
Information Processing Letters 116 (2016) 723–728
Contents lists available at ScienceDirect

Information Processing Letters

www.elsevier.com/locate/ipl

On some special cases of the restricted assignment problem

Chao Wang a,1, René Sitters b,c,∗
a East China University of Science and Technology, 200237 Shanghai, China
b VU University Amsterdam, 1081HV Amsterdam, The Netherlands
c Centrum Wiskunde & Informatica (CWI), 1098XG Amsterdam, The Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 21 April 2015
Received in revised form 17 March 2016
Accepted 16 June 2016
Available online 17 June 2016
Communicated by M. Chrobak

Keywords:
Scheduling
Restricted assignment problem
Design of algorithms

We consider some special cases of the restricted assignment problem. In this scheduling
problem on parallel machines, any job j can only be assigned to one of the machines in
its given subset M j of machines. We give an LP-formulation for the problem with two
job sizes and show that it has an integral optimal solution. We also present a PTAS for the
case that the M j ’s are intervals of the same length. Further, we give a new and very simple
algorithm for the case that |M j | = 2 (known as the graph balancing problem) with ratio
11/6.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

A classic algorithm by Lenstra, Shmoy and Tardos [1]
gives a 2-approximation for minimizing the makespan on
unrelated parallel machines (denoted by R||Cmax). In this
problem, we are given n jobs and m machines and process-
ing times pij which give the time needed to process job
j on machine i. The goal is to assign the jobs to the ma-
chines such that the maximum load (total processing time)
over all machines is minimized. The same paper shows
that approximating the problem within a factor 3/2 is NP-
hard. Today, no better upper or lower bound is known and
improving one of the two bounds is considered one of the
main open problems in the scheduling theory. Even for the
so called restricted assignment problem no better ratios are
known. Here, each job j has a processing time p j and pro-

* Corresponding author at: VU University Amsterdam, 1081HV Amster-
dam, The Netherlands.

E-mail addresses: c.wang@mail.ecust.edu.cn (C. Wang), r.a.sitters@vu.nl
(R. Sitters).

1 This research done while visiting the VU University Amsterdam and
was supported in part by the China Scholarship Council under grant
No. 201306740038.
http://dx.doi.org/10.1016/j.ipl.2016.06.007
0020-0190/© 2016 Elsevier B.V. All rights reserved.
cessing set M j ⊆ {1, 2, . . . , m} and pij = p j for i ∈ M j and
pij = ∞ otherwise.

A breakthrough was made by Svensson [2], who showed
that the integrality gap of the configuration LP for the re-
stricted assignment problem is at most 1.942. However,
the proof does not give a polynomial time approach for
constructing a corresponding schedule. An interesting spe-
cial case in which |M j | � 2 for all j was considered by
Ebenlendr et al. [3] who called this the graph balanc-
ing problem. An instance may be seen as a multigraph
G = (V , E) where each edge e j ∈ E has a weight p j . The
edges should be oriented such that the maximum total
weight of incoming edges is minimized. The authors give a
1.75-approximation by LP-rounding and also show that the
integrality gap of their LP is 1.75.

Based on the work of Ebenlendr et al. [3], some spe-
cial cases of graph balancing have been studied. Lee, Leung
and Pinedo [4] gave an FPTAS if the graph structure is
restricted to a tree. Verschae and Wiese [5] showed that
even the configuration-LP has an integrality gap of 1.75
for the graph balancing problem and 2 for the unrelated
version where each job may have different job processing
times on its two machines.

http://dx.doi.org/10.1016/j.ipl.2016.06.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ipl
mailto:c.wang@mail.ecust.edu.cn
mailto:r.a.sitters@vu.nl
http://dx.doi.org/10.1016/j.ipl.2016.06.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ipl.2016.06.007&domain=pdf

