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a b s t r a c t

We propose a spectral mean for closed sets described by sample
points on their boundaries subject to mis-alignment and noise. We
derivemaximum likelihood estimators for themodel and noise pa-
rameters in the Fourier domain. We estimate the unknown mean
boundary curve by back-transformation and derive the distribu-
tion of the integrated squared error. Mis-alignment is dealt with
by means of a shifted parametric diffeomorphism. The method is
illustrated on simulated data and applied to photographs of Lake
Tana taken by astronauts during a Shuttle mission.
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1. Introduction

Many geographical or biological objects are observed in image form. The boundaries of such objects
are seldom crisp, for example due tomeasurement error and discretisation, or because the boundaries
themselves are intrinsically indeterminate (Burrough and Frank, 1996). Moreover, the objects may
not be static in the sense that if multiple images are taken, the objects may have been deformed.

One attempt to model natural objects under uncertainty is fuzzy set theory (Zimmermann, 2001).
However, the underlying axioms are too poor to handle topological properties of the shapes to be
modelled and cannot deal with correlation. Similarly, the belief functions that lie at the heart of
the Dempster–Shafer theory (Dempster, 1967; Shafer, 1976) do not necessarily correspond to the
containment function of a well-defined random closed set (Molchanov, 2005).

Proper stochastic geometric models for natural objects are scarce. Indeed, the Boolean model
(Molchanov, 1997), defined as the union of independent copies of a simple geometric object, to this
date dominates the random set literature. It owes its popularity to the fact that it is analytically
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tractable, but its realisations do not match the irregular shapes observed in natural phenomena. The
modification in which objects may be subject to transformation is known as a deformable template
model (Grenander and Miller, 2007).

Apart from the dearth of models, another complication is that, since the family of closed sets in
the plane is not linear, it is not straightforward to define what is meant by a mean set. Indeed, many
different suggestions have been made, often with a specific context in mind. For instance, the radius
vector mean is taylor-made for star-shaped objects, the Vorob’ev expectation for fuzzy sets. This
context dependence has obvious disadvantages. More specifically, the radius vector mean does not
apply to sets that are not star shaped, the Vorob’ev expectation is a function of the coverage function
only so that it cannot take into account spatial coherence and fine detail. The Fréchet expectation
(Fréchet, 1948) on the other hand can be defined quite generally as a distance minimiser in a metric
space and – in contrast to the previously mentioned definitions – is extendable to higher orders, but
the computational burden may be large. For further details and examples, see Molchanov (2005).

In this paper,we extend an interesting approach suggested by Jónsdóttir and Jensen (2005) for star-
shaped objects deformed by noise to objects that are not necessarily star-shaped by modelling their
boundary as a closed curve. Additionally, we propose a spectral mean for such random sets and carry
out inference in the Fourier domain. The approach is easy to implement and, moreover, the integrated
squared error can be computed in closed form.

A complication is that the curves need to be well-aligned in the sense that their parametrisations
must be in correspondence. Similar problems arise in shape registration (Dryden and Mardia, 1998),
deformable template matching (Grenander and Miller, 2007), signal extraction (Bigot and Gendre,
2013) or imagewarping (Glasbey andMardia, 2001). Although the terminology varies, the objective is
always the same, namely to find a transformation between objects so that they resemble one another.
The context determines the class of transformations and the criterion for evaluating the resemblance.
Examples of the former include rigid motions or time shifts; resemblance can be based on Euclidean
distance between landmarks (Besl and McKay, 1992), Hausdorff or image distances (Baddeley and
Molchanov, 1998), or on intrinsic properties of the object (e.g. arc length and curvature) (Sebastian
et al., 2003) or the group of transformations (Kendall, 1984). Further discussion and examples can be
found in Davies et al. (2008).

Sincewework on a space of smooth cyclic functions, we shall use the (expected) L2 distance on this
function space to measure the quality of alignment and we follow Younes (2010) in reparametrising
a curve by diffeomorphisms. Note that, in contrast to function estimation in one dimension, a
reparametrisation does not affect the appearance of the curve.

