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We present an algorithm to factor multivariate polynomials over algebraic number fields that is 
polynomial-time in the degrees of the polynomial to be factored. The algorithm is an immediate 
generalization of the polynomial-time algorithm to factor univariate polynomials with rational 
coefficients. 

1. Introduction 

We show that the algorithm from [7] to factor univariate polynomials with rational coefficients 
can be generalized to multivariate polynomials with coefficients in an algebraic number field. As 
a result we get an algorithm that is polynomial-time in the degrees and the coefficient-size of the 
polynomial to be factored. 

An outline of the algorithm is as follows. First the polynomial f E Q(a)[X1,X2, •.. ,Xi) is 
evaluated in a suitably chosen integer yoint (X2=s2,X3=s3, •.• ,X1 =~1 ). Next, for some prime 
number p, a p-adic irreducible factor h of the resulting polynomial f E Q(a)[X1] is determined 
up to a certain precision. We then show that the irreducible factor h 0 of f for which ii. is a p -
adic factor of ii.0, belongs to a certain integral lattice, and that ho is relatively short in this lattice. 
This enables us to compute this factor ho by means of the so-called basis reduction algorithm (cf. 
[7: Section 1)). 

As [7] is easily available, we do not consider it to be necessary to recall the basis reduction 
algorithm here; we will assume the reader to be familiar with this algorithm and its properties. 

Although the algorithm presented in this paper is polynomial-time, we do not think it is a 
useful method for practical purposes. Like the other generalizations of the algorithm from [7], 
which can be found in [8; 9; 10; 11), the algorithm will be slow, because the basis reduction algo
rithm has to be applied to huge dimensional lattices with large entries. In practice, a combina
tion of the methods from [6], [14), and [15] can be recommended (cf. (6)). 

2. Preliminaries 

In this section we introduce some notation, and we derive an upper bound for the coefficients of 
factors of multivariate polynomials over algebraic number fields. 

Let the algebraic number field Q(a) be given as the field of rational numbers Q extended 
by a root a of a prescribed minimal polynomial F E Z[T] with leading coefficient equal to one; i.e. 
Q(a) !:::::: Q[T]/(F). Similarly, we define Z[a] = Z[T)/(F) as a ring of polynomials in a over Z of 
degree <I, where I denotes the degree 8F of F. 

Let f E Q(a)[X1t X2, ••• , X1 ] be the polynomial to be factored, with the number of variables 
t ;;;. 2. By 8;f = n; we denote the degree of f in X; , for 1 ..;; i ..;; t . We often use n instead of 
n1• We put N;=ffi=;(nk+l), and N=N1• Let le0(j)=f. For lo;;;;o;;;t we define 
le;(/) E Q(a)[X;+JtX;+2,' ••• ,Xr] as the leading coefficient with respect to X; of /c;_ 1(j), and we 
put le(/)= /e1(j). Finally, we define the content cont(/) E Q(a)[X2,X3, ... ,X1 ] off as the 
greatest common divisor of the coefficients of f with respect to X1. Without loss of 
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generality we may assume that 2 .,;;; n; .,;;; n; + 1 for l .,;;; i < t, that f is monic (i.e. le (j) = l ), and 
that 8;cont(j) = 0 for 2.,;;; i.,;;; t. 

Let d E Z>o be such that f E ~Z[a][X1>X2, ... ,X1 ], and let discr(F) denote the discrim

inant of F. It is well-known (cf. [15]) that if we take D = d ldiscr(F)I, then all monic factors of 
f are in ~Z[a][XhX2, •.• ,X1] (in fact it is sufficient to take D =d·s, where s is the largest 

integer such that s2 divides discr(F), but this integers might be too difficult to compute). 
We now introduce some notation, similar to [8: Section 1]. Suppose that we are given a 

prime number p such that 

(2.1) p does not divide D . 

