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We consider some special cases of the restricted assignment problem. In this scheduling 
problem on parallel machines, any job j can only be assigned to one of the machines in 
its given subset M j of machines. We give an LP-formulation for the problem with two 
job sizes and show that it has an integral optimal solution. We also present a PTAS for the 
case that the M j ’s are intervals of the same length. Further, we give a new and very simple 
algorithm for the case that |M j | = 2 (known as the graph balancing problem) with ratio 
11/6.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

A classic algorithm by Lenstra, Shmoy and Tardos [1]
gives a 2-approximation for minimizing the makespan on 
unrelated parallel machines (denoted by R||Cmax). In this 
problem, we are given n jobs and m machines and process-
ing times pij which give the time needed to process job 
j on machine i. The goal is to assign the jobs to the ma-
chines such that the maximum load (total processing time) 
over all machines is minimized. The same paper shows 
that approximating the problem within a factor 3/2 is NP-
hard. Today, no better upper or lower bound is known and 
improving one of the two bounds is considered one of the 
main open problems in the scheduling theory. Even for the 
so called restricted assignment problem no better ratios are 
known. Here, each job j has a processing time p j and pro-
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cessing set M j ⊆ {1, 2, . . . , m} and pij = p j for i ∈ M j and 
pij = ∞ otherwise.

A breakthrough was made by Svensson [2], who showed 
that the integrality gap of the configuration LP for the re-
stricted assignment problem is at most 1.942. However, 
the proof does not give a polynomial time approach for 
constructing a corresponding schedule. An interesting spe-
cial case in which |M j | � 2 for all j was considered by 
Ebenlendr et al. [3] who called this the graph balanc-
ing problem. An instance may be seen as a multigraph 
G = (V , E) where each edge e j ∈ E has a weight p j . The 
edges should be oriented such that the maximum total 
weight of incoming edges is minimized. The authors give a 
1.75-approximation by LP-rounding and also show that the 
integrality gap of their LP is 1.75.

Based on the work of Ebenlendr et al. [3], some spe-
cial cases of graph balancing have been studied. Lee, Leung 
and Pinedo [4] gave an FPTAS if the graph structure is 
restricted to a tree. Verschae and Wiese [5] showed that 
even the configuration-LP has an integrality gap of 1.75 
for the graph balancing problem and 2 for the unrelated 
version where each job may have different job processing 
times on its two machines.
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Glass and Kellerer [6] explored the restricted assign-
ment problem with only two different processing times: 
1 and k � 2, and gave an approximation algorithm with 
factor 2 − 1/k. In the same paper, they considered the 
restricted assignment problem with the additional struc-
ture that the M j ’s are nested and gave a 2 − 1/m ap-
proximation by list scheduling. For totally ordered sets 
a 3/2-approximation was designed. Huo and Leung [7]
improved the nested case by giving an algorithm with 
worst-case bound of 5/3, moreover they also studied so 
called tree-hierarchical processing sets. Here, machines are 
the nodes of a rooted tree and processing sets correspond 
with a path from some vertex to the root. For the latter 
problem, they gave a 4/3-approximation algorithm. Mu-
ratore et al. [8] improved this nested case by designing 
a polynomial time approximation scheme (PTAS). Epstein 
and Levin [9] also studied the nested and tree-hierarchical 
cases, and they designed a PTAS for the two cases respec-
tively.

For two arbitrary job sizes, Kolliopoulos and Moysog-
lou [10] gave a 1.883-approximation algorithm for com-
puting the optimal value based on Svensson’s [2] result. If 
the jobs can only be assigned on at most two machines, 
the ratio reduces to 1.652.

1.1. Our results

We give several results for special cases of the re-
stricted assignment problem. First, we briefly discuss the 
2-approximation algorithm for R||Cmax given by Shmoys 
and Tardos [11]. We show that this approach leads to a 
very simple 1.88-approximation algorithm for the graph 
balancing problem. Although this ratio is worse than the 
1.75-approximation given by Ebenlendr et al. [3], the al-
gorithm and analysis are very easy, given the framework 
of [11]. Further, we study the restricted assignment prob-
lem on intervals. Here, the machines can be ordered such 
that each processing set is a consecutive set of machines.

