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Language equivalence and inclusion can be checked coinductively by establishing a (bi)sim-
ulation on suitable deterministic automata. In this paper we present an enhancement of 
this technique called (bi)simulation-up-to. We give general conditions on language opera-
tions for which bisimulation-up-to is sound. These results are illustrated by a large number 
of examples, giving new proofs of classical results such as Arden’s rule, and involving the 
regular operations of union, concatenation and Kleene star as well as language equations 
with complement and intersection, and shuffle (closure).
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1. Introduction

The set of all languages over a given alphabet can be turned into an (infinite) deterministic automaton. By the coinduction
principle, any two languages that are bisimilar as states in this automaton are equal. The typical way to show that two 
languages x and y are bisimilar is by exhibiting a bisimulation, a relation on languages satisfying certain properties, which 
contains the pair (x, y). Indeed, this is the basis of a practical coinductive proof method for language equality [30], which 
has, for example, been applied in effective procedures for checking equivalence of regular languages [8,19,21,30].

In this paper we present bisimulation up to congruence, in the context of languages and automata. This is an enhancement 
of bisimulation originally stemming from process theory [27,33]. In order to prove bisimilarity of two languages, instead of 
showing that they are related by a bisimulation, one can show that they are related by a bisimulation-up-to, which in many 
cases yields smaller, easier and more elegant proofs. As such, we introduce a proof method which improves on the more 
classical coinductive approach based on bisimulations.

Bisimulation-up-to(-congruence) techniques essentially make use of the underlying (algebraic) structure induced on (the 
automaton of) languages by the operations and expressions under consideration. In this paper we will first focus on lan-
guages presented by the regular operations of union, concatenation and Kleene star. We will exemplify our coinductive proof 
method based on bisimulation-up-to by novel proofs of several classical results such as Arden’s rule and the soundness of 
the axioms of Kleene algebra. This introduces the main ingredients, and the practical use of the proof technique.
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Our aim however is to deal with a wide variety of operations on languages. To this end we introduce a general format 
of behavioural differential equations, based on a similar format introduced for streams [20,32] (called stream GSOS in [14]). In 
the current paper we prove that for any operator defined in this format, the associated bisimulation-up-to techniques are 
sound. We then apply these results by considering language equations involving intersection and complement, and show 
the usefulness and versatility of the techniques by giving a full coinductive proof of the fact that two particular context-free 
languages defined in terms of language equations, that of palindromes and that of non-palindromes, indeed form each 
other’s complement. Moreover we give a number of example proofs for the operations of shuffle and shuffle closure.

While bisimilarity can be used to prove equality, the notion of similarity can be used to prove language inclusion. We 
will introduce simulation-up-to techniques, and show that these are sound whenever the operations under consideration 
adhere to the above format of behavioural differential equations, and additionally satisfy a monotonicity condition. While 
language inclusion x ⊆ y can of course be reduced to equality x + y = y, it turns out that in practical cases it can be 
much more convenient and efficient to use simulation-up-to directly, instead of using this reduction and prove equality by 
bisimulation-up-to.

Behavioural differential equations have been studied extensively, mostly in the context of streams [14,20,32]. The format 
for language operations which we introduce in this paper, is an extension of the format for stream operations introduced 
in [14,20]. In [20] it is shown that the operations which can be given by behavioural differential equations are precisely the 
causal functions. For an operation f on streams, f is causal if for any n > 0: the first n elements of f (σ1, . . . , σn) depend 
only on the first n elements of each argument σ1, . . . , σn . This notion has a natural counterpart for languages, and we show 
that indeed the correspondence holds in our case as well. This gives an additional semantic characterization of a large class 
of operations for which bisimulation-up-to techniques are sound. A similar result is in [9], where causality is taken as a 
sufficient condition for soundness of up-to techniques for streams.

The main contribution of this paper is the presentation of the coinductive proof technique of (bi)simulation-up-to in the 
context of languages and automata, together with a large number of examples, providing an accessible explanation of these 
techniques requiring little background knowledge from the reader. An earlier version of this work appeared as a conference 
paper [29]. With respect to [29] we have the following new contributions. First, the present paper is entirely self-contained, 
in contrast to [29] which relies on the abstract theory of coalgebraic bisimulation-up-to [28]. Second, we add here a number 
of new examples, for other operations such as shuffle. Third, we introduce the notion of simulation-up-to. Finally the result 
stating that operations adhering to the format of behavioural differential equations are precisely the causal functions, is new 
in the context of languages.

The outline of this paper is as follows. In Section 2 we recall the notions of bisimulation and coinduction in the context 
of languages and automata. Then in Section 3 we present bisimulation-up-to for the regular operations. In Section 4 we 
discuss bisimulation-up-to for other operations, by introducing a format for which bisimulation-up-to is guaranteed to be 
sound and providing a number of examples. In Section 5 we introduce simulation-up-to techniques for language inclusion. 
In Section 6 we prove the correspondence between behavioural differential equations and causal functions. In Section 7 we 
place our work in the context of coalgebraic theory and discuss related work, and finally in Section 8 we conclude.

2. Languages, automata, bisimulations and coinduction

Throughout this paper we assume a fixed alphabet A, which is simply a (possibly infinite) set. We denote by A∗ the set 
of words, i.e., finite concatenations of elements of A; we denote the empty word by ε, and the concatenation of two words 
w and v by w v . The set of languages over A is given by P(A∗), and ranged over by x, y, z. We denote the empty language 
by 0 and the language {ε} by 1. Moreover when no confusion is likely to arise, we write a to denote the language {a}, for 
alphabet letters a ∈ A.

A (deterministic) automaton over A is a triple (S, o, δ) where S is a set of states, o : S → {0, 1} is an output function, and 
δ : S × A → S is a transition function. Notice that S is not necessarily finite, and there is no initial state. We say a state s ∈ S
is final or accepting if o(s) = 1. For each automaton (S, o, δ) there is a function l : S → P(A∗) which assigns to each state 
s ∈ S a language, inductively defined as follows:

ε ∈ l(s) iff o(s) = 1 aw ∈ l(s) iff w ∈ l(δ(s,a))

The classical definition of bisimulation [22,26] concerns labelled transition systems, which, in contrast to deterministic au-
tomata, do not feature output and may have a non-deterministic branching behaviour.2 We will base ourselves on a different 
notion of bisimulation specific to deterministic automata, which is an instantiation of the general coalgebraic definition of 
bisimulation (see Section 7).

Definition 2.1. Let (S, o, δ) be a deterministic automaton. A bisimulation is a relation R ⊆ S × S such that for any (s, t) ∈ R:

1. o(s) = o(t), and
2. for all a ∈ A : (δ(s, a), δ(t, a)) ∈ R .

2 In fact, the standard reference [26] introduces bisimulations for automata rather than transition systems, and Theorem 2.2 appears already there.
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Given a deterministic automaton, the union of all bisimulations is again a bisimulation, is denoted by ∼ and is called 
bisimilarity3; if s ∼ t for two states s, t then we say these states are bisimilar. Notice that in order to show that two states s
and t are bisimilar, it suffices to construct a bisimulation R such that (s, t) ∈ R . As it turns out, this gives a proof principle 
for showing language equivalence of states.