For G = L;a/I' E Z[T] we denote by G1 or G mod/ the polynomial L;(a; modp 1rr E 
{llp1Z)[T], for any positive integer I. Suppose furthermore that we are given some positive 
integer k, and that p is chosen in such a way that a polynomial H E Z[T] exists such that 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

H has leading coefficient equal to one, 

Hk divides Fk in (l!pk Z)[T], 

H 1 is irreducible in (l./p Z)[T], 

(H 1)2 does not divide F 1 in (lip Z)[T]. 

Clearly H 1 divides F 1 in (Zip Z)[T], and 0 < 8H .,;;; I. In the sequel we will assume that condi
tions (2.1 ), (2.2), (2.3), (2.4 ), and (2.5) are satisfied. 

By fq we denote the finite field containing q = p 8H elements. From (2.4) we have 
fq~(Z/pl)[T]/(H1 ) ~{L;8!!0- 1a;a{:a; EllpZ}, where a 1 =Tmod(H 1) is a zero of H 1• 

Furthermore we put Wk(fq)=(llpkZ)[T]l(Hk)= {L;8!!,- 1a;ak: a; El.!pkz}, where ak = 
Tmod(Hd is a zero of Hk. Notice that Wk(IFq) is a ring containing qk elements, and that 
W1(fq)~fq. For a E Z[a] we denote by a mod~1 ,Hi) E W1(fq) the result of the canonical 
mapping from Z[a]=Z[T]/(F) to W1(fq)=(l./p Z)[T]J(H1) applied to a, for l = l,k. For 
g =Li~ X{ E ~Z[a][XiJ we denote by g mod(p1,H1) the polynomial L;(((D- 1modp 1)a;) 
mod(p1 ,H1))Xf E W1(f q)[Xd (notice that D- 1modp1 exists due to (2.1)). 

We derive an upper bound for the height of a monic factor g of f. As usual, for 
g = Li 1Li2"··Li,LJa; 1;,. •• ;,1aiXf1X4 2 ••• X/' E Q(a)[X1,X2, ... ,X1], the height gmax is defined as 
maxla; 1; 2 ... ;,j j, and the length lg I as (La;7;,. .. ;,1)Vi. Similarly, for a polynomial h with complex 
coefficients, we define its height hmax as the maximum of the absolute values of its complex 
coefficients. 

For any choice of a E {a1,a2, ... ,a1 }, where a1,a2, ... ,a1 are the conjugates of a, we can 
regard gas a polynomial ga with complex coefficients. We define llgll as max1.-;;;;.-;;; 1 (ga)max· 
From [3] we have 

Jlgll .,;;;e~f=in;ll/11. 
In [8: Section 4] we have shown that this leads to 

(2.6) g max.,;;; e ~!=in; II/ III (I - 1 p- l)/21FI 1 - I I discr(F) 1-v.. 

From [13] we know that the length IF I of F is an upper bound for the absolute value of the 
conjugates of a, so that 

i=O 

which yields, combined with (2.6), 
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(2.7) 

The upper bound for the height of monic factors off, as given by the right hand side of (2.7), 
will be denoted by B1 . Because ldiscr(F)I ~I, we find 

I 
(2.8) logB/ = 0( ~ n; +log/ max+J log(J IFI)). 

i=I 

3. Factoring multivariate polynomials o~r algebraic number fields 

We describe an algorithm to compute the irreducible factorization off in Q(a)[X1oX2, ... ,Xi]. 
Let s2,s3,. •• ,s1 E Z>o be a (t -1)-tuple of integers. For g E Q(a)[X1,X2, ... ,X1] we denote 

by g1 the polynomial g mod((X2-si), (X3-s3), •.. , (X1 -s1 )) E O(a)[X1, ".; + 1' X1 +2• ... ,X, ]; i.e. 
g1 is g with s; substituted for X;, for 2 ~ i ~l. Notice that g 1 = g and that g1 = 
g1 -1mod(X1 -~). Weputg=g!. 

