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I. INTRODUCTION 

Let :!!' = { P11 (x) },~~ 0 be a sequence of monic polynomials satisfying the 
recurrence relation 

P,,(x)=(x-c 11 )P11 • 1(x)-). 11 P11 2(x), 

P 0(x)= I, 

(n> l) 
(I.I) 

where c11 is real and A. 11 + 1 > 0 (n > 0 ). A recurrence of this type is a 
necessary and sufficient condition for !/l to constitute an orthogonal 
sequence. Specifically, there is a mass distribution di/I on the real line (with 
total mass I and infinite support) such that 

f y II 

P 11(x) P,,,(x) di/f(x) = J,"" [1 )"i+ l • 
f. i~ 1 

( 1.2) 

where the empty product is interpreted as unity (cf. Chihara [2, 4] for 
these and subsequent preliminary results). 

P11 (x) has n real, simple zeros x,, 1(.1') < x 112 (;1') < · · · < x,.,,(dl'). Moreover, 
the zeros of P11 (x) and P11 + 1(x) separate each other, that is, 

Xn + 1,;(.01') < -'11;(:#) < Xn + 1.i +I(#) 

so that the limits 

(;(:11') =. iim X 11;(:f') 
n ·-+ ·:1. 

exist, and 

(i = I, 2,. .. , n ), ( 1.3) 

(i ~I) 

Throughout this paper we shall assume that the zeros of P11 (x) are positive, 
that is, ~ 1 (#) ~O. 
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We write 

a(&)= Jim ~;(.o/), 
i-+ oc 

and remark that for i~ 1 

( 1.4) 

The distribution dlfi of ( 1.2) is uniquely determined by { c11 , A.,,+ 1 } if and 
only if the Hamburger moment problem (Hmp) associated with &' is deter­
mined. In this case we have 

supp(dl/J) n ( - CXJ, a{t?l')] = 2(.':il') if a(.0<1) < oo ( 1.5) 

and 

supp(dl/J) = 2(.gP) if a(&)= oo, ( 1.6) 

where 2(&>) = g 1 (&>), ~ 2(.9),. .. } and a bar denotes closure. If the Hmp for 
g> is indeterminate, then a(&')= oo and there is exactly one distribution dl/J 
satisfying ( 1.2) and supp( dl/J) = 2( .9 ); any other distribution satisfying ( 1.2) 
has at least one supporting point smaller than ~ 1 ( & ). 

By&*= { P:(x)} ;;'-;,, 0 we denote the sequence of kernel polynomials (with 
parameter 0) associated with f!J, that is, 

( 1.7) 

f!J* constitutes a sequence of monic, orthogonal polynomials and therefore 
there exist (unique) real numbers c: and positive numbers A.:+ 1 (n > 0) 
determining a recurrence of the type ( 1.1) for &'*. Furthermore, if ;J)! is 
orthogonal with respect to dl/J, then .o/* is orthogonal with respect to the 
distribution di/!* defined by 

r dl/J*(t)=C1 I r tdt/!(t) 
- rX::, -· •X 

( 1.8) 

(the factor c i- 1 ensuring that di/!* has total mass 1 ). 
In what follows we write 

and 

The quantities C U, a, and a*, and the sets 2 and 2* are defined 
similarly. We note that as a consequence of the separation theorem 

(i=l,2, ... ,n) ( 1.9) 
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[4, Theorem 1.7.2], we have 

(i ~I). ( 1.10) 

After these introductory remarks we are prepared to give the plan of the 
paper. Exploiting properties of kernel polynomials we establish some 
results relating E to the parameters { l'," ). 11 , 1 } and to asymptotic proper­
ties of :YJ in Section II. In Section III the precise conditions for an equality 
to hold in ( 1.10) are derived. Using our findings of Sections II and III we 
prove some further limit theorems for /J in Section IV. 

The results of this paper are of particular interest in the analysis of 
birth-death processes, where sets of orthogonal polynomials satisfying 
~ 1 ~O play a key role (cf. [7]). We hope to report on these applications in 
subsequent publications. 

