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MOMENT METHODS IN ENERGY MINIMIZATION:

NEW BOUNDS FOR RIESZ MINIMAL ENERGY PROBLEMS

DAVID DE LAAT

Abstract. We use moment methods to construct a converging hierarchy of
optimization problems to lower bound the ground state energy of interact-
ing particle systems. We approximate the infinite dimensional optimization
problems in this hierarchy by block diagonal semidefinite programs. For this
we develop the necessary harmonic analysis for spaces consisting of subsets
of another space, and we develop symmetric sum-of-squares techniques. We

compute the second step of our hierarchy for Riesz s-energy problems with five
particles on the 2-dimensional unit sphere, where the s = 1 case known as the
Thomson problem. This yields new sharp bounds (up to high precision) and
suggests the second step of our hierarchy may be sharp throughout a phase
transition and may be universally sharp for 5-particles on S2. This is the first
time a 4-point bound has been computed for a continuous problem.

1. Introduction

We consider the problem of finding the ground state energy of a system of in-
teracting particles. An important example is the Thomson problem, where we
minimize the sum ∑

1≤i<j≤N

1

‖xi − xj‖2
over all sets {x1, . . . , xN} of N distinct points in the unit sphere S2 ⊆ R3. Here
‖xi−xj‖2 is the chordal distance between xi and xj . A simple optimality proof for
the configuration consisting of three equally spaced particles on a great circle was
given in 1912 [18], but for N > 3 we seem to require more involved techniques. In
1992, Yudin [51] introduced a beautiful method, based on earlier work for spherical
codes by Delsarte, Goethals, and Seidel [16], which in addition to the N ≤ 3
cases can be used to prove optimality for 4, 6, and 12 particles [1, 51]. Here the
configurations are given by the vertices of the regular tetrahedron, octahedron, and
icosahedron.

Yudin’s bound is a relaxation of the above energy minimization problem. It is a
simpler minimization problem whose optimal value lower bounds the ground state
energy. This means that a feasible solution of the dual problem of this relaxation,
which is a maximization problem in the form of an infinite dimensional linear pro-
gram, provides a lower bound on the ground state energy. For N = 2, 3, 4, 6, 12
this bound is sharp, and the optimal dual solutions form optimality certificates;
that is, the dual solutions become easy to check optimality proofs. In 2006, Cohn
and Kumar [11] used this method in their proof of universal optimality of the above
configurations (as well as many other configurations in higher dimensional spheres),
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2 DAVID DE LAAT

where a configuration is said to be universally optimal if it is optimal for all com-
pletely monotonic (smooth, nonnegative functions whose derivatives alternate in
sign) pair potentials in the squared chordal distance.

In the derivation of Yudin’s bound one considers conditions on pairs of particles,
and so this is called a 2-point bound. In 2012, Cohn and Woo [13] derived 3-point
bounds for energy minimization based on earlier work by Schrijver [43] for binary
codes and Bachoc and Vallentin [4] for spherical codes. They used this to prove
universal optimality of the vertices of the rhombic dodecahedron in RP2. In [38]
this is extended to k-point bounds, but here the sphere is required to be at least
k− 1 dimensional, which means this approach cannot be used to go beyond 3-point
bounds for energy minimization on S2.

In this paper (see Section 2) we construct a hierarchy E1, E2, . . . of increasingly
strong relaxations for energy minimization. Each Et is a minimization problem
whose optimal value lower bounds the ground state energy E. To construct this hi-
erarchy we use the moment methods developed in [30], which generalize techniques
from the Lasserre hierarchy [32] in polynomial optimization to an infinite dimen-
sional setting. We can interpret the t-th step Et as a min{2t, N}-point bound, and
in Section 4 we prove convergence to the optimal energy in at most N steps. After
symmetry reduction (see below), the first step E1 becomes essentially the same as
Yudin’s bound. In Section 3 we show the derivation of the linear constraints in the
optimization problems Et. Here we derive enough constraints to ensure convergence
of the hierarchy, but keep the constraint set small enough to allow for a satisfying
duality theory, which is important for performing computations.

The problems Et are infinite dimensional minimization problems where the op-
timization variables are Radon measures. Naturally, this implies the optimization
variables in the dual maximization problems E∗

t are continuous functions. We
show how to approximate the duals E∗

t by semidefinite programs that are block
diagonalized into sufficiently small blocks so that it becomes possible to numeri-
cally compute the 4-point bound E2 for interesting problems. This leads to the
best known bounds for these problems, and this demonstrates the computational
applicability of the moment techniques developed in [30].

In Section 5 we discuss a class of infinite dimensional conic optimization problems
that occur naturally when forming moment relaxations of problems in infinitely
many binary variables. The relaxations Et fit into this framework, where each
point in the container corresponds to a binary variable indicating whether this
position is occupied by a particle. Similarly, the relaxations for geometric packing
problems from [30] fit into this framework. To find good lower bounds we need
to find good feasible solutions to the dual optimization problems, and for this we
discuss duality and symmetry reduction for this more general class of problems. In
particular, we give a sufficient criterion for convergence of the optimal values when
we approximate the cone in the dual programs by simpler cones.

To find good feasible solutions of the dual problems E∗
t we use harmonic analysis,

sum-of-squares characterizations, and semidefinite programming. These tools are
also used for computing the 2 and 3-point bounds mentioned above, but for t > 1,
our problems E∗

t are of a rather different form. In the 2 and 3-point bounds for
energy minimization on the sphere, the dual variables are positive definite kernels
K : S2 × S2 → R. By positive definite we mean that the matrices (K(xi, xj))

n
i,j=1

are positive semidefinite for all n ∈ N and x1, . . . , xn ∈ S2. For 2-point bounds these
kernels can be assumed to be invariant under the orthogonal group O(3) and for
3-point bounds under the stabilizer subgroup of a point in S2. In the dual programs
E∗

t , however, the variables are positive definite kernels K : It × It → R, where It
is the set of independent sets of size at most t in a graph G on V = S2. Here G
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MOMENT METHODS IN ENERGY MINIMIZATION 3

is a topological packing graph, where there is an edge between vertices that are
close, so that we exclude configurations that are already known to be nonoptimal.
This graph G inherits the symmetry of the problem, and we may assume K to
be invariant under this symmetry. This means that to compute E∗

t , we have to
optimize over the cone of Γ-invariant, positive definite kernels K : It × It → R.

We give a nonconstructive proof that for each compact, metrizable container V
(in particular, V = S2), this cone of Γ-invariant, positive definite kernels is equal
to the closure of the union of a sequence of certain simpler inner approximating
cones (see Section 6 and Appendix A). Each of these inner approximating cones
can be parametrized by a finite product of positive semidefinite matrix cones. By
using harmonic analysis and symmetric tensor powers we show how such a sequence
can be constructed explicitly. We carry out this construction for the case where
V = S2 and t = 2. In this way we obtain an explicit sequence of optimization
problems E∗

2,d, each having finite dimensional variable space, whose optimal values
lower bound and converge to the optimal value of the 4-point bound E∗

2 = E2.
In Section 7 we use invariant theory to write the problems E∗

t,d, which have
finitely many variables but infinitely many constraints, as semidefinite programs
with semialgebraic constraints. Here we use semidefinite programming (the opti-
mization of a linear functional over the intersection of an affine space with a cone
of positive semidefinite matrices), because there exist efficient algorithms to solve
these problems numerically. By a semialgebraic constraint we mean the require-
ment that a polynomial, whose coefficients depend linearly on the entries of the
positive semidefinite matrix variable(s), is nonnegative on a basic closed semialge-
braic set. We model these semialgebraic constraints as semidefinite constraints by
using sum-of-squares characterizations from real algebraic geometry. In this way
we obtain a sequence of semidefinite programs E∗

t,d,δ, whose optimal values lower
bound and converge to E∗

t,d as the sum-of-squares degree δ goes to infinity.
A semidefinite program is said to be block diagonalized if we can write it as the

optimization of a linear functional over the intersection of an affine space with a
finite product of positive semidefinite matrix cones. Block diagonalization is im-
portant because the complexity of solving a semidefinite program depends strongly
on the size of the largest block. As described above, the problems Et,d are already
block diagonalized through the use of harmonic analysis, which exploits the sym-
metry of the container and pair potential. In Section 8 we use additional symmetry,
the interchangeability of the particles, to derive symmetries in the semialgebraic
constraints in these problems. We then give a symmetrized version of Putinar’s
theorem, which allows us to exploit symmetries in semialgebraic constraints. This
can lead to significantly smaller block sizes, and, as we show by applying this to
the problems E∗

2,d,δ, this can lead to significant computational savings.
Although theNth relaxationEN is guaranteed to give the ground state energyE,

the advantage of using a hierarchy is that Et can already be sharp for much smaller
values of t. For example, Yudin’s bound, which is essentially equal to the symmetry
reduced version of E∗

1 , is sharp for the Thomson problem for N = 2, 3, 4, 6, 12. It
would be very interesting if this pattern continues; that is, if E2 would be sharp
for several new values of N . The 3-point bound is conjectured [13] to be sharp
for N = 8, and since E2 is a 4-point bound it should also be sharp for N = 8.
As a first step into investigating whether E2 is sharp for new values of N – and
to demonstrate that it is possible to compute the second step of our hierarchy –
we compute E∗

2,6,6 numerically (with high precision) for the five particle case of
the Thomson problem. The optimal value given by the semidefinite programming
solver, consisting of 28 decimal digits, coincides with the first 28 decimal digits of
the energy of the configuration consisting of the vertices of the triangular bipiramid,
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which is a strong indication that the bound is sharp. That is, the inequalities in

E∗
2,6,6 ≤ E∗

2,6 ≤ E∗
2 = E2 ≤ E

are attained. This is the first time a 4-point bound has been computed for a
continuous problem.

The case of 5 particles on S2 is particularly interesting because it is one of the
simplest mathematical models that admits a phase transition, where by a phase
transition we mean that a slight change of the pair potential results in a dis-
continuous jump from one global optimum to another. The Riesz s-energy of a
configuration {x1, . . . , xN} ⊆ S2 is given by

∑

1≤i<j≤N

1

‖xi − xj‖s2
.

In [35] it is conjectured that the configuration consisting of the vertices of the
triangular bipyramid is optimal for 0 < s ≤ s∗ ≈ 15.048, and the configuration
consisting of the vertices of the square pyramid (where the latitude of the base
depends on the value of s) is optimal for s ≥ s∗. Optimality has been proven
for s = 1 and s = 2 by using Hessian bounds and essentially enumerating all
possibilities [44], and recently, Schwartz [45] extended his result to the entire interval
0 ≤ s ≤ 6 using an observation of Tumanov [48]. In this paper we are interested in
finding sharp dual solutions, which can be used (see, for instance, [13]) to generate
easily verifiable optimality proofs; see also the discussion at the end of Section 9.
In addition to the s = 1 case we compute E2 for s = 2, . . . , 7, where E∗

2,6,6 is
(numerically) sharp for s = 1, . . . , 5 and E∗

2,6,8 is (numerically) sharp for s = 6, 7.
Here, again, we verify that the 28 decimal digits given by the solver agree with
the first 28 digits of the energy of a configuration. Since we need to increasy the
parameter δ when s gets larger, we have not been able to compute other sharp
bounds. Based on the above (strong) evidence we have the following conjecture.

Conjecture 1.1. The bound E2 is sharp for the minimal Riesz s-energy of 5 par-
ticles on S2 for s = 1, . . . , 7.

In [13, Conjecture 15] it is conjectured that if there exists a completely monotonic
potential function (in the squared chordal distance) for which a k-point bound is
sharp for N particles on Sn−1, and if this function is not a polynomial, then this k-
point bound is universally sharp for N particles on Sn−1. Here by universally sharp
we mean that the bound gives the ground state energy for all completely monotonic
pair potentials in the squared chordal distance. This means that if Conjecture 1.1
is true for at least one value of s, and if [13, Conjecture 15] is true for our version
E2 of 4-point bounds for energy minimization, then the bound E2 is sharp for all
positive s, and is thus is sharp throughout a phase transition. In fact, then the
following stronger conjecture holds.

Conjecture 1.2. The bound E2 is universally sharp for 5 particles on S2.

Given a particle configuration on a sphere (or more generally, on a 2-point ho-
mogeneous space), there exists a beautiful sufficient criterion, based on geometric
design theory, that says Yudin’s bound is sharp for this configuration [11, 33]. No
such criterion is known for k-point bounds with k > 2. Together with the newly
found (numerically) sharp instances and other sharp instances for E2 possibly still
to be discovered (see Section 9), the new approach in this paper to formulating
k-point bounds for energy minimization may help in formulating such a sufficient
criterion. This may help in uncovering the geometric ideas behind optimality and
universal optimality of particle configurations.
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2. A hierarchy of relaxations for energy minimizaton

In this section we derive a hierarchy of relaxations for energy minimization. We
model the space containing the particles by a compact metric space (V, d), and
assume the pair potential is given by a continuous function h : (0, diam(V )] → R,
where we assume that h(s) → ∞ as s ↓ 0. This natural assumption is mainly made
for convenience as it avoids having to work with multisets. We denote the number
of particles in the system by N . The ground state energy is given by the minimizing

∑

1≤i<j≤N

h(d(xi, xj))

over all sets {x1, . . . , xN} of N distinct points in V . For the Thomson problem we
have V = S2 ⊆ R3, d(x, y) = ‖x− y‖2, and h(c) = 1/c (the Coulomb energy).

To compactify this problem, which will be important when we discuss duality,
we introduce a graph that allows us to discard some configurations that are already
known to be nonoptimal. Let B be an upper bound on the minimal energy. Such
a number can be obtained by computing the energy of an arbitrary configuration
of N distinct points. We now let G be the graph with vertex set V , where distinct
vertices x and y are adjacent whenever h(d(x, y)) > B. This ensures that the
optimal N point configurations are among the independent sets of this graph, where
an independent set is a subset of the vertices for which no two vertices are adjacent.
Alternatively we can use a result such as [27], which states that for certain energy
potentials the points of an optimal N -point configuration must be at least a certain
distance D apart form each other, and we can define the graph G by letting x and
y be adjacent whenever d(x, y) < D. Since this has the potential to exclude more
configurations this approach might lead to stronger relaxations.

Let It be the set of independent sets of cardinality at most t. We endow It \ {∅}
with a topology as a subset of the quotient space V t/q, where q maps a tuple
(x1, . . . , xt) to the set {x1, . . . , xt}. We endow It with the disjoint union topology
by It = It \ {∅}∪{∅}; that is, the set ∅ is an isolated point in It. Let I=t be the set
of independent sets of cardinality t, and endow I=t with the topology as a subset of
It. The graph G is an example of a compact topological packing graph as defined
in [30]. A topological packing graph is a graph whose vertex set is a Hausdorff
topological space where each clique is contained in an open clique. It follows that
the sets It and I=t are compact metric spaces. From the definition of G it follows
that I=N is nonempty.

The ground state energy can be computed as

E = min
S∈I=N

χS(f).

Here f ∈ C(IN ) is defined as

f(s) =

{
h(d(x, y)) if S = {x, y} with x 6= y,

0 otherwise,

and
χS =

∑

R⊆S

δR,

where δR is the Dirac point measure at R (so that δR(f) = f(R)). Here C(IN ) is
the space of real-valued, continuous functions on IN . The continuity of f follows
from the continuity of h and the fact that I=2 is both open and closed in IN (see
[30]). Since we minimize the continuous function S 7→ χS(f) over a compact set,
the minimum above is attained.

To obtain energy lower bounds we construct a hierarchy E1, E2, . . . of relaxations
of the above problem. These are minimization problems such that for each feasible
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solution of E (a configuration of N particles) we can immediately construct a
feasible solution of Et having the same objective value. The problems Et have
the important feature that we can give their dual optimization problems in an
explicit form, which is crucial for performing computations, and that we can prove
the duality gap to be zero. In Section 4 we show that the Nth step EN in this
hierarchy gives the ground state energy, and that the extreme points of the feasible
set of EN are precisely the measures χS with S ∈ I=N . That is, we show EN is a
sharp relaxation of E. The problems Et are convex optimization problems, and we
say EN is a convexification of E.

