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A small solution of a linear autonomous retarded functional differential equation 
(rfde) is a solution that goes to zero faster than any exponential. Henry's theorem 
on small solutions states that there exists a time T-<lepending on the dimension 
and the delay of the equation-such that all small solutions vanish a.e. for t;;. T. In 
this paper we shall give an explicit characterisation for the smallest possible time T, 
in terms of properties of the specific kernel. This characterisation helps to establish 
new results concerning completeness and F-completeness of the generalized eigen
functions of the infinitesimal generator of the C0-semigroup associated with the 
linear autonomous rfde. ·e 1986 Academic Press, Inc. 

1. INTRODUCTION 

This paper is a condensed version of the report [ 11 ] to which we refer 
for more information, additional results and detailed proofs. 

Consider the following class of Volterra convolution integral equations: 

(1.1) 

where C is an n x n-matrix valued function, and C and fare complex valued 
functions defined on IR such that they vanish on ( - oo, 0), are Lebesgue 
L 2-integrable on (0, h] and are constant on [h, oo) and the convolution 
product C * x is defined by 

C*x(t)= ( C(t-8)x(8)d8. 

An application of the Banach fixed point theorem yields that the equation 
( 1.1) has a unique solution x e Lr0 c( IR + ), the space of locally L 2-integrable 
functions on (0, oo ). Note that the solution is continuous on [h, oo ). 

The class of Volterra convolution integral equations defined above is 
closely related to the class of linear retarded functional differential 
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equations studied by Delfour and Manitius [3, 4, 9]. The following obser
vations indicate that a proper treatment of the theory of linear autonomous 
rfde's starts with the study of the above class of Volterra convolution 
integral equations. First of all the equation ( 1.1) is well defined, whereas 
the linear autonomous rfde is a priori not well defined on the state space 
one likes to deal with. Second, it turns out that one can associate with the 
adjoint semigroup { T(t)*} of the C0-semigroup { T(t)} corresponding to a 
linear autonomous rfde a Volterra convolution integral equation of the 
above type. Finally, it turns out that equivalent results are much easier to 
prove for the Volterra convolution integral equation. 

In this paper we shall prove a sharp version of Henry's theorem [8] on 
small solutions for the Volterra convolution integral equation (1.1). The 
corresponding result for the linear autonomous rfde and corollaries concer
ning completeness and F-completeness of the generalized eigenfunctions are 
only formulated; detailed proofs are given in [ 11 ]. 

2. A SHARP VERSION OF HENRY'S THEOREM 

In this section we shall give a characterisation for the smallest possible 
time t 0 such that all small solutions vanish a.e. for t ~ t0 • This charac
terisation of t 0 is needed in order to establish the results concerning com
pleteness and F-completeness of the generalized eigenfunctions stated in the 
next section. 

Let LI ( z) denote the characteristic matrix function 

(2.1) 

The matrix function Ll(z) appears in a natural way if one Laplace trans
forms the equation ( 1.1 ). Let det Ll(z) denote the determinant of Ll(z). The 
function det Ll(z) is an entire function of order 1 and because of the Paley
Wiener theorem of exponential type less than or equal to nh. Define e by 

exponential type det Ll(z) = nh- e 

Let adj LI (z) denote the matrix function of cofactors of ,d (z ). Since the 
cofactors C ii(z) are (n - 1) x (n - 1) subdeterminants of L1 (z ), the exponen
tial type of the cofactors is less than or equal to (n - 1) h. Define a by 

max exponential type Cii(z) = (n - 1) h- a. 
1 ~i.j;t;;;.n 
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DEFINITION 2.1. A small solution x of ( 1.1) is a (non almost everywhere 

zero) solution x such that 

for all k E IR. 

We can now state and prove our main result. 

THEOREM 2.2. All small solutions of ( 1.1) vanish almost everywhere for 

t;?: c: - a and i; - a is the smallest possible time with this property. 

As an application we have: 

THEOREM 2.3. There are no small solutions 1f and only if exponential 

type det //(:)is equal to nh. 

Proof of Theorem 2.2. Let x be a small solution then f;"' e -=1x(t) dt is 
an entire function and by the Plancherel theorem L 2-integrable along the 
imaginary axis. Laplace transformation of the equation ( 1.1) yields 

f"·· f" L'.1(:) e<1x(t)dt=: e-=1f(t)dt+e ="f(h). 
0 0 

Hence 

det J(:) j e =1x(t) dt = adj L'.1(:) z e-='f(t) dt + e =1f(h) . (2.2) . ~ { fh } 
·o o 

Since the quotient of two functions of exponential type is again of exponen
tial type provided it is entire, J;' e-=1x(t) dt is of exponential type. We now 
need a lemma. 

