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n this paper, we consider the problem of capacity provisioning for an online service supported by advertising.

We analyse the strategic interaction between the service provider and the user base in this setting, modeling
positive network effects, as well as congestion sensitivity in the user base. We focus specifically on the influence
of positive network effects, as well as the impact of noncooperative behavior in the user base on the firm’s
capacity provisioning decision and its profit. Our analysis reveals that stronger positive network effects, as well
as noncooperation in the user base, drive the service into a more congested state and lead to increased profit for
the service provider. However, the impact of noncooperation, or “anarchy” in the user base strongly dominates

the impact of network effects.
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1. Introduction

The Internet today offers a wide range of online ser-
vices. Implementing these services typically requires
considerable computing infrastructure, consisting of
an extremely large number of servers (Vanderbilt
2009). Therefore, how much (computing) capacity to
provision is a crucial decision for the service provider.
Overprovisioning enhances the user-perceived qual-
ity of the service, but is also expensive. Therefore, the
service provider must strategically provision the cor-
rect service capacity to maximize its profit. The goal
of this paper is to provide insight into this capacity
provisioning decision.

In exploring the capacity provisioning of online sys-
tems, there are three features of the online services
themselves that are of particular importance.

First, since a majority of online services are offered
for free to the end user, the firm (or service provider)
is deriving its revenue via advertising. Corporations like
Google and Facebook make billions of dollars in
revenue annually by offering advertising supported
online services (Interactive Advertising Bureau 2011).

Second, many online services allow for interac-
tion between users. As a result, these services exhibit
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strong positive network effects, i.e.,, users obtain an
increased utility from other people using the same
service (Katz and Shapiro 1985, Farrell and Klemperer
2007, Johari and Kumar 2010). Examples of such ser-
vices abound: social networking applications, online
gaming environments, document editing services,
and many others. Indeed, network effects are believed
to be a primary driver of usage growth for many
services.

Third, users of online services today are highly delay
sensitive (Hamilton 2009, Lohr 2012). Even a small ad-
ditional delay in accessing a service can adversely
affect the user-perceived quality of the service, poten-
tially leading to a decline in usage, and thus a decline
in revenue for the service provider. For example, an
experiment by Google showed that adding 500 milli-
seconds of delay to its search results resulted in a 20%
drop in revenue (Kohavi et al. 2009).

Clearly, the capacity provisioning decision for
online services is influenced by the interplay of the
three factors discussed above. The objective of a
service provider is to maximize profit, taking into
account the revenue from advertising as well as the
cost of managing its computing infrastructure. On the
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other hand, users care about maximizing their own
payoff, which depends on the utility derived from
using the service as well as the disutility because of
congestion or delay. Therefore, the emergent capacity
provisioning decision and the popularity of the ser-
vice result from a strategic interaction between the
service provider and the user base.

1.1. Our Results

In this paper, we study the problem of optimal capac-
ity provisioning for a firm operating an advertising
supported online service. We model both network
effects and congestion sensitivity of the user base, and
we analyze the service capacity (i.e., the capacity of
computing infrastructure) the firm must provision to
maximize its profit as the volume of the user base (or
the market size) scales to infinity. A key feature of
our model is that the traffic scaling regime is endoge-
nous. That is, users in the user base use the service or
not depending on the congestion and network effects,
which is determined by the capacity provisioning of a
profit-maximizing firm. This endogenous traffic scal-
ing is in contrast to the majority of work on large-scale
systems in queueing theory, which tends to impose
a scaling exogenously, e.g., Halfin and Whitt (1981),
Reed (2009), and Atar (2012).!

The key focus of this paper is to understand the
impact of two factors on the firm’s capacity provi-
sioning decision: (i) the strength of positive network
effects in the user base, and (ii) noncooperative behav-
ior in the user base, i.e., users independently seeking
to maximize their own payoff. We study the impact
of the latter by analyzing two different models of
the behavior of the user population: a noncooperative
model, in which users independently pursue their
own interest, and a cooperative model, in which the
user base seeks to maximize its aggregate payoff.

Intuitively, we would expect that stronger positive
network effects would make the user base more tol-
erant to congestion, allowing the service provider to
the run the service with fewer servers, and thus make
a higher profit. Similarly, we would expect that a lack
of cooperation in the user base would lead to a higher
utilization of the service (tragedy of the commons),
leading to higher profit for the service provider. Our
analysis supports these intuitions, but reveals some
surprises with respect to the relative impact of net-
work effects and noncooperation in the user base.

Our analysis shows that as the market size becomes
large, the profit-maximizing strategy for the service
provider involves operating the service in heavy traf-
fic while still having the full potential market base

'In the context of the literature on exogenous traffic scalings in
queueing theory, the current paper provides insight about which
scalings may emerge endogenously from the interaction between a
service provider and its user base.
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using the service, for both the cooperative and the
noncooperative population models. This is made pos-
sible by the statistical economies of scale inherent in
large queueing systems: the firm can run its servers
at a high utilization and simultaneously provide good
quality of service to users. Moreover, our analysis
shows that stronger positive network effects lead
to increased profit for the service provider. This is
because the service provider can exploit the addi-
tional utility users derive from aggregation to operate
the service at a higher level of congestion, thus saving
on server costs.

However, the cooperative and the noncoopera-
tive model differ in the extent to which network
effects influence the capacity provisioning decision
and the profit made by the firm. Under the coop-
erative model, we show (see §4.1) that as the mar-
ket size becomes large, the strength of the positive
network effects impacts the service capacity provi-
sioned by the service provider in the order sense.
As a result, network effects strongly influence the
emergent heavy-traffic regime and the profit made
by the firm. On the other hand, under the nonco-
operative model, we show (sed §4.2) that the very
absence of coordination in the user base drives the
system into an extreme heavy-traffic regime in which
the firm provisions only a bounded capacity more
than the minimum required to serve the full poten-
tial user base. Remarkably, this happens irrespective
of how strong the network effects are. This “tragedy
of the commons” effect implies that the impact of
network effects on the capacity provisioning decision
and the firm’s profit is significantly diminished, com-
pared to the scenario in which the user base behaves
cooperatively.

In other words, our results suggest that although
network effects and noncooperation in the user base
are both profitable for the service provider, the impact
of noncooperation in the user base strongly dominates
the impact of network effects.

