model. It is easy to extend
to higher orders in t. Let us give an example from (Chorin et al., 2002) and (Chorin
and Hald, 2014), where we consider a nonlinear Hamiltonian system with

1
H(q1,92,p1, p2) = 5 (p1 + p3 + 41 + 43 + 4142) (221)

and we use the canonical projection operator to project onto (g1, p1), with p = 1. The
relevant projections are easy to compute (they are quadratic Gaussian integrals), and
after an easy computation we find for the Markovian part that

Pqu = Pl

PLpy = —q1(1 + )

1+ 47
and for the t-model approximation of the memory
PL(1—-P)Lg1 =0

2qip1 -

PL(1—P)Lpy = —
=PIy =~ 2y
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Figure 2.1: The (canonical) ensemble average over 5000 oscillators with fixed g1, p1
initial conditions (blue) compared to the t-model prediction (red).

This leads to the optimal prediction equation with memory (2.9) for the evolution of
the expected value of (g1, p1) given initial conditions (so the evolution of (41, 71) =
P(q1(t), p2(t)) = E(q1(¢), p1(t)|p1(0),41(0))). We make another (crude) approxima-
tion, by commuting conditional expectations with functions of g1 (t): P(f(q1(t))) =
f(41(t)) to obtain

d_
dtql_pl

LIPS S S 1 (222
T A N C I S R G

Comparing the solution to this equation with the average over an ensemble average
leads to a reasonably good result as can be seen in figure 2.1. In case just using the
optimal prediction without memory leads to an oscillating solution, and the mem-
ory term has a dissipative effect, which models the ‘leaking” of information to the
unresolved degrees of freedom. It is not hard to show that for general mechanical
Hamiltonians the memory term in the t-model is a dissipative term (meaning that it
causes the value of the reduced Hamiltonian to decrease) (Chorin et al., 2002).
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2.6 Markovian approximation of the generalized Langevin
equation

In this section we will discuss a way to approximate the memory kernel in the stitua-
tion where we have a linear memory term. We will use the following theorem, closely
following the proof in (Pavliotis, 2014):

Theorem 2.6.1. Consider the generalized Langevin equation

x=f(x)— /OtK(t —s)x(s)ds + F(t)

where K(t —s) = A-e A=)\ for A € R" and A a positive definite n x n matrix, is the
autocorrelation for the process F. Then this equation is equivalent to the following SDE

t=fx)+A-y
y=—Ax— Ay +XW

where X" = A+ A" and the initial conditions for y are N'(0, 1) distributed.

Notice that for GLE’s obtained from the Mori-Zwanzig procedure, with the linear
projection we indeed know by the fluctuation dissipation theorem that K is the auto-
correlation for F.

Proof. Let us start from the equation

x=f(x)+Ay

y=—Ax — Ay +TW (2.23)
We can solve y for given x to get
y(t) = e My (0) — /Ote_A(t_S)/\x(s)ds + /Ote_ASZTZdW(s).
Inserting this in the equation for x we find
x=f(x)— /OtK(t —s)x(s)ds+ F(t) (2.24)

where K(t) = A -e~4A and
t
F(t) = A~ (e 41y (0) +/ e METEAW(s)).
0

From this we may deduce that, if we assume y(0) is N(0,I) distributed, F(t) is a
stationary Gaussian stochastic process with mean zero and covariance

min(t,t') T T
E(F(DF(#)) = A-e (1 + / eASETEA S s)e AT )
0
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Now the result follows from the assumption that ZX" = A + AT and hence
min(tt) ATy
E(F(H)E(Y)) = 1+/ S(A+ AT)eA ds)eATF A,
Let us assume t' < t (the case t < t' is similar), then we have
min(tt') L T

I+/ AS(A 4 AT)eA 5ds = A ATt

which follows by differentiation. Thus we conclude that
E(F(HE()) = A-e AN = y(t— 1)

as desired. 0
This is a very useful theorem. If we can approximate the memory kernel of an ar-

bitrary GLE satisfying the fluctuation-dissipation theorem by a function of the form
A-e~ A=) we can approximate the full system by a finite dimensional SDE.

Laplace transforms

One way to look at generalized Langevin equations with a linear memory is by con-
sidering Laplace transforms. The Laplace transform of a function f is the complex

function f defined by
= / f(t)e *dt
0

and for a memory kernel of the form given in theorem 2.6.1, we get
R(z)=A-(A+z)71A (2.25)

Starting with the full system, we can approximate the Laplace transform by some
rational function, and then try to find A and A such that it is of the form (2.25).

In the particular case of the particle in a heat bath, there is a close relation between the
autocorrelation functions and the memory kernel, that can be best expressed in terms
of Laplace transforms. Consider the system

v—/Kt—s s)ds + F(t) (2-26)

(a free particle in a heat bath) and let C,, = E(v(t)v(0)) be the velocity autocorrelation
function. If the system is ergodic this autocorrelation may be obtained by a time
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average rather than an ensemble average (so it can be estimated from a time series).
Multiplying equation (2.26) by v(0) and taking the ensemble average we find

Conlt) = / K(t — §)Coo(s)ds
using that E(v(0)F(t)) = 0. The Laplace transform of this equation is
g (v(0)F(t)) p q
Zéyv (Z) - CZ)U(O) - KC'UZ)

so from the Laplace transform of the velocity autocorrelation (which can be estimated
from available data) one obtains the Laplace transform of the memory kernel. This
makes it interesting to investigate simplifications of K that allow a finite dimensional
representation as a Markovian system as in theorem 2.6.1.

The easiest example is when the matrix A is diagonal:
Example 2.6.2. A diagonal matrix A with A;; = «; corresponds to a memory kernel

K(t) =Y Afe ol
i

This corresponds to a Laplace transform

K(z) = 2 . -I-izxi'

i

Continued fraction expansion

Another approximation that was suggested by Mori is by making a continued fraction
approximation of the Laplace transform of the memory kernel

, A?
K(z) = :

A

zZ+wi + A2
3

Z+w2+7z—|—a)3—|—~~

and truncate this expansion at some finite order. Truncating is only appropriate if
the coefficients A; do not grow very fast (if they do all orders are needed for a good
approximation) (Muller and Viswanath, 1994). This approximation can be physically
motivated by the following procedure due to (Mori, 1965b) where we start with the
Liouville equation for some variable x, and project onto the linear functions of x,
leading to

X =Lx = wox + /K(t —s)x(s)ds + Fi(t) (2.27)
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We can apply the Mori-Zwanzig formalism to F;(t), projecting onto F;, and keep re-
peating this to get

. .t
F, = w;F;, + /0 Kl(t - S)Fi(S)dS + Fip1 (2.28)

We may truncate by assuming that for some 7 the term F, can be treated as a white
noise term. To solve we introduce the Laplace transform. Using the properties of the
Laplace transform with respect to convolution and differentiation we see that

Zﬁi(Z) + F,(O) = wiﬁi(z) + K-(z)ﬁi(z) + ﬁiJrl (Z)
which is solved by
F(0) + Fia(2)
z—w; —Ki(z)

ﬁi(z) =

Next we use the fluctuation dissipation relation (2.13) which tells us that the Laplace
transform of the kernels K and K; is given by

. (B)FO)
Ko = o)

>y _ (F1a(2)Fia(0)
Ki=) =5 om)

Using that (F41(t)F;(0)) = 0 it follows that

N A?
K(Z): ! A2
zZ+wi + 2 A2
3
Z+w2+z—|—aJ3—|—~~

where
o (RO0P)

1= (0P
_(E(0?)
M= Ea0

If we truncate the continued fraction the system can be realized in the form of theo-
rem 2.6.1 using a matrix

w1 —Az
Ay wy —Ajz

A= Az w3 =Ny

ANy wy

and A = (A,0,...,0)".
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Figure 2.2: A model for the interaction of a gas atom (red) and a solid (the chain of
linear springs).

