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In biology, a dine is defined as a usually gradual change in gene frequency or phenotype 
of a population in equilibrium, from one place to another. 

We define a dine as a nonconstant stable steady state solution. However, for the model 
studied in this paper, these two definitions coincide: a nonconstant stable steady state solution 
is necessarily monotone. It is proved that for small values of the penetrability of the barrier, 
exactly two dines exist. 

Since we prove that the w-limit set of any initial condition is a steady state solution, 
the information thus obtained yields a rather complete understanding of the qualitative behav­
iour of the solutions of the evolution problem under consideration. 

0 Introduction 

The joint effect of selection and migration on the genetic composition 
of a population is frequently described by a one-dimensional reaction-dif­
fusion equation 
(0.1) Ut = Uxx + f(u) in [ -L,L] 

Ux ( -L) = Ux (L) = 0 . 
For some background on this one gene - two alleles problem we 

refer to Nagylaki [15], Fife [5], and Fife and Peletier [6]. 
It has been proved by Chafee [2] that (0.1) does not admit stable 

nonconstant steady states (dines). This result has been extended to higher 
dimensional but convex domains by Casten and Holland [1] and Matano 
[12]. 

A complementary result of Matano, also in [12], shows that for a 
class of dumb-bell shaped domains (i.e. 0==0) dines do exist. The work of 
Hale [7] and Hale and Vegas [8] is concerned with the bifurcation of these 
nonconstant solutions from constants as the domain is perturbed. 

In Fife and Peletier [6], one can find a one dimensional reaction 
diffusion equation on an interval, with homogeneous Neumann-boundary 
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conditions, which has stable nonconstant steady state solutions, due to non­
homogeneous diffusion and/or space-dependent selection. In fact, work in 
this direction was strongly motivated by earlier results of Levin (see e. g. 
[11]). 

In 1976 Nagylaki [14] adapted the model (0.1) to the situation in 
which the habitat is intersected by a geographical barrier. Under the as­
sumption that the habitat is homogeneous, except for one geographical bar­
rier which is situated at exactly the middle of the habitat, this adaptation 
takes the form of a transmission condition in 0: 

1 
Ux (O+, t) = Ux (0-, t) = -(u (O+, t)-u(O-, t)), 

µ 

for 1/p ER+, which measures the penetrability of the barrier. 
In 1979 ten Eikelder [ 4] analysed the effect of this transmission con­

dition in an unbounded domain, in which selection is space-dependent. He 
proved the existence of a cline under some restrictions on the reaction func­
tion/ 

Motivated by these observations we shall analyse the following ev­
olution problem: 

U1 = Uxx + f(u), XE[ -L,0) U (0,LJ 

u,(-L, t) = 0 

E.P. u (L, t) = 0 
x 

1 
ux(O-,t) = u,(O+,t) =-(u(O+,t)- u(O-,t)), µER+ 

µ 

u(x,O) = ip(x), xE[ -L,O) u (0, L). 

In the present paper f will be the rather special cubic 

However, it should be clear that our results can serve as the starting point 
of a perturbation analysis for "nearby" functions f; for instance 

f(u) = u(1-u)(u-a) 

with 

I a - ~ I ~ 1 [10] . 
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The operator A in C [ - L, OJ x C [O, L], defined by 

Et!(A) = {wE C 2 [ -L,O] x C2 [0,L] lw'(-L) = w'(L) = 0 

w' (0-) = w' (O+) 

and for wEE2J(A) 

Aw= -w11 

= _!_(w(O+ )- w(O-))} 
J.l 

is a sectorial operator (see [9]), which has compact resolvent. Define 
w 

F(w) = S f(Od~. The functional Von §(A), defined by 

O 0 {1 } L 
V(w) = .. s -2 w~ - F(w) dx + J{_!_w~ - F(w)}dx + !:.w2,(0) 

-L O 2 2 

is a strict Lyapunov functional for (E. P.). Moreover, ~'.·(w) = O if and only 
if w is an element of the discrete set of steady state solutions and for ~1 > O, 
K> 0, the set 

{wEE2J(A)\ V(w) < K} 

is bounded in C[ -L,O] x C(O,L]. 
All together, we have "proved" by these remarks: 

1) existence and uniqueness of solutions of (E. P.). 
2) the justification of identifying stability in (E. P.) and linearized stability. 
3) that the w-limit set of any initial condition is a steady state solution. 

