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Abstract

We consider the classical discrete parking problem, in which cars arrive uniformly at random on any two
adjacent sites out of n sites on a line. The car parks on this location if there is no overlap with previously
parked cars, and leaves otherwise. This process continues until there is no more space available for cars to
park, at which point we may compute the jamming density En/n, which represents the expected fraction
of occupied sites. We extend the classical results by not just considering the total expected number of
cars parked, but also the probability of each site being occupied by a car. This we then use to provide an
alternative derivation of the parking constant.
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1. Introduction

Car parking is a classical problem first studied by Rényi [2], where cars of unit length arrive on a line
segment uniformly at random. The car parks at this location if and only if there is no overlap with existing
cars. This process continues until the configuration of parked cars is such that no new cars can be fitted,
at which point we may compute the fraction of the line segment that is utilized for parking, or jamming
density. Rényi determined this parking constant as the length of the line segment grows to infinity.

We are interested in the discrete parking problem, which was introduced by Flory [3] and rediscovered
by Page [4]. Recall the setting of [4]: there are n sites which form n − 1 pairs of neighbouring sites. At
the first step, a pair k and k + 1 are chosen at random, and we assume that a car parks in the segment
[k, k+ 1]. At the next step, another pair of sites is chosen at random to form a parking spot for the next car
but neither site k nor site k+ 1 may be chosen again (as cars cannot overlap). This procedure is performed
until there is no pair of neighbouring points that may be chosen. In [3, 4] the authors demonstrate that
the jamming density grows as En/n → 1 − e−2 as n → ∞, with En the expected number of active sites.
Similar results have been obtained for larger cars in [5, 6, 7]. Asymptotic normality of the occupied space
was demonstrated in [8, 6]. The case with multiple rows of parking space is considered by [9, 10], and the
case of trees in [11, 12].

This model has many applications, including polymere chemistry [3, 13], granulometry [14], elections [15],
condensation and coagulation [16], genome sequencing [17] and communication networks [18]. We are
motivated by the application of resource sharing in communication networks, in particular wireless random-
access networks. Random-access protocols such as Carrier-Sense Multiple-Access (CSMA) [19] have gained
much popularity for their ability to regulate the access of network nodes to a shared medium in a fully
distributed fashion, and are for example used in the IEEE 802.11 standard. A node using the CSMA
protocol attempts to transmit a packet after some random time, except if any nearby node is already active.

ISome results appeared without proofs in [1].
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The stochastic process describing the wireless network behaves as follows. We assume that time is slotted,
and that each transmission lasts 1 time slot. At the beginning of a time slot, all nodes are inactive, and the
time slot is divided into a contention period and a transmission period. During the contention period each
node draws a random back-off time, after which it activates as long as no nearby node is already active.
This dictates the order in which nodes activate, with the additional constraint that a node may not activate
if one of its neighbours is already active.

It is readily seen that these dynamics are identical to that of the parking problem. The application to
wireless networks provides us with a useful alternative characterization of the process according to which
parking spots are filled, where instead of newly arriving cars selecting a spot uniformly at random, we assume
each spot has one dedicated car, and the order in which cars arrive determines the evolution of the parking
process. This interpretation was previously used in [20] to provide an alternative approach to determining
the parking constant.

Previous studies of the parking problem have focused on metrics such as the jamming density or the
distribution of the gap sizes. Instead, we are interested in the probability that each site is occupied, both in
the case of a finite n and the asymptotic regime. This is motivated by the application to wireless networks,
where the probability of a site being occupied is equivalent to the throughput of the wireless transmitter
located on that site.

We start the next section by providing a rigorous definition of the activation process in a network governed
by the CSMA protocol and explain its equivalence to the classical parking problem. We then proceed to
derive the probability that a given node of a network of n nodes is active, which is the main result of the
paper. We then formulate two corollaries, including a derivation of the expected number of the active nodes
in a network of length n, which is equal to the expected number of cars that can park on a line segment of
length n− 1.

2. Model and result

Consider a linear network of n sites numbered 1, ..., n. We draw a random permutation of sites σ(1), . . . , σ(n),
and sites attempt to activate in this order. Such an attempt is successful if neither of the site’s neighbours
is already active. The set of sites active at the end of this process is fully determined by the permutation,
and the end configuration is such that the gap between two active sites in at most 2, i.e., no additional
sites can be activated. The relation to the classical parking problem is immediate: the site with the highest
priority order may be considered to be the left one of the pair of sites (out of sites 1, 2, ..., n+ 1) chosen first.
Subsequent steps are also equivalent.

It is worth mentioning that in both the classical parking problem and the setting of our note, one can
consider cars (or interference regions) of length bigger than 1 and our technique may be applied in this
general setting. However, we limit ourselves to the case of length 1 for ease of presentation.