This paper is organised as follows. We begin by recalling basic facts about planar curves, cyclic
Gaussian random processes and spectral analysis. Then we formulate a model for sampling noisy
curves, carry out inference in the Fourier domain and quantify the error. We present a simulation
study to assess performance. Finally, we describe how to deal with mis-alignment between curves
and illustrate the approach on images of a lake in Ethiopia.

2. Noisy curves

In this section we recall basic facts about planar curves, Fourier bases and cyclic Gaussian random
processes.

2.1. Planar curves

Throughout this paper, we model the boundary of a random object of interest by a smooth closed
curve.

Consider the class of functionsΓ : I → R2 from some interval I to the plane. Define an equivalence
relation ∼ on the function class as follows: Two functions Γ and Γ ′ are equivalent, Γ ∼ Γ ′, if there
exists a strictly increasing function ϕ from I onto another interval I ′ such that Γ = Γ ′

◦ ϕ. Note that
ϕ is a homeomorphism. The relation defines a family of equivalence classes, each of which is called a
curve. Its member functions are called parametrisations. Since the images of two parametrisations of
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the same curve are identical, we shall, with slight abuse of notation, use the symbol Γ for a specific
parametrisation, for a curve and for its image.

A curve is said to be continuous if it has a continuous parametrisation Γ : [p, q] → R2, in which
case all parametrisations are continuous; it is closed (or cyclic) if Γ (p) = Γ (q). Since closed curves
have neither a ‘beginning’ nor an ‘end’, a rooted parametrisation is provided by a point on the curve
together with a cyclic parametrisation from that point in a given orientation. For convenience, we
shall often rescale the definition interval to [−π, π].

In an optimisation context, it is natural to assume a curve to be parametrised by some function
Γ that is continuously differentiable (C1) and the same degree of smoothness to hold for the
functions ϕ that define the equivalence relation between parametrisations. In effect, ϕ should be a
diffeomorphism. See Younes (2010, Chapter 1) for further details.

2.2. Fourier representation

Let Γ : [−π, π] → R2 be a C1 function with Γ (−π) = Γ (π). Since the family {cos(jθ), sin(jθ) :

j ∈ N0, θ ∈ [−π, π]} forms an orthogonal basis for L2([−π, π]), the space of all square integrable
functions on [−π, π], Γ can be approximated by a trigonometric polynomial of the form

J
j=0


µj cos(jθ) + νj sin(jθ)


.

The vectors µj and νj are called the Fourier coefficients of order j and satisfy

µ0 =
1
2π

 π

−π

Γ (θ)dθ

µj =
1
π

 π

−π

Γ (θ) cos(jθ)dθ

νj =
1
π

 π

−π

Γ (θ) sin(jθ)dθ

for j ∈ N. Moreover, Parseval’s identity

1
π

 π

−π

∥Γ (θ)∥2dθ = 2∥µ0∥
2
+

∞
j=1


∥µj∥

2
+ ∥νj∥

2 (1)

relates the squared L2 norm of Γ to a sum of squared Fourier coefficients.

2.3. Stationary cyclic Gaussian random processes

As in Jónsdóttir and Jensen (2005, Proposition 2.1), letN = (N1,N2) be a stationary cyclic Gaussian
random process on [−π, π] with values in R2 of the form

N(θ) =

∞
j=0


Aj cos(jθ) + Bj sin(jθ)


, (2)

where the components of Aj and Bj are mutually independent zero-mean Gaussian random variables
with variances σ 2

j that are small enough for the series


j σ
2
j to converge. Then N has independent

components with zero mean and covariance function

ρ(θ) =

∞
j=0

σ 2
j cos(jθ).
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For the existence of a continuous version, further conditions are needed. Indeed, Theorem 25.10 in
Rogers and Williams (1994) implies that if

∞
j=1

j2k+ϵσ 2
j < ∞ (3)

for k ∈ N ∪ {0}, ϵ > 0, there exists a version of N that is k times continuously differentiable. From
now on, we shall always assume (3) for k = 1.

A convenient model is the generalised p-order model of Hobolth et al. (2003), see also Aletti and
Ruffini (in press) and Jónsdóttir and Jensen (2005), in which σ−2

j = α + βj2p, j ≥ 2, for parameters
α, β > 0. The parameter p determines the smoothness. By (3), a continuous version exists for all
p > 1/2, a C1 version for p > 3/2.