Example: a gas particle and a solid

In this section we consider an example, due to (Zwanzig, 1960) and (Adelman and
Doll, 1974), which can be treated analytically, and where the approximation by contin-
ued fractions is completely explicit. The Hamiltonian is given by

2

2 )
H(q,p) = 2'97\04 +V{go—q)+ ) 2% +x(q; — gis1)? (2.29)

i=1

where g, po denote position and momentum of a gas particle, and g;, p; form a one-
dimensional harmonic lattice (the g; represent the deviations from from the lattice
positions). The idea is that the system is a highly simplified model for the collision of
a gas particle with a solid, where the solid is represented by a harmonic lattice (see
figure 2.2) and the gas particle only interacts with the outermost atom in the lattice
through some prescribed potential V. This model is also very closely related to a
model developed by Rubin to understand the behaviour of a defect in a harmonic
lattice (Rubin, 1963). The equations of motion are

. _ Po
="M
P
qi "

po=—V'(q0 — q1) (2:30)

p1="V'(90 — q1) — x(p1 — p2)
pi = x(qi—1 — 2q; + qi11)

To be able to use the projection formalism we make a change of variables: first we
rescale time to T = 2,/Xt and then we map (pj, 4;)2, to (1;)3, by letting

Upj = 2d7

Ugir1 = qi — qi+1
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The new equations of motion are

m
o= =5 (1)
1
U = E(Mo - uz)
1 1
=V - =
y = g Vi) = Jus
1 .
u; = E(ui_l — Ll,'_H) fori > 2.

In these new variables the Hamiltonian becomes a quadratic function (but notice that
the transformation does not preserve the Hamiltonian structure). We project onto
ug, u1 and up using the canonical ensemble, which is easy because of the quadratic
Hamiltonian. Denoting by f;(7) the term ST u; we find the following equations for the
orthogonal dynamics:

fo=fA=0
fa= —%f3
f3= —%fzx

fi= —%(ﬁ;] — fiy1) fori > 3.

Notice that this is precisely the form we investigated in the previous section with w;
all zero and A; = 3. Thus we know the Laplace transform of the memory kernel to be

the continued fraction )
% 4
K(z) = T
2+ —24

1
4
z
+Z_|_

and the corresponding reduced equation of motion is

) m
g = —=——V'(uq)

1
U = E(uo - 1/[2)

1 f 1
tip = —V'(uy) —|—/ K(t —s)ua(s)ds — = f3(7)
2K 0 2
which we may rewrite in a single equation using the original variables as

1 m

=iy = (¢ — V' —0) — [ K =s)p(s)ds = 30, (230

A finite truncation corresponds to a chain with a finite number of lattice particles.
In this model we happen to be able to find the inverse of this continued fraction
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for an infinite number of particles. This is done by explicitly solving the orthogonal
dynamics, using a generating function trick. We introduce

1) = i fulT)2"

which, using the equations for the orthogonal dynamics, has time derivative

aF(aZé T) - i %(fn,1 (T) - fn+1(T))Zn - %f4(”[)23 — %fg(T)Zz

n=4

_1, —z YF(z,7) + 5(z— 2°) fa(7).

5(
This can (formally) be solved to find

T
F(z,7) = 32 7R (2,0) + % [t =) p(s)as
0

Next we use the expansion

NI =

%zz ZI”

n=—oo

where the ], are Bessel functions of the first kind. We can now get f3 by extracting the
coefficient of z3 to find

= Y T nss(OA0) + 3 [ ale =) = Jo(x = )ats)es

We can get rid of the second term by looking at the coefficient of z (wWhich must equal
o0 by our definition of F). Using the relation J_, = (—1)"], we arrive at

AT = = (=" (heal) + Toa ()0
= 22 50) = 32 (-1 aale) + Faa (@) (0
where in the last line we used J; = —]_1 so the n = 2 term vanishes, and Jo(7) +

Jo(T) = 2 1( ). We conclude that the memory kernel in (2.31) is given by

PLE(s) = —EPfy,(s)
_ 2]1(5)1/[
= ——u

S

and we conclude that inverting the continued fraction should lead to K = 2l 1( ). The
result should physically be interpreted in the following way: the gas atom 1nteracts
with the outer molecule of the solid, but the energy that is transferred to the solid
then dissipates away through the chain by phonons. The dissipation is described by
the memory kernel. Thus (depending on the potential, see (Zwanzig, 1960) which has
a slightly different derivation, for details) the atom may get trapped on the surface of
the solid (at least if the solid is ‘cold’, that is, if the chain is initially inert.
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2.7 An example: conservative Lotka-Volterra

From the shape of the generalized Langevin equation that results from the Mori-
Zwanzig formalism, it is clear that if we are able to approximate the dynamics by
an SDE, it will always have additive noise (since the orthogonal ‘noisy” term does not
depend on the relevant variables by construction). In this section we will nonetheless
give a heuristic derivation of an SDE with multiplicative noise, and at the same time
illustrate how to use perturbation theory for the orthogonal dynamics. We do so in
the context of a model for the evolution of populations of multiple species that inter-
act. The basic model for this type of dynamics is the Lotka-Volterra model. Different
interactions between the different species are possible; we will only take into account
a predator-prey relation, in which biomass is conserved. In that case, the system is
actually Hamiltonian which greatly simplifies the analysis. We will try to track the
evolution of the population of a single species, and it will turn out that it satisfies a
generalized Verhulst equation, and in the limit with infinitely many species that have
appropriate interaction we actually get the stochastic Verhulst equation, the standard
equation for logistic growth. The analogy with the previous examples is that we inter-
pret all the other species in the system as a sort of heat bath. In this case the equations
for the ‘heat bath’ are nonlinear and can not be solved explicitly. Near equilibrium
we can use a linear approximation, and we will also compute higher order correction
terms. The linearized model was first considered in (Zwanzig, 1973b), and (Roerdink
and Weyland, 1981) is the inspiration for computing the higher order approximations.

We consider the following Lotka-Volterra equations

n
N; = k;N; + ‘3;1 Z ai]‘NiN]‘ (2.32)
=0

where N; represents the population of species i and runs from 0 to n. The assumption
that the equations are conservative (biologically: total biomass is preserved in the
interaction) is expressed by the condition that 4;; = —a;; so the matrix A with A;; = a;;
is anti-symmetric. Notice that from a modelling perspective, this is a problematic
assumption, because this means that the system is structurally unstable, perturbing
the parameters a little bit will destroy the conservative nature, and hence the following
analysis no longer holds (May, 1973), but see (Goel et al., 1971) for a defence. In any
case, if we drop this assumption, the behaviour of the system will be very different, as
it will in most cases not be oscillatory. It is known that a very large class of dynamical
system can be realized as (a subsystem of) a Lotka-Volterra model. We assume that an
equilibrium population Q; exists, so

n
kiQi+ B ') a;QiQ; =0
j=0

Moreover, if we assume this equilibrium state to be unique, n + 1 must be even (a
rather disquieting assumption from a biological perspective as there seems to be
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no good reason to distinguish between ecosystems with an even or odd number of
species), and the system (2.32) is Hamiltonian. This is seen by introducing variables
0; = ln(NZ-/QZ-), SO

n
U = ,3:1 Zaiij(eUf — 1)
j=0
and the function ;
G(v) = ) BiQi(e" —vi)
i=0
is conserved. The equations of motion are Hamiltonian for G with bracket

{f.g} =Vf AVg.

For convenience we introduce one more set of variables

xi = /BiQi(e" —1) = \/E(Ni - Qi)

and we introduce parameters «; and a matrix C with coefficients c;; given by

“‘:#c--: ga %
COVBQT VBTN B

The Liouvillian then takes the form

n

L= Z Cij(l + ocixi)xja—.

e xi
i,j=0
We want to find a reduced equation for the evolution of the zeroth species. To do
so, we project using the conditional expectation with respect to vp with a ‘canonical
ensemble’ with ‘temperature’ 6 given by e~¢/?. For a justification and investigations
with respect to ergodicity, see (Goel et al., 1971). One checks that for i # 0

P(x) = P(-(e" =1)) = 0
9G

since x; = ng We apply the Mori-Zwanzig formalism to the equation for vy and see
that PLyy = 0. Thus

(1 — P)LUO = LUQ = ‘Bal ZaOiQi(evi — 1)
i=0

&pCoi X

M-

Il
—_
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and we want to solve the orthogonal dynamics for x:-. These are not readily analyt-
ically solvable, but we can use perturbation theory to get an approximation. Let us
write L = Ly + L1 with

i d

LO = cijx i

ij=1 axi

This is chosen in such a way that Ly represents precisely the linearized orthogonal
dynamics around the equilibrium Q; (so around x; = 0), notice that PLy = 0. We will
first consider the approximation e(!~7)Lf ~ elof, and later we will also compute second
order effects of the nonlinear contribution (1 — P)L;.