724 C. Wang, R. Sitters / Information Processing Letters 116 (2016) 723–728
Glass and Kellerer [6] explored the restricted assign-
ment problem with only two different processing times:
1 and k � 2, and gave an approximation algorithm with
factor 2 − 1/k. In the same paper, they considered the
restricted assignment problem with the additional struc-
ture that the M j ’s are nested and gave a 2 − 1/m ap-
proximation by list scheduling. For totally ordered sets
a 3/2-approximation was designed. Huo and Leung [7]
improved the nested case by giving an algorithm with
worst-case bound of 5/3, moreover they also studied so
called tree-hierarchical processing sets. Here, machines are
the nodes of a rooted tree and processing sets correspond
with a path from some vertex to the root. For the latter
problem, they gave a 4/3-approximation algorithm. Mu-
ratore et al. [8] improved this nested case by designing
a polynomial time approximation scheme (PTAS). Epstein
and Levin [9] also studied the nested and tree-hierarchical
cases, and they designed a PTAS for the two cases respec-
tively.

For two arbitrary job sizes, Kolliopoulos and Moysog-
lou [10] gave a 1.883-approximation algorithm for com-
puting the optimal value based on Svensson’s [2] result. If
the jobs can only be assigned on at most two machines,
the ratio reduces to 1.652.

1.1. Our results

We give several results for special cases of the re-
stricted assignment problem. First, we briefly discuss the
2-approximation algorithm for R||Cmax given by Shmoys
and Tardos [11]. We show that this approach leads to a
very simple 1.88-approximation algorithm for the graph
balancing problem. Although this ratio is worse than the
1.75-approximation given by Ebenlendr et al. [3], the al-
gorithm and analysis are very easy, given the framework
of [11]. Further, we study the restricted assignment prob-
lem on intervals. Here, the machines can be ordered such
that each processing set is a consecutive set of machines.

We show that the special case of two different process-
ing times s, b can be solved exactly in polynomial time,
assuming that s � b and b > OPT/2. We obtain this by
formulating an exact LP, i.e., with an integrality gap of 1.
Interestingly, our LP is stronger than the configuration LP
which has an integrality gap of at least 3/2 in this case.

As mentioned above, the interval case has been well-
studied and several polynomial time approximation
schemes are known. We extend these results by giving a
PTAS for the problem of equal length intervals and by sim-
plifying the analysis of known approximation schemes by
using the framework of [11].

2. Preliminaries

The 2-approximation algorithm for R||Cmax by Lenstra,
Shmoys, and Tardos [1] is well-known. A slightly differ-
ent algorithm and analysis was given a few years later by
Shmoys and Tardos [11]. They introduced a new rounding
technique which does not require the fractional solution to
be a vertex of the linear programming relaxation. An ad-
vantage is that it can therefore be applied to any fractional
assignment and for variants of the problem as we shall do
in this paper. Below, we give a short explanation of this
rounding technique that we will use several times.

The algorithms in [1] and [11] work as follows. First,
a guess T for the optimal value is made. The algorithm
produces a schedule of length at most 2T if indeed
OPT � T . Using a binary search on T , this will give a
2-approximation algorithm. Denote by xij � 0 the frac-
tion of job J j assigned to machine Mi , i ∈ {1, . . . , m}
and j ∈ {1, . . . , n}. If there exists a schedule of length at
most T , then the following LP has a feasible solution.

m∑
i=1

xij = 1 for all j

n∑
j=1

xij pi j � T for all i

xi j = 0 if pij > T , for all i, j
xi j � 0 for all i, j

In [1], the authors conclude that any extreme optimal LP-
solution has at most m fractional jobs and there is a per-
fect matching of these jobs to machines in the support
graph. Hence, this gives a schedule of length at most 2T .
In [11] the approach is as follows. For each machine i, de-
fine a complete ordering ≺i such that j ≺i k if pij � pik .
Given a feasible fractional solution x, let yi = �∑ j xi j� be
the number of jobs (rounded up) assigned to machine i.
For each machine, order the fractions assigned to it by
≺i and call this the LP-schedule. Then split this sched-
ule up into slots such that the fractions in each slot (ex-
cept for the last) add up to exactly 1. Thus, a job fraction
may be split and be assigned to two contiguous slots, and
there are yi slots for machine i. Define a bipartite graph
G = ({W , V }, E) as follows. For each job j there is a vertex
w j and for each machine i there are vertices vi

1, . . . , v
i
yi

.
There is an edge between w j and vi

z if job j is processed
(partially) in the z-th slot of machine i. It follows directly
from Hall’s theorem that G has a matching that contains
all vertices W , i.e., all jobs.

