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Abstract
Current electricity tariffs for retail rarely provide
incentives for intelligent demand response of flex-
ible customers. Such customers could otherwise
contribute to balancing supply and demand in fu-
ture smart grids. This paper proposes an inno-
vative risk-sharing tariff to incentivize intelligent
customer behavior. A two-step parameterized pay-
ment scheme is proposed, consisting of a prepay-
ment based on the expected consumption, and a
supplementary payment for any observed deviation
from the anticipated consumption. Within a game-
theoretical analysis, we capture the strategic con-
flict of interest between a retailer and a customer
in a two-player game, and we present optimal, i.e.,
best response, strategies for both players in this
game. We show analytically that the proposed tariff
provides customers of varying flexibility with vari-
able incentives to assume and alleviate a fraction of
the balancing risk, contributing in this way to the
uncertainty reduction in the envisioned smart-grid.

1 Introduction
Energy systems are in transition towards more sustainable
generation portfolios, which must be matched with more flex-
ible demand [Rohjans et al., 2010; Fang et al., 2012]. Many
potential and existing problems that the main power grid is
facing are connected to the need for continuous balance and
the increasing peak demand, both essential in determining
the resulting system efficiency and eventually the costs of
electricity. Maintaining balance becomes more challenging
in face of generation from natural resources such as the sun
and wind, which are subjects to stochastic availability. Such
stochastic fluctuations and especially deviations from predic-
tions may be matched with expensive fast ramping conven-
tional generators, e.g., gas turbines, which are otherwise only
used for matching the peak demand. The balancing power
of such quickly adjustable generators is traded on balancing
markets. Due to the high marginal costs, the main strategy to
control costs is to avoid the need to purchase balancing power
by reducing deviations from energy demand and supply pre-
dictions, and thus reducing uncertainty.

In the current electricity system, retailers are the balancing
responsible parties, pooling customers into larger portfolios.
Electricity retailers are facing high risks of balancing market
participation due to the volatility of reserve power prices for
balancing. At the same time, the penetration of distributed
renewable energy sources drives the increasing adoption of
flexibility by retail customers, which may be micro-grids, en-
ergy cooperatives, prosumers, and plain consumers. Local
renewable power generation implies higher risks of energy
shortages or overproduction, since generation is volatile and
locally highly correlated. Customers may use their flexibility,
e.g., from storage, primarily to their own interest rather than
in the interest of the retailers’ balancing needs [Vytelingum
et al., 2010].

Most existing electricity tariffs by electricity retailers, es-
pecially in Europe, do not provide incentives for intelligent
behavior by customers, precluding flexible customers from
assuming some of the high costs related to the participation in
the balancing markets. Customers can only subscribe to tar-
iffs given their amount of flexibility and local generation with
flat or day-night tariffs that may exhibit different costs in re-
lation to the capacity of their flexibility as well as their scale.
Dynamic pricing is a means to encourage favorable changes
in demand patterns by the customers [Borenstein et al., 2002;
Roozbehani et al., 2010]. Time of use (ToU), critical peak
price (CPP), and real-time pricing are some of the pricing
schemes used to stimulate favorable customer behavior in dif-
ferent pilot studies [Owen and Ward, 2010], e.g., in Ontario
or California. However, dynamic pricing approaches may in-
troduce disruptive and unfavorable market behavior [Roozbe-
hani et al., 2012; Herter and Wayland, 2010], and thus plan-
ning and ahead prices are required [Braithwait et al., 2007].

We consider a multi-agent system, where a buyer agent
wants to purchase an uncertain quantity of a continuously
divisible good from a seller agent. We refer to the buyer
and the seller as the customer and the retailer respectively.
We present the risk-sharing tariff, a novel approach to incen-
tivize intelligent customer behavior (uncertainty reduction by
the demand side) by giving customers the choice to assume
balancing risk of the retailer. We consider settings where one
customer has a direct or a representative influence on the bal-
ancing requirements of the retailer. This is the case in:

I. Service level agreements (SLAs) formally define an
agreement between a service provider and the service
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user, specifying the service and its characteristics, e.g.,
quality, risk. In the context of electricity markets we in-
terpret SLAs as a direct extension of conventional elec-
tricity tariffs: While current electricity tariffs ensure de-
livery (100% quality) and a fixed kWh price (0% risk),
SLAs may provide customer choice, such as assuming
parts of the balancing risk, as discussed in this paper.
Such SLAs may be better suited for decentralized trad-
ing of electricity between small-scale producers and in-
dividual customers.