3. Data model

In this paper, we are interested in samples of objects with uncertain boundaries. Such data arise in,
for example,medical imagingwhere delineation of organs or tumours is required. Another application
domain is that of the earth sciences (e.g. the paper by Zhao et al. in this volume). Indeed, objects such as
arctic glaciers or fresh water lakes are rarely crisp. Moreover, they tend to shrink and grow according
to the seasons and climate. To analyse such changes, the object of interest must be mapped and the
uncertainty in its outline quantified.

More formally, suppose the data consist of multiple observations Xt , t = 0, . . . , T , of an object of
interest in discretised form as a list of finitelymany points (X l

t)l=1,...,n on its boundary, either explicitly
(cf. Fig. 1) or implicitly in the formof an image as in Fig. 4. In otherwords, the lists trace someunknown
closed curve Γ affected by noise.

As for the noise Nt , in the absence of systematic errors, we assume that ENt(θ) = 0 for all
θ ∈ [−π, π] and that the correlation between errors Nt(θ) and Nt(η) depends only on the absolute
difference |θ − η|. Thus, we model the noise by independent mean-zero stationary cyclic Gaussian
random processes of the form (2) on [−π, π]. Finally, the roots and parametrisations of the noisy
curves must be well-aligned. This is taken care of by shift parameters αt ∈ [−π, π] for the root and
diffeomorphisms ϕt : [−π, π] → [−π, π] for the reparametrisation.

To summarise, we arrive at the following model for points X l
t , l = 1, . . . , n, sampled along the

boundaries of observation t ∈ {0, . . . , T } of curve Γ .

Model 1. Let Γ : [−π, π] → R2 be a C1 function with Γ (−π) = Γ (π). Let Nt be independent
stationary cyclic Gaussian random processes on [−π, π] of the form (2) with variances σ 2

j for which
(3) holds with k = 1. Then, for αt ∈ [−π, π] and diffeomorphisms ϕt : [−π, π] → [−π, π],
θl = −(n + 1)π/n + 2π l/n, l = 1, . . . , n, and t = 0, . . . , T , set

X l
t = Xt(θl) = Γ (ϕt(θl − αt)) + Nt(ϕt(θl − αt)),

interpreted cyclically modulo 2π .

Note that the independence of the Nt implies that the random vectors Xt of observations are
independent. For fixed t , though, the X l

t may well be correlated.
We set ourselves the goal of estimating Γ and the noise variance parameters σ 2

j . For the moment,
assume that all αt ≡ 0 and that each ϕt is the identity operator. (We shall return to the issue of
estimating the parametrisations later). Then Model 1 reduces to

Xt(θ) = Γ (θ) + Nt(θ), (4)

which is observed at θl to give X l
t = Xt(θl).
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4. Parameter estimation

The objective of this section is to estimate the unknown curve Γ in model (4), as well as the
parameters of the covariance function of the Nt based on the observations X l

t . We propose to do
this in the Fourier domain. Since the noise is defined by its random Fourier coefficients (cf. (2)), the
estimation problem then reduces to inference for a multivariate normal distribution. A simple back-
transformation to the spatial domain completes the procedure.

To be precise, let, for j ∈ N and θl = −(n + 1)π/n + 2π l/n, l = 1, . . . , n,

F t
0,n =

1
n

n
l=1

X l
t =

1
n

n
l=1

[Γ (θl) + Nt(θl)]

F t
j,n =

2
n

n
l=1

X l
t cos(jθl) =

2
n

n
l=1

[Γ (θl) cos(jθl) + Nt(θl) cos(jθl)]

Gt
j,n =

2
n

n
l=1

X l
t sin(jθl) =

2
n

n
l=1

[Γ (θl) sin(jθl) + Nt(θl) sin(jθl)]