Lot

Because Ly is linear, the evolution of e can be written in the following way:

n
eLotxi = 2 Uij(t)x]'
j=1
with U;;(t) = exp(Ct);j. We can thus write in first order approximation
n
F(t) = " P (1 = P)Log ~ "' (Y wocoix;)

i=1

n
= Z ococ()iuij(t)x]-.
ij=1

The memory is then given first order by

PLF(S) ~ PL Z lXoCOiul‘]’(S)x]'
i,j=1

n
= ) aocoicioUij(s)xo
ij=1

and we conclude that ,
0= / K(t —s)xo(s)ds + F(t)
0

with K(s) = 2?,]':1 aocoicjoUsj(s). If the initial conditions for N; are drawn from the
canonical distribution for i > 0

E(F(t)F(s)) = agbK(t —s).
Finally, rewriting back to an equation for Ny we get

t
mzm/
0

K(t—s) g;(No(s) — Qo)ds + NoF(#).
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Figure 2.3: Plot of Ny averaged over 100 simulations, with n = 500, Q; = 1 for all i
and a;; = 1 for i < j, i,j # 1 with probability p = 0.8. The blue graph
corresponds to the case where all ap; are equal to 1 (short memory), and
the red graph to the situation where a¢; is 1 or —1 with equal probability
(long memory).

In the particular case where F is approximated by white noise, and hence K(s) =
Kopd(s) we get the stochastic Verhulst equation

Ny = KO\/gNO(NO — Qo) + NoF(t).

Can we indeed find predator-prey interactions which give rise to this type of noisy
behaviour? Van Kampen (Van Kampen, 1974) indeed gives an example, and also
discusses a case with long (exponential) memory, we have plotted the different types
of behaviour in figure2.3.

Thus we have obtained a (heuristic) derivation of an SDE with multiplicative noise
using the Mori-Zwanzig formalism. Notice however that it is actually an SDE with
additive noise for vy (what happens here is more or less the Lamperti tranformation
that maps an SDE with multiplicative noise to one with additive noise in one dimen-
sion (Pavliotis, 2014)).



Perturbation theory

To compute nonlinear contributions of the other species (the analogy to the heat bath),
we use to Dyson formula to approximate

t
elLot (=)L)t — plof(1 4 / e LS (1 —P)Lie*ds +...) = Fi(t) + B (t) + ...
0
So, we want to find e~ 20(t=5)(1 — P)Lel%(1 — P)Lvy. We compute

n
(1 - P)LleLOS Z X0Cpi X

i=1

= (1 — P)Ll Z ococ()ill,-]-(s)x]-

=1
= Z wocoiUi (s Z cjie(1 + ajxj) X 4 cjo(1 + ajx;) xo)

i,j=1

= Z agcoiUij (s Z CikljX X =+ CjokjXjX0)
ij=1
)
e Lolt=3) (1 — P)Lielo* (1 — P) Loy
n

n
woaejeoiUi(s) U (t =) (Y ikl (t — $)x12m + CjoX1X0).
=1

ijI= ket

We conclude that

n n
/ Y wowjeoillij(s)Ujp (=) (Y il (t — ) XX + cjoXx;x0)ds.
ijl=1 k,m=1

Using this we can also compute the second order contribution to the memory term,
Ko(t,s,x0) = e!!=9)PLF,(s). From computing some Gaussian integrals we find Px;x; =

0;0 and Px;xjx; = 51]5]k920c1- for i,j,k # 0 and with §;; the Kronecker delta. From this

we easily check that

PLxlxm = 51m2C100619xO
PLxjxg = clo(x% —0(1 + apxp)).

We conclude that

ton
Ka(t,s,x0) :/0 Y worjegicioUsi(s) Uy (¢ Zc]kukl t—5)20,0x0 + cjo (x§ — (1 + aoxo) ) )ds
ijl=1
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2.8 Averaging

Often we will look at systems with some form of scale separation, which take for
example the form

x=R(x,y)

1 1 . .
= £8(r )+ T (n )W 29

with W white noise, and (x,y) defined on some space X x Y. What can we say about
the dynamics for x if € is very small? The idea is the following: if € is very small, the
dynamics of y tend to an equilibrium distribution (which depends on x in general)
very fast, so we can draw y in the equation of motion for x from this distribution. We
will make this idea a bit more precise and discuss the relation to the Mori-Zwanzig
formalism. The exposition is based on (Pavliotis and Stuart, 2008).

Consider the problem (2.33). We write L = %Lo + L for the Liouvillian where
L1 = R(x,y) - Vy
1

with T(x,y) = 7(x,y)7y(x,y)", and we assume that I'(x,y) is nondegenerate. We
assume that for fixed x, the dynamics of Ly are ergodic, in this case meaning that for
each x the only solutions of Lyv = 0 are the constant functions v. This means that there
exists an invariant measure, with unique density function p, satisfying Ljp, = 0 such
that p, integrates to 1, and because we need p to decay sufficiently fast we assume that
px € H}(Y) (the closure of compactly supported smooth functions in the Sobolev space
of Y). Define the measure i, (dy) = px(y)dy, this represents the invariant measure for
the situation where we keep x fixed and let y evolve in time. For times which are of
smaller order than O(1) (which is the order on which x changes, so we assume that
x is more or less fixed) but of larger order than O(e) (which is the order on which y
changes, so we may assume that y has had enough time to behave according to the
invariant measure) this should be a good approximation of the statistics of y given x.
That motivates us to define the projection P onto functions of x which is given by

Ph(x) = [ h(x,y)(dy)
and to approximate the dynamics of x by

x = (Pf)(x). (2.34)

Of course this will in general only be a good approximation if € is very small. To
see that in that case it is indeed a good approximation we look at the backward Kol-
mogorov equation. We define

v(x,y,t) = E(x(#),y(8)[x(0) = x,y(0) = y)
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which then satisfies
Jv 1

%~ “Lov+ Lo,
5 c 00+ L10
To solve this equation we expand v as v = vy + €v; + O(€?) and on the level O(1) we

obtain

Lovg =0 (2.35)
and on the O(1) level we get
ov
Lovq ETtO — Lq09. (2.36)

From equation (2.35) and our ergodicity assumption we know that vy is constant in y.
Since we assume that I'(x,y) is nondegenerate, the PDE (2.36) is elliptic. This means
that (given the appropriate boundary conditions and functional setting) we can use
the Fredholm alternative for elliptic PDE’s (Evans, 2010) on this equation (fixing x and
t) to find that since L;jp, = 0 has a nonzero solution (again the ergodicity assumption),
that if % — Livg € L?(Y) (2.36) has a (weak) solution if and only if

aaz;o — Lyve L Null(L{)

If we assume that such a solution vy indeed exists we thus get

aUO

PG

— leO) =0

since the projection P is precisely the L? inner product with p; € Null(L}) and since

vo does not depend on y, P(%0) = %0 we find

% = PLﬂJO

which corresponds to (2.34). This justifies the approximation (2.34) as we let € go to
o. In fact it is not hard to show that we have (strong) convergence in L for p > 1
(Pavliotis and Stuart, 2008). However, we did have to assume that the fast dynamics
were stochastic, in order for (2.36) to be elliptic. For deterministic systems similar
results are possible, but much harder to prove. One of the reasons for this is that the
invariant measure of the invariant dynamics need not be continuous in x, and need
also not have a density function.

At this point it is good to remark that for nonzero € the projection P we defined above
is not the same as the conditional expectation often used in the Mori-Zwanzig formal-
ism, which depends on an invariant measure for L and not just for L;. It turns out that
in the € — 0 limit they yield the same result under some smoothness assumptions as
is made precise in the following lemma from (Stinis, 2005):
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Lemma 2.8.1. Assume that system (2.33) allows an invariant measure fi€ with density func-
tion p¢, and that in the limit € — 0 this measure still admits a density p. Then the conditional
measure

” p°(x, )
YY) = 7=
ST T tydy
is in the limit € — 0 an invariant measure py for the Ly dynamics.