II. Highly correlated demand can be the result of simi-
lar behavior of customers, influenced for instance by
weather conditions in specific locations. The higher the
correlation, the closer the deviations of one customer to
the deviations of other customers, i.e., changes in the
consumption behavior of one customer predicts the same
change in the behavior of other customers. Therefore,
the portfolio distribution may closely resemble the de-
mand distribution of an individual customer for any spe-
cific location.

III. Local balancing: Current market-based balancing
strategies do not consider the location of the customer,
while it is in the retailer’s own interest to balance cus-
tomers locally. This can lower the costs corresponding
to energy losses, transportation costs, and network load.

We formalize the interaction between the retailer and the
customer as a two-player game (Section 3), and we study op-
timal strategies for both players. We define a two-step pay-
ment scheme, where the customer pays for its expected de-
mand and later pays for any imbalances (Section 3.2). We
show that the proposed tariff provides variable incentives and
elicits intelligent behavior by the customer (Section 3.3). We
further demonstrate the existence of Nash equilibria in this
game, assuming that the retailer has access to the private costs
of the customer (Section 4). Last, we discuss the concept of
bounded-rationality and show that retailers may offer larger
incentives to bounded-rational customers (Section 4.1).

2 Related Work
Challenging problems are arising with the transition from
the current energy system to the envisioned smart-grid [Fang
et al., 2012]. These problems provide a fertile ground for
tools like game-theory and multi-agent systems to study situ-
ations with more than one stakeholder [Fadlullah et al., 2011;
Pipattanasomporn et al., 2009]. The conflict of interest be-
tween the retailer and the customer has been formalized as
a non-cooperative game with regards to ToU tariffs [Oruc
et al., 2012] and incentives provided to customers for load-
shifting [Pettersen et al., 2005]. Similarly, we formalize a
game between the retailer and the customer to study incen-
tives for intelligent customer behavior. In line with related lit-
erature, which studies optimal procurement strategies for the
retailer under the presence of either uncertain demand [Nair et
al., 2014] or uncertain prices [Hoogland et al., 2015], we as-
sume a two-step market setting, where the prices are fixed but
the demand is uncertain. In the closest state-of-the-art work
a “prediction-of-use” tariff is proposed, where customers are
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Figure 1: Extensive form representation of the risk-sharing
game. The retailer’s (R), customer’s (C), and nature’s (N)
moves set the respective decision variables, that together de-
termine the utilities.

charged both on their predicted consumption, but also on their
deviations from this prediction [Vinyals et al., 2014]. In the
same fashion, we propose a two-step parameterized payment,
where the customer precommits and prepays for its expected
demand, and later pays for any deviation between the ob-
served and the anticipated load.

To the best of our knowledge, this is the first game-
theoretical study that considers incentives for intelligent cus-
tomer behavior, giving customer the choice of how much risk
to take from the retailer.

3 The Risk-Sharing Game
We capture the strategic interactions between the retailer and
the customer in a two-player game. Figure 1 illustrates the
extensive form representation of the risk-sharing game, show-
ing the time sequencing of the actions. We consider a two-
step market. The retailer first procures electricity in the ahead
market with the unit price p and later pays for any absolute1

deviation, between the observed demand of the customer and
the procured quantity in the ahead market, in the balancing
market with the unit price p

0
> p. The prices p, p

0 are de-
termined by an exogenous process and cannot be influenced
by the retailer (price-taker). Let x denote the random vari-
able and f

x

the probability distribution function (PDF) of
the customer’s demand. We consider the distribution f

x

as
the default behavior by the customer. The distribution f

x

is known to both players, since it can be observed, e.g., by
smart-meters, and can be approximated given enough obser-
vations. Therefore, the proposed tariff requires the customer
to precommit to and prepay the quantity b

c

= E
f

[x], which
is equal to the anticipated consumption.