(5)

be the Riemann approximations of the random Fourier coefficients of Xt , t = 0, . . . , T . We shall
write µj,n, respectively νj,n for the deterministic parts of F t

j,n and Gt
j,n in (5). For example, for j = 0,

µj,n =


l Γ (θl)/n. Furthermore, let

σ 2
j,n =

2
n

n
l=1

ρ(θl) cos(jθl)

for j ≥ 1 and σ 2
0,n =


l ρ(θl)/n be the Riemann approximations of σ 2

j .
From now on, assume that n ≥ 3 is odd. In this case, the sequence θl contains 0 and is symmetric

around zero. We estimate µj,n and νj,n by their empirical counterparts
µ̂j,n =

1
T + 1

T
t=0

F t
j,n, j ∈ N ∪ {0}

ν̂j,n =
1

T + 1

T
t=0

Gt
j,n, j ∈ N

and transform back to the spatial domain to obtain

Γ̂n(θ) = µ̂0,n +

J
j=1


µ̂j,n cos(jθ) + ν̂j,n sin(jθ)


=

1
T + 1

T
t=0

n
l=1

X l
tSl(θ), (6)

where we use the notation Sl(θ) = 1/n + 2
J

j=1 cos(j(θ − θl))/n. In words, ˆΓn(θ) is a weighted
average of the observed points X l

t with the weight determined by the difference between θ and θl.
Finally, the variances σ 2

j are estimated by

σ̂ 2
j,n =

1
4(T + 1)

T
t=0


∥F t

j,n − µ̂j,n∥
2
+ ∥Gt

j,n − ν̂j,n∥
2 (7)

for j ∈ N and

σ̂ 2
0,n =

1
2(T + 1)

T
t=0

∥F t
0,n − µ̂0,n∥

2

for j = 0.
Note thatwhen J < n/2, the number of Fourier coefficients to estimate does not exceed the number

of observed boundary points.
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4.1. Distributional results

In this section, we derive the distribution of all model parameters as well as that of the integrated
squared error of the estimated curve. Our first result considers the estimators for the Fourier
coefficients – hence for the unknown curve – and noise parameters. Its proof is relegated to the
Appendix.

Theorem 1. Let J < n/2 and suppose that n ≥ 3 is odd. Consider model (4). Then the following hold.
1. µ̂j,n, ν̂j,n and σ̂ 2

j,n are maximum likelihood estimators for, respectively, µj,n, νj,n and σ 2
j,n.

2. µ̂j,n and ν̂j,n are mutually independent. They are normally distributed with independent components,
mean vectors µj,n and νj,n, respectively, and component variances σ 2

j,n/(T + 1).
3. For j ∈ N, 4(T + 1)σ̂ 2

j,n/σ
2
j,n is χ2 distributed with 4T degrees of freedom, whereas 2(T + 1)σ̂ 2

0,n/σ
2
0,n

is χ2 distributed with 2T degrees of freedom.
4. Γ̂n(·) is a cyclic Gaussian random process with independent components and mean vector

EΓ̂n(θ) =

n
l=1

Γ (θl)Sl(θ) = µ0,n +

J
j=1


µj,n cos(jθ) + νj,n sin(jθ)


;

the covariance function
J

j=0 σ 2
j,n cos(jθ)/(T + 1) of both components is translation invariant.

Next, we consider the distribution of the integrated squared error of the curve estimator. Again,
the proof can be found in the Appendix.

Theorem 2. Consider the estimator (6) for model (4) and assume J < n/2 for odd n ≥ 3. Then

1
π

 π

−π

∥Γ̂n(θ) − Γ (θ)∥2dθ =

∞
j=J+1


∥µj∥

2
+ ∥νj∥

2
+ Z̃,

where

Z̃ =
1

T + 1


2σ 2

0,nZ0,n +

J
j=1

σ 2
j,nZj,n


and the Zj,n are independent χ2 distributed random variables with four degrees of freedom for j ≥ 1, two
for j = 0, and non-centrality parameters (T + 1)cj,n/σ 2

j,n with

cj,n = ∥µj,n − µj∥
2
+ ∥νj,n − νj∥

2

for j = 1, . . . , J and c0,n = ∥µ0,n − µ0∥
2 for j = 0.

Under the assumptions of Theorem 2, the expected integrated squared error of Γ̂n reads
∞

j=J+1


∥µj∥

2
+ ∥νj∥

2
+

4
T + 1

J
j=0

σ 2
j,n + 2c0,n +

J
j=1

cj,n. (8)

The first term in (8) is the bias caused by taking into account only a finite number of Fourier coeffi-
cients. The second term corresponds to the variance, and the last two terms describe the discreti-
sation error in the Fourier coefficients. Indeed, if there would be no discretisation (n = ∞), the
non-centrality parameters would be zero and σ 2

j,n = σ 2
j .

