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1. Introduction 

Each multitape Turing machine can be simu­
lated by an oblivious one-head tape unit m square 
time. Such a simulation is essentially the same as 
the obvious one by nonoblivious one-head tape 
units in [3]. For simulation by an oblivious one­
head tape unit we derive a lower bound which 
matches this upper bound on the simulation time. 
So, in this case the obvious simulation is also 
optimal. The best previous lower bound on this 
simulation time was ni.618 in [8]. Recall that in an 
oblivious Turing machine the movement of the 
storage tape heads is independent of the input, 
and is a function of time alone (see, for instance, 
[9]). We also assume that the steps at which the 
input is polled are the same for all input streams. 
It is obvious that we can simulate one device like a 
queue or a pushdown store by an oblivious one­
head tape unit in time T(n) iff we can simulate a 
multiqueue or a multipushdown store machine that 
way [9]. Thus, it suffices to show the lower bound 

on the time to simulate one queue or one push­
down store. The proof uses Kolmogorov Complex­
ity as [8] and some references in that paper. We 
are only interested in the storage structure of the 
devices, and consider them as transducers con­
nected with an input terminal and an output 
terminal. A machine A simulates a machine B 
on-line in time T(n) if, for t1,t2 , •.• ,tn, these­
quence of times at which B reads from the input 
terminal or writes to the output terminal, there are 
corresponding times t;, t'2 ,. .. , t'n at which A reads 
or writes the same symbols and ti ~ T( t;) for all 
1 ~ i ~ n. We use 'simulation' in the strong sense 
of 'on-line simulation' throughout. A one-head 
tape unit is used as synonym for a Turing machine 
with one single-head storage tape. 

Note: Mutually independent work in [6,5,10] 
has recently shown (the greatest common intersec­
tion of the three) that square time is optimal for 
the on-line simulation of 2 tapes by 1 tape, also if 
the simulating machine is allowed to be nonoblivi­
ous. 
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2. Kolmogorov Complexity 

The ideas on descriptional complexity below 
were developed independently by Kolmogorov [4] 
and Chai tin [1]. We follow [7]. Consider the prob­
lem of describing a string x over O's and l's. Any 
computable function f from strings over O's and 
I's to such strings, together with a string y, such 
that f(y) = x, is such a description. A descriptional 
complexity K r of x, relative to f and y, is defined 
by 

Kr (x IY) = min{ Id 11 d E {O, 1 }* &f(dy) = x}. 

For the universal computable partial function f0 

we have that, for all f with appropriate constant er, 
for all strings x, y, Kr0(xly)~Kr(xly)+cr. So, 
the canonical relative descriptional complexity 
K(x, y) can be set equal to K r0(X I y). Define the 
descriptiona/ complexity of x as K(x) = K(x ! £ ). ( c 
denotes the empty string.) Since there are 2n bi­
nary strings of length n, but only 2n - 1 possible 
shorter descriptions d, it follows that K(x);;::,. [x I 
for some binary string x of each length. We call 
such strings incompressible. It also follows that 
K(x I y);;::,. 1 x I for some binary string x of each 
length. As an illustration, a string x = uvw can be 
specified by v, Ix I, I u I and the bits of uw. Thus, 

K(x) ~ K(v) + O(log jx I)+ luwj, 

so that with K(x);;:,. jxl we obtain 

K(v);;::,. jv [ -O(loglx I). 

3. The square lower bound 

Without loss of generality we assume that the 
tape units below have semi-infinite tapes. That is, 
the squares of the tapes can be enumerated from 
left to right by the natural numbers. The Oth 
square is called the start square. Assume further, 
also without loss of generality, that the tape units 
write only O's and l's in the storage squares and 
relax the real-time requirement to constant delay. 
A computation is of constant delay if there is a 
fixed constant c such that there are at most c 
computation steps in between processing the nth 
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and the (n + l)st input symbol, for all n. Thus, 
constant delay with c = 1 is the same as real-time, 
and it is not difficult to see that each computation 
of constant delay can be sped up to a real-time 
computation by expanding the storage alphabet 
and the size of the finite control. 

Theorem. The fastest on-line simulation of a push­
down store, or a queue, by an oblivious one-head 
tape unit takes 0(n2 ) time. 

Proof. A queue is real-time simulatable by some 
pushdown stores [2]. By the arguments mentioned 
in Section 1, therefore, the only thing we have to 
prove is the square lower bound for the simulation 
of one queue. So, let us consider a queue Q which 
can store O's and I's read from the input terminal 
and unstore the currently stored O's and l's one bit 
at a time by writing them to the output terminal, 
in a first-in-first-out fashion. Let M be an actual 
oblivious one-head tape unit simulating the virtual 
queue Q in time T(n). Without loss of generality, 
M has a semi-infinite tape and writes only O's and 
1 's on its storage tape. Intuitively, we have de­
tached Q from its input terminal and its output 
terminal and have replaced it by M which is 
programmed to behave as if it were Q. Thus, we 
can distinguish between M as the embodiment of 
Q, containing a 0-1 string as polled through the 
input terminal insofar as the front bits have not 
yet been written to the output terminal, and the 
actual encoding of Q's contents on M's storage 
tape. An adversary demon supplies the sequence of 
input commands. The adversary demon chooses 
input commands by observing the currenr actual 
state of machine M. It first determines the right­
most intersquare boundary B on the storage tape 
of M, such that M polls less than n input com­
mands out of the first 2n input commands while 
its storage head is left of B. If at least }n input 
commands are polled while the storage head scans 
the cell immediately right of B, then T(n) E O(n2) 