The remainder of this paper is organized as follows.
We review related literature in §2. We introduce our
model and notation in §3. We state and interpret our
results, for both the cooperative and the noncoopera-
tive model of the user base in §4. Finally, we conclude
in §5.

2. Related Literature
There are two distinct streams of literature related
to this work: literature from the queueing domain,
and literature focused on network effects and their
consequences.

Within the queueing literature, there is a large
body of work analyzing queueing systems where
the arrival rate of jobs as well as the number of
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servers scale to infinity. Depending on how the arrival
rate and the number of servers scale relative to
one another, different heavy-traffic regimes are possi-
ble. One well-studied scaling regime is the so-called
Halfin-Whitt regime (Halfin and Whitt 1981), in which
the number of servers equals the minimum number
required to stably support the arrival rate, plus a
“spare” that is proportional to the square root of the
arrival rate. There are many other scaling regimes that
are studied too; see, for instance, Halfin and Whitt
(1981), Reed (2009), and Atar (2012) and the references
therein. In all of this work the scaling is imposed
exogenously.

In contrast, very few papers take the approach of
deriving an endogenous scaling regime that emerges
naturally in the considered setting, as we do in this
paper. One work of this type is Borst et al. (2004),
which considers the problem of optimal staffing in
a call center in an asymptotic regime where the call
arrival rate is exogenously scaled to infinity. Other
papers that focus on endogenous scalings (including
this one) take the approach of scaling only the poten-
tial arrival rate to infinity. The actual arrival rate is a
function of the price of the service, and/or the level
of congestion. Papers in this category include Whitt
(2003), Kumar and Randhawa (2010), Maglaras and
Zeevi (2003), and Randhawa and Kumar (2008). How-
ever, none of the above mentioned papers consider
network effects or the comparison between coopera-
tive and noncooperative user bases, as we do in the
current work. Moreover, none of these papers study
an advertising-supported service model (i.e., the rev-
enue of the service provider does not come from pay-
ments from users), which is the dominant model for
online services today.

A second body of literature that is related to the
current paper studies network effects and its conse-
quences. In this space, one line of work proposes
scaling laws for the aggregate value of a network
of connected users; for example, see Metcalfe (1995)
and Odlyzko and Tilly (2005). Another line of work
focuses on firms and users interacting in a market
setting, in which the utility of a user consuming a
product/service increases with the number of users
consuming the same, or a compatible product/service.
Representative papers in this category include Oren
and Smith (1981), Farrell and Saloner (1985), Katz
and Shapiro (1985), Sundararajan (2003), and Farrell
and Klemperer (2007). However, these papers do not
deal with services involving resource sharing between
users. As a result, they do not consider congestion,
which is a key component of our model.

There is one body of work that does consider net-
work effects and congestion, the literature on club
theory. See Sandler and Tschirhart (1997) for a survey.
The theory of clubs, which originated from Buchanan
(1965), deals with groups of congestion sensitive users
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sharing a certain resource. Indeed, the setting in this
paper can be interpreted as a club good offered by
a profit-maximizing firm. However, a key distinction
between our work and the previous work in club the-
ory is that we consider an advertising supported ser-
vice. Moreover, we use an explicit queueing model of
the service to model congestion, something that is not
typically done in this literature.

3. Model Overview

In this section, we describe our model for the inter-
action between a profit-maximizing firm (service
provider) and a congestion sensitive user base. In
our model, the firm operates a queueing system that
serves user requests. We assume that there is a known
market size, which determines the maximum possi-
ble usage of the service. The actual usage depends
on the utility that the service provides to the user
base, as well as the congestion (or delay) experienced
by the user base in accessing the service. The firm
derives a revenue proportional to the usage of the ser-
vice, which is characteristic of services that are sup-
ported by advertising, and incurs a cost proportional
to the service capacity provisioned. The firm decides
the service capacity to provision so as to maximize its
own profit.

3.1. Model for Congestion

Formally, let k denote the service capacity provisioned
by the firm. In the following, we interpret k as either
the capacity/speed of a single server, or as the num-
ber of servers of unit capacity provisioned. Let £(A, k)
denote the disutility experienced by a single user
because of congestion, when the arrival rate of user
requests for the service equals A. We consider two
models for the function (A, k), corresponding to the
two interpretations of service capacity k. Our results,
presented in §4, apply to both models.

3.1.1. M/M/1 Model. As the name suggests, in
this model, we take the user disutility &(A, k) to be
the average (stationary) response time in an M/M/1
queue, with arrival rate A and server speed k. Without
loss of generality, we assume that user requests have
a unit service requirement on average. Thus, we have

L for A <k,
EN k=1 k=A

00 for A > k.

3.1.2. M/M/k Model. In this model, we take the
user disutility (A, k) to be the average (stationary)
waiting time in an M/M/k queue with arrival rate A.
Without loss of generality, we assume a unit service
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capacity for each server, and that user requests have
a unit service requirement on average. Thus, we have

C(A, k) for A <k,
ENK) =1 k=2 (1)
00 for A >k,

where C(A, k) is the Erlang waiting probability.? For
simplicity, and to allow us to state our results for
both congestion models together, we permit k to take
values in R,, using the following well-known ana-
lytical extension of the Erlang C formula (Jagers and
Van Doorn 1991):

C(A, k) = [ /O T Ate M1 4 1) dt]_l. 2)

It is well known that when k is a positive integer,
and A <k, the above formula agrees with the clas-
sical Erlang C formula. We note that in the large
market-size regimes we study in this paper, treating
the service capacity k to be a real variable is not a
limitation. Indeed, it is easy to show that the correct
“integral” service capacity can be obtained from the
real-valued k we derive by rounding. To summarize,
in the M/M/k model, we define the congestion disu-
tility £(A, k) via (1), where C(A, k) is defined in (2).

3.2. Model of the User Base

In this paper, we study two models for the behavior of
the user base: a noncooperative model, in which each
user acts independently and in her own self interest,
and a cooperative model, in which the usage level
is set so as to maximize the aggregate payoff of the
user base. Comparing the results for these two models
helps us understand the impact of users acting inde-
pendently and in their own interest, i.e., the impact of
“anarchy.” We now formally describe the two models.