To conclude this paragraph, note that the smoothness assumptions on Γ and the covariance
function ρ imply that both


j(σ

2
j,n − σ 2

j ) and


j cj,n are of the order J3/n2. Better rates might be
obtained if J were adapted to n and T .

Theorem 3. Under the assumptions of Theorem 2, (8) converges to zero as (T , J, n) → ∞ in such a way
that J is of the order n2/3−ϵ for some ϵ > 0.

The proof is given in the Appendix.
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4.2. Simulated example

The left-hand panel in Fig. 1 shows a hundred contours consisting of points sampled at θl =

−(n+ 1)π/n+ 2π l/n, l = 1, . . . , n for n = 129, along a nested quintic curve (Keren, 2004) degraded
by noise according to the generalised p-order model Hobolth et al. (2003) with p = 2, α = 1.0
and β = 10.0, truncated at ten Fourier coefficients. Note that the sample paths are almost surely
continuously differentiable.

Fig. 1. Left-most panel: Data points sampled along 100 realisations of a nested quintic curve degraded by noise. Middle
panel: Estimated curves based on data points sampled along 100 (dashed line) and 10 (stippled line) curves. Right-most panel:
Estimated variance σ̂ 2

j,n of the Fourier coefficients plotted against j (crosses) compared to their true value σ 2
j (circles).

We use Eq. (6) to estimate the true curve Γ , which cannot be distinguished by eye from Γ . The
effect of reducing the number of data images is small as shown in the middle panel of Fig. 1. We also
estimate the variances σ 2

j for j = 0, . . . , 10 according to (7). These are shown as crosses in the right-
most panel of Fig. 1. For comparison, the true values are plotted too (the circles in the right-most panel
of Fig. 1). Note that the estimates are most variable for j = 2 and j = 3.

Recall that the result depends on the choices of J and n. To investigate the effect of the choice of J ,
we apply (6) with J ∈ {1, . . . , 128}, keeping the values of n and T as they were. The fit is excellent for
J in the range of about 7 up to 119. In Fig. 2, we show the estimated curves for J = 3, 5 and 121. For
J = 3 and 5 there is over-smoothing with the larger bias for J = 3; for J = 121, over-fitting occurs.

Fig. 2. Estimated curves for J = 3 (left-most panel), J = 5 (middle panel) and J = 121 (right-most panel) for the data displayed
in the left-most panel of Fig. 1.

Next, we consider the effect of discretisation by sub-sampling along each of the data curves. In
the two left-most panels of Fig. 3, the result for sampling every fourth and sixth point is displayed.
It can be seen that the quality of the estimate is still very satisfying, even though 33 respectively 21
rather than 129 points are used in the Riemann approximations (5). This is no longer the case when
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Fig. 3. Estimated (solid line) and true curve (dashed line) for the data displayed in Fig. 1 sub-sampled to a fraction four (left
hand panel), six (middle panel) and eight (right hand panel).

we sub-sample further down to only 17 points along each curve, as can be seen from the right hand
panel of Fig. 3. In the latter case, however, the number of Fourier coefficients to estimate (J = 10) is
larger than n/2 = 8.5.

5. Parametrisation

As we saw previously, given a root, any parametrisation Γ of a closed C1 curve can be written as
a composition Γ ′

◦ ϕ of a fixed parametrisation Γ ′ with a diffeomorphism ϕ. Thus, given two curves
parametrised by, say, Γ and Γ1, alignment of Γ1 to Γ amounts to finding a shift α and a diffeomor-
phismϕ such thatΓ1(θ) ≈ Γ (ϕ(θ−α)) interpreted cyclically.Without loss of generality, we consider
diffeomorphisms ϕ from [−π, π] onto itself.