LEM~1A 2.4. Let F and G be entire functions of exponential type such that 
F and G are O(:m), m E 2, in the closed right half plane. Then 

exponential type (F.G) =exponential type (F) +exponential type ( G ). 

Proof An applicaton of the Ahlfors-Heins theorem (7.2.6) of Boas 
[2J. I 

By Lemma 2.4 the right-hand side of (2.2) has exponential type less than 
or equal.to nh-r;. And so again by Lemma 2.4 J~~ e--=1x(t) has finite 
exponential type 17 and 17 ~ nh - a - (nh - s) = i; - 6. Hence, by the Paley
W1ener theorem 

•-,: ~ 

j e =' x( t) dt = f e - =1 x( t) dt, 
0 0 

and x(I) = 0 a.e. for all t;?: i.: - 6. 
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In the following we shall call functions of the form f 6 e =11/J( t) dt, p E 1R + 
and l/J EL 2 [0, p ], Paley-Wiener functions. To prove the fact that e - CJ is 
the smallest possible time with this property we shall contruct a small 
solution x such that x i=. 0 a.e. in any neighbourhood of e - CJ. Laplace 
transformation yields that it suffices to construct a Paley-Wiener function 
F of exponential type e - CJ such that 

L1(z) F(z) = c + q(z), 

where c E IC" and q is a Paley-Wiener function of exponential type ~h. 
Choose a column of the matrix function adj L1(z) such that one of the 

elements of this column is the cofactor of maximal exponential type 
(n - I) h - CJ. Since the arguments given below can be repeated for all other 
columns we may assume that we can choose the first column 

of adj .d(z). Then 

(2.3) 

We have to consider two cases: 

I. e ~ (n - 1) h; 

II. (n-l)h<<:~nh. 

Case I. Suppose c: ~ (n - 1) h. Let for 1 ~ j ~ n, c1 denote the Taylor 
expansion of Ci 1 of order n - 1 in 0. Then the functions Fi defined by 

1 ~ j ~ n, are entire. Let 

The functions di, 1 ~ j ~ n, are polynomials of degree n with coefficients 
being constants plus Paley-Wiener functions of exponential type~ h. 
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Furthermore 

(2.4) 

Since <let Ll(z) is a polynomial of degree n with coefficients being constants 
plus Paley-Wiener functions we have by the Paley-Wiener theorem that 
the right-hand side of (2.4) can be written as follows: 

Jnh- r. 

c+ 
0 

e-=1h(t)dt, 

where c E en and h EL 2( [O, nh- e]; C"). Furthermore, the cofactors are 
polynomials of degree (n - 1) with coefficients being constants plus 
Paley-Wiener functions. Hence, Fis a Paley-Wiener function and by the 
Paley-Wiener theorem we have 

J
(n-l)h-'1 

F(z) = 
0 

e-=1ift(t) dt, 

where t/JeL 2([0,(n-l)h-a];Cn). Therefore the equation (2.4) can be 
rewritten as follows: 

J(n-l)h-'1 Jnh-e 
Ll(z) e-=1t/J(t)dt=c+ e-=1 h(t)dt. 

0 0 

Hence, the function l/t satisfies the equation 

x-( * x=q, 

(2.5) 

(2.6) 

where q(t) = c + J~ h(s) ds for 0 ~ t ~ nh - e and constant on [nh - e, oo ). 
Since the solution of (2.6) can be written as q - R * q, where R is defined 

as the solution of the equation R = R * ( - (, we obtain 

di/I ' dtEL-[0, (n- l)h-a]. 

Rewrite the equation (2.5) as follows 

e-«n- l)h-e)z Ll{z) J:-(1 e-=11/l((n- l)h-e + t) dt 

rnh-e J(n- l)h-e 
=c+J. e-''h(t)dt-Ll(z) e-zzl/t(t)dt. 

0 0 
(2.7) 
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Since the right-hand side of (2.7) has exponential type less than or equal to 
nh- e we have by Lemma 2.4 that 

iJ(z)f 1 "e =1tf!((n-l)h-1:+1)dt 
() 

(2.8) 

has exponential type less than or equal to h. Furthermore, since 
dtf!/dtEL 2 [0, (n- l)h-a] partial integration yields that (2.8) can be writ
ten as a constant plus a Paley-Wiener function. Hence 

iJ(z)f a e =1tf!((n-l)h-i;+t)dt=h+Ce =11(1)dt, 
o ·o 

where b EC" and 1EL2 [0, h]. Hence t/!( (n - l)h - r, + ·) is a small solution 
such that 

i/J( (n - I) h - c: + ·) i 0 a.e. in any neighborhood of 1: - CJ. 

This yields x = 1: - a. 

