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Abstract We present the first study of the uncertainties associated with radiation belt simulations,
performed in the standard quasi-linear diffusion framework. In particular, we estimate how uncertainties of
some input parameters propagate through the nonlinear simulation, producing a distribution of outputs
that can be quite broad. Here we restrict our focus on two-dimensional simulations (in energy and pitch
angle space) of parallel-propagating chorus waves only, and we study as stochastic input parameters the
geomagnetic index Kp (that characterizes the time dependency of an idealized storm), the latitudinal extent
of waves, and the average electron density. We employ a collocation method, thus performing an ensemble
of simulations. The results of this work point to the necessity of shifting to a probabilistic interpretation of
radiation belt simulation results and suggest that an accurate specification of a time-dependent density
model is crucial for modeling the radiation environment.

1. Introduction

The temporal evolution of energetic electrons in the Earth’s radiation belts is routinely studied via a quasi-
linear theory approach, originally introduced by Kennel and Engelmann [1966]. The resulting Fokker-Planck
equation describes the rate of change of the particle distribution function due to wave-particle interactions
and the subsequent violation of one or more of the three adiabatic invariants of motion. The Fokker-Planck
equation is generally employed, in radiation belt studies, after averaging out the gyro, bounce, and drift
periodic orbits. Hence, it takes the form of a diffusion equation in the adiabatic invariants space. Furthermore,
the timescale associated with the third adiabatic invariant (so-called L∗) is well separated from the timescales
associated with the first and second invariants. Therefore, it is customary to treat the diffusion in L∗ (associated
to the radial direction), as nonmixing with diffusion in the first two invariants (associated to energy and pitch
angle space). Hence, the Fokker-Planck equation can be written as follows:
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where the coordinates xi,j are related via a change of variables to the two first invariants, and they are usually
chosen as energy (or momentum) and equatorial pitch angle. The Jacobian J is calculated accordingly.

The study of equation (1) has represented the focus of much of radiation belt physics research in the past
few decades, from both the perspective of developing efficient numerical schemes [Albert and Young, 2005;
Xiao et al., 2009; Subbotin and Shprits, 2012; Camporeale et al., 2013a, 2013b, 2013c; Albert, 2013; Tao et al.,
2016] and the perspective of understanding the relative importance of different physical mechanisms that
contribute to the diffusion coefficients [Thorne, 2010; Tu et al., 2014; Xiao et al., 2014; Jaynes et al., 2015]. Indeed,
it is important to note that the particle dynamics is entirely determined by the specification of the diffusion
coefficients, boundary conditions, and initial conditions, in equation (1). Some of the shortcomings of the
quasi-linear diffusion approach have been discussed, for instance, by [Shalchi and Schlickeiser, 2005; Ragot,
2012; Lemons, 2012; Camporeale and Zimbardo, 2015; Camporeale, 2015].

Several research groups have developed numerical codes to solve the Fokker-Planck equation (1). Some of the
most referenced are VERB (Versatile Electron Radiation Belt) [Shprits et al., 2008; Subbotin and Shprits, 2009],
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Salammbo [Bourdarie et al., 1996; Bourdarie and Maget, 2012], STEERB (Storm-Time Evolution of Electron Radi-
ation Belt) [Xiao et al., 2010; Su et al., 2010], the BAS (British Antarctic Survey) code [Glauert et al., 2014], the
UCLA-3D code [Ma et al., 2015], and DREAM3D [Tu et al., 2013]. Although some of these groups have also devel-
oped an operational infrastructure that allows for real-time forecasts based on simulation outputs (see, e.g.,
http://rbm.epss.ucla.edu/realtime-forecast/ and http://fp7-spacecast.eu/ [Horne et al., 2013]), most of these
studies have mainly focused on understanding the underlying physics. For this reason, these codes are all
deterministic; that is, they return a single output, for any specific set of input parameters. A notable exception
is the RadBelt Electron Model, recently presented in Zheng et al. [2014], that recast the Fokker-Planck equation
in terms of stochastic differential equations, hence obtaining a probabilistic distribution of solutions.