Theorem 2.2 (Coinduction). For any two states s, t of a deterministic automaton: if s ∼ t then l(s) = l(t).

Proof. By induction on the length of words. For any states s, t such that s ∼ t we have o(s) = o(t); so for the empty word, 
we have ε ∈ l(s) iff o(s) = 1 iff o(t) = 1 iff ε ∈ l(t). Next suppose that for any word w of length n and any states s, t: if s ∼ t , 
then w ∈ l(s) iff w ∈ l(t). Let w be such a word and s, t states such that s ∼ t; then for any alphabet letter a: δ(s, a) ∼ δ(t, a). 
So by assumption w ∈ l(δ(s, a)) iff w ∈ l(δ(t, a)), and thus aw ∈ l(s) iff w ∈ l(δ(s, a)) iff w ∈ l(δ(t, a)) iff aw ∈ l(t). �

Because the automata considered here are deterministic, the converse of the above coinduction principle holds as well, 
i.e., if l(s) = l(t) then s is related to t by some bisimulation R . Bisimulations R may well be infinite, but this is not necessarily 
a problem; in practice one can often give a finite description of such an infinite relation.

Next, we recall how bisimulations can be used to establish equality of languages. To do so we recall the notion of 
language derivatives: the a-derivative of a language x is defined as

xa = {w | aw ∈ x} .

The set P(A∗) of all languages can be turned into a deterministic automaton by defining the output function and the 
transition function as follows:

o(x) =
{

1 if ε ∈ x

0 otherwise
δ(x,a) = xa for all a ∈ A .

One can check that for any language x, the language accepted by the corresponding state in the automaton is precisely x
itself.

Spelling out Definition 2.1, a relation R on languages is a bisimulation on this automaton if for any (x, y) ∈ R:

o(x) = o(y) and (xa, ya) ∈ R for any a ∈ A .

In the remainder of this paper, we will only consider bisimulations on this automaton. By the coinduction principle (Theo-
rem 2.2), we have the following method for checking equality of languages x and y: if we can establish a bisimulation on 
the above automaton containing the pair (x, y), then x ∼ y, so x = y.

2.1. Regular operations

We will be interested in the regular operations on languages, defined in a standard way: union x + y = {w |
w ∈ x or w ∈ y}, concatenation x · y = {w | w = uv for some u ∈ x and v ∈ y} and Kleene star x∗ = ∑

i≥0 xi , where 
x0 = 1 and xi+1 = x · xi . We often write xy for x · y.

In order to prove equivalence of languages defined using the above operations we may use bisimulations, but for this we 
need a characterization of the output (acceptance of the empty word) and the derivatives of languages. Such a characteri-
zation was given for regular expressions by Brzozowski [5]; we formulate this in terms of languages (see, e.g., [7, p. 41]).

Lemma 2.3. For any two languages x, y and for any a, b ∈ A:

0a = 0 o(0) = 0
1a = 0 o(1) = 1

ba =
{

1 if b = a

0 otherwise
o(b) = 0

(x + y)a = xa + ya o(x + y) = o(x) ∨ o(y)

(x · y)a = xa · y + o(x) · ya o(x · y) = o(x) ∧ o(y)

(x∗)a = xa · x∗ o(x∗) = 1

Example 2.4. Let us prove that (a + b)∗ = (a∗b∗)∗ for some alphabet letters a, b (for simplicity we assume that the alphabet 
does not contain any other letters). To this end, we start with the relation R = {((a + b)∗, (a∗b∗)∗)} and try to show it 
is a bisimulation. So we must show that the outputs of (a + b)∗ and (a∗b∗)∗ coincide, and that their a-derivatives and 

3 Bisimilarity coincides with the well-known Myhill–Nerode equivalence, and thus factorization of an automaton by the associated bisimilarity relation 
corresponds to minimization.
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their b-derivatives are related by R . Using Lemma 2.3, we see that o((a + b)∗) = 1 = o((a∗b∗)∗). Moreover, again using 
Lemma 2.3, we have ((a + b)∗)a = (a + b)a(a + b)∗ = (1 + 0)(a + b)∗ = (a + b)∗ and ((a∗b∗)∗)a = (a∗b∗)a(a∗b∗)∗ = ((a∗)ab∗ +
o(a∗)(b∗)a)(a∗b∗)∗ = (a∗b∗ + 0)(a∗b∗)∗ = (a∗b∗)∗ , so the a-derivatives are again related (notice that apart from Lemma 2.3, 
we have used some basic facts about the regular operations). The b-derivative of (a + b)∗ is (a + b)∗ itself; the b-derivative 
of (a∗b∗)∗ is b∗(a∗b∗)∗ . But b∗(a∗b∗)∗ is equal to (a∗b∗)∗ , so we are done. For an alternative proof that does not use the 
latter equality, consider the relation R ′ = R ∪ {((a + b)∗, b∗(a∗b∗)∗)}. As it turns out, the pair ((a + b)∗, b∗(a∗b∗)∗) satisfies 
the necessary conditions as well, turning R ′ into a bisimulation. We leave the details as an exercise for the reader, and 
conclude (a + b)∗ = (a∗b∗)∗ by coinduction.

Bisimulation proofs in general will follow the above pattern of using Lemma 2.3 to compute outputs and to expand the 
derivatives, and then using some reasoning to show that the outputs are equal and the derivatives related. In the sequel we 
will sometimes use Lemma 2.3 without further reference to it. We note that the above coinductive proof method applies to 
general languages, not only to regular ones. However, if one restricts to regular languages, then this technique gives rise to 
an effective algorithm for checking equivalence.

The axioms of Kleene algebra (KA) [18] constitute a complete axiomatization of language equivalence of regular expres-
sions. We recall them here for the following two reasons. First, they provide a number of interesting examples for our 
methods. Second, the axioms (especially (1) through (9) are often quite useful for relating derivatives. We state the axioms 
in terms of languages and our concrete operations:

x + (y + z) = (x + y) + z (1)

x + y = y + x (2)

x + x = x (3)

x + 0 = x (4)

x(yz) = (xy)z (5)

x · 1 = 1 · x = x (6)

x · 0 = 0 · x = 0 (7)

(y + z)x = yx + zx (8)

x(y + z) = xy + xz (9)

x∗x + 1 = x∗ (10)

xx∗ + 1 = x∗ (11)

z + yx ⊆ x → y∗z ⊆ x (12)

z + xy ⊆ x → zy∗ ⊆ x (13)

Notice that x ⊆ y iff x + y = y. All of (1) through (9) follow easily from the definition of the operations. The remaining 
axioms will be treated below as examples of coinductive proofs.