(cf. Case 1 below). Therefore, at least in input 
commands are polled while the head is left of B, 
and at least n input commands with the head right 
of B. (Recall that the head movement is the same 
for all sequences of input commands since M is 
oblivious.) Divide the tape into three segments 
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[O, B), [B, C), and [C, oo), with the length of the 
middle segment [B, C) being f6n squares (see Fig. 
1). 

We will argue that if T(n)Et: O(n2 ), then we 
could describe an incompressible binary string in 
significantly less bits than its length, by recon­
structing it from a description of M's behavior in 
simulating Q. 

Case 1. Assume that at least in input com­
mands are polled with M's head on the middle 
segment [B, C). Consider a sufficiently long in­
compressible string x E {O, 1 }* of length 2n and 
let the first 2n input commands, supplied by the 
adversary demon, be •store next unread bit of x'. 
Choose (p, q) as a pair of squares with pin [B', B) 
and q in [C, C'), where the lengths of both [B', B) 
and [C, C') are f6n. 

In the description of x below we give most of x 
in concatenated literal form in a suffix v and the 
concatenated remainder w of x in terms of M's 
operation. (Here x is a shuffle of v and w.) 

• A description of this discussion in 0(1) bits. 
• A description of Min 0(1) bits. 
• The value of n in O(log n) bits. 
• The location of the pair of squares (p, q) in 

O(log n) bits. 
• The crossing sequence at that pair (p, q) of 

squares, as described below. 
• The final contents of the tape segment [p, q], 

after the 2n input commands have been ex­
ecuted, thus storing all of x in the virtual 
queue Q (actually· on M's storage tape). 

• The concatenated literal remainder v of x in 
not more than in bits. 

For a pair (p, q) of squares on M's storage tape, as 
defined above, and the considered 2n-length se­
quence of input commands, the crossing sequence 
associated with that pair contains for each crossing 
the state of M, and whether we enter/ exit [p, q] 
from/to left or right, in 0(1) bits. Associated with 
each entrance of [p, q] we give the number of input 
commands polled up to the corresponding exit of 
[p, q]. Summed over all of the crossing sequence 

C' 

this does not take more than O(t log(n/t)) bits, 
where t is the length of the crossing sequence. 

We can recover x from this description since it 
completely determines the unique instantaneous 
description of M in which feeding the successive 
bits of x through the input terminal drives M. 
Recovery of x goes as follows. The machine M is 
specified in the description. Beginning with M in 
the start state, enter bit for bit the literal represen­
tation v through the input tenninal in M until the 
head of M enters [p, q]. Stop entering bits of v and 
continue by entering a 0-1 string of the proper 
length (the number of input commands prescribed 
in (p, q)'s crossing sequence) which leads from M's 
current instantaneous description to the correct 
exit of [p, q] (state of M and proper side). Starting 
from M's instantaneous description at that exit. 
continue inputting the remainder of the literal 
representation v, until [p, q] is entered again, and 
so on. Finally, after having input all-in-all 2n bits 
in M, which includes all of v, match the final 
contents of [p, q] with that from the description 
above. If there is a mismatch with the description 
above at any time during this process then backup 
and try other choices of proper length 0-1 se­
quences as input for the parts of the computation 
with M's storage head residing on [p, q]. There 
must be at least one 2n-length string satisfying the 
description since x does so by definition. More­
over, there is at most one 2n-length string satisfy­
ing the description .. For, suppose there were two 
different 2n-length strings x and y which by the 
procedure above drive M into the same instanta­
neous description. (x and y can therefore only 
disagree on the bits received with M's ·storage head 
on [p, q].) Then, either we retrieve x having en­
tered y or vice versa, by unstoring the entire 
present contents of queue Q as simulated by M: A 
contradiction. So the final i.d. of M resulting from 
the above exhaustive search, by inputting a string 
y which satisfies the above description all the way, 
must store x such that it can be retrieved by 2n 
' unstore current front bit of simulated Q' com-
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mands and y = x. Let the minimal length of any 
crossing sequence for a pair (p, q) be m(n). Then 
the description of x need take not more than 

0(1) + O{log n) + O(m(n) log(n/m(n))) 

bits. Since this amount must be at least K(x) = 2n, 
it follows that we have m(n) log(n/m(n)) E U(n) 
and, therefore, m(n)E O(n). Summing the lengths 
of the crossing sequences of a set S of all pairs 
(p, q), with p in [B', B) and q in [C, C') and if 
(P1• q1), (p2, q2) ES, then P1 * P2 and Q1 * q2 
must give a lower bound on the running time of 
M. Therefore," T(2n) ~ ( .ft;n)m(n). Hence, T(n) E 
O(n2 ). 

