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of M,. and the leading bias term B2 ,, of G[ m~1 l, m~:>] for 
c = 0.99 are 

B1 11 = h2 + h4, B2,, = ~152.76 h4 • 

This shows that if h2 > 1/cV152.76 - 1) the mse of G[m~1 >, 
ml;>] dominates the mse of m,,. Similar conditions can be found 
by varying m<2> and m<4l. 

In a practical situation a choice of R that avoids a situation of 
this kind, described in the example, seems to be impossible. Such 
a selection of R has to take into account the unknown values 
m<2>(t) and m<4>(t). It is therefore impossible in a practical 
solution .to compute the parameter regions where G[m~1l, m~2l] 
actually improves ordinary kernel regression estimate m,,. 

We also compared the leading terms of the mse G[m~1 l, 
ml?°l](t) and of the mse m,,(t) of a fixed regression curve in 
T.able II. Shown are the ratios of the two leading terms for 
different values of h, h1, and c with n = 100 and a 2 = 1. The 
regression curve m(t) =sin t was selected, and the mse at t = 
?T/4 was evaluated with KE 9P2 as before. A bandwidth h, 
being roughly about 0.3, would minimize the mse of m,,(t); 
therefore only combinations are shown with h, h1 E 
{0.2,0.3,0.4}. The use of G[m~1l, m~2>] may result in an mse 
nearly twice as high as the corresponding mse of m,, as can be 
seen from the entry (h, h1, c) = (0.3,0.3,0.9) in Table II. 
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An On-Line Parameter Estimation Algorithm for 
Counting Process Observations 

PETER SPREIJ 

Abstract-The parameter estimation problem for counting process ob­
servation is considered. It is assumed that the intensity of the counting 
process is adapted to the family of a-algebras generated by the counting 
process itself and that the intensity depends linearly on some deterministic 
constant parameters. An on-line parameter estimation algorithm is then 
presented for which convergence is proved by using a stochastic approxi­
mation type lemma. 

I. INTRODUCTION 

Counting processes frequently occur as observations in 
mathematical models for industrial processes and in biology, 
software engineering, and nuclear medicine. Usually, such a 
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counting process can be considered as the output process of some 
stochastic system. The underlying state process then influences 
the counting process. A problem is then to estimate this state, 
given the observations. This is known as the filtering problem 
and has been investigated extensively [l ]. 

The solution of this problem requires knowledge of all parame­
ters needed to describe the stochastic system, which means that 
one can compute the solution to the filtering problem only if one 
knows the correct parameter values. Unfortunately, in many 
cases these are not known and therefore need to be estimated. 
This may happen before the processes start running, using related 
additional information and/or observations. In the former case 
some asymptotic results for off-line maximum likelihood estima­
tion are available [3], [4]. 

The purpose of the present correspondence is to make a 
contribution to the on-line parameter estimation problem in a 
specific case. The approach has proven to be fruitful in discrete 
time ARMAX processes [7] or continuous time Gaussian AR 
processes [6]. 

The correspondence is organized as follows. In Section II we 
give some basic results for counting processes. In Section III we 
give a heuristic derivation of our parameter estimation algorithm. 
Section IV contains the convergence proof of the algorithm. 

II. PRELIMINARY RESULTS 

We assume that we are given a complete probability space 
(0, .F, P), a time set T = [O, oo), and a filtration { §, }, " 0 satis­
fying the usual conditions of [2]. All stochastic processes in the 
sequel are defined on 0 x T and adapted to { Yr } , ., 0 • We study 
the case that we are given: an observed process, which is a 
counting process, that is a map n: 0 X T-+ N0 , which has only 
jumps of magnitude + 1. Then it is known [l], [2] that n is a 
submartingale and therefore admits the so-called Doob-Meyer 
decomposition (with respect to { §, }, " 0 ) 

(2.1) 

where A: 0 X T-+ IR is a predictable increasing process and m 
a local martingale. Now assume that A is an absolutely continu­
ous process, say A, = fJA, ds; then we can rewrite (2.1) as 

dn, = A1 dt + dm,. (2.2) 