Parametric diffeomorphisms can be constructed as the flow of differential equations (Younes,
2010, Chapter 8). In our context, it is convenient to consider the differential equation

x′(t) = fw(x(t)), t ∈ R, (9)

with initial condition x(0) = θ ∈ [−π, π]. Heuristically, consider a particle whose position at time 0
is θ . If the particle travels with speed governed by the function fw , then x(t) is its position at time t .
To emphasise the dependence on the initial state we shall also write xθ (t).

Let fw be a trigonometric polynomial, that is, a linear combination of Fourier basis functions with
pre-specified values wi at equidistant xi ∈ [−π, π] under the constraint that fw(−π) = fw(π) = 0.
More precisely, let −π = x0 < x1 < · · · < x2m < π , w0 = 0, and define fw(x) =

2m
j=0 wjrj(x) where

rj(x) =

2m
j≠k=0

sin
 x−xk

2


2m

j≠k=0
sin


xj−xk
2


for arbitraryw1, . . . , w2m andm ≥ 1. Note that fw vanishes at−π . Now, fw is a C1 function on (−π, π)
and

r ′

j (x) =

2m
j≠k=0

cos
 x−xk

2

 2m
j,k≠i=0

sin
 x−xi

2


2

2m
j≠k=0

sin


xj−xk
2


is Lipschitz. Therefore, by Coddington and Levinson (1955, Chapter 1.7), the function

θ → xθ (1) = θ +

 1

0

2m
j=0

wjrj(xθ (t))dt,
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the solution of (9) at time 1, is a diffeomorphism, cf. Younes (2010, Theorem 8.7). This function is
known as the flow of the differential equation and denoted by ϕ(θ) = xθ (1). As it depends on the
weights, we shall alsowriteϕw(θ) to emphasise this fact. Note that in total, there are 2m+1 alignment
parameters, 2m for the diffeomorphism and one for the shift in root.

5.1. Inference

Return to Model 1, that is, consider a curve

Xt(θ) = Γ (ϕwt (θ − αt)) + Nt(ϕwt (θ − αt))

which is observed at θl = −(n + 1)π/n + 2π l/n, l = 1, . . . , n, and extended to [−π, π] by
trigonometric interpolation. The latter is valid under our assumption that n is odd.

For each choice of wt and αt , the idea is to apply the inverse parametrisation to obtain curves

Yt(θ) = Xt(ϕ−wt (θ) + αt)

that are well-aligned and apply the theory developed so far to the Yt , t = 0, . . . , T . Then, by (6),
Γ̂n(θ) =

T
t=0 Γ̂t,n(θ)/(T + 1), where

Γ̂t,n(θ) =

n
l=1

Yt(θl)Sl(θ) =

n
l=1

Xt(ϕ−wt (θl) + αt)Sl(θ).

We pick the ‘best’ α̂t , ŵt by minimising

T
t=0

n
l=1

∥Γ̂t,n(θl) − Γ̂n(θl)∥
2, (10)

the Riemann sum approximation to the total L2-distance between the smoothed data curves and the
estimated ‘true’ curve after alignment, over a compact cube containing the origin under the constraint
α0 = w0 = 0. Consequently, Γ̂n can be interpreted as a Fréchet mean. Note that, alternatively, we
could have constrained the average


t wt to zero.

Criteria such as (10) are well known in the shape recognition literature. For an overview, see for
example Davies et al. (2008); asymptotic properties can be found in Bigot and Gendre (2013).

5.2. An application

This section demonstrates our approach on geo-science data consisting of three images of a lake
with fuzzy borders. The aims of the analysis are to summarise these images by a few parameters
(estimated Fourier coefficients of the border curve), thus saving on storage, and to quantify the
uncertainty.

Fig. 4 shows three 512 × 512 images of Lake Tana, the largest lake in Ethiopia and the source of
the Blue Nile. It is approximately 84 × 66 km large and located near the centre of the high Ethiopian
plateau. Clearly visible is Dek island, site of historic monasteries, in the south-central portion of the
lake, which we shall use as the centre of our coordinate system. The three images were downloaded
from NASA’s ‘The Gateway to Astronaut Photography of Earth’ website (NASA, 2001) (frames 23, 24,
25). They were taken on February 17th, 2001, at one second intervals by astronauts on the STS098
mission from a space craft altitude of 383 km. The centre is at latitude 12.0 and longitude 37.5°. The
cloud cover is about 25%.