Case 2. Not more than ~n input commands are 
polled with M's head on [B, C). Therefore, out of 
the first 2n input commands, more than in input 
commands are polled with M's head on [O, B) and 
more than in input commands with M's head on 
[C, oo). Let y be an incompressible binary string of 
length in. The input is now supplied by the adver­
sary demon as follows. 

• The input commands polled with M's storage 
head left of B consist of storing the next 
~cad bit of y on the simulated queue Q. 

• The input commands polled with M's storage 
head right of C consist of unstoring the cur­
rent front bit of the simulated queue Q. In 
case Q is empty, the input command polled is 
the 'skip' instruction which does not change 
anything to Q. 

• The input commands polled with M's storage 
head on [B, C) are 'skip' instructions too.· 

This input strategy is followed by the adversary 
demon if at least one-half of the initial in store 
commands, polled with M's head on [O, B), in 
effect store bits of y on the simulated Q which are 
subsequently unstored by a corresponding one-half 
of the in unstore commands polled with M's head 
on [C, oo ). Else, the roles of [O, B) and [C, oc) in 
the above input strategy of the demon and in the 
sequel of the argument are reversed. The argument 
then proceeds symmetrical. That these two possi­
bilities are exhaustive is argumented below. 

It is immediately clear that given y the demon 
must have used all y within 2n input commands. 
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Also within 2n input commands, at least in bits of 
y polled with M's head on [O, B) have been re­
trieved by • unstore front bit of Q' commands 
polled with M's head on (C, oo), or vice versa 
under the alternative strategy of the demon. (Con­
sider the subsums of the initial i elements of a 
2Ill-length sequence consisting of m elements••+ 1" 
and m elements .. -1". Either the number of i's, 
such that the sum from the lst up to the ith 
element is greater than 0, is at least im or the 
number of i's, such that the sum from the lst up to 
the ith element is smaller than 0, is at least !m. 
From this it easily follows that, in each particular 
sequence of m 'store-single-bit's and m 'unstore­
single-bit's, either there must be at least im bits 
stored which are subsequently unstored or this 
holds for that sequence with the role of •store' and 
'unstore' everywhere interchanged.) 

In the description of y below we give part of y 
literally in a suffix v and part w of y in terms of 
M's operation. Now vis a concatenation of v and 
w, that is y = wv. 

• A description of this discussion in 0(1) bits. 
• A description of Min 0(1) bits. 
• The value of n in O(log n) bits. 
• The location of B, C and a square p on [B, C) 

in O(log n) bits. 
• The crossing sequence at p. 
• The literal suffix v of y in not more than in 

bits. 
The crossing sequence associated with p contains 
for each crossing the state of M and with each 
entrance of [O, p) the number of input commands 
for the simulated Q polled up to the corresponding 
exit of [O, p). Similar to Case 1, if t(p) is the 
length of the crossing sequtnce at p, then the 
crossing sequence can be denoted in not more than 
O(t(p) log(n/t(p))) bits. Let the minimum length 
of such a crossing sequence in [B, C) be m(n). 
Then the description of y takes not more than 

0(1) + O(log n) + O(m(n) log(n/m(n))) +in 
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bits. To recovery from this description we proceed 
similarly to Case 1. We try out on M candidates 
for the 2n-length sequence of input commands for 
Q as described above. These sequences are de­
tennined by the demon's strategy and are ap­
propriately interspersed with proper length se­
quences of input commands received while M's 
storage head resides on [O, p ], containing com­
mands which consecutively store the single bits of 
y on Q and possibly also 'skip' commands. Input 
commands polled with M's head on [C, oo) con­
stitute all of the unstor~front-bit (of Q) instruc­
tions and are supposed to yield the consecutive 
bits of y. To that purpose, attach a special register 
to M's finite control which remembers the last 
answer to such a query. This in case the answer to 
the query is output by M with its head left of p on 
[O, p) (or right of p on [p, oo) under the alternative 
strategy of the demon). This slightly enlarges M's 
finite control, but leaves the preceding discussion 
intact. Thus, by extracting the consecutive bits 
from this register just before each query, while M's 
head is right of p, we must obtain at least the first 
in bits of y. The in-length suffix v is given 
literally in the description. Clearly, y satisfies the 
description above. If there were different z and y 
satisfying the description, then either z would be 
retrieved by the commands polled with M's head 
on [C, oo) while y was stored by the commands 
polled with M's head on [O, B), or y would be 
retrieved while z was stored: contradicting that 
M simulates Q. Since K(y) = ~n we have that 
m(n)x · log(n/m(n)) e O(n). Therefore, m(n) e 

U(n). Minorizing the running time T(2n) of M by 
summing the lengths of the crossing sequences 
over all squares of [B, C) to at least m(n)(J\n) we 
obtain T(2n) E ~ ( n2 ). O 
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