Proof. Since p€ is an invariant measure for the system (2.33) we know that

1 * k\ ~ X~
(ELO + L1)p = L*p° =0.

In the limit € — 0 the first term will dominate since we assumed that the limit of p¢ is
smooth enough to allow a density function

lim Lyp¢ =0
e—0
and hence
tim L5 (55 [ (o y)dy) = lim, [ 9, y)ayLi (55)

since p¢(x, y)dy does not depend on y and L only has derivatives with respect to the
y variables. We conclude that

lim Lyps =0

e—0

which is what we needed to show. O

From this we conclude that the Mori-Zwanzig formalism may be seen as a way to
provide the correction terms for finite € in the averaging procedure for deterministic
systems.

Averaging Hamiltonian systems

The idea of averaging is also often used in the context of Hamiltonian systems to
average out ‘fast angles’. To see how this works we take an example Hamiltonian
system with Hamiltonian

1 v
H(q1,92,p1,p2) = 5(p1 + p2) + U(q) + 2(221 ' (237)

with U and V some potentials. This example and the link to averaging are described
in (Pavliotis and Stuart, 2008). Rescaling g, and p, shows that the corresponding
dynamics are of the form (2.33). In this case the dynamics for fixed (g1, p1) for the fast
variables (g2, p2) behave as a harmonic oscillator with energy E — 3p? — U(q1) where
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!
. If we average %q% over this oscillation we

V(q)

2¢2

E is the total energy and frequency

find 2‘/‘;((211)) (E — 3% — U(q1)) and hence the averaged equations are
q1 = p1
: V'(q1) 1
= —U'(q1) — E—=p?—U(q)).
pl (ql) ZV(ql)( zpl (ql))

This result corresponds precisely with the optimal prediction S'PL when using the
microcanonical ensemble (which is easily seen to be the case in general). Thus the
Mori-Zwanzig formalism provides correction terms for the averaging procedure for
nonzero €. It may be interesting to use this perspective to study low-dimensional
Hamiltonian systems with chaotic regions, such as the Henon-Heiles model, which is
of a similar form, but without the scale separation. A first attempt has been made
by (Ishizaki et al., 2006) using the linear projection to analyse the autocorrelation and
spectrum of these systems. Another interesting situation occurs for systems with more
dimensions, where the averaging procedure does not give good results due to reso-
nances.
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I know of scarcely anything so apt to impress the imagina-
tion as the wonderful form of cosmic order expressed by the
‘Law of Frequency of Error’. The law would have been per-
sonified by the Greeks and deified, if they had known of it. It
reigns with serenity and in complete self-effacement,amidst the
wildest confusion. The huger the mob, and the greater the ap-
parent anarchy, the more perfect is its sway. It is the supreme
law of Unreason. Whenever a large sample of chaotic elements
are taken in hand and marshalled in the order of their mag-
nitude, an unsuspected and most beautiful form of reqularity
proves to have been latent all along.

Galton, Adress to the Anthropological Institute

Stochastic parametrization

Let us consider a very practical problem that was already alluded to in the intro-
duction: predicting the weather (or climate). In principle we have partial differential
equations that model the evolution of the atmosphere, and if we can solve these equa-
tions with the current state of the atmosphere as initial condition we might expect
to get a reliable prediction of the weather. However, multiple problems arise that
prevent us from obtaining (long term) predictions. Firstly we can only approximate
the solution numerically, and our computers are only able to solve for relatively large
scale components (large wave numbers or coarse grid points). Let us call these large
scale components the resolved degrees of freedom, and the other components the
unresolved degrees of freedom. Most of the time we only know the (estimates of)
the initial conditions of the resolved degrees of freedom. To approach the problem
we could discretize the equations, and only keep the finite set of resolved degrees of
freedom and use this to numerically approximate a solution of the original system.
The numerical cost is reduced in two ways: we need to update only a few variables
each time step, and because we only keep track of the relatively slowly evolving com-
ponents of the system we can use a larger time step. This procedure does however
introduce an error, and in the case of atmospheric models (and more general for any
chaotic system with positive Lyapunov exponents) this error can be very serious since
events that take place on small scales may have strong effects on the large scale be-
haviour, a phenomenon first remarked upon by (Lorenz, 1963). Eliminating this error
is not realistic, and there is a * predictability horizon” beyond which we cannot predict
the state of the system (Lorenz, 1995), so we have to settle for two less ambitious goals.
The first goal would be to minimize this error (in some sense to be made precise) in
order to get the best/most likely prediction (for relatively short times). The second
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goal would be to get an idea of how large the error is, so we do not only know what is
going to happen most likely, but also how good the agreement of our prediction with
reality will probably be. One way to achieve the first goal in our model is by gather-
ing data and estimate a term in the model that depends only on the resolved degrees
of freedom. This term should correct for the presence of the unresolved degrees of
freedom and should minimize the predictive error. Such a procedure is (in the context
of climate and weather) called parametrization (Wilks, 2005), (Arnold et al., 2013). In
order to achieve the second goal, we will however need a stochastic model, that takes
into account the uncertainty of the initial conditions, by representing the unresolved
degrees of freedom as some stochastic process.

The Mori-Zwanzig formalism can be used as a starting point to formulate such a pro-
cedure mathematically, by projecting on the resolved degrees of freedom. The main
insight it gives is that, especially in systems without a very strong scale separation
(such as the atmosphere), it may also be important to account for memory effects in
the stochastic parametrization. In this chapter we will discuss some methods based
on the Mori-Zwanzig formalism to approximate high-dimensional systems by low-
dimensional (non-Markovian) stochastic systems. The analytic formulation that was
presented in the previous chapter can in practice often not be performed. One reason
may be that we do not even know the governing equations for the unresolved pro-
cesses. Even if we do know a description of these processes, in most cases it is not
possible to directly analyze the orthogonal dynamics, for instance because we do not
have an expression for the invariant measure and hence for the projection operator.
This means that we have to find ways to obtain estimates for the stochastic and mem-
ory terms using available data of the system. Since we will mostly be interested in
systems that are not analytically tractable we have to rely on observations and numer-
ical simulations to obtain these data, which will thus be discrete, and we have to find
a way to obtain estimates from a time series.

3.1 General form of the discretization

Let us write x for the resolved variables and y for the variables that are unresolved.
We assume that we have a system of differential equations similar to (2.33) for x and
y which we write as

x=R(x,y)

y=5(xy)

We consider the MZ-formalism for the projection onto functions of x, to get the fol-
lowing equation for the evolution of x, given initial condition x(0):

9 B t
&x:R@yﬁA§“MLQ%+Fm (3-1)
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where R = E(R|x(0)) (so this is just equation (2.8) with slightly simplified notation).

We assume we want to solve for a time series x' = x(t;) with fixed time step At, so
t; = At -i. So x' = Slix where x is the initial condition. We can derive a formula for a
discrete operator in the same spirit as formula (2.5) (Beck et al., 2009). For this let M be
a linear operator (the case that interests us is S*! = €2l on the space of L?>-functions)
and let P be a projection. We want to study the behaviour of M*f for some f. Then
we may define F! by FO = (1 — P)f and F'*! = (1 — P)MF'. Then we can prove by
induction that )
M'f = M*Pf+ Y MF'PMF ! + F~. (3.2)
i=1
If we indeed take M = S*! then this gives an exact expression for xj, but notice
that Fy # F(Atk) as defined in the continuous version. Now if we let in particular
f=Lx=R= %x, then we can use a numerical scheme (for example Runge-Kutta)

X" = x4 AERA (X", y1).

From (3.2) it follows that R(x",y") = R(x") + £/_y M""PMF'~! + F" where R = PR,
If we write z" for Y/ { M""PMF'~! + F" we get an integration scheme

X" = ¥ AR (X)) 4 AtZ". (3.3)

The z" can be determined from the x" since they form a discrepancy z" = (x"*! —
x")/At — Ra(x™). This means that if we have data of x we can also determine a time
series for z (notice that this is in general not stable for larger At). The problem we
want to look at, is whether it is also possible from the data to get a good idea of how
z" behaves. As we see it has two parts, a ‘noisy” part and a part that has memory (and
depends on previous values of x).

