
Information Processing Letters 21 (1985) 87-91
North-Holland

16 August 1985

SQUARE TIME IS OPTIMAL FOR SIMULATION OF ONE PUSHDOWN STORE OR ONE
QUEUE BY AN OBLMOUS ONE-HEAD TAPE UNIT

Paul M.B. VIT ANYI
Centre for Mathematics and Compu,ier Science, Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

Communicated by K. Mehlhom
Received 26 March 1984
Revised 16 October 1984

To simulate a pushdown store or queue on-line by an oblivious one-head tape unit takes at least square time. Since each
multitape Turing machine can be trivially simulated by an oblivious one-head tape unit in square time, this result is optimal.

Keywords: Multitape Turing machines, pushdown stores, queues, time complexity, square lower bounds, on-line simulation by
oblivious single-head tape units, Kolmogorov complexity

19/:JU Mathematics Subject Classification: 68C40, 68C25, 68C05, 94B60, 10-00

1982 CR Categories: F.1.1, F.1.3, F.2.3

1. Introduction

Each multitape Turing machine can be simu­
lated by an oblivious one-head tape unit m square
time. Such a simulation is essentially the same as
the obvious one by nonoblivious one-head tape
units in [3]. For simulation by an oblivious one­
head tape unit we derive a lower bound which
matches this upper bound on the simulation time.
So, in this case the obvious simulation is also
optimal. The best previous lower bound on this
simulation time was ni.618 in [8]. Recall that in an
oblivious Turing machine the movement of the
storage tape heads is independent of the input,
and is a function of time alone (see, for instance,
[9]). We also assume that the steps at which the
input is polled are the same for all input streams.
It is obvious that we can simulate one device like a
queue or a pushdown store by an oblivious one­
head tape unit in time T(n) iff we can simulate a
multiqueue or a multipushdown store machine that
way [9]. Thus, it suffices to show the lower bound

on the time to simulate one queue or one push­
down store. The proof uses Kolmogorov Complex­
ity as [8] and some references in that paper. We
are only interested in the storage structure of the
devices, and consider them as transducers con­
nected with an input terminal and an output
terminal. A machine A simulates a machine B
on-line in time T(n) if, for t1,t2 , •.• ,tn, these­
quence of times at which B reads from the input
terminal or writes to the output terminal, there are
corresponding times t;, t'2 ,. .. , t'n at which A reads
or writes the same symbols and ti ~ T(t;) for all
1 ~ i ~ n. We use 'simulation' in the strong sense
of 'on-line simulation' throughout. A one-head
tape unit is used as synonym for a Turing machine
with one single-head storage tape.

Note: Mutually independent work in [6,5,10]
has recently shown (the greatest common intersec­
tion of the three) that square time is optimal for
the on-line simulation of 2 tapes by 1 tape, also if
the simulating machine is allowed to be nonoblivi­
ous.

0020-0190/85/$3.30 © 1985, Elsevier Science Publishers B.V. (North-Holland) 87

Volume 21, Number 2 INFORMATION PROCESSING LETIERS 16 August 1985

2. Kolmogorov Complexity

The ideas on descriptional complexity below
were developed independently by Kolmogorov [4]
and Chai tin [1]. We follow [7]. Consider the prob­
lem of describing a string x over O's and l's. Any
computable function f from strings over O's and
I's to such strings, together with a string y, such
that f(y) = x, is such a description. A descriptional
complexity K r of x, relative to f and y, is defined
by

Kr (x IY) = min{ Id 11 d E {O, 1 }* &f(dy) = x}.

For the universal computable partial function f0

we have that, for all f with appropriate constant er,
for all strings x, y, Kr0(xly)~Kr(xly)+cr. So,
the canonical relative descriptional complexity
K(x, y) can be set equal to K r0(X I y). Define the
descriptiona/ complexity of x as K(x) = K(x ! £). (c
denotes the empty string.) Since there are 2n bi­
nary strings of length n, but only 2n - 1 possible
shorter descriptions d, it follows that K(x);;::,. [x I
for some binary string x of each length. We call
such strings incompressible. It also follows that
K(x I y);;::,. 1 x I for some binary string x of each
length. As an illustration, a string x = uvw can be
specified by v, Ix I, I u I and the bits of uw. Thus,

K(x) ~ K(v) + O(log jx I)+ luwj,

so that with K(x);;:,. jxl we obtain

K(v);;::,. jv [-O(loglx I).