For the backgrounds of these techniques we refer to [9], for the 
specific details in case of (E. P.) to [13]. 

The analysis of (E. P.) is therefore restricted to the steady state problem 

qu + f(q) qE2i(A) 

and an analysis of the spectrum of the operator (-A + f' (q)), for q a steady 
state solution. 

We shall use in this paper the following 

0.1 Definition. A steady state solution q is called trivial when q is a constant 
function ofx. A non trivial steady state is called symmetric ivhen q (x) = q ( - x) 
and anti-symmetric when q (x) = 1 - q ( - x) for x E (0, L]; it is called a-sym­
metric when it is not symmetric, anti-symmetric or trivial. A cline is a nontrivial 

stable steady state solution. 

With respect to (E. P.) we prove the following results: 
1) a dine is strictly monotone on ( - L, L). 
2) a number O < µ (L) < co exists, such that 

for 0 <µ < {'i.(L) noanti-symrnetricclinesexist, 

- for µ > fl(L) exactlytwosuchclinesexist. 



272 J. 1. E. van der Meer 

3) a number 4(L) <co exists such that forµ> /l(L) every dine is anti-sym­
metric. 

We conjecture that A (L) = 0, i. e., every dine is anti-symmetric. 
The phase portrait of 

q<X + f(q) = 0 

is most easily obtained by introducing formally p (() = C (() to find pp, + 
f(() = 0 and subsequently, by integration 

w 

p2 (w)- p2 (v) + 2JfR)d~ = 0. 

It can be found in Figure 1. 

Fig. 1 

A natural technical tool in both the steady state and the stability 
problem connected to (E.P.) is the L-curve. We shall introduce this curve 
in Section 1 and subsequently derive some general properties of the phase 
portrait. In Section 2 we present various results concerning the set of steady 
state solutions and in Section 3 we discuss their stability. 

In Section 4 we turn to a second evolution problem 

Ur= (D(x)ux)x + f(u), 

E. P. 2 Ux ( -L - b, t) = 0 

u, (L + c5, t) = 0 

u(x,O) = ip(x), 

XE[-L-c5,L+c5] 

x E [ - L - c5, L + c5]. 

We shall show that the £-curve is useful in this context too, by pre­
senting a description of the sets of trivial, symmetric and anti-symmetric 
steady state solutions for the special choice 

f(u) = u(1 - u)(u - ~) 
D(x) = s > 0 whenlxl < c5 

= 1 otherwise, 

whereas D · ux EC [ - L - 6, L + c5] (see [14]). 
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Prof. J. K. Hale informed me that C. Rocha has independently obtained 
similar results using similar techniques. 

We end this introduction by showing a certain relation between (E. P.) 
and (E. P.2), the last one modelling a domain, in which diffusion is relatively 
hard in a middle part of it. 

By the transformation x = x/r,for lxl < c5, .x = x + sgn(x)c5e- -1) 
otherwise, one replaces the condition . e 

by the condition 

[ 
(5 

U,EC -L - ~' L + ~]. 
In the interval [ -6/e, c5/e], (E. P. 2) becomes 

Ur = _!_Uxx +f(u) 
f, 

and hence, for a! 0, uxx (x, t) = 0. Let <5 

µ E (0, co), then it follows in the limit that 

ux( - ~ ,t) = u,(~ ,t) 
and 

() (e) such that lim 26 (e)/e = 
Ii) 0 

So after the deletion of the uninteresting interval [ - µ/2, µ/2] ( cf. the 
untransformed problem (E. P. 2)!), we end up exactly with (E. P.). 

1 The L-Curve 

A connected piece of one of the trajectories in the phase plane rep­
resents a function with a well-defined length of its domain of definition (for 
periodic orbits we have to keep track of the number of times an orbit is 
completed or, in other words, of a winding number). We shall call this length 
the length of that piece of that trajectory. 

Clearly, steady state solutions consist of two parts oflength L starting 
or ending at the line C = 0. This observation motivates the introduction of 
the L-curve, which is obtained by pacing a length L along such trajectories. 
Exploiting the symmetry, we can restrict our attention to the half line ( E 
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[1/2, co); exploiting the specific applications we have in mind, we can even 
restrict it to trajectories ending at the interval [1/2, 1]. 