We show that the special case of two different process-
ing times s, b can be solved exactly in polynomial time, 
assuming that s � b and b > OPT/2. We obtain this by 
formulating an exact LP, i.e., with an integrality gap of 1. 
Interestingly, our LP is stronger than the configuration LP 
which has an integrality gap of at least 3/2 in this case.

As mentioned above, the interval case has been well-
studied and several polynomial time approximation
schemes are known. We extend these results by giving a 
PTAS for the problem of equal length intervals and by sim-
plifying the analysis of known approximation schemes by 
using the framework of [11].

2. Preliminaries

The 2-approximation algorithm for R||Cmax by Lenstra, 
Shmoys, and Tardos [1] is well-known. A slightly differ-
ent algorithm and analysis was given a few years later by 
Shmoys and Tardos [11]. They introduced a new rounding 
technique which does not require the fractional solution to 
be a vertex of the linear programming relaxation. An ad-
vantage is that it can therefore be applied to any fractional 
assignment and for variants of the problem as we shall do 
in this paper. Below, we give a short explanation of this 
rounding technique that we will use several times.

The algorithms in [1] and [11] work as follows. First, 
a guess T for the optimal value is made. The algorithm 
produces a schedule of length at most 2T if indeed 
OPT � T . Using a binary search on T , this will give a 
2-approximation algorithm. Denote by xij � 0 the frac-
tion of job J j assigned to machine Mi , i ∈ {1, . . . , m}
and j ∈ {1, . . . , n}. If there exists a schedule of length at 
most T , then the following LP has a feasible solution.

m∑
i=1

xij = 1 for all j

n∑
j=1

xij pi j � T for all i

xi j = 0 if pij > T , for all i, j
xi j � 0 for all i, j

In [1], the authors conclude that any extreme optimal LP-
solution has at most m fractional jobs and there is a per-
fect matching of these jobs to machines in the support 
graph. Hence, this gives a schedule of length at most 2T . 
In [11] the approach is as follows. For each machine i, de-
fine a complete ordering ≺i such that j ≺i k if pij � pik . 
Given a feasible fractional solution x, let yi = �∑ j xi j� be 
the number of jobs (rounded up) assigned to machine i. 
For each machine, order the fractions assigned to it by 
≺i and call this the LP-schedule. Then split this sched-
ule up into slots such that the fractions in each slot (ex-
cept for the last) add up to exactly 1. Thus, a job fraction 
may be split and be assigned to two contiguous slots, and 
there are yi slots for machine i. Define a bipartite graph 
G = ({W , V }, E) as follows. For each job j there is a vertex 
w j and for each machine i there are vertices vi

1, . . . , v
i
yi

. 
There is an edge between w j and vi

z if job j is processed 
(partially) in the z-th slot of machine i. It follows directly 
from Hall’s theorem that G has a matching that contains 
all vertices W , i.e., all jobs.

It is easy to see that this matching yields a 2-
approximation for R||Cmax. Consider an arbitrary ma-
chine i. For any slot z, let pi

z be the maximum processing 
time pij among all jobs j scheduled in slot z on machine i. 
(In other words, let pi

z = max{pij | (w j, vi
z) ∈ E}.) Then, the 

job matched to vi
z has processing time at most pi

z . Let Li
z

be the length of slot z on machine i in the LP-schedule. 
Since jobs are ordered by ≺i , the job matched to vi

z has 
processing time at most

pi
z � Li

z−1 for all z � 2. (1)

Hence, the total load of machine i in the schedule de-
fined by the matching is at most

pi
1 +

yi−1∑
z=1

Li
z � pi

1 +
yi∑

z=1

Li
z = pi

1 +
n∑

j=1

xij pi j � 2T .

3. A simple 11/6-approximation for graph balancing

We show how the approach by Shmoys and Tardos [11], 
shown above, can be used to give a simple approxima-
tion algorithm for the graph balancing problem with ratio 
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strictly less than 2. Our ratio is larger than the 1.75 given 
by Ebenlendr et al. [3] but our algorithm and analysis are 
extremely easy, given the rounding technique of the previ-
ous section.