Denote by M(I2t) the space of signed Radon measures on I2t. Given an inde-
pendent set S ∈ I=N , define λS ∈ M(I2t) by restricting χS to I2t if 2t ≤ N , or by
extending with zeros if 2t ≥ N . In the t-th step Et we will optimize over measures
λ ∈ M(I2t) that we require to satisfy three properties that are satisfied by λS . The
first of these properties is that λS is a positive measure. The second property is
that

λS(I=i) =

(
N

i

)
for all 0 ≤ i ≤ 2t,

where
(
N
i

)
= 0 for i > N . The third property is more subtle: The measure λS

satisfies a moment condition. We use the moment techniques from [30] to define
what we mean by this. Define the operator

At : C(It × It)sym → C(I2t), AtK(S) =
∑

J,J′∈It
J∪J′=S

K(J, J ′),

where C(It × It)sym is the space of symmetric, continuous functions It × It → R,
which we call symmetric kernels. A kernel K is said to be positive definite if the
matrices (K(Ji, Jj))

n
i,j=1 are positive semidefinite for all n ∈ N and J1, . . . , Jn ∈ It.

The positive definite kernels form a convex cone which we denote by C(It × It)�0.
By the Riesz representation theorem, the topological duals of C(It×It)sym and C(I2t)
can be identified with the spaces M(It × It)sym and M(I2t). Here M(It × It)sym
consists of the symmetric Radon measures, which are the measures µ that satisfy

µ(E × F ) = µ(F × E) for all Borel sets E,F ⊆ It.

The dual cone of C(It × It)�0 is defined by

M(It × It)�0 =
{
µ ∈ M(It × It)sym : µ(K) ≥ 0 for all K ∈ C(It × It)�0

}
,

and we call the elements in this cone positive definite measures. We have the adjoint
operator

A∗
t : M(I2t) → M(It × It)sym,

which is defined by A∗
tλ(K) = λ(AtK) for all λ ∈ M(I2t) and K ∈ C(It × It)sym.

We use this dual operator and the cone of positive definite measures to define the
moment condition on λ:

Definition 2.1. A measure λ ∈ M(I2t) is of positive type if

A∗
tλ ∈ M(It × It)�0.

See [30, Remark 1] for an explanation why we use the term positive type here. The
measure λS defined above is of positive type: For each K ∈ C(It × It)�0, we have

A∗
tλS(K) =

∑

R⊆S

∑

J,J′∈It
J∪J′=R

K(J, J ′) =
∑

J,J′∈S
|J|,|J′|≤t

K(J, J ′) ≥ 0.

We define the t-th step in our hierarchy by optimizing over measures λ ∈ M(I2t)
satisfying the three properties discussed above.

http://www.daviddelaat.nl
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Definition 2.2. For t ∈ N, define

Et = min
{
λ(f) : λ ∈ M(I2t) positive and of positive type,

λ(I=i) =
(
N
i

)
for 0 ≤ i ≤ 2t

}
.

In Section 5.1 we prove strong duality, which implies the minimum here is at-
tained. By construction, the measure λS is feasible for Et, so Et ≤ E for all t. A
similar argument shows Et ≤ Et+1 for all t. In Section 4 we prove EN = E.

3. Connection to the Lasserre hierarchy

We originally derived the hierarchy {Et} by applying a variation of the Lasserre
hierarchy from polynomial optimization to energy minimization problems where
the container V is finite. We then reformulated (and possibly weakened, but still
preserving convergence) the constraints in the resulting relaxations into a form that
allows for a useful generalization to the case where V is infinite.

A polynomial optimization problem is a problem of the form

inf
{
p(x) : x ∈ Rn, gj(x) ≥ 0 for j ∈ [m]

}
,

where p, g1, . . . , gm ∈ R[x1, . . . , xn]. In general, finding the global minimum and
proving optimality of a point x ∈ Rn are both difficult problems. A powerful
and popular approach of obtaining lower bounds on the global minimum is to use
the Lasserre hierarchy [31], which is a sequence of increasingly strong semidefinite
programming relaxations.

We are interested in binary polynomial optimization problems, which are of the
form

inf
{
p(x) : x ∈ {0, 1}n, gj(x) ≥ 0 for j ∈ [m]

}
,

where [m] = {1, . . . ,m}. These problems are special cases of polynomial opti-
mization problems, because we can enforce the constraints x ∈ {0, 1}n by adding
the polynomial constraints xi(1 − xi) ≥ 0 and −xi(1 − xi) ≥ 0 for each i ∈ [n].
If we assume the container of an energy minimization problem to be finite, say,
V = [n] for some n ∈ N, then we can write the problem E as the binary polynomial
optimization problem

min
{ ∑

1≤i<j≤n

f({i, j})xixj : x ∈ {0, 1}n, κ(x) = 0
}
,

where κ(x) =
∑n

i=1 xi−N , and where f is the pair potential as defined in Section 2.
Let G be the graph with vertex set [n] and no edges. Then It is the set of all

subsets of [n] of cardinality at most t. In a binary polynomial optimization problem,
we may assume all polynomials to be square free, and for such a polynomial we
write

p(x) =
∑

S∈Ideg(p)

pSx
S , where xS =

∏

i∈S

xi.

Given an integer t ∈ N and a vector y ∈ RI2t , define the t-th moment matrix
Mt(y) ∈ RIt×It by Mt(y)J,J′ = yJ∪J′ . We define the t-th localizing matrix with
respect to a polynomial g ∈ R[x1, . . . , xn] to be the partial matrix Mg

t (y), which
has the same row and column indices as Mt(y), where the (J, J ′)-entry is set to

∑

R∈Ideg(g)

yJ∪J′∪R gR

whenever |J ∪ J ′| ≤ 2t− deg(g), and left unspecified otherwise. By Mp
t (y) � 0 we

mean that y is a vector such that Mp
t (y) can be completed to a positive semidefinite

matrix (this is a semidefinite constraint on y). Using these definitions we define
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for t ≥ deg(p) the following semidefinite programming relaxation of the binary
polynomial optimization problem given above:

inf
{ ∑

S∈Ideg(p)

pSyS : y ∈ RI2t
≥0, y∅ = 1, Mt(y) � 0,

M
gj
t (y) � 0 for j ∈ [m]

}
.

These relaxations were introduced by Lasserre in [32]. The only modifications we
make here is that we restrict y to be nonnegative, and originally the localizing
matrices M

gj
t (y) are defined to be full matrices indexed by It−⌈deg(gj)/2⌉, but here

we take them to be partial matrices indexed by It. These make the semidefinite
programs only slightly more difficult to solve, but in some cases, such as the case
of energy minimization as discussed here, it leads to much stronger bounds.

In the binary polynomial optimization formulation for energy minimization we
have two polynomial constraints: κ(x) ≥ 0 and −κ(x) ≥ 0. So, in the relaxation
we have the constraints Mκ

t (y) � 0 and −Mκ
t (y) = M−κ

t (y) � 0. This reduces to
Mκ

t (y) = 0; that is, all specified entries of Mκ
t (y) are required to be zero. These

constraints reduce to the linear constraints

NyS =

n∑

j=1

yS∪{j} for all S ∈ I2t−1.

So, for energy minimization, we get the relaxations

Lt = inf
{ ∑

1≤i<j≤n

f({i, j}) y{i,j} : y ∈ RI2t
≥0, y∅ = 1, Mt(y) � 0,

NyS =
n∑

j=1

yS∪{j} for S ∈ I2t−1

}
.

The linear constraints in these problems become problematic when we want to
generalize V from the finite set [n] to an uncountable set. This is because in the
infinite dimensional generalization we want to use measures λ ∈ M(I2t) instead of
vectors y ∈ RI2t (because this allows for a satisfying duality theory; see Section 5.1),
and these then become uncountably many “thin” constraints on λ. By thin we mean
that the constraints are of the form λ(E) = b, where E is a set with empty interior,
which means these constraints have no grip on the part of a measure that is zero
on sets with empty interior.

In the following lemma we show these constraints imply 2t + 1 very natural
constraints on y. In particular, this lemma implies that for a feasible solution y of
Lt, we have yS = 0 for all S ⊆ [n] with |S| > N . If we replace the linear constraints
in Lt by these induced constraints, then we obtain the problem Et as defined in the
previous section for the case where V = [n].

Lemma 3.1. Let t ∈ N0 and y ∈ RI2t . If

y∅ = 1 and NyS =

n∑

j=1

yS∪{j} for all S ∈ I2t−1,

then
∑

S∈I=i

yS =

(
N

i

)
for all 0 ≤ i ≤ 2t.

Proof. For i = 0 we have

∑

S∈I=i

yS = y∅ = 1 =

(
N

i

)
.

http://www.daviddelaat.nl
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If
∑

S∈I=i−1
yS =

(
N
i−1

)
for some 0 ≤ i ≤ 2t− 1, then

∑

S∈I=i

yS =
1

i

∑

S∈I=i−1

∑

j∈[n]\S

yS∪{j} =
1

i

∑

S∈I=i−1




n∑

j=1

yS∪{j} − |S|yS




=
1

i

∑

S∈I=i−1

(
NyS − (i − 1)yS

)
=

1

i

∑

S∈I=i−1

(N − i+ 1)yS

=
N − i+ 1

i

∑

S∈I=i−1

yS =
N − i+ 1

i

(
N

i− 1

)
=

(
N

i

)
.

Hence, the proof follows by induction. �

4. Convergence to the ground state energy

In this section we show that the hierarchy {Et} converges to the optimal energy
E in at most N steps. Moreover, the extreme points of the feasible set of EN are
precisely the measures χS with S ∈ I=N . These results follow from the following
proposition, whose proof follows directly from the proof of [30, Proposition 4.1].

Proposition 4.1. For each measure λ ∈ M(I2t) there exists a unique measure
σ ∈ M(I2t) such that λ =

∫
χS dσ(S). If λ is supported on It and is of positive

type, that is, A∗
tλ ∈ M(It × It)�0, then σ is a positive measure supported on It.

Using this proposition we can prove the convergence result:

Proposition 4.2. The N th step EN gives the optimal energy E.

Proof. Let λ ∈ M(I2N ) be feasible for EN . We have λ ≥ 0 and λ(I=i) =
(
N
i

)
= 0 for

i > N , so λ is supported on IN . Since λ is also of positive type, by Proposition 4.1
there exists a positive measure σ ∈ M(IN ) such that λ =

∫
χS dσ(S). We have

1 =
(
N
0

)
= λ({∅}) =

∫
χS({∅}) dσ(S) =

∫
dσ = σ(IN ),

so σ is a probability measure. Moreover,

1 =
(
N
N

)
= λ(I=N ) =

∫
χS(I=N ) dσ(S) = σ(I=N ),

so σ is supported on I=N . The objective value of λ is given by

λ(f) =

∫
χS(f) dσ(S) ≥

∫
E dσ = E,

where the inequality follows since χS(f) ≥ E for all S ∈ I=N . It follows that
EN ≥ E. Since we already known EN ≤ E, this completes the proof. �

Using the ideas of the above proof together with the proof of [30, Proposition
4.1] it follows that the extreme points of the feasible set of EN are precisely the
measures χS with S ∈ I=N .

5. Optimization with infinitely many binary variables

We discuss the duality theory and symmetry reduction for a more general type
of problems that arise naturally when forming moment relaxations of optimization
problems with infinitely many binary variables. This includes the moment relax-
ations for both energy minimization and packing problems. Although there are
infinitely many variables, we assume that in a feasible solution only finitely many
of them active (nonzero) at the same time, and active variables cannot be too
close. For this we assume G = (V,E) to be a compact topological packing graph as
discussed in Section 2.
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Definition 5.1. Let G be a topological packing graph. Given integers t and m, func-
tions f, g1, . . . , gm ∈ C(I2t), and scalars b1, . . . , bm ∈ R, we define the optimization
problem H = H inf

G,t(h; g1, . . . , gm; b1, . . . , bm) by

H = inf
{
λ(f) : λ ∈ M(I2t)≥0, A

∗
tλ ∈ M(It × It)�0, λ(gj) = bj for j ∈ [m]

}
.

For energy minimization we have

Et = Hmin
G,t (f ; 1I=0 , . . . , 1I=2t ;

(
N
0

)
, . . . ,

(
N
2t

)
),

where G and f are the graph and potential function as defined in Section 2. For
packing problems in discrete geometry, the t-th step of the hierarchy from [30] is
given by Hmax

G,t (1I=1 ; 1{∅}, 1), where G is the topological packing graph defining the
packing problem.

5.1. Duality. The optimization problem H is a conic program over the cone

M(It × It)�0 ×M(I2t)≥0,

where we refer to [5] for an introduction to conic programming. If we endow both
M(It × It)sym and M(I2t) with the weak* topologies, then the topological dual
spaces can be identified with C(It × It)sym and C(I2t). The tuples (C(I2t),M(I2t))
and (C(It × It)sym,M(It × It)sym) are dual pairs, and the dual pairings

〈f, λ) = λ(f) =

∫
f(S) dλ(S) and 〈K,µ〉 = µ(K) =

∫
K(J, J ′) dµ(J, J ′)

are nondegenerate. The dual cones are then given by C(It × It)�0 and C(I2t)≥0,
and by conic duality we obtain the dual conic program

H∗ = sup
{ m∑

i=1

biai : a ∈ Rm, K ∈ C(It × It)�0, f −
m∑

i=1

aigi −AtK ∈ C(I2t)≥0

}
.

By weak duality we have H∗ ≤ H . The following theorem, which is a slight
generalization of the results in [30, Chapter 3], gives a sufficient condition for strong
duality.

Theorem 5.2. If H admits a feasible solution, and if the set
{
λ ∈ M(I2t)≥0 : A∗

tλ ∈ M(It × It)�0, λ(f) = λ(g1) = · · · = λ(gm) = 0
}
,

is trivial, then strong duality holds: H = H∗ and the minimum in H is attained.

Proof. To show that strong duality holds we use a closed cone condition described
in for instance [5]. This closed cone condition says that if H admits a feasible
solution, and the cone

K =
{
(A∗

tλ− µ, λ(g1), . . . , λ(gm), λ(f)) : λ ∈ M(I2t)≥0, µ ∈ M(It × It)�0

}

is closed in M(It × It)�0 × Rm × R, then strong duality holds: H = H∗ and the
minimum in H is attained.

This cone K decomposes as the Minkowski difference K = K1 −K2, with

K1 = {(A∗
tλ, λ(g1), . . . , λ(gm), λ(f)) : λ ∈ M(I2t)≥0}

and

K2 = {(µ, 0, 0) : µ ∈ M(It × It)�0}.
By Klee [25] and Dieudonné [17], a sufficient condition for the cone K to be

closed is if K1 ∩ K2 = {0}, K1 is closed and locally compact, and K2 is closed.
The first condition K1 ∩K2 = {0} follows immediately from the hypothesis of the
theorem. In [30] it is shown that K1 is closed and locally compact. That K2 is
closed follows immediately from M(It × It)�0 being closed. �

http://www.daviddelaat.nl
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In [30, Lemma 3.1.5] it is shown that the set
{
λ ∈ M(I2t)≥0 : A∗

tλ ∈ M(It × It)�0, λ({∅}) = 0
}

is trivial, which means Theorem 5.2 applies to the case where each λ ∈ M(I2t)≥0

with λ(f) = λ(g1) = · · · = λ(gm) = 0 satisfies λ({∅}) = 0. For each t, the program
Et admits a feasible solution (see Section 2), and Et satisfies this property by the
constraint λ(I=0) =

(
N
0

)
. Thus for every t strong duality holds for the pair (Et, E

∗
t ).