In what follows we will assume that the original system is such that the time series
x" is stationary and ergodic. Thus it makes sense to try to find a way to sample z,
conditioned on x",x"~1,... in such a way that the resulting process has statistics that
are very similar to the statistics of the original process. We are generally not interested
in the actual predictions we make for z", but only in the behaviour of the x”, so
this means we can be satisfied if we know the right statistical behaviour of z" rather
than following a (complicated) evolution of the orthogonal dynamics. In an abuse of
notation we will also write z" for this stochastic process, and x" for the corresponding
approximation to the original system.

3.2 Different procedures for stochastic parametrization

The NARMAX representation

From (3.3), and approximating the orthogonal dynamics by a stochastic process, it
follows that z" = ®" + ¥" where ¥" is a random variable (but the ¥" need not be
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independent) and ®" = ®"(x",x""!,...) is some nonlinear memory. We will rep-
resent ¥" by a process that is a function of a series of IID Gaussian variable (",
so 9" = T"(gn,g”—l, ...). This is still very general, and can considered as a NAR-
MAX (nonlinear autoregressive moving averages exogeneous) process (Chorin and
Lu, 2015). The exogeneous input here is the time series x", so this is slightly different
from what is usual since the x" depend on z". To be able to say something about such
a model, one needs to make choices about which functions are allowed to occur and
how deep the memory is. We will use the Mori-Zwanzig formalism to motivate the
structure of this NARMAX process.

In many cases the Mori-Zwanzig formalism leads to a generalised Langevin equation

of the form 5 t
Sx(1) :R(x(t))—i—/o K(t — s)h(x(s))ds + Fu(t)

for a (possibly vector valued) relevant variable x. This equation can be exact, or it can
be obtained by perturbation theory for the orthogonal dynamics. In particular, if we
use the linear projection operator we get this equation with R and h linear operators.
However, for stochastic parametrizations it is useful to also consider the case where R
and & need not be linear, but some other (known) function. In this case the discretiza-
tion leads to a system (Schmitt and Schulz, 2006), (Horenko et al., 2007), (Chorin and
Lu, 2015) as we will show now.

k . .
K = x4 Rp(x") — Y K" R (x) 4 ¥
i=1

where we assume the memory to be zero after some finite time k. The noise term ¥
can for instance be modeled by an AR process, leading to

xk+1 — xk 4 RA(xk) T ZKkilh(Xl) 4 Gk + ZLkﬂC.
i=1 i=0

again with ' IID Gaussian variables. Also we recall the fluctuation dissipation theo-
rem, that suggests that in certain situations the autocorrelation of the noise is propor-
tional to the memory kernel, i.e BL = K. Another easy case is the situation where we
assume that ¥ is white noise so the L; are zero for i > 0.

Moment estimators

For a stochastic parametrization we want to estimate values for K and L' using data
from a time series for x” with N data points available. Because we assume we know
R explicitly, we also have data for z" available. There is an extensive literature on
this type of problem, and we will only discuss a very limited set of methods which is
based on the autocorrelation functions. There is a standard least-squares estimation
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procedure using autocorrelation functions, the Yule-Walker estimators (Kneller and
Hinsen, 2001). Let us write Cy ¢(t) for the crosscorrelation of two functions f and g. If
the time series is ergodic its discrete analog Cji o can be estimated from the data by

N—k
Ghe = g L V() ~ g™~

with f the average of f(x'). We find z"" from the data using
Z, = xk—i—l _ xk _ RA(xk) — EKk—zh(xz) +€k+ EL'H?
i=1 i=1

If we consider the autocorrelation of z with x we find
L= LG + L LCs
i= i=

We know that Cg,x = 0 for n > 0 so we find that for n > m we have

k . .
Cg,x = ZKICZ(;Z),x'
i=1

This is a set of linear equations for K, similar to the Yule-Walker equations for ARMA
processes. These equations can be recast in matrix form

m m m—k+1 1
cr cr. ... K

m+k—1 m+k—1 m k
cm crHk-1 . cm K

With the data for x and z available, in principle it is possible to invert this linear
problem to obtain K. However, these systems tend to be unstable, especially for larger
k (Haykin, 1986). So we will look for approximations to the problem that have better
stability properties.

3.3 Markovian approximations

In section 2.6 the Laplace transform was used to introduce methods to approximate
a generalized Langevin equation by a finite dimensional Markovian system. We will
discuss some estimation procedures based on these approximations



Discrete Laplace transform methods

Since we work with a discrete time series, we use the discrete analog of the Laplace
transform, the (one-sided) z-transform, in which a time series {x'}{° is transformed
to a complex formal power series

[ee]

Xt

%(z) = o

i=0

It has the nice property that if time series x and y are related by

£k — y KiyFi
we get that

£ = K.

This suggests that one can obtain K by taking the inverse transform of £/, where
in our problem x = C,y and y = Cyx. Unfortunately, as for Laplace transforms,
it is in general not so easy to compute inverse z-transforms (in principle it can be
done by contour integration), and numerical algorithms are not stable (Epstein and
Schotland, 2008). As already discussed in section 2.6 there are some possibilities to
approximate the Laplace transform (and hence the z-transform) of the kernel, in terms
of expressions for which we do know an explicit inverse transform. The easiest such
way is by approximating the fraction £/7, which is a rational function, by using a
partial fraction expansion, writing

where k is chosen to get a good approximation and is at most the length of x and y.

We use that pjz—f is the transform of the series x, , with

xi,p =rp.
The partial fraction expansion approximation thus comes down to approximating the
kernel K by a sum of (complex) exponentials. A version of this approach applied to
simulations of an argon liquid can be found in (Kneller and Hinsen, 2001).

Parametrizing with Ornstein-Uhlenbeck processes

The Laplace transform and z-transform suggest that it is easiest to work with a mem-
ory kernel that has some prescribed parametrization, such as an exponential one. The
form suggested by the Laplace transform is that of a sum of complex exponential
functions.

K(t) = Zri exp pit
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Because the memory has to be real, this means that we approximate the kernel by a
function of the form

K(t) = Zrl-e_"‘ft cos(wt + B).

This approach has two distinct advantages: it is much easier to estimate the ker-
nel (because now only these parameters have to be estimated), and simulating the
parametrized system is more efficient, because we can realize this memory kernel by
means of a system where we have added additional OU processes with an x dependent
mean

t=R(x)+) z
Zi = pizi — rix + ZZW

This approach has been worked out for a nonlinear Schrodinger equation by (Berry
and Harlim, 2015), where a Kalman filter based algorithm is used to compute coeffi-
cients. In the next chapter we work out this approach for the heat bath model and for
another toy model: the Lorenz ‘96 model.

Continued fractions and a multilevel algorithm

Finally there is a method based on the continued fraction expansion of Mori, which
essentially comes down to add OU processes level by level (Kondrashov et al., 2015).
As discussed in section 2.6 the continued fraction expansion of the Laplace transform
corresponds to a hierarchy of projection operators. As in equation (2.28) we obtain a
system of differential equations of the form

x=R(x)+f

fi = Lifz' +fi+1 fori=1,2,...
The algorithm proceeds as follows:

1. We obtain R(x) = PLx by using a least squares fitting of a function (for instance a
polynomial, but this may depend on what we already know about the structure
of the x-variables) to data for x, motivated by lemma 2.1.1. We obtain a time
series for the residue f;

2. Then we compute for each f; the term L;, which is obtain by linear projection on
fi so we look at a time series for f; (for instance (f/'*! — fI')/At) and fit a least
squares term L; f; to this. Then we proceed to f; 1

3. We truncate the procedure at some level and model the last f; as white noise.
The criterion for truncating at a given level may for instance be that the f; have
negligible autocorrelation in time (Kondrashov et al., 2015).
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A variation on this is to let the projection on the i-th level be the projection onto
fi,..., fi. This corresponds to a Markovian approximation as in theorem 2.6.1 with
lower triangular A. This kind of system has as a problem that it may be unstable,
an issue that is also adressed in (Kondrashov et al., 2015) using energy conservation
methods.
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I of dice posses the science, and of numbers I am skilled.
Vyasa, Story of Nala in the Mahabharata

Numerical experiments

We will apply the usage of a Markovian approximation to the memory in two typical
problems, firstly to the heat bath model (which is typical for statistical mechanics and
has a Hamiltonian structure), and to the Lorenz 96 model, which is a toy model for a
climate system.