II. PROPERTIES OF E 

Because of the assumption ~ 1 ~ 0, we can invoke a result of Chihara [ 4, 
Theorem 1.9.1] stating that ~ 1 ~ 0 is a necessary and sufficient condition 
for the existence of a unique sequence {1111 },;~ 2 of positive numbers such 
that 

Cn = ~/2n I + }'211' (11 > 0), (2.1) 

where y 1 =O. Clearly, {"/ 11 } can be determined recursively from [c11 , l. 111 1 ]. 

It is convenient to introduce the quantities 

II ')' 

G = n __=.:__ 
II ' ,, 

i= I I 2i + 1 

1 II •I 

H =- n )2i+ I 
11-

"\! "·) 

'2 i = 1 J 2i -+- 2 

(n~O) (2.2) 

(where we deviate slightly from Chihara 's [ 5] notation). maintaining the 
convention that the empty product denotes unity. In addition we let 

11 II 

K11 = LG,, L,,= I H; (ll ~0). (2.3) 
i= () I=- 0 

A basic result for which we have later use is the following: 

LEMMA 1. [ 5, Theorem 3]. The Hmp ji1r ;:/' is determined if' and only if' 

L:,:~o G 11 +- 1 L;, = oc. 

Since 

P,,(x)/P11 (0) = fl;'_ 1 ( 1-X,,; 1 x), 
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the quantity - :L;'~ 1 x 11;1 equals the coefficient of x in the polynomial 
P,,(x)/P,,(0). To calculate this coefficient we observe from (I.I) and (2.1) 
that 

II 

P,,(O) = ( - 1 )" 0 h· (2.4) 
i= l 

Using ( 1.1 ), (2.1 ), and (2.4) we can write down a recurrence formula for 
P 11 (x)/P,,(O) in terms of {y,,}, from which the result 

n n 1 

I X,,; 1 = I HkKk (2.5) 
i ~I k = 0 

follows readily by induction. Letting n tend to infinity in (2.5) subsequently 
yields 

Y~ X 

I ~; I= I HkKk, 
i= I k =0 

where the left-hand side is interpreted as infinity if ~ 1 = 0. 

THEOREM l. The following statements are equivalent: 

(i) :L/;0!~1 l<O'.J, 

(ii) :L,;~d) H11 K11 < XJ, 

(2.6) 

(iii) {P,,(x)/P 11 (0)},, converges un((ormly on hounded sets to an entire 
function whose ::eros are simple and are precisely the points ~; (i ~ I ), 

(iv) { P,,(x )/ P 11 ( 0)},, is hounded as n-+ CfJ for at least one x < 0. 

Proof The equivalence of (i) and (ii) is obvious from (2.6). Statement 
(iii) implies ~ 1 >0, so that the equivalence of (i) and (iii) follows from [3, 
Theorem 2]. 

Finally, a proof for the equivalence of (ii) and (iv) can be found in [7, 
Lemma 4]. The results of the latter paper are stated in the context of 
birth death processes and can be translated to our present notation in the 
manner indicated by Chi hara [ 5, pp. 335 336]. I 

This theorem raises two interesting problems. The first, which will be 
addressed in Section IV, is to obtain more information on the limiting 
behaviour of {P,,(x)/P,,(0)},, for x>O when :LH,,K11 =XJ. The second 
problem comes from the observation that for :L/~ 1 ~ 1 1 to be finite it is 
necessary and sufficient that both ~ 1 > 0 and ~'-+ex:, sufficiently fast as 
i-+ 'XJ. Since the first event is merely a matter of translation, while the 
second is a more intrinsic property of .Y, it is of interest to separate the fac-
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tors in statement (ii) which are responsible for each of the events 
individually. Therefore (cf. (1.4)), we now look for a criterion for con­
vergence of the series 'LI: 2 ~;- 1• To solve this problem we turn our atten­
tion to the set &'* of kernel polynomials associated with &'. 