5.2. Symmetry reduction. Given a compact group Γ with a continuous action on
the vertex set V of a compact topological packing graph G, we say the optimization
problem H inf

G,t(f ; g1, . . . , gm; b1, . . . , bm) is Γ-invariant if

(1) the adjacency relations in G are invariant under the action of Γ, so that
the action extends to a continuous action on IN given by γ∅ = ∅ and
γ{x1, . . . , xN} = {γx1, . . . , γxN};

(2) the functions f, g1, . . . , gm are Γ-invariant.

Using this definition, the relaxations Et = Hmin
G,t (f ; 1I=0 , . . . , 1I=2t ;

(
N
0

)
, . . . ,

(
N
2t

)
)

are Γ-invariant whenever the metric d of the container V is Γ-invariant.
We use this symmetry to restrict to invariant variables in both the primal and

dual optimization problems. To make the best use of the symmetry we should take
Γ as large as possible. For energy minimization problems this means we should
take it to be the symmetry group of the metric space (V, d), which for the Thomson
problem means we take Γ = O(3).

Let C(I2t)Γ be the subspace consisting of Γ-invariant functions, and C(It×It)
Γ
sym

the subspace of Γ-invariant symmetric kernels, and define the cones

C(I2t)Γ≥0 = C(I2t)≥0 ∩ C(I2t)Γ and C(It × It)
Γ
�0 = C(It × It)�0 ∩ C(It × It)

Γ
sym.

Given a function f ∈ C(I2t), we define its symmetrization f̄ ∈ C(I2t)Γ by

f̄(S) =

∫

Γ

f(γS) dγ,

where we integrate over the normalized Haar measure of Γ. Similarly, given a kernel
K ∈ C(It × It)sym, we define its symmetrization K̄ by

K̄(J, J ′) =

∫

Γ

K(γJ, γJ ′) dγ.

Using these definitions we can define the symmetrizations λ̄ and µ̄ of measures
λ ∈ M(I2t) and µ ∈ M(It × It)sym by λ̄(f) = λ(f̄) and µ̄(K) = µ(K̄). It follows
that the spaces M(I2t)

Γ and M(It × It)
Γ
sym can be identified with the topological

duals of C(I2t)Γ and C(It × It)
Γ
sym, and as in the nonsymmetrized situation these

form dual pairs.
We have

AtK(γS) =
∑

J,J′∈It
J∪J′=γS

K(J, J ′) =
∑

J,J′∈It
γ−1J∪γ−1J′=S

K(J, J ′) =
∑

J,J′∈It
J∪J′=S

K(γJ, γJ ′),

so At maps Γ-invariant kernels to Γ-invariant functions. This means we can view
At as an operator from C(It × It)

Γ
sym to C(I2t)Γ, and we can view A∗

t as an operator
from M(I2t)

Γ to M(It × It)
Γ
sym.

We define the symmetrization of a Γ-invariant primal problem H from Defini-
tion 5.1 by

HΓ = min
{
λ(f) : λ ∈ M(I2t)

Γ
≥0, A

∗
tλ ∈ M(It × It)

Γ
�0, λ(gi) = bi for i ∈ [m]

}
,
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and the symmetrization of the dual program H∗ by

H∗
Γ = sup

{ m∑

i=1

biai : a ∈ Rm, K ∈ C(It × It)
Γ
�0, f −

m∑

i=1

aigi −AtK ∈ C(I2t)Γ≥0

}
.

Given feasible solutions λ and K of H and H∗, the symmetrizations λ̄ and K̄ are
feasible for HΓ and H∗

Γ and have the same objective values. This shows H = HΓ

and H∗ = H∗
Γ. As a result we have HΓ = H∗

Γ, which alternatively could be shown
by proving strong duality for the symmetrized problems.

In the following section we discuss the construction of a nested sequence {Cd}∞d=0

of inner approximating cones of C(It×It)
Γ
�0 such that the union ∪∞

d=0Cd is uniformly
dense in C(It × It)

Γ
�0. This sequence is constructed in such a way that optimization

over Cd is easies than optimization over the original cone, and gets more difficult as
d grows. Define H∗

d to be the optimization problem H∗
Γ with the cone of invariant,

positive definite kernels replaced by its inner approximation Cd. Now we give a
sufficient condition for the programs H∗

d to approximate the program H∗
Γ. The

following proposition applies for the case of H = Et by selecting selecting c = 0
and y = −e, where e is the all ones vector. This shows that if we let E∗

t,d be the

problem E∗
t with the cone C(It × It)�0 replaced by Cd, then E∗

t,d → Et as d → ∞.

Proposition 5.3. If there exists a scalar c ∈ R and a vector y ∈ Rm for which
cf −∑m

i=1 yigi is a strictly positive function, then H∗
d → H∗ as d → ∞.

Proof. Select c ∈ R and y ∈ Rm for which cf −∑m
i=1 yigi is a strictly positive

function. Let (a,K) be a feasible solution of H∗
Γ and let ε > 0. Let

κ = min
S∈I2t

(
cf(S)−

m∑

i=1

yigi(S)

)
,

where the minimum is attained and strictly positive because we optimize a contin-
uous function over a compact set. We have f −∑m

i=1 aigi − AtK ≥ 0, so, for any
δ ≥ 0, we have

f + δcf −
m∑

i=1

(ai + δyi)gi −AtK ≥ δκ,

and hence

f −
m∑

i=1

ai + δyi
1 + δc

gi −At

( 1

1 + δc
K
)
≥ δκ

1 + δc
.

Since
⋃∞

d=0Cd is uniformly dense in C(It×It)
Γ
�0, and since At is a bounded operator,

there exists a dδ ∈ N0 and a kernel Lδ ∈ Cdδ
such that

∥∥∥∥At

( 1

1 + δc
K
)
−AtLδ

∥∥∥∥
∞

≤ δκ

1 + δc
.

This means that

f −
m∑

i=1

ai + δyi
1 + δc

gi −AtLδ ≥ 0.

So, for all δ > 0, ((a+δy)/(1+δc), Lδ) is feasible for H
∗
dδ
, and as δ ↓ 0, its objective

value goes to the objective value of (a,K). This shows H∗
d → H∗ as d → ∞. �

6. Approximating the cone of invariant positive definite kernels

In this section we show how to approximate the cone of invariant positive definite
kernels by a sequence of simpler inner approximating cones, where this sequence
converges in the sense that the union of the inner approximating cones is uniformly
dense, and where each of the inner approximating cones is isomorphic to a finite
product of positive semidefinite matrix cones (their elements are said to be block

http://www.daviddelaat.nl
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diagonalized). In Section 6.1 we first give some background on symmetry adapted
systems and zonal matrices and how these can be used to construct inner approxi-
mating cones. Then we use the results from Appendix A to show the existence of an
inner approximating sequence as mentioned above for the cone C(X ×X)Γ�0, where
X is a compact metric space and Γ a compact group with a continuous action on
X . In Section 6.2 we show how such a sequence can be constructed explicitly for
the case where X = It. In Section 6.3 we then perform the construction explicitly
for V = S2, Γ = O(3), and t = 2, which we later use to compute E∗

2 .

6.1. Symmetry adapted systems and zonal matrices. In this section we show
how to define the inner approximating cones by using symmetry adapted systems
and zonal matrices. Since we will use representation theory, it is convenient to work
over the complex numbers and first consider the cone C(X×X ;C)Γ�0 of Hermitian,

Γ-invariant, positive definite kernels. Here a Hermitian kernel K ∈ C(X ×X ;C) is
said to be positive definite if

n∑

i,j=1

cicjK(xi, xj) ≥ 0 for all n ∈ N, x ∈ Xn, c ∈ Cn.

We start by giving the definition of a symmetry adapted system for X . Let
µ be a Radon measure on X that is strictly positive and Γ-invariant. By strictly
positive we mean that µ(U) > 0 for all open sets U in X , and by Γ-invariant we
mean µ(γU) = µ(U) for all γ ∈ Γ and all Borel sets U in X . Such a measure
always exists (see Lemma A.2). We define an orthonormal system of X to be a
set consisting of continuous, complex-valued functions on X that are orthonormal
with respect to the L2(X,µ;C) inner product

〈f, g〉 =
∫

f(x)g(x) dµ(x).

Such a system is said to be complete if its span is uniformly dense in the space
C(X ;C) of continuous complex-valued functions on X .

To define what it means for such a system to be symmetry adapted we need
some representation theory. A unitary representation of Γ is a continuous group
homomorphism from Γ to the group U(H) of unitary operators on a nontrivial
Hilbert space H, where U(H) is equipped with the weak (or strong, they are the
same here) operator topology. Such a representation is said to be irreducible whenH
does not admit a nontrivial closed invariant subspace. Two unitary representations
π1 : Γ → U(H1) and π2 : Γ → U(H2) are equivalent if there exists a unitary operator
T : H1 → H2 that is Γ-equivariant; that is, Tπ1(γ)u = π2(γ)Tu for all γ ∈ Γ and
u ∈ H1. Let Γ̂ be a complete set of inequivalent irreducible unitary representations
of Γ, and denote the dimension of a representation π ∈ Γ̂ by dπ. A particularly
important example of a unitary representation is given by

L : Γ → U(L2(X,µ;C)), L(γ)f(x) = f(γ−1x).

A complete orthonormal system of X is said to be a symmetry adapted system
of X if there exist numbers 0 ≤ mπ ≤ ∞ for which we can write the system as

{
eπ,i,j : π ∈ Γ̂, i ∈ [mπ], j ∈ [dπ]

}
,

with Hπ,i = span{eπ,i,1, . . . , eπ,i,dπ} equivalent to π as a unitary subrepresentation
of L, and where there exist Γ-equivariant unitary operators Tπ,i,i′ : Hπ,i → Hπ,i′

with eπ,i′,j = Tπ,i,i′eπ,i,j for all π, i, i′, and j. In Theorem A.6 we show such a
system always exists. The number mπ can be shown to be equal to the dimension
of the space HomΓ(X,Hπ) of Γ-equivariant, continuous functions from X to Hπ ,
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where Hπ is the Hilbert space of the irreducible representation π, and hence does
not depend on the choice of symmetry adapted system.

The spacesHπ,i are pairwise orthogonal irreducible subrepresentations of L, each
spanned by continuous functions, such that

∑
π∈Γ̂

∑
i∈[m]Hπ,i is uniformly dense

in C(X ;C). On the other hand, when we are given a set of subspaces satisfying the
above properties, then we can immediately construct a symmetry adapted system
by simply selecting appropriate bases of the subspaces.

Now we show how the extreme rays of C(X ×X ;C)Γ�0 suggest a “simultaneous
block diagonalization” of the kernels in this cone. A nonzero vector x in a cone K
lies on an extreme ray if x1, x2 ∈ R≥0x for all x1, x2 ∈ K with x = x1 + x2. In
Theorem A.1 we show that a kernel K ∈ C(X ×X ;C)Γ�0 lies on an extreme ray if
and only if there exists an irreducible unitary representation π : Γ → U(Hπ) and a
function ϕ ∈ HomΓ(X,Hπ) such that

K(x, y) = 〈ϕ(x), ϕ(y)〉 for all x, y ∈ X.

In the case where mπ < ∞, we have a finite basis ϕ1, . . . , ϕmπ of HomΓ(X,Hπ),
and the map

A 7→
mπ∑

i,j=1

Ai,j〈ϕi(·), ϕj(·)〉

is an isomorphism from the cone of mπ ×mπ Hermitian positive semidefinite ma-
trices to the convex hull of the extreme rays of C(X ×X ;C)Γ�0 that correspond to
π. Moreover, if Γ̂ is finite and mπ is finite for all π ∈ Γ̂, this gives an isomor-
phism between a finite product of Hermitian positive semidefinite matrix cones and
C(X ×X ;C)Γ�0. For our applications, however, we are particularly interested in
the situation where these numbers are not finite, and hence we need to consider
convergence.

Given a symmetry adapted system {eπ,i,j} of X , we define the matrices

Eπ(x)i,j = eπ,i,j(x) for π ∈ Γ̂, x ∈ X, i ∈ [mπ], j ∈ [dπ],

and we use this to define the zonal matrices

Zπ(x, y) = Eπ(x)Eπ(y)
∗ for π ∈ Γ̂ and x, y ∈ X,

where Eπ(y)
∗ is the conjugate transpose of Eπ(y). The Fourier coefficients of a

kernel K ∈ C(X ×X ;C) are defined as

K̂(π) =
1

dπ

∫∫
K(x, y)Zπ(x, y)

∗ dµ(x)dµ(y), for π ∈ Γ̂,

where the matrices are integrated entrywise. The inverse Fourier transform reads

K(x, y) =
∑

π∈Γ̂

mπ∑

i,i′=1

K̂(π)i,i′Zπ(x, y)i,i′ ,

where the series in general converges in L2. The kernel K is positive definite if
and only if K̂(π) is positive semidefinite for all π ∈ Γ̂ (see Lemma A.7). In the
special case where the action of Γ on X has finitely many orbits and K is positive
definite, the above series converges absolutely-uniformly (this is an extension of
Bochner’s theorem [8] to the case of finitely many orbits [28]). We are interested in
the situation of infinitely many orbits, where the above series in general does not
converge uniformly.

For each π ∈ Γ̂, let Rπ,0 ⊆ Rπ,1 ⊆ . . . be finite subsets of [mπ] such that⋃∞
d=0 Rπ,d = [mπ] and such that for each d, the set Rπ,d is empty for all but finitely

many π. Let Zπ,d be the finite principal submatrix of the zonal matrix Zπ containing
only the rows and columns indexed by elements from Rπ,d. Let Cπ,d be the cone
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of kernels of the form (x, y) 7→ 〈A,Zπ,d(x, y)
∗〉, where A ranges over the Hermitian

positive semidefinite matrices of appropriate size, and where 〈A,B〉 = trace(AB∗)
is the trace inner product. We define the dth inner approximating cone Cd by the
(Minkowski) sum

∑
π∈Γ̂ Cπ,d. Then we have

C0 ⊆ C1 ⊆ . . . ⊆ C(X ×X ;C)Γ�0,

and in Theorem A.8 we show
⋃∞

d=0Cd is uniformly dense in C(X ×X ;C)Γ�0.
Let

Dd =
{
(K +K)/2 : K ∈ Cd

}
⊆ Cd,

so that
⋃∞

d=0 Dd is uniformly dense in C(X×X)Γ�0. If all irreducible representations
of Γ are of real type; that is, if each representation π ∈ Γ̂ is unitarily equivalent to a
representation Γ → O(dπ) ⊆ U(dπ), then there exists a symmetry adapted system
of X consisting of real-valued functions. This means we can choose the symmetry
adapted system in such a way that the zonal matrices are real-valued, and

Dd =
{∑

π∈Γ̂

〈
Fπ, Zπ,d(·, ·)∗

〉
: Fπ ∈ S

Rπ,d

�0 for π ∈ Γ̂
}
.

If Γ̂ also contains representations of complex or quaternionic type (these are the
two remaining possibilities), then one should construct a real symmetry adapted
system, where π ranges over the real irreducible representations. See [23] or [46]
where this is discussed for finite groups. The irreducible representations of the
groups considered in this paper are all of real type.

6.2. Harmonic analysis on subset spaces. In this section we show how to con-
struct the sequence {Dd} as defined above for the special case where X = It. We
give a construction in two steps: The main step is that we show how to construct
a symmetry adapted system for Xt, where Xt is a structurally simpler space that
contains It as an embedding. This yields a sequence of inner approximating cones
of C(Xt ×Xt)

Γ
�0. Then we restrict the domains of the kernels in these inner approx-

imations to the smaller space It×It to obtain inner approximations of C(It × It)
Γ
�0.

Let

Xt =

t⋃

i=0

V i/Si,

where Si is the symmetric group on i elements. The set Xt obtains a topology by
using the topology of V and the product, quotient, and disjoint union topologies.
We define a continuous action of Γ on Xt by

γ
{
(xσ(1), . . . , xσ(i)) : σ ∈ Si

}
=
{
(γxσ(1), . . . , γxσ(i)) : σ ∈ Si

}
.