3.2.1. Noncooperative Population Model. The
noncooperative model postulates the following func-
tional form for A, (k):

A(k) =max{A [0, A]| V(A) —£(A, k) =0}.  (3)

Here, V() is the utility derived by a single (infinites-
imal) user from using the service, as a function of the
overall usage (or arrival rate) A seen by the service.
As defined earlier, £(A, k) is the disutility derived
by a user because of the congestion experienced in
accessing the service. Therefore, Equation (3) can be
interpreted as follows. A single (infinitesimal) user
receives a payoff equal to V(A) —&(A, k) if she chooses

2Note that in the M/M/k queue, the average response time dif-
fers from the average waiting time by an additive constant. It is
straightforward to extend our results taking the average response
time to be the congestion metric.
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to use the service, and zero payoff if she chooses not
to. Thus, the overall usage level in Equation (3) corre-
sponds to a Wardrop equilibrium between the users
with respect to their individual payoffs.®

Clearly, network effects determine the form of V().
Specifically, no network effects would imply that V()
is a constant. On the other hand, positive network
effects would imply that V(-) is a nondecreasing
function, i.e., the utility derived by a single user
grows as the overall usage of the service grows.

3.2.2. Cooperative Population Model. The coop-
erative model postulates the following functional
form for A, (k):

Ay (k) = max{arg max[U(A) — AE(A, k)]}. (4)
re[0, A]

Here, we take U(A) := AV(A) to be the net utility
derived by the user base at usage level A. Similarly,
we take A&(A, k) to be the net disutility experienced
by the user base on account of congestion. Therefore,
according to Equation (4), the usage level of the ser-
vice is set in order to maximize the aggregate payoff
of the user base.*

Note that if there were no network effects, we
would expect U(A) to grow linearly. Positive network
effects would cause U(A) to grow superlinearly. We
now turn to the behavioral model for the firm.

3.3. Model of the Firm

By provisioning service capacity k, the firm derives
revenue byA, (k) and incurs cost b,k per unit time.
Without loss of generality, we set b, = 1. The profit-
maximizing firm naturally provisions capacity so as
to maximize its profit. Specifically, the service capac-
ity provisioned is given by

ki = maxiargmax[bl;\A(k) - k]}, 5

keR,

®Note that the payoff function V(A) — £(A, k) is not in general
monotone with respect to A, and so there could be multiple
Wardrop equilibria. Our definition of the user base behavior in
Equation (3) picks the maximal Wardrop equilibrium. However,
this is done for concreteness alone. Our analysis reveals that once
the service system becomes large enough, the user base has a
unique Wardrop equilibrium.

* Note that the aggregate payoff U(A) — A&(A, k) is not necessarily
unimodal, and so could in general have multiple maximizers. Our
definition in Equation (4) picks the largest of these maximizers.
However, this is done for concreteness alone. Our analysis reveals
that once the service system becomes large enough, the aggregate
payoff does indeed become unimodal and has a unique maximizer.

® Once again, note that the profit function bl;\A(k) —k could in gen-
eral have multiple maximizers and we define k} to be the largest of
these maximizers for concreteness. Our analysis reveals that once
the market size becomes large enough, the profit function has a
unique maximizer.
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and corresponding request arrival rate is given by
Ay = A (kD).

The tuple (A%, k%) characterizes the equilibrium
between the firm and the user base.® Since A Ak) <k,
a necessary condition for the firm to make positive
profit is b; > 1. Since the case b; <1 is uninteresting
(the firm will simply not operate in this case), we
assume hereafter that b; > 1.

4. Results
The goal of this paper is to provide insight into
the interplay between network effects and strategic
behavior in the user base. As such, our main contribu-
tion is to provide theorems characterizing the equilib-
rium (A}, k}) resulting from the interaction between
a profit-maximizing service provider and the conges-
tion sensitive user base. In particular, we study the
behavior of the equilibrium as the possible market
size grows, i.e., as A scales to infinity for both the non-
cooperative and the cooperative population model.
Our results highlight the role played by noncoop-
erative behavior among users, network effects, and
economies of scale in large-scale service systems. To
contrast these issues, we focus first on understand-
ing the role of network effects when the user base is
cooperative, and then we move to the noncoopera-
tive model.

4.1. Cooperative Population Model
We begin by studying the cooperative population
model, defined in Equation (4). Our results highlight
the strong influence of network effects on the capac-
ity provisioning decision as well as the profit made
by the firm. In particular, network effects influence
the order of magnitude of the scaling that emerges for
the equilibrium, and depending on the magnitude of
network effects, three distinct scaling regimes emerge.
Our main result is stated in Theorem 1. However,
to state it formally, we need to first describe some
technical assumptions on the form of U(-).

AssuMPTION 1. The function U: R, —R, is twice
continuously differentiable over [0,00) with U(0)=0,
lim,_,  U(A)=o0. Further, U'(-) is nonnegative, concave,
and nondecreasing over [0, 00).

The assumption that U’(-) is nondecreasing (i.e.,
U(-) is convex) seeks to capture positive network
effects, with user utility growing with the usage of the
service. The assumption that U’'(-) is concave seeks

®We loosely use the term “equilibrium” to describe the outcome
(A3, k) of the interaction between the service provider and the
user base. Note that this hides the leader-follower nature of this
interaction.
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to capture a diminishing growth rate in user utilities,
as has been suggested in the literature (Odlyzko and
Tilly 2005). As a special case, the above assumption
allows for a quadratic growth of U with respect to A;
this is referred to in the literature as Metcalfe’s Law
(Metcalfe 1995).

Note that Assumption 1 implies that

a :=}i_1)101c> U'(A) € (0, oo0) U {oo}.

Assumption 1 also implies that w =:lim,_, , U'(A)/A €
[0, o0).

We are now ready to state our main result for
this section, which highlights that, depending on the
degree of network effects, three different operating
regimes emerge for the profit-maximizing firm.

THEOREM 1. Consider the cooperative model of the user
base and suppose that Assumption 1 holds. The follow-
ing holds for both the M/M/1 and the M/M/k congestion
model. For large enough A, X = A. Further, as A t oo, the
optimal capacity provisioning is the following:

(i) If @ €(0, 00), then

ki =A+B(@)A +o(VA),

where B(a) € (0, 00) is a strictly decreasing function of a.”
(i) If e =00, and w =0, then

(iii) If @ =00, and w € (0, o0), then

1
k;=A+ﬁ+o(1).