By [ 4, Theorem 1.9.l] the parameters c;:' and A.~+ 1 (n > 0) in the 
recurrence for &* satisfy 

c,~ = Y2n + Y2n + t • (n > 0), (2.7) 

where {Yn};;'= 2 is the sequence of positive numbers which is uniquely deter­
mined by { c11 , 211 + 1 } through (2.1 ). Note that c t is written in (2. 7) as the 
sum of two positive numbers, which makes the representation (2.7) essen­
tially different from (2.1 ). However, in view of ( 1.11 ), our assumption 
~I ~ 0 implies that et~ 0, so that Theorem 1 is valid for .VJ* as well. It can 
easily be verified that the appropriate quantities y ;:' satisfy 

(n>O). (2.8) 

Thus we can formulate the analogue for .VJ* of statement (ii) of Theorem 1 
in terms of {y,,}. A more convenient formulation is obtained, however, if 
we proceed as before by observing that- L:;'= 1 (x~;) 1 equals the coef­
ficient of x in the polynomial P,i(x)/P,i(O). From (1.1) and (2.7) we now 
have 

" 
P;:'(0)=(-1)" Kn n Y2;+1· (2.9) 

i= I 

Some simple manipulations involving (2.7), (2.9), the recurrence formula 
for .JJ>*, and an induction argument subsequently yield 

n n i ·-· l 

L (X~;) 1=K11 
1 LG; L H;K;, (2.10) 

i= I 

so that 

X. II j 1 

I (en 1 Jim K,, 1 I G, I H;K;. (2.11) 
i= 1 

The next theorem answers our question regarding the finiteness of 

:L:/:2~;1· 

THEOREM 2. The following statements are equivalent: 
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(i) L:r::,2e;- 1<00, 

(iil L:T:.1(eti 1 <00, 

(iii) .L:'= 0 G,,+ 1L,,<oo orL;;-= 0 H11 K11 <00. 

Proof By [6, LemmaA.1] one has et=e;+i (i~ 1) if e1 =0. The 
equivalence of (i) and (ii) now follows readily from (l.10). 

Considering (2.11 ), the equivalence of (ii) and (iii) can be established by 
proving that for (iii) to be valid it is necessary and sufficient that 

n j -- I 

lim K11 
1 L Gj L H;K;< 00. (2.12) 

n- :t:.. ;=0 i=O 

Recalling (2.3), the necessity is obvious. Next suppose (2.12) holds. If 
K,, < K < r:x:; for all n, it follows immediately that L:_i::: 0 G; + 1 L; < r:x:;; if, on 
the other hand, K,, -t oo as n -t oo, it is an easy exercise to show that 
:Lt: 0 H;K; must be finite. This proves the sufficiency. I 

COROLLARY 1. One has e1 =0 and L;(:, 2 e; 1 < 00 if and only ({ 
L:°=o G,, + 1 L,, < oo and L,, -too (n -too). 

Proof This is an immediate consequence of Theorems 1 and 2. I 

COROLLARY 2. IfL~2 ei I= 00, then the Hmp for g> is determined. 

Proof If L;r:, 2 ei 1 =00, then, by Theorem2, L;,~= 0 G11 + 1 L,,=(fj, 
whence L:;::= 0G,,+ 1L;,=oo. The result follows by Lemma 1. I 

Remarks. ( 1) By interpreting [7, Lemma 4] in terms of iJJ*, it follows 
that these three statements are equivalent: 

(i) L;;~= 0 G,,+ 1 L,,<oo, 

(ii) {K,,P,i(x)/P,i(O)},, converges uniformly on bounded sets to 
an entire function, 

(iii) {K,,P,i(x)/P:(O)},, is bounded as n -too for at least one 
x<O. 

(2) Theorem 1 can be partially traced back to Stieltjes [ 10, 
pp. 524-527] (see also [ 1]) by making the identifications 

a2n+ I= G,,, a2n+2=H11 

and 

Q111+1(x) = xK,,P,i( -x)/P,i(O). 

(3) An unproven statement by Kuchler [8, p. 229] amounts to the 
equivalence of (i) and (iii) in Theorem 2. 
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III. RELATIONS BETWEEN s AND S* 

We start off to give some relations between the polynomials P11 and P,;. 
From (1.7) and (2.4) we obtain 

( 3.1) 

Combining this result with ( 1.1) and (2.1) gives us 

P,,(x) = P,"';(x) +Yin+ 1 P~ -1(X). (3.2) 

Some simple algebra involving (2.9) and (3.2) subsequently yields 

so that 

n 

L GkPk(x)/Pk(O) = K,,P,"';(x)/P:(O). (3.4) 
k=O 

Invoking Theorem 1 one easily obtains from (3.4) the next lemma, which is 
essentially due to Stieltjes [ 10, pp. 525-526]. 