The space It embeds as a closed, Γ-invariant subspace into Xt by the embedding
that sends {x1, . . . , xi} ∈ I=i to {(xσ(1), . . . , xσ(i)) : σ ∈ Si}. Notice that we could
also embed It in V t/St ∪ {e} (where the empty set maps to an additional point e),
but for computational reasons it is preferable to embed It into Xt.

We first show that each kernel in the cone C(It × It)
Γ
�0 is the restriction to

It×It of a kernel from C(Xt×Xt)
Γ
�0, which shows shows that if a sequence of inner

approximations of C(Xt ×Xt)
Γ
�0 has dense union, then the corresponding sequence

of inner approximations of C(It × It)
Γ
�0 also has dense union.

Lemma 6.1. Let (X, d) be a compact metric space with a continuous action of a
compact group Γ, and let Y be a closed Γ-invariant subspace of X. Each kernel
K ∈ C(Y × Y )Γ�0 is the restriction to Y × Y of a kernel in C(X ×X)Γ�0.
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Proof. Let K ∈ C(Y × Y )Γ�0. By Mercer’s theorem there exists a sequence of

functions {ei} in C(Y ) such that
∑∞

i=1 ei ⊗ ei converges absolutely and uniformly
to K. In particular this means

∑∞
i=1 |ei|2 converges uniformly.

Given a point x ∈ X , define

Yx =
{
y ∈ Y : d(y, x) ≤ d(z, x) for all z ∈ X

}
.

For each i we define the function ci : X → R by

ci(x) = min
y∈Yx

|ei(y)|2 for x ∈ X.

We first show ci is lower semicontinuous. For κ > 0, let

Yx,κ = Y \
⋃

y∈Yx

Bκ(y)
◦,

where Bκ(y)
◦ is the open ball of radius κ about y. The set Yx,κ is closed, so there

exist a δ > 0 such that Yz ∩ Yx,κ = ∅ for all z ∈ Bδ(x). This means that for every
ε > 0, there is a δ > 0 such that ci(z) ≥ ci(x) − ε for all z ∈ Bδ(x).

Since X is a compact metric space, it is perfectly normal, which implies the
existence of a function ι ∈ C(X) such that ι|Y = 1 and ι|X\Y < 1. By Tietze’
extension theorem there exist functions fi ∈ C(X ;K) with fi|Y = ei. Let

Qi = {x ∈ X : |fi(x)|2 ≥ ci(x) + 2−i}.
The set Qi is disjoint from Y , and it follows from ci being lower semicontinuous
that Qi is closed and hence compact. So, Mi = maxx∈Qi ι(x) exists and is strictly
smaller than 1. Let

Bi = max
x∈Qi

|fi(x)|√
ci(x) + 1/2i

,

and let ki be an integer such that Mki

i Bi ≤ 1. It follows that

|gi|2 ≤ ci +
1

2i
, where gi = ιkifi.

Let ε > 0. Choose N1 ∈ N such that
∑∞

i=N1
1/2i ≤ ε/2. Choose N2 ∈ N such

that ∥∥∥∥∥
n∑

i=m

|ei|2
∥∥∥∥∥
∞

≤ ε

2

for all n ≥ m ≥ N2. This is possible because
∑∞

i=1 |ei|2 converges uniformly and
hence Cauchy uniformly. Let N = max{N1, N2}. Then,∥∥∥∥∥

n∑

i=m

gi ⊗ gi

∥∥∥∥∥
∞

≤
∥∥∥∥∥

n∑

i=m

|gi|2
∥∥∥∥∥
∞

≤
∥∥∥∥∥

n∑

i=m

ci

∥∥∥∥∥
∞

+

n∑

i=m

1/2i.

We have ∥∥∥∥∥
n∑

i=m

ci

∥∥∥∥∥
∞

= sup
x∈X

n∑

i=m

min
y∈Yx

|ei(y)|2.

We use the axiom of choice to select an element yx ∈ Yx for each x ∈ X . Then,

sup
x∈X

n∑

i=m

min
y∈Yx

|ei(y)|2 ≤ sup
x∈X

n∑

i=m

|ei(yx)|2 = sup
x∈Y

n∑

i=m

|ei(x)|2 =

∥∥∥∥∥
n∑

i=m

|ei|2
∥∥∥∥∥
∞

≤ ε

2
.

and
∑n

i=m 1/2i ≤ ε/2, so
∑n

i=m gi ⊗ gi converges uniformly Cauchy and hence
uniformly. Let P be the limit function.

Define K ′ ∈ C(X ×X)Γ�0 by K ′(x, y) =
∫
P (γx, γy) dγ, where we integrate over

the normalized Haar measure of Γ. Since P |Y ×Y = K is Γ-invariant, the restriction
of K ′ to Y × Y equals K, which completes the proof. �

http://www.daviddelaat.nl
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To give an explicit construction of a symmetry adapted system for Xt we use
symmetric tensor powers. Given a vector space V , denote the nth tensor power of
V by V⊗n; that is, V⊗n = V ⊗ · · · ⊗ V (n times). Given v1, . . . , vn ∈ V and σ ∈ Sn,
let

(⊗n
i=1vi)

σ = ⊗n
i=1vσ(i),

and extend this operation to V⊗n by linearity. Define the nth symmetric tensor
power of V as

V⊙n =
{ ∑

σ∈Sn

wσ : w ∈ V⊗n
}
.

We have wσ = w for all w ∈ V⊙n and σ ∈ Sn, and V⊙n = span{v⊗n : v ∈ V} [14].
If H1 and H2 are Hilbert spaces, then we equip the tensor product H1 ⊗ H2 with
the inner product 〈u1 ⊗ u2, v1 ⊗ v2〉 = 〈u1, v1〉〈u2, v2〉, where we extend linearly in
the first and antilinearly in the second component. We denote the Hilbert space
obtained by taking the completion in the metric given by this inner product by
H1 ⊗̂ H2. A symmetric tensor power H⊙n of a Hilbert space H gets a metric as a

subspace of H⊗̂n, and we denote the completion in this metric by H⊙̂n. We have

H⊙̂n = closure(span({v⊗n : v ∈ H})),
where the closure is in H⊗̂n. The (inner) tensor product representation

π1 ⊗ π2 : Γ → U(H1 ⊗̂ H2)

of two unitary representations π1 : Γ → U(H1) and π2 : Γ → U(H2) is defined by

(π1 ⊗ π2)(γ)(v1 ⊗ v2) = (π(γ)v1)⊗ (π(γ)v2),

and we have similar definitions for finite products and finite (symmetric) powers.
Let µ be a strictly positive Γ-invariant Radon measure on X . This defines a

strictly positive, Γ-invariant Radon measure ν on Xt by

ν(f) =
t∑

i=0

∫
· · ·
∫

V

f({(xσ(1), . . . , xσ(i)) : σ ∈ Si

}
) dµ(x1) · · · dµ(xi).

For each 0 ≤ i ≤ t, we define the operator

Li : L
2(V, µ;C)⊙̂i → L2(Xt, ν;C)

by setting

Li(f
⊗i)({(xσ(1), . . . , xσ(i)) : σ ∈ Si}) =

i∏

k=1

f(xk)

for f ∈ L2(V, µ;C) and extending by linearity and continuity. These are isometric,
Γ-equivariant operators with pairwise orthogonal images, such that

t⊕

i=0

Li(L
2(V, µ;C)⊙̂i) = L2(Xt, ν;C),

and
t∑

i=0

Li(C(V ;C)⊙i)

is uniformly dense in C(Xt;C).
We assume we have a symmetry adapted system of V . As discussed in the

previous section, such a system defines a sequence {Hk}mk=1 (where 1 ≤ m ≤ ∞) of
pairwise orthogonal, Γ-irreducible (and hence finite dimensional) subrepresentations
of L2(V, µ;C), such that the algebraic sum

∑m
k=1 Hk is uniformly dense in C(V ;C).
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The spaces

m⊗

k=1

H⊙τk
k , for τ ∈ Di =

{
τ ∈ Nm

0 :

m∑

k=1

τk = i
}

and 0 ≤ i ≤ t,

are pairwise orthogonal, Γ-invariant subspaces of L2(V, µ;C)⊗i. Notice that the
above tensor products are finite even if m = ∞, since τk is nonzero for at most
finitely many k. For each 0 ≤ i ≤ t, we will define (see below) a Γ-equivariant,
unitary operator

Ti :
⊕̂

τ∈Di

m⊗

k=1

H⊙τk
k → L2(V, µ;C)⊙̂i,

so that
∑

τ∈Di

Ti

( m⊗

k=1

H⊙τk
k

)

is uniformly dense in C(V ;C)⊙i.
The finite dimensional spaces ⊗m

k=1H⊙τk
k , for τ ∈ Di and 0 ≤ i ≤ t, decom-

pose into Γ-irreducible representations; that is, there exist Γ-equivariant, unitary
operators

Mτ :
⊕

π∈Rτ

Hπ →
m⊗

k=1

H⊙τk
k ,

where Hπ is the Hilbert space of the irreducible representation π ∈ Rτ , and where
Rτ is some finite subset of Γ̂. In Section 6.3 we construct the sets Rτ and the
operators Mτ explicitly for the case where V = S2, Γ = O(3), and t = 2.

By composing the operators defined above we can define a symmetry adapted
system of Xt. For each π ∈ Γ̂, let {eπ,1, . . . , eπ,dπ} be an orthonormal basis of Hπ .
Then,

(1)
{
Li(Ti(Mτ (eπ,j))) : 0 ≤ i ≤ t, τ ∈ Di, π ∈ Rτ , j ∈ [dπ]

}

is a symmetry adapted system of Xt.
In the remainder of this section we give the precise definition of Ti and show it

is a well-defined, Γ-equivariant, unitary operator. This generalizes a result from [2]
from finite to infinite direct sums and from vector spaces to representations. Given
τ ∈ Di, let Aτ be the subgroup consisting of all σ ∈ Si for which the set

{ j−1∑

k=1

τk + 1,

j−1∑

k=1

τk + 2, . . . ,

j∑

k=1

τk

}

is invariant under the permutation σ on [i] for each j ∈ [m]. Let Bτ be the left
coset space of Si modulo Aτ . Given τ ∈ Di, w ∈ ⊗m

k=1H⊙τk
k , and [σ] ∈ Bτ , the

operation w 7→ wσ is well-defined, and

1

|Bτ |
∑

[σ]∈Bτ

wσ ∈ L2(V, µ;C)⊙i.

Moreover, if we fix an element wτ ∈ ⊗m
k=1H⊙τk

k for every τ ∈ Di, then wσ
τ and wσ′

τ ′

are orthogonal whenever τ 6= τ ′ or σ 6= σ′. Hence, we can define Ti by setting

Ti(w) =
1

|Bτ |
∑

[σ]∈Bτ

wσ , for w ∈
m⊗

k=1

H⊙τk
k and τ ∈ Di,

and extending by linearity and continuity.
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Lemma 6.2. For each 0 ≤ i ≤ t, Ti is a Γ-equivariant, unitary operator, and

∑

τ∈Di

Ti

( m⊗

k=1

H⊙τk
k

)

is uniformly dense in C(V ;C)⊙i.

Proof. Given w ∈ ⊗m
k=1H⊙τk

k , we have

‖Ti(w)‖ =

∥∥∥∥∥∥
1

|Bd|
∑

[σ]∈Bτ

wσ

∥∥∥∥∥∥
=

1

|Bτ |
∑

[σ]∈Bτ

‖wσ‖ = ‖w‖,

so Ti is a linear isometry.
The span of the elements of the form (

∑m
k=1 vk)

⊗i, where vk ∈ Hk for k ∈ [m]
and vk = 0 for all but finitely many k, is uniformly dense in C(V ;C)⊙i. Such an
element has a preimage under Ti:

( m∑

k=1

vk

)⊗i

=

m∑

k1,...,ki=1

i⊗

j=1

vkj =
∑

{k1,...,ki}⊆[m]

∑

σ∈Si

i⊗

j=1

vkσ(j)

=
∑

τ∈Di

∑

[σ]∈Bτ

( m⊗

k=1

v⊗τk
k

)σ
= Ti

( ∑

τ∈Di

m⊗

k=1

v⊗τk
k

)
.

So,
∑

τ∈Di

Ti

( m⊗

k=1

H⊙τk
k

)

is uniformly dense in C(V ;C)⊙i. This means that Ti is an isometry whose image is
dense in L2(V, µ;C)⊙i, and Ti therefore is a unitary operator.

Since the spaces Hk are Γ-invariant, the spaces ⊗m
k=1H⊙τk

k , for τ ∈ Di, are also

Γ-invariant. So, for w ∈ ⊗m
k=1H⊙τk

k , with τ ∈ Di, we have

Ti(π
⊗i(γ)w) =

1

|Bτ |
∑

[σ]∈Bτ

(π⊗i(γ)w)σ =
1

|Bτ |
∑

[σ]∈Bτ

π⊗i(γ)wσ

= π⊗i(γ)


 1

|Bτ |
∑

[σ]∈Bτ

wσ


 = π⊗i(γ)Ti(w),

which means that Ti is Γ-equivariant. �

6.3. Explicit computations for the sphere. In this section we explicitly con-
struct the sequence {Dd} of inner approximations (see Section 6.1) of C(It × It)

Γ
�0,

where V = S2, Γ = O(3), and t = 2. As explained in Section 6.2, for this we need
to construct a symmetry adapted system for

X2 =

2⋃

i=0

V i/Si.

Here we give all formulas explicitly so that a software implementation can be written
to generate the zonal matrices.

Let Hℓ ⊆ C(S2;C) be the space of spherical harmonics of degree ℓ. A spherical
harmonic is the restriction to S2 of a homogeneous polynomial in C[x, y, z] that
vanishes under the Laplacian ∆ = ∂2/∂x2+ ∂2/∂y2+ ∂2/∂z2; see for instance [24].
The space Hℓ has dimension 2ℓ + 1. Moreover, these spaces are orthogonal and
form irreducible subrepresentations of the unitary representation

Ls : SO(3) → U(L2(S2, µ;C)), Ls(γ)f(x) = f(γ−1x),
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where µ is the invariant measure on the sphere with normalization µ(S2) = 1.
The subrepresentations Hℓ in fact form a complete set of subrepresentations: The
algebraic sum of the spaces Hℓ is uniformly dense in C(S2;C), and L2(S2, µ;C)
decomposes as the Hilbert space direct sum of the spaces Hℓ. Moreover, every
irreducible unitary representation SO(3) is equivalent to Hℓ for some ℓ.

The Laplace spherical harmonics Y m
ℓ , for −ℓ ≤ m ≤ ℓ, provide an explicit set of

orthonormal bases of the spaces Hℓ. The functions Y m
ℓ are typically defined as

Y m
ℓ (ϑ, ϕ) = cmℓ Pm

ℓ (cos(ϕ))eimϑ,

where we use the spherical coordinates

x = cos(ϑ) sin(ϕ), y = sin(ϑ) sin(ϕ), z = cos(ϕ).

Here

cmℓ = (−1)m

√
(2ℓ+ 1)

(ℓ−m)!

(ℓ+m)!

is a normalization constant, and Pm
ℓ is the ℓth associated Legendre polynomial of

order m, where both use the Condon–Shortley phase convention. We can define
Pm
ℓ as

Pm
ℓ (z) = (−1)m(1− z2)m/2 dm

dzm
(Pℓ(z))

where

Pℓ(x) =
1

2ℓℓ!

dℓ

dxℓ
(x2 − 1)ℓ.

is the ℓth Legendre polynomial.
In cartesian coordinates Y m

ℓ becomes

cml Pm
l

(
z√

x2 + y2 + z2

)(
x+ iy√
x2 + y2

)m

,

and by using the identity x2 + y2 + z2 = 1 as well as the above definition of the
associated Legendre polynomials, we can write Y m

ℓ as the polynomial

Y m
ℓ (x, y, z) = (−1)mcmℓ

dm

dxm
(Pℓ(z)) (x+ iy)m.

