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We prove that if an n-dimensional vector space over GF(2) is the irredundant union of k 
subspaces, and this collection of subspaces has zero intersection, then n < k. This settles a 
conjecture by G. Bruns. 

In [1] Ganter posed the following problem: "Let V be a vector space over 
GF(2) which is the irredundant union of k subspaces which have a trivial global 
intersection, i.e., 

k k 

V= U Cl;, 
i=1 

v ::/= u Cl; u = l, ... ' k ), 
loEiiEk 

n U;={O}. 
i=1 

i'*i 

Does this imply that dim V < k?" 
Here we answer this question affirmatively. In fact, in order to make the 

induction work we prove the slightly stronger 

lbeorem. Let X be a vector space over GF(2) and V, U; (1 ~ i ~ k) subspaces of 
X such that for certain vectors ai e X we have 

k 

V c U (a;+ U,), 
i=l 

v~ U (a,+U;) U=l, ... ,k). 
loEiiCk 

i=l-j 

Then, if W := V n rl:=i U;, we have k ~dim V - dim W + 1. 

Clearly, Ganter's problem is the case V = X, W = {O}, a,= 0 (1 ~ i ~ k ). 

Proof. Induction on k and for fixed k on decreasing Ef=i dim(U; n V). (Note that 
if (a+ U) n V ~ 0 then dim ((a+ U) n V) =dim (Un V), in fact (a+ U) n V = 
b +(Un V) for some be (a+ U) n V.) If k = l, then the statement of the 
theorem is obvious. Now assume k > 1. Let n : =dim V. Since the union is 
irredundant V meets all a; + Cl; and since k > 1 it follows that dim( U; n V) ~ n - 1 
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for all i. If dim( Ui n V) = n - 1 for all i, then W = V n n:=1 ~ implies dim W ~ 
dim V - k, and we are done unless dim W = dim V - k. But in the latter case 
dim(V\U=i (ai + U;)) ~dim W ~O so that V\U~=i (a;+ U;) =F-0, a contradiction. 

Consider Wi := V n nifl U;. Then W0 = W. 

Lemma. If 0 < III < k, then dim Wi ~ III + dim W - 1. In particular W {i} = W. 

Proof. Induction on III. V\Ui«I (a;+ U;) is a nonempty union of translates of Wi, 
so that for some a we have a+ W; c: UieI (a;+ U;). If this union is irredundant, 
then by the theorem (applied with III instead of k) we find dim WI ~ III + 
dim W - 1 (note that W1 U ~eI U; = W). On the other band, if the union is 
redundant then we may choose J ~I such that a + Wi c: UieJ (a; + ~) and this 
latter union is irredundant. By the theorem and the induction hypothesis we find 

dim "'1-~ III+ dim W N-1 ~III+ IIVI +dim W-2< III +dim W-1. 0 

Returning to the proof of the theorem: we shall carry out the induction by 
either enlarging some U; or reducing the number of subspaces k. We may suppose 
that dim(UgnV)<n-1 for some g (l~g~k). Set U~=UgU(a+Ug) and 
u; = U; for 1 ~ i ~ k, i =I= g, where a is chosen such that dim((ag + U~) n V) > 
dim((ag + Ug) n V). Now V c: lt=i (a;+ U;) and W' := V n n:=1 u; = W (for: 
W c: W' c W {g} = W) so if the union is irredundant we succeeded in reducing the 
problem to one with larger Ug. On the other hand, if the union is redundant, then 
we may choose I such that g ~I and V c: Uif/ (a;+ U;) is irredundant. Since 
dim( u; n V) < n we have III < k - 1 so that by the lemma dim w, =dim( u~ n 
W IU{g}) ~dim W iu{s} ~III+ dim W. By the theorem (applied with k - III instead 
of k) we find 

dim V ~ k - III + III +dim W - 1 = k + dim W - 1. D 

Remark. It is natural to ask what happens for vector spaces over GF( q) with 
q > 2. It is easy to see that there are examples with k = (n - l)(q -1) + 2 where 
n =dim V. We have seen that k ~ (n - l)(q -1) + 2 for q = 2, and it is trivial to 
prove the same inequality for n = 2. But already for n = 3 smaller k occur: First 
rephrase the problem as a projective problem, and then dualize. Now our 
problem is: 

"Let V be a projective space of dimension n + 1 over GF(q) which is 
spanned by k subspaces U; (1 ~ i ~ k) such that any hyperplane contains at 
least one of the U;, and where there are hyperplanes H; such that H; does 
not contain any U; (j -:/= i, 1 ~ i ~ k ). Find a lower bound for k. '' 

-
In the special case n = 3 we get dim V = 2 and ask for a minimal blocking set 

(with less than 2q elements). H q is a square then a Baer subplane will do-it 
provides us with an example with q + yq + 1 elements. Also when q is not a 
square one may have k < 2q. For example, if q = 5 one may take 4 points on a 
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line and 5 points forming a transversal of the remaining two parallel classes. This 
gives k = 9. (See Hirschfeld [2, Ch. 13] for a discussion of blocking sets.) 

Note that for q = 2, n = 3 we have a blocking family { ~}; consisting of two 
points and two lines, but a blocking set consisting of points only does not exist. It 
is easily seen that for q ~ 3 we may restrict attention to blocking sets, and thus 
k ~ q + Vq + 1, with equality precisely in case of a Baer subplane. 

The case n > 3 remains open. (But see [3].) 

Postscript 

It turns out that Ganter's question is a slight generalization of a conjecture by 
G. Bruns on the covering of Boolean algebras by subalgebras. Thus, our result 
settles Bruns' conjecture. (See also [5].) 
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