Without loss of generality we assume that the optimal 
makespan is 1 and is known to the algorithm, i.e., the tar-
get value is T = 1. Let B be the set of big jobs, which 
are the jobs with processing time p j > 1/2. Then, each 
machine can contain at most one big job in the optimal 
schedule. The following set of linear constraints is equal to 
(LP3) in [3]. Instead of using the graph notation from that 
paper we define M j to be the set of machines on which j
can be processed and assume |M j| ∈ {1, 2} for all jobs j.

(LP)
∑
i∈M j

xi j = 1, for all jobs j (2)

∑
j

xi j p j � 1, for all machines i (3)

∑
j∈B

xi j � 1, for all machines i (4)

xij = 0, for all i /∈ M j (5)

xij � 0, for all i, j. (6)

Graph Balancing Algorithm (0.5 < β < 1)

Step 1. Find a feasible solution for (LP);
Step 2. If j is a big job and xij � β , then assign j to i;
Step 3. For the remaining jobs, find a perfect matching fol-

lowing the approach of Section 2.

Theorem 1. The algorithm above (with β = 2/3) gives an 
11/6 ≈ 1.833-approximation for the graph balancing problem.

Proof. In Step 2, at most one big job is assigned to any 
machine. Further, if a big job is assigned to i in Step 2, 
then any other big job j with xij > 0 must satisfy xij �
1 − β and xi′ j � β for some other machine i′ (since it can 
only be scheduled on two machines) and it will be as-
signed to i′ in Step 2. Hence, after Step 2, any machine 
i either contains no fractional big job and at most one 
complete big job (call this Case 1) or it has at least one 
fractional big job and no complete big job and any frac-
tional big job j on it satisfies xij > 1 − β (Case 2).

Case 1. Assume big job j is assigned to machine i in Step 2. 
This causes the load to increase by at most (1 − β)pij ≤
1 − β . The matching procedure of Step 3 adds at most the 
largest value pij among the fractional jobs. Since all re-
maining fractional jobs on i are small, the increase due to 
Step 3 is at most 0.5. Therefore, the total load of i is at 
most 1 + (1 − β) + 0.5 = 2.5 − β .

Case 2. Following the notation of Section 2, let pi
1 and pi

2
be the largest processing time in slot 1 and 2 on machine i. 
Then, pi

1 � 1 and, by constraint (4), pi
2 � 0.5. Further, by 

the conditions of Case 2, the largest job in slot 1 is a big 
job j with xij > 1 − β . Hence, Li

1 � (1 − β)pi
1 + βpi

2. The 
load L̂i of machine i after Step 3 satisfies
L̂i � pi
1 + pi

2 +
yi−1∑
z=2

Li
z

� pi
1 + pi

2 + 1 − Li
1

� pi
1 + pi

2 + 1 − (1 − β)pi
1 − βpi

2

= 1 + βpi
1 + (1 − β)pi

2

� 1 + β + (1 − β)/2

= 3/2 + β/2.

Combining both cases, we see that for β = 2/3, the total 
load of machine i is at most

max{2.5 − β,1.5 + β/2} = 11/6. �
4. Restricted assignment on intervals

The restricted assignment problem on intervals has 
been discussed in several papers, [7–9,12]. Here, each pro-
cessing set forms a consecutive set of machines. These 
papers only considered the versions with nested, laminar, 
or tree-hierarchical processing sets. For arbitrary intervals, 
no better approximation factor than 2 is known. In this 
section, we show how to solve the interval problem for 
general intervals if there are only two different process-
ing times s � b and for which OPT < 2b. Although this is 
also a rather restricted version, it holds for general inter-
vals and can not be solved easily by dynamic programming 
as holds for the previously considered versions. Also, note 
that the general restricted assignment problem with pro-
cessing times {ε, 1} and OPT = 1 is non-trivial and 2 is the 
best approximation ratio known. (Approximating just the 
optimal value can be done within a factor 5/3 in this case, 
as was shown by Svensson [2].) Our algorithm solves an 
LP solely for the big jobs, where the constraints are im-
plied by the small jobs. We show that an integral solution 
can be found in polynomial time. Then, the small jobs are 
added in a greedy way. Further, we give in Section 4.2 an 
easy dynamic programming approach for the case of equal 
length intervals, a special case not yet considered in the 
literature.