From the definition of Pℓ we see that when ℓ is even (odd), then every term of
Pℓ has even (odd) degree. This means we can multiply the terms in Y m

ℓ (x, y, z)
with appropriate powers of x2 + y2 + z2 to make Y m

ℓ (x, y, z) into a homogeneous
polynomial of degree ℓ.

In general, an inner tensor product (see previous section) of irreducible represen-
tations is not irreducible. By the above discussion we know that a tensor product
Hℓ1 ⊗Hℓ2 must be isomorphic to a direct sum of the spaces Hℓ. Indeed, we have

Hℓ1 ⊗Hℓ2 ≃ H|ℓ1−ℓ2| ⊕ · · · ⊕ Hℓ1+ℓ2 ,

where the SO(3)-equivariant, unitary operator

Φℓ1,ℓ2 : Hℓ1 ⊗Hℓ2 → H|ℓ1−ℓ2| ⊕ · · · ⊕ Hℓ1+ℓ2

is rather nontrivial, but can be given explicitly by using the Clebsch–Gordan coef-
ficients [24]. Set

Φℓ1,ℓ2(Y
m1

ℓ1
⊗ Y m2

ℓ2
) =

ℓ1+ℓ2∑

ℓ=|ℓ1−ℓ2|

ℓ∑

m=−ℓ

Cℓ,m
ℓ1,m1,ℓ2,m2

Y m
ℓ
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and extend by linearity, where the Clebsch–Gordan coefficients are given by

Cℓ,m
ℓ1,m1,ℓ2,m2

= δm1+m2=m

((2ℓ+ 1)(ℓ1 + ℓ2 − ℓ)!(ℓ1 − ℓ2 + ℓ)!(−ℓ1 + ℓ2 − ℓ)!

(ℓ1 + ℓ2 + ℓ+ 1)!

· (ℓ1 +m1)!(ℓ1 −m1)!(ℓ2 +m2)!(ℓ2 −m2)!(ℓ+m)!(ℓ −m)!
)1/2

·
∞∑

ν=−∞

(−1)ν
(
ν!(ℓ1 + ℓ2 − ℓ− ν)!(ℓ1 −m1 − ν)!(ℓ2 +m2 − ν)!

· (ℓ− ℓ2 +m1 + ν)!(ℓ − ℓ1 −m2 + ν)!
)−1

.

Since the Clebsch–Gordan coefficients are real numbers, it follows that

Φ−1
ℓ1,ℓ2

(Y m
ℓ ) =

ℓ1∑

m1=−ℓ1

ℓ2∑

m2=−ℓ2

Cℓ,m
ℓ1,m1,ℓ2,m2

Y m1

ℓ1
⊗ Y m2

ℓ2
.

For any set of scalars {cm} we have

Φℓ′,ℓ′

( ℓ′∑

m1=−ℓ′

cm1Y
m1

ℓ′ ⊗
ℓ′∑

m1=−ℓ′

cm1Y
m1

ℓ1

)

=

2ℓ′∑

ℓ=0

ℓ∑

m=−ℓ




ℓ′∑

m1,m2=−ℓ′

cm1cm2C
ℓ,m
ℓ′,m1,ℓ′,m2


Y m

ℓ ,

and by using the symmetry relation

Cℓ,m
ℓ2,m2,ℓ1,m1

= (−1)ℓ1+ℓ2−ℓCℓ,m
ℓ1,m1,ℓ2,m2

we obtain
ℓ′∑

m1,m2=−ℓ′

cm1cm2C
ℓ,m
ℓ′,m1,ℓ′,m2

= 0

for all odd numbers ℓ. This shows that

Φℓ′,ℓ′(H⊙2
ℓ′ ) ⊆ H0 ⊕H2 ⊕ · · · ⊕ H2ℓ′ .

We have

dim(H⊙2
ℓ′ ) =

(
dim(Hℓ′) + 1

2

)
=

(
2ℓ′ + 2

2

)
= 2(ℓ′)2 + 3ℓ′ + 1

=
ℓ′∑

k=0

(4k + 1) = dim(H0 ⊕H2 ⊕ · · · ⊕ H2ℓ′),

and therefore

H⊙2
ℓ′ ≃ H0 ⊕H2 ⊕ · · · ⊕ H2ℓ′ .

Let Φℓ be the isomorphism H⊙2
ℓ → H0 ⊕H2 ⊕ · · · ⊕ H2ℓ defined by Φℓ = Φℓ,ℓ|H⊙2

ℓ
.

We have seen how L2(S2, µ;C) decomposes into SO(3)-irreducible representa-
tions, and how tensor products and symmetric tensor powers of these irreducibles
decompose into irreducibles. In the next section it will be essential that instead
of the group SO(3), we consider the full symmetry group O(3) of S2. The spe-
cial orthogonal group SO(3) forms a normal subgroup of O(3). Since R3 is odd
dimensional, the inversion operation x 7→ −x is not contained in SO(3). This op-
eration, which we denote by −I, generates a 2 element normal subgroup of O(3),
and the orthogonal group O(3) is isomorphic to the direct product Z2 × SO(3).
Thus, for each irreducible representation Hℓ of SO(3), we define two nonequivalent
irreducible representations πp

ℓ : O(3) → U(Hp
ℓ ), with p = ±1, where H+1

ℓ and H−1
ℓ

are both isomorphic to Hℓ as Hilbert spaces, and where πp
ℓ |SO(3) is equivalent to
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Hℓ, but where πp
ℓ (−I)f = pf for all f . It follows that πp

ℓ is a subrepresentation of
the unitary representation

L : O(3) → U(L2(S2, µ;C)), L(γ)f(x) = f(γ−1x)

if and only if p = (−1)ℓ. For f1 ∈ Hp1

ℓ1
and f2 ∈ Hp2

ℓ2
we have

(πp1

ℓ1
⊗ πp2

ℓ2
)(−I)(f1 ⊗ f2) = πp1

ℓ1
(−I)f1 ⊗ πp2

ℓ2
(−I)f2 = p1p2(f1 ⊗ f2),

which implies

Hp1

ℓ1
⊗Hp2

ℓ2
≃ Hp1p2

|ℓ1−ℓ2|
⊕ · · · ⊕ Hp1p2

ℓ1+ℓ2
and (Hp

ℓ′)
⊙2 ≃ H+1

0 ⊕H+1
2 ⊕ · · · ⊕ H+1

2ℓ′ .

The operators Φℓ1,ℓ2 and Φℓ defined above now become O(3)-equivariant, unitary
operators

Φℓ1,ℓ2 : Hp1

ℓ1
⊗Hp2

ℓ2
→ Hp1p2

|ℓ1−ℓ2|
⊕ · · · ⊕ Hp1p2

ℓ1+ℓ2

and
Φℓ : (Hp

ℓ′)
⊙2 → H+1

0 ⊕H+1
2 ⊕ · · · ⊕ H+1

2ℓ′ .

We use the operators Φℓ1,ℓ2 and Φℓ to give an explicit definition of the operators
Mτ from Section 6.2. Let eℓ denote the vector in N∞

0 with (eℓ)ℓ′ = 1 if ℓ = ℓ′ and
0 otherwise. For τ ∈ D0, Mτ becomes the identity operator H1

0 → C. Each τ ∈ D1

is of the form τ = eℓ for some ℓ, and for such a vector τ , the operator Mτ is the
identity operator Hp

ℓ → Hp
ℓ , where p = (−1)ℓ. If τ ∈ D2 is of the form τ = eℓ1 +eℓ2

with ℓ1 6= ℓ2, then Mτ is given by the operator Φ−1
ℓ1,ℓ2

. If τ ∈ D2 is of the form 2eℓ
for some ℓ ∈ N0, then Mτ is given by Φ−1

ℓ .
The representations in Γ̂ can be indexed by (ℓ, p) ∈ N0 ×{±1}, and a symmetry

adapted system of X2 has the form
{
e(ℓ,p),τ,m : ℓ ∈ N0, p = ±1, τ ∈ R(ℓ,p), −ℓ ≤ m ≤ ℓ

}
,

where R(ℓ,p) = R0
(ℓ,p) ∪R1

(ℓ,p) ∪R2
(ℓ,p),

R0
(ℓ,p) =

{
{0} if ℓ = 0 and p = 1,

∅ otherwise,
R1

(ℓ,p) =

{
{eℓ} if p = (−1)ℓ,

∅ otherwise,

and

R2
(ℓ,p) =

{
eℓ1 + eℓ2 : δ2∤ℓ ≤ |ℓ1 − ℓ2| ≤ ℓ ≤ ℓ1 + ℓ2, (−1)ℓ1+ℓ2 = p

}
,

where δ2∤ℓ is 1 if ℓ is odd, and 0 if ℓ is even. Here the basis element e(ℓ,p),τ,m can
be computed as Li(Ti(Mτ (Y

m
ℓ ))), where i =

∑
ℓ′ τℓ′ .

The rows and columns of the zonal matrices Z(ℓ,p)(T, T
′) constructed using this

symmetry adapted system are indexed by R(ℓ,p). To obtain the finite dimensional
inner approximating cones we need to select finite subsets R(ℓ,p),d ⊆ R(ℓ,p) so that⋃∞

d=0R(ℓ,p),d = R(ℓ,p), and for each d only finitely many sets R(ℓ,p),d are nonempty.
One particularly nice way (see below) to do this is to set

R(ℓ,p),d =
{
τ ∈ R(ℓ,p) :

∑

i

τi ≤ d
}
.

All irreducible representations of O(3) are of real type, and the zonal matrices
constructed above are all real-valued. As shown in Section 6.1, we can use these
to construct the sequence {Dd} of inner approximations of C(X2 ×X2)

Γ
�0. By

Lemma 6.1 we then get the desired sequence of inner approximations of C(I2 × I2)
Γ
�0.

The symmetry adapted system above is constructed in such a way that the
functions

(2) (x1, . . . , xi) 7→ A2Z(ℓ,p)(·, ·)τ,τ ′({x1, . . . , xi}),
for 0 ≤ i ≤ 4 and τ, τ ′ ∈ R(ℓ,p),d, are polynomials (of degree 2d in 3i variables),
which will be important in the next section. As a final remark of this section we note
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that although the construction of the symmetry adapted systems is more involved
for the cases n > 3 and t > 2, by using higher dimensional spherical harmonics one
can still construct a symmetry adapted systems that have the above polynomial
property.

7. Semidefinite programs with semialgebraic constraints

In this section we reduce the dual problem E∗
t for the Riesz s-energy problem

on Sn−1, with s ∈ N, to a sequence of semidefinite programs with semialgebraic
constraints. Here, by a semialgebraic constraint, we mean the requirement that a
polynomial, whose coefficients depend linearly on the entries of the positive semi-
definite matrix variable(s), is nonnegative on a given basic closed semialgebraic set.
A basic closed semialgebraic set in Rn is a subset that has a description of the form

S(g1, . . . , gm) =
{
x ∈ Rn : gi(x) ≥ 0 for i ∈ [m]

}
,

where g1, . . . , gm ∈ R[x1, . . . , xn]. In Section 8 we show how these programs can
be approximated by semidefinite programs and how symmetries in the semialge-
braic constraints can be exploited to (further) block diagonalize the semidefinite
programming formulations.

Following Section 2 and Section 5, the second step in the dual hierarchy for the
Riesz s-energy problem on Sn−1 reads

E∗
t = sup

{ 2t∑

i=0

(
N

i

)
ai : a ∈ R{0,...,2t}, K ∈ C(It × It)�0,

ai +AtK(S) ≤ f(S) for S ∈ I=i and i = 0, . . . , 2t
}
,

where It is the set of independent sets of cardinality at most t in a topological
packing graph G on Sn−1 as discussed in Section 2, and where

f(S) =

{
‖x− y‖−s

2 if S = {x, y} with x 6= y,

0 otherwise.

From the definition of G we obtain a U ∈ (−1, 1) such that two vertices x and y in
Sn−1 are adjacent if and only if x · y ≥ U .

In the symmetrized version of this problem, as derived in Section 5.2, we restrict
to O(n)-invariant kernels. In Section 6.3 we give a sequence {Dd} of inner approx-
imating cones of C(It × It)

Γ
�0, where Γ = O(n). By replacing C(It × It)

Γ
�0 with Dd,

we obtain the following sequence of approximations:

E∗
t,d = sup

{ 2t∑

i=0

(
N

i

)
ai : a ∈ R{0,...,2t}, Fπ ∈ S

Rπ,d

�0 for π ∈ Γ̂,

ai +A2K(S) ≤ f(S) for S ∈ I=i and i = 0, . . . , 2t
}
,

where

K(J, J ′) =
∑

π∈Γ̂

〈
Fπ, Zπ,d(J, J)

∗
〉
.

For each d, the problem E∗
t,d has finite dimensional variable space, and as shown

in Section 5.2, we have E∗
t,d → E∗

t = Et as d → ∞, and, as shown in Section 4, we
have E∗

N,d → E as d → ∞.

Given 0 ≤ i ≤ 2t, let R[x1, . . . , xi] be the ring of real polynomials in ni variables,
where each xk denotes a vector of n variables. As shown in Section 6.3, there exist
polynomials pi ∈ R[x1, . . . , xi] such that

pi(x1, . . . , xi) = ai +AtK({x1, . . . , xi}) for all {x1, . . . , xi} ∈ I=i,
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where the coefficients of pi depend linearly on the entries of the vector a and the
matrices F(ℓ,p). For the case where n = 3 and t = 2 we have explicitly derived these
polynomials in Section 6.3.

By construction, the polynomials pi ∈ R[x1, . . . , xi] are O(n)-invariant:

pi(x1, . . . , xi) = pi(γx1, . . . , γxi) for all x1, . . . , xi ∈ S2 and γ ∈ O(n).

So, by a theorem from invariant theory (see, for instance, [26, Theorem 10.2]) it
follows that pi can be written as a polynomial in the inner products

x1 · x1, x1 · x2, . . . , xi · xi.

On the sphere we have the identity x1 · x1 = . . . = xi · xi = 1, so there exists a (in
general non unique) polynomial qi ∈ R[u1, . . . , u(i2)

] such that

(3) pi(x1, . . . , xi) = qi(x1 · x2, x1 · x3, . . . , xi−1 · xi) for all x1, . . . , xi ∈ Sn−1,

where the coefficients of qi again depend linearly on the entries of the vector a
and the matrices F(ℓ,p). The above result is nonconstructive, and in Section 9 we
show how we compute the polynomials qi. The use of this theorem is why we need
O(n)-invariance instead of just SO(n)-invariance, for otherwise the polynomials qi
would also need to depend on the determinants of the n×n matrices whose columns
are given by n distinct vectors from {x1, . . . , xi}, which means we would have too
many variables to be able to perform computations.

The degenerate polynomials q0 and q1 have 0 variables; they are linear com-
binations of the entries of the vector a and the matrices F(ℓ,p). The constraints
a0 + AtK|I=0 ≤ 0 and a1 + AtK|I=1 ≤ 0 in E∗

t,d, where we use that f |I1 ≡ 0,
therefore reduce to the two linear constraints q0 ≤ 0 and q1 ≤ 0.

For distinct x, y ∈ Sn−1 we have

f({x, y}) = 1

‖x− y‖s2
=

1

(2− 2x · y)s/2 .

By using the substitution w =
√
2− 2u, we can reformulate the constraint

a2 +AtK|I=2 ≤ f |I=2

in E∗
t,d as the semialgebraic constraint

ws q2(1 − w2/2) ≤ 1 for w ∈ [
√
2− 2U, 2].

If s is even, we can use a more efficient formulation (in terms of the degree of the
polynomials), where we write the constraint a2 + AtK|I=2 ≤ f |I=2 in E∗

t,d as the
semialgebraic constraint

(2− 2u)s/2q2(u) ≤ 1 for u ∈ [−1, U ].

The set of independent sets of cardinality i can be described as

I=i =
{
{x1, . . . , xi} ⊆ Sn−1 : xk · xk′ ≤ U for 1 ≤ k < k′ ≤ i

}
.