LEMMA 2. If 'f.;;·= 0 H,,K,, < oo and K,,-+ oo as n-+ oo, then P.(x)/P11 (0) 
and P:(x)/P:(O) tend to the same entire function as n-+ oo. 

Remark. One can also prove that if L.;;·= 0 G11 + 1 L 11 < oo and L,,-+ oo as 
n-+ oo, then xK11 P,"';(x)/P,"';(O) and L;, 1 P,,(x)/P,,(0) tend to the same entire 
function as n -+ oo ( cf. Corollary I and Remark 1 in Section II). 

We are now in a position to state the main result of this section (cf. 
Lemma 1 ). 

THEOREM 3. (i) ff~1=0, then a=~;+1 (i~l). 

(ii) If~ 1 >0 and the Hmp for & is determined, then ~:" = ~; (i~ I). 

(iii) If~ 1 >0 and the Hmp for# is indeterminate, then ~; < ~7 < ~;+ 1 

(i ~ 1 ). 

Proof Part (i) has been established in [6, Lemma A.I]. 
As for (ii) we denote by di/I the unique distribution with respect to which 

!!/' is orthogonal. Then #* is orthogonal with respect to the distribution 
dl/J * defined by ( 1.8 ). Note that 

supp(dl/!*) = supp(dl/! ), (3.5) 

since ~ 1 = min(supp(dl/!)) > 0. If the Hmp for.~* is determined, then di/!* is 
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the unique distribution for f!I>*, so that ~;* = ~; (i ~ 1) by ( 1.5 ), ( 1.6 ), and 
(3.5). Therefore, let us assume that the Hmp for f!I>* is indeterminate. From 
[5, Theorem 3] we then have 2:;'= 1 Hn(K,, - I )2 < oo, whence 
L:°=o HnKn < ro. It follows that at the same time Kn-+ oo as n-+ oo, for the 
opposite would imply indeterminacy of the Hmp for f!I> by Lemma 1. Thus 
we can invoke Lemma 2 and apply Theorem 1 to both &> and &'J* to con­
clude that ~1=~; (i~ 1). 

Finally turning to part (iii) we note that if~ 1 > 0 and the Hmp for 17' is 
indeterminate, then also the Stieltjes moment problem for .Cfl is indeter­
minate [2]. By [5, Theorem 2] this is equivalent to {Kn+ L,,},, being 
bounded. Under the latter condition, however, the validity of (iii) was 
established in [5, p. 340]. I 

IV FURTHER LIMIT THEOREMS 

For any sequence {a,,} ;'= 0 we denote by S{ an} the number of sign 
changes in the sequence {an} after deleting all zero terms. By convention, 
S { 0} = -1. Now let ~ = { Rn(x)} ;'= 0 be any sequence of monic orthogonal 
polynomials. From [6, Theorem 3] we then have 

(k~O), (4.1) 

where ~0 (.<:lf)= -oo. Assuming that ~ 1 (.i:lf)> -<XJ we subsequently define 

x 

/(.~) = u ( -00, ~;(.~)]. 
i= 1 

Note that /(.<:lf)=(-oo,a(.~)] or l(.~)=(-oo,a(.~)), depending on the 
occurrence of the event ~ ;( .~) = ~; + 1 ( .~) for some i ( cf. ( 1.4) ). 

Returning to the context of the previous sections we note that 
/(#)=/(,gll*) in view of(l.10). Now applying (4.1) to both# and .U}* one 
readily sees that for each x E !(&) there exists an integer N = N(x) such 
that the sequence { P,,(x )/ P ,,(0)} ;= N is monotone and without sign 
changes. In particular for x < 0 (:::;:; ~ 1) it is easily shown that the sequence 
{Pn(x)/P 11 (0)};'= 0 is positive and increasing. Whether P11(x)/P11 (0) tends to 
infinity or not as n-+ co must be decided from Theorem 1. In what follows 
we restrict our attention to positive x. Theorem 3 enables us to relate the 
behaviour of {P,,(x)/Pn(O)} to the points ~; (i~ 1). Indeed, from 
Theorem3(ii) and (4.1), applied to both f!I> and .Cfl*, we easily obtain the 
following lemma. 