Case II. Suppose (n - I )h < c: ~ nh. In this case r =exponential type 
detiJ(z)<h. Multiply both sides of the equation (2.3) by 

to obtain 

f,, -r e :r dt 
0 

- (G(z)) 
A(c) C") ~ 0 . 

C,,1 0 

where G(z) = sz Te :r dt detiJ (z) has type h, C\1 = rn re :I dt c,_1' 
I ~ j ~ n, and the function Chas type c: - CJ. The same arguments as used m 
Case I applied to the function C yields 

iJ(z)J"" e =1liJ(t)dt=h+f'e= 1ii(t)dt. 
0 () 

Hence, lif is a small solution such that 

lif i 0 a.e. 

in any neighborhood of e - CJ. This yields r:t. = c: - a. I 
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Proof of Theorem 2.3. Because of Theorem 2.2 it suffices to prove 

Ve>O: a<e. 

Suppose a= e. We shall calculate the exponential type of det adj Ll(z) in 
two different ways. Since a= e we have 

exponential type det adj Ll(z):::;; n((n - lh- e) = (n - 1 )(nh- e)- e. 

On the other hand by Lemma 2.4 we have 

Hence 

exponential type det adj LI (z) =exponential type ( det LI (z) )c" - 11 

= (n - 1 )(nh - e ). 

( n - 1 )( nh - e) :::;; ( n - 1 )( nh - e) - e, 

which is a contradiction if e > 0. I 
Remark 2.5. Using the notation introduced above, Henry's theorem on 

small solutions for the Volterra convolution integral equation ( 1.1) can be 
stated as follows: All small solutions of ( 1.1 ) vanish a.e. for t-;;:; e. A slight 
modification of Henry's proof yields: All small solutions of ( 1.1) vanish a.e. 
for t ';;:; e - a. The hard part in proving Theorem 2.2 is to construct a small 
solution which does not vanish a.e. in any neighbourhood of e - a. This 
property of being minimum of e - a yields the improvement of Henry's 
theorem. 

3. THE LINEAR AUTONOMOUS rfde 

Consider the following linear autonomous rfde, 

dx 
dt (t) = Lx" t;?; 0, 

x(O) = rP 0 , 
(3.1) 

Xo=rPl, 

where x, is the translation of x overt considered as a function on [ -h, OJ, 
L is a continuous mapping from C[ - h, 0] into en and 
(rP 0 , rP 1 ) E M 2 =en x L 2 [ -h, 0]. Because of the Riesz representation 
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theorem there is a matrix function ( of bounded variation on [O, h] 
(suitably normalized) such that 

f,, 
L~= ~(-t)d((t), 

l) 

(3.2) 

for all ~EC[ - h, 0]. Translation along the solution defines a C 0 -semigroup 
{ T( t)} on M 2 by 

T(t) ~ = (x(t; ~), x 1 ( ·; </;)). (3.3) 

Let rx denote the ascent of {T(t)}, i.e., !X=inf{t I for all c:>ON(T(t))= 
N( T( t + E:))}. In [ 11] we proved, motivated by earlier results of Delfour 
and Manitius [ 4, 9 ], the existence of a bounded invertible operator Q such 
that QT(t) Q 1 = S(t), where {S(t)} is the C0 -semigroup associated to the 
Volterra convolution integral equation (1.1) defined by 

(3.4) 

where x,( ·) = x(t + ·) on [O, 20 ). Using this result we obtain by 
Theorem 2.2 

THEOREM 3.1. The ascent rx of { T( t)} is equal to E: - <J. 

Moreover, since P.(() =£((*)and <J(() = <J((*) we obtain 

COROLLARY 3.2. The ascent rx of' { T( t)} is equal to the ascent i5 of 
{ T(t) * }. 

Note that this corollary generalizes a result of Bartosiewicz [ 1 ], who 
proved for a special class of ( that a= 0 if and only if i5 = 0. 

An application of a result of Manitius [9] that completeness holds if and 
only if 6 = 0 yields 

COROLLARY 3.3. Completeness holds if' and only if exponential type of 
det L1(:.:) is equal to nh. Or, equivalently, completeness holds if and only if' 
there are no small solutions. 

Delfour and Manitius introduced in their papers [ 4, 9] also the concept 
of F-completeness. The following corollary yields an easy to verify 
necessary and sufficient condition for F-completeness. 

COROLLARY 3.4. F-completeness holds if and only if E: - <J ~h. 

Or, equivalently, F-completeness holds if and only if all small solutions 
vanish almost everywhere on [O, '.XJ) (are in the kernel of F; see [ 11] ). 
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Remark 3.5. All the results given in this section also hold for the more 
general class of rfde considered by Delfour in [ 3]. 
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