3. Bisimulation-up-to for regular operations

In this section we will introduce an enhancement of the bisimulation proof method. We first illustrate the need for such 
an enhancement with an example. Consider the Kleene algebra axiom (11) (see Section 2). In order to prove this identity 
coinductively, consider the relation R = {(xx∗ + 1, x∗) | x ∈P(A∗)}; let us see if this is a bisimulation. Using Lemma 2.3, it is 
easy to show that for any language x, the outputs of xx∗ + 1 and x∗ are equal. For any a ∈ A:

(xx∗ + 1)a = xax∗ + o(x)xax∗ + 0 = xax∗ = (x∗)a

where the leftmost and rightmost equality are by Lemma 2.3, and in the second step we use some of the KA identities 
which we know to hold. Now we have shown that the derivatives are equal; this does not allow us to conclude that R is a 
bisimulation, since for that, the derivatives need to be related by R . Instead we can consider the relation R ′ = R ∪ {(y, y) |
y ∈ P(A∗)}. Then the derivatives of xx∗ + 1 and x∗ are related by R ′; moreover, the diagonal is easily seen to satisfy the 
properties of a bisimulation as well. This solves the problem, but is arguably somewhat inconvenient.

Now consider the relation R = {(x∗x + 1, x∗) | x ∈ P(A∗)} which we may try to use to prove (10) by coinduction. The 
derivatives are (using Lemma 2.3):

(x∗x + 1)a = xax∗x + xa + 0 = xa(x∗x + 1) and (x∗)a = xax∗

Clearly xax∗ can be obtained from xa(x∗x + 1) by substituting x∗x + 1 for x∗ , and indeed the latter two languages are related 
by R . However, unfortunately these derivatives are not related directly by R , and so R is not a bisimulation. Extending R to 
a bisimulation is indeed a non-trivial task.
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When proving identities over languages coinductively, situations such as in the above examples occur very often. In fact, 
similar phenomena occur and have been studied long before in the setting of process algebra; there, bisimulation-up-to
techniques are used to reduce the size of a bisimulation relation while preserving soundness [27,33]. Here, we follow a 
similar development for deterministic automata. To define bisimulation-up-to, we need the notion of congruence closure.

Definition 3.1. For a relation R ⊆ P(A∗) ×P(A∗), define the congruence closure of R (with respect to +, · and ∗) as the least 
relation ≡ satisfying the following rules:

x R y

x ≡ y x ≡ x

x ≡ y

y ≡ x

x ≡ y y ≡ z

x ≡ z
x1 ≡ y1 x2 ≡ y2

x1 + x2 ≡ y1 + y2

x1 ≡ y1 x2 ≡ y2

x1 · x2 ≡ y1 · y2

x ≡ y

x∗ ≡ y∗

In the sequel we denote the congruence closure of a given relation R by ≡R , or simply by ≡ if R is clear from the context.

The upper left rule ensures R ⊆ ≡R . The three rules on the right in the first row ensure that ≡R is an equivalence 
relation. Notice that the reflexivity rule has as a consequence that languages which are equal, are also related by ≡R . The 
transitivity rule allows to relate languages in multiple “proof steps”. Finally the three rules on the second row ensure that 
≡R is a congruence, which in particular means that ≡R relates languages which are obtained by (syntactic) substitution of 
languages related by R . For example, if x∗x + 1 R x∗ , then we can derive from the above rules that xa(x∗x + 1) ≡R xax∗ .

Definition 3.2. Let R ⊆ P(A∗) ×P(A∗) be a relation on languages. We say R is a bisimulation up to congruence, or simply a 
bisimulation-up-to, if for any pair (x, y) ∈ R:

1. o(x) = o(y), and
2. for all a ∈ A : xa ≡R ya .

One clear difference with the definition of bisimulation, is that bisimulation-up-to here is only defined on the automaton 
of languages. The reason is that it uses the algebraic structure, i.e., the operations on languages that we consider here.

In a bisimulation-up-to, the derivatives can be related by the congruence ≡R rather than the relation R itself. Indeed, to 
prove that R is a bisimulation-up-to, the derivatives can be related by familiar equational reasoning.

Of course, a bisimulation-up-to is, in general, not a bisimulation. However, it represents a bisimulation, in the following 
sense: if R is a bisimulation-up-to, then ≡R is a bisimulation. This means that in that case for any (x, y) ∈≡R we have x = y
by coinduction. Since R ⊆ ≡R this holds in particular for all pairs related by R . So we have the following proof principle.

Theorem 3.3 (Coinduction-up-to). If R is a bisimulation-up-to then for any (x, y) ∈ R : x = y.

Proof. Let ≡ be the congruence closure of R . We show by structural induction that any pair (x, y) in ≡ satisfies the 
properties of a bisimulation, i.e., o(x) = o(y) and xa ≡ ya for any a ∈ A. This essentially amounts to showing that ≡ is closed 
under the inference rules of Definition 3.2. For the base cases:

1. for the pairs contained in R , the conditions are satisfied by the assumption that R is a bisimulation-up-to;
2. the case x ≡ x is trivial.

Suppose pairs of languages (x, y), (u, v) ∈ ≡ satisfy the desired properties. We need to prove that (x + u, y + v), (xu, yv),

(x∗, y∗) (regular operators), (y, x) (symmetry) and (x, v) (transitivity, only if y = u) again satisfy the properties of a bisimu-
lation. We treat the case of union: o(x + u) = o(x) ∨ o(u) = o(y) ∨ o(v) = o(y + v); moreover by assumption and closure of 
≡ under + we have xa + ua ≡ ya + va , and so (x + u)a = xa + ua ≡ ya + va = (y + v)a .

Concatenation and Kleene star can be treated in a similar manner, and symmetry and transitivity are not difficult ei-
ther. Thus by induction, ≡ is a bisimulation; so by coinduction we have x = y for any x ≡ y and for any (x, y) ∈ R in 
particular. �

Any bisimulation is also a bisimulation-up-to, so this generalizes Theorem 2.2 in the case of languages. Consequently, the 
converse of the above principle holds as well. We proceed with a number of proofs based on bisimulation-up-to.

Example 3.4. Recall the relation R = {(x∗x + 1, x∗) | x ∈ P(A∗)} from the beginning of this section. As we have seen, the 
a-derivatives are xa(x∗x + 1) and xax∗ , which are not related by R; however they are related by ≡R . So R is a bisimulation-
up-to, and consequently x∗x + 1 = x∗ . Moreover, the relation {(xx∗ + 1, x∗) | x ∈P(A∗)} from the beginning of this section is 
a bisimulation-up-to as well; there, the derivatives are equal and thus related by ≡R .

Thus we have covered coinductively the soundness of the star unfolding axioms (10) and (11).
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Example 3.5. For the axiom z + yx ⊆ x → y∗z ⊆ x consider

R = {(y∗z + x, x) | z + yx ⊆ x; x, y, z ∈ P(A∗)} .

Let x, y, z be such languages; notice that z + yx + x = x. Since o(z + yx + x) = o(x) it follows that o(z + x) = o(x) so 
o(y∗z + x) = o(x). For any alphabet letter a we have

(y∗z + x)a = ya y∗z + za + xa = ya y∗z + za + (z + yx + x)a

= ya y∗z + za + za + yax + o(y)xa + xa

= ya(y∗z + x) + za + o(y)xa + xa

≡R yax + za + o(y)xa + xa

= (z + yx + x)a = xa

So R is a bisimulation-up-to, proving z + yx ⊆ x → y∗z + x = x.

The above way of dealing with language inclusion by reducing it to equality is, in general, not the most efficient one. 
Indeed, in Section 5 we will introduce simulation-up-to which allows to deal with inequations more directly, and reprove 
the above example in a shorter way.

