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Abstract

Mainstream programming languages like Java have limited
support for language extensibility. Without mechanisms for
syntactic abstraction, new programming styles can only be
embedded in the form of libraries, limiting expressiveness.

In this paper, we present Recaf, a lightweight tool for
creating Java dialects; effectively extending Java with new
language constructs and user defined semantics. The Recaf
compiler generically transforms designated method bodies
to code that is parameterized by a semantic factory (Object
Algebra), defined in plain Java. The implementation of such
a factory defines the desired runtime semantics.

We applied our design to produce several examples from
a diverse set of programming styles and two case studies: we
define i) extensions for generators, asynchronous computa-
tions and asynchronous streams and ii) a Domain-Specific
Language (DSL) for Parsing Expression Grammars (PEGs),
in a few lines of code.

Categories and Subject Descriptors D.3.3 [Program-
ming Languages]: Language Constructs and Features;
D.3.2 [Programming Languages]: Language Classifications—
Extensible languages

Keywords language virtualization, object algebras, transfor-
mation, extensible languages

1. Introduction

Programming languages are as expressive as their mecha-
nisms for abstraction. Most mainstream languages support
functional and object-based abstractions, but it is well-known
that some programming patterns or idioms are hard to encap-
sulate using these standard mechanisms. Examples include
complex control-flow features, asynchronous programming,
or embedded DSLs. It is possible to approximate such fea-
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tures using library-based encodings, but this often leads to
code that is verbose and tedious to maintain.

Consider the example of a simple extension for automati-
cally closing a resource in Java':

using (File f: I0.open(path)) { ... }

Such a language feature abstracts away the boilerplate needed
to correctly close an IO resource, by automatically closing
the f resource whenever the execution falls out of the scope
of the block.

Unfortunately, in languages like Java, defining such
constructs as a library is limited by inflexible statement-
oriented syntax, and semantic aspects of (non-local) control-
flow. For instance, one could try to simulate using by a
method receiving a closure, like void using(Closeable r,
Consumer<Closeable> block). However, the programmer can
now no longer use non-local control-flow statements (e.g.,
break) within the closure block, and all variables will become
effectively final as per the Java 8 closure semantics. Further-
more, encodings like this disrupt the conventional flow of
Java syntax, and lead to an atypical, inverted code structure.
More sophisticated idioms lead to even more disruption of
the code (case in point is “call-back hell” for programming
asynchronous code).

In this work we present Recaf?, a lightweight tool® to
extend Java with custom dialects. Extension writers do not
have to alter Java’s parser or write any transformation rules.
The Recaf compiler generically transforms an extended
version of Java, into code that builds up the desired semantics.
Hence, Recaf is lightweight: the programmer can define a
dialect without stepping outside the host language.

Recaf is based on two key ingredients:

* Syntax extension: Java’s surface syntax is liberated to
allow the definition of new language constructs, as long
as they follow the pattern of existing control-flow or
declaration constructs. (For instance, the using construct
follows the pattern of Java’s for-each.) A pattern that is

! similar to C#’s using construct, or Java’s try-with-resources

2 As in recaffeinating coffee which describes the process of enhancing its
caffeine content [7].

3 The code is available at https://github.com/cwi- swat/recaf.


https://github.com/cwi-swat/recaf

recaf Using<String> alg = new Using<String>();

recaf String usingUsing(String path) { User code
using (File F : I0.open(path)) {
}
} class Using<R> extends BaseJava<R> {
<U extends Closeable>
IExec Using(ISupply<U> r, Function<U, IExec> body) {
ﬁ return () — { U u = null;
@ try { u = r.get(); body.apply(u).exec(); }
finally { if (u != null) u.close(); } };
} .
Recat ) Library
Using<String> alg = new Using<String>(); Generated

String usingUsing(String path) {
return alg.Method(alg.Using(() — IO.open(path), (File f) — { ... }));
}

Figure 1. High level overview of Recaf

used, drives a corresponding transformation that Recaf
performs.

* Semantics extension: a single, syntax-directed transforma-
tion maps method bodies (with or without language ex-
tensions) to method calls on polymorphic factories which
construct objects encapsulating the user-defined or cus-
tomized semantics.

The factories are developed within Java as Object Alge-
bras [20], which promote reusability and modular, type-safe
extension of semantic definitions.

The combination of the two aforementioned key points
enables a range of application scenarios. For instance, Recaf
can be used to: extend Java with new syntactic constructs
(like using), modify or instrument the semantics of Java (e.g.,
to implement aspects like tracing, memoization), replace the
standard Java semantics with a completely different seman-
tics (e.g., translate Java methods to Javascript source code),
embed DSLs into Java (e.g., grammars, or GUI construc-
tion), define semantics-parametric methods which support
multiple interpretations, and combine any of the above in a
modular fashion (e.g., combine using with a tracing aspect).
Developers can define the semantics of new and existing con-
structs and create DSLs for their daily programming needs.
Language designers can experiment with new features, by
quickly translating their denotations in plain Java. In other
words, Recaf brings the vision of “languages as libraries” to
mainstream, object-oriented programming languages.