The process A is called the intensity process. 
Often a major problem for counting process observations is to 

identify the intensity process A. This problem can be set up in 
two stages. In the first stage we have to sqlve a filtering problem. 
To be precise we have to determine A,= E(A,l.Fr"), where 
§,"=a{ n_,, s:;;; t}. Then A1 is the optimal (in the sense of mean 
squared error) estimate given the observations during [O, t] c T 
and given the values of deterministic parameters. We can then 
replace (2.2) by the minimal decomposition of n (i.e., with 
respect to { §, 11 }) 

dn, = >., dt + dm, (2.3) 

where m is a local martingale adapted to { §,n }, 2! o· In the 
second stage one looks for estimates of remaining unknown 
deterministic parameters. If one adopts !he maximum likelihood 
criterion, (2.3) and the computation of A, appear to be crucial. 
The likelihood functional in this case is known [l, p. 174] to be 

L, = exp [- lo1(1, - 1) ds +lot log 1.-dn,]. (2.4) 

The Model 

From here on we assume that A has a special structure 

(2.5) 

where p E Rm is the vector of unknown parameters and '/>: 
0 x T --+ IR m is a process adapted to {.Fr" } , ., 0 and thus known. 
Indeed (2.5) imposes a restrictive condition on the intensity 

:..,,•'' j( ... :. 
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process A. Self-exciting processes exist for which the intensity is hence 
of the. forr:n (2.~); see the example below. If </>, comes from a 
recursive fil~er, i~ ca:inot be expected that (2.5) is satisfied. For 
these (adaptive filtenng) problems other algorithms are needed. arJ/(p)=<t>,dt- ~- dn,. 

p </>, 
(3.7) 

The minimal decomposition (2.3) now becomes 

dn, = pT<P, dt + dm,. (2.6) 

Plugging (2.5) into (2.4) and writing L,(p) instead of L in order 
to express the dependence of the likelihood functional 1on p, we 
get 

L,( p) =exp [-pT fo1c1>, ds + t + {Iog(pr<f>,_) dns]. (2.7) 

III. DERIVATION OF THE ALGORITHM 

In this section we state a parameter estimation algorithm for 
the model (2.5), (2.6). The proof that the parameter estimates 
given by this algorithm indeed converge to the true parameter 
value will be given in Section IV. The algorithm is constructed in 
such a way that the estimates Pr of p approximately maximize 
tl;e likelihood functional (2. 7), or equivalently, minimize "1 (.) 
given by 

J,( P) =PT {<t>s ds -j1 log ( <f>:;_p) dn,.. (3.1) 
0 0 

After posing the algorithm we present a heuristic derivation. 

A. Algorithm 

Consider the model (2.5), (2.6). An approximate maximum 
likelihood parameter estimation algorithm is given by 

dp, = Rr<f>,_( dn, - </>;p, dt), 

dR, = -R,<Pr<P'{R, dt, 

with initial conditions p0 and R 0 , respectively. 

(3.2) 

(3.3) 

The interpretation is that for each t p, approximately mini­
mizes "1 ( ·) as stated earlier and that R r is up to a multiplicative 
scalar factor an approximation of the second derivative of J,( · ). 
Thus (3.2), (3.3) can be considered as a quasi-Newton scheme for 
minimizing the family .of functions {J, ( ·)} 1 " 0 . Observe that R r 

stays positive definite when the initial value R0 is chosen to be 
symmetric and positive definite, since dR~ 1 = </>1</>1 dt. 

B. Heuristic Derivation 

To understand the algorithm (3.2), (3.3) it is useful to consider 
first a nonstochastic situation. Let J: IR + X !Rm --> IR, J E 

C 2 (IR+ X IRm,IR) such that J(t, ·): IR"'-> IR has a unique 
minimum, attained for say x(t). Under some regularity condi­
tions it then follows from the implicit function theorem that the 
function t -> x(t) satisfies the differential equation 

[ 
32 ]-- i 32 

dx(t) = - 8x2J(t,x(t)) axa/(t,x(t)) dt. (3.4) 