Example 3.6. Arden’s rule, in a special case,4 states that if x = yx + z for some languages x, y and z, and y does not contain 
the empty word, then x = y∗z. In order to prove its validity coinductively, let x, y, z be languages such that ε /∈ y and 
x = yx + z, and let R = {(x, y∗z)}. Then o(y) = 0, so o(x) = o(yx + z) = (o(y) ∧ o(x)) ∨ o(z) = (0 ∧ o(x)) ∨ o(z) = o(z) =
1 ∧ o(z) = o(y∗) ∧ o(z) = o(y∗z) and for any a ∈ A:

xa = (yx + z)a = yax + o(y) · xa + za = yax + za ≡R ya y∗z + za = (y∗z)a .

So R is a bisimulation-up-to, proving Arden’s rule.

While Arden’s rule is not extremely difficult to prove without coinduction either, the textbook proofs are significantly 
longer and arguably more involved than the above proof, which is not much more than taking derivatives combined with a 
tiny bit of algebraic reasoning. Nevertheless this coinductive proof is completely precise. Giving a formal proof without our 
methods is not trivial at all; see, e.g., [10] for the discussion of a proof within the theorem prover Isabelle.

In fact, [30] already contains a coinductive proof of Arden’s rule; however, this is based on a bisimulation (in contrast to 
our proof which is based on a bisimulation-up-to). Indeed, in [30] the infinite relation {(ux + v, uy∗z + v) | u, v ∈ P(A∗)}
is used, requiring more work in checking the bisimulation conditions. In that case one essentially closes the relation under 
(certain) contexts manually; the coinduction-up-to principle does this in a general and systematic fashion.

Example 3.7. Let us prove that for any language x, we have xx = 1 → x = 1. Assume xx = 1 and let R = {(x, 1)}. Since 
o(xx) = o(1) = 1 also o(x) = 1 = o(1). We show that the derivatives of x and 1 are equal, turning R into a bisimulation-up-to. 
For any a ∈ A: xax + xa = xax + o(x)xa = (xx)a = 1a = 0. One easily proves that this implies xa = 0 (for example by showing 
that {(y, 0) | z, y ∈P(A∗), z + y = 0} is a bisimulation). Thus xa = 0 = 1a , so xa ≡R 1a .

Example 3.8. We prove the soundness of the axiom xx = x → x∗ = 1 +x, by establishing a bisimulation-up-to. This axiom was 
used by Boffa in his complete axiomatization of equivalence of regular expressions [1] (see also [11] for a clear exposition). 
Let x be a language for which xx = x and consider the relation R = {(x∗, 1 + x)}. Indeed, o(x∗) = 1 = o(1 + x), and for any 
a ∈ A: (x∗)a = xax∗ ≡R xa(1 + x) = xa + xax = xa + o(x)xa + xax = xa + (xx)a = xa + xa = xa .

In fact the above axiom can also easily be proved by induction. In practice, one wants to combine inductive and coin-
ductive methods.

4. Bisimulation-up-to in general

We proceed to generalize the results of the previous section, from regular operations to a large class of operations: those 
which can be defined by so-called behavioural differential equations. Then in Section 4.1 and Section 4.2 below we consider 
examples involving complement and intersection, and shuffle (closure) respectively.

4 We consider a more general version of Arden’s rule in Section 5.
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A signature � is a collection of operator names σ̂ ∈ � with associated arities5 |σ̂ | ∈ N. One can associate to a signature 
� a collection of functions

{σ : P(A∗)|σ̂ | → P(A∗)}σ̂∈� .

In the sequel, every family of functions for a signature will be of the above type (on languages), and so we will simply write 
{σ }σ̂∈� for such a family. In order to distinguish between syntax and semantics we will write σ̂ for function names and σ
for actual functions.

We define a general congruence closure with respect to a signature:

Definition 4.1. For a relation R ⊆ P(A∗) ×P(A∗), define the congruence closure ≡�
R of R w.r.t. a family of functions {σ }σ̂∈�

as the least relation ≡ satisfying the following rules:

x R y

x ≡ y x ≡ x

x ≡ y

y ≡ x

x ≡ y y ≡ z

x ≡ z
x1 ≡ y1 . . . xn ≡ yn

σ(x1, . . . , xn) ≡ σ(y1, . . . , yn)
for each σ̂ ∈ �,n = |σ̂ |

The congruence closure for the regular operators (Definition 3.1) is a special case of the above definition. Given the above 
congruence closure, we define bisimulation-up-to with respect to a given signature, generalizing Definition 3.2:

Definition 4.2. A relation R ⊆ P(A∗) ×P(A∗) is a bisimulation-up-to (w.r.t. {σ }σ̂∈� ), if for any (x, y) ∈ R:

1. o(x) = o(y), and
2. for all a ∈ A : xa ≡�

R ya .

where ≡�
R is the congruence closure w.r.t. {σ }σ̂∈� .

Unfortunately, while the coinduction-up-to principle in Theorem 3.3 shows us that bisimulation-up-to is a sound proof 
technique in the case of the regular operations, in general, for arbitrary operations, this is not the case.

Example 4.3. We define a function h on languages that is not sound for bisimulation-up-to. This is a simple adaptation 
of a unary operator on processes, introduced in [27] for a similar purpose. Assume for simplicity a singleton alphabet {a}. 
Consider the unary function h on languages, defined as follows:

h(x) =
{

0 if x = 0

1 otherwise

Now notice that 0a = 0 = h(0) and aa = 1 = h(a) (and o(0) = 0 = o(a)). Consequently the relation R = {(0, a)} is a 
bisimulation-up-to, while 0 
= a, so bisimulation-up-to with respect to h is not sound.

We will now introduce a general condition on the operations involved under which we have a valid associated 
coinduction-up-to principle. In order to proceed we define the set of terms over a signature � and a set of variables V
as least set T� V such that

• V ⊆ T� V , and
• σ̂ (t1, . . . , tn) ∈ T� V for any σ̂ in � (of arity n), and any t1, . . . , tn ∈ T� V .

Given a family of functions {σ }σ̂∈� we define an interpretation

I : T�(P(A∗)) → P(A∗)
by induction: I(L) = L and I(σ̂ (t1, . . . , tn)) = σ(I(t1), . . . , I(tn)). We will use the standard definition of substitution in t of 
a variable x for a term u, denoted t[x := u]. For sequences x1, . . . , xn and u1, . . . , un we abbreviate multiple substitution 
t[x1 := u1, . . . , xn := un] by t[xi := ui].

Our soundness condition depends on characterizing operations in terms of behavioural differential equations [32]. Infor-
mally this means that one specifies the output of an operation in terms of the outputs of the arguments, and the derivatives 
as an expression involving the arguments, their derivatives and their outputs. The equations in Lemma 2.3 form a concrete 
example. We note that this format is essentially the stream GSOS format of [14,17], adapted to deterministic automata. 
A small variation is that output values occur in the derivatives rather than as a condition for the derivative.