The retailer, based on the customer’s demand distribution
f

x

, procures the quantity b

r

in the ahead market. Any abso-
lute deviation, between the quantity b

r

and the observed con-
sumption x of the customer, is balanced by the retailer in the
balancing market. We consider the expected balancing costs
as the balancing risk for the retailer [Ferguson, 1967], which
is equal to E

f

[|b
r

� x|]p0, assuming a direct influence of the
customer to the balancing needs of the retailer (Cases I-III in
Section 1).

1In practice, both power excess and shortages can result in the in-
crease of balancing costs for the retailers, since they may be charged
for the deployment of upwards or downwards regulation power by
the TSO.
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In current electricity systems the retailer holds all the risk
of balancing supply and demand. However, in the risk-
sharing tariff, the balancing risk can be shared between the
retailer and the customer. Let ⌧ 2 [0, 1] denote the share of
risk that remains with the retailer and (1 � ⌧) the share of
risk that is assumed by the customer. The risk-sharing tar-
iff comprises two price functions: The precommitment price
p

c

(⌧) for the quantity b

c

, which we assume equal to the antic-
ipated load (b

c

= E
f

[x]), and the imbalance price p

0
c

(⌧) for
any absolute deviation |b

c

�x| from the anticipated load. The
retailer decides the price functions p

c

(⌧) and p

0
c

(⌧), based on
b

r

and the uncertainty of the demand given the distribution
f

x

. The customer then chooses the risk share ⌧ to be covered
by the retailer.

The utilities U

r

, U

c

for the retailer and the customer re-
spectively can be determined after the observed consumption
x. Let T denote the payment from the customer to the retailer
and C

m

the market costs of the retailer. The utilities can be
written as: U

r

= T � C

m

, U

c

= �T . Analytically,
U

c

= �b

c

p

c

(⌧)� |b
c

� x|p0
c

(⌧) (1)
is the utility of the customer, including the cost for the pre-
committed quantity b

c

and the cost for absolute deviations
from the anticipated load. Similarly,

U

r

= b

c

p

c

(⌧) + |b
c

� x|p0
c

(⌧)� b

r

p� |b
r

� x|p0 (2)
is the utility of the retailer, which is equal to the payment by
the customer deducting the market costs of the retailer.

We described the risk-sharing game between the retailer
and the customer, defining the utilities for both players. We
can generalize and say that the risk-sharing tariff approxi-
mates the current retail flat tariff situation when no risk is
assumed by the customer (⌧ = 1). Let x be the consump-
tion of the customer and N the number of payments during
one year from the customer to the retailer under the current
flat tariff market. Given the law of large numbers we know
that for large N ,

P
N

x ⇡ NE
f

[x] holds. Thus, the total
payment of the customer approximates the payment under the
risk-sharing tariff when the retailer retains all the risk (⌧ = 1).

3.1 Optimal Quantity of Procurement
After the prices p, p

0 and the distribution f

x

are determined,
the retailer procures the quantity b

r

in the ahead market. In
this section, we compute the optimal procurement b

⇤
r

that
maximizes in expectation the utility of the retailer in (2). Let
Uf

r

denote the expected utility of the retailer with respect to
the distribution of the uncertain demand f

x

.
Uf

r

= b

c

p

c

(⌧)+E
f

[|b
c

�x|]p0
c

(⌧)�b

r

p�E
f

[|b
r

�x|]p0 (3)
The price functions p

c

(⌧), p

0
c

(⌧) are free parameters, since
they will determine the profit. We treat the price functions
as independent of b

r

and therefore we minimize the market
costs C

m

of the retailer.
Lemma 3.1 The first derivative of the expected utility of the
retailer in (3) with respect to b

r

is:
d

db

r

Uf

r

= �p� 2p

0
F

x

(b

r

) + p

0
, (4)

where F

x

is the cumulative distribution function (CDF) of the
random variable x.

Theorem 3.2 The quantity b

⇤
r

maximizes the expected utility
of the retailer.

b

⇤
r

= F

�1
x

✓
p

0 � p

2p

0

◆
, (5)

where F

�1
x

is the inverse cumulative distribution (ICDF)
function.