The contributions of this paper are summarized as follows:

* We present a transformation of Java statement Abstract
Syntax Trees (ASTs) with extended syntax to virtualize
their semantics, and we show how the semantics can be
defined as Object Algebras (Section 3).

* We generalize the transformation to virtualize Java ex-
pressions, widening the scope of user defined semantics
(Section 4).

* We describe the implementation of Recaf, and how it deals
with certain intricacies of the Java language (Section 5).

* We evaluate the expressiveness of Recaf with two case
studies: 1) providing language support for generators and
asynchronous computations and ii) creating a DSL for
parser combinators (Section 6).

The results of the case studies and directions for future work
are discussed in Section 7.

2. Overview
2.1 Recaffeinating Java with Recaf

Figure 1 gives a bird’s eye overview of Recaf. It shows how
the using extension is used and implemented using Recaf. The
top shows a snippet of code illustrating how the programmer
would use a Recaf extension, in this case consisting of the
using construct. The programmer writes an ordinary method,
decorated with the recaf modifier to trigger the source-to-
source transformation. To provide the custom semantics, the
user also declares a recaf field, in scope of the recaf method.
In this case, the field alg is initialized to be a using object,
defined over the concrete type String.

The downward arrow indicates Recaf’s source-to-source
transformation which virtualizes the semantics of statements
by transforming the Recaf code fragment to the plain Java
code at the bottom. Each statement in the user code is
transformed into calls on the alg object. The using construct
itself is mapped to the Using method. The using class shown
in the call-out, defines the semantics for using. It extends a
class (BaseJava) capturing the ordinary semantics of Java, and
defines a single method, also called using. This particular
Using method defines the semantics of the using construct as
an interpreter of type IExec.

In addition to using a recaf field to specify the semantics
of a recaf method, it is also possible to decorate a formal
parameter of a method with the recaf modifier. This allows
binding of the semantics at the call site of the method itself.
Thus, Recaf supports three different binding times for the
semantics of a method: static (using a static field), at object
construction time (using an instance field), and late binding
(method parameter). Recaf further makes the distinction
between statement-only virtualization and full virtualization.
In the latter case, expressions are virtualized too. This mode
is enabled by using the recaff keyword, instead of recaf.
Section 4 provides all the details regarding the difference.

2.2 Object Algebras

The encoding used for the using class in Figure 1 follows
the design pattern of Object Algebras [20] which has already
been applied to numerous cases in the literature [1, 12, 21].
Object Algebras can be seen as an object-oriented encoding
of tagless interpreters [4]. Instead of defining a language’s
abstract syntax using concrete data structures, it is defined
using generic factories: a generic interface declares generic
methods for each syntactic construct. Implementations of
such interfaces define a specific semantics by creating se-



interface MulavaMethod<R, S> { R Method(S s); }

interface Mulava<R, S> {
S Exp(Supplier<Void> e);
S If(Supplier<Boolean> c, S sl, S s2);
<T> S For(Supplier<Iterable<T>> e, Function<T, S> s);
<T> S Decl(Supplier<T> e, Function<T, S> s);
S Seq(S sl1, S s2);
S Return(Supplier<R> e);
S Empty();

Figure 2. Object Algebra interfaces defining the abstract
syntax of Java method bodies and statements.

mantic objects representing operations like pretty printing,
evaluation, and so on.

Object Algebras are a simple solution to the expression
problem [31]. As such they provide type-safe, modular exten-
sibility along two axes: adding new data variants and adding
new operations over them without changing existing code.
For instance, the using algebra extends the base Java seman-
tics with a new syntactic construct. On the other hand, the
generic interface representing the abstract syntax of Java can
also be implemented again, to obtain a different semantics. In
the remainder of this paper we define the algebras as Java 8 in-
terfaces with default methods to promote additional flexibility
for modularly composing semantic modules.

3. Statement Virtualization

In this section we describe the first level of semantic and
syntactic polymorphism offered by Recaf, which restricts vir-
tualization and syntax extension to statement-like constructs.

3.1 pJava

MJava is a simplified variant of Java used for exposition in
this paper. In ptJava all variables are assumed to be final, there
is no support for primitive types nor void methods, and all
variable declarations have initializers. Figure 2, shows the
abstract syntax of pJava statements and method bodies in the
form of Object Algebra interfaces.

Both interfaces are parametric in two generic types, R and
s. R represents the return type of the method, and s the se-
mantic type of statements. The method Method in MuJavaMethod
mediates between the denotation of statements (s) and the
return type R of the virtualized method. The programmer of a
Recaf method needs to ensure that R returned by Method corre-
sponds to the actual return type declared in the method. Note
that R does not have to be bound to the same concrete type
in both MuJavaMethod and MuJava. This means that the return
type of a virtualized method can be different than the type of
expressions expected by Return.

The mMuJava interface assumes that expressions are repre-
sented using the standard Java supplier type, which represents
thunks. Java expressions may perform arbitrary side-effects;

jfa[[Sﬂ = returna.Method (7, [S]);
=57;H€;ﬂ = LExp(() — {e; return null;})
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Figure 3. Virtualizing method statements into statement
algebras.

return a.Method(

for (Integer x: 1) a.Seq(

if (x % 2 == 0) a.For(() — 1, (Integer x) —
return x; a.If(() =& x %2 ==0,
else ; a.Return(() — x),
return null; a.Empty())),

a.Return(() — null)));

Figure 4. Example method body (left) and its transformation
into algebra a (right).

the thunks ensure that evaluation is delayed until after the
semantic object are created.