5 For notational convenience we assume that all operations have finite arity, but all the results hold for non-finitary operations – such as the infinite sum 
– as well.
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Definition 4.4. We say a family of functions {σ }σ̂∈� can be given by behavioural differential equations if for each function f
of arity n there are functions

i : 2n → 2

d : A → T�(ū, ū × A, ō)

where 2n denotes the set of n-tuples with binary entries; ū = {u1, . . . , un} and ō = {o1, . . . , on} are disjoint collections of n
variables, such that for all languages x1, . . . , xn:

o(σ (x1, . . . , xn)) = i(o(x1), . . . ,o(xn))

∀a ∈ A : σ(x1, . . . , xn)a = I(d(a)[u j := x j, ((u j,b) := (x j)b)b∈A,o j := o(x j)]) .

The function i specifies the output given the output of the operations, whereas the function d specifies, for each alpha-
bet letter, the derivative. This derivative is given as a term; intuitively a variable ui represents the i-th argument of the 
operation, a variable (ui, a) represents the a-derivative of the i-th argument, and a variable oi represents its output. Indeed 
Lemma 2.3 witnesses that the regular operations can be given by behavioural differential equations, since it characterizes 
the operations precisely in this way. So the following theorem generalizes the coinduction-up-to principle of Theorem 3.3:

Theorem 4.5 (Coinduction-up-to). If {σ }σ̂∈� can be given by behavioural differential equations, then for any relation R which is a 
bisimulation-up-to w.r.t. {σ }σ̂∈� : if (x, y) ∈ R then x = y.

Proof. Similarly to the proof of Theorem 3.3 we show that the congruence closure ≡ of R is a bisimulation, by proving by 
structural induction that (1) o(x) = o(y) and (2) xa = ya holds for any (x, y) ∈ ≡. The base cases, i.e., if x = y or (x, y) ∈ R , 
are the same as in Theorem 3.3.

Let σ̂ ∈ �, n = |σ̂ |, let i and d be the functions from Definition 4.4 associated to σ which exist since {σ }σ̂∈� can be 
given by behavioural differential equations, and suppose we have languages x1, . . . , xn and y1, . . . , yn such that for all j: 
x j ≡ y j , o(x j) = o(y j) and for all a ∈ A: (x j)a ≡ (y j)a . Then

o(σ (x1, . . . , xn)) = i(o(x1), . . . ,o(xn)) = i(o(y1), . . . ,o(yn)) = o(σ (y1, . . . , yn)) .

For any a ∈ A:

σ(x1, . . . , xn)a = I(d(a)[u j := x j, ((u j,b) := (x j)b)b∈A,o j := o(x j)])
≡ I(d(a)[u j := y j, ((u j,b) := (y j)b)b∈A,o j := o(y j)])
= σ(y1, . . . , yn)a

where the terms are related by ≡ since for all j: x j ≡ y j , (x j)b ≡ (y j)b for all b ∈ A, and o(x j) ≡ o(y j) (the latter holds since 
o(x j) = o(y j)). The symmetry and transitivity rules are again easy to treat. This concludes the proof that ≡ is a bisimulation, 
and the desired result follows by coinduction. �

Bisimulation-up-to with respect to the function h, introduced in Example 4.3, is not sound, as we have seen. Indeed h
cannot be given by behavioural differential equations, since the output o(h(x)) depends on the entire language x an not 
only on its output.

In the following, we will recall behavioural differential equations for language complement and intersection (Section 4.1), 
and shuffle (closure) (Section 4.2), and apply Theorem 4.5 to give a number of example proofs based on bisimulation-up-to.

4.1. Language equations with complement and intersection

Context-free languages can be expressed in terms of certain types of language equations [12]. For example, the language 
{anbn | n ∈N} is the unique language x such that x = axb +1. Our coinductive techniques can directly be applied to languages 
defined in such a way, and so we are able to reason about (equivalence of) context-free languages in a novel manner.

Example 4.6. Let x, y, z be languages such that x = ayzb + 1, y = azxb + 1 and z = axyb + 1. Without thinking of what 
possible concrete descriptions of x, y and z can be, let us show, by coinduction, that x = y = z. We use the relation 
R = {(x, y), (y, z)}. Obviously o(x) = o(y) and o(y) = o(z). Moreover for any alphabet letter b other than a, we have 
xb = 0 = yb and yb = 0 = zb . For the a-derivatives we have xa = yzb ≡R zyb ≡R zxb = ya and similarly for (y, z); so R
is a bisimulation-up-to, proving that x = y = z.

We proceed to incorporate complement and intersection, defined as x = {w | w /∈ x} and x ∧ y = {w | w ∈ x and w ∈ y}
respectively. Language equations including these additional operators can be used to give semantics to conjunctive- and 
Boolean grammars [25]. Complement and intersection have a known characterization in terms of outputs and derivatives as 
well [5]:
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Lemma 4.7. For any two languages x, y and for any a ∈ A:

o(x) = ¬o(x) xa = xa

o(x ∧ y) = o(x) ∧ o(y) (x ∧ y)a = xa ∧ ya

As a consequence, we have bisimulation and coinduction to our disposal to show equivalence of languages defined in 
terms of systems of equations involving these additional operators. The above characterization, in fact, is in terms of be-
havioural differential equations; and as such, we immediately obtain from Theorem 4.5 the soundness of bisimulation-up-to.

We have already seen that 〈P(A∗), 0, 1, +, ·, ∗〉 is a Kleene algebra; it is useful to know that 〈P(A∗), 0, A∗, (−), +, ∧〉 is 
a Boolean algebra. Moreover, below we will need the following property, which holds for any language x and a ∈ A:

xa = xa +
∑

b∈A\{a}
A∗b + 1 (14)

Example 4.8. There are unique languages x and y such that

x = axa + bxb + a + b + 1 y = aya + byb + aA∗b + b A∗a

Then x is the language of palindromes, i.e., words which are equal to their own reverse. We claim that y must be the 
language of all non-palindromes, i.e., y = x. We proceed to prove this formally by showing that the relation R = {(x, y)} is a 
bisimulation-up-to. The outputs are easily seen to be equal: o(x) = ¬o(x) = ¬o(1) = 0 = o(y). We consider the a-derivatives; 
the b-derivatives are of course similar. In the fourth step we use (14).

xa = xa = xa + 1 = xa ∧ 1 = (xa + A∗b + 1) ∧ 1

≡R (ya + A∗b + 1) ∧ 1 = ya ∧ 1 + A∗b ∧ 1 + 1 ∧ 1 = ya + A∗b = ya

So R is a bisimulation-up-to, proving that y indeed is the complement of x.

4.2. Shuffle (closure)

The shuffle operation is defined on words w, v inductively as follows: w � ε = ε � w = w and aw � bv = a(w � bv) +
b(aw � v) for any alphabet letters a, b. This is extended to languages x, y as x � y = ∑

w∈x,v∈y w � v . The shuffle closure is 
defined as

x� =
∞∑

i=0

x�i

where x�i is given inductively as x�0 = 1 and x�i+1 = x � x�i . Notice that the shuffle closure is very similar to the Kleene 
star; the difference is that here shuffle is used instead of concatenation. Both shuffle and shuffle closure can be character-
ized in terms of behavioural differential equations, as stated by the following lemma. We include a proof for the sake of 
completeness.