Suppose that a polynomial h EZ[a][X1] is given such that 

(3.1) h is monic, 

(3.2) 

(3.3) 

(3.4) 

h mod(pk,Hk) dividesj mod(pk ,Hk) in Wk(IFq)[XiJ, 

h mod(p , H 1) is irreducible in IF q [X i], 

(h mod(p,H1))2 does not dividej mod(p,H1) in 1Fq[Xi]. 

We put I= IJih, so 0 <I,,,.;; n. By h 0 E ~ Z[a][Xl>X2, ... ,Xr] we denote the unique, manic, 

irreducible factor off such that ii mod(pk ,Hk) divides ii0mod(pk ,Hk) in Wk(IFq)[Xi] (cf. (3.2), 
(3.3), (3.4)). 

(3.5) Let m = m1om2,m3,. •• ,m1 be a t-tuple of integers satisfying I~ m < n and 
O~m; ...;;6;lc;_1(j) for 2...;;i ~t. and let M = l+J~f= 1m;N;+ 1 (where of course N1 + 1=1). 
We define L C( ~ )M as the lattice of rank M, consisting of the polynomials g E 

~Z[a][X1,X2, ... ,X1 ] for which 

(i) 61g ,,,.;; m and 8;g,,,.;; n; for 2,,,.;; i ,,,.;; t; 

(ii) Jf 61lc1_1(g) = m1 for 1 ,,,.;; l ,,,.;; i, then 6i + 1/c; (g),,,.;; m; + 1 for I ,,,.;; i < t; 

(iii) Jf 8;lci _ 1(g) = m; for I ~ i ,,,.;; t, then lc(g) E Z; 

(iv) iimod(pk,Hk)dividesgmod(pk,Hk)in Wk(IFq)[Xi]. 

Here M -dimensional vectors and polynomials satisfying conditions (i), (ii), and (iii), are identified 
in the usual way (cf. [8: (2.6); 11: (2.2)D. For notational convenience we only give a basis for L 
in the case that mi = ni for 2 ,,,.;; i ,,,.;; t; the general case can easily be derived from this: 

{~pkaiX{: O...;;l <6H, O~i <I} 

U {~ai-69H(a)X{: 6H .,.;;l <I, O...;;i <I} 

u {~aiiix{-1: o...;;1 <I,/ .,.;;i .,.;;m} 

u {~aixf1 IT(X,-srf: o...;;1 <J,O...;;i 1 ...;;m,O...;;i, ...;;n, 
r=2 
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t 
U {Xf'Il(Xr-srr} 

r=2 

(cf. [8: (2.6); 11: (2.19)], (2.2), and (3.1)). 

(3.6) Proposition. Let b be a non-zero element of L and let 

(3.7) jjj = J:nb:hax (n +m)! (nN2(1 + F maJ1 - 1 _ITsr• ]n +m, 
1=2 

for I ...; j ...; t, where J:n denotes if max)m. 
Suppose that 

(3.8) 

for2os;;j os;;t, and 

(3.9) 

Then gcd(j,b)+. 1 in Q(a)[X1>Xz,. . .,X1]. 

Proof. Denote by R = R(Df ,Db) E Z[a][X2,X3,. .. ,X1] the resultant of DJ and Db (with respect 
to the variable X1). An outline of the proof is as follows. First we prove that an upper bound 
for (~j )max is ~ven by jjj. Combining this with. (3.8), we then see that Xj = sj cannot be a zero 
of Rj-I if Rj_ 1+.0, !or 2..;jos;;t. This implies that the assumption that R+.O (i.e. 
g_cd(j,b) =I) leads to R +o. We then apply a result from [6], and we find with (3.9) that 
Rmod(pk,Hk)+.O. But this is a contradiction, because hmod(pk,Hk) divides both 
jmod(pk,Hk) and bmod(pk,Hk) in Wk(Fq)[Xi]. We conclude that R =O, so that 
gcd(j,b)+. I in Q(a)[X1,X2, .. .,X,]. 