The three cases in the theorem correspond to dif-
ferent magnitudes of network effects in the user base,
i.e., different growth rates of the aggregate utility
U(-). Specifically,

Case (i). Corresponds to little or no network effects,
i.e., asymptotically linear growth.

Case (ii). Corresponds to an asymptotically super-
linear but subquadratic growth, which can be inter-
preted as “moderate” network effects.

Case (iii). Corresponds to an asymptotically qua-
dratic growth, which can be interpreted as “extreme”
network effects.

Thus, we consider progressively stronger positive
network effects in Cases (i)—(iii).

There are a number of important insights high-
lighted by Theorem 1. First, it is easy see that in all
three cases, i

lim M =1
A—00 kR

7 For the M/ M /1 model, B(a) = 1/a. For the M/ M /k model, B(a) =
{7 (a), where {(-) is defined in Equation (B5) in Appendix B.
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This means that, regardless of network effects, it is
asymptotically optimal for the profit-maximizing firm
to operate in heavy traffic, even though the user base
is congestion sensitive. This is because as the mar-
ket size becomes large, the statistical economies of
scale associated with large service systems allow the
firm to operate the service at high utilization and still
provide a good quality of service (Whitt 2003, Borst
et al. 2004, Kumar and Randhawa 2010). Moreover,
the profit-maximizing strategy for the firm is to provi-
sion enough capacity so as to attract the full potential
market base.

Next, we observe that the heavy-traffic regime that
emerges in our model, as well as the profit made
by the firm, depend critically on the growth rate of
the aggregate utility U(-). Intuitively, if the aggregate
utility is greater, then the user base becomes more tol-
erant to congestion. This means the firm can attract
the full potential market base by provisioning lesser
capacity, thereby making a higher profit.

More specifically, let us consider each of the three
cases individually. Case (i) of Theorem 1 corresponds
to small or no network effects, i.e., an asymptotically
linear growth of the aggregate utility U(-). In this
case, the optimal operating regime for the firm is the
well-known Halfin-Whitt regime; the firm provisions
the minimum capacity to serve the full market size A,
plus a “spare capacity” approximately proportional
to ~/A. It is interesting to note that in this regime, the
congestion disutility £(A%, k%) decays as ©(1/+/A) as
the market size A grows to infinity (Halfin and Whitt
1981). This means that as the market size becomes
large, the congestion disutility experienced by users
approaches zero. Finally, under Case (i), the profit of
the firm is given by

(b, — 1)A — V/B(a@)A — o(V/A). 6)

The above equation may be interpreted as follows.
Intuitively, (b; — 1)A can be interpreted as the maxi-
mum possible profit for the service provider. Indeed,
if the user base was not congestion sensitive, the
service provider could have attracted the maximum
possible usage of A by provisioning the minimum ser-
vice capacity required to maintain stability, i.e., A.
Equation (5) implies that the service provider makes a
profit ®(+/A) less than the maximum possible because
of the congestion sensitivity of the user base.
Moving to the case of “moderate” network effects,
Case (ii) of Theorem 1 corresponds to an asymptot-
ically super-linear, but subquadratic growth of U(-).
This means, roughly, that the per user utility V()
grows sublinearly. In this case, the optimal operat-
ing regime for the firm is a “heavier” traffic regime
than the Halfin-Whitt regime: the firm provisions a

spare capacity of approximately \/A/U’(A). Note that
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under Case (ii), U'(A) = o(A), and U'(A) — oo as
A — oo. Therefore, the spare capacity under Case (ii)
grows to infinity, but slower than under Case (i). As
a result, the congestion disutility £(A%, k%) decays as
O(,/U'(A)/A) as the market size A increases to infin-
ity (Halfin and Whitt 1981). This means that as the
market size becomes large, the congestion disutility
experienced by users approaches zero, but at a slower
rate than under Case (i). Finally, the profit of the firm
under Case (ii) is given by

(b =1A= \/ qu) - 0(\/ U/?A) )

Note that profit is greater than that under Case (i); the
firm makes a profit that is ®(,/A/U’(A)) less than the
maximum possible.

Finally, let us consider the extreme network effects
in Case (iii) of Theorem 1, which correspond to a
quadratic growth of U(-). This means, roughly, that
the per user utility V(-) grows linearly. In this case,
the firm operates the system in a very heavy-traffic
regime; it only needs to provision a bounded spare
capacity. As a result, as the market size becomes large,
the congestion disutility experienced by users does
not approach zero, but remains bounded below by a
positive constant. Finally, under Case (iii), the firm
makes the most profit: (b; —1)A — O(1). Thus, when
the network effects are as strong as under Case (iii),
the firm makes the maximum possible profit, short of
a bounded amount.

The proof of Theorem 1, provided in Appendix B,
is based on first analysing the following “uncon-
strained” response of the user base, parameterised by
the service capacity k:

A(k) == max[argmax[ll()\) —AEQ, k)]}. 6)

A=0

Note that the above response function gives us the
arrival rate attracted by the firm (and therefore its
profit) as a function of the service capacity, ignor-
ing the upper bound A on the arrival rate. We prove
Theorem 1 by showing that for large enough A, the
optimal strategy for the service provider is to provi-
sion capacity k% that satisfies A(k;) = A. Intuitively,
this may be explained as follows. Under the “uncon-
strained” user-response (6), statistical economies of
scale result in an increasing profit for the firm with
growing system size. Therefore, the firm’s optimal
policy is to grow the system, until a further increase in
arrival rate is no longer possible because of the upper
bound A.

To summarize, our results for the cooperative
model of the user base reveal that network effects
strongly influence the capacity provisioning decision,
as well as the profit of the firm. Specifically, as the
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network effects become stronger, the firm provisions
lesser service capacity, users experience a higher con-
gestion disutility, and the firm makes a greater profit.
This behavior is intuitive, and represents a stark con-
trast to what we see in the next section for the case of
a noncooperative user base.

4.2. Noncooperative Population Model
We now consider the noncooperative model of the
user base, defined by Equation (3). As in the previ-
ous section, we analyze the firm'’s capacity provision-
ing decision, the congestion experienced by the user
base, as well as the profit of the service provider, in
the asymptotic regime of large market size. The main
result of this section is that, compared to the case
of cooperative users, for noncooperative users, the
impact of network effects is significantly diminished—
network effects no longer have an order-of-magnitude
impact on the scaling of the equilibrium.