Proof Equation 5 follows from d

dbr
Uf

r

= 0. The ex-
pected utility of the retailer is a strictly concave function:
d

2

db

2
r
Uf

r

= �2p

0
f

x

(b

r

) < 0. Therefore, b

⇤
r

is indeed the
unique optimum.⌅
Note, for any given p

0
> p, the quantity b

⇤
r

is lower than the
expected demand due to the absolute imbalance quantity.

3.2 Determining the Price for Risk-Sharing
In this section, we define the requirements and the properties
of the risk-sharing tariff and we propose how to choose the
price functions. An important requirement for the price func-
tions p

c

(⌧), p

0
c

(⌧) is that the expected utility of the retailer for
any given ⌧ 2 [0, 1) should be greater or equal to the expected
utility when ⌧ = 1. Analytically,

Uf

r

(⌧) � Uf

r

(⌧ = 1) � b

c

', 8⌧ 2 [0, 1), ' 2 R+
, (6)

where ' denotes an extra profit for the retailer per expected
unit of consumption. ' is approaching business costs in a per-
fect competition and arbitrarily large values in a monopoly.

Given the requirement in (6) and using (3), we derive the
following inequality:

p

c

(⌧) � 1

b

c

(b

⇤
r

p+E
f

[|b⇤
r

�x|]p0�E
f

[|b
c

�x|]p0
c

(⌧))+'. (7)

To find functions p

c

(⌧), p

0
c

(⌧) that satisfy the above inequal-
ity, we define the minimum imbalance price function:

%

0
c

(⌧) , (1� ⌧)p

0
, (8)

which is equal to the price the customer would pay by partic-
ipating in the balancing market for its share (1 � ⌧) of bal-
ancing risk. Since p

c

(⌧) is a free choice, we propose the min-
imum ahead price function that satisfies (7) when replacing
p

0
c

(⌧) with (8):

p

c

(⌧) , 1

b

c

(b

⇤
r

p+E
f

[|b⇤
r

�x|+(⌧ �1)|b
c

�x|]p0
)+'. (9)

We will proceed to show that this proposed price function
guarantees the minimum profit margin ' for the retailer.
Theorem 3.3 Any tariff (p

c

(⌧), p

0
c

(⌧)), using p

c

(⌧) as de-
fined in (9) and satisfying p

0
c

(⌧) � %

0
c

(⌧), 8⌧ 2 [0, 1], and
p

0
c

(1) = 0, satisfies (6).

Proof Note that p

c

(⌧) has been defined such that U

%

r

(⌧) =

U

r

(1), if p

0
c

(⌧) = %(⌧). For any p

0
c

(⌧) that satisfies p

0
c

(⌧) �
%(⌧), 8⌧ , Up

r

(⌧) � U

%

r

(⌧), since only the profit from the term
p

0
c

(⌧)E
f

[|b
c

�x|] increases while all other terms are fixed. ⌅
The function p

0
c

(⌧) refers to the price per unit for any abso-
lute deviation of the customer’s consumption given the choice
of ⌧ . We propose p

0
c

(⌧) to embrace some additional desired
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Figure 2: The precommitment p

c

(⌧) and imbalance p

0
c

(⌧)

price functions for all values of ⌧ .

properties with regards to the ability of the customer to reduce
its demand uncertainty.

Consider a customer that can alter its demand distribution
f

x

! g

x

, such that E
g

[|b
c

�x|]  E
f

[|b
c

�x|]. We define g

x

as the demand response of the customer. We propose a tariff
that additionally imposes the constraint E

g

[x] = E
f

[x]. Let
⌧

⇤
(g

x

) denote the risk that maximizes the utility of the cus-
tomer under g

x

. The following two properties are common
sense conditions for demand response tariffs.
Property 1. No demand response, no risk incentive: If
E

g

[|b
c

� x|] = E
f

[|b
c

� x|] then ⌧

⇤
(g

x

) = 1.
Property 2. Demand response proportional risk: If E

g

[|b
c

�
x|] < E

u

[|b
c

� x|] < E
f

[|b
c

� x|] then 0  ⌧

⇤
(g

x

) <

⌧

⇤
(u

x

) < 1.
We propose the following imbalance price function that sat-
isfies the above properties (Section 3.3) under # > 0.