4.1. Intervals and two processing times

We assume here that an instance only consists of small 
jobs with processing time p j = s and big jobs with pro-
cessing time p j = b � s. If the optimal value T is at 
least 2b, then we immediately get a 3/2-approximation us-
ing the original 2-approximation for R||Cmax. Interestingly, 
the problem can be solved exactly in polynomial time if 
OPT < 2b.

Theorem 2. The restricted assignment problem on intervals and 
with processing times p j ∈ {s, b} (s � b) can be solved exactly 
in polynomial time if OPT < 2b.

As before, we assume w.l.o.g. that the optimal value is 
guessed correctly and that OPT = 1. For integers i � i′ , let 
[i, i′] be the set {i, . . . , i′}. We compute an upper bound 
U (i, i′) on the number of big jobs that can be scheduled on 
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the machine set [i, i′], for each such interval [i, i′]. Denote 
the interval of job j by M j = [l j, r j]. Let S(i, i′) be the set 
of small jobs j for which M j ⊆ [i, i′]. Now, an easy upper 
bound on the number of big jobs that can be scheduled in 
the interval [i, i′] is 

⌊(
i′ − i + 1 − s|S(i, i′)|)/b

⌋
. However, 

this bound turns out to be not strong enough. To improve 
this, note that any machine either contains one big job or 
none. In both cases, we know the number of small jobs 
that can be added to the machine. Define k0 and k1 as the 
number of small jobs that can be scheduled on a machine 
if there is, respectively, no or one big job. Then k0 = �1/s

and k1 = �(1 − b)/s
. Now let U (i, i′) be the maximum 
number of big jobs that can be scheduled within the in-
terval [i, i′] such that the remaining capacity is enough 
to add all jobs from S(i, i′), assuming that each of these 
small jobs can be scheduled on any of the machines in 
[i, i′]. This upper bound can easily be computed: Denote 
S = |S(i, i′)| and I = i′ − i + 1. Then U (i, i′) is the maxi-
mum value z ∈ {0, 1, . . . , I} such that zk1 + (I − z)k0 ≥ S .

This leads to the following linear program, exclusively 
for the big jobs. Here, xij is the fraction of j ∈ B done on 
machine i.

(LP-B)
∑

k∈[i,i′]

∑
j∈B

xkj � U (i, i′) 1�i�i′�m (7)

∑
i∈M j

xi j = 1 j ∈ B

xij = 0 i /∈ M j, j ∈ B

xij � 0 i ∈ M j, j ∈ B.

Note that the inequalities 
∑
j∈B

xi j � 1 for all machines i

are included by taking i = i′ in the first constraints.

Lemma 3. There is a feasible 0, 1-solution to (LP-B) and it can 
be found in polynomial time.

Proof. Consider an arbitrary feasible solution x to (LP-B). 
For any l ∈ {1, . . . , |B|}, let m(l) be the smallest machine in-

dex i for which 
i∑

k=1

∑
j∈B

xkj � l. Let NB = {m(1), . . . , m(|B|)}. 

Note that all m(l) are different since 
∑
j∈B

xi j � 1 for any ma-

chine i. Hence, |NB | = |B|. We show that the big jobs B can 
be scheduled on the set of machines NB and that any such 
assignment is feasible for (LP-B).

For any B ′ ⊆ B , let M(B ′) = ∪ j∈B ′ M j . If M(B ′) is a 
consecutive set then by definition of NB , |M(B ′) ∩ NB | �
� ∑

k∈M(B ′)

∑
j∈B

xkj
 � ∑
k∈M(B ′)

∑
j∈B ′

xkj = |B ′|. Hence,

|M(B ′) ∩ NB | � |B ′|. (8)

If on the other hand, M(B ′) is the union of non-intersecting 
intervals, then (9) follows by considering the non-
intersecting intervals of M(B ′) separately. By Hall’s theo-
rem, the big jobs can be assigned to NB .

Now assume that we do assign the big jobs to NB . 
Then, the number of big jobs assigned within an interval 
[i, i′] is
NB ∩ [i, i′] �

⎡
⎢⎢⎢

∑
k∈[i,i′]

∑
j∈B

xkj

⎤
⎥⎥⎥

� U (i, i′). (9)

The first inequality in (9) follows by definition of NB and 
the second inequality follows from (7) and the fact that 
U (i, i′) is integer. By (9), the rounded solution remains fea-
sible for (LP-B). �
Lemma 4. Any integral solution of (LP-B) can be completed by 
adding the small jobs in a greedy way.