If a and b are two polynomials in any number of variables over Q(a), having la and lb 
terms respectively, then 

(3.10) (a·b )max...; amaxbmaxmin(/0 , lb)(l + F maJ1-I. 

From (3.10) we ~ily deriv~ an upper bound for (Rj )max, because Rj E Z[a][Xj +I> Xj +2,. . ., X,] is 
the resultant of Dfj and Dbj: 

(3.11) (Rj )max...; (Djj )~(Dbj )~(n + m )!NN"t-1 (I+ F maJCJ - IXn +m - I>. 

It follows fromjj = ij-I mod(Xj-sj), that </j)max...; </j-!)max(nj + 1)sj1, so that 

(3.12) <!)max os;;f maxfl(n; + l)sr. 
i=2 

Combining (3.11), (3.12), and a similar bound for (bj )max, we obtain 

(3.13) (Rj)max <f:nb:hax(n +m)!(DN2Tis;"')n +m(l +Fmax)<l-IXn+m-I>, 
i=2 

for I os;;j < t. (Remark that (3.13) with"<" replaced~"...;" holds for j = t .) 
~ Now assume.! for !omej with 2..;j os;;t, that Rj;;I is unequal to zero. We prove that 

Rj -:/= 0. Because Rj = Rj -:.I mod(Xj - sj ), the condition Rj = 0 would imply that all polynomials 
in Z[Xj I that result from Rj _ 1 by grouping together all terms with identical exponents in a and 
~ + 1 up to X1, have (Xj - sj) as a factor. These polynomials have degree (in ~) at most 
(n + m )nj, so that we get, with the result from [ 12], that 

~ ~ 

lsjl os;;((n+m)nj+l) (Rj-J)max· 

<fimbined with (3.13) and (3.7) this is a contradiction with (3.8). We conclude that Rj +o if 
~ - I +. 0 for any j with 2 ...; j ...; t, so that the assumption gcd if, b) = 1 (i.e. R +. 0) leads to 
R+.O. 
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Assume that Hk(T) divides R(T) E Z[T] in (Z/pkZ)[T], i.e. R mod(pk ,Hk) = 0. The polynomial 
Hk(T) is also a divisor of F(1) in (Z/pkZ)[T], so that gcd(F(T),R(T)) = 1 and [6: Theorem 2] 
lead to 

pk8H.,.;;;; IFIJ-l(/'hRmax)1. 

~ith the remark after (3.13) and (3.7) this is a contradiction with (3.9), so that 
R mod(pk, Hk) ::P, 0. 1his concludes the proof of (3.6). D 

(3.14) Proposition. Let b 1,b2,. • .,bM be a reduced basis for L (cf. [7: Section lj), where Land M 
are as in (3.5), and let 

(3.15) 

for 2 ..;;; j ..;;; t, where Bf is as in Section 2. Suppose that 

(3.16) sj ~((n +m)nj+l)'hBj-I 

for 2 o;;;;j..;;; t, that 

(3.17) 

and that f does not contain multiple factors. Then 

(3.18) (b1)max.,.;;;;(M2M-l)'hB! 

and h0 divides b 1, if and only if ho EL. 

Proof. If ho divides b1o then ho EL, because b1 EL; this proves the "if"-part. 
To prove the "only if"-part, suppose that ho EL. Because ho is a monic factor of l· we 

have from (2.7) that (ho)max.,.;;;;B1 . With [7: (1.11)] and h 0 EL this gives lbd .,.;;;;(M2M- )'hBt, 
so that (3.18) holds, because (b 1)max..;;; I b1 I· Because of (3.18), (3.16), (3.17), (3.15), and the 
definition of B1 , we can apply (3.6), which yields gcd(f ,b 1)* 1. 