Lemma 4.9. For any two languages x, y and for any a, b ∈ A:

(x � y)a = xa � y + x � ya o(x � y) = o(x) ∧ o(y)

(x�)a = xa � x� o(x�) = 1

Proof. We will only consider the derivatives, and first treat (x � y)a = xa � y +x � ya . Notice that (w � v)a = wa � v + w � va

holds for any two words w, v , which one can prove formally by induction on the length of w and v . Now for any languages 
x, y we have

(x � y)a = (
∑

w∈x,v∈y w � v)a

= ∑
w∈x,v∈y(w � v)a

= ∑
w∈x,v∈y(wa � v + w � va)

= ∑
w∈x,v∈y(wa � v) + ∑

w∈x,v∈y(w � va)

= ∑
w∈xa,v∈y(w � v) + ∑

w∈x,v∈ya
(w � v)

= xa � y + x � ya

For (x�)a = xa , we will use that shuffle distributes over infinite sum (union), which is easy to establish. Moreover we will 
use that (x�i+1 )a = xa � x� , which can be shown by induction. Now
i
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(x�)a = (
∑∞

i=0 x�i )a

= ∑∞
i=0((x�i )a)

= ∑∞
i=0(xa � x�i )

= xa � ∑
i=0 x�i

= xa � x� �
Notice again the similarity between the above behavioural differential equations and those for concatenation and Kleene 

star. We proceed to exhibit bisimulation-up-to techniques for the shuffle (closure).
We recalled in Section 2 that the set of all languages together with the operations of sum, concatenation, Kleene star 

and the constants 1 and 0 forms a Kleene algebra. In fact, by replacing concatenation and Kleene star by shuffle and shuffle 
closure respectively, one obtains a commutative Kleene algebra, meaning that all the KA axioms are satisfied and additionally 
the shuffle is commutative.

Example 4.10. Let x be any language; we will show that x� = x � x� + 1. To this end let R = {(x�, x � x� + 1}. Then 
o(x�) = 1 = o(x � x� + 1). Moreover for any alphabet letter a:

(x�)a = xa � x� Lemma 4.9

= xa � (x� + x�) idempotence

≡R xa � (x� + x � x� + 1)

= xa � (x� + x � x�) x� + 1 = x�

= xa � x� + xa � x � x� distributivity

= xa � x� + x � xa � x� commutativity

= (x � x� + 1)a Lemmas 4.9, 2.3

so R is a bisimulation-up-to, proving x� = x � x� + 1.

5. Simulation(-up-to)

So far we have focused on techniques for showing equality of languages. Of course, one can also apply these methods 
to prove language inclusion, since x ⊆ y iff x + y = y. However, there is a more direct way: instead of bisimulations, one 
can establish simulations, which in practice turns out to be easier for proving inequalities. In this section we first recall this 
notion, and then introduce up-to techniques for simulation.

Definition 5.1. Let (S, o, δ) be a deterministic automaton. A simulation is a relation R ⊆ S × S such that for any (s, t) ∈ R:

1. o(s) ≤ o(t), and
2. for all a ∈ A : (δ(s, a), δ(t, a)) ∈ R .

Notice that the only difference with bisimulation is that the first condition is relaxed: if s is a final state then t should 
be final as well, but if s is not final then the output of t does not matter.

Theorem 5.2 (Coinduction (for simulation)). If R is a simulation then for any pair of states (s, t) ∈ R : l(s) ⊆ l(t).

Recall from Section 2 that the set of all languages forms a deterministic automaton. By the above principle we have, 
for any two languages x and y, that x ⊆ y whenever (x, y) ∈ R for a simulation R on this automaton. Thus simulation is a 
concrete proof principle for language inclusion, just like bisimulation is a proof principle for language equality.

We proceed directly to introduce up-to techniques for simulation. In order to do so we define the precongruence closure
of a relation R on languages with respect to a signature. This is similar to the congruence closure of Definition 4.1; the 
difference is that this closure is not symmetric, and it relates x to y whenever x is included in y.

Definition 5.3. For a relation R ⊆ P(A∗) × P(A∗), define the precongruence closure ��
R of R w.r.t. a family of functions 

{σ }σ̂∈� as the least relation � satisfying the following rules:

x R y

x � y

x ⊆ y

x � y

x � y y � z

x � z

x1 � y1 . . . xn � yn

σ(x1, . . . , xn) � σ(y1, . . . , yn)
for each σ̂ ∈ �,n = |σ̂ |

If � is clear from the context we write �R for �� .
R
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The notion of simulation-up-to is as expected:

Definition 5.4. A relation R ⊆ P(A∗) ×P(A∗) is a simulation-up-to (w.r.t. {σ }σ̂∈� ), if for any (x, y) ∈ R:

1. o(x) ≤ o(y), and
2. for all a ∈ A : xa ��

R ya .

where ��
R is the precongruence closure w.r.t. {σ }σ̂∈� .

The soundness criterion for bisimulation-up-to, namely that the operations can be given by behavioural differential 
equations, turns out not to be strong enough for simulation-up-to, as witnessed by the following example.

Example 5.5. We have seen that the complement operation can be easily given by behavioural differential equations. Con-
sider the relation R = {(aA∗, 0)}. We have o(aA∗) = 0 = o(0). Moreover (aA∗)a = A∗ = 0 and 0a = 0 = A∗ . Since 0 ⊆ A∗ , we 
have 0 �R A∗ and thus (aA∗)a �R 0a , showing that R is a simulation-up-to. But clearly aA∗ � 0, so simulation-up-to with 
respect to language complement is not a sound proof principle.

The solution is to additionally require the operations under consideration to satisfy a monotonicity condition.

Definition 5.6. A family of operations {σ }σ̂∈� can be given by monotone behavioural differential equations if

1. {σ }σ̂∈� can be given by behavioural differential equations, and
2. for each σ ∈ �: the associated (output) function i : 2n → 2 is monotone, i.e., if b j ≤ b′

j for all j with 1 ≤ j ≤ n then 
i(b1, . . . , bn) ≤ i(b′

1, . . . , b
′
n).

Behavioural differential equations are essentially stream GSOS [14,17]; the monotonicity condition rules out negative 
premises with respect to output values, and as such is reminiscent of positive GSOS formats.

Theorem 5.7 (Coinduction-up-to (for simulation)). If {σ }σ̄∈� can be given by monotone behavioural differential equations, then for 
any relation R which is a simulation-up-to w.r.t. {σ }σ̂∈� : if (x, y) ∈ R then x ⊆ y.

Proof. The proof is mostly similar to that of Theorem 4.5: one proves by induction that �, the precongruence closure of R , 
is a simulation. The only difference is the first part of the inductive step, which concerns the output. Suppose σ is an 
operation with arity n, from a family {σ }σ̂∈� of operations given by monotone behavioural differential equations, and let i
be its output function. Let x1, . . . , xn and y1, . . . yn be languages such that for all j: o(x j) ≤ o(y j). Then

o(σ (x1, . . . , xn)) = i(o(x1), . . . ,o(xn)) ≤ i(o(y1), . . . ,o(yn)) = o(σ (y1, . . . , yn))

where we use the assumption that i is monotone. �
Example 5.8. The general version of Arden’s rule states that given languages y and z, the least solution of x = yx + z is 
y∗z. If ε /∈ y then it is the unique one – as we have seen in Example 3.6. For the proof, first notice that y∗z is indeed a 
solution since y∗z = (yy∗ + 1)z = yy∗z + z. In order to show it is the least one, let x be any language such that x = yx + z
and consider the relation R = {(y∗z, x)}. Then R is a simulation-up-to, since o(y∗z) = o(z) ≤ o(yx + z) = o(x) and for any 
alphabet letter a:

(y∗z)a = ya y∗z + za �R yax + za ⊆ yax + o(y)xa + za = (yx + z)a = xa .