So, with

Pi =
{
(x1 · x2, x1 · x3, . . . , xi−1 · xi) : {x1, . . . , xi} ∈ I=i

}
,
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a constraint of the form ai + AtK|I=i ≤ 0, for i ∈ {3, 4, . . . , 2t}, can be written as
qi|Pi ≤ 0. This means we can write the problem E∗

t,d as

E∗
t,d = sup

{ 2t∑

i=0

(
N

i

)
ai : a ∈ R{0,...,2t}, Fπ ∈ S

Rπ,d

�0 for π ∈ Γ̂,(4)

q0 ≤ 0, q1 ≤ 0,

ws q2(1− w2/2) ≤ 1 for w ∈ [
√
2− 2U, 2] if 2 ∤ s,

(2− 2u)s/2q2(u) ≤ 1 for u ∈ [−1, U ] if 2 | s,
qi|Pi ≤ 0 for i = 3, . . . , 2t

}
.

To describe Pi as a semialgebraic set we first observe that by using the Gram
decomposition of a positive semidefinite matrix, it can be written as

Pi =
{
u ∈ R(

i
2) : uj ≤ U for j ∈

[(
i
2

)]
, E(u) � 0, rank(E(u)) ≤ n

}
,

where E(u) is the symmetric i× i-matrix with ones on the diagonal and the entries
of u in the upper and lower diagonal parts. Using Sylvester’s criterion for positive
semidefinite matrices we obtain the semialgebraic description

Pi =
{
u ∈ R(

i
2) : uj ≤ U for j ∈ [

(
i
2

)
],(5)

g(u) ≥ 0 for g ∈ Gi,j with 2 ≤ j ≤ n,

g(u) = 0 for g ∈ Gi,j with n+ 1 ≤ j ≤ i
}
,

where Gi,j is the set of principal minors (the determinants of principal submatri-
ces) of E(u) ∈ Ri×i of order j. This shows E∗

t,d is a semidefinite program with
semialgebraic constraints.

Here we make two observations which are important from a computational per-
spective in modeling the semialgebraic constraints as semidefinite constraints (see
Section 8). The first observations is that Pi is compact and that the constraints
g(u) ≥ 0 for g ∈ Gi,2 provide an “algebraic certificate” of this compactness. As ex-
plained in the following section, this means the above description is Archimedean,
so that we can apply Putinar’s theorem.

The second observation concerns additional symmetry in the semialgebraic con-
straints. The particles in an energy minimization problem are interchangeable, and
this implies that the polynomials p1, . . . , p2t are not only invariant under the group
O(n), but also under (some) permutations of the ni variables: We have

pi(x1, . . . , xi) = pi(xσ(1), . . . , xσ(i)) for all x1, . . . , xi ∈ Sn−1 and σ ∈ Si.

This implies we can choose the polynomials q1, . . . , q2t in such a way that they
have additional symmetry. Let Aut∗(Ki) be the edge-automorphism group of the
complete graph Ki on i vertices, and let φi : Si → Aut∗(Ki) be the (not necessarily
surjective) map that sends a permutation of the vertices of Ki to the corresponding
permutation of the edges. If qi is a polynomial that satisfies (3), then the polynomial

(6) qi(u1, . . . , ur) =
1

i!

∑

σ∈φi(Si)

qi(uσ(1), . . . , uσ(r))

also satisfies (3) and is invariant under the group φi(Si). So, we may assume
the polynomials qi to be φi(Si)-invariant. Since the sets Gi,j used to define the
semialgebraic sets Pi are also invariant under this group, we say the semialgebraic
constraints in the problem E∗

t,d are φi(Si)-invariant.
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8. Sum of squares characterizations for invariant polynomials

In this section we first give some background on how Putinar’s theorem can be
used to approximate a semidefinite program with semialgebraic constraints by a
sequence of block diagonal semidefinite programs. Then we show how symmetry
in the polynomial constraints can be used to further block diagonalize these semi-
definite programming formulations into smaller blocks. We show this can lead to
significant computational savings by applying this to the problems E∗

2,d from the
previous section.

The quadratic module generated by g1, . . . , gm ∈ R[x1, . . . , xn] is given by

M(g1, . . . , gm) =
{ m∑

i=0

gisi : s0, . . . , sm ∈ R[x1, . . . , xn] SOS polynomials
}
,

where g0 denotes the constant one polynomial, and where a sum of squares (SOS)
polynomial is a polynomial of the form

∑
k p

2
k, with p1, . . . , pK ∈ R[x1, . . . , xn].

Polynomials in M(g1, . . . , gm) are nonnegative on the basic closed semialgebraic set

S(g1, . . . , gm) =
{
x ∈ Rn : gi(x) ≥ 0 for i ∈ [m]

}
.

The usefulness of the quadratic module stems from Putinar’s theorem [42], which
says that under the condition that M(g1, . . . , gm) is Archimedean, every strictly
positive polynomial on S(g1, . . . , gm) is contained in M(g1, . . . , gm). A quadratic
moduleM(g1, . . . , gm) is Archimedean if it contains a polynomial p such that S(p) is
compact. Such a polynomial p provides an algebraic certificate of the compactness
of S(g1, . . . , gm).

For δ ∈ N0, we define the truncated quadratic module Mδ(g1, . . . , gm) in the same
way as we defined M(g1, . . . , gm), except now we require each si to have degree at
most 2hi, where hi = ⌊(δ − deg(gi))/2⌋. Since higher degree terms can cancel each
other out, the inclusion

Mδ(g1, . . . , gm) ⊆ M(g1, . . . , gm) ∩ R[x1, . . . , xn]δ,

can be strict. Here R[x1, . . . , xn]δ denotes the vector space of polynomials of degree
at most δ. Putinar’s theorem shows that each polynomial p ∈ R[x1, . . . , xn] with
p(x1, . . . , xn) > 0 for all (x1, . . . , xn) ∈ S(g1, . . . , gm) is contained in Mδ(g1, . . . , gm)
for all large enough δ, and in [39] an upper bound on the smallest δ for which this
is true is given in terms of the polynomials g1, . . . , gm, the degree of p, and the
minimum of p over S(g1, . . . , gm).

Let vhi(x) be a vector whose entries form a basis of R[x1, . . . , xn]hi . A polynomial
of degree at most 2hi is a sum of squares if and only if it can be written as

si(x) = vhi(x)
TQivhi(x),

where Qi is a positive semidefinite matrix of size
(
n+hi

n

)
. (To prove vhi(x)

TQivhi(x)
is a sum of squares one can use a Cholesky factorization Qi = RT

i Ri). This implies

Mδ(g1, . . . , gm) ≃ S
(n+h0

n )
�0 × · · · × S

(n+hm
n )

�0 .

In a semidefinite program with semialgebraic constraints, we can now approxi-
mate a constraint of the form

p(x1, . . . , xn) ≥ 0 for (x1, . . . , xn) ∈ S(g1, . . . , gm),

by a degree δ sum of squares characterization. By this we mean that we intro-
duce additional positive semidefinite matrix variables Q0, . . . , Qm and replace the
constraint p|S(g1,...,gm) ≥ 0 by a set of linear constraints that enforces the identity

p(x) =

m∑

i=0

gi(x)vhi (x)
TQivhi(x).
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To obtain a set of linear constraints that enforces the above identity, we can express
the left and right hand sides in terms of the same polynomial basis and equate the
coefficients with respect to this basis. Here the basis choice for the entries of vi and
the basis choice for the linear constraints can have great impact on the numerical
conditioning of the resulting semidefinite program (see, for instance, [29]), but in
the computations in this paper we only use the standard basis because we only use
polynomials of low degree.

The approximations given by the semidefinite programs obtained in this way
become arbitrarily good as we take sum-of-squares characterizations of higher de-
grees. Moreover, if a semidefinite program with semialgebraic constraints has an
optimal solution where all the inequalities are strict, then the optimum is obtained
for a finite degree sum-of-squares characterization.

We will show that if p is invariant under the action of a group, then we can
further block diagonalize the matrices Qi. Let Γ be a finite subgroup of U(Cn).
This induces the unitary representation

(7) L : Γ → U(C[x1, . . . , xn]), L(γ)p(x) = p(γ−1x),

where C[x1, . . . , xn] has the inner product 〈p, q〉 =
∑

α pαqα. A polynomial p is said
to be Γ-invariant if L(γ)p = p for all γ ∈ Γ, and a set of polynomials {g1, . . . , gm}
is said to be Γ-invariant if

{L(γ)g1, . . . , L(γ)gm} = {g1, . . . , gm} for all γ ∈ Γ.

Let Γi be the stabilizer subgroup of Γ with respect to gi; that is,

Γi = {γ ∈ Γ : L(γ)gi = gi}.
Since g0 = 1 we have Γ0 = Γ. In the next proposition we show that if the poly-
nomials p and the set {g1, . . . , gm} are invariant under the group action, then the
sum of squares polynomials can be taken to be invariant under the corresponding
stabilizer subgroups.

Proposition 8.1. If p ∈ Mδ(g1, . . . , gm) is Γ-invariant, then there are Γi-invariant
sum of squares polynomials si ∈ R[x1, . . . , xn]hi such that

p =

m∑

i=0

gisi.

Proof. Since p is Γ-invariant we have

p(x) =
1

|Γ|
∑

γ∈Γ

L(γ)p(x) =
1

|Γ|
∑

γ∈Γ

p(γ−1x),

and since p lies in Mδ(g1, . . . , gm), we have

1

|Γ|
∑

γ∈Γ

p(γ−1x) =
1

|Γ|
∑

γ∈Γ

m∑

i=0

gi(γ
−1x)si(γ

−1x).

Let Γi,j = {γ ∈ Γ : L(γ)gi = gj}, so that, for each 0 ≤ i ≤ m, we have Γi,i = Γi

and Γ is the disjoint union of Γi,0, . . . ,Γi,m. Then,

1

|Γ|
∑

γ∈Γ

m∑

i=0

gi(γ
−1x)si(γ

−1x) =
1

|Γ|

m∑

j=0

m∑

i=0

∑

γ∈Γi,j

gi(γ
−1x)si(γ

−1x)

=
1

|Γ|

m∑

j=0

gj(x)

m∑

i=0

∑

γ∈Γi,j

si(γ
−1x)
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So, if we define

s̄j(x) =
1

|Γ|

m∑

i=0

∑

γ∈Γi,j

si(γ
−1x),

then p(x) =
∑m

j=0 gj(x)s̄j(x). Since the cone of sum of squares polynomials is

GL(R[x])-invariant, we see that the functions s̄0, . . . , s̄m are sums of squares poly-
nomials. Moreover, for η ∈ Γj , we have

L(η)s̄j(x) =
1

|Γ|

m∑

i=0

∑

γ∈Γi,j

si(γ
−1η−1x) =

1

|Γ|

m∑

i=0

∑

γ∈ηΓi,j

si(γ
−1x),

so Γi-invariance of s̄i follows from the identity

Γj,kΓi,j = Γi,k for all 0 ≤ i, j, k ≤ m. �

In [23] it is shown how the matrix used to represent an invariant sum of squares
polynomial can be block diagonalized, and how this can be used to simplify semi-
definite programs involving such polynomials. We combine this with Putinar’s
theorem and the above proposition to block diagonalize the representation of a
positive invariant polynomial on an invariant semialgebraic set. To describe how
this block diagonalization works we assume the group Γ in (7) consists of permu-
tation matrices, because in this special case we can use the setting from Section 6,
and in our application to E∗

t,d all relevant groups are of this form.
We can view the matrix Q in a sum of squares representation

s(x) = vh(x)
TQvh(x)

as a positive definite kernel [x1, . . . , xn]h × [x1, . . . , xn]h → R, where [x1, . . . , xn]h
is the set of monomials of degree at most h. The group Γ has an obvious action
on [x1, . . . , xn]h, and if s is Γ-invariant, then we may assume Q to be a Γ-invariant
kernel: Represent L(γ) in the monomial basis, so that L(γ)v(x) = v(γ−1x), and

s(x) =
1

|Γ|
∑

γ∈Γ

s(γ−1x) =
1

|Γ|
∑

γ∈Γ

v(γ−1x)TQv(γ−1x)

=
1

|Γ|
∑

γ∈Γ

v(x)TL(γ)TQL(γ)v(x) = v(x)T


 1

|Γ|
∑

γ∈Γ

L(γ)TQL(γ)


 v(x),

which means we may replace Q by its symmetrization 1/|Γ|∑γ∈Γ L(γ)
TQL(γ).

By viewing Q as a Γ-invariant kernel [x1, . . . , xn]h × [x1, . . . , xn]h → R, we get

Q(u, v) =
∑

π∈Γ̂

〈Gπ , Zπ(u, v)〉, for u, v ∈ [x1, . . . , xn]h,

where the Gπ are Hermitian positive semidefinite matrices. Here the Zπ are the
zonal matrices as defined in Section 6.1, where the topological space X is now the
finite set [x1, . . . , xn]h. We have,

s(x) =
∑

u,v∈[x1,...,xn]h

Q(u, v)uv

=
∑

π∈Γ̂

〈Q̂(π),
∑

u,v∈[x1,...,xn]h

Zπ(u, v)uv〉 =
∑

π∈Γ̂

〈Q̂(π), Zπ(x)〉,

where we define the modified zonal matrices

Zπ(x) =
∑

u,v∈[x1,...,xn]h

Zπ(u, v)uv.
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In general we have to use Hermitian positive semidefinite blocks Gπ, but in our
computations all groups only have real irreducible representations, so, as explained
at the end of Section 6.1 we can use real blocks. Since the groups here are finite,
we can compute the symmetry adapted system algorithmically. Before we explain
how this is done we note that we can compute the size mπ of Gπ without having
to compute the actual block diagonalization.

For this we first notice that mπ now denotes the number of representations in an
orthogonal decomposition of R[x]h into irreducible unitary representations that are
unitarily equivalent to π. First observe thatmπ = mπ(0)+· · ·+mπ(h), wheremπ(k)
denotes the denotes the number of representations in an orthogonal decomposition
of R[x]=k into irreducible unitary representations that are unitarily equivalent to π.
Here R[x]=k is the space of homogeneous polynomials of degree k. We can compute
the numbers mπ(k) by a theorem of Molien [37], which gives the equality of the
formal power series

∞∑

k=0

mπ(k)t
k =

1

|Γ|
∑

γ∈Γ

trace(π(γ))

det(I − tL(γ))
.

To compute the actual block diagonalization we use the projection algorithm as
described in [46], which generates the symmetry adapted systems used to construct
the zonal matrices. This algorithm works as follows: First define the operators

pπj,j′ =
dπ
|Γ|
∑

γ∈Γ

π(γ−1)j,j′L(γ).

Then, for each π ∈ Γ̂ and i ∈ [mπ], we let {eπ,i,1}mπ

i=1 be a a basis of Im(pπ1,1), and
we set eπ,i,j = pπj,1eπ,i,1 for all π, i, and j > 1. In [46] it is shown that this yields

a (not necessarily orhtonormal) symmetry adapted system. Moreover, if we choose
the bases {eπ,i,1}mπ

i=1 of Im(pπj,j′) to be orthonormal, then it is not difficult to show
the resulting symmetry adapted system is also orthonormal.

We apply the above techniques to the problems E∗
2,d from Section 7 for Riesz

s-energy problems. First we show how to model the semialgebraic constraints using
sum of squares characterizations without exploiting the additional symmetry. For
the constraints q3|P3 ≤ 0 and q4|P4 ≤ 0 we use sum of squares characterizations of
degree δ, and we denote the resulting semidefinite program by E∗

2,d,δ.
If s is odd, we model the semialgebraic constraint

ws q2(1− w2/2) ≤ 1 for w ∈ [
√
2− 2U, 2]

by introducing positive semidefinite matrices Q2,1 and Q2,2 and adding a set of
linear constraints to enforce the identity

ws q2(1−w2/2) = 1+(w−
√
2− 2U) vh1(w)

TQ2,1vh1(w)+(2−w)vh1(w)
TQ2,2vh1(w).