Now suppose that h0 does not divide b 1. This implies that ho also does not divide 
r = gcd(j ,b 1), where r can be assumed to be monic. But then ii mod(pk ,Hk) divides 
<.j /F)mod(pk ,Hk ), so that Proposition (3.6) can be applied with f replaced by f fr. Conditions 
(3.8) and (3.9) are satisfied because (j!r)maxo;;;;B1 (cf. (2.7)) and because of (3.16), (3.17), and 
(3.15). It follows that gcd(j!r,b 1)::P,l, which contradicts r =gcd(j,b 1) because f does not 
contain multiple factors. D 

(3.19) We describe how to compute the irreducible factor h0 off. Suppose that f does not con
tain multiple factors, and that the polynomial ii, the (t-1)-tuple s 2,s3,. . .,s1, and the prime 
power pk are chosen such that (3.1), (3.2), (3.3), (3.4), (3.16), and (3.17) are satisfied with, for 
(3.16) and (3.17), m replaced by n -1. Remember that we also have to take care that conditions 
(2.1), (2.2), (2.3), (2.4), and (2.5) onp and H are satisfied. 

We apply the basis reduction algorithm (cf. [7: Section I]) to a sequence of Mrdimensional 
lattices as in (3.5), where the Mj = 1+J"}:,f= 1m; N; + 1 run through the range of admissible values 
for ml> m2,. •• , mt (cf. (3.5)), in such a way that Mj < Mj+ 1. (So, for m = 1, l + 1,. . ., n -1, and 
m; = 0, 1, ... , 8;lc; _ 1(() for i = t, t - l, .. ., 2 in succession.) According to (3.14), the first vector b 1 
that we find that satisfies (3.18) equals +h0 (remember that b 1 belongs to a basis for the lattice), 
so that we can stop if such a vector is found. If for none of the lattices a vector satisfying (3.18) 
is found, then ho is not contained in any of these lattices according to (3.14), so that h 0 =f. 

(3.20) Proposition. Assume that the conditions in (3.19) are satisfied. The polynomial ho can be 
computed in 0 ((81hofN z)4k logp) arithmetic operations on integers having binary length 
0 (/Nk logp). 
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Proof. Observing that log(/Np2k) = O(k logp) (cf (3.17), (3.15), and (2.8)), the proof immedi

ately follows from (3.19), (3.5), and [7: (l.26), (1.37)]. D 

(3.21) We now show how si,s 3, ... ,s1 and p can be chosen in such a way that the conditions in 

(3.19) can be satisfied. The algorithm to factor f then easily follows by repeated application of 

(3.19). 
We assume that f does not contain multiple factors, so that the resultant R = R(df ,dj') 

of df and its derivative df' with respect to X1 is unequal to zero. First we choose 

s 2,s3, ... ,s1 E: Z>o minimal such that (3.16) is satisfied with m replaced by n -1. It follows from 

(3.16), (3.15), (2.8) and logD = O(logd +I log(/ IF I)) (because D = d I discr(F I), that 

logs1 = O(log((n +m)n1)+logB1_ 1) 

j-1 

= O(InN +n(logBf + logD + Ilog(l + F max)+ 2: n;logs; )) 
i=I 

J-1 
= O(n(IN +log(df max)+ Ilog(/ IF I)+ 2: n;Iogs; )) 

i = l 
for 2 ~ j -.;;; t , so that 

J-1 
1ogs1 = O(n(IN +Iog(df max)+ Jlog(/ IF I)) II (1 +nn; )) 

i=2 

and 
t 

(3.22) 2: n;Iogs; = O(n 1- 2N(IN +log(df max)+ I log(I IF I))). 
i=2 

From the proof of (3.6) it follows that, for this choice of s 2,s3, ... ,s1 the resultant R E Z[a] of dj 

and df' is unequal to zero. 
Next we choose p minimal such that p does not divide D or discr(F), and such that 