In view of the fact that physics-based models are becoming increasingly important in Space Weather [Tóth
et al., 2012; Schunk et al., 2016], it is easy to recognize the need for a probabilistic interpretation of simulation
outputs, simply because a point estimate is meaningless, without its corresponding confidence interval. In
turn, such a probabilistic interpretation requires at least two ingredients: a correct specification of the uncer-
tainties attributed to input parameters and the study of the propagation of such uncertainties through our
physics-based model. This paper is concerned with the latter task, that is, the attempt to characterize how an
imperfect knowledge of our input parameters is reflected in the simulation output.

As we will discuss in the following, radiation belt simulations are built on a large number of input parameters
related to wave spectra, atmospheric and magnetopause losses, and consequently on an equally large num-
ber of assumptions regarding such parameters. The common approach is to specify single values for these
inputs that have been derived from statistical studies of historical data [Meredith et al., 2003; Shprits et al., 2007;
Agapitov et al., 2013; Meredith et al., 2014].

The field of uncertainty quantification (UQ) has witnessed a rapid growth in the last few decades, and it now
represents a central topic in engineering research and applications [Smith, 2013]. The tools of UQ are still
relatively unknown in space physics, although, for instance, the technique of ensemble forecasting has seen
some recent advances in space weather [Knipp, 2016]. A general classification divides UQ techniques between
nonintrusive and intrusive. The former term refers to using a deterministic model as a black-box simulator that
can run multiple times, while the latter is used when the underlying partial differential equations are recast in
terms of stochastic equations. We refer to the tutorial by Xiu [2009] for a discussion of these and other details
of UQ. In this work we employ a nonintrusive approach, performing an ensemble of simulations with the
extensively benchmarked VERB code. The probability distribution of the input parameter space is preassigned,
and it is explored with a fairly naive version of a collocation algorithm, described in section 2.

This paper represents the first attempt to study the propagation of uncertainties in a radiation belt model.
For this reason, we limit our scope to (1) two-dimensional simulations in energy and pitch angle and (2) the
study of the following three input parameters only: the geomagnetic index Kp, the maximum latitude extent
of wave propagation 𝜆max, and the average electron number density n.

The paper is organized as follows. Section 2 presents the methodology, including the details of the simulation
setup, and the assumed distribution of the input parameters. Results are discussed in section 3, where we will
analyze the relative importance of each of the input parameters under consideration. Finally, conclusions and
future research directions are drawn in section 4.

2. Methodology

We have employed the two-dimensional version of the VERB code, to solve diffusion in energy and pitch
angle, and we have performed an ensemble of simulations, each one with different input parameters, and
a given probability of occurrence. We have neglected cross-diffusion, for computational saving. Although it
is now understood that the electron phase space density might be overestimated, especially at high energy,
we believe that the results presented in the following are still relevant, for what concerns the propagation of
uncertainties.

The numerical grid has 201 points in each direction, with energy E ranging from 0.2 to 5 MeV and equatorial
pitch angle 𝛼 ranging from 5∘ to 89.7∘. L∗ is kept fixed at a value of 4.5. The initial condition for the particle
distribution function is the same used in Albert et al. [2016], and it is chosen as f = j∕p2, with the flux

j = j0e−E∕E0
(

sin 𝛼 − sin 𝛼LC

)
, (2)
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Figure 1. Geomagnetic index Kp for the idealized storm
used in this study. Solid, dashed, and dash-dotted lines
correspond to different unnormalized probabilities of 1,
e−1∕2, and e−2, respectively.

where p is momentum, 𝛼LC is the loss cone value
of 𝛼 in a dipole, and j0 = 2.5 × 105 cm−2 s−1 sr−1

keV−1. The boundary conditions are also standard:
f = 0 for 𝛼 = 𝛼LC, 𝜕f∕𝜕𝛼 = 0 for 𝛼 = 89.7, and
f is kept constant at the lower and higher energy
boundaries.

For simplicity, the simulations include chorus day
and night parallel-propagating waves only, with the
same parameters as in Shprits et al. [2009]. In prin-
ciple, the calculation of the diffusion coefficients
needs to specify the average wave amplitude (and
its parametrization as a function of Kp), the wave
spectral properties (that is, assuming a Gaussian
distribution in frequencies, the upper and lower
limits, and mean and bandwidth frequencies), the
percentage MLT (Magnetic Local Time) coverage,
the electron density n, the maximum latitudinal
extent of the waves 𝜆max, and the time evolution of

the geomagnetic index Kp. In the present approach each of these quantities might be treated as a random
variable. In this paper, however, we focus on the last three quantities only (n, 𝜆max, and Kp).