4.1 Application to the heat bath model

We will apply some of these methods to the heat bath model previously discussed
with equations of motion

X=0
o= —U(x)+ Zk]'(qj —X)
j

. _ Pi
di m;
pi = —ki(q;i — x).

We will first consider the situation with N = 100 oscillators, and choose the parameters
guided by theorem 2.4.3. That is, we draw w; from a uniform distribution on [0, N“].

Then we take
_ 2 a1

i (e + w?)
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where we choose « = 2 and a = % This also determines the mass parameters. The
initial conditions for p; and g; are sampled from the canonical distribution with inverse
temperature 8, which we choose to be 10. For finite N we have a memory term

N
K(s) = ) _ cos(wjs)
=1

but we know that in the limit N — co we should get the system

¥=-U(x)+y
, N (4.1)
y=-2y—x+ocW

with W Brownian motion, so y is an OU process with mean x. The parameter ¢ is

given by
b [
P

as follows from the FD theorem and the standard deviation of an OU process. We take
a double well potential
xt o x?
U(X ) — Z - ?.

If the heat bath is at a sufficiently high temperature, the particle will be able to ‘jump’
between the two wells, as can be seen in figure 4.1 for a typical trajectory. In this
case the system is what is called metastable: it remains for a relatively long time
stably in one of the wells, and then suddenly jumps to to the other. For even higher
temperatures the barrier is no longer a serious obstacle and the particle freely jumps
between the two basins.

For this model it is very natural to parametrize using a v dependent OU process (since
we know that the N — oo limit is of this form). For different parameter settings this
has already been studied in (Verheul and Crommelin, 2016), indeed leading to good
results. To simulate the full system we use a Verlet scheme, and we must take the step
size to be of the order of the inverse of the smallest frequency (in this case that means
we can take At = 1072), as argued in (Stuart and Warren, 1999). The full system was
simulated for a time T = 10°. From the time series x"" and v" we computed

Z]n+1 ot
2= U (4-2)

With this time series we computed the correlation functions C;, and Cy,. Next we find
a least squares approximation to the solution of (the discrete version of)

Caolt) = [ Kl = 5)Conls)ds 43)
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with K(t —s) = re P(!=%), The parametrized system is then given by

¥=U(x)+y

t=—pz+ri+oW (4-4)

where we need to estimate 0. One way of doing this is by

& = /2pstd(z) (4.5)

where 2 is the OU process with mean o which replaces the orthogonal dynamics, and
which we obtain from z by

7g(t) = z(t) — /K(t —s)ou(s)ds

and which we can estimate from the data. In figure 4.3 we have compared the auto-
correlation of Z resulting from 4.5 and from the real system. This suggests that it may
be better to find o by a least squares fit of these autocorrelations. Indeed in figure 4.4
the results of the autocorrelation of v for these parametrizations are compared, and
the result obtained by fitting ¢ to the autocorrelation gives a superior result. From fig-
ure 4.4 it becomes clear that our method gives a good parametrization for this system.
Of course we anticipated this result (knowing the N — co limit), but it is still interest-
ing. Firstly it shows that also for finite N the approximation using an OU process is
very good, and secondly it shows that in this case the estimation procedure works. In
the next section we will apply our methods to a case where we do not have analytic
knowledge about the memory kernel.

4.2 Application to the Lorenz 96 model

The dynamics of the atmosphere and the ocean are governed by partial differential
equations. To solve these numerically, one would need to discretize space in some
way, in order to get a set of ordinary differential equations. One way of doing this
is by using Fourier analysis and truncating to keep only the large scale modes. The
result of such a procedure often is a model of the form

% =Lz+B(z,z)+F (4.6)
with z some multi-dimensional variable, L a linear operator and B a quadratic form,
and F representing a constant forcing (Majda and Wang, 2006). One example of such
a system is the Lorenz 96 model (Lorenz, 1995), which does not arise directly from
a discretisation of a real geophysical system, but which has been suggested to mimic
the behaviour of mid-latitude weather and which has properties that are analogous to
real-world systems. It consists of the following differential equations:

Xk = X1 (X1 — X—2) — X+ F
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Figure 4.1: A typical solution for x at inverse temperature g = 0.5.
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Figure 4.2: A comparison of the real memory kernel (blue), the estimated kernel (red)
and the limit prediction (yellow).
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Figure 4.3: Comparison of the autocorrelation of the orthogonal dynamics (blue) and
that of the noise Z in the parametrized system (red).
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Figure 4.4: A comparison of the autocorrelation of v for the original system (blue) and
the estimated parametrization using the improved estimator for & (red)
compared to the result using 4.5 (yellow).
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with periodic indices k = 1,...,K (so xx = xg1). One can show by Fourier analysis
that the linearised system has wave solutions, and the stability of these wave modes
depends on the value of the forcing F. Larger forcing implies more unstable modes,
and thus a more chaotic system.

In this section we will consider a version of the model (also suggested by Lorenz),
where there is also a coupling to a smaller scale set of variables:

X = X1 (X1 — Xp—2) — Xk + F+ 2

1 (4-7)
Yik = g(]/j+1,k(yj—1,k - ]/j+2,k) —VYjk+ hyxi)

where z;, = th Zj Yik and the indices runover k = 1,...,Kand j = 1,...,] cyclically,
SO Yjrjk = Yjk+1 and Yjxix = Yk The parameter € determines how much smaller
the time scale on which the y-variables evolve is compared to the time scale of the
x-variables. It is not so straightforward to apply the Mori-Zwanzig formalism in an
analytical way, since we do not have a good expression for the invariant measure.

The behaviour of (4.7) depends of course strongly on the choice of parameters. For
very small € the y-variables change very rapidly and one could use averaging tech-
niques (which neglect memory effects). An analysis and numerical implementation
of this approach can be found in (Fatkullin and Vanden-FEijnden, 2004). However, in
real geophysical systems the scale separation between different processes is often not
very small (Nastrom and Gage, 1985), and thus it is also interesting to look at situ-
ations with larger €, where memory effects will be important. We will take € = 1.
Furthermore we choose all parameters as in (Chorin and Lu, 2015) and (Crommelin
and Vanden-Eijnden, 2008), with K = 18, | = 20, F = 10, hy = —1 and h, = 1. The full
system was simulated using a time step At = 1072 over a time T = 10* using a fourth
order Runge-Kutta method. In figure 4.5 some snapshots for the time evolution of the
system for these parameters are shown.

The Lorenz 96 model has been used as a test bed for stochastic parametrization
schemes, in which the goal is to replace z; by an (x-dependent) stochastic process
(Crommelin and Vanden-Eijnden, 2008), (Fatkullin and Vanden-Eijnden, 2004), (Arnold
et al., 2013), (Wilks, 2005). From the equations (4.7) we guess that it is not an unrea-
sonable approximation that z; does not depend on x; for I # k. One way to achieve
this approximation is by setting y;,jx = y;x instead of y;,jx = yjr+1- Also the equa-
tions (4.7) are invariant under rotation of the indices, so all z; will have the same
(statistical) behaviour. A deterministic way to parametrize the system would then be
to replace zx by some function of x;

Zj = G(xk).

In figure 4.10a a scatter plot for z; against x; can be seen, with a fifth order polynomial
titted to the data. If we use this function to parametrize G we get approximations for
the statistics as shown in figure 4.7.
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Figure 4.5: Snapshots of the evolution of the x and y variables in (4.7), vertical axis
denotes time.
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The statistics are not yet very accurately reproduced in this way, and it has already
been shown that stochastic methods can improve these results. One of the approaches
is to add an AR(1) process on top of the polynomial regression (POLYAR) (Wilks,
2005). This approach works well for small € but breaks down for larger €, which is not
surprising since it does not take into account memory effects. For small € these results
can be improved using multiplicative noise (Arnold et al., 2013). In (Crommelin and
Vanden-Eijnden, 2008) conditional Markov chains have been used, and in (Chorin and
Lu, 2015) a NARMAX method has been used, which both implement memory effects.
Both obtain very close reproductions of the statistics of the original problem for our
choice of parameter settings.