It is easy to see that this matching yields a 2-
approximation for R||Cmax. Consider an arbitrary ma-
chine i. For any slot z, let pi

z be the maximum processing
time pij among all jobs j scheduled in slot z on machine i.
(In other words, let pi

z = max{pij | (w j, vi
z) ∈ E}.) Then, the

job matched to vi
z has processing time at most pi

z . Let Li
z

be the length of slot z on machine i in the LP-schedule.
Since jobs are ordered by ≺i , the job matched to vi

z has
processing time at most

pi
z � Li

z−1 for all z � 2. (1)

Hence, the total load of machine i in the schedule de-
fined by the matching is at most

pi
1 +

yi−1∑
z=1

Li
z � pi

1 +
yi∑

z=1

Li
z = pi

1 +
n∑

j=1

xij pi j � 2T .

3. A simple 11/6-approximation for graph balancing

We show how the approach by Shmoys and Tardos [11],
shown above, can be used to give a simple approxima-
tion algorithm for the graph balancing problem with ratio

C. Wang, R. Sitters / Information Processing Letters 116 (2016) 723–728 725
strictly less than 2. Our ratio is larger than the 1.75 given
by Ebenlendr et al. [3] but our algorithm and analysis are
extremely easy, given the rounding technique of the previ-
ous section.

Without loss of generality we assume that the optimal
makespan is 1 and is known to the algorithm, i.e., the tar-
get value is T = 1. Let B be the set of big jobs, which
are the jobs with processing time p j > 1/2. Then, each
machine can contain at most one big job in the optimal
schedule. The following set of linear constraints is equal to
(LP3) in [3]. Instead of using the graph notation from that
paper we define M j to be the set of machines on which j
can be processed and assume |M j| ∈ {1, 2} for all jobs j.

(LP)
∑
i∈M j

xi j = 1, for all jobs j (2)

∑
j

xi j p j � 1, for all machines i (3)

∑
j∈B

xi j � 1, for all machines i (4)

xij = 0, for all i /∈ M j (5)

xij � 0, for all i, j. (6)

Graph Balancing Algorithm (0.5 < β < 1)

Step 1. Find a feasible solution for (LP);
Step 2. If j is a big job and xij � β , then assign j to i;
Step 3. For the remaining jobs, find a perfect matching fol-

lowing the approach of Section 2.

Theorem 1. The algorithm above (with β = 2/3) gives an
11/6 ≈ 1.833-approximation for the graph balancing problem.

Proof. In Step 2, at most one big job is assigned to any
machine. Further, if a big job is assigned to i in Step 2,
then any other big job j with xij > 0 must satisfy xij �
1 − β and xi′ j � β for some other machine i′ (since it can
only be scheduled on two machines) and it will be as-
signed to i′ in Step 2. Hence, after Step 2, any machine
i either contains no fractional big job and at most one
complete big job (call this Case 1) or it has at least one
fractional big job and no complete big job and any frac-
tional big job j on it satisfies xij > 1 − β (Case 2).

Case 1. Assume big job j is assigned to machine i in Step 2.
This causes the load to increase by at most (1 − β)pij ≤
1 − β . The matching procedure of Step 3 adds at most the
largest value pij among the fractional jobs. Since all re-
maining fractional jobs on i are small, the increase due to
Step 3 is at most 0.5. Therefore, the total load of i is at
most 1 + (1 − β) + 0.5 = 2.5 − β .