3. The square lower bound

Without loss of generality we assume that the
tape units below have semi-infinite tapes. That is,
the squares of the tapes can be enumerated from
left to right by the natural numbers. The Oth
square is called the start square. Assume further,
also without loss of generality, that the tape units
write only O's and l's in the storage squares and
relax the real-time requirement to constant delay.
A computation is of constant delay if there is a
fixed constant c such that there are at most c
computation steps in between processing the nth

88

and the (n + l)st input symbol, for all n. Thus,
constant delay with c = 1 is the same as real-time,
and it is not difficult to see that each computation
of constant delay can be sped up to a real-time
computation by expanding the storage alphabet
and the size of the finite control.

Theorem. The fastest on-line simulation of a push­
down store, or a queue, by an oblivious one-head
tape unit takes 0(n2) time.

Proof. A queue is real-time simulatable by some
pushdown stores [2]. By the arguments mentioned
in Section 1, therefore, the only thing we have to
prove is the square lower bound for the simulation
of one queue. So, let us consider a queue Q which
can store O's and I's read from the input terminal
and unstore the currently stored O's and l's one bit
at a time by writing them to the output terminal,
in a first-in-first-out fashion. Let M be an actual
oblivious one-head tape unit simulating the virtual
queue Q in time T(n). Without loss of generality,
M has a semi-infinite tape and writes only O's and
1 's on its storage tape. Intuitively, we have de­
tached Q from its input terminal and its output
terminal and have replaced it by M which is
programmed to behave as if it were Q. Thus, we
can distinguish between M as the embodiment of
Q, containing a 0-1 string as polled through the
input terminal insofar as the front bits have not
yet been written to the output terminal, and the
actual encoding of Q's contents on M's storage
tape. An adversary demon supplies the sequence of
input commands. The adversary demon chooses
input commands by observing the currenr actual
state of machine M. It first determines the right­
most intersquare boundary B on the storage tape
of M, such that M polls less than n input com­
mands out of the first 2n input commands while
its storage head is left of B. If at least }n input
commands are polled while the storage head scans
the cell immediately right of B, then T(n) E O(n2)

(cf. Case 1 below). Therefore, at least in input
commands are polled while the head is left of B,
and at least n input commands with the head right
of B. (Recall that the head movement is the same
for all sequences of input commands since M is
oblivious.) Divide the tape into three segments

Volume 21, Number 2 INFORMATION PROCESSING LETTERS 16 August 1985

0 B' B c
n /16 n /16 n / 16

Fig. 1.

[O, B), [B, C), and [C, oo), with the length of the
middle segment [B, C) being f6n squares (see Fig.
1).

We will argue that if T(n)Et: O(n2), then we
could describe an incompressible binary string in
significantly less bits than its length, by recon­
structing it from a description of M's behavior in
simulating Q.

Case 1. Assume that at least in input com­
mands are polled with M's head on the middle
segment [B, C). Consider a sufficiently long in­
compressible string x E {O, 1 }* of length 2n and
let the first 2n input commands, supplied by the
adversary demon, be •store next unread bit of x'.
Choose (p, q) as a pair of squares with pin [B', B)
and q in [C, C'), where the lengths of both [B', B)
and [C, C') are f6n.

In the description of x below we give most of x
in concatenated literal form in a suffix v and the
concatenated remainder w of x in terms of M's
operation. (Here x is a shuffle of v and w.)

• A description of this discussion in 0(1) bits.
• A description of Min 0(1) bits.
• The value of n in O(log n) bits.
• The location of the pair of squares (p, q) in

O(log n) bits.
• The crossing sequence at that pair (p, q) of

squares, as described below.
• The final contents of the tape segment [p, q],

after the 2n input commands have been ex­
ecuted, thus storing all of x in the virtual
queue Q (actually· on M's storage tape).

• The concatenated literal remainder v of x in
not more than in bits.

For a pair (p, q) of squares on M's storage tape, as
defined above, and the considered 2n-length se­
quence of input commands, the crossing sequence
associated with that pair contains for each crossing
the state of M, and whether we enter/ exit [p, q]
from/to left or right, in 0(1) bits. Associated with
each entrance of [p, q] we give the number of input
commands polled up to the corresponding exit of
[p, q]. Summed over all of the crossing sequence

C'

this does not take more than O(t log(n/t)) bits,
where t is the length of the crossing sequence.