Let us now return to our estimation problem, that is, finding 
the value p, that for each t minimizes (3.1): For an evolution 
equation for p one tries to find an equation like (3.4). However, 
the functional 1 J of (3.1) does not satisfy the desired smoothness 
conditions, and therefore one has to look for something related to 
(3.4). Our choice is 

(3.5) 

Define kr = <Pr!N<t>, and Q, = [J/'(.p,}t 1• Using these expres­
sions and (3.7), we can rewrite (3.5) as 

dftr=:Q1-k1-(dn1 -<1>'{p1 dt). (3.8) 

The next problem is the finding of a recursion for Q1• It turns 
o~t that an exact equation for Q, cannot be obtained for p E R"' 
with m :?: 2 and that certain approximations are not satisfactory 
in that these cause problems in analyzing the convergence prop­
erties of the algorithm. 

. On the other hand, the case of p E R1 is easy to handle, and it 
will be illustrative for the multivariable case. In this case (3.6) 
reads 

hence 

11 n, 
J,'( p) = </>, ds - - ' 

0 p 

n, 
lr"(p) = 2· 

p 

{3.9) 

(3.10) 

Therefore, Qr becomes 'p,2 /n, and with k, = l/p, (3.8) reads 

(3.11) 

Observe that p, = nJcf>,, where cf>, = f6</>,. ds satisfies (3.11), and 
this value for p, is also found by directly minimizing (3.1). One 
can prove that Pr given by (3.11) converges to the true parameter 
value, using the method of Section IV. 

Applying the stochastic calculus to Q, = 'fj/n, one can verify 
that Q, satisfies 

(3.12) 

Returning to the multivariate case p E Rm, m :?: 2 one would 
like to extend (3.12) in order to obtain an evolution equation for 
Qr. This suggests 

dQ, = -2Q,k,<f>{Q, dt + QI k1-k'{-Q1 dn 1. (3.13) 

One hopes that (3.8) together with (3.13) constitutes the desired 
algorithm. Although (3.8), (3.13) yield some appealin?, properties 
suggested by the case p E 1R 1, such as Pr = Q 1 et>" p, Q; 1 p, = n, 
and cf>/p, = n" we were not able to prove the desired conver­
gence properties. The major bottleneck was the verification of the 
technical condition (see (4.5)) 

l oo T 
Q,-k,-k,-Qr-dn, < oo, 

0 
(3.14) 

which is a trivial exercise if p E R1. The main cause of this 
technical problem was the term <t>{p, in the denominator of k1• 

Therefore, we tried to incorporate this term in Q, so that Qrk, = 
R,cp,, for some matrix valued process R,; the idea was !hen to 
find an equation for R,. 

Inspection of the case p E IR1, neglecting the derivatives of </> 

and using Q,k, = Rr<I>, then leads from (3.13) to 

dR, = - R,<Pi<t>'{R, dt. (3.3) 

IV. CONVERGENCE PROOF 

where prime denotes partial differentiation with respect to p and In this section we present a convergence proof for the al­
a, means the partial forward differential operator with respect. to gorithm (3.2), (3.3) which establishes almost sure convergence ~f 
t. In order to specify the algorithm fully we also ne~d recurs~ve the parameter estimates to the true paranieter value. The pr?of is 
expressions for l/'(p,) and J,'{P,). Later on we will establish completely in the spirit of the proofs in.[6J,. [7]. ~e begm.by 
almost sure convergence of the family { p, }1 " 0 to the true param- stating an important technical lemma, which is a s1mpl~ version 

t l of a more general result in [6], that in tum can be considered as 
e er va ue Po f 1 . d. t f 

From (3.1>" we get by formal differentiation the con~inuous t~me .counterpart o a resu t m iscre e ime 
stochastic approximation [5]. 

11 Jc </>,. -- ,.. ._ .,_...__f_"L 6) Lemma J: Let x, a, b be nonnegative stochastic processes and 
l/(p) = <f>s ds - _r ..... dn,., ~r~· ,_._m h .. " local martingale such that x =a- h + m, and assume 

n n~~"c~w~~~an.i.'°t&Nt~~ ~-------
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that 

1) a and b are increasing processes with a0 = b0 = 0, 
2) 3c E IR+ such that Vt: A.at= ar - a1- s; c almost surely, 
3) lim 1 _ 00 a, < oo almost surely. 