The constructs For and Dect employ higher-order abstract
syntax (HOAS [23]) to introduce local variables. As a result,
the bodies of declarations (i.e., the statements following it,
within the same scope) and for-each loops are represented as
functions from some generic type T to the denotation s.

3.2 Transforming Statements

The transformation for ptJava is shown in Figure 3, and con-
sists of two transformation functions .# and ., respectively
transforming method bodies, and statements. The transforma-
tion folds over the syntactic structure of pJava, composition-
ally mapping each construct to its virtualized representation.
Both functions are subscripted by the expression a, which
represents the actual algebra that is used to construct the se-
mantics. The value of a is determined by the recaf modifier
on a field or formal parameter.

As an example consider the code shown on the left of
Figure 4. The equivalent code after the Recaf transformation
is shown on the right. The semantics of the code is now
virtualized via the algebra object a. The algebra a may
implement the same semantics as ordinary Java, but it can
also customize or completely redefine it.

3.3 Statement Syntax

Statement syntax is based on generalizing the existing control-
flow statement syntax of Java. Informally speaking, wherever
Java requires a keyword (e.g., for, while etc.), Recaf allows



Fallxre;] = axt) —e
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Figure 5. Transforming syntax extensions to algebra method
calls.

the use of an identifier. This identifier will then, by conven-
tion, correspond to a particular method with the same name
in the semantic algebra.

The following grammar describes the syntax extensions
of statements (S) for puJava:

S u= xle; Return-like
|  x(Tx: e)S For-each like
| x(e){S} While-like
| x{S} Try-like
| xTx=e;  Declaration-like

This grammar defines a potentially infinite family of new lan-
guage constructs, by using identifiers (x) instead of keywords.
Each production is a generalization of existing syntax. For
instance, the first production, follows syntax of return e, with
the difference that an exclamation mark is needed after the
identifier x to avoid ambiguity. The second production is like
for—each, the third like white, and the fourth follows the pat-
tern of if without etse. Finally, the last production supports
custom declarations, where the first identifier x represents the
keyword.

Transforming the extension into an algebra simply uses the
keyword identifier x as a method name, but follows the same
transformation rules as for the corresponding, non-extended
constructs. The transformation rules are shown in Figure 5.

3.4 Direct Style Semantics

The direct style interpreter for pJava is defined as the inter-
face MuJavaBase, implementing it using default methods and
is declared as follows:

interface MulavaBase<R> extends MuJava<R, IExec> { ... }

The type parameter R represents the return type of the method.
s is bound to the type IExec, which represents thunks (clo-
sures):

interface IExec { void exec(); }

The algebra MuJavaBase thus maps pJava statement con-
structs to semantic objects of type IExec. Most of the state-
ments in (tJava have a straightforward implementation. Non-
local control-flow (i.e., return), however, is implemented us-
ing exception handling.

The method Method ties it all together and mediates be-
tween the evaluation of the semantic objects, returned by the
algebra, to the actual return type of the method:

default R Method(IExec s) {
try { s.exec(); }
catch (Return r) { return (R)r.value; }
catch (Throwable e) { throw new RuntimeException(e); }
return null;

¥

Since the mapping between the statement denotation and the
actual return type of a method is configurable it is not part
of MuJavaBase itself. This way, MuJavaBase can be reused with
different Method implementations.

Example: Maybe As a simple example, similar to the using
extension introduced in Section 1, consider a maybe construct,
to unwrap an optional value (of type java.util.Optional). In
a sense, maybe literally overrides the semicolon, similar to the
bind operator of Haskell. Syntactically, the maybe operator
follows the declaration-like syntax. It is defined as follows:

interface Maybe<R> extends MulavaBase<R> {
default <T> IExec Maybe(Supplier<Optional<T>> x,
Function<T, IExec> s) {
return () — {
Optional<T> opt = x.get();
if (opt.isPresent()) s.apply(opt.get()).exec(); };

}

The Maybe method returns an Iexec closure that evaluates the
expression (of type optional), and if the optional is not empty,
executes the body of maybe.

3.5 Continuation-Passing Style Semantics

The direct style base interpreter can be used for many exten-
sions like using or maybe. However, language constructs that re-
quire non-local control-flow semantics require a continuation-
passing style (CPS) interpreter. This base interpreter can be
used instead of the direct style interpreter for extensions like
coroutines, backtracking, call/cc etc. It also shows how Ob-
ject Algebras enables the definition of two different semantics
for the same syntactic interface.

The cps style interpreter is defined as the interface
MuJavaCPs, similarly to MuJavaBase:

interface MulavaCPS<R> extends MuJava<R, SD<R>> { ... }

The MuJavacps algebra maps ptJava abstract syntax to CPS
denotations (sb), defined as follows:

interface SD<R> { void accept(K<R> r, KO s); }

SD<R> is a functional interface that takes as parameters a return
and a success continuation. The return continuation r is of
type K<R> (a consumer of R) and contains the callback in
the case a statement is the return statement. The success
continuation is of type ko (a thunk) and contains the callback
in the case the execution falls off without returning.