We study the effect of input parameter uncertainties on an idealized storm, previously studied in Shprits et al.
[2009]. The storm model is parametrized solely by the geomagnetic index Kp, as depicted in Figure 1. We
assume that at initial time (day = 0) Kp = 2, it grows linearly within the first day, it stays at a constant level
until day 2, and it finally decreases linearly reaching its starting value at day 5. The Kp evolution represented
by solid, dashed, and dash-dotted lines correspond to different maximum values of Kp achieved during day 1
and to unnormalized probabilities of 1, e−1∕2, and e−2, respectively.

The three input parameters Kp, 𝜆max, and n are assumed to be independently distributed according to a
Gaussian. Figure 2 shows their (unnormalized) probabilities. The values that are chosen to form the simulation
ensemble are shown as black squares. It is understood that the probability attributed to a single simulation
is the product of the probabilities attributed to the chosen values of Kp, 𝜆max, and n, appropriately normal-
ized. Hence, the input space is modeled as a multivariate (three-dimensional) Gaussian distribution, which is
explored on a fixed three-dimensional grid of 5× 5× 9 = 225 points in the Kp, 𝜆max, and n directions. Figure 2
(left) is the maximum value of Kp of the idealized storm shown in Figure 1, that is, the value reached between
days 1 and 2. The values for its mean and the standard deviation are equal to 6 and 1, respectively. The five
points chosen for sampling are Kp = {4, 5, 6, 7, 8}, with corresponding unnormalized probabilities equal to
{e−2, e−1∕2, 1, e−1∕2, e−2}. Figure 2 (middle) shows the distribution of the maximal latitudinal extent of the cho-
rus day (blue) and chorus night (red) waves. We assume that the two kinds of waves are completely correlated;

Figure 2. Distribution of input parameters. (left) Maximum value of the Kp index (achieved during day 1). (center) Maximum latitudinal extent of waves 𝜆max
(blue for chorus day and red for chorus night). (right) Electron density distribution (blue for chorus day and red for chorus night). Each distribution is Gaussian,
and the three parameters are assumed to be independent. The values chosen for the ensemble of simulations (225 in total) are denoted with squares.
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Figure 3. Electron flux (in 104 cm−2 s−1 sr−1 keV−1) as a function of pitch angle 𝛼 for energy equal to 500 keV. (left, middle, and right) The evolution at times 1, 2,
and 3 days. The blue line is the mean calculated over the whole ensemble. The dashed red line is the single simulation corresponding to the most probable
inputs, and the yellow area covers a region of the flux corresponding to a probability of 75%.

that is, sampling points in the two distributions correspond one to one. The mean values are equal to 35∘ and
15∘ for day and night respectively, and the standard deviation is equal to 5∘ in both cases. As for the distri-
bution in Kp we choose five points: the mean, ±𝜎, and ±2𝜎 (with 𝜎 the standard deviation). This corresponds
to 𝜆max(day) = {25, 30, 35, 40, 45} and 𝜆max(night) = {5, 10, 15, 20, 25} (in degrees). Finally, Figure 2 (right)
shows the distribution of the electron density, which has been calculated following the estimation in Sheeley
et al. [2001] (equation (7) in that paper, assuming L = 4.5, LT = 3 for the chorus night and LT = 9 for the chorus
day). In this case the distribution is sampled with nine points separated by a quarter of a standard deviation. In
principle, one might use different models for the electron density estimation [see, e.g., Gallagher et al., 2000;
Huang et al., 2004]. However, the Sheeley et al. [2001] model is particularly suited for this problem, because
it provides an analytical formula for the mean and the standard deviation, as functions of L and magnetic
local time.

We have validated our findings using a smaller ensemble with five points only in the density and checking
that the results do not change significantly. We also note that in this restricted three-dimensional parameter
space, the sampling method chosen with 225 simulations is already effective; however, one should use more
sophisticated methods, such as quasi-Monte Carlo sampling [L’Ecuyer and Owen, 2009] or grid-free adaptive
stochastic methods, when moving to higher dimensions (including more input parameters).