Then 

a) lim, - 00 x 1 exists and is finite almost surely, 
b) limr _ 00 br is finite almost surely. 

Here is our main result. 

Theorem 1: Consider the algorithm (3.2), (3.3). Let Po be the 
true parameter value. Let Pr= p, - p0 and let ilir = <Pfc/>,, '11, = 
JM,, ds + tr(R01). 

Assume 

1) lim, _ 00 '111 = oo almost surely, 
2) /0''11r·- 2i1ir<1>1 dt < oo almost surely, 
3) lim,_ 00'111- 1/Ms<l>I° ds = C, where C E IR"'x"' is positive def­

inite almost surely. 

Then 

a) lim,_ 00 ];1 =Po almost surely, 
b) lim 1 _ 00'11,- 1/6(<1>f'Ps) 2 ds = 0 almost surely. 

Proof- From (3.2), (3.3) it follows that 

dfr = R,<l>r·(dnr - <1>"{J;1 dt) = R1<1>,-(dm1 - <j>"{pdt) (4.1) 

(4.2) 

Observe that '111 = tr ( R-; 1 ). Define the Lyapunov process 

Wr = '11,- 1 ( PrR-; 1p, + fo1Cf!"<i>s) 2 ds ), (4.3) 

then 

dwr = -'11,- 1w,i/ir dt + <1>fRr<i>r'11r- 1p"(;<1>1 dt + dm1" (4.4) 

where m1 is a local martingale. Next we apply Lemma 1 to (4.4). 
Because w, '11 are positive, we then see that the only thing we 
have to check is assumption 3 of Lemma 1: 

( 4.5) 

To that end, let p1 = tr R,. Let Y; 1 be one of the eigenvalues of 
R, 1 , then limr _ 00 Yr- 1 Yu = c; > 0 by assumption 3 of the theo­
rem. Hence Yu= c;'l',(1 + o(l)), (t _. oo). Now y/-; 1 is an eigen­
value of R" Y;7 1 = C;- 1'11,- 1 (1 + o(l)), (t _. oo). Hence Pt= 
'¥, 1(l::c; 1 + o(l)), (t _. oo), or p1 = 0('¥1- 1), (t _. oo). Recall 
that for a xositive definite matrix A, xTAx s XTX . tr(A) and 
xTA 2x s x· x(tr(A)) 2. Then 

f'' <1>'{R,<1>,'¥,-1p6<P1 dt 

= fo <1>"{R,R-;1R,</>1'¥r-1P6</>, dt 
0 

l oo T 2 T loo T 2 T 
S: 0 1>1 R 1 </>1 Po<P1 dt S: 0 <Pr <Pr Pr Po<f>r dt 

= p'fi' fo 00 i/i1P?<Pi dt = P6 fo00 
</J1 i/ir0( '¥,- 2 ) dt < 00, 

by assumption 2. 
Then from Lemma 1 we conclude that w and Jo ws'l's- 11/i,. ds 

almost surely converge. We claim that limr_ 00w, = 0 almost 
surely. If not, a subset of Q with positive probability and an 
€ > 0 exists such that limr _ 00w, ~ 2€ on this subset. However, 
then we also have on the same subset 

lnr o:;w,,·,..ntion 1. Tills contradicts the second assertion of lemma 

1. Since w is the sum of two positive quantities we have both 

lim ir,- 1 f 1
( p[cf>s ) 2 ds = 0 almost surely ( 4.6) 

.r-oo lo 
and 

R-1 
lim -T_,_~ - 0 

p, ,,, P1 -
r-oo Y 1 

a.s. ( 4.7) 

Becaus~ of ass1!mption 3 we know that lim, .... 00-Irr- 1R-; 1 = C > O, 
hence lim,_ 00 p 1 = 0 almost surely. 

V. ExAMPLES 

1) If <j>: T _. R 2 , cf>(t) = [l,sin t + l], then the conditions of 
the theorem are satisfied. The matrix C in assumption 3 becomes 

1[2 2] 
5 2 3 . 