Our main result is stated in Theorem 2. However,
before we can state it formally, we need to state the
following technical assumption on the function V(-).

AssuMPTION 2. V: R, — (0, %) is continuous, non-
decreasing, and concave.

Similar to the coopertive model, the above assump-
tion seeks to capture network effects that are grow-
ing, but with a diminishing growth rate. Define v :=
lim,_ ., V(A).

We are now ready to state our main result for this
section, which highlights that the impact of network
effects when the user base is noncooperative is much
smaller than what we observed in the case of a coop-
erative user base.

THEOREM 2. Consider the noncooperative model of the
user base and suppose that Assumption 2 holds. The follow-
ing holds for both the M/M/1 and the M/M/k congestion
model. For large enough A, Xy = A. Further, as A t oo, the
optimal capacity provisioning satisfies

1
Ky=A+—+o(l),

where 1/v is understood to be zero if v = oo.

A first remark about Theorem 2 is that, like in the
case of a cooperative user base, under the noncooper-
ative model of the user base, it is optimal for the firm
to provision enough capacity to attract the full poten-
tial user base. However, unlike the case of a coopera-
tive user base, it is asymptotically optimal for the firm
to operate the service in an extremely heavy-traffic
regime: with just a bounded spare capacity. Remark-
ably, this is true irrespective of the strength of the
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network effects. In particular, the firm provisions a
bounded spare capacity even when there are no net-
work effects (recall that V() remains constant in this
case). In contrast, under the cooperative model, such
a heavy-traffic regime emerges only when the positive
network effects are extremely strong (see Case (iii)
of Theorem 1). In other words, under the cooper-
ative model, extremely strong network effects are
required to drive the service into the high-congestion
regime with a bounded spare capacity. On the other
hand, under the noncooperative model, the absence
of coordination among users leads to a tragedy of
the commons effect, driving the service into a simi-
lar high-congestion regime. As a result, the impact of
network effects is diminished. Indeed, network effects
do not influence the emergent scaling regime in the
order sense.

Though network effects do not influence the order
of the scaling regime that emerges when the user
base is noncooperative, as per Theorem 2, there is
some impact from network effects. Specifically, as the
market size becomes large, the spare capacity provi-
sioned is approximately equal to 1/v and the compo-
nent 1/v decreases as the network effects get stronger.
Since the spare capacity remains bounded, the conges-
tion disutility experienced by users does not approach
zero as the market size grows to infinity, but remains
bounded below by a positive constant.

Finally, Theorem 2 also highlights that the profit of
the service provider grows with the market size as
(b, —1)A — O(1), implying the service provider makes
the maximum possible profit, short of a bounded
amount. Note that network effects only influence this
bounded component. Indeed, it is easy to show that
stronger network effects lead to a higher profit via a
reduction in the value of this (bounded) component.

The statement of Theorem 2 can be explained intu-
itively as follows. It is natural to expect that the
profit-maximizing firm would operate the service
such that the net payoff for users is zero, i.e., V(A}) =
E(A%, k). Consider, for simplicity, the M/M/1 con-
gestion model. The above condition can then be
rewritten as ki — A} = 1/V(A}), which implies an
asymptotically constant spare capacity if v is finite
(recall that v:=lim,_ . V(A)), and an asymptotically
vanishing spare capacity if v = co. The proof of The-
orem 2 is given in Appendix C. The proof technique
is similar to that for Theorem 1: we first analyse the
unconstrained response of the user base and then
establish a connection between the unconstrained
response and the optimal service capacity for the firm.

To summarize, when users independently pursue
their own interest, the anarchy in the user base drives
the service into a highly congested regime in which
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the service provider only provisions a bounded spare
capacity. As a result, the service provider makes the
maximum possible profit (in an order sense), irrespec-
tive of the strength of the network effects. The minimal
impact of network effects on the capacity provisioning
decision and the profit of the service provider is per-
haps surprising given the previous literature on net-
work effects and the order-of-magnitude impact of
network effects when the user base is cooperative.

5. Conclusion

In this paper, we consider the problem of capac-
ity provisioning for an online service supported
by advertising. We analyze the strategic interaction
between the service provider and the user base in
this setting, modeling positive network effects, as
well as congestion sensitivity in the user base. We
focus specifically on the influence of positive network
effects, as well as noncooperative behavior in the user
base on the firm’s capacity provisioning decision, and
its profit.

Our analysis provides rigorous justification for the
intuition that both stronger positive network effects
and noncooperative behavior tend to drive the ser-
vice into a more congested state, leading to increased
profit for the service provider. Furthermore, our anal-
ysis highlights the fact that the impact of noncooper-
ation, or anarchy, in the user base strongly dominates
the impact of network effects.

Additionally, our results have impact for the litera-
ture studying large-system scalings of service systems.
In particular, such work typically imposes scalings
exogenously, e.g.,, Halfin and Whitt (1981), Reed
(2009), and Atar (2012). Our work derives scalings
that occur endogenously as a result of the interaction
between a profit-maximizing firm and a congestion
sensitive user base with network effects. Thus, our
results can provide a guide for the queueing literature
on which scalings are (or are not) appropriate for a
given setting.

Finally, it is important to note that the conclusions
of this paper are specific to the advertising-supported
service model. This model is mathematically equiva-
lent to a model in which users pay the firm a fixed,
exogenously determined price for using the service;
this price can simply be absorbed into the utility func-
tion. Thus, our conclusions hold under the assump-
tion that the firm cannot strategically set the price
for the service. We note that very different scaling
regimes emerge under service models where the firm
can strategically set the price for the service (see,
e.g., Maglaras and Zeevi 2003, Randhawa and Kumar
2008, Kumar and Randhawa 2010). Understanding the
impact of network effects and noncooperative behav-
ior in the user base in such settings is an interesting
direction for future work.
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Appendix

This appendix is devoted to the proofs of Theorems 1
and 2. For conciseness, we prove both theorems consid-
ering the M/M/k congestion model. The proofs for the
(simpler) M/M/1 model follow along the same lines. We
first collect some useful properties of the Erlang C formula
in Appendix A. We then prove Theorem 1 and Theorem 2 in
Appendix B and Appendix C, respectively.

A. Erlang C Properties
In this section, we collect properties of the continuous exten-
sion of the Erlang C formula (2) that are used in our proofs.
Throughout, we use A to denote the arrival rate and k to
denote the (real) service capacity. We use p := A/k to denote
the utilization per server.