We are interested in the probability of a site being active. This quantity corresponds to the per-node
throughputs in a wireless network. We denote by Ti(n) the probability that node i is active. If one is
interested in the probability Si(n) that site i is occupied in the classical setting, then clearly,

Si(n) = Ti(n− 1) + Ti−1(n− 1)

with the convention that T−1(k) = 0 for all k.
The next theorem is our main result.

Theorem 1. For n ≥ 1 and 1 ≤ i ≤ n,

Ti(n) =


1 +

n−i
2∑

k=0

di,i+2k, if (n− i) is even,

n−i−1
2∑

k=0

di,i+2k+1, if (n− i) is odd,

(1)
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where

di,i+l =

i−1∑
k=0

(−1)l+k

k!

(
1

(i+ l − k)!
− 1

l!

)
(2)

Proof. Conditioning on the first node to activate yields the following recursive equation:

Ti(n) =
1

n
+

1

n

i−2∑
j=1

Ti−j−1(n− j − 1) +
1

n

n−2∑
j=i

Ti(j). (3)

With ψi(ρ) =
∑∞
n=i Ti(n)ρn, summing (3) over n gives the differential equation

ψ′i(ρ) =

i−2∑
j=1

ρjψi−j−1(ρ) +
ρi−1

1− ρ
+

ρ

1− ρ
ψi(ρ), (4)

with initial condition ψi(0) = 0.
We shall show below that

ψi(ρ) =
1

1− ρ2
(
ρi + (−1)i+1 − e−ρρiai + (−1)ie−ρ

i−1∑
k=0

ρk

k!

)
, (5)

which leaves (1) to prove. To this end we shall find the Taylor expansion for (5) with respect to the powers
of ρ. Let us start with the last term inside the brackets in (5):

e−ρ
i−1∑
k=0

ρk

k!
=

∞∑
m=0

(−1)mρm

m!
·
i−1∑
k=0

ρk

k!
=

∞∑
m=0

cmρ
m

with

cm =


1, if m = 0,
n∑
k=0

(−1)m−k

k!(m−k)! = 0, if 0 < m ≤ i− 1,

i−1∑
k=0

(−1)m−k

k!(m−k)! = bi,m, if m ≥ i,

and

bi,n =

i−1∑
k=0

(−1)n−k

k!(n− k)!
. (6)

Substituting this into (5) and using the Taylor expansion for the exponential function

e−ρs =

∞∑
m=0

(−1)m
ρm

m!
sm (7)

yields

ψi(ρ) =
1

1− ρ2
(
ρi + ai

i−1∑
k=0

(−1)k

k!

∞∑
m=i

(−1)m−i

(m− i)!
ρm + (−1)i

∞∑
m=i

bi,mρ
m
)

=
1

1− ρ2
(
ρi +

∞∑
m=i

di,mρ
m
)
,

with di,m defined in (2). The Ti(n) then readily follow from ψi(ρ).
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This proves Theorem 1. It remains to be shown that (5) holds. Introducing

ν(ρ, s) =

∞∑
i=1

ψi(ρ)si,

and using (4) gives

∂ν(ρ, s)

∂ρ
=

∞∑
i=1

ψ′i(ρ)si =

∞∑
i=1

i−2∑
j=1

ρjψi−j−1(ρ)si +

∞∑
i=1

ρi−1si

1− ρ
+

∞∑
i=1

ρ

1− ρ
ψi(ρ)si

=

∞∑
j=1

ρj
∞∑

i=j+2

ψi−j−1(ρ)si +
s

(1− ρ)(1− ρs)
+

ρ

1− ρ
ν(ρ, s)

=

(
ρs2

1− ρs
+

ρ

1− ρ

)
ν(ρ, s) +

s

(1− ρ)(1− ρs)
,

and ν(0, s) = 0. Solving this standard differential equation we obtain

ν(ρ, s) =
s(1− e−ρ(s+1)))

(s+ 1)(1− ρ)(1− ρs)
. (8)

We now need to write the Taylor expansion for the latter expression. Using

s

s+ 1
=

∞∑
m=1

(−1)m+1sm and
1

1− ρs
=

∞∑
k=0

ρksk

yields

s

s+ 1

1

1− ρs
=

∞∑
l=1

( l−1∑
k=0

ρk(−1)l−k+1
)
sl =

∞∑
l=1

(−1)l+1
( l−1∑
k=0

ρk(−1)−k
)
sl

=

∞∑
l=1

(−1)l+1 1− (−ρ)l

1 + ρ
sl =

∞∑
l=1

ρl + (−1)l+1

1 + ρ
sl. (9)

Substituting (9) and (7) into (8) gives

ν(ρ, s)

=
s

s+ 1

1

1− ρ
1

1− ρs

(
1− e−ρ(s+1)

)
=

1

1− ρ2
( ∞∑
m=1

(
ρm + (−1)m+1

)
sm·

(
1− e−ρ(s+1)

))
=

1

1− ρ2
( ∞∑
m=1

(ρm + (−1)m) sm − e−ρ
∞∑
m=1

ρmsm
m−1∑
k=0

(−1)k

k!
+ e−ρ

∞∑
m=1

(−1)msm
m−1∑
k=0

ρk

k!