p

0
c

(⌧) = (1� ⌧)(p

0
+ #�(⌧)), (10)

where �(⌧) denotes the penalty that is equal to the
discount in the precommitment price the retailer offers,
�(⌧) = p

c

(1) � p

c

(⌧). The parameter # 2 R+ scales
the penalty term �(⌧). Figure 2 illustrates the shape
of the price functions p

c

(⌧), p

0
c

(⌧), computed for f

x

=

N (0.15, 0.1), truncated to x 2 [0, 0.79], p = 0.1, p

0
= 0.5,

' = 0.02, # = 1.
The tariff composed of p

c

(⌧) and p

0
c

(⌧) guarantees a min-
imum acceptable utility for the retailer, which is equal to the
current flat tariff situation (⌧ = 1). The imbalance price func-
tion p

0
c

(⌧) proposed in (10) also satisfies desirable properties
with respect to the upcoming discussion, associated with the
strategy of flexible customers.

3.3 Optimal Strategies for Flexible Customers
Demand response in electricity systems refers to the ability
of customers to adjust their demand behavior in response to
financial incentives provided by electricity providers. In this
paper, we interpret demand response as the ability of the cus-
tomer to reduce the uncertainty of its demand. Let � de-
note the action of the customer, which affects the distribution
of the demand f

x

, such that the observed consumption x is
sampled from the new distribution g

x

. Recall that the ex-
pected demand remains the same E

g

[x] = E
f

[x] and the ex-
pected absolute deviations may become lower E

g

[|b
c

� x|] 
E

f

[|b
c

� x|]. Let C�(g

x

) , C�(f

x

! g

x

) denote the costs
associated with reducing the uncertainty, e.g., capturing cus-
tomer’s discomfort or costs of smart devices and batteries.
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Figure 3: The mapping between �

g

and the optimal share ⌧

⇤

that maximizes in expectation the utility of the customer.

We show that for any distribution g

x

there is a unique ⌧

⇤ 2
[0, 1] that maximizes the expected utility of the customer. Let
Ug

c

denote the expected utility of the customer with demand
response � and resulting demand distribution function g

x

.

Ug

c

= �b

c

p

c

(⌧)� E
g

[|b
c

� x|]p0
c

(⌧)� C�(g

x

) (11)

Lemma 3.4 Under p

c

(⌧) as in (9) and p

0
c

(⌧) as in (10), the
first derivative of the expected utility of the customer in (11)
with respect to ⌧ is:

d

d⌧

Ug

c

= p

0
(a

g

� a

f

� 2(⌧ � 1)

#

b

c

a

g

a

f

), (12)

where a

f

= E
f

[|b
c

� x|], and a

g

= E
g

[|b
c

� x|].
Theorem 3.5 The quantity ⌧

⇤ maximizes the expected utility
of the customer for any given g

x

and C�.

⌧

⇤
(g

x

) =

"
a

g

� a

f

2

#

bc
a

g

a

f

+ 1

#1

0

, (13)

where [x]

h

l

= max(l, min(h, x)).

Proof Equation 13 follows from d

d⌧

Ug

c

= 0. The utility
function of the customer with regards to the risk assumption ⌧

is strictly concave, since d

2

d⌧

2 Ug

c

= �2

#

bc
a

g

a

f

p

0
< 0. There-

fore, ⌧

⇤ is the unique optimum. ⌅
Under the assumption of a cost-free demand response

model, i.e., C�(·) = 0, we will proceed to show that a cus-
tomer with uncertain demand response has incentives to par-
ticipate in the risk-sharing tariff contributing its maximum
available demand response. Consider the distribution u

x

such
that:

E
g

[|b
c

� x|] < E
u

[|b
c

� x|] < E
f

[|b
c

� x|], (14)

where u

x

provides a threshold ability of the customer to re-
duce the expected absolute deviation of the demand.
Theorem 3.6 For a customer with uncertain demand re-
sponse g

x

that can at least reduce the uncertainty of its de-
mand to the level of u

x

, such that (14) holds, Ug

c

(⌧

⇤
(u

x

)) >

Uu

c

(⌧

⇤
(u

x

)) > Uf

c

(1) and 8⌧ � ⌧

⇤
(u

x

) : Ug

c

(⌧) � Uf

c

(1).