Proof. Given an integral solution of (LP-B), the small jobs 
are scheduled on the machines in the order 1, 2, . . . , m
as follows. For machine i, consider all yet unscheduled 
small jobs j for which i ∈ M j and add these jobs in non-
decreasing order of their right side r j until the load of the 
machine becomes more than 1 − s or all small jobs j with 
i ∈ M j are assigned.

Assume some small job k does not get scheduled this 
way. Then, any machine in the set [lk, rk] has the follow-
ing two properties: (i) its load is more than 1 − s and (ii) 
it only contains small jobs j with r j � rk . Let i � lk be 
the smallest machine index such that these two properties 
hold for all machines in [i, rk].

Assume i > 1 and consider an arbitrary job j scheduled 
in [i, rk]. Since j was not scheduled on machine i − 1 it 
follows from the order in which small jobs are scheduled 
that i � l j . Hence, for any job j scheduled on a machine in 
[i, rk]
i � l j � r j � rk. (10)

Clearly, (10) holds as well for i = 1. We see that all small 
jobs scheduled on one of the machines in [i, rk] are from 
S(i, rk) but there is no space to add job k in. This violates 
constraint (7) for the interval [i, rk]. �
Integrality gaps. We showed that the integrality gap for our 
LP is 1 in this restricted version. One might also add the 
small jobs in the LP and get an LP for all jobs and still 
maintain an exact relaxation. However, as we showed, it is 
sufficient to consider big jobs only. Interestingly, the inte-
grality gap of the configuration LP is at least 3/2 for this 
version as shown by the following example. (See [2] for a 
definition of the configuration LP.) There are 4 machines 
and 7 jobs. Jobs a, b, c have machine set [1, 2] and jobs d, 
e, f have machine set [3, 4]. All these have p j = 1. The last 
job g has set [1, 4] and processing time 2. For the config-
uration LP solution, take x1(a, b) = x1(b, c) = x1(c, a) = 1/4
and x1(g) = 1/4. On machine 2, take x2(a, b) = x2(b, c) =
x2(c, a) = 1/4 and x2(g) = 1/4. Do the same for machines 
3 and 4. The LP-value is 2 while the optimal makespan 
is 3.

4.2. A PTAS for intervals of equal length

A PTAS for laminar set systems was given by Mura-
tore et al. [8] and Epstein and Levin [9]. For laminar sets 
we have that for any two sets M j , Mk , either M j ⊆ Mk , 
M j ⊇ Mk or M j ∩ Mk = ∅. It is easy to see that laminar 
sets can be represented by a collection of intervals and it 
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is therefore a special case of the interval problem. Here, we 
give a PTAS for another special case: that of equal length 
intervals. In fact, it holds for any instance where, for any 
two jobs j, k, the inequality l j � lk implies r j � rk . Our 
PTAS uses similar ideas as has been used for laminar sets, 
such as partitioning jobs in small and large jobs. However, 
for scheduling the small jobs we do not construct a sepa-
rate greedy procedure (as in [8] and [9]) but simply refer 
to the general 2-approximation for R||Cmax as described 
in Section 2. We note that this idea applies to laminar set 
systems as well and gives a simplification over the analysis 
in [8] and [9].

4.2.1. The dynamic program
Let K be the number of different job sizes. Jobs of 

the same size are said to be of the same type. Let nk
be the number of jobs of type k (k = 1, . . . , K ). For any 
type k label the jobs by non-decreasing values r j . Denote 
the jobs in this order by J (k)

1 , J (k)
2 , . . . J (k)

nk
. Polynomiality 

of the DP follows from the observation that there is an 
optimal schedule in which, for each type k, the jobs ap-
pear in order J (k)

1 , J (k)
2 , . . . . (If two jobs are in reversed 

order they can be swapped.) For every machine i, we 
define vectors (b1, b2, . . . , bK ) to record the number of 
jobs from each type assigned to machines 1, 2, . . . , i. Say 
Fi(b1, b2, . . . , bK ) = 1 if it is feasible to schedule the jobs 
∪k{ J (k)