Case 2. Following the notation of Section 2, let pi
1 and pi

2
be the largest processing time in slot 1 and 2 on machine i.
Then, pi

1 � 1 and, by constraint (4), pi
2 � 0.5. Further, by

the conditions of Case 2, the largest job in slot 1 is a big
job j with xij > 1 − β . Hence, Li

1 � (1 − β)pi
1 + βpi

2. The
load L̂i of machine i after Step 3 satisfies
L̂i � pi
1 + pi

2 +
yi−1∑
z=2

Li
z

� pi
1 + pi

2 + 1 − Li
1

� pi
1 + pi

2 + 1 − (1 − β)pi
1 − βpi

2

= 1 + βpi
1 + (1 − β)pi

2

� 1 + β + (1 − β)/2

= 3/2 + β/2.

Combining both cases, we see that for β = 2/3, the total
load of machine i is at most

max{2.5 − β,1.5 + β/2} = 11/6. �
4. Restricted assignment on intervals

The restricted assignment problem on intervals has
been discussed in several papers, [7–9,12]. Here, each pro-
cessing set forms a consecutive set of machines. These
papers only considered the versions with nested, laminar,
or tree-hierarchical processing sets. For arbitrary intervals,
no better approximation factor than 2 is known. In this
section, we show how to solve the interval problem for
general intervals if there are only two different process-
ing times s � b and for which OPT < 2b. Although this is
also a rather restricted version, it holds for general inter-
vals and can not be solved easily by dynamic programming
as holds for the previously considered versions. Also, note
that the general restricted assignment problem with pro-
cessing times {ε, 1} and OPT = 1 is non-trivial and 2 is the
best approximation ratio known. (Approximating just the
optimal value can be done within a factor 5/3 in this case,
as was shown by Svensson [2].) Our algorithm solves an
LP solely for the big jobs, where the constraints are im-
plied by the small jobs. We show that an integral solution
can be found in polynomial time. Then, the small jobs are
added in a greedy way. Further, we give in Section 4.2 an
easy dynamic programming approach for the case of equal
length intervals, a special case not yet considered in the
literature.

4.1. Intervals and two processing times

We assume here that an instance only consists of small
jobs with processing time p j = s and big jobs with pro-
cessing time p j = b � s. If the optimal value T is at
least 2b, then we immediately get a 3/2-approximation us-
ing the original 2-approximation for R||Cmax. Interestingly,
the problem can be solved exactly in polynomial time if
OPT < 2b.

Theorem 2. The restricted assignment problem on intervals and
with processing times p j ∈ {s, b} (s � b) can be solved exactly
in polynomial time if OPT < 2b.

As before, we assume w.l.o.g. that the optimal value is
guessed correctly and that OPT = 1. For integers i � i′ , let
[i, i′] be the set {i, . . . , i′}. We compute an upper bound
U (i, i′) on the number of big jobs that can be scheduled on

726 C. Wang, R. Sitters / Information Processing Letters 116 (2016) 723–728
the machine set [i, i′], for each such interval [i, i′]. Denote
the interval of job j by M j = [l j, r j]. Let S(i, i′) be the set
of small jobs j for which M j ⊆ [i, i′]. Now, an easy upper
bound on the number of big jobs that can be scheduled in
the interval [i, i′] is

⌊(
i′ − i + 1 − s|S(i, i′)|)/b

⌋
. However,

this bound turns out to be not strong enough. To improve
this, note that any machine either contains one big job or
none. In both cases, we know the number of small jobs
that can be added to the machine. Define k0 and k1 as the
number of small jobs that can be scheduled on a machine
if there is, respectively, no or one big job. Then k0 = �1/s

and k1 = �(1 − b)/s
. Now let U (i, i′) be the maximum
number of big jobs that can be scheduled within the in-
terval [i, i′] such that the remaining capacity is enough
to add all jobs from S(i, i′), assuming that each of these
small jobs can be scheduled on any of the machines in
[i, i′]. This upper bound can easily be computed: Denote
S = |S(i, i′)| and I = i′ − i + 1. Then U (i, i′) is the maxi-
mum value z ∈ {0, 1, . . . , I} such that zk1 + (I − z)k0 ≥ S .