The following lemma states if the utilization is held con-
stant, then the probability of waiting diminishes as the ser-
vice capacity grows.

LemMaA 1. For any fixed p € (0,1), C(kp, k) is a strictly
decreasing function of k.

Proor. It was proved in Smith and Whitt (1981) that the
continuous extension of the Erlang B formula (Jagerman
1974) is strictly decreasing with respect to (wrt) the service
capacity when the utilization is held constant. Lemma 1 fol-
lows easily from this result, given the well-known relation-
ship between the continuous extensions of the Erlang B and
the Erlang C formulas (see, e.g., Janssen et al. 2011). O

The following lemma generalizes Proposition 1 in Halfin
and Whitt (1981) to the continuous extension of the Erlang C
waiting probability.

LemMA 2. Consider a sequence of tuples {(A,, k,)} such that
p, = A, /k, <1 for all n and lim,_, k, = co. As n — oo,
C(A,, k,) scales as follows:

1. Quality-driven regime: If lim,_  k,(1 — p,)* = oo, then
lim,_, . C(A,, k,) =0.

2. Quality-efficiency-driven regime: If lim,_  k,(1 — p,)* =
B € (0, x), then

n—o00

}121’010 C()\nl kn) = l/j(B)/

where

() == [1+V2mxd(x)e?] .

Here, ®(-) denotes the cumulative distribution function corre-
sponding to the standard normal distribution.

3. Efficiency-driven regime: If lim,_, . k,(1 — p,)? =0, then
lim,_ ., C(A,, k,)=1.

n—o0

The above lemma follows easily from Proposition 1 in
Halfin and Whitt (1981) and Lemma 1.

The following lemma gives the derivative of the Erlang C
waiting probability wrt the arrival rate.

Lemma 3. For 0 <A<k,

aC(A, k) (1—=p)C(L, k) C(A, k)(1—C(A, k)
s T xa-p

(A1)

A proof of this lemma can be found in Harel (2014).
The following lemma shows that the Erlang C waiting
probability is convex wrt the arrival rate.
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LemmMA 4. For fixed k > 1, C(A, k) is a strictly convex func-
tion of A over 0 < A <k.

A proof of this lemma can be found in Harel (2014).
Finally, the following lemma is used in the proof of
Theorem 1.

LemwMA 5. For fixed k > 1, the function

C(A, k) AC(A, k)(2 — C(A, k)

< T C R+ TR

(A2)

is strictly convex wrt A over 0 <X < k.

Proor. Let us denote the terms in (A2) as Tj, T,, and T;.
Lemma 4 states that T, is strictly convex wrt A. Moreover,
since C(A, k) is strictly increasing in A, it also follows from
Lemma 4 that T is strictly convex wrt A. To prove the
lemma, it therefore suffices to prove that T is convex wrt A.

Using Lemma 3, we may compute the derivative of T,
wrt A. After some simplification, we obtain

IT,  k+A B 1—C(A, k)
= mC(A,k)(Z C(A, k) +2C(A, k) ——=
20C2(A, k) (1—=C(A, k)\?
R ( k=X ) (A3)

Since C(A, k) is increasing in A, and the function x(2 — x)
is strictly increasing over x € [0, 1], it follows that the first
term in (A3) is increasing in A. Also, since C(k, k) =1, it fol-
lows from Lemma 4 that the function (1—-C(A, k))/(k — A) is
increasing in A. This implies that the second and the third
term in (A3) are also increasing in A. Since dT;/dA is increas-
ing in A, we conclude that T is convex wrt A. O

B. Proof of Theorem 1

To prove Theorem 1, we first analyse the unconstrained
multiserver scaling regime (6) parameterised by service
capacity k > 0. Define, p(k) := A(k)/k. We prove Theo-
rem 1 by establishing a connection between the evolution
of (A%, k%) as A 1 co and (A(k), k) as k 1 oo. The following
lemma characterizes the evolution of the tuple (A(k), k).

LEMMA 6. Suppose Assumption 1 holds. Then A(k) is a con-
tinuous, nondecreasing function of k over k € (0, ). As k 4 oo,
A(k) 1 oo as follows.

(i) If a €(0, ), then

lim k(1 = p(k))* = B(a), (B1)

where B(a) € (0, 00) is a strictly decreasing function of a.
(ii) If o =00, then

lim kU'(A(K)) (1 = (K))* = 1. (B2)

Moreover, for large enough k, p(k) is strictly increasing.

We defer the proof of Lemma 6 to later in this section,
and use it first to prove Theorem 1. Lemma 6 implies that
for large enough k, A(k) is strictly increasing. We define
the following inverse of {X(k)}. Taking A(0) := 0, we define
k: R, — R, as follows:

k(A) :=max{k € R, | A(k) < A}.

RIGHTS L1 N Hig

Since A(k) as 0, k(A) is well defined for all A € R,. More-
over, for large enough A k(A is Contmuous and strictly
increasing with A(k(A)) = A, and k()) U2 .

We are now ready to state the connection between
(A, k) and A(K).

LemMA 7. For large enough A, k%, =k(A) and X%, =

Proor. Note that for k < k(A) A(k) < A, implying that
)\A(k) A(k). Therefore, for k < k(A)

DAy (k) =k =bA(K) — k= k(b (k) - 1).

Now from Lemma 6, we know that for large enough k, p(k)
is strictly increasing, and p(k) 25 1. This means that for
large enough k, p(k) > 1/b,. Therefore, for large enough k,
k(blp(k) — 1) is strictly increasing wrt k, and k(b;p(k) —1)
9% 0. This in turn implies that for large enough A,

max { arg max|[b Ay (k) — k] }
k<k(A)

= max[arg max[b, A(k) — k]] =k(A),

k<k(A)

which implies that
ks > k(A).

Moreover, we know that for large enough A, XA(I}(A)) =
A(k(A)) = A. This means that by provisioning a capacity of
k(A), the service provider attracts the maximum possible
arrival rate. It then follows easily that the service provider
has no incentive to provision a capacity exceeding k(A).
This completes the proof.

We are now ready to prove the statements of Theorem 1.
We show now that Lemmas 6 and 7 imply statement (ii) of
Theorem 1. Statements (i) and (iii) can be proved on similar
lines.