Proof The inequality in (14) implies that the imbalance pay-
ment in (11) follows the same ranking, as it is the product of
the unequal expectations with the identical imbalance price
p

0
c

(⌧

⇤
(u

x

)). Since all other terms remain the same, this di-
rectly induces the inequalities of the resulting utilities stated
in the theorem. ⌅
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Theorem 3.6 implies that a customer with uncertain demand
response g

x

, that is bounded by u

x

, can only benefit by con-
tributing all available demand response. Furthermore, any
choice of ⌧ � ⌧

⇤
(u

x

) ensures a lower bound for the utility
of the customer.

For the remainder of this paper, we assume that both g

x

, f

x

are normal distributions with µ

g

= µ

f

, and standard devi-
ations �

f

and �

g

2 (0, �

f

] respectively. For this restricted
case, we will apply a simplified notation. The optimal strat-
egy for the flexible customer is denoted by ⌧

⇤
(�

g

), similarly
the cost by C�(�

g

). Figure 3 presents the function ⌧

⇤
(�

g

)

for different values of # in (10). For # ⇠ 0, the utility of
the customer becomes a linear function that is monotonically
increasing in ⌧ when �

g

= �

f

. Thus, the optimal choice of
the customer becomes ⌧

⇤
(�

f

) = 1, and ⌧

⇤
(�

g

< �

f

) = 0.
For # ⇠ 1, the optimal choice of the customer is to assume
no risk (⌧⇤

(�

g

) = 1, 8�
g

2 (0, �

f

]), since the penalty term
� in (10) is infinitely scaled.

In this section, we derived the optimal strategy ⌧

⇤
(g

x

) of
the customer. We showed how the choice of the parameter #

by the retailer can influence the optimal strategy of the cus-
tomer. Furthermore, we demonstrated by Theorem 3.6 that
the risk-sharing tariff is attractive to customers with uncer-
tain demand response.

3.4 Comparison of the Utilities
We compare the expected utilities of both players, again un-
der the assumption of a cost-free demand response model,
i.e., C�(�

g

) = 0, 8�
g

2 (0, �

f

]. Figure 4 illustrates the
expected utilities of both players. Let the tuple (U0

c

,U0
r

) il-
lustrate the point in the utility space that represents the current
flat tariff situation, i.e., �

g

= �

f

and ⌧ = 1. Each line seg-
ment in the figure represents the utility tuples given a specific
demand response �

g

and varying ⌧ . The empty circles repre-
sent the utility tuples when the customer chooses to assume
no risk (⌧ = 1). In such a case, demand response only yields
benefits to the retailer. On the contrary, filled circles repre-
sent the utility tuples when the customer chooses to assume
the full share of risk. Increasing the risk assumption (moving
across the line segments from ⌧ = 1 to ⌧ = 0) requires a
certain level of demand response to be profitable for the cus-
tomer. For high demand response (low �

g

), it results in the
utility increase for the customer. For low demand response
(high �

g

), only the retailer benefits from the decreasing un-
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Figure 5: Each curve represents the utility tuples, given the
strategies for the retailer: ⇡

⇤
r

, ⇡

↵

r

, ⇡

�

r

, and all possible strate-
gies ⇡

c

= (⌧

⇤
(�

g

), �

g

) for the customer.

certainty of the demand. Reduced uncertainty in the demand
side can contribute to the improved social welfare (sum of the
players’ utilities) through the risk-sharing tariff.

Theorem 3.6 can also be illustrated using Figure 4. Note
that for normal distributions, E[|x � µ|] = �

p
2/⇡

[Geary,
1935]. Hence, �

g

< �

u

< �

f

implies that the inequali-
ties in (14) hold. According to Theorem 3.6, it follows that
Ug

c

(⌧

⇤
(�

u

)) > Uu

c

(⌧

⇤
(�

u

)) > Uf

c

(1). Intuitively, the cus-
tomer can increase its utility by switching from �

u

to �

g

, or
more generally by switching from u

x

to g

x

.