To illustrate the CPS interpreter, consider the following
code that defines the semantics of the if-else statement:



interface Backtrack<R>
extends MuJavaCPS<R>, MulavaMethod<List<R>, SD<R>> {

default List<R> Method(SD<R> body) {
List<R> result = new ArraylList<>();
body.accept(ret — { result.add(ret); }, () — {});
return result;

default <T> SD<R> Choose(Supplier<Iterable<T>> e,
Function<T, SD<R>> s) {
return (r, s0) — {
for (T t: e.get()) s.apply(t).accept(r, s0);};

Figure 6. Backtracking Extension

default SD<R> If(Supplier<Boolean> c, SD<R> sl1l, SD<R> s2) {
return (r, s) — { if (c.get()) sl.accept(r, s);
else s2.accept(r, s);}; }

Based on the truth-value of the condition, either the then
branch or the else branch is executed, with the same continu-
ations as received by the if-then-else statement.

Example: Backtracking The CPS interpreter serves as
a base implementation for language extensions, requiring
complex control flow. We demonstrate the backtracking
extension that uses Wadler’s list of successes technique [30]
and introduces the choose keyword. As an example, consider
the following method which finds all combinations of integers
out of two lists that sum to 8.

List<Pair> solve(recaf Backtrack<Pair> alg) {
choose Integer x = asList(1l, 2, 3);
choose Integer y = asList(4, 5, 6);
if (x +y == 8) {
return new Pair(x, y);

In Figure 6 we present the extension for pJava. Note
that Method has a generic parameter type in the MuJavaMethod
interface. In this case we change the return type of method to
List<T> instead of just 7. The result is the list of successes, so
the return continuation should add the calculated item in the
return list, instead of just passing it to the continuation. Choose
simply invokes its success continuation for every different
value, effectively replaying the execution for every element
of the set of values.

4. Full Virtualization

The previous section discussed virtualization of declaration
and control-flow statements. In this section we widen the
scope of Recaf for virtualizing expressions as well.

interface MuStmJava<S, E> {
S Exp(E x);

interface MuExpJlava<E> {
Lit(Object x);

m

<T> S Decl(E x,Function<T,S> s); E This(Object x);
<T> S For(E x,Function<T,S> s); E Field(E x, String f);
S If(E c, S sl, S s2); E New(Class<?> c, E...es);
S Return(E x); E Invoke(E x, String m, E...es);
S Seq(S sl1, S s2); E Lambda(Object f);
S Empty(); E Var(String x, Object it);
} }

Figure 7. Generic interfaces for the full abstract syntax of
Mlava.

4.1 Expression Virtualization

Until know we have dissected the MuJava interface of Figure 2.
That interface still does not support virtualized expressions
since it requires the concrete type Supplier in expression po-
sitions. To enable full virtualization, we have to use the al-
gebraic interfaces shown in Figure 7, where expressions are
represented by the generic type E. MuExpJava specifies the se-
mantic objects for pJava expressions. The interface MuStmlava
is similar to MuJava, but changes the concrete Supplier argu-
ments to the generic type E.

Compared to full Java, the expression sub language of
pJava makes some additional simplifying assumptions: there
are no assignment expressions, no super calls, no array
creation, no static fields or methods, no package qualified
names, and field access and method invocation require an
explicit receiver. For brevity, we have omitted infix and prefix
expressions.

To support expression virtualization, the transformation of
statements is modified according to the rules of Figure 8. The
function & folds over the expression structure and creates
the corresponding method calls on the algebra a. Consider,
for example, how full virtualization desugars the uJava code
fragment for (Integer x: y) println(x + 1);:

a.For(a.vVar("y", y), Integer x —

a.Exp(a.Invoke(a.This(this), "println",
a.Add(a.var("x", x), a.Lit(1)))));

Note how the HOAS representation of binders carries over
to expression virtualization, through the var constructor. The
additional string argument to var is not essential, but provides
additional meta data to the algebra.

Recaf does not currently support new syntactic constructs
for user defined expression constructs. We assume that in
most cases ordinary method abstraction is sufficient*. The
examples below thus focus on instrumenting or replacing the
semantics of ordinary pJava expressions.

4.2 An Interpreter for yJava Expressions

Just like statements, the base semantics of ptJava expressions
is represented by an interpreter, this time conforming to the

4 The only situation where a new kind of expression would be useful is when
arguments of the expression need to evaluated lazily, as in short-circuiting
operators.
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Figure 8. Transforming statements (modified) and expres-
sions.

interface MukxpJava, shown in Figure 7. This interpreter binds
E to the closure type IEval:

interface IEval { Object eval(); }

As 1Eval is not polymorphic, we do not make any assumptions
about the type of the returned object. The interpreter is fully
dynamically typed, because Java’s type system is not expres-
sive enough to accurately represent the type of expression
denotations, even if the Recaf transformation would have had
access to the types of variables and method signatures.