This leads to the following linear program, exclusively
for the big jobs. Here, xij is the fraction of j ∈ B done on
machine i.

(LP-B)
∑

k∈[i,i′]

∑
j∈B

xkj � U (i, i′) 1�i�i′�m (7)

∑
i∈M j

xi j = 1 j ∈ B

xij = 0 i /∈ M j, j ∈ B

xij � 0 i ∈ M j, j ∈ B.

Note that the inequalities
∑
j∈B

xi j � 1 for all machines i

are included by taking i = i′ in the first constraints.

Lemma 3. There is a feasible 0, 1-solution to (LP-B) and it can
be found in polynomial time.

Proof. Consider an arbitrary feasible solution x to (LP-B).
For any l ∈ {1, . . . , |B|}, let m(l) be the smallest machine in-

dex i for which
i∑

k=1

∑
j∈B

xkj � l. Let NB = {m(1), . . . , m(|B|)}.

Note that all m(l) are different since
∑
j∈B

xi j � 1 for any ma-

chine i. Hence, |NB | = |B|. We show that the big jobs B can
be scheduled on the set of machines NB and that any such
assignment is feasible for (LP-B).

For any B ′ ⊆ B , let M(B ′) = ∪ j∈B ′ M j . If M(B ′) is a
consecutive set then by definition of NB , |M(B ′) ∩ NB | �
� ∑

k∈M(B ′)

∑
j∈B

xkj
 � ∑
k∈M(B ′)

∑
j∈B ′

xkj = |B ′|. Hence,

|M(B ′) ∩ NB | � |B ′|. (8)

If on the other hand, M(B ′) is the union of non-intersecting
intervals, then (9) follows by considering the non-
intersecting intervals of M(B ′) separately. By Hall’s theo-
rem, the big jobs can be assigned to NB .

Now assume that we do assign the big jobs to NB .
Then, the number of big jobs assigned within an interval
[i, i′] is
NB ∩ [i, i′] �

⎡
⎢⎢⎢

∑
k∈[i,i′]

∑
j∈B

xkj

⎤
⎥⎥⎥

� U (i, i′). (9)

The first inequality in (9) follows by definition of NB and
the second inequality follows from (7) and the fact that
U (i, i′) is integer. By (9), the rounded solution remains fea-
sible for (LP-B). �
Lemma 4. Any integral solution of (LP-B) can be completed by
adding the small jobs in a greedy way.

Proof. Given an integral solution of (LP-B), the small jobs
are scheduled on the machines in the order 1, 2, . . . , m
as follows. For machine i, consider all yet unscheduled
small jobs j for which i ∈ M j and add these jobs in non-
decreasing order of their right side r j until the load of the
machine becomes more than 1 − s or all small jobs j with
i ∈ M j are assigned.

Assume some small job k does not get scheduled this
way. Then, any machine in the set [lk, rk] has the follow-
ing two properties: (i) its load is more than 1 − s and (ii)
it only contains small jobs j with r j � rk . Let i � lk be
the smallest machine index such that these two properties
hold for all machines in [i, rk].

Assume i > 1 and consider an arbitrary job j scheduled
in [i, rk]. Since j was not scheduled on machine i − 1 it
follows from the order in which small jobs are scheduled
that i � l j . Hence, for any job j scheduled on a machine in
[i, rk]
i � l j � r j � rk. (10)

Clearly, (10) holds as well for i = 1. We see that all small
jobs scheduled on one of the machines in [i, rk] are from
S(i, rk) but there is no space to add job k in. This violates
constraint (7) for the interval [i, rk]. �
Integrality gaps. We showed that the integrality gap for our
LP is 1 in this restricted version. One might also add the
small jobs in the LP and get an LP for all jobs and still
maintain an exact relaxation. However, as we showed, it is
sufficient to consider big jobs only. Interestingly, the inte-
grality gap of the configuration LP is at least 3/2 for this
version as shown by the following example. (See [2] for a
definition of the configuration LP.) There are 4 machines
and 7 jobs. Jobs a, b, c have machine set [1, 2] and jobs d,
e, f have machine set [3, 4]. All these have p j = 1. The last
job g has set [1, 4] and processing time 2. For the config-
uration LP solution, take x1(a, b) = x1(b, c) = x1(c, a) = 1/4
and x1(g) = 1/4. On machine 2, take x2(a, b) = x2(b, c) =
x2(c, a) = 1/4 and x2(g) = 1/4. Do the same for machines
3 and 4. The LP-value is 2 while the optimal makespan
is 3.