1.1 Definition Let Q: ( - co, co) x 

02Q 

[1/2, 1] ~ [O, 1] be the solution of-

ox2 (x, w) + f(Q (x, w)) = 0 ~~ (L, w) = 0 e(L.w)=w. 

The L-curve is the set I'L = { ((a(O, w), ~~ (0, w)) \ wE [~, 1 ]} . 

In order to state the main result about I'L, proved in [13], we state, 
using the subscript w to denote a derivative with respect to the second 
argument, 

1.2 Definition. For WE [1/2, 1], let 

~(O,w) 
S(w)= (O ) 

(>w 'W 

The angle/unction O(w) is defined by 

i) s (w) = tan e (w), 
ii) e is continuous, 
iii) 8(1) = Arctan S(1). 

Note that S(w) is the slope of I'L at the point ( Q(O, w), ~~ (0, w)). The 

following result states, roughly speaking, that I'L is a "convex" curve - where 
we put "convex" within quotes, since I' L will spiral around the point (1/2, 0) 
for L sufficiently large. 

1.3 Theorem. El'(w) < 0 for wE(1/2, 1). 

The lines C = 0 and ( = 1/2 devide the phase plane in four quadrants 
which we shall number counterclockwise as usual. A component of the in­
tersection of I'L and a quadrant, without the point (1/2, 0), will be called a 
quadrant component (of IL). 

A careful look at the points of intersection of I'L and the lines (x = 0 
and ( = 1/2, combined with the foregoing theorem, yields 

1.4 Corollary. Each quadrant component contains exactly one critical point. 
For the .first quadrant, it is a maximum of (x, for the second, a minimum of 
C for the third, a minimum of C and for the fourth, a maximum of ( along 
r;,. 

The next result is a minor modification of theorem (1.4) in [13]. 
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1.5 Theorem. For a part T of a trajectory let 

For any two different lines through the point (1/2, 0) within each sector sepa­
rated by those lines, the length of a trajectory partT between those lines, and 
completely in the strip 

{((, (x)I( E [0, 1]} 

is a strictly increasing function of d (T). 

Theorem (1.5) will be useful in Section 4. We end this section by a 
sketch of I;,, for L = 9 n/2. 

Fig. 2 

2 The Steady State Solutions of (E.P.) 

In this section we shall take into account Proposition (3.4), which 
proves that the non-trivial, non-monotone (i. e. not strictly monotone on 
( -L,L)) steady state solutions of (E. P.) are unstable. However, this restriction 
has not been made in Section 2 of [13], in which much more detailed in­
formation on the set of steady state solutions can be found. 

2.1 Proposition. For µ > 0, the range of a steady state solution q is in the 
interval [O, 1]. 

Proof. When both q(-L) and q(L) are in the interval [O, 1], clearly 
f!Jl(q) c [O, 1]. See Fig. 1. 
Suppose q ( - L) < 0, then q (0) < q ( - L) and qx (0-) < 0. Hence, by the trans-

mission condition qx (0+) = qx (0-) and q(O +) = q (0-) + _!_ · qx (0-) < 0. 
µ 

But this implies qx (L) < 0. By the symmetry of the problem, this proves the 
proposition. D 

The first goal of this section is to characterize the set of monotone 
anti-symmetric steady state solutions; note that every symmetric steady state 
solution q is non-monotone, since qx (0) = 0. The proof of the following 
proposition is trivial. 
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2.2 Proposition. An anti-symmetric steady state solution is completely deter­
mined by a function q E C2 [O, L J satisfying 

qxx + f(q) = 0 

qx (0) = ~ ( q (0) - ~) 
qx (L) = 0. 

By the symmetry of the problem, we restricted our attention to fL: 
since we are looking for monotone solutions we can further restrict it to the 
essential part of fL, i.e., that part of IL indicating functions Q which are 
strictly monotone on [O, L]. The convexity of IL guarantees that the essential 
part is connected; it clearly consists of the outer first and second quadrant 
component minus the points of intersection with the line C = 0. 