Thus y∗z is the least solution. Finally suppose ε /∈ y, and u and v are both solutions; then {(u, v)} is easily shown to be a 
bisimulation-up-to.

The reader is invited to formulate and prove a version of Arden’s rule, where shuffle and shuffle closure (Section 4.2) 
replace concatenation and Kleene star. We proceed with an axiom used in concurrency theory [16], which concerns the 
interplay between shuffle and concatenation.

Example 5.9. The exchange law connects shuffle and concatenation as follows:

(w � x)(y � z) ⊆ (wy) � (xz)

for any languages w, x, y, z. Consider the relation

R = {((w � x)(y � z), (wy) � (xz)) | w, y, x, z ∈ P(A∗)} .
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Then

o((w � x)(y � z)) = o(w) ∧ o(x) ∧ o(y) ∧ o(z) = o((wy) � o(xz))

and for any alphabet letter a:

((w � x)(y � z))a

= (wa � x + w � xa)(y � z) + o(w � x)(ya � z + y � za)

= (wa � x)(y � z) + (w � xa)(y � z) + (o(w) � o(x))(ya � z)

+ (o(w) � o(x))(y � za)

�R (wa y) � (xz) + (wy) � (xaz) + (o(w)ya) � (o(x)z) + (o(w)y) � (o(x)za)

⊆ (wa y) � (xz) + (wy) � (xaz) + (o(w)ya) � (xz) + (wy) � (o(x)za)

= (wa y + o(w)ya) � (xz) + (wy) � (xaz + o(x)za)

= ((wy) � (xz))a

which shows that R is a simulation-up-to and proves the exchange law.

The shuffle and concatenation operators on languages are essentially analogous to sequential and parallel composition in 
process algebra. In fact, in the context of strong similarity of processes the exchange law holds as well.

The proof in the above example is clearly easier than one where the inclusion would be reduced to checking equality by 
means of bisimilarity. In order to further compare bisimulation and simulation, we revisit Example 3.5.

Example 5.10. Recall the axiom z + yx ⊆ x → y∗z ⊆ x; we will now prove it by showing that R = {(y∗z, x) | z + yx ⊆
x; x, y, z ∈ P(A∗)} is a simulation. Let x, y, z be such languages; then o(z) ≤ o(z + yx) ≤ o(x) so o(y∗z) ≤ o(x). For any 
alphabet letter a:

(y∗z)a = ya y∗z + za �R yax + za ⊆ yax + o(y)xa + za = (z + yx)a ⊆ xa

indeed turning R into a simulation-up-to, and proving the result in a clearly more efficient way than in Example 3.5.

One might expect that the axiom z + xy ⊆ x → zy∗ ⊆ x is similar, but due to the asymmetry of the derivative of concate-
nation it is not. We present a proof below by simulation-up-to.

Example 5.11. In order to prove z + xy ⊆ x → zy∗ ⊆ x consider the relation R = {(zy∗, x) | z + xy ⊆ x; x, y, z ∈ P(A∗)}. Let 
x, y, z be such languages; then o(z) ≤ o(x), so o(zy∗) ≤ o(x). For any a ∈ A, we have

(zy∗)a = za y∗ + o(z)ya y∗ = (za + o(z)ya)y∗

Now in order to see that this is related by �R to xa , we start with our assumption z + xy ⊆ x and compute derivatives: 
(z + xy)a ⊆ xa , so za + xa y + o(x)ya ⊆ xa . Reformulating this as (za + o(x)ya) + xa y ⊆ xa , we have

((za + o(x)ya)y∗, xa) ∈ R .

Since o(z) ≤ o(x) we thus obtain

(zy∗)a = (za + o(z)ya)y∗ ⊆ (za + o(x)ya)y∗ �R xa

as desired, showing that R is a simulation-up-to and proving the axiom.

The above proof makes essential use of the fact that o(z) ≤ o(x), and as such it seems non-trivial to come up with a 
similar (short) proof based on bisimulation-up-to.

6. Behavioural differential equations and causal functions

We have established behavioural differential equations as a format providing a sufficient condition for soundness of 
bisimulation-up-to techniques. Our format is an extension of the similar one for streams, as given in [14,20]. There, it is 
shown that functions adhering to this format are causal, and vice versa. For operators on streams, this informally means 
that the n-th value of the output stream depends only on the first n values of the arguments. As such, this notion has a 
straightforward generalisation to languages. In the present section we adapt the above result to operations on languages, 
obtaining causality of functions as an equivalent, semantic condition for soundness of up-to techniques. This also provides a 
connection to [9], where up-to techniques for streams are considered; there, causality is taken as a sufficient condition for 
soundness.
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In this section we assume a finite alphabet A to ease the notation. For any language x and any k ∈ N we will write

x|k = {w ∈ x | |w| ≤ k}
and we define the relation ≈k between languages as follows:

x ≈k y iff x|k = y|k .

A function σ : P(A∗)n →P(A∗) is causal if for any languages x1, . . . , xn , y1, . . . , yn and for any k ∈ N:

x1 ≈k y1, . . . , xn ≈k yn implies σ(x1, . . . , xn) ≈k σ(y1, . . . , yn) .

In order to simplify the presentation we will use an equivalent characterization: σ is causal iff for any languages x1, . . . , xn
and k ∈ N:

σ(x1, . . . , xn) ≈k σ(x1|k, . . . , xn|k) .

Lemma 6.1. The family of all causal functions can be given by behavioural differential equations.

Proof. The core of the proof is that the derivatives of causal functions can be expressed in terms of causal functions again. 
We only show how this works for a unary function σ : P(A∗) → P(A∗); the extension to other arities is straightforward. 
Let A = {a1, . . . , al} be a finite alphabet. Consider, for an alphabet letter a ∈ A, the function

σ̃a : P(A∗)l+1 → P(A∗)
defined as σ̃a(z, y1, . . . , yl) = σ(o(z) + a1 y1 + . . . + al yl)a . Then σ̃a is causal, and it follows that

σ(x)a = σ̃a(o(x), xa1 , . . . , xal ) . �
In order to prove the converse, we need the following technical result.

Lemma 6.2. Let k ∈N. Suppose for all σ in some family {σ }σ̂∈� , and for all languages x1, . . . , xn (where n = |σ |) we have

σ(x1, . . . , xn) ≈k σ(x1|k, . . . , xn|k) .

Then for any term t ∈ T�(u1, . . . , um) over operators in �, and any languages x1, . . . , xm:

I(t[ui := xi]) ≈k I(t[ui := xi|k]) .

Proof. By structural induction on terms. For the base case, if t is a variable then I(t[ui := xi]) = x and I(t[ui := xi |k]) = x|k , 
and clearly x ≈k x|k . The induction step follows by the assumption. �

We can now state and prove our main result of this section.