4.2. A PTAS for intervals of equal length

A PTAS for laminar set systems was given by Mura-
tore et al. [8] and Epstein and Levin [9]. For laminar sets
we have that for any two sets M j , Mk , either M j ⊆ Mk ,
M j ⊇ Mk or M j ∩ Mk = ∅. It is easy to see that laminar
sets can be represented by a collection of intervals and it

C. Wang, R. Sitters / Information Processing Letters 116 (2016) 723–728 727
is therefore a special case of the interval problem. Here, we
give a PTAS for another special case: that of equal length
intervals. In fact, it holds for any instance where, for any
two jobs j, k, the inequality l j � lk implies r j � rk . Our
PTAS uses similar ideas as has been used for laminar sets,
such as partitioning jobs in small and large jobs. However,
for scheduling the small jobs we do not construct a sepa-
rate greedy procedure (as in [8] and [9]) but simply refer
to the general 2-approximation for R||Cmax as described
in Section 2. We note that this idea applies to laminar set
systems as well and gives a simplification over the analysis
in [8] and [9].

4.2.1. The dynamic program
Let K be the number of different job sizes. Jobs of

the same size are said to be of the same type. Let nk
be the number of jobs of type k (k = 1, . . . , K). For any
type k label the jobs by non-decreasing values r j . Denote
the jobs in this order by J (k)

1 , J (k)
2 , . . . J (k)

nk
. Polynomiality

of the DP follows from the observation that there is an
optimal schedule in which, for each type k, the jobs ap-
pear in order J (k)

1 , J (k)
2 , (If two jobs are in reversed

order they can be swapped.) For every machine i, we
define vectors (b1, b2, . . . , bK) to record the number of
jobs from each type assigned to machines 1, 2, . . . , i. Say
Fi(b1, b2, . . . , bK) = 1 if it is feasible to schedule the jobs
∪k{ J (k)

1 , . . . , J (k)

bk
} within a makespan of T on the first i ma-

chines and let it be 0 otherwise. Define F0(0, . . . , 0) = 1.
Then Fi(b1, b2, . . . , bK) = 1 if and only if there are num-
bers ak ≤ bk (k = 1...K) such that

• Fi−1(a1, a2, . . . , aK) = 1.
• For each k, all jobs J (k)

ak+1, . . . , J
(k)

bk
contain i in their

interval.
• The total length of the jobs in

⋃
k
{ J (k)

ak+1, . . . , J
(k)

bk
} is at

most T .

A feasible schedule exists if and only if Fm(n1, ..., nK) = 1.
The size of the DP table is O (mnK) and the computation
of each value takes O (nK) time.

4.2.2. Rounding the instance
Let T = 1 be the target value and assume that O P T � 1

(hence, p j � 1 for all j). Let 1/ε be a large positive integer.
Call a job j big if p j > ε and call it small otherwise. Round
the processing time of every big job down to p′

j = � p j

ε2
ε2.
Consequently, the number of different processing times of
the rounded big jobs is at most 1/ε2. For every small job,
round its processing time down to p′

j =
⌊

np j
ε

⌋
ε
n . Next,

split each rounded small job into �np j
ε
 tiny jobs with pro-

cessing time ε
n for each of them. The intervals for these

tiny jobs are unchanged. So in the rounded instance, we
only have the rounded big jobs and the tiny jobs of fixed
size ε

n . The total number of job sizes is K = O (1/ε2). If
OPT � 1, then there is feasible schedule of length at most
1 for the rounded instance as well. We can use the DP to
find an optimal solution for the rounded instance in poly-
nomial time.
Theorem 5. Given an optimal schedule for the rounded in-
stance, we can find a schedule for the original instance with
makespan Cmax � 1 + 4ε .