3. Results

In this section we discuss the results obtained by analyzing the ensemble of simulations, in terms of the statis-
tics of the simulated electron flux, and how this is affected by changing the input parameters. Figures 3 and 4

Figure 4. Electron flux (in 104 cm−2 s−1 sr−1 keV−1) as a function of pitch angle 𝛼 for energy equal to 2 MeV. (left, middle, and right) The evolution at times 1, 2,
and 3 days. The blue line is the mean calculated over the whole ensemble. The dashed red line is the single simulation corresponding to the most probable
inputs, and the yellow area covers a region of the flux corresponding to a probability of 75%.
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Figure 5. Histograms of electron flux , at time = 3 days, for energy equal to 500 keV. The four panels denote pitch angle
𝛼 = 20°, 40∘, 60∘ , and 80∘. The dashed red line represents the single simulation corresponding to the most probable
inputs.

show the flux as a function of pitch angle 𝛼, for 500 keV and 2 MeV electrons, respectively. Figures 3 (left,
middle, and right) and 4 (left, middle, and right) denote the results after 1, 2, and 3 days. In both figures, the
blue line represents the mean value (averaged over the whole ensemble of 225 simulations), the dashed red
line shows the result of the single simulation with the highest probability of the inputs (i.e., the mode of the
input distribution), and the yellow area bounds the interval containing a simulation result with a probability of
75%. This has been determined by calculating the empirical cumulative distribution of the fluxes (taking into
account that each member of the ensemble is associated with an input probability) and denoting as the lower

Figure 6. Histograms of electron flux , at time = 3 days, for energy equal to 2 MeV. The four panels denote pitch angle
𝛼 = 20°, 40∘, 60∘ , and 80∘. The dashed red line represents the single simulation corresponding to the most probable
inputs.
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Figure 7. Sensitivity study varying only Kp. Electron flux (in 104 cm−2 s−1 sr−1 keV−1) as a function of pitch angle 𝛼 for energy equal to 500 keV. (left, middle, and
right) The evolution at times 1, 2, and 3 days. The blue line is the single simulation corresponding to the most probable inputs. The yellow area denotes the
extreme values considered in the input distribution (±2𝜎).

and higher bounds the values for which such a cumulative distribution is equal to 0.125 and 0.875, respec-
tively. In other words, the probability that a result belongs to the yellow area is 75%. Note that the boundary
condition on the loss cone angle (on the left) is of Dirichlet type, imposing the flux to be null. Hence, all the
simulations give the same result. On the other hand, the boundary condition for 𝛼 = 90° is of Neumann type,
imposing that the first derivative of the flux vanishes. Consequently, the variance in the flux increases moving
to larger angles. Two important results can be discussed. The first is how incorrect it may be to consider only
the simulation that carries the highest input probability (the one denoted as the mode in the plots), neglect-
ing the fact that the input parameters should be more properly represented as random variables. In other
words, how incorrect is it to neglect the stochastic nature of the system? This question can be answered by
looking at the difference between the red and blue lines. The difference is quite small for 500 keV particles,
but it becomes nonnegligible for 2 MeV, particularly at large pitch angles (almost a factor of 2). A second point
concerns the overall nonlinearity of the system and the associated skewness of the distribution that deter-
mines the error bar. While for 500 keV electrons (Figure 3), the mean divides almost equally the shaded yellow
area, a clear asymmetry of the distribution is visible for 2 MeV electrons (Figure 4). It is an effect of nonlinear-
ity that a symmetric (Gaussian) input distribution generates a skewed output distribution. In order to better
appreciate the distribution of fluxes, we plot in Figures 5 and 6 the histograms for electrons with 500 keV
and 2 MeV, respectively, at time = 3 days. The four different panels are for pitch angles 𝛼 = 20°, 40∘, 60∘, and
80∘. The red dashed line denotes the result of the simulation representing the mode of the input distribution
(the one with highest probability). In most cases, the outcome of this single simulation does not agree with
the most probable output flux. Moreover, noting that the horizontal axis in Figure 6 is in logarithmic scale,