Fig. 5 zooms in to part of the border of the middle image of Fig. 4. Note that it is rather fuzzy,
resulting in a low image gradient, degraded even further by the substantial cloud cover. Therefore, for
each of the three images shown in Fig. 4, n = 73 points were traced along the border using Gimp. The
results are shown as, respectively, circles, triangles and crosses in the left-most panel in Fig. 6.

We start by considering shift parameters only. In other words, wt = 0 for t = 0, 1, 2. Using
J = 20 Fourier coefficients and α0 = 0, the optimal parameter values are α̂1 = −0.44 and α̂2 =

−2.33 radians. The value of the optimisation function is 1195.048 square pixels, corresponding to
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Fig. 4. Photographs of Lake Tana taken by astronauts on the STS098 mission. Images courtesy of the Image Science & Analysis
Laboratory, NASA Johnson Space Center.

Fig. 5. Detail of the middle panel of Fig. 4.

Fig. 6. Left panel: Sampled boundary curves for the images shown in Fig. 4. Circles trace the boundary of Lake Tana in the
left-most panel, triangles correspond to the middle panel, and crosses trace the lake boundary in the right-most panel of Fig. 4.
Right panel: Estimated border.

an average error of 2.34 pixels. The result can be improved by including diffeomorphic changes in
speed. Optimising w1, w2 for vectors wt , t = 1, 2, in R2m with m = 5, we obtain a value of 568.0997
corresponding to an average error of 1.61 pixels, which confirms the visual impression from Fig. 5.
Finally, the estimated curve Γ̂n is plotted in the right-most panel in Fig. 6.
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6. Discussion

In this paper, we formulated a model for objects with uncertain boundaries by generalising
concepts from Jónsdóttir and Jensen (2005). The unknown boundarywas estimated as a spectralmean
by carrying out maximum likelihood estimation in the Fourier domain and transforming the results
back to the spatial domain. We considered the integrated squared error and demonstrated how to
deal with mis-alignment of the data. Finally, we applied the methods to simulated and real data.

The approach may be generalised to periodic change models. Indeed, write τ for the period. Then
we may formulate the model

X l
j+tτ = Xj+tτ (θl) = Γ (j)(ϕj+tτ (θl − αj+tτ )) + N (j)

j+tτ (ϕj+tτ (θl − αj+tτ )) (11)

for t ∈ N0. Here the Γ (j) are unknown template curves at j = 0, . . . , τ − 1 steps into the period.
The N (j)

j+tτ are independent stationary cyclic Gaussian noise processes, the parameters of which may
depend on j. In other words, (11) splits into τ sub-models of the form discussed in this paper.

Finally, it isworth noting that, although they are prevalent in shape analysis, diffeomorphisms have
not been studied much in stochastic geometry. In this paper, they have been used in different roles:
for curve modelling and for alignment. It seems to the author that there is scope for further research
concerning the modelling of random compact sets by means of their boundary curves in light of the
Jordan–Schönflies theorem (Keren, 2004).
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Appendix. Proofs of the theorems in Section 4

Proof of Theorem 1.
Correlations
Recall the Lagrange identities stating that, for α ∈ (0, 2π),

n
l=1

sin(lα) =
1
2
cot

α

2


−

cos

n +

1
2


α


2 sin


α
2

 ;

n
l=1

cos(lα) = −
1
2

+
sin

n +

1
2


α


2 sin


α
2

 .

These can be used to show that – under the stated assumptions – the family eijθl as a function of θl,
l = 1, . . . , n, is orthogonal for j = −(n − 1)/2, . . . , (n − 1)/2. Hence, using the Euler formulas
cos x = (eix + e−ix)/2 and sin x = (eix − e−ix)/(2i), we have that, for j1, j2 ∈ {1, . . . , J},

n
l=1

cos(j1θl) cos(j2θl) =

n
l=1

sin(j1θl) sin(j2θl) =
n
2
1{j1 = j2} (12)

and
n

l=1

cos(j1θl) sin(j2θl) = 0.