The evaluation of expressions is straightforward. Field
access, object creation (new), and method invocation, however
are implemented using reflection. For instance, the following
code defines the semantics for field lookup:

default IEval Field(IEval x, String f) {
return () — {
Object o = x.eval();
Class<?> clazz = o.getClass();
return clazz.getField(f).get(o);
};
}
The class of the object whose field is requested, is discovered
at runtime, and then, the reflective method getField is invoked
in order to obtain the value of the field for the requested
object.

Example: Aspects A useful use case for expression virtual-
ization is defining aspect-like instrumentation of expression
evaluation. The algebra methods of the base interpreter are
overridden, they implement the additional behavior, and dele-
gate to the parent’s implementation with the super keyword.
As an example, consider an aspect defining tracing of the
values of variables during method execution. The algebra ex-
tends the base interpreter for Java expressions and overrides
the var definition, for variable access. Figure 9 shows how the
overridden var method uses the variable name and the actual
received value passed to print out the tracing information,
and then calls the super implementation.

default IEval Var(String x, Object v){
return () — {
System.err.println(x + " =" + v);
return MuExpJavaBase.super.Var(x, v).eval();

+

Figure 9. Intercepting field accesses for policy based access
control.

Example: Library embedding 1In the following example
we demonstrate library embedding of a simple constraint
solving language, Choco [24], a Java library for constraint
programming. Choco’s programming model is heavily based
on factories nearly for all of its components, from variable
creation, constraint declaration over variables, to search
strategies.

We have developed a Recaf embedding which translates a
subset of Java expressions to the internal constraints of Choco,
which can then be solved. The solve algebra defines the var
extension to declare constraint variables. The solve! state-
ment posts constraints to Choco’s solver. This embedding
illustrates how the expression virtualization allows the ex-
tension developer to completely redefine (a subset of) Java’s
expression syntax.

recaf Solve alg = new Solve();

recaff Iterable<Map<String,Integer>> example() {
var 0, 5, IntVar x;
var 0, 5, IntVar y;
solve! x + y < 5;

}

S. Implementation of Recaf

All Recaf syntactic support is provided by Rascal [14], a
language for source code analysis and transformation. Ras-
cal features built-in primitives for defining grammars, tree
traversal and concrete syntax pattern matching. Furthermore,
Rascal’s language workbench features [9] allow language de-
velopers to define editor services, such as syntax highlighting
or error marking, for their languages.

5.1 Generically Extensible Syntax for Java

Section 3.3 introduced generic syntax extensions in the
context of pJava, illustrating how the base syntax could be
augmented by adding arbitrary keywords, as long as they
conform to a number of patterns, e.g. while- or declaration-
like. We implemented these patterns and a few additional
ones for full Java using Rascal’s declarative syntax rules.
These rules modularly extend the Java grammar, defined in
Rascal’s standard library using productions for each case that
we identify as an extensibility point: return-like, declaration-
like, for-like, switch-like, switch-like (as a for) and try-like.



5.2 Transforming Methods

Recaf source code transformation transforms any method that
has the recaf or recaff modifier. If the modifier is attached to
the method declaration, the algebra is expected to be declared
as field in the enclosing scope (class or interface). If the
modifier is attached to a method’s formal parameter, that
parameter itself is used instead. Furthermore, if the recaff
modifier is used, expressions are transformed as well.

The transformation is defined as Rascal rewrite rules that
match on a Java statement or expression using concrete-
syntax pattern matching. This means that the matching occurs
on the concrete syntax tree directly, having the advantage
of preserving comments and indentation from the Recaf
source file. As an example, the following rule defines the
transformation of the while-statement:

Expr stm2alg((Stm) while (<Expr c>) <Stm s>',Id a,Names ns)
= (Expr) <Id a>.While(<Expr c2>, <Expr s2>)°

when
Expr c2 := injectExpr(c, a, ns),
Expr s2 := stm2alg(s, a, ns);

This rewrite rule uses the actual syntax of the Java while
statement as the matching pattern and returns an expression
that calls the while method on the algebra a. The condition c
and the body s are transformed in the when-clause (where :=
indicates binding through matching). The function injectExpr
either transforms the expression c, in the case of transforma-
tions annotated with the recaff keyword, or creates closures
of type supplier otherwise. The body s is transformed calling
recursively stm2alg.

The ns parameter represents the declared names that are
in scope at this point in the code and is the result of a local
name analysis needed to correctly handle mutable variables.
Local variables introduced by declarations and for-loops are
mutable variables in Java, unless they are explicitly declared
as final. This poses a problem for the HOAS encoding we
use for binders: the local variables become parameters of
closures, but if these parameters are captured inside another
closure, they have to be (effectively) final. To correctly deal
with this situation, variables introduced by declarations or
for-loops are wrapped in explicit reference objects, and the
name is added to the Names set. Whenever such a variable is
referenced in an expression it is unwrapped. For extensions
that introduce variables it is unknown whether they should
be mutable or not, so the transformation assumes they are
final, as a default. In total, the complete Recaf transformation
consists of 790 SLOC.