Proof. We keep the assignment of the big jobs the same
as in the optimal schedule for the rounded instance as
given by the DP. The rounded processing time of a big job
is at least � ε

ε2
ε2 > ε − ε2 > ε/2 for small enough ε , e.g.
ε < 1/2. Consequently, there are at most 2/ε big jobs on
a machine giving a total rounding error due to big jobs
of at most 2/ε · ε2 = 2ε . Note that the DP gives us an
assignment for the tiny jobs which can be seen as a frac-
tional assignment for the rounded small jobs. We apply the
matching procedure of Section 2 to these fractions. This
procedure gives an integer assignment for the rounded
small jobs with an increase in the makespan of at most
the length of one rounded small job, which is less than ε .
Finally, rounding up the processing time of the small jobs
gives an additional increase of at most n · ε

n = ε . Hence, the
total increase in the makespan is at most 4ε . �
5. Some open problems

The main subject of our research has been the re-
stricted assignment problem on intervals. The problem
turned out to be much harder than expected and it is not
clear if a PTAS exists. Even for the restricted version de-
scribed under Problem 1, no better approximation than the
general 2-approximation for R||Cmax is known.

Problem 1. Give an approximation ratio better than 2 for
the restricted assignment problem with interval process-
ing sets. Even for the problem in which all intervals share
one machine nothing better is known. We conjecture that
a 3/2-approximation is possible.

Problem 2. Find an approximation ratio better than 2 for
the restricted assignment problem with processing sets of
size at most 3.

Problem 3. What is the complexity of the interval problem
with only two processing times s, b (as in Section 4.1) and
OPT � 2b? For the very special case that OPT = 2b = 3a
and small jobs can go to any machine, we can solve the
problem by a similar technique as in Section 4.1. To see
this, note that in the optimal solution, a machine can hold
two big jobs or three small jobs. If there is only one big job
on a machine, then only one more small job can be sched-
uled in the space left. If there are two big jobs or three
small jobs on a machine, then the machine gets fully occu-
pied. So the problem is equivalent to finding the maximal
number of paired big jobs.

References

[1] J. Lenstra, D. Shmoys, E. Tardos, Approximation algorithms for
scheduling unrelated parallel machines, Math. Program. 46 (1–3)
(1990) 259–271.

[2] O. Svensson, Santa Claus schedules jobs on unrelated machines, in:
STOC 2011 Proceedings of the 43rd Annual ACM Symposium on The-
ory of Computing, 2011, pp. 617–626.

http://refhub.elsevier.com/S0020-0190(16)30091-6/bib4C656E73747261s1
http://refhub.elsevier.com/S0020-0190(16)30091-6/bib4C656E73747261s1
http://refhub.elsevier.com/S0020-0190(16)30091-6/bib4C656E73747261s1
http://refhub.elsevier.com/S0020-0190(16)30091-6/bib5376656E73736F6Es1
http://refhub.elsevier.com/S0020-0190(16)30091-6/bib5376656E73736F6Es1
http://refhub.elsevier.com/S0020-0190(16)30091-6/bib5376656E73736F6Es1

728 C. Wang, R. Sitters / Information Processing Letters 116 (2016) 723–728
[3] T. Ebenlendr, M. Krcál, J. Sgall, Graph balancing: a special case of
scheduling unrelated parallel machines, Algorithmica 68 (1) (2014)
62–80.

[4] K. Lee, J. Leung, M. Pinedo, A note on graph balancing problems with
restrictions, Inf. Process. Lett. 110 (2009) 24–29.

[5] J. Verschae, A. Wieese, On the configuration-LP for scheduling on un-
related machines, in: Algorithms-ESA, 2011, pp. 530–542.