By Proposition (2.2) an increasing monotone anti-symmetric steady 
state solution is determined by a point of intersection of the line C = 

~ ( ( - ~) and the essential part of Fr_. So the convexity of I'z. implies the 

uniqueness of such a solution. 
The following proposition results from the observation that 

l!w (x,±) =COS~ (L-x). 
2.3 Proposition. When L 2 n, a unique increasing monotone anti-symmetric 
steady state solution exists for all µ 2 0. When L < rr such a solution exists 

1 
for all µ > 4/tan 2 L. 

2.4 Remark. Note that for µ ~ oo, the solution mentioned in Proposition 
(2.3) converges to 0, uniformly on [ - L, 0- ], to 1, uniformly on [O +, L]. 

The next proposition deals with monotone a-symmetric steady state 
solutions. Let Wo be defined by l!x(O,w0) = max{Cl((,C) E fL}, i.e. (Q(O,wo), 
Q, (0, wo)) is the first quadrant critical point of the essential part of IL. 

2.5 Proposition. Forµ> 2e(O, w0)/~ (0, w0) exactly two increasing monotone ox 
a-symmetric steady state solutions exist. 

Proof. Let {( g(O, w), ~~ (0, w)) I WE(iy, n} be the essential part of rL. For 

µ > 0, let J R2 ~ R2 be defined by 

J(~1.~2)=(~1 - ~ ~z,~2) 
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and consider the set 

as well as its mirror image MQ in the line ( = 1/2. One can easily see that 
a point of intersection of Q and MQ on ( = 1/2 represents an increasing 
monotone anti-symmetric steady state solution, a point of intersection not 
on ( = 1/2, an a-symmetric one. 

Since the slope JS(w) of Q at the point 1( Q(O, w), ~~ (0, w)) satisfies 

JS(w) = __ S_(w_)_ 

1_1:.s(w) 
2 

it follows, under the restriction w E (iy, 1), that JS (w) = 0 if and only if w = 
w0 , and 

JS' (w) = S' (w) 

(1 - ~ S(w)y 

and hence, also Q is convex. 

When Q (0, w0) - ~ Qx (0, w0) < 0, Q and MQ intersect exactly once 

on both sides of the line ( = 1/2, as can easily be seen. O 

3 The Stability of Steady State Solutions of (E.P.) 

Let X = C [ -L, OJ x C [O, L], and let Xc be its complexification. 
For c EX and µER, one can prove that (-A+ c) is a symmetric linear op­
erator on .@(A)c, the complexification of .@(A). Here we used the same 
symbol c for the operator on Xc defined by 

(c(u)) (x) = c(x) · u(x). 

In [13], it is proved that (-A+ c) has compact resolvent; the proof is based 
on the existence of Green's functions for both [ - L, OJ and [O, L]. The fol­
lowing implication of these results is proved in [18], and it strongly facilitated 
the proof that A is a sectorial operator in [13]. 

3.1 Proposition. ForcEX,µER, Pa(-A+c) = a(-A+c) CR. 

For q an increasing steady state solution, let w = q (L) and a 
1-q(-L). Let ri: [O,L] x [1/2,1] x (-oo,ro) be the solution of 
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o211 
0 x2 (x, w, A.) + f' ((! (x. w)) 1'/ (x. w, A.) = A.17 (x. w, A.) 

01'/ 
-(L w A.)= 0 ox ' . 
11 (L. w, A.) = 1 . 

Then it follows that A.eu(-A + f'(q)) if and only if 

1'/ (0, W, A) 17 (0, et, A) 
µ= 01'/ + 017 

ox (O,w,A.) ox (O,et,A.) 

or 

017 017 ox (0, w, A.) = ox (0, et, A.)= 0. 

Further, by uniqueness it follows that 1'/ (x, w, 0) = ew (x, w). . 
This method can be extended to the whole set of steady state solutions. 

The only difference is that one has to take care to define r:t.. and w properly. 
The following proposition is proved in [3]. 

3.2 Proposition. For w E [ 1 /2, 1] 

1) 17 (0, w, A.)/~ (0, w, A.) is strictly increasing in A. jumps from infinity to minus ox 
infinity for A., such that ~: (0, w, A.) = 0, and tends to 0 for A. --+ oo. 

2) the number of zeros of 1'/ (x, w, A.) for x E [O, L] is non-increasing in A.. 