Here we want to investigate the use of a parametrized memory, that is, adding an OU
process with an x;-dependent mean, which is essentially a linear continuous version
of the conditional Markov chains used by (Crommelin and Vanden-Eijnden, 2008). We
may also compare it to the MTV approach for stochastic parametrization outlined by
(Majda et al., 2001) for systems of the form (4.6), in which case the quadratic interaction
of the y-variables is approximated by an OU-process, and then a homogenization
procedure is followed. In the particular case of the Lorenz ‘96 model this approach is
easy to work out, changing the equations for the y-variables to

. h
Y= Ay +ZWi + ?yxk (4.8)

grouping together all the linear terms in Ay.;. Notice that here we have neglected
the interaction between the different ‘blocks” of y-variables. As before, this leads to a
solution

t h t
ik = e];Atyi,k(O) _/0 Z(e’A(t’s))ﬁ;yxk(s)ds +/() e BSLTXAW(s)
;

and thus we get an expression for z as an OU-process plus an x;-dependent memory
term

hy f hy
Zp = T Zy]-,k = /0 K(t —s)x(s)ds + 7 Zy?,k
j j

where o
K(s) = ]iey le;(e‘AS)ij
and 1° is an OU-process satisfying
1 = A’ + ZW,.

In (Majda et al., 2001) the next step is to assume € to be small and approximate the
memory term by a Markovian one, but we will not do so since we are interested in
the case without strong scale separation. There is one major problem in the derivation
above: the validity of replacing the dynamics for y;« in (4.7) by stochastic dynamics as
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in (4.8). If xy is small, the equation for y becomes strongly dissipative and tends to zero
quickly. This is demonstrated in figure 4.5 where we see that the y; are essentially
constantly zero in regions where the x; are small. One way to fix this is to add a
stochastic white noise term to the original system and consider

) 1 .
Uik = (Yir1kYj—1k — Yir2k) — Yjk + hyXp +oWx) (4.9)

where W is Brownian motion. In any case, the linear coupling suggests that it is
reasonable to approximate the memory term by a linear memory term.

As in section 3.1 we try to estimate a stochastic process for a time series z/, where we
have discretised the system as

X = AR (x") + Atz

where Rj(x") has been obtained from a fourth order Runge Kutta discretization of the
term xj_1 (X1 — Xk_2) — xx + F. We will discuss two approaches to model z:

1. A parametrization inspired by the MTV approach, where we approximate z; by
an OU process that has a mean that depends (linearly) on x;. In this case z}
satisfies

2 =2 — AH(pzl —rzl') + VALe} (4.10)

with p, r and o parameters, and ;' IID N(0,1) random variables.

2. A parametrization inspired by the Mori-Zwanzig formalism, where we use the
conditional expectation with respect to x as projection operator and estimate
PLzy = E(Lzg|x) =~ E(Lzg|xx) by G(xx) (based on lemma 2.1.1), and approximate
(1 —P)zx by an OU process that has a mean depending on xi (as in section 3.3).
Thus we write

= Gxf) +3 o
11
gt =27 — At(pz) —rz}!) + VAt +

again with parameters p, r and o and ¢} IID N(0, 1) random variables.

The easiest approximation is to take a 1-dimensional OU process. We have used a
moment estimator to obtain the parameters (but of course in this case a maximum
likelihood estimator, as in (Verheul and Crommelin, 2016) is also possible). For the
MTV procedure we start from the equation for the correlation functions

Ckak(t) = /Ot K(t - S)kaxk(s)ds + GFkxk(t)

where Fj is the remaining stochastic process. We assume that the noise F; has a small
decorrelation time ¢, so that for t > g

Coun (1) = [ K(t = 5)Co (51,
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First the time series z]! is computed from the data for the original Lorenz ‘96 model
using the discrepancy. The correlation functions are estimated from these data, and we
use a Newton method to find a least squares solution K(t) = re 7 to the discrete ver-
sion of this equation which can be seen in figure 4.6. A scatter plot of the convolution
of x; with this kernel is shown in figure 4.10b. Finally the parameter ¢ is estimated,
just like in the heat bath case, from the residual time series

Fl =z} — Y K" 'xj. (4-12)
The MZ procedure is the same, except we use Z; = z; — G(xx) instead of z.

In order to see whether this stochastic procedure allows to use larger time steps we
have performed the estimation procedure for different sampling intervals of At =
0.001, At = 0.01 and At = 0.05, and used these estimates to simulate the parametrized
system with time step At. The statistics of the resulting simulations are shown in
tigure 4.8 for the first approach and in figure 4.9 for the second. Both results strongly
improve on the deterministic parametrization and are comparable to the results in
(Crommelin and Vanden-Eijnden, 2008) and (Chorin and Lu, 2015). It appears that in
the literature these methods have not previously been used for the Lorenz ‘96 model.
The difference between the two different approaches is not very large, although the
MZ method appears to be more robust to increasing At. It should be noticed that these
approaches are very similar to the one based on conditional Markov chains studied
in (Crommelin and Vanden-Eijnden, 2008), which models z; as a Markov chain that
depends on the state of x} (and x} — x} '), and computes the transition probabilities
from data. The difference is that our approach starts from simple continuous models,
and only a small number of parameters needs to be estimated.

To summarize, we have learned from studying the Lorenz ‘96 model that in order to
capture important statistics of the model it is crucial not only to use stochastic terms in
a parametrization, but also that it is important to look at ‘memory effects” due to a lack
of scale separation. This can be incorporated by very simple approximations, where
the memory is parametrized by adding a single layer of OU processes, and which can
be reconstructed from data. An interesting question that should be investigated further
is whether this simple form also works in systems which have nonlinear coupling.

A way to potentially improve the results is by using multiple levels as discussed in
section 3.3 to take into account that the process z; is not really a one-dimensional
Gaussian process, and this may especially be relevant in other systems where the
coupling is nonlinear. Finally it may be interesting to use these parametrizations to
study a Fokker-Planck equation for the system and compare to ensemble predictions
of the Lorenz ‘96 model (Venturi et al., 2016).
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Figure 4.6: Plot of the estimate of the parametrized kernel against time.
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Figure 4.7: Comparison statistics of the Lorenz ‘96 model (blue) with the statistics of
its deterministic parametrization.

62



ACF of x1 ccf of x1 and x2

pdf of x1 14

Figure 4.8: Comparison statistics of the Lorenz 96 model (blue) with the statistics of
its stochastic parametrization by an OU process using the MTV method.
The rows are for different timesteps, from upper to lower At is respectively
0.001, 0.01 and 0.05.
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Figure 4.9: Comparison statistics of the Lorenz ‘96 model (blue) with the statistics of
its stochastic parametrization by an OU process using the MZ method. The
rows are for different timesteps, from upper to lower At is respectively
0.001, 0.01 and 0.05.

(a) A scatter plot of x; versus z;, and the
fifth order polynomial G fitted to the (b) A scatter plot of z; versus the convolu-
data. tion of x; with K.



Often think of the rapidity with which things pass by and disappear, both the
things which are and the things which are produced. For substance is like a
river in a continual flow, and the activities of things are in constant change,
and the causes work in infinite varieties; and there is hardly anything which
stands still. And consider this which is near to thee, this boundless abyss of the
past and of the future in which all things disappear. How then is he not a fool
who is puffed up with such things or plagued about them and makes himself
miserable? For they vex him only for a time, and a short time.

Marcus Aurelius, Meditations

Conclusion and discussion

In this thesis we have investigated model reduction of multi-scale systems through
the use of projection operators. The Mori-Zwanzig formalism shows that in such a
procedure memory and stochastic effects occur.

We investigated dimension reduction in two contexts. The first has been statistical
mechanics, where the Kac-Zwanzig heat bath model is a paradigmatic model. This
model represents a linearisation of a system consisting of a distinguished particle and
a large number of degrees of freedom. Because the system is linear all these degrees
of freedom (essentially the orthogonal dynamics in the Mori-Zwanzig formalism) can
be solved and the program of dimension reduction can be performed explicitly. It can
even be shown that if the frequencies and interactions of the heat bath are distributed
in an appropriate way, the solutions of the heat bath model converge (weakly) to those
of a stochastic integro-differential equation in the limit of infinitely many heat bath
modes as shown in theorem 2.4.3.