As explained above, we know that for sufficiently large h1, this sum-of-squares con-
straint approximates the above semialgebraic constraint arbitrarily well. However,
for this special case, where we have an odd degree polynomial that is nonnegative
on a compact interval, a result of Lukács (see, for instance, [40, 41]) says that for
h1 = (2d+s−1)/2 the above semialgebraic constraint and sum-of-squares constraint
are identical.

If s is even, we model the semialgebraic constraint

(2− 2u)s/2q2(u) ≤ 1 for u ∈ [−1, U ]

by introducing positive semidefinite matrices Q2,1 and Q2,2 and adding a set of
linear constraints to enforce the identity

(2− 2u)s/2q2(u) = 1 + vh2(u)
TQ2,1vh2(u) + (u− 1)(U − u)vh3(u)

TQ2,2vh3(u),
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if s/2 + d is even, and

(2− 2u)s/2q2(u) = 1 + (u− 1)vh4(u)
TQ2,1vh4(u) + (U − u)vh4(u)

TQ2,2vh4(u),

if s/2 + d is odd. By the same result of Lukács mentioned above, the above
semialgebraic constraint and sum of squares constraint are identical if we take
h2 = (s/2 + d)/2, h3 = (s/2 + d)/2− 1, and h4 = (s/2 + d− 1)/2.

We model the semialgebraic constraint q3|P3 ≤ 0 by introducing positive semi-
definite matrix variables Q3, Q3,2,g for g ∈ G3,2, and Q3,3,g for g ∈ G3,3, and adding
a set of linear constraints to enforce the identity

q3(u) + vh′
1
(u)TQ3vh′

1
(u) +

∑

k∈{2,3}

∑

g∈G3,k

g(u)vh′
k
(u)TQ3,gvh′

k
(u) = 0,(8)

where h′
1 = ⌊δ/2⌋, h′

2 = ⌊(δ − 2)/2⌋, h′
3 = ⌊(δ − 3)/2⌋.

In the semialgebraic description of P4 in (5) we do not just have polynomial
inequalities constraints but also the polynomial equality constraint det(E(u)) = 0.
We could replace this equality constraint by two inequality constraints, but this
would be computationally inefficient. Instead, we introduce positive semidefinite
matrix variables Q4, Q4,2,g for g ∈ G4,2, Q4,3,g for g ∈ G4,3, and qα,±1 ∈ R≥0 for
α ∈ N0 with ‖α‖1 =

∑
i αi ≤ δ − 6, and use the sum of squares characterization

q4(u) + vh′
1
(u)TQ4vh′

1
(u) +

∑

k∈{2,3}

∑

g∈G4,k

g(u)vh′
k
(u)TQ4,gvh′

k
(u)(9)

+ det(E(u))
∑

α∈N6
0:‖α‖1≤δ−6

(qα,1 − qα,−1)u
α1
1 · · ·uα6

6 = 0.

Without symmetry reduction With symmetry reduction

δ Q4 Q4,2,g Q4,3,g Q4 Q4,2,g Q4,3,g

0 1 0 0 1 0 0
1 1 0 0 1 0 0
2 7 1 0 2 1 0
3 7 1 1 2 1 1
4 28 7 1 5 4 1
5 28 7 7 5 4 3
6 84 28 7 12 13 3
7 84 28 28 12 13 9
8 210 84 28 29 33 9
9 210 84 84 29 33 27
10 462 210 84 63 75 27
11 462 210 210 63 75 69
12 924 462 210 124 153 69
13 924 462 462 124 153 153
14 1716 924 462 228 291 153
15 1716 924 924 228 291 306
16 3003 1716 924 395 519 306
17 3003 1716 1716 395 519 570
18 5005 3003 1716 654 882 570
19 5005 3003 3003 654 882 999
20 8008 5005 3003 1040 1435 999

Table 1. Block sizes in the sum-of-squares modeling of the i = 4
constraints in E∗

2,d,δ with and without symmetry reduction.

Now we show by howmuch we can reduce the largest block size in the semidefinite
program E∗

2,d,δ by exploiting the symmetry in the semialgebraic constraints. The
matrix

Q4 ∈ S
(6+⌊δ/2⌋

6 )
�0

from (9) typically forms the largest block in E∗
2,d,δ. This block is larger than any

other matrix used in the sum-of-squares modeling, and unless d is much larger than
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δ, it is larger than any of the Fπ blocks. As explained at the end of Section 7, the
polynomial q4 and the set of polynomials in the semialgebraic description of P4 are
invariant under the group Γ = φ4(S4). The stabilizer subgroup Γ1 of Γ with respect
to the constant 1 polynomial is isomorphic to S4. The stabilizer subgroup Γg of Γ
with respect to a polynomial g ∈ G4,k is isomorphic to the Klein-Four group for
k = 2 and to S3 for k = 3. In Table 1 we first show the size of Q4, Q4,2,g, and Q4,3,g

for different values of δ for the case where we are not using symmetry. We use a
Magma [10] implementation of the Molien series mentioned above to compute the
blocksizes that we get when we do exploit the symmetry. In Table 1 we then show
the largest of these block sizes when block diagonalizing the matrices Q4, Q4,2,g,
and Q4,3,g. In our computation we will use δ = 6 and δ = 8, where we see this gives
a 6 fold reduction in the largest block size in the semidefinite program.

9. Computations and discussion

Our goal here is to show how one can compute the 4-point bound E∗
2 for Riesz

s-energy problems on S2, and to observe that these bounds are numerically (with
high precision) sharp forN = 5 and s = 1, 2, . . . , 7. To do this we develop a program
that can generate the semidefinite programs E∗

2,d,δ from Section 8. We then solve
these semidefinite programs for d = 6 and δ = 6, 8 with a semidefinite programming
solver and check that the optimal objective values given by the solver (consisting
of 28 decimal digits) coincide with the first 28 decimals of the Riesz s-energy

(10)
6

2s/2
+

3

3s/2
+

1

4s/2
,

of the triangular bipiramid.
We implement the program in the Julia language [7], which is a high level lan-

guage that allows for quick experimentation with different algorithms and data
structures (which we did extensively for this project), and has a modern type sys-
tem and JIT compiler that allows for fast execution of the code. We first generate
the symmetry adapted system and the zonal matrices as described in Section 6.3.
For this we develop a simple Julia library for sparse multivariate polynomials, which
includes generators for the Laplace spherical harmonics in cartesian coordinates and
a generator for the Clebsch–Gordan coefficients. To generate high precision solver
input we perform all computations in high precision arithmetic using the MPFR
library [20].

To compute the polynomials q0, . . . , q2t from Section 7, we need to write the
polynomials from (2) as polynomials in the inner products. For this we need to solve
a large number of instances of the following problem: Suppose p ∈ R[x1, . . . , xi]2d,
where each xk is a vector of 3 variables, is O(3)-invariant. We want to find a

polynomial q ∈ R[u1, . . . , ur], with r =
(
i+1
2

)
, such that

p(x1, . . . , xi) = q(x1 · x1, x1 · x2, . . . , xi · xi).

As mentioned in Section 7, by a nonconstructive theorem from invariant theory
such a polynomial q is guaranteed to exist. If m ∈ R[u1, . . . , ur] is a monomial,
then the polynomial

m(x1 · x1, x1 · x2, . . . , xi · xi)

is homogeneous of degree 2 deg(m). This means we may assume deg(q) ≤ d. We
construct a linear system Ax = b, where the rows of A and b are indexed by the
monomials in 3i variables of degree at most 2d, and the columns of A and rows
of x by the monomials in s variables up to degree d. The size of A increases
rapidly: for i = 4 and d = 6 it has about 2.7 million rows. The matrix is sparse,
however, where the maximum number of nonzeros in a row is 3d, and although this
is exponential in d, for d = 6 this is just 729. We therefore store A in a sparse
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data structure. For i = 4, the system Ax = b has more rows than columns. So we
use a least squares approach and solve ATAx = ATb instead. The matrix A is in
general not of full column rank (in general, q is not unique), which means ATA is
singular, so instead we solve the system (ATA+ εI)x = ATb, where ε > 0 is small.
Because a high precision solver that can work with sparse data structures is not
readily available, we implement a simple pivoting, sparse, high precision, Cholesky
factorization algorithm. We use this to compute the Cholesky factorization ATA+
εI = PRTRPT, where P is a permutation matrix, and retrieve x using backwards
substitution. Finally, we use the equation relating p and q to verify the correctness
of the computed polynomial up to a large number of digits. We then use equation
(6) to symmetrize the polynomial q.

We develop a GAP [10] script to generate the symmetry adapted systems used in
Section 8 for the symmetrized sum-of-squares characterizations. For this we need
the orthogonal (real unitary) irreducible representations of the relevant stabilizer
subgroups of the symmetric groups S3 and S4. Here, the only groups with nonob-
vious irreducible representations are the symmetric groups themselves, and we use
Young’s orthogonal form (see, for instance, [6]) for these representations.

We develop a semidefinite programming specification library in Julia that allows
for modeling polynomial equality constraints involving multivariate polynomials.
We use this together with the above to generate the semidefinite programs and
output these in the SDPA-sparse format [36].

Just as we did for the variables qα,±1 from equation (9), we model the free
variables a0, . . . , a5 from (4) as the difference of two 1 × 1 positive semidefinite
matrices. This, however, means that the resulting semidefinite programs are un-
bounded, which implies the dual programs are not strictly feasible. That is, the
dual programs do not admit feasible solutions where all blocks are positive definite.
For many semidefinite programming solvers this is a problem, and, in particular,
the high precision solvers SDPA-QD and SDPA-GMP cannot be used in this sit-
uation. We therefore introduce a new parameter M and add the constraints that
the variables used to model the free variables are at most M . In this way the dual
problems become strictly feasible and can be solved with high precision solvers.
Notice that for any value of M it is guaranteed we get a lower bound on the energy,
and if M is large enough (we use M = 1000) this does not change the bound.

We model the polynomial equality constraints (8) and (9) by a linear constraint
for each monomial. When we use the additional symmetry from Section 8, then
this results in linearly dependent constraints. For some solvers such as the machine
precision solver CSDP [9] this is not a problem, but solvers from the SDPA family
do not work well in this case. Therefore we first remove identical constraints and
then use a QR factorization of the constraint matrix of the semidefinite program
to remove any remaining linearly dependent constraints.

The solver SDPA-QD works with quad double precision, which means solving
a semidefinite program with this solver yields a solution with approximately 28
decimal digits of precision. In all sharp instances that we compute we verify that at
least the first 28 decimal digits given by the solver agree with the first 28 decimals of
the energy of a configuration. Notice that to get more digits we do not have have to
increase the parameters d and δ – we can use the same semidefinite program – but we
simply have to increase the precision parameter in the Julia code that generates the
semidefinite program and increase the precision parameter in the solver (where we
switch to SDPA-GMP for variable precision instead of SDPA-QD). Here, however,
there is no reason to use higher precision. Notice that this very different from the
sphere packing problem, which was recently solved in dimensions 8 and 24 using
2-point bounds [12, 49], where one needs to increase the number of terms in the
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inverse Fourier transform (which would correspond to increasing d in our bound
E∗

t,d,δ) for the bound to get closer to the exact optimal value.
As is to be expected, the computation time increases strongly with δ. Computing

the bound E∗
2,6,6 with SDPA-QD takes approximately 10 minutes (on a standard

desktop computer) if we do use the additional symmetry from Section 8, and takes
approximately 80 minutes if we do not use this additional symmetry. Computing
the bound E∗

2,6,8 takes approximately 7 hours with additional symmetry and 150
hours without additional symmetry. Here, the value of s itself has virtually no
impact on the computation time, however, as s increases we do need to increase
the parameter δ to get a sharp bound. We observe that for s = 1, . . . , 5, the bound
E∗

2,6,6 is numerically sharp, and for s = 6, 7 the bound E∗
2,6,8 is numerically sharp;

that is, the 28 decimal digits given by the solver agree with (10).
It would be of interest to use the (high precision) floating point output of the

solver to construct optimality certificates for the triangular bipiramid. In [13], 3-
point semidefinite programming bounds were used in this way to prove optimality of
the rhombic dodecahedron. Here the floating point solver output, which provides
a near feasible and near optimal solution, was rounded to a solution (consisting
of algebraic numbers) that lies on the optimal face, and a very simple computer
program is then used to verify (in exact arithmetic) that the solution is indeed
feasible for the semidefinite program. There seem to be no principal objections to
using the same approach for the bounds E∗

2,d,δ. The only difference is that in our
case not only the solver uses floating point arithmetic, but also the solver input
consists of high precision floating point numbers. The reason for this is that we use
numerical linear algebra to compute the polynomials q0, . . . , q4 in terms of the inner
products (see above). One approach to generate the semidefinite programs exactly
(using algebraic numbers) would be to use Gröbner bases instead of numerical linear
algebra for computing these polynomials.

To find new sharp instances, it would also be of interest to compute E2 for energy
minimization problems on higher dimensional spheres, or other compact spaces. As
observed in [13], of particular interest is the case of 24 particles on S3, as here the
24-cell seems to be optimal for some potential functions, but for other potentials
the optimal configurations seem to be more exotic. It would be remarkable if E2

would be universally sharp for 24 particles on S3. It would also be interesting to
use the techniques developed in this paper to compute 4-point bounds for packing
problems such as spherical code problems on Sn−1. Of particular interest would
be the spherical code problem A(4, arccos(1/3)), where a construction of 14 points
exists, and where the 2 and 3-point bounds give the upper bounds 16 and 15 [4].

Appendix A. Invariant positive definite kernels

In this appendix we prove theorems concerning the “simulateneous block diag-
onalization” of invariant positive definite kernels. These results are used in Sec-
tion 6.1, where we also give more background information and introduce some of
the notation used in this appendix.

The first theorem characterizes the extreme rays of the cone of invariant positive
definite kernels. As a special case, this shows

∂r
(
C(X ×X ;C)�0

)
=
{
f ⊗ f̄ : f ∈ C(X ;C)

}
,

where we use the notation ∂r for the extreme rays of a cone. This theorem and its
proof are a generalization to kernels of a result in harmonic analysis about functions
of positive type as given in [19]. In this appendix X is a compact metric space with
a continuous action of a compact group Γ (in the following theorem, however, we
may assume X and Γ to be locally compact).
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Theorem A.1. We have

∂r
(
C(X ×X ;C)Γ�0

)
=
{
Kϕ : π ∈ Γ̂, ϕ ∈ HomΓ(X,Hπ)

}
,

where Hπ is the Hilbert space of the representation π ∈ Γ̂, where HomΓ(X,Hπ) is
the space of Γ-equivariant maps X → Hπ, and where Kϕ is defined by

Kϕ(x, y) =
〈
ϕ(x), ϕ(y)

〉
for all x, y ∈ X.

Proof. Let K be a nonzero kernel in C(X ×X ;C)Γ�0. As shown in [13], we can
use a Gelfand-Naimark-Segal type construction to build a unitary representation
π : Γ → U(Hπ) and a nonzero function ϕ ∈ HomΓ(X,Hπ), so that

K(x, y) =
〈
ϕ(x), ϕ(y)

〉
for all x, y ∈ X.