5.3 Recaf Runtime

The Recaf runtime library comes with two base interpreters
of Java statements, similar to MuJavaBase and MuJavacps, and
an interpreter for Java Expressions. In addition to return, the
interpreters support the full non-local control-flow features of
Java, including (labeled) break, continue and throw. The CPS
interpreter represents each of those as explicit continuations

in the statement denotation (sb), whereas the direct style
interpreter uses exceptions.

The main difference between MutxpBase and the full ex-
pression interpreter is handling of assignments. We model
mutable variables by the interface 1ref, which defines a set-
ter and getter to update the value of the single field that it
contains. The Iref interface is implemented once for local
variables, and once for fields. The latter uses reflection to
update the actual object when the setter is called. In addition
to the var(String,0bject) constructor, the full interpreter fea-
tures the constructor Ref(String, IRef<?>) to model mutable
variables. The expression transformation uses the local name
analysis (see above) to determine whether to insert var or Ref
calls.

Since the Recaf transformation is syntax-driven, some
Java expressions are not supported. For instance, since the
expression interpreter uses reflection to call methods, stati-
cally overloaded methods are currently unsupported (because
it is only possible to dispatch on the runtime type of argu-
ments). Another limitation is that Recaf does not support
static method calls, fields references or package qualified
names. These three kinds of references all use the same dot-
notation syntax as ordinary method calls and field references.
However, the transformation cannot distinguish these differ-
ent kinds, and interprets any dot-notation as field access or
method invocation with an explicit receiver. We consider a
type-driven transformation for Recaf as an important direc-
tion for future work.

6. Case Studies
6.1 Spicing up Java with Side-Effects

The Dart programming language recently introduced syncx,
async and asyncx methods, to define generators, asynchronous
computations and asynchronous streams [18] without the
typical stateful boilerplate or inversion of control flow. Using
Recaf, we have implemented these three language features
for Java, based on the CPS interpreter, closely following the
semantics presented in [18].

Generators. The extension for generators is defined in the
Iter class. The 1Iter class defines Method to return a plain
Java 1terable<rR>. When the iterator() is requested, the state-
ment denotations start executing. The actual implementa-
tion of the iterator is defined in the client code using two
new constructs. The first is yield!, which produces a single
value in the iterator. Its signature is SD<R> Yield(ISupply<R>)°.
Internally, yield! throws a special vield exception to com-
municate the yielded element to a main iterator effectively
pausing the generator. The vield exception contains both
the element, as well as the current continuation, which is
stored in the iterator. When the next value of the iterator
is requested, the saved continuation is invoked to resume
the generator process. The second construct is yieldFrom!

5 ISupply is a thunk which has a throws clause.



which flattens another iterable into the current one. Its sig-
nature iS SD<R> YieldFrom(ISupply<Iterable<R>> x) and it is
implemented by calling ForEach(x, e — Yield(() -> e)). In
the code snippet below, we present a recursive implemen-
tation of a range operator, using both yield! and yieldFrom!:

recaf Iterable<Integer> range(int s, int n) {

if (n > 0) {
yield! s;
yieldFrom! range(s + 1, n - 1)
}
}
Async. The implementation of async methods also de-

fines Method, this time returning a Future<R> object.
The only syntactic extension is the await statement.
Its signature 1S <T> Await(Supplier<CompletableFuture<T>>,
Function<T, SD<R>>), following the syntactic template of for-
each. The await statement blocks until the argument future
completes. If the future completes normally, the argument
block is executed with the value returned from the future. If
there is an exception, the exception continuation is invoked
instead. Await literally passes the success continuation to the
future’s whenComplete method. The Async extension supports
programming with asynchronous computations without hav-
ing to resort to call-backs. For instance, the following method
computes the string length of a web page, asynchronously
fetched from the web.

recaf Future<Integer> task(String url)
await String html = fetchAsync(url);
return html.length();

}

Async*. Asynchronous streams (or reactive streams) sup-
port a straightforward programming style on observables,
as popularized by the Reactive Extensions [16] frame-
work. The syntax extensions to support this style are sim-
ilar to yield! and yieldFrom! constructs for defining gen-
erators. Unlike the yield! for generators, however, yield!
now produces a new element asynchronously. Similarly,
the yieldFrom! statement is used to splice on asynchronous
stream into another. Its signature reflects this by accepting an
Observable object (defined by the Java variant of Reactive Ex-
tensions,I{xJavaﬁ):SD<R> YieldFrom(ISupply<Observable<R>>).
Reactive streams offer one more construct: awaitFor!, which
is similar to the ordinary for-each loop, but “iterates” asyn-
chronously over a stream of observable events. Hence,
its signature 1S <T> SD<R> AwaitFor(ISupply<Observable<T>>,
Function<T, SD<R>>). Whenever, a new element becomes avail-
able on the stream, the body of the awaitFor! is executed again.
An asyncx method will return an observable.

Here is a simple method that prints out intermediate
results arriving asynchronously on a stream. After the result
is printed, the original value is yielded, in a fully reactive
fashion.