Figure 8. Sensitivity study varying only Kp. Electron flux (in 104 cm−2 s−1 sr−1 keV−1) as a function of pitch angle 𝛼 for energy equal to 2 MeV. The three panels
show the evolution at times 1, 2, and 3 days. The blue line is the single simulation corresponding to the most probable inputs. The yellow area denotes the
extreme values considered in the input distribution (±2𝜎).
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Figure 9. Sensitivity study varying only 𝜆max. Electron flux (in 104 cm−2 s−1 sr−1 keV−1) as a function of pitch angle 𝛼 for energy equal to 500 keV. (left, middle,
and right) The evolution at times 1, 2, and 3 days. The blue line is the single simulation corresponding to the most probable inputs. The yellow area denotes the
extreme values considered in the input distribution (±2𝜎).

the asymmetry of the distribution is clear. In particular, for 60∘ and 80∘ pitch angles, the distribution of fluxes
is quite broad, being almost constant across 2 orders of magnitude. In this circumstance, a forecast based on
a single simulation should certainly carry a large error bar.

3.1. Dependency on a Single Parameter
We can now estimate the relative importance between the three parameters under consideration in deter-
mining the variance of the output flux discussed in Figures 3 and 4. This can easily be done by selecting in our
ensemble of simulations the ones where only one parameter at a time changes, and the other two are kept
fixed at their most probable value (that is, Kp = 6, 𝜆max = 35 (day), 15 (night), and n = 23.5 (day), 15.8 (night)).
One has to keep in mind that an important simplifying assumption in our methodology is that the three input
parameters are independent. This might not be the case in reality, and the resulting conditional distributions
might yield smaller variances than the one considered here.

The effect of a change in the maximum value reached by Kp during the storm is shown in Figures 7 and 8,
for 500 keV and 2 MeV, respectively. Here and in the following figures, the blue line shows the simulation
corresponding to the mode of the input distribution (the red dashed lines of the previous figures). Because
we are now looking at five simulations only, it does not make sense to compute a cumulative distribution
function. Instead, we show as the upper and lower bounds of a yellow area the results of the simulations
corresponding to the largest and smallest values of Kp, that is, 2 standard deviations apart from the mean. It
is interesting to notice how the variance in the flux shrinks, moving from day 1 to day 3 for 500 keV electrons,
while it increases for 2 MeV. This might suggest a saturation of the wave energy available to resonate with
500 keV electrons. Yet the largest variation in the results (Figure 8, right) is several times smaller than the

Figure 10. Sensitivity study varying only 𝜆max. Electron flux (in 104 cm−2 s−1 sr−1 keV−1) as a function of pitch angle 𝛼 for energy equal to 2 MeV. (left, middle,
and right) The evolution at times 1, 2, and 3 days. The blue line is the single simulation corresponding to the most probable inputs. The yellow area denotes the
extreme values considered in the input distribution (±2𝜎).
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Figure 11. Sensitivity study varying only density. Electron flux (in 104 cm−2 s−1 sr−1 keV−1) as a function of pitch angle 𝛼 for energy equal to 500 keV.
(left, middle, and right) The evolution at times 1, 2, and 3 days. The blue line is the single simulation corresponding to the most probable inputs. The yellow
area denotes the extreme values considered in the input distribution (±𝜎).

overall variation observed in Figure 4. Hence, we deduce that variations in Kp do not play a major role in the
flux variance. With a similar format, we show in Figures 9 and 10 the results concerning the variation of 𝜆max

only. Here the nonlinearity of the simulations manifests explicitly in Figure 9 (middle and right). Increasing
the value of 𝜆max does not necessarily result in a larger flux, and indeed the curves that bound the yellow
region intersect and the blue line (that corresponds to a value of 𝜆max between the ±2𝜎 extrema) is outside
of the yellow region. Also, in this case the variances are much smaller than the one calculated from the whole
ensemble (Figures 3 and 4). Consequently, one deduces that most of the variance should be due to variations
of the electron density. This is confirmed by looking at the results generated by varying the density only,
shown in Figures 11 and 12 for 500 keV and 2 MeV, respectively. The dashed yellow areas are now much larger
and comparable to the variance reported for the whole ensemble (we note that the yellow areas in Figures 11
and 12 do not have the same meaning as the ones in Figures 3 and 4).