We can recover x from this description since it
completely determines the unique instantaneous
description of M in which feeding the successive
bits of x through the input terminal drives M.
Recovery of x goes as follows. The machine M is
specified in the description. Beginning with M in
the start state, enter bit for bit the literal represen­
tation v through the input tenninal in M until the
head of M enters [p, q]. Stop entering bits of v and
continue by entering a 0-1 string of the proper
length (the number of input commands prescribed
in (p, q)'s crossing sequence) which leads from M's
current instantaneous description to the correct
exit of [p, q] (state of M and proper side). Starting
from M's instantaneous description at that exit.
continue inputting the remainder of the literal
representation v, until [p, q] is entered again, and
so on. Finally, after having input all-in-all 2n bits
in M, which includes all of v, match the final
contents of [p, q] with that from the description
above. If there is a mismatch with the description
above at any time during this process then backup
and try other choices of proper length 0-1 se­
quences as input for the parts of the computation
with M's storage head residing on [p, q]. There
must be at least one 2n-length string satisfying the
description since x does so by definition. More­
over, there is at most one 2n-length string satisfy­
ing the description .. For, suppose there were two
different 2n-length strings x and y which by the
procedure above drive M into the same instanta­
neous description. (x and y can therefore only
disagree on the bits received with M's ·storage head
on [p, q].) Then, either we retrieve x having en­
tered y or vice versa, by unstoring the entire
present contents of queue Q as simulated by M: A
contradiction. So the final i.d. of M resulting from
the above exhaustive search, by inputting a string
y which satisfies the above description all the way,
must store x such that it can be retrieved by 2n
' unstore current front bit of simulated Q' com-

89

Volume 21, Number 2 INFORMATION PROCESSING LETTERS 16 August 1985

mands and y = x. Let the minimal length of any
crossing sequence for a pair (p, q) be m(n). Then
the description of x need take not more than

0(1) + O{log n) + O(m(n) log(n/m(n)))

bits. Since this amount must be at least K(x) = 2n,
it follows that we have m(n) log(n/m(n)) E U(n)
and, therefore, m(n)E O(n). Summing the lengths
of the crossing sequences of a set S of all pairs
(p, q), with p in [B', B) and q in [C, C') and if
(P1• q1), (p2, q2) ES, then P1 * P2 and Q1 * q2
must give a lower bound on the running time of
M. Therefore," T(2n) ~ (.ft;n)m(n). Hence, T(n) E
O(n2).

Case 2. Not more than ~n input commands are
polled with M's head on [B, C). Therefore, out of
the first 2n input commands, more than in input
commands are polled with M's head on [O, B) and
more than in input commands with M's head on
[C, oo). Let y be an incompressible binary string of
length in. The input is now supplied by the adver­
sary demon as follows.

• The input commands polled with M's storage
head left of B consist of storing the next
~cad bit of y on the simulated queue Q.

• The input commands polled with M's storage
head right of C consist of unstoring the cur­
rent front bit of the simulated queue Q. In
case Q is empty, the input command polled is
the 'skip' instruction which does not change
anything to Q.

• The input commands polled with M's storage
head on [B, C) are 'skip' instructions too.·

This input strategy is followed by the adversary
demon if at least one-half of the initial in store
commands, polled with M's head on [O, B), in
effect store bits of y on the simulated Q which are
subsequently unstored by a corresponding one-half
of the in unstore commands polled with M's head
on [C, oo). Else, the roles of [O, B) and [C, oc) in
the above input strategy of the demon and in the
sequel of the argument are reversed. The argument
then proceeds symmetrical. That these two possi­
bilities are exhaustive is argumented below.

It is immediately clear that given y the demon
must have used all y within 2n input commands.

90

0 B p C
~--------------0-~-<>--~--o~~~~

n I 16

Fig. 2.

Also within 2n input commands, at least in bits of
y polled with M's head on [O, B) have been re­
trieved by • unstore front bit of Q' commands
polled with M's head on (C, oo), or vice versa
under the alternative strategy of the demon. (Con­
sider the subsums of the initial i elements of a
2Ill-length sequence consisting of m elements••+ 1"
and m elements .. -1". Either the number of i's,
such that the sum from the lst up to the ith
element is greater than 0, is at least im or the
number of i's, such that the sum from the lst up to
the ith element is smaller than 0, is at least !m.
From this it easily follows that, in each particular
sequence of m 'store-single-bit's and m 'unstore­
single-bit's, either there must be at least im bits
stored which are subsequently unstored or this
holds for that sequence with the role of •store' and
'unstore' everywhere interchanged.)