By some technicalities, which can be found in [13], we can apply 
proposition (3.2) in the following way: 

3.3 Corollary. An eigenfunction which belongs to the largest element of 
u(-A + f'(q)) is non-zero xe [ -L,L]. 

3.4 Proposition. Every non-trivial, non-monotone steady state solution q is 
unstable. 

Proof. Since µ > 0, q(O+) > q(O-) if and only if qx (0) > 0. So when q is 
non-monotone, we can assume qx (x0) = 0 for some x0 e [O, L], and w = q(L) 
E (1/2, 1). Note that one can achieve this, by considering the four related 
steady state solutions q (x), 1 - q (x), q ( - x) and 1 - q ( - x). Since both qx 
and ew (-, w) satisfy 

1'/xx + J'(q)17 = 0 

an~ qw~xo) = qx(L) = 0,ew(x,w) = 0 for some xe[x0,L] by the Sturmian 
oscdlat1on theorem. Now Proposition (3.4) is proved by Proposition (3.2)2) 
and Corollary (3.3), since ri (x, w, 0) = ew (x, w). D 
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3.5 Proposition. Let q be an increasing monotone anti-symmetric steady state 

solution and w = q (L), then 0 Ea( -A + f' (q)) if and only if OQw (0, w) = 0. ox 
Proof. For q as stated, q(L) = 1 - q(-L), i.e. rx = wE(1/2, 1) and it follows 
0Ea(-A + f'(q)) if and only if 

or 

fl = 2 Qw (0, w) 

~~, (0, w) 

OQw (0, w) = 0. 
ox 

However, the first condition gives S (w) = 2/ µ,which implies by Pro­

position (2.2) that the line 'w = ~ (' - ~) is tangent On I'L at (Q (0, W), 

~ · (0, w)). This clearly contradicts theorem (1.3). D 
ox 
3.6 Proposition. The trivial steady state solutions 0, 1/2, 1 are stable, unstable 
and stable, respectively (for all 11 > 0). 

Proof. Since AEa(-A+f'(O)) n (-1/2,co) = a(-A+f'(1)) n (-1/2,co) 
if and only if 

-? 

µ=VA.+ 1/2tan~VT+Tf2L < O, 

and since 1/4 E a(-A +f'(1/2)), tJ(x, 1/2, 1/4) = 1, the proposition 
follows. D 

3.7 Theorem. The increasing, monotone, anti-symmetric steady state solution 
q is stable for 

2( Q(O, wo) -+) 
µ>-----­

OQ 
OX (0, Wo) 

and unstable for other (positive) values ofµ. 

Proof. Note that q is unstable, when, using w = q(L), 

tJ (0, w,O) 

OtJ ox (0, w, 0) 

= Qw(O, w) =-1-> O, 

~~(O,w) S(w) 
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since then Proposition (3.2)1) gives a value A. > 0, such that ~: (0, w, A.) = 0. 

By the knowledge of I'i_,, this proves the last statement, since for w < w0, S (w) 
< 0 or Qw (x, w) is zero somewhere in the interval [O, L ], in which case we 
use Proposition (3.2)2). To prove the first, note that the stability of q can 
not change for 

2( Q(O, wo) -+) 
µ>-----­

ori 
OX (0, Wo) 

by Proposition (3.5). Since Q(x, w) converges uniformly on [O,L] to 1, for 
wj1, one can complete this proof by that of Proposition (3.6) (cf. remark 
~~ D 

Like Theorem (3.7), Theorem (3.8) is proved by showing first, for a 
very large value ofµ, the instability of an increasing monotone a-symmetric 
steady state q: this proves the instability of any other steady state q' on the 
same branch as q, when no bifurcation has occurred between q and q'. For 
the reason, and to avoid some lengthy technicalities, we refer to [13] - and 
Proposition (2.5) - for the proof of 

3.8 Theorem (a sufficient condition): The increasing monotone a-symmetric 
steady state solutions are unstable for 

? Q(O, wo) 
µ > ~ o11 

ox (0, wo) 

If the branch of monotone a-symmetric steady state solutions does 
not contain any turning points at all it would follow that a dine is necessarily 
anti-symmetric. However, in view of the proof of Proposition (2.5) we note 
that this takes much more information of I'L than derived so far. 