)
,

which yields (5).

Theorem 1 provides us with a closed-form but unwieldy expression for the individual throughputs. In
case the network size grows to infinity we can obtain a more elegant expression for the throughputs of nodes
1 and 2.

Corollary 1. As n→∞,
T1(n)→ 1− e−1 and T2(n)→ e−1.

From Theorem 1 we can recover En and the jamming density En/n, defined as the expected number of
occupied sites in the classical parking problem. To do this, observe that due to boundary effects, En = 2Fn−1,
where Fn−1 represents the expected number of active nodes in an n− 1 node wireless network. By adding
the individual activation probabilities we obtain the following result.
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Corollary 2. The total expected number of active nodes is given as

Fn =

n∑
k=1

(−1)k+1 2k−1

k!
(n− k + 1), n = 1, 2, . . . .

Before proceeding to the proof, note that it is straightforward to check that

lim
n→∞

Fn
n

=
1

2
(1− e−2) =

1

2
lim
n→∞

En
n
,

and we recover the result of [3, 4].
Let us now prove the corollary.

Proof. Let n be even; the proof for odd n is analogous. By summing over the individual throughputs
from (1), the total throughput may be written as

Fn =

n∑
i=1

Ti(n) =
n

2
+

n/2∑
j=1

n−2j+1∑
k=0

2j−1∑
l=0

(−1)k+l+1

k!l!
=:

n

2
+A, (10)

where A is defined as the second part of (10). In order to rewrite A, let

B :=

n/2∑
j=1

n−2j∑
k=0

2j∑
l=0

(−1)k+l+1

k!l!
.

We may rewrite B as

B =

n/2∑
j=1

2j−1∑
l=0

n−2j+1∑
k=0

(−1)k+l+1

k!l!
−

n/2∑
j=1

2j−1∑
l=0

(−1)n−2j+2+l

(n− 2j + 1)!l!
+

n/2∑
j=1

n−2j∑
k=0

(−1)k+2j+1

k!(2j)!

= A−
n/2∑
k=1

n−2k+1∑
l=0

(−1)l

(2k − 1)!l!
+

n/2∑
j=1

n−2j∑
k=0

(−1)k+2j+1

k!(2j)!

= A+

n∑
i=1

n−i∑
k=0

(−1)k+1

k!i!
, (11)

where the second equality is due to the transformation k = n/2− j + 1. Next, we may write

n∑
i=1

n−i∑
k=0

(−1)k+1

k!i!
=

n∑
i=0

n−i∑
k=0

(−1)k+1

k!i!
−

n∑
k=0

(−1)k+1

k!

=

n∑
t=0

(−1)t+1
t∑
l=0

(−1)l

(t− l)!l!
−

n∑
k=0

(−1)k+1

k!

= −1 +

n∑
t=1

(−1)t+1
(

1 + (−1)
)t
t!−

n∑
k=0

(−1)k+1

k!
= −1−

n∑
k=0

(−1)k+1

k!
.

Substituting this into (11), and using the identity

A+B =

n∑
i=1

n−i∑
k=0

i∑
l=0

(−1)k+l+1

k!l!
, (12)
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we obtain

A =
1

2

( n∑
i=1

n−i∑
k=0

i∑
l=0

(−1)k+l+1

k!l!
+

n∑
k=0

(−1)k+1

k!
+ 1

)
=

1

2

n∑
i=0

n−i∑
k=0

i∑
l=0

(−1)k+l+1

k!l!
+

1

2
. (13)

By rearranging the order of summation, and substituting t = k + l, we obtain

A =
1

2
+

1

2

n∑
l=0

n−l∑
k=0

(n− k − l + 1)
(−1)k+l+1

k!l!
=

1

2
+

1

2

n∑
l=0

n∑
t=l

(n− t+ 1)
(−1)t+1

l!(t− l)!
.

If we interchange summation, we can apply the binomial theorem to arrive at

A =
1

2
+

1

2

n∑
t=0

(−1)t+1 (n− t+ 1)

t!

t∑
l=0

t!

l!(t− l)!

=
1

2
+

1

2

n∑
t=0

(−1)t+1 2t

t!
(n− t+ 1) =

1

2
− n+ 1

2
+

n∑
t=1

(−1)t+1 2t−1

t!
(n− t+ 1).

Substituting this into (10), we obtain the desired result.
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