R :po mod p . Clearly 

II q -.;;; d discr(F)Rmax 
q prime, q<p 

~hich yields, together with 

II q > eAP 
q prime, q<p 

for all p > 2 and some constant A > 0 (cf. [4: Section 22.2]), that 

(3.23) p =O(logd +Ilog(IIFl)+logRmax)· 

Similar to (3.13) we obtain 

Rmax ~ f ~':ix-Inn (2n -1)! [ dN 2;ust' J 2n -1 (1 + F maxp-1x2n -2), 

so that we get, using (3.22) 

log Rmax = O(n 1 - 1N (IN+ log(dj max) +I log(I IF I))). 

Combining this with (3.23) we conclude that 

(3.24) p = O(n 1 - 1N(IN +log(df max) +I log(/ IF I))). 

Notice that (2.1) is now satisfied. In order to compute a polynomial H E Z[T] satisfying (2.2), 

(~.4), (2.5), an~ (2.3) with k replaced by I, we factor F modp by means of Berlekamp's algo

f!:thm [5: Section 4.6.2] and we choose H as an irreducible factor of F modp for which 

R mod(p,H1)=f=O; such a polynomial H exists because R modp :f=O. Conditions (2.4) and (2.3) 

with k replaced by I are clear from the construction of H, and because we may assume that H 
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has leading coefficient equal to one, (2.2) also holds. The condition that discr(F)modp ::;l=O, 
finally, guarantees that F modp does not contain multiple factors, so that (2.5) is satisfied. 

We choose k minimal such that (3.17) holds, so that 
t 

k logp = 0 (I (InN + n log(df max) +In log(I IF I) + n ~ n; logs;) + logp) 
i=2 

(cf. (3.15) and (2.8)), which gives, with (3.22) and (3.24) 

(3.25) k logp = O(In'- 1N(IN + log(df max) +Ilog(/ IF!))). 

Now we apply Hensel's lemma [5: Exercise 4.6.22] to modify H in such a way that (2.3) holds for 
this value of k (this is possible because (2.3) already holds for k = 1), and finally we apply 
Berlekamp's algorithm as described in [1: Section 5] and Hensel's lemma as in [14] to compute 
the irreducible factoriza~on of/ mod(pk ,!jk) in Wk(Fq)[X1]. Co!ldition (3.4) is satisfied for 
each irreducible factor hmod(p ,Hk) of fmod<.pk,Hk) because Rmod(p,H1):#=0, and (3.1), 
(3.2), and (3.3) are clear from the construction of h . 

We have shown how to choose s2,s3, ... ,s1 and p, and how to satisfy the conditions in 
(3.19). We are now ready for our theorem. 

(3.26) Theorem. Let f be a monic polynomial in ~Z[a][X1,X2, ••. ,X1] with t;;;;.. 2, of degree n; in 

X;, and 2 ..;n = n 1 ...; n2 ...; ••• ..;n,. The irreducible factorization of f can be found in 
O(n 1 - 1(IN)5(IN + log(df max) + Ilog(/ IF!))) arithmetic operations on integers having binary 
length O(n 1 - 1(IN)2(IN + log(df maJ +I log(/ IF!))), where N = ill= 1(n; +l). 

Proof. If f does not contain multiple factors, then f can be factored by repeated application of 
(3.19). In that case (3.26) follows from (3.21), (3.20), (3.25), and the well-known estimates for the 
application of Berlekamp's algorithm and Hensel's lemma (cf. [5; l] and [16]). 

If f contains multiple factors, then we first have to compute the monic gcd g off and its 
derivative with respect to Xi. and the factoring algorithm is then applied to f I g. The cost of 
factoring f lg satisfies the same estimates as above, because (j /g)max...; B1 (cf. (2.7)), and this 
dominates the costs of the computation of g, which can be done by means of the subresultant 
algorithm (cf. [2]). D 
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