3.9 Remark. For a steady state solution qi, one can obtain, as already men­
tioned in Proposition (3.4), three other - not necessarily different - solu­
tions by defining 

qz(x) = 1 - q1 (x), 

q3(x) = q1 (-x), 

q4(x) = 1 - q1 (-x). 

One can easily verify that a(-A+f'(q;)) is independent of iE{1, 2, 3, 4}, 
and that we obtain all monotone steady states by taking q1 an increasing 
one. 
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In Fig. 3, one finds a bifurcation diagram, restricted to the monotone 
and trivial steady state solutions, for some L > n. We want to emphasize 
that the analysis and presentation in [13] are much less restricted to mon­
otone steady state solutions and µ > 0, and for that reason [13] contains a 
more clarifying "overall" picture of (E. P.) 

q( LJ 

--=~--~ 
1 2 -------------------

------~-------
.o ~----~-~--~===--

2 ( p IO,w0J-1} 2pl0,w01 
µ. 

ap -ap--
ax 10,wol ax 10,wol 

Fig. 3 --: stable; - - - : unstable; 
....... : conjectured to be like drawn (and hence unstable) 

4 The Steady State Solutions of (E.P. 2) 

In this section we study (E.P. 2) after the transformation x-+x, given 
at the end of Section 0. 

We restrict our attention to the steady state problem, and moreover 
to the sets of trivial, symmetric and anti-symmetric solution only. For the 
background of the techniques we use, we refer to [16]. For the problems 
concerning the asymptotic behaviour of solutions of (E. P. 2), the stability of 
steady state solutions (and in particular the a-symmetric steady state solu­
tions), according to Prof. J. K. Hale, these have been solved by C. Rocha. 
Just as we proved proposition (2.1), one proves 

4.1 Proposition. The range of a steady state solution q of (E.P.2) is in the 
interval [O, 1]. 

By a symmetry argument, we can restrict our attention to steady states 
q With q(L) E [1/2, 1]. Jherefore, we place I'L,f L' the mirror-image of I'L in 
the line ( = 1/2 and f 1_, the mirror-image of I'1. is the line C = 0, in the 

1 
phase plane with the phase portrait derived from - qxx + f(q) = 0. 

I:: 

By looking for (orientated!) orbit pieces of the 1/i:: phase portrait 
connecting f'L to [i_, having length 26/i::, one finds anti-sy!Pmetric steadt states 
and possible a-symmetric ones. Doing the same for IL instead of rL, one 
finds symmetric steady states and possibly a-symmetric ones. 

Using the convexity of rL (Theorem (1.3)) and theorem (1.5), and 
taking L < n, just for convenience, we can prove 
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4.2 Proposition. For L < n, f> > 0 and i E N0 there exists e; > 0 such that for 
e > e; no symmetric (in case i is odd) or anti-symmetric (in case i is even) 
steady state solutions q exist, for which oq/ox has i zeroes in the interval 

1 
(-f>,f>);for e < e; exactly one such solution does exist.for which q(L) E (2, 1). 

Moreover, one can prove that e; + 1 < e; for all i E N0, that every branch 
of (anti-)symmetric steady state solutions bifurcates from the constant steady 
state q = 1/2 (here we use L < n), and that, fore l 0, the steady state solutions, 
mentioned in Proposition (4.2) converge to the simple step functions, depicted 
in Fig. 4. 

DE3E-, 
-L-6 -6 0 5 L+6 -L-6 -5 0 5 U5 -L-5 -6 0 5 L+5 

i=O i=1 i=2 

Fig.4 

Further, it is only little harder to prove that along the branch of 
monotone increasing (anti-symmetric) steady state solutions (i = 0), q (L) is 
a strictly decreasing function of e < e0• 

The trivial steady state solutions are again the constant functions 0, 
1/2 and 1. It is very easy, using the ideas mentioned before, to indicate some 
a-symmetric steady states, and moreover a branch of such solutions bifur­
cating from an anti-symmetric one, for which i = 0, and for which the 
connecting 1/e orbit piece is tangent to fL. 

In Fig. 5, we depicted our results with respect to (anti-)symmetric and 
trivial steady states. 

q(LJ 

Fig. 5 
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