Indeed, let CX be the complex vector space of formal linear combinations of ele-
ments in X , and define the subspace N = span{x ∈ X : K(x, x) = 0}. Define an
inner product on the quotient space CX/N by setting 〈x + N, y + N〉 = K(x, y)
for all x, y ∈ X and extending by (anti)linearity. The action of Γ on X extends
to the homomorphism π : Γ → U(Hπ), where Hπ is the Hilbert space obtained by
completing CX/N in the metric defined by the inner product 〈·, ·〉. Here π(γ) is an
isometry because K is Γ-invariant, and because π(γ) is invertible, it is a unitary
operator. Since 〈π(γ)x+N, y+N〉 = K(γx, y), it follows from K being continuous
and the action of Γ on X being continuous, that the map γ → 〈π(γ)x+N, y +N〉
is continuous. So π is a unitary representation. We define the Γ-equivariant map
ϕ : X → H by ϕ(x) = x+N . This map is continuous, because

‖ϕ(y)− ϕ(x)‖2 ≤ K(x, x) +K(y, y)−K(x, y)−K(y, x),

and, moreover, ϕ is injective and has dense span.
Now assume K spans an extreme ray. If π is reducible, then Hπ admits a

nontrivial orthogonal decomposition M1 ⊕ M2 into Γ-invariant subspaces. Let
Pi : H → Mi be the projector onto Mi, and set ϕi = Pi ◦ ϕ. Let

Ki(x, y) = 〈ϕi(x), ϕi(y)〉 for x, y ∈ X,

so that K = K1 +K2. Now we show the kernels K1 and K2 do not lie on the same
ray: If K2 = |c|2K1 for some nonzero c ∈ C, then we can define a Γ-equivariant
unitary operator T : M2 → M1 by setting T (ϕ2(x)) = c ϕ1(x) for all x ∈ X . But
this implies ϕ = ϕ1 + ϕ2 = c−1T ◦ ϕ2 + ϕ2, and this contradicts with ϕ being
injective and having dense span in Hπ. Therefore, π must be irreducible.

Now assume K is a nonzero kernel in C(X ×X ;C)Γ�0, such that

K(x, y) =
〈
ϕ(x), ϕ(y)

〉
, for all x, y ∈ X,

for some irreducible unitary representation π : Γ → U(Hπ) and ϕ ∈ HomΓ(X,Hπ).
Let K1 and K2 be two kernels in C(X × X ;C)Γ�0 with K = K1 + K2. We have

K1(x, x) = K(x, x)−K2(x, x) ≤ K(x, x) for all x ∈ X , so

|K1(x, y)| ≤ K1(x, x)
1/2K1(y, y)

1/2 ≤ K(x, x)1/2K(y, y)1/2 for all x, y ∈ X.

This means we can define the bounded Hermitian form 〈·, ·〉1 on CX/N by setting

〈ϕ(x) +N,ϕ(y) +N〉1 = K1(x, y)

and extending by (anti)linearity. The form 〈·, ·〉1 is continuous since it is bounded,
so we can extend it to the Hilbert space Hπ. By the Riesz representation theorem
for Hilbert spaces there is a bounded self-adjoint operator T on Hπ such that

〈ϕ(x) +N,ϕ(y) +N〉1 = 〈T (ϕ(x) +N), ϕ(y) +N〉 for all x, y ∈ X.
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This operator is Γ-equivariant: For all x, y ∈ X and γ ∈ Γ we have

〈Tπ(γ)(ϕ(x) +N), ϕ(y) +N〉 = 〈ϕ(γ−1x) +N,ϕ(y) +N〉1
= K1(γ

−1x, y) = K1(x, γy)

= 〈ϕ(x), ϕ(γy)〉1 = 〈Tϕ(x), π(γ−1)ϕ(y)〉
= 〈π(γ)Tϕ(x), ϕ(y)〉.

Since π is irreducible, Schur’s lemma states there is a c ∈ C such that T = cI. But
this means that

K1(x, y) = 〈ϕ(x) +N,ϕ(y) +N〉1 = 〈T (ϕ(x) +N), ϕ(y) +N〉 = cK(x, y),

for all x, y ∈ X , and hence K1 = cK and K2 = (1−c)K, which shows that K spans
an extreme ray. �

Next, we prove the existence of a symmetry adapted system. For this we first
need a few lemmas.

Lemma A.2. The space X admits a strictly positive, Γ-invariant, Radon proba-
bility measure.

Proof. Let {xi} be a dense sequence in X and let {ai} be a sequence of strictly
positive numbers that sum to one. Define a Borel probability measure µ by set-
ting µ(U) =

∑
i:xi∈U ai for all Borel sets U . The desired measure is obtained by

averaging µ over the Haar measure of Γ. �

We say that a sequence {In} of kernels in C(X×X ;C) is an approximate identity
of X if ‖TInf − f‖∞ → 0 as n → ∞ for each f ∈ C(X ;C), where

TK : C(X ;C) → C(X ;C), TKf(x) =

∫
K(x, y)f(y) dµ(y),

and where µ is some fixed strictly positive Γ-invariant Radon probability measure.

Lemma A.3. The space X admits an approximate identity {In}, where each kernel
In may be assumed to be real-valued, symmetric, and Γ-invariant.

Proof. Let d be a compatible metric on X . Let {U1
i }, {U2

i }, . . . be a sequence of
finite open covers of X such that for all i and n the diameter of Un

i is at most 1/n.
For each i and n inductively select a compact set Cn

i ⊆ Un
i such that

µ(Un
i \ Cn

i ) ≤ µ(Cn
i )/n,

(this is possible by inner regularity of µ), and remove Cn
i from the sets Un

j for j 6= i.

We then have Cn
i ∩ Un

i′ = ∅ for all n and all distinct i and i′.
Let {pni }i be a partition of unity subordinate to the cover {Un

i }i, so that the
restriction of pni to Cn

i is identically 1, and define the kernel Kn ∈ C(X × X) by
the finite sum

Kn(x, y) =
∑

i

pni (x)p
n
i (y)

µ(Cn
i )

.

Let f ∈ C(X ;C) and ε > 0. For large enough n we have

µ(Un
i \ Cn

i ) ≤
µ(Cn

i )

2‖f‖∞
ε and sup

x,y∈Cn
i

|f(x)− f(y)| ≤ 1

2
ε for all i.

Then for each x ∈ X ,

|TKnf(x)− f(x)| =
∣∣∣∣∣
∑

i

∫

Un
i

pni (x)p
n
i (y)

µ(Ci)
f(y) dµ(y)− f(x)

∣∣∣∣∣ ≤ A+B,
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where

A =

∣∣∣∣∣
∑

i

∫

Cn
i

pni (x)p
n
i (y)

µ(Cn
i )

f(y) dµ(y)− f(x)

∣∣∣∣∣

=

∣∣∣∣∣
∑

i

pni (x)

µ(Cn
i )

∫

Cn
i

|f(y)− f(x)| dµ(y)
∣∣∣∣∣ ≤

∑

i

pni (x)
ε

2
=

ε

2

and

B =

∣∣∣∣∣
∑

i

∫

Un
i \Cn

i

pni (x)p
n
i (y)

µ(Cn
i )

f(y) dµ(y)

∣∣∣∣∣

=
∑

i

pni (x)

µ(Cn
i )

∫

Un
i \Cn

i

pni (y)|f(y)| dµ(y) =
∑

i

pni (x)
µ(Un

i \ Cn
i )

µ(Cn
i )

‖f‖∞ ≤ ε

2
.

So, for each ε > 0 we have ‖TKnf − f‖∞ ≤ ε for sufficiently large n, which means
that the sequence {Kn} is an approximate identity.

Let

In(x, y) =

∫

Γ

Kn(γx, γy) dγ,

where we integrate against the normalized Haar measure of Γ. Then {In} is an
approximate identity, and each In is real-valued, symmetric, and Γ-invariant. �

We need the following part of the Peter–Weyl theorem. A proof for the case
where a compact group acts on itself can be found in for instance [19], and a
generalization of this to the setting of a compact group acting on a compact metric
space can be found in [28].

Lemma A.4. The space C(X ;C) is equal to the closure of the sum of its finite
dimensional Γ-invariant subspaces.

We also need the following variation on the Schur orthogonality relations, for
which a proof can be found in [50].

Lemma A.5. Let π : Γ → U(H) be a unitary representation, and let 〈·, ·〉 be a Γ-
invariant sesquilinear from on H. Let M and M′ be finite-dimensional, irreducible
subrepresentations with orthonormal bases {ei} and {e′j}.

(1) If M and M′ are not equivalent, then 〈ei, e′j〉 = 0 for all i and j.

(2) If there exists a Γ-equivariant bijection T : M → M′ such that Tei = e′i for
all i, then there is a c ∈ C such that 〈ei, e′j〉 = cδi,j for all i and j.

Theorem A.6. Let X be a compact metric space with a continuous action of a
compact group Γ. The space X admits a symmetry adapted system.

Proof. Let C be the set of all linearly independent sets of nontrivial, finite dimen-
sional, Γ-invariant subspaces of C(X ;C). Here, a set S of subspaces is said to be
linearly independent if for any n ∈ N and distinct A,B1, . . . , Bn ∈ S, the inter-
section of A with the sum B1 + · · · + Bn is the zero space. This is equivalent to
requiring that the union of any set of bases of the subspaces in S is linearly inde-
pendent. If X is nonempty, then C(X ;C) is nonempty, so by Lemma A.4 the set C
is nonempty.

Define a partial order on C by set inclusion. Given a chain T in C, the union of
the sets in T is also in C: Given n ∈ N and distinct A,B1, . . . , Bn ∈ ⋃T , there must
be some set in T containing the sets A,B1, . . . , Bn, hence these sets are nontrivial,
finite dimensional, Γ-invariant, and A ∩ (B1 + · · ·+ Bn) = {0}, which means that⋃
T ∈ C. Therefore, any chain in C has an upper bound, and by Zorn’s lemma C

contains a maximal element M .
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Let P be the sum of all sets in M and let P be the closure of P in the uniform
topology of C(X ;C). If P is not equal to C(X ;C), then by Lemma A.4 there exists
a finite dimensional, Γ-invariant subspace V of C(X ;C) containing a vector u that
does not lie in P . The cyclic subspace W = span{L(γ)u : γ ∈ Γ} has trivial
intersection with P because L(γ)u 6∈ L(γ)P = P for all γ ∈ Γ. This means that
M ∪ {W} is a linearly independent set of subspaces. The space W is Γ-invariant,
and moreover,W is finite dimensional since it is a subspace of the finite dimensional
space V . So M ∪ {W} is contained in C. This contradicts maximality of M , so P
must be equal to C(X ;C).

Since the representation in M are finite dimensional, by Maschke’s theorem for
compact groups they decompose into irreducible subrepresentations of C(X ;C), and
we may assume M to be a linearly independent set of Γ-irreducible subspaces of
C(X ;C) whose sum is uniformly dense.

Denote by mπ ∈ {0, 1, . . . ,∞} the number of representations in M that are
equivalent to π. Select appropriate orthonormal bases fπ,i,1, . . . , fπ,i,dπ of the rep-
resentations in M , so that the span of

{
fπ,i,j : π ∈ Γ̂, i ∈ [mπ], j ∈ [dπ ]

}

is uniformly dense in C(X ;C), and so that there are Γ-equivariant unitary operators
Tπ,i,i′ : Hπ,i → Hπ,i′ with fπ,i′,j = Tπ,i,i′fπ,i,j for all π, i, i′, and j. Now give this
system any ordering where fπ,i,j occurs before fπ,i′,j′ whenever i < i′, and apply
the Gram–Schmidt process to obtain a complete orthonormal system {eπ,i,j}. By
Lemma A.5 we have

eπ,i,j = fπ,i,j −
i−1∑

i′=1

〈eπ,i,j , eπ,i′,j〉eπ,i′,j = fπ,i,j −
i−1∑

i′=1

cπ,i,i′eπ,i′,j,

where cπ,i,i′ = 〈eπ,i,j , eπ,i′,j〉 does not depend on j. It follows that the system
{eπ,i,j} is symmetry adapted, which completes the proof. �

We now use the previous theorem to prove that the union of the sequence of inner
approximations constructed in Section 6.1 is uniformly dense. For this we need one
more lemma, for which a proof can be found in [28], which is a generalization of a
proof from [15].

Lemma A.7. A Γ-invariant kernel K ∈ C(X ×X) is positive definite if and only

if K̂(π) is positive semidefinite for every π ∈ Γ̂.

Now we can show the sequence of inner approximations converges. A similar
results is shown in [3], but there it is required that Γ is contained in a bigger group
that has a transitive action. Using the existence of a symmetry adapted system as
proved above we can avoid this requirement.

Theorem A.8. The cone
⋃∞

d=0Cd is uniformly dense in C(X ×X ;C)Γ�0.

Proof. Lemma A.3 shows there exists an approximate identity {In} of X , where
each In is real-valued, symmetric, and Γ-invariant. By Theorem A.6 there exists a
symmetry adapted system {eπ,i,j} of X . We use this to define

Sd = span
{
eπ,i,j : π ∈ Γ̂, i ∈ Rπ,d, j ∈ [dπ ]

}
.

We have the inclusions
S0 ⊆ S1 ⊆ . . . ⊆ C(X ;C),

and
⋃∞

d=0 Sd is uniformly dense in C(X ;C). This means that for each n, there
exists a sequence {In,d}d of real-valued kernels, with In,d ∈ Sd × Sd for all d and
In,d → In uniformly as d → ∞. We may assume the kernels In,d to be symmetric
and Γ-invariant: The sequence {In,d}d converges uniformly to In, and since In
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is symmetric and Γ-invariant, it follows that Īn,d also converges to In uniformly,
where Īn,d is the symmetric Γ-invariant kernel defined by integrating against the
Haar measure of Γ:

Īn,d(x, y) =
1

2

∫ (
In,d(γx, γy) + In,d(γy, γx)

)
dγ.

Since Sd is Γ-invariant, we have Īn,d ∈ Sd ⊗ Sd, so we can replace In,d by Īn,d. For
each n, let dn be an integer such that ‖In,dn −In‖∞ ≤ 1/n. It follows that {In,dn}n
is an approximate identity of X .

For each n we define the kernel Πn ∈ C(X2 ×X2) by

Πn((x, y), (x
′, y′)) = In,dn(x, x

′)In,dn(y, y
′) for x, x′, y, y′ ∈ X.

In the remainder of the proof we show {Πn} is an approximate identity of X2, and
we show that the range of TΠn is contained in Cdn , and hence in

⋃∞
d=0 Cd.

For f, g ∈ C(X ;C), we have

‖TKn(f ⊗ g)− f ⊗ g‖∞ = ‖TIn,d
f ⊗ TIn,d

g − f ⊗ g‖∞
≤ ‖TIn,d

f‖∞‖TIn,d
g − g‖∞ + ‖TJnf − f‖∞‖g‖∞ → 0.

The span of kernels of the form f ⊗ g is uniformly dense in C(X ×X ;C), so, given
a kernel K ∈ C(X ×X ;C)Γ�0, the sequence TΠnK converges uniformly to K. This

shows {Πn} is an approximate identity.
The kernel TΠnK lies in Sdn ⊗ Sdn because In,dn lies in Sdn ⊗ Sdn . Thus,

TΠnK =
∑

π,π′∈Γ̂

∑

i∈Rπ,dn

∑

i′∈Rπ′,dn

dπ∑

j=1

dπ′∑

j′=1

〈
eπ,i,j , eπ′,i′,j′

〉
TΠnK

eπ,i,j ⊗ eπ′,i′,j′ ,

where
〈
eπ,i,j , eπ′,i′,j′

〉
TΠd

K
=

∫∫
TΠd

K(x, y)eπ,i,j(x)eπ′,i′,j′(y) dµ(x)dµ(y)

is a sesquilinear form that is Γ-invariant, because TΠd
K is Γ-invariant. Lemma A.5

shows 〈eπ,i,j, eπ′,i′,j′〉K = 0 when π 6= π′ or j 6= j′, and 〈eπ,i,j, eπ,i′,j〉K does not
depend on j. This shows

TΠnK(x, y) =
∑

π∈Γ̂

〈
T̂ΠnK(π), Zπ,dn(x, y)

〉
.

The kernel TΠnK is positive definite, so by Lemma A.7, the matrices T̂ΠnK(π) are
positive semidefinite. So, the kernel

(x, y) 7→ 〈T̂ΠnK(π), Zπ,dn(x, y)〉
lies in Cπ,dn , and TΠnK ∈∑π∈Γ̂Cπ,dn = Cdn . �
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