In the description of y below we give part of y
literally in a suffix v and part w of y in terms of
M's operation. Now vis a concatenation of v and
w, that is y = wv.

• A description of this discussion in 0(1) bits.
• A description of Min 0(1) bits.
• The value of n in O(log n) bits.
• The location of B, C and a square p on [B, C)

in O(log n) bits.
• The crossing sequence at p.
• The literal suffix v of y in not more than in

bits.
The crossing sequence associated with p contains
for each crossing the state of M and with each
entrance of [O, p) the number of input commands
for the simulated Q polled up to the corresponding
exit of [O, p). Similar to Case 1, if t(p) is the
length of the crossing sequtnce at p, then the
crossing sequence can be denoted in not more than
O(t(p) log(n/t(p))) bits. Let the minimum length
of such a crossing sequence in [B, C) be m(n).
Then the description of y takes not more than

0(1) + O(log n) + O(m(n) log(n/m(n))) +in

Volume 21, Number 2 INFORMATION PROCESSING LEITERS 16 August 1985

bits. To recovery from this description we proceed
similarly to Case 1. We try out on M candidates
for the 2n-length sequence of input commands for
Q as described above. These sequences are de­
tennined by the demon's strategy and are ap­
propriately interspersed with proper length se­
quences of input commands received while M's
storage head resides on [O, p], containing com­
mands which consecutively store the single bits of
y on Q and possibly also 'skip' commands. Input
commands polled with M's head on [C, oo) con­
stitute all of the unstor~front-bit (of Q) instruc­
tions and are supposed to yield the consecutive
bits of y. To that purpose, attach a special register
to M's finite control which remembers the last
answer to such a query. This in case the answer to
the query is output by M with its head left of p on
[O, p) (or right of p on [p, oo) under the alternative
strategy of the demon). This slightly enlarges M's
finite control, but leaves the preceding discussion
intact. Thus, by extracting the consecutive bits
from this register just before each query, while M's
head is right of p, we must obtain at least the first
in bits of y. The in-length suffix v is given
literally in the description. Clearly, y satisfies the
description above. If there were different z and y
satisfying the description, then either z would be
retrieved by the commands polled with M's head
on [C, oo) while y was stored by the commands
polled with M's head on [O, B), or y would be
retrieved while z was stored: contradicting that
M simulates Q. Since K(y) = ~n we have that
m(n)x · log(n/m(n)) e O(n). Therefore, m(n) e

U(n). Minorizing the running time T(2n) of M by
summing the lengths of the crossing sequences
over all squares of [B, C) to at least m(n)(J\n) we
obtain T(2n) E ~ (n2). O

References

[1} GJ. Chaitin, Algorithmic information theory, IBM J. Res.
Develop. 21 (1977) 350-359.

[2] P.C. Fischer, A.R. Meyer and A.L. Rosenberg, Real-time
simulation of multihead tape units, J. Assoc. Comput.
Mach. 19 (1972) 590-607.

(31 J.E. Hopcroft and J.D. Ulbnan, Formal Languages and
Their Relations to Automata (Addison-Wesley, Reading,
MA, 1969).

[4] A.N. Kolmogorov, Three approaches to the quantitative
definition of information, Problems in Information Trans­
mission 1 (1) (1965) 1-7.

[5] M(ing) Li, On one tape versus two stacks, Manuscript,
Computer Science Dept., Cornell Univ., 1984.

(6} W. Maass, Quadratic lower bounds for deterministic and
nondeterministic one-tape Turing machines, 16th ACM
Symp. on Theory of Computing (1984) 401-408.

[7] W J. Paul, J.I. Seiferas and J. Simon, An information-theo­
retic approach to time bounds for on-line computation,
12th ACM Symp. on Theory of Computing (1980)
357-367.

[BJ P.M.B. Vitlmyi, An n!.618 lower bound on the time to
simulate one queue or two pushdown stores by one tape,
Tech. Rept. IW 245, Centre for Mathematics and Com­
puter Science, Amsterdam, 1983; Inform. Process. Lett. 21
(3) (1985) in press.

[9] P.M.B. Vitimyi, An optimal simulation of counter ma­
chines, SIAM J. Comput. 14 (1985) in press.

[10] P.M.B. Vitimyi, One queue or two pushdown stores take
square time on a one-head tape unit, Tech. Rept.' CS­
R8406, Computer Science Dept., Centre for Mathematics
and Computer Science (C.W.I.), Amsterdam, 1984.

91