Let us assume therefore, that =00, and lim,_, ., U'(A)/A
=0. In the following, we use the notation f(A)~ g(A) to
mean that lim,__ f(A)/g(A) = 1. Since k(A) = o, it follows
from statement (ii) of Lemma 6 that

M%wyz
k(A)

ggumuuwmmﬁ—
From Lemma 7, the above statement can be rewritten as
: * 77/ A 2
Allir:okAU (A)(l - H) =1.

Now, noting that k} ~ A, we have

[ & A
A~ LI’(AA)N TIINK

which implies statement (i) of Theorem 1. Statements (i)
and (iii) of the theorem can be proved similarly.

To complete the proof of Theorem 1, it remains to prove
Lemma 6. The remainder of this section is devoted to this
proof.
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ProoF oF LEMMA 6. The proof uses four main steps:

1. We first show that A(k) is a continuous function. Let
f(A, k) :==U(A) — Aé(A, k). Since f is continuous, it is easy
to see that a sufficient condition for continuity of A(k) is
that the optimization in (6) has a unique maximizer for any
k>o0.

We now prove that optimization in (6) has a unique max-
imizer. Using Lemma 3, the partial derivative of f wrt A
may be computed as follows:

] 9 AC(A, k)
SOk = ﬁ(u()‘) - ﬁ)
- wW - [ co
pC(A, k)2 —C(A, k))]
k(1—p)?

Since U'(-) is concave, it follows from Lemma 5 that
(9/dX) f (A, k) is strictly concave wrt A. Moreover, this partial
derivative is nonnegative at A =0, and approaches —oo as
A 1 k. Thus, we conclude that f(A, k) is a unimodal wrt A,
and that the optimization in (6) has a unique maximizer.

2. Next, we show that A(k) is nondecreasing, and
A(k) 4 oo as k 1 co.

It is easy to see that there exists k; > 0 such that A(k;) > 0.
Pick k, > k;. Invoking Lemma 8, which proves that f is
supermodular, it follows that for 0 < A < A(k,),

f(}\(kl)/ k) = f(A, ky) > f(;\(k1), ki) = f(A, ky) = 0.

This implies that X(kz) > X(kl). This proves that A(k) is
a nondecreasing function, which implies that lim,_  A(k)
exists. For the purpose of obtaining a contradiction, assume
that lim, _ A(k) = v < o. Pick A; > v such that U(}A,) >
maxy.,, U(A). Since f(A;, k) + U(A;) as k 1 oo, there exists
k" > 0 such that U(A;) > f(A, k') > maxy.,., U(A). This
means that

F, k) > UQK)) = fFAK), k),

which is a contradiction. Therefore, lim,_,, A(k) = oc.

3. Next, we show that for large enough k, p(k) is strictly
increasing. Let p := A/k. We know that there exists k > 0
such that for all k > k, 7\(k)_> 0. Since f is continuously
differentiable wrt A, for k > k, ;\(k) satisfies the following
first order condition:

C(A, k) pC(A, k)(2 = C(A, k))
= +CA k) +
ka—p) TEAH k1= pp
C(kp, k)
= + C(kp, k
k(1= p) (kp, k)
pC(kp, k)(2 — C(kp, k)) |
Ko = e )
The function & defined above has the following

properties.

(i) For fixed p € (0, 1), h(p, k) is strictly decreasing in k,
since C(kp, k) is strictly decreasing in k (see Lemma 1).

(ii) For fixed k > 0, h(p, k) is strictly increasing in p,
since C(kp, k) is a strictly increasing in p.
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Now, pick k, > k; > IEN. Since X(kZN) > A(k,), we have, from
Assumption 1, that U'(A(k,)) = U'(A(k,)). Therefore,

h(p(k2), ks)
= U'(A(ky) = U'(A(ky) = h(p(ky), ky) > B(p(Ky), ko),

where the last inequality follows from property (i).
Since h(3(ky), k») > h(p(ky), k,), property (ii) implies that
p(ks) > plky).

4. Finally, we prove Statements (B1) and (B2). Let 0(k) :=
kU'(A(k))(1 — p(k))2. Note that the function 6(k) must have
a limit point in [0, o] as k 1 co. We first rule out co and 0 as
possible limit points, and then show that the limit point is
unique.

For large enough k, U’'(A(k)) > 0. Therefore, from (B3), for
large enough k, A(k) satisfies

_C\R) CA k) pC(A, k)2 —C(A, K))
S kuMm-p) U@ ktr(A)(1 - p)?
=T+TL+T. (B4)

Let us suppose (for the sake of obtaining a contradiction)
that there exists a strictly increasing sequence {k, } satisfying
lim,_, k,=o0 such thatlim,_,  6(k,)=cc. In (B4), it is easy to
see that along this sequence, lim,,_, ,T;=0 and lim,,_, , T;=0.
Wenow show thatlim,,_, ., T, =0.1f «:=lim, ., U'(A) =00, then
this is obvious. If @ € (0, o), then lim,,_, _k, (1 — p(k,))* = cc.
This corresponds to the quality driven regime, and Lemma 2
implies that lim,_, . C(A(k,), k,) = 0. This in turn implies
lim,_,, T, = 0. Since the right-hand side of (B4) approaches
0 as n 1 oo, we have a contradiction. Therefore, « is not a
limit point of (k) as k 1 cc.

Next, let us suppose (for the sake of obtaining a con-
tradiction) that there exists a strictly increasing sequence
{k,} satisfying lim,_  k, = oo such that lim,_ 6(k,)=0.
In this case, lim,_  k,(1 — p(k,))*> = 0. This corresponds
to the efficiency driven regime, and Lemma 2 implies that
lim,_, . C(A(k,), k,) = 1. Therefore, in (B4), along the se-
quence under consideration, lim,,_, , T; = co. Since T; and T,
are nonnegative sequences, this gives us a contradiction.
Therefore, 0 is not a limit point of 6(k) as k 1 co.

Since oo and 0 are not limit points of (k) as k 1 oo, there
exists a limit point y € (0, ). We now show that this limit
point is unique. Let {k,} be a strictly increasing sequence
satisfying lim,_,  k, = co such that lim,_,  6(k,) = y. Con-
sider the following two cases.

Case 1. a = co. Along the sequence {k,}, k,(1—p(k,))* — 0,
which (as we have seen before) implies C(X(k,,),kn) — 1.
Therefore, along this sequence, T, - 0, T, = 0, T, — 1/vy
(see (B4)). This implies y =1, which proves (B2).