LEMMA 3. If the Hmp for f!I> is determined, ~ 1 > 0, x > 0 and 
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~k < x ~ ~k + 1 (k ~ 0), then there exists an integer N = N(x) such that the 
sequence {(-l)k P,,(x)/P,,(O)}~=N is positive and decreasing (N(x)=O if 
O<x~ ~ 1 ). 

Under the conditions of this lemma the sequence {P,,(x)/P,,(O)},, tends 
to a finite limit. The next theorem, which is a generalization of [3, 
Lemma 3] gives a criterion for this limit to be zero when x <a ( cf. 
Theorem I). 

THEOREM 4. If ~ 1 >0, L;~ 2 ~;- 1 = oo and 0 < x <a, then 
P,,(x)/P,,(0)--t 0 as n--+ oo. 

Proof By Corollary 2 the Hmp for ;!J! is determined when 
L:i"~ 2 ~;- 1 = oo, so that Lemma 3 applies. Let a be any positive number 
smaller than CJ, and 

R.,= max max IP,,(x)/P,,(0)1. 
O~x~u n~O 

By Lemma3, Ra<oo. Moreover, by [3, Lemma3], P,,(x)/P,,(0)--tO as 
n--+ oo for 0 < x < ~ 1 • The result follows by the Stieltjes-Vitali theorem. I 

Remark. We conjecture that Theorem 4 remains valid when the con­
dition 0 < x < (J is replaced by the condition 0 < x <Jim,, - x x nn. 

Let us now turn to the case ~ 1 =0. Theorem 3(i) and (4.1), applied to 
both rYJ and .o/'*, readily yield the next lemma. 

LEMMA 4. If ~ 1 = 0 and ~k < x ~ ~k + 1 (k ~ 1 ), then there is an integer 
N=N(x) such that the sequence {(-ll P,,(x)/P,,(O)};~=N is positive and 
increasing. 

Actually, we can show the following. 

THEOREM 5. If ~I = 0 and (k ~ 1), then 

( -1 )k P,,(x)/P,,(0)-+ IX.! as n--+ oo. 

Proof First suppose that the Hmp for ;!J! is determined. If a= 0 the 
theorem is vacuously true, therefore we also assume a> 0. Denoting by 
p,.(x) the nth orthonormalized polynomial corresponding to ;!I, it is readily 
seen from ( 1.2 ), ( 2.1 ), ( 2.2 ), and ( 2.4) that 

p,,(x) = G~12 P,,(x)/P,,(O), (4.2) 

whence 
'X ,-x_ 

L p~(x) = L G,,P~(x)/P~(O). (4.3) 
n=O n=O 
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By (1.5), (1.6) and a well-known result from the theory of moments [9, 
Corollary 2.6] we have on the one hand LP~(O) < oo, whence, by (4.3), 
I: Gn < oo, and on the other hand 'L p~(x) = oo for ~k < x < ~k + 1 • It follows 
from (4.3) that in the latter case {Pn(x)/Pn(O)}n must be unbounded. The 
required result follows by Lemma 4. 

Next assume that the Hmp for 9 is indeterminate, so that, by 
Corollary2, 2:~ 2 ~;- 1 <oo. Let a>O and Yi={Rn(x)}:=o• where 
Rn(x)=Pn(x-a). Clearly, ~;(Yi)=~;+a (so that ~ 1 (~)>0) and 
I:~ 1 (~;(~)) 1 < oo. Applying Theorem I to Yi yields that Rn( a)/ RnCO) 
tends to zero, whereas, for ek<x<ek+I• Rn(x+a)/Rn(O) tends to a non­
zero limit as n ~ oo. Since 

it follows that IP,.(x)/P,.(O)l~oo as n~w. Lemma4 now gives the 
required result. I 
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