2) Let cp: T X Q-> R 2 , <Pr= (1,1 + (-1)"') and p =(a, b) 
E R~. By analogy, the second component of </> jumps like a 
random telegraph process. Conditions 1 and 2 of Theorem 1 are 
easily verified. To check condition 3 let us first define 

x, = cl lo'< -1r ds. 

Then 

'¥,- 2 f<1>s<l>I° ds = (3 + t- 1 tr(R01)+2X,)- 1 

0 

x[1:xr 
We now proceed to compute a.s.-lim, .... 00 X,. Since nr =(a+ 
b)t + btX, + m,, we find that 

X, = b- 1(t- 1n1 - t- 1mr - a - b). 

The quadratic variation process (m), =(a+ b)t + btX, s (a+ 
2b)t. It then follows from the strong law of large numbers for 
martingales that i- 1m 1 -> 0 almost surely. Finally, we must 
evaluate the asymptotic behavior of t- 1 n r. Define Tk = inf { t ~ 
0: n, = k}. Then 

00 k 00 k 
L ~l(T.sr<Tk+d S: t- 1n, SL yl(T.,,;r<T .. i)· 

k=O k+I k=O k 

Consequently, 

. -I . k 
a.s.- limt nr = a.s.- lim-. 

1->oo r-+oo Tk 

Let "; = 1j - 7j_ 1 , j = 1, 2, · · · . Then { '1j} is a sequence of 
independent random variables, and Er21 = a-1, ET21+1 =(a+ 
2 b )- 1 . Now the strong law of large numbers for independent 
random variables applies, and we get 

a.s.- lim Tk = a.s.- lim~ E '1j = ~(~ + - 1-) 
t-+oo k t-+oo k . 1 2 a a+ 2b 

1-
a + b 

a(a+2b). 

Collecting the foregoing results we find 

a.s.- limX, =~[a(a +lb) - a - b] 
t->oo b a+b 

b 

a+b 

The conclusion is that 

1. ,1,-11' T c/s 1 [a+ b a.s.- im-,,, </>A>s =-3 b 
t->oo o a + a 

VI. REMARKS 

Clearly, condition 3 of the theorem is sufficient to identify all 
the components of p0 , but it seems that one cannot do without it. 
The strict positive definiteness of C is lost in either of the 
following situations that are worked out for p0 E IR 2 . Let <P == 
[4'1, <t>2J and let fou,_,~.,,</>1J4>2 , = 0. Let Po= [Po1> Po2 f. Thc:il 
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one c~ expect to identify p01 • For suppose dnil = Po;<Pit dt + 
dm;,, z ".'"' 1, 2, and let n, = n1, + n21 . Then eventually all the 
observations of n, are almost entirely those of n which does 
not yield much information about p01 • Indeed C 2~ow becomes 

[ g ~]. Similarly, if limH 00<fl1,/c/>21 = c E (0, oo ), one can only 

expect to identify CP01 + Po2. 
It might be difficult to check assumptions 2 and 3 of Theorem 

2. A~s~mption 1 will i?- general be easy to verify. A sufficient 
condition for assumptions 1 and 2 to hold is, for example, 
c/>r - ta (a > -1 /2). A necessary condition for assumption 3 is 
that the eigenvalues of f 6cf>A>f ds are of the same order as t -+ oo. 
Assumption 3 is similar to the notion of persistence of excitation 
that appears in identification problems for ARM.AX systems. 

Condition 3 of the theorem appears as a technical condition, 
necessary for the proof of Theorem 2. It seems, however, to be 
related to 

li 1 lt<f>scf>f 
m -r:;: -r- ds > 0 almost surely 

t ...... 00 Po "'1 0 Po<Ps 
(6.1) 

where «1>1 = fJc/>s ds. Here (6.1) has an appealing interpretation. 
To see this, define a normalized version of (3.1) by 

1 
H,(p) = T~ lr(p). 

Po 1 

(6.2) 

Then minimization of H1( ·) is equivalent with minimization of 
'10· One can easily check that for large t H('(p)lrP can be 
approximated by (6.1). Hence (6.1) says that for t-+ °oo p0 is 
indeed a minimum point of H, ( · ). 