Case 2. a € (0, ). Along the {k,}, k,(1 — p(k,))> — B,
where B := y/a. This corresponds to the quality-efficiency
driven regime, and Lemma 2 implies that C(X(k”),kn) —

(B), where
Y(x) == [1+V2mxd(x)er?] .

In the above expression, ®(-) denotes the cumulative dis-
tribution function corresponding to the standard normal
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distribution. Therefore, along the sequence under consid-

eration, T} — 0, T, — ¥(B)/a, T3 — $(B)(2 — ¥(B))/Ba

(see (B4)). Therefore, we must have

VB P(B) _
B

As we prove in Lemma 9, {(-) is strictly decreasing, with
lim, |5 {(x) = o0, lim,,, {(x) = 0. Therefore, there is a unique
B(a) € (0, o) that satisfies (B5). Moreover, it is clear that 8(«a)
is strictly decreasing wrt . This proves (B1). This completes
the proof of Lemma 6.

a=y¢(B)+ (B (B5)

LEMMA 8. f(A, k) :== U(A) — Aé(A, k) is supermodular, ie.,
for 0< Ay <Ay <k <k,

Fa, k) = f(Ar k) < f(Ag, k) = f(Ay, Ky).
Proor. For A <k,
dENK) 9 (C(Ak)
oan 5( k—A )

_ C(\ k) | C(A, k)(2—C(A, k)
DY (k—X)?

Noting that C(A, k) decreases wrt k, and since the function
x(2 —x) is increasing in [0, 1], we conclude that d&(A, k)/dA
is decreasing in k. This implies

E(Ag, ky) — €A k) = 6Ny, ky) — E(A, k)
= f(Ay ko) = f(Ay k) > f(A, k) — (A, k).

The final inequality above is equivalent to the statement of
the lemma. O

LEMMA 9. {(-) as defined in (B5) is strictly decreasing, with
lim, |, {(x) = oo, lim,,,, {(x) =0.

Proor. Since i(-) is a strictly decreasing, and x(2 — x)
is increasing in [0, 1], {(-) is strictly decreasing. More-
over, lim, ,¥(x) = 1 implies that lim, ,{(x) = oo, and
lim, ¥ (x) =0 yields lim,_,  {(x)=0. O

C. Proof of Theorem 2

To prove Theorem 2, we first analyse the following uncon-
strained multiserver scaling regime parameterised by the
service capacity k. Define, for k > 0,

. . A(k)
Alk) :=max{A=0 | V() = £(A, k) 20}, plk):= —=.
We prove Theorem 2 by establishing a connection between
the evolution of (A%, k%) as A 1 oo and (A(k), k) as k 1 co. The
following lemma characterizes the evolution of the tuple

(A(k), k).

LemmMa 10. Given Assumption 2, X(k)~ is a strictly increasing
and continuous function of k. As k 4 oo, A(k) 1 oo such that

lim kV/(A(K)(1 — (k) =1. (C1)

Moreover, p(k) is strictly increasing in k.
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Proor. The proof uses three main steps:

1. First, we show that A(k) is continuous and strictly
increasing, with lim;,_ A(k) = co. Let f(A, k) := V(A) —
&(A, k). Since V is concave, it follows from Lemma 4 that
for fixed k >0, f(A, k) is strictly concave wrt A. Moreover,
since f is continuous, f(0, k) > 0, and lim,; f(A, k) = —oo,
it follows that

(i) A(k) is the unique solution of f(A, k)=0,

(ii) f(A, k) <0VAe(AK), k).
Statement (i), coupled with the continuity of f, implies
that A(k) is continuous. It also follows from statements (i)
and (ii) that A(k) is strictly increasing. Indeed, for k, >
k>0, f(;\(kl),k2) > f(A(k), k;) = 0, which implies that
A(ky) > Aky). }

We now argue that lim;_,  A(k)=oc. For the purpose
of obtaining a contradiction, assume that lim,  A(k)=
v < 0. Pick A, > v satisfying V() > 0. Since f(A, k)= V(A,)
>0, there exists k; large enough such that f(A;,k;)>0.
Statement (ii) then implies that A(k;)>A,, which is a
contradiction.

1. Next, we prove that (C1) holds. Let 6(k) := kV (A(k)) -
(1= p(k)). From statement (i), we know that

5 . AK), k
VRK) = £G(K), k) = %
— 0k = C((k), k). )

Equation (C2) implies that limsupkﬁookV(X(k))(l — p(k))
< 1. Since lim;_,, V(A(k)) > 0, we conclude that (1 — p(k))
I50. Therefore, kV (A(k))(1—p(k))* and thus also k(1 — j(k))2
converges to 0. This corresponds to the efficiency driven
regime, and Lemma 2 implies that lim,_, C(A(k), k) =1,
which implies (using (C2)) that lim;_, , 6(k) =1.

2. Finally, it remains to show that p(k) is strictly increas-
ing. From statement (i), we know that for any k > 0, A(k)
satisfies

C(kp, k)
V(A) = =:h(p, k),
k(1—p)
where p = A/k. The function h has the following pro-

perties.

(i) For fixed p € (0, 1), h(p, k) is strictly decreasing in k,
since C(kp, k) is strictly decreasing in k.

(ii) For fixed k, h(p, k) is strictly increasing in p € (0, 1),
since C(kp, k) is strictly increasing in p.

Now, pick k,>k;>0. h(p(k,), kr) =V (A(k,)) = V(A(ky)) =
h(p(k,), ki) > h(p(ky),k,). The last inequality above follows
from Property (i). Since h(p(k,),k,) > h(p(k,),k,), it follows
from Property (ii) that p(k,) > p(k;). O

The remainder of the proof follows along the same lines
as the proof of Theorem 1. Lemma 10 allows us to define
the following inverse of {A(K)}. Taking A(0) := 0, we define
k: R, — R, as follows:

k(A) :=max{k e R, | A(k) < A}.

As in the proof of Theorem 1,~ we have the following con-
nection between (A}, k}) and A(k).

LemmMma 11. For large enough A, ki = k(A) and A=A
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The proof of Lemma 11 is identical to that of Lemma 7,
and it can be applied to prove the statements of Theorem 2
in a similar way as Lemma 7 was applied in the proof of
Theorem 1. We omit the details.
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