3.2. Coefficient of Variation
The electron flux in the domain under consideration can vary by a few orders of magnitude. In this case the
standard deviation is not very informative. A better measure to define the spread in the ensemble distribu-
tion is given by the coefficient of variation, which is defined as the adimensional ratio between the standard
deviation and the mean. This is shown in Figure 13 over the whole two-dimensional grid, in logarithmic scale
(left, middle, and right are for days 1, 2, and 3). By definition, by virtue of the boundary condition, this quantity
is zero at the low energy boundary. One can appreciate that the coefficient of variation increases with larger
energies, and it has a much stronger dependence on energy than on pitch angle. Above 1 MeV, this quan-
tity can reach values as large as 10 or 100, indicating a large spread in the distributions, consistent with the
histograms shown in Figures 5 and 6.

Figure 12. Sensitivity study varying only density. Electron flux (in 104 cm−2 s−1 sr−1 keV−1) as a function of pitch angle 𝛼 for energy equal to 2 MeV. (left, middle,
and right) The evolution at times 1, 2, and 3 days. The blue line is the single simulation corresponding to the most probable inputs. The yellow area denotes the
extreme values considered in the input distribution (±𝜎).
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Figure 13. Coefficient of variation: ratio of the standard deviation over the mean of the flux, over the two-dimensional
simulation domain (energy, pitch angle). (left, middle, and right) Days 1, 2, and 3. The colorbar is in logarithmic scale.

4. Conclusions

We have reported the first study that addresses the problem of the propagation of uncertainties through
quasi-linear diffusion simulations, in the Earth’s radiation belt. In this paper, among the many input parameters
that one could choose, we have restricted our focus on three parameters only: the maximum value of the geo-
magnetic index Kp during the main phase of a storm, the maximum latitudinal extent of the waves 𝜆max, and
the average electron density n. Moreover, we have only included parallel-propagating chorus day and night
waves and studied diffusion in energy and pitch angle space, at constant L∗ = 4.5. Once again, we remind the
reader that the assumption of statistical independence between the three input parameters constitutes a sim-
plifying and ideal case, which should be refined in future studies. We have employed an ensemble technique,
where 225 simulations were performed, each one with a different choice of input parameters and a different
assigned probability. For simplicity, the input parameter space has been assumed distributed according to a
multivariate Gaussian. The main results of this paper can be summarized as follows:

1. Most of the variance can be attributed to the uncertainty in the density distribution. Note that among the
three inputs, the density is the one that has been modeled less arbitrarily. Indeed, it follows the distribution
derived in Sheeley et al. [2001] from the statistical analysis of CRRES data. This model has been extensively
used in several simulations [see, e.g., Horne et al., 2005; Thorne et al., 2005; Li et al., 2007; Ni et al., 2008; Shprits
et al., 2008; Thorne et al., 2013].

2. The histograms of the flux are skewed, suggesting an important role of nonlinearities in mapping a Gaussian
distribution of inputs into a non-Gaussian distribution of flux. This result suggests using some caution in
future studies, where a higher-dimensional input space would require the use of more sophisticated tech-
niques. For instance, stochastic collocation methods involve some form of interpolation that might rapidly
degrade the accuracy of the results when not enough collocation points are used.

3. The simulated flux for 2 MeV electrons presents, for large pitch angles, a wide distribution with almost con-
stant probability, ranging about 2 orders of magnitude. Consequently, predictions based on this model
should carry large error bars.

4. The coefficient of variation, defined as the standard deviation divided by the mean, calculated on the fluxes
presents a much stronger dependence on the energy than on the pitch angle.

In conclusion, this work emphasizes the need to shift to a probabilistic interpretation of the results of
physics-based models. The majority of radiation belt models are deterministic. However, we have shown how
single-point estimates can be misleading if used as a forecast and if not accompanied by a quantification of
the uncertainties involved. In particular, for MeV electrons, we have discussed how the distribution of fluxes
can yield results that are 1 or 2 orders of magnitude off from the single simulation performed with the most
probable input values. Future extensions of this work will include cross-term diffusion, oblique wave prop-
agation, and radial diffusion. Finally, we suggest that the reduction of the variance in the estimation of the
average electron density in the radiation belts should be an important and urgent research goal for the near
future [Sicard-Piet et al., 2014; Zhelavskaya et al., 2016], especially in light of the large amount of data recently
collected by Van Allen Probes.
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