We have not discussed the asymptotic distribution of the 
estimates p, generated by (3.2) and (3.3). This issue will be 
addressed in another publication. 
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Abstract-A class of suboptimal Wiener filters is considered, and their 
computational and statistical performances (and the trade-off between the 
two) are studied and compared with those for known classes of suboptimal 
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Wiener filters. A general model of a suboptimal Wiener filter over a group 
is defined, which includes, as special cases, the known filters based on tke 
discrete Fourier transfonn (DFT) in the case of a cyclic group and the 
Walsh-Hadamard transfonn (Wlff) in the case of a dyadic group. Statis· 
tical and computational perfonnances of various group filters are investi· 
gated. The cyclic and the dyadic group filters are known to be computa­
tionally the best ones among all the group filters. However, they are not 
always the best ones statistically and other (not necessan1y Abelian) group 
filters are studied. Results are compared with those for the cyclic group 
filters (DFT), and the general problem of selecting the best group filter is 
posed. That problem is solved numerically for small-size signals ( s 64) for 
the first-order Markov process and random sine wave corrupted by white 
noise. For the first-order Markov process with the covariance matrix 
B<s.I> = pl•-ll as p increases, the use of various non-Abelian groups 
results in improved statistical performance of the filter as compared to the 
DFf. Similarly, for the random sine wave with covariance matrix B<•· 1> -
cos A(s - /)as A decreases, non-Abelian groups result in a better statisti­
cal perfonnance of the filter than the DFr does. However, that is 
compensated for by the increased number of computations to perf onn the 
filtering. 

I. INTRODUCTION 

In recent years interest has grown in utilizing orthogonal 
transforms in digital signal processing in order to improve statis­
tical or computational performance to permit a trade-off between 
these two criteria by utilizing a certain chosen orthogonal trans­
form [1], [3], [7], [14]. 

A common quality shared by many fast transforms which 
enables their classification (see, e.g., [4], [5]) is that they can be 
represented as Kronecker products of matrices which may or may 
not be sparse or structured. By virtue of this Kronecker product 
representation new transforms can be generated from old ones 
simply by using the Kronecker product. In a given problem, such 
as Wiener filtering with given statistical characteristics of a signal 
and noise, one can select a computationally good approximating 
transform to a statistically optimal transform and the selection 
can be done out of the family of known fast transforms with a 
Kronecker product representation. (See [10], where a good refer­
ence list can be found, and [l].) 

Another approach to the same problem of Wiener filtering 
would be to construct a computationally good approximation to a 
given statistically optimal transform. A possibility of solving that 
problem analytically for classes of signals defined by their covari­
ance matrices (e.g., for signals whose covariance matrices are 
Toeplitz) has been pointed out in [12], [18], [19], (28) and this 
approach deserves further elaboration. Yet another approach is 
to construct experimentally a computationally good approximat­
ing transform to a transform which is known to be good statisti­
cally. For example, the discrete cosine transform (DCT) has a 
nearly optimal statistical performance for highly correlated 
Markov signals (see (24]), and it has recently been approximated 
by computationally convenient transforms [8]. Here even for 
small n (up to 32 vector-components of a signal) the proble~ is 
difficult involves tedious trial and error procedures, and requrres 
artistry 'rather than clear-cut methods. Another disadvantage is 
that a success with approximating one transform (as DCT) for 
some n (say n = 16, 32) cannot be generalized to be used to 
approximate other transforms [8], [26]. 

A number of researchers (15], (l], [3], (11], (17] have selected a 
family of fast transforms which are group theoretic by t~eir 
nature; i.e., they are based on group ~aracters of ~orrespondmg 
Abelian groups: examples are the discrete Founer transform 
(DFT) in the case of a cyclic group and the Wal~-Hadamard 
transform (WHT) (or simply the Walsh transform) in the case. of 
a dyadic group [l], [3], [11], [15]-[l 7], (27]. The use of non-Abehan 
groups was discussed in [13], [20]. 

These transforms exist for any number n, are computed ana­
lytically by formulas, and possess Kronecker product repre~n­
tations (which guarantee speed of computation for nonpnme 
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