[6] C. Glass, H. Kellerer, Parallel machine scheduling with job assignment
restrictions, Nav. Res. Logist. 54 (3) (2007) 250–257.

[7] Y. Huo, J. Leung, Fast approximation algorithms for job schedul-
ing with processing set restrictions, Theor. Comput. Sci. 411 (2010)
3947–3955.
[8] G. Muratore, U. Schwarz, G. Woeginger, Parallel machine scheduling
with nested job assignment restrictions, Oper. Res. Lett. 38 (2010)
47–50.

[9] L. Epstein, A. Levin, Scheduling with processing set restrictions: PTAS
results for several variants, Int. J. Prod. Econ. 133 (2011) 586–595.

[10] S. Kolliopoulos, Y. Moysoglou, The 2-valued case of makespan min-
imization with assignment constraints, Inf. Process. Lett. 113 (2013)
39–43.

[11] D. Shmoys, E. Tardos, An approximation algorithm for the generalized
assignment problem, Math. Program. 62 (1993) 461–474.

[12] J. Leung, C. Li, Scheduling with processing set restrictions: a survey,
Int. J. Prod. Econ. 116 (2008) 251–262.

http://refhub.elsevier.com/S0020-0190(16)30091-6/bib4562656E6C656E64724A6F75726E616Cs1
http://refhub.elsevier.com/S0020-0190(16)30091-6/bib4562656E6C656E64724A6F75726E616Cs1
http://refhub.elsevier.com/S0020-0190(16)30091-6/bib4562656E6C656E64724A6F75726E616Cs1
http://refhub.elsevier.com/S0020-0190(16)30091-6/bib50696E65646Fs1
http://refhub.elsevier.com/S0020-0190(16)30091-6/bib50696E65646Fs1
http://refhub.elsevier.com/S0020-0190(16)30091-6/bib5665727363686165s1
http://refhub.elsevier.com/S0020-0190(16)30091-6/bib5665727363686165s1
http://refhub.elsevier.com/S0020-0190(16)30091-6/bib476C617373s1
http://refhub.elsevier.com/S0020-0190(16)30091-6/bib476C617373s1
http://refhub.elsevier.com/S0020-0190(16)30091-6/bib48756Fs1
http://refhub.elsevier.com/S0020-0190(16)30091-6/bib48756Fs1
http://refhub.elsevier.com/S0020-0190(16)30091-6/bib48756Fs1
http://refhub.elsevier.com/S0020-0190(16)30091-6/bib4D757261746F7265s1
http://refhub.elsevier.com/S0020-0190(16)30091-6/bib4D757261746F7265s1
http://refhub.elsevier.com/S0020-0190(16)30091-6/bib4D757261746F7265s1
http://refhub.elsevier.com/S0020-0190(16)30091-6/bib4570737465696Es1
http://refhub.elsevier.com/S0020-0190(16)30091-6/bib4570737465696Es1
http://refhub.elsevier.com/S0020-0190(16)30091-6/bib4B6F6C6C696F706F756C6F73s1
http://refhub.elsevier.com/S0020-0190(16)30091-6/bib4B6F6C6C696F706F756C6F73s1
http://refhub.elsevier.com/S0020-0190(16)30091-6/bib4B6F6C6C696F706F756C6F73s1
http://refhub.elsevier.com/S0020-0190(16)30091-6/bib53686D6F7973546172646F7331393933s1
http://refhub.elsevier.com/S0020-0190(16)30091-6/bib53686D6F7973546172646F7331393933s1
http://refhub.elsevier.com/S0020-0190(16)30091-6/bib4C65756E67s1
http://refhub.elsevier.com/S0020-0190(16)30091-6/bib4C65756E67s1

	On some special cases of the restricted assignment problem
	1 Introduction
	1.1 Our results

	2 Preliminaries
	3 A simple 11/6-approximation for graph balancing
	4 Restricted assignment on intervals
	4.1 Intervals and two processing times
	4.2 A PTAS for intervals of equal length
	4.2.1 The dynamic program
	4.2.2 Rounding the instance

	5 Some open problems
	References