The second context which has been discussed in which dimension reduction is of
importance is in the context of the geophysics of atmosphere and ocean. A toy model
for this that incorporates some features that are crucial for model reduction in this
context is the Lorenz ‘96 model. Representing unresolved degrees of freedom in a
model is called (stochastic) parametrization in this context. For the Lorenz ‘96 model
we have shown that the memory effects are crucial in the (realistic) case where the
scale separation in not very large, and that already a relatively simple approximation
of the stochastic and memory terms (using Ornstein-Uhlenbeck processes) leads to
good reproductions of some of the crucial statistics of the model.

Of course there many interesting issues remaining, which we have not covered due to
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lack of time or understanding. Let us at least mention a few of these:

An important aspect of the Mori-Zwanzig formalism is the choice on which
variables one projects. The idea of approximating the orthogonal dynamics by
a noise only works if one has indeed selected the slow/large scale variables to
project onto. It is not always clear what these variables are, and methods to
determine for a selection procedure are crucial.

How well do the data-based approaches discussed here work when applied to
real world data?

Can the Mori-Zwanzig formalism be used to perform an error analysis of the
approximation of a system by a stochastic system? In the case of the heat bath
model we have been able to show that this can indeed be done. For general
(nonlinear) systems this is much harder, and it is not clear what is possible.

We have emphasized a Langevin equation approach (evolution of individual
trajectories) to the problem. It is however also possible to look from a Fokker-
Planck equation (evolution of densities) perspective, corresponding to ensemble
predictions. How to do this is only clear when the system can be respresented
by a finite dimensional Markovian system (as in section 2.6, but not necessar-
ily linear). What can the Mori-Zwanzig formalism teach us about evolution of
densities for distinctly non-Markovian systems?

How is it possible to detect and determine nonlinearities in the memory kernel
from data? And secondly, can it be motivated more thoroughly for chaotic sys-
tems using linear response theory that linear approximations to the kernel tend
to be reasonably good?
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Populaire samenvatting

Misschien ben je wel bekend met het ‘vlinder effect’, een metafoor voor onvoorspel-
baarheid van bepaalde fenomenen, in dit geval het weer: een fladderende vlinder kan
het verschil maken tussen het wel en niet ontstaan van een tornado aan de andere kant
van de wereld. In eerste instantie werden deze krachten niet aan een vlinder maar een
meeuw toegechreven:

One meteorologist remarked that if the theory were correct, one flap of a
sea gull’s wings would be enough to alter the course of the weather forever.
The controversy has not yet been settled, but the most recent evidence
seems to favor the sea gulls. (Lorenz)

Deze metafoor betekent niet zozeer dat als we het weer willen voorspellen we vooral
aan de andere kant van de wereld naar vlinders moeten gaan zoeken, maar dat het
weer op een fundamentele wijze niet voorspelbaar is. Toch zien we elke dag in de
krant voorspellingen voor het weer over een paar dagen, en die blijken meestal best
goed te kloppen. Daar blijft het niet bij: we kunnen zelfs lezen over voorspellingen
over veranderingen in het klimaat over meer dan vijftig jaar! Laten we nadenken wat
we precies willen voorspellen als we ‘het weer” (of het klimaat) willen voorspellen.
Als we heel ambitieus zijn zouden we kunnen proberen om elk stukje atmosfeer en
oceaan te beschrijven met een differentiaalvergelijking en (met een computer) op te
lossen hoe deze zich in de toekomst gaat gedragen. Dit is te ambitieus, om twee
redenen. De eerste reden is dat we niet weten in welke toestand het systeem precies
begint. Om met het vlinder-effect te spreken: we zullen nooit kunnen bepalen op een
enkel moment hoe alle vlinders ter wereld precies aan het fladderen zijn en dit maakt
een groot verschil voor de precieze toestand na enige tijd. Ten tweede, zelfs al zouden
we dit weten, kost het veel te veel tijd op een computer om dit uit te rekenen, zelfs
als je de allerbeste supercomputer van het moment hebt. Twee grote beperkingen bij
het simuleren van het weer zijn dus de onbekendheid van de begintoestand en het
beperkte (computer)vermogen om een een grote hoeveelheid variabelen op te lossen.

Een manier om deze twee problemen in een keer aan te pakken, is door het aantal
variabelen dat je wilt weten flink te beperken. Je zou bijvoorbeeld als variabelen alleen
de luchtdruk, de wind en de temperatuur op een rooster kunnen nemen. De vraag is
dan: hoe voer ik deze reductie precies het beste uit?

Een suggestie over hoe je hierover na kunt denken is gedaan in de (statistische) fys-
ica. Hier spelen vergelijkbare problemen: een vloeistof bestaat uit een enorm aantal
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deeltjes en hoewel je een idee hebt van de vergelijkingen die de tijdsontwikkeling
beschrijven heb je dezelfde twee problemen die hierboven al werden genoemd: je kent
de begintoestand niet precies en je hebt in de praktijk niet genoeg rekenkracht om
het systeem te simuleren. Ook hier ben je niet echt geinteresseerd in wat elk deeltje
precies doet, maar vooral in globale eigenschappen van de vloeistof, zoals de temper-
atuur of de gemiddelde snelheid van de vloeistof. In deze context is er een wiskundige
afleiding (het Mori-Zwanzig formalisme) bedacht die het mogelijk maakt om het aantal
variabelen te reduceren. Om uit te leggen wat het resultaat inhoudt denken we aan de
situatie dat we de beweging van een enkel deeltje in een vloeistof willen simuleren. De
netto kracht die op het deeltje uitgeoefend wordt kan in drie termen onderscheiden
worden:

1. De kracht die het deeltje ervaart door externe invloeden, en die alleen afhangt
van de snelheid en positie van het deeltje, dit is dus de kracht die overblijft als je
de rest van de vloeistof weg zou laten.

2. De kracht die de vloeistof zou uitoefenen, als de vloeistof niet beinvloed werd
door het deeltje.

3. De kracht die het deeltje ondervindt doordat het energie verliest bij botsingen
met de vloeistofdeeltjes. Deze term kun je zien als een wrijvingsterm, en blijkt
af te hangen van de toestand van deeltje op eerdere tijdstippen.

In de juiste omstandigheden kun je de tweede term vervangen door toevalsvariabelen:
aangezien we de begintoestand van de vloeistof niet weten, gedraagt deze zich prak-
tisch op een willekeurige manier (waarbij bepaalde statistische eigenschappen zoals
het gemiddelde en standaard afwijkingen vastliggen), en we benaderen deze term
door een toevalsproces, je kunt hierbij denken aan een soort ruis. De derde term die
afhangt van de toestand van je deeltje in de verleden tijd, die een geheugen heeft, is
vaak moeilijker te vatten. In de natuurkunde komt het vaak voor dat het verschil in
schaalgrootte tussen het deeltje dat je volgt en de deeltjes waaruit de vloeistof bestaat
heel groot is, en dit impliceert dat het geheugen heel ‘ondiep” is, en we deze term
kunnen benaderen met een wrijvingsterm die alleen van de toestand op het huidige
tijdstip afhangt.

Om weer terug te komen op het problem van het voorspellen van het weer, hebben
we nu geleerd dat als we maar een klein deel van de weervariabelen willen simuleren,
we ook rekening moeten hoeden met een ruis en dat we de eerdere toestand van
het systeem mee moeten nemen (geheugeneffecten). In klimaat en weermodellen
zijn de schaalverschillen over het algemeen niet zo heel erg groot, en dat betekent
dat geheugeneffecten minder ondiep zijn dan vaak in de statistische fysica wordt
aangenomen. Het is zeer moeilijk, zo niet onmogelijk, om uit het oorspronkelijke
weermodel een precieze vergelijking voor het gereduceerde model te vinden inclusief
geheugen en ruis. Daarom is het ook belangrijk om methodes te ontwikkelen die op
basis van beschikbare, empirische gegevens kunnen schatten hoe deze termen eruit
zien.
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Om terug te komen op de vlinder: we zagen dat er ergens een grote onzekerheid in het
voorspellen van het weer zit. Het proces om een model te maken dat toeval meeneemt
zorgt ervoor dat je deze onzekerheid expliciet meerekent bij je voorspellingen. Door
met het toevalsmodel een hele serie voorspellingen te doen, kun je inschatten hoe
waarschijnlijk bepaalde uitkomsten zijn, en hoe lang je voorspellingen betrouwbaar
zijn.
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