6https://github.com/ReactiveX/RxJava

recaf <X> Observable<X> print(Observable<X> src) {
awaitFor (X x: src) {
System.out.println(x);
yield! x;
}

6.2 Parsing Expression Grammars (PEGs)

To demonstrate language embedding and aspect-oriented
language customization we have defined a DSL for Parsing
Expression Grammars (PEGs) [11]. The abstract syntax of
this language is shown in Figure 10. The 1it! construct
parses an atomic string, and ignores the result. let is used
to bind intermediate parsing results. For terminal symbols,
the regexp construct can be used. The language overloads
the standard sequencing and return constructs of Java to
encode sequential composition, and the result of a parsing
process. The constructs choice, opt, star, and plus correspond
to the usual regular EBNF operators. The choice combinator
accepts a list of alternatives (alt). The Kleene operators bind
a variable x to the result of parsing the argument statement
S, where the provided expression e represents the result if
parsing of S fails.

The PEG language can be used by considering methods
as nonterminals. A PEG method returns are parser object
which returns a certain semantic value type. A simple ex-
ample of parsing primary expression is shown in Figure 11.
The method primary returns an object of type parser which
produces an expression Exp. Primaries have two alternatives:
constant values and other expressions enclosed in parentheses.
In the first branch of the choice operator, the regexp construct
attempts to parse a numeric value, the result of which, if suc-
cessful, is used in the return statement, returning an Int object
representing the number. The second branch, first parses an
open parenthesis, then binds the result of parsing an addi-
tive expression (implemented in a method called addsub) to
e, and finally parses the closing parenthesis. When all three
parses are successful, the e expression is returned. Note that
the return statements return expressions, but the result of the
method is a parser object.

Standard PEGs do not support left-recursive produc-
tions, so nested expressions are typically implemented using
loops. For instance, additive expression could be defined as
addSub ::= mulDiv (("+"|"-") mulDiv)=. Here’s how the addSub
method could define this grammar using the PEG embedding:

recaf Parser<Exp> addSub() {
let Exp 1 = mulDiv();
star Exp e = (1) {
regexp String o = "[+\\-]";
let Exp r = mulDiv();

return new Bin(o, e, r);

}

return e;

}

The first statement parses a multiplicative expression. The
star construct creates zero or more binary expressions, from
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S = litle; Literals
| tetTx=e; Binding
‘ regexp Stringx=e ; Terminals
| S:S Sequence
‘ return e ; Result
‘ choice{C +} Alternative
| optTx=(e)S Zero or one
| starTx=(e)S One or more
|  pwsTx=(e)S Zero or one
C = altl: S+ Alternative (I = label)

Figure 10. Abstract syntax of embedded PEGs.

recaf Parser<Exp> primary() {
choice {

alt
regexp String n = "[0-9]+";
return new Int(n);

alt "bracket":
1it! "("; let Exp e =
return e;

"value":

addSub(); lit! ")";

}

Figure 11. Parsing primaries using Recaf PEGs.

the operator (o), the left-hand side (e) and the right-hand side
(r). If the body of the star fails to recognize a + or — sign,
the e will be bound to the initial seed value 1. The constructed
binary expression will be fed back into the loop as e through
every subsequent iteration.

The (partial) PEG for expressions shown above and in
Figure 11 does support any kind of whitespace between
elements of an expression. Changing the PEG definitions
manually to parse intermediate layout, however, would be
very tedious and error-prone. Exploiting the Object Algebra-
based architecture, we add the layout handling as a modular
aspect, by extending the PEG algebra and overriding the
methods that construct the parsers.

For instance, to insert layout in between sequences, the
PEG subclass for layout overrides the Seq as follows:

<T, U> Parser<U> Seq(Parser<T> pl, Parser<U> p2) {

return PEG.super.Seq(pl, PEG.super.Seq(layout, p2));

}

Another concern with standard PEGs is exponential worst-
case runtime performance. The solution is to implement
PEGs as packrat parsers [10], which run in linear time by
memoizing intermediate parsing results. Again, the base PEG
language can be modularly instrumented to turn the returned
parsers into memoizing parsers.
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7. Discussion

Static Type Safety The Recaf source-to-source transforma-
tion assumes certain type signatures on the algebras that de-
fine the semantics. For instance, the transformation of binding
constructs (declarations, for-each, etc.) expects Function types
in certain positions of the factory methods. If a method of a
certain signature is not present on the algebra, the developer
of a Recaf method will get a static error at the compilation of
the generated code.

The architecture based on Object Algebras provides type-
safe, modular extensibility of algebras. Thus, the developer
of semantics may enjoy full type-safety in the development
of extensions. The method signatures of most of the examples
and case-studies accurately describe the expected types and
do not require any casts.

On the other hand, the statement evaluators represent
expressions as opaque closures, which are typed in the
expected result such as Supplier<Boolean> for the if-else
statement. At the expression level, however, safety guarantees
depend on the denotation types themselves. More general
semantics, like the Java base expression interpreter, however,
are defined in terms of closures returning object. The reason is
that Java’s type system is not expressive enough to represent
them otherwise (lacking features such as higher-kinded types
and implicits). As a result, potentially malformed expressions
are not detected at compile-time.