Theorem 6.3. A function σ : P(A∗)n → P(A∗) is causal if and only if it is contained in a family of functions {σ }σ̂∈� which can be 
given by behavioural differential equations.

Proof. From left to right, the result follows from Lemma 6.1. For the other direction, let {σ }σ̂∈� be given by behavioural 
differential equations. We prove that for any σ (with n = |σ |) and any k we have σ(x1, . . . , xn) ≈k σ(x1|k, . . . , xn|k), by 
induction on k.

The base case follows from the fact that the output of σ is given in terms of a function i applied to the output of its 
arguments. Now suppose it holds for some k ∈ N. Then for any a ∈ A, using Lemma 6.2 one can obtain

σ(x1, . . . , xn)a ≈k σ(x1|k+1, . . . , xn|k+1)a

because of the characterization of the derivatives (σ is given by BDEs) and the fact that (xa)|k = (x|k+1)a . Thus, for any word 
w of length k and any a ∈ A:

aw ∈ σ(x1, . . . , xn) iff w ∈ σ(x1, . . . , xn)a

iff w ∈ σ(x1|k+1, . . . , xn|k+1)a

iff aw ∈ σ(x1|k+1, . . . , xn|k+1) .

Consequently σ(x1, . . . , xn) ≈k+1 σ(x1|k+1, . . . , xn|k+1), which proves the induction step. �
By Theorem 4.5 and the above result we directly obtain causality as a sufficient condition for the soundness of 

bisimulation-up-to.

Corollary 6.4. If every function of a family {σ }σ̂∈� is causal, then bisimulation-up-to w.r.t. {σ }σ̂∈� is sound.
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7. Discussion and related work

The theory of bisimulation and bisimulation-up-to developed in this paper can be viewed as part of the general theory of 
coalgebras. Coalgebra [31] is a general mathematical theory for the uniform study of state-based systems including labelled 
transition systems but also stream systems, various kinds of (weighted or probabilistic) automata, etc. Indeed, deterministic 
automata, as presented in Section 2, are also a certain type of coalgebras. Bisimulation is the canonical notion of equivalence 
of coalgebras, which, for labelled transition systems, coincides with the classical notion introduced by Milner and Park [22,
26]. In the case of deterministic automata, the associated instance of bisimulation is precisely the one presented in Section 2. 
The material of that section, as well as the notion of simulation and the corresponding principle of coinduction, is from [30], 
which contains an extensive investigation of automata and languages as coalgebras.

Bisimulation-up-to classically is a family of enhancements of bisimulation for labelled transition systems [27,33]; it is a 
rich theory which drastically improves the bisimulation proof method for, e.g., CCS processes. One interesting result based 
on bisimulation-up-to is the decidability result of [6], on equivalence of context-free processes. For many more applications 
of up-to techniques in concurrency theory, we refer to [27]. Note that these notions of bisimulation-up-to are different than 
those considered in the current paper, since our notion of bisimulation for automata is different from the classical one for 
labelled transition systems: it is deterministic and features output of states. It might be possible to obtain our soundness 
results by encoding automata into labelled transition systems with predicates, but in order to keep the paper self-contained 
we have chosen not to do so.

Recently the theory of bisimulation-up-to was generalized from labelled transition systems to a large class of coalge-
bras [2,28], yielding enhancements of the bisimulation proof method for many different kinds of state-based systems. In 
fact, the soundness theorems of bisimulation-up-to can be derived from this general theory. In order to show this formally, 
one would have to show that behavioural differential equations can be represented as so-called abstract GSOS specifications, 
which are a way of defining operational semantics [34]. Then one obtains by the theory of [2,28] that bisimulation up to 
congruence for all of these cases is sound, meaning that any bisimulation-up-to can be extended to a bisimulation. For a 
more abstract view on simulation, we refer to [2], which is a framework for up-to techniques for more general coinductive 
predicates, including simulation.

While we have introduced techniques which are much more widely applicable (as we have shown) than only to reg-
ular languages, we proceed to recall some of the related work on checking equivalence of regular expressions. There is 
a wide range of different tools and techniques tailored towards doing this; we only recall the ones most relevant to our 
work. CIRC [21] is a general coinductive theorem prover, which can deal with regular expressions. Recently, various algo-
rithms based on Brzozowski derivatives and bisimulations have been implemented in Isabelle [19] and formalized in type 
theory, yielding an implementation in Coq [8] (while [8] does not mention bisimulations explicitly, their method is based 
on constructing a bisimulation). Moreover there is another Coq implementation of regular expression equivalence based 
on partial derivatives [24]. An efficient algorithm for deciding equivalence in Kleene algebra, based on automata but not 
on derivatives and bisimulations, was recently implemented in Coq as well [4]. Of course, one can reason about regular 
expressions in Kleene algebra; this is however a fundamentally different approach than the coinductive techniques of the 
present paper. In [13] a proof system for equivalence of regular expressions is presented, based on bisimulations but not 
on bisimulation-up-to. In [15] a general coinductive axiomatization of regular expression containment is given, based on an 
interpretation of regular expressions as types. The authors of [15] instantiate their axiomatization with the main coinduc-
tive rule from [13]. The focus of [15] is on constructive proofs based on parse trees of regular expressions; instead, we base 
ourselves on bisimulations between languages.

The recent [3] introduces an efficient algorithm for checking equivalence of non-deterministic automata based on bisim-
ulation up to congruence, using the algebraic structure of join-semilattices obtained by determinization. Our approach is 
different in that we consider algebraic structures for arbitrary calculi on languages (given by behavioural differential equa-
tions). Moreover, we do not focus on the algorithmic aspect, but consider up-to techniques for infinite state systems, so to 
prove, e.g., (quasi)-equations over arbitrary languages.

If one works with syntactic terms, such as regular expressions, rather than with languages, the notion of bisimulation 
up to bisimilarity becomes relevant. In the corresponding proof method, one can relate derivatives, which are then terms, 
modulo bisimilarity. Since we work directly with languages, in our case this is not necessary; but for dealing with terms our 
techniques can easily be combined with up-to-bisimilarity (see [28]). Bisimulation up to bisimilarity (alone, without context 
and equivalence closure) was originally introduced in [23], and in the context of automata and languages simulation up to 
similarity was introduced in [30].

8. Conclusions

We presented bisimulation-up-to as a proof method for language equivalence, and simulation-up-to for language inclusion. 
These techniques are sound enhancements of the coinductive proof technique of (bi)simulation whenever the operations 
under consideration adhere to the format of behavioural differential equations given in this paper – for simulation-up-to, 
the operations additionally need to satisfy a simple monotonicity condition. We have exemplified our approach with a wide 
variety of novel proofs of classical results. Finally we have shown that the operations which allow a characterization in 
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terms of behavioural differential equations are precisely the causal functions, giving a semantic characterization of functions 
for which the presented up-to techniques are sound.

The presented proof techniques are very general, and apply to undecidable problems such as language equivalence of 
context-free grammars. Indeed, automation is not the aim of the present paper. Nevertheless, the present techniques can be 
seen as a foundation for novel interactive theorem provers, and extensions of fully automated tools such as [8,19,21].
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