4 Nash Equilibrium Strategies
In this section, we study the Nash equilibria (NE) of the
risk-sharing game. Where necessary, we make the depen-
dence of utilities on both strategies more explicit by using
notation U

c

(⇡

r

, ⇡

c

) and U
r

(⇡

r

, ⇡

c

), where ⇡

r

, ⇡

c

denote
the strategies of the retailer and the customer respectively.
NE are pairs of strategies (⇡

⇤
r

, ⇡

⇤
c

), such that U
c

(⇡

⇤
r

, ⇡

⇤
c

) �
U

c

(⇡

⇤
r

, ⇡

c

), 8⇡
c

and U
r

(⇡

⇤
r

, ⇡

⇤
c

) � U
r

(⇡

r

, ⇡

⇤
c

), 8⇡
r

. Let
C�(�

g

) � 0, 8�
g

2 (0, �

f

) be an arbitrary cost model for
demand response and C�(�

f

) = 0, i.e., cost without demand
response is zero. We assume that the demand response cost
model is known by the retailer.

First, we define the strategies of the two players. For the
retailer, the only free choice is the scalar # that parameterizes
the proposed tariff in (10). The strategy of the retailer is de-
noted by ⇡

r

= #. For the customer, the strategy ⇡

c

= (⌧, �

g

)

refers to the choice of risk ⌧ and demand response �

g

. Fur-
thermore, the strategy includes the credible threat of return-
ing to the flat tariff without any demand response, ⇡

threat
c

=

(1, �

f

), if the utility drops below the reference utility U0
c

.
The threat is possible due to the action sequence indicated in
Figure 1 and credible since the threat strategy outperforms the
protected equilibrium strategy. Given any C�(�

g

) we know
from Theorem 3.5 that for any given strategy ⇡

r

there always
exists a strategy ⇡

⇤
c

that maximizes the expected utility of the
customer: ⇡

⇤
c

= (⌧

⇤
(�

⇤
g

) , �

⇤
g

= arg max

�g [Ug

c

(⌧

⇤
(�

g

))]).
Figure 5 illustrates the utilities of the two players, com-

puted using the quadratic demand response cost model
C�(�

g

) = w|�
f

� �

g

|2, for w = 10. Each curve cor-
responds to one of the following three retailer strategies:
⇡

⇤
r

= #

⇤, ⇡

↵

r

= (# � #

⇤
), ⇡

�

r

= (# < #

⇤
). The utility

tuples along each curve correspond to the customer strategies
⇡

c

= (⌧

⇤
(�

g

), �

g

). The curves start from the utility tuple
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Figure 6: Left: The choice #

⇤ by the retailer depending on
the irrationality parameter �. The value of #

0 corresponds to
NE I. Right: The utility pairs starting from the rational NE
pair (star) and ending at the open circle, where the customer
acts almost randomly (the curve would continue in a straight
zero-sum line to the upper left). The filled circle indicates �

⇤,
which maximizes the utility of the customer.

(U0
c

,U0
r

) denoted by the empty circle, where the customer
does not assume any risk, and hence no demand response,
i.e., ⇡

c

= (1, �

f

). The curves end where ⇡

c

= (0, 0) de-
noted by the filled circles. Note that the strategy ⇡

⇤
r

= #

⇤

that maximizes the utility of the retailer (solid curve), yields
Ug

c

(⌧

⇤
(�

⇤
g

), �

⇤
g

) = Uf

c

(1, �

f

) for the customer. The utility of
the customer of using demand response (star on solid curve)
becomes equal to the utility without demand response (open
circle).
Theorem 4.1 The strategy pair I, (⇡

⇤
r

, ⇡

⇤
c

= (⌧

⇤
, �

⇤
g

)), and
the set of pairs II, (⇡

↵

r

, ⇡

threat
c

= (1, �

f

)), are the only two
types of NE in the risk-sharing game.
Proof Any positive change " in the strategy of the retailer,
such that #  #

⇤
+ " (e.g., ⇡

↵

r

), will cause the customer
to adopt the strategy ⇡

threat
c

, since Ug

c

(⇡

⇤
c

, #) < U0
c

, leading
both players to the utility pair (U0

c

,U0
r

). On the other hand,
any negative change " (e.g., ⇡

�

r

) will directly reduce the re-
tailer’s income. Hence, the retailer has no incentive to deviate
from I. In addition, the customer strategy is the best response
by definition, and thus the customer has no incentive to de-
viate either, making I a NE. Now, consider any strategy pair
(⇡