Another consequence of this limitation is that the Supply-
based statement interpreters described in Section 3 cannot
be combined out-of-the-box with expression interpreters in
the context of Full Virtualization, as both interpreters must
be defined in terms of generic expressions. Fortunately, the
Supply-based statement interpreters can be reused by applying
the Adapter pattern [29]. In the runtime library, we provide
an adapter that maps a supplier-based algebra to one that is
generic in the expression type. As we have discussed earlier,
this is unsafe by definition. Thus, although we can effectively
integrate statement and expression interpreters, we lose static
type guarantees for the expressions.

To conclude, Recaf programs are type-correct when using
Statement Virtualization, as long as they generate type-correct
Java code. However, in the context of Full Virtualization,
compile-time guarantees are overridden as the expressions
are fully generic, and therefore, no static assumptions on the
expressions can be made.

Runtime Performance. The runtime performance depends
on the implementation of the semantics. The base interpreters
are admittedly naive, but for the purpose of this paper they
illustrate the modularity and reusability enabled by Recaf for
building language extensions on top of Java. The Dart-like ex-
tensions, reuse the CPS interpreter. As such they are too slow
for production use (closure creation to represent the program
increases heap allocations). But these examples illustrate the
expressiveness of Recaf’s embedding method: a very regular
syntactic interface (the algebra), may be implemented by an



interpreter that completely redefines control flow evaluation.
On the other hand, the constraint embedding case study only
uses the restricted method syntax to build up constraint ob-
jects for a solver. Solving the constraints does not incur any
additional overhead, the DSL is used merely for construction
of the constraint objects.

Further research is still needed, however, to remove inter-
pretive overhead in order to make extensions of Java practical.
One direction would be to investigate “compiler algebras”,
which generate byte code or (even native code) at runtime.
Frameworks like ASM [3] and Javassist [6] could be used to
dynamically generate bytecode, which could then be executed
by the Method method.

8. Related Work

Syntactic and semantic extensibility of programming lan-
guages has received a lot of attention in literature, historically
going back to Landin’s, “Next 700 Programming Languages”
[15]. In this section we focus on work that is related to Re-
caf from the perspective of semantic language virtualization,
languages as libraries, and semantic language customization.

Language Virtualization. Language virtualization allows
the programmer to redefine the meaning of existing con-
structs and define new ones for a programming language.
Well-known examples include LINQ [17]) that offers query
syntax over custom data types, Haskell’s do-notation for
defining custom monadic evaluation sequences, and Scala’s
for-comprehensions. Scala Virtualized [25] and Lightweight
Modular Staging (LMS) [26] are frameworks to redefine the
meaning of almost the complete Scala language. However,
these frameworks rely on the advanced typing mechanisms
of Scala (higher-kinded types and implicits) to implement
concrete implementations of DSL embeddings. Additionally,
compared to Scala, Java does not have support for delimited
continuations so we rely on a CPS interpretation to mitigate
that. Recaf scopes virtualization to methods, a choice mo-
tivated by the statement-oriented flavor of the Java syntax,
and inspired by how the async, syncx and asyncx modifiers are
scoped in Dart [18] and async in C# [2].

Another related approach is the work on F#’s computation
expressions [22] which allow the embedding of various com-
putational idioms via the definition of concrete computation
builder objects, similar to our Object Algebras. The F# com-
piler desugars ordinary F# expressions to calls into the factory,
in an analogous way to the transformation employed by Recaf.
Note that the semantic virtualization capabilities offered by
computation expressions are scoped to the expression level.
Both, Recaf and F# support custom operators, however in
F# they are not supported in control flow statements [27].
Carette et al. [4] construct CPS interpreters among others.
In Recaf we use the same approach to enable control-flow
manipulation extensions.

Languages as Libraries. Recaf is a framework for library-
based language extension. The core idea of “languages as
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libraries” is that embedded languages or language extensions
exist at the same level as ordinary user code. This is different,
for instance, from extensible compilers (e.g., [19]) where
language extensions are defined at the meta level.

The SugarJ system [8] supports language extension as a li-
brary, where new syntactic constructs are transformed to plain
Java code by specifying custom rewrite rules. The Racket
system supports a similar style of defining libary-based lan-
guages by transformation, leveraging a powerful macro fa-
cility and module system [28]. A significant difference to
Recaf is that in both Sugar] and Racket, the extension devel-
oper writes the transformations herself, whereas in Recaf the
transformation is generic and provided by the framework.

Language Customization. Language extension is only one
of the use cases supported by Recaf. Recaf can also be
used to instrument or modify the base semantics of Java.
Consequently, Recaf can be seen as specific kind of meta
object protocol [13], where the programmer can customize
the dynamic semantics of a programming language, from
within the host language itself. OpenC++ [5] introduced such
a feature for C++, allowing the customization of member
access, method invocation and object creation.

9. Conclusion

In this paper we have presented Recaf, a lightweight tool to
extend both the syntax and the semantics of Java methods
just by writing Java code. Recaf is based on two techniques.
First, the Java syntax is generalized to allow custom language
constructs that follow the pattern of the regular control-
flow statements of Java. Second, a generic source-to-source
transformation translates the source code of methods into
calls to factory objects that represent the desired semantics.
Furthermore, formulating these semantic factories as Object
Algebras enables powerful patterns for composing semantic
definitions and language extensions.
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