1 , . . . , J (k)

bk
} within a makespan of T on the first i ma-

chines and let it be 0 otherwise. Define F0(0, . . . , 0) = 1. 
Then Fi(b1, b2, . . . , bK ) = 1 if and only if there are num-
bers ak ≤ bk (k = 1...K ) such that

• Fi−1(a1, a2, . . . , aK ) = 1.
• For each k, all jobs J (k)

ak+1, . . . , J
(k)

bk
contain i in their 

interval.
• The total length of the jobs in 

⋃
k
{ J (k)

ak+1, . . . , J
(k)

bk
} is at 

most T .

A feasible schedule exists if and only if Fm(n1, ..., nK ) = 1. 
The size of the DP table is O (mnK ) and the computation 
of each value takes O (nK ) time.

4.2.2. Rounding the instance
Let T = 1 be the target value and assume that O P T � 1

(hence, p j � 1 for all j). Let 1/ε be a large positive integer. 
Call a job j big if p j > ε and call it small otherwise. Round 
the processing time of every big job down to p′

j = � p j

ε2 
ε2. 
Consequently, the number of different processing times of 
the rounded big jobs is at most 1/ε2. For every small job, 
round its processing time down to p′

j =
⌊

np j
ε

⌋
ε
n . Next, 

split each rounded small job into �np j
ε 
 tiny jobs with pro-

cessing time ε
n for each of them. The intervals for these 

tiny jobs are unchanged. So in the rounded instance, we 
only have the rounded big jobs and the tiny jobs of fixed 
size ε

n . The total number of job sizes is K = O (1/ε2). If 
OPT � 1, then there is feasible schedule of length at most 
1 for the rounded instance as well. We can use the DP to 
find an optimal solution for the rounded instance in poly-
nomial time.
Theorem 5. Given an optimal schedule for the rounded in-
stance, we can find a schedule for the original instance with 
makespan Cmax � 1 + 4ε .

Proof. We keep the assignment of the big jobs the same 
as in the optimal schedule for the rounded instance as 
given by the DP. The rounded processing time of a big job 
is at least � ε

ε2 
ε2 > ε − ε2 > ε/2 for small enough ε , e.g. 
ε < 1/2. Consequently, there are at most 2/ε big jobs on 
a machine giving a total rounding error due to big jobs 
of at most 2/ε · ε2 = 2ε . Note that the DP gives us an 
assignment for the tiny jobs which can be seen as a frac-
tional assignment for the rounded small jobs. We apply the 
matching procedure of Section 2 to these fractions. This 
procedure gives an integer assignment for the rounded 
small jobs with an increase in the makespan of at most 
the length of one rounded small job, which is less than ε . 
Finally, rounding up the processing time of the small jobs 
gives an additional increase of at most n · ε

n = ε . Hence, the 
total increase in the makespan is at most 4ε . �
5. Some open problems

The main subject of our research has been the re-
stricted assignment problem on intervals. The problem 
turned out to be much harder than expected and it is not 
clear if a PTAS exists. Even for the restricted version de-
scribed under Problem 1, no better approximation than the 
general 2-approximation for R||Cmax is known.

Problem 1. Give an approximation ratio better than 2 for 
the restricted assignment problem with interval process-
ing sets. Even for the problem in which all intervals share 
one machine nothing better is known. We conjecture that 
a 3/2-approximation is possible.

Problem 2. Find an approximation ratio better than 2 for 
the restricted assignment problem with processing sets of 
size at most 3.

Problem 3. What is the complexity of the interval problem 
with only two processing times s, b (as in Section 4.1) and 
OPT � 2b? For the very special case that OPT = 2b = 3a
and small jobs can go to any machine, we can solve the 
problem by a similar technique as in Section 4.1. To see 
this, note that in the optimal solution, a machine can hold 
two big jobs or three small jobs. If there is only one big job 
on a machine, then only one more small job can be sched-
uled in the space left. If there are two big jobs or three 
small jobs on a machine, then the machine gets fully occu-
pied. So the problem is equivalent to finding the maximal 
number of paired big jobs.
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