�

r

, ⇡

c

). The retailer can gain by deviating from this strat-
egy pair by increasing #, making sure that no equilibrium
containing ⇡

�

r

exists. Finally, consider any pair (⇡

↵

r

, ⇡

threat
c

).
Since U

r

is unaffected by # given ⌧

⇤
(⇡

↵

r

) = 1, providing
no incentive to apply demand response, no player can gain by
deviating unilaterally. Hence, each pair of strategies in the set
II is a NE. ⌅

We showed the existence of two types of NE within the
risk-sharing game, where (⇡

⇤
r

, ⇡

⇤
c

= (⌧

⇤
, �

⇤
g

)) Pareto dom-
inates (⇡

↵

r

, ⇡

threat
c

= (1, �

f

)) and therefore is favorable for
both players.

4.1 Bounded-Rational Customer
The concept of bounded rationality [Simon, 1972] assumes
that agents, automated or not, do not behave as perfectly ratio-
nal decision-makers, bounded by imperfect information and
their limited capacity.

Customer behavior can be modeled using the bounded ra-
tionality paradigm [McFadden, 1975]. Customers do not al-
ways subscribe to the cheapest tariff but the probability of
doing so is high. Softmax is a function that can model the
decision-making of such an agent [Ortega and Braun, 2011;
Sutton and Barto, 1998] with the irrationality parameter
�: p(⇡

k

c

) = exp(U
c

(⇡

k

c

)/�)/

P
⇡

i
c
exp(U

c

(⇡

i

c

)/�), where
p(⇡

k

c

) is the probability of the customer to use strategy ⇡

k

c

.
We apply this function to a discrete sampling of the contin-
uous parameter �

g

to probabilistically mix between strate-
gies ⇡

c

= (⌧

⇤
(�

g

), �

g

), �

g

2 (0, �

f

]. Figure 6 illustrates
the numerical approximation of the optimal choice of #

⇤ of
the retailer and the utility tuples under various degrees of ir-
rationality �. For � = 10

�4, #

0 approximates the value of
#

⇤ computed earlier for the rational customer, since for low
� Softmax is approximating the rational (greedy) strategy se-
lection. Beyond � ⇡ 10

�2, the retailer starts increasing ✓

⇤

to infinity as the customer becomes random, resulting in the
infinite increase in the utility of the retailer at the cost of the
customer. Note that �

⇤
= 4.27 ·10

�3 maximizes the utility of
the customer, yielding a larger utility than the utility the cus-
tomer receives in NE. We can deduce that larger incentives
for demand response will be offered if the retailer believes to
be facing bounded-rational agents.

This result has implications for implementing automated
tariff selection algorithms. In particular, the irrationality pa-
rameter �

⇤ can be seen as in equilibrium with #

⇤ and suggests
that automated strategies may gain utility by adopting proba-
bilistic softmax selection.

5 Conclusion
In this paper, we proposed a tariff where the balancing risk
can be shared to incentivize intelligent customer behavior.
We defined a formal game between the retailer and the cus-
tomer in settings where the customer has a direct influence
on the balancing requirements of the retailer (Section 3).
We showed analytically that the proposed tariff is accept-
able for both the retailer (Section 3.2) and the customer (Sec-
tion 3.4). We further studied best response strategies that are
computable as presented in Sections 3.1 and 3.3. We showed
how social welfare is improved (Figure 4) due to the uncer-
tainty reduction resulting from the intelligent customer be-
havior, and we provided arguments (Theorem 3.6) why the
proposed tariff elicits all freely available demand response.
In Section 4, we showed the existence of NE within the risk-
sharing game and illustrated them with computations. Last,
we showed that bounded rationality can be a valuable con-
cept when implementing automated tariff selection schemes
(Section 4.1). The proposed tariff provides a broad basis for
future extensions, e.g. relaxing assumptions about the pre-
commitment quantity b

c

of the customer, or the exogenous
and known market prices p, p

0.
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