Write F̃ t
j,n for the first component of the random 2-vector F t

j,n. Now, for j1, j2 ∈ {1, . . . , J},

Cov(F̃ t
j1,n, F̃

t
j2,n) =

4
n2

n
l=1

n
k=1

ρ(θk − θl) cos(j1θl) cos(j2θk)
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=
4
n2

n
l=1

cos(j1θl)


n

k=1

ρ(θk − θl) cos(j2(θk − θl + θl))


,

which equals

4
n2

n
l=1

cos(j1θl)


n

k=1

ρ(θk − θl) {cos(j2(θk − θl)) cos(j2θl) − sin(j2(θk − θl)) sin(j2θl)}


.

Note that the family {θk − θl : k = 1, . . . , n} interpreted cyclically on [−π, π] for fixed l is equal to
the family {θk : k = 1, . . . , n} under the assumptions of Theorem 1. Therefore

Cov(F̃ t
j1,n, F̃

t
j2,n) =

4
n2

n
l=1

cos(j1θl) cos(j2θl)
n

k=1

ρ(θk) cos(j2θk)

−
4
n2

n
l=1

cos(j1θl) sin(j2θl)
n

k=1

ρ(θk) sin(j2θk).

By the properties of the discrete Fourier basis, we conclude that Cov(F̃ t
j1,n

, F̃ t
j2,n

) is equal to
2
n

k=1 ρ(θk) cos(j2θk)/n if j1 = j2 and zero otherwise. Similar calculations hold for the components of
Gt
j,n and F t

0,n aswell as for the cross-covariances.We conclude that the (components of) F t
j,n andGt

j,n are
mutually uncorrelated and normally distributed with means µj,n, respectively νj,n, and variance σ 2

j,n.
Log likelihood
By the preceding discussion, upon observation of F t

j,n = f tj,n,G
t
j,n = g t

j,n, the log likelihood after ignoring
constants is

−(T + 1)


log σ 2

0,n +

J
j=1

2 log σ 2
j,n


−

1
2σ 2

0,n

T
t=0

∥f t0,n − µ0,n∥
2

−

T
t=0

J
j=1


∥f tj,n − µj,n∥

2
+ ∥g t

j,n − νj,n∥
2


2σ 2
j,n

so that µ̂j,n, ν̂j,n and σ̂ 2
j,n are maximum likelihood estimators.

Distributions of estimators
Recalling the first part of the proof, the distributions of µ̂j,n, ν̂j,n and σ̂ 2

j,n follow from classic multivari-
ate statistics.

Since the X l
t are normally distributed with independent components, Γ̂n is a Gaussian random pro-

cess with independent components. The expression for the mean vector follows from that for the
mean vectors of µ̂j,n and ν̂j,n. Finally,

Cov(Γ̂n(θ), Γ̂n(η)) = Cov(µ̂0,n) +

J
j=1


Cov(µ̂j,n) cos(jθ) cos(jη) + Cov(ν̂j,n) sin(jθ) sin(jη)


by the independence of the µ̂j,n and ν̂j,n. Plugging in the expressions for the covariance matrices, the
proof is complete. �

Proof of Theorem 2. By Parseval’s identity (1),

1
π

 π

−π

∥Γ̂n(θ) − Γ (θ)∥2dθ = 2∥µ̂0,n − µ0∥
2
+

∞
j=1


∥µ̂j,n − µj∥

2
+ ∥ν̂j,n − νj∥

2 ,
since µ̂j,n and ν̂j,n are the Fourier coefficients of (6). Due to the truncation of (6) at J , µ̂j,n = ν̂j,n = 0
for j ≥ J + 1.

By Theorem 1, the random vectors µ̂j,n −µj and ν̂j,n −νj are independent and normally distributed
with mean vectors µj,n − µj and νj,n − νj, respectively, and with covariance matrices whose diagonal
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entries are σ 2
j,n/(T + 1). We conclude that, for j = 1, . . . , J , ∥µ̂j,n − µj∥

2
+ ∥ν̂j,n − νj∥

2 multiplied
by (T + 1)/σ 2

j,n is the sum of four independent squared normals with unit variance but different
means, that is, a non-central χ2 distributed random variable with four degrees of freedom and non-
centrality parameter (T + 1)cj,n/σ 2

j,n with cj,n = ∥µj,n − µj∥
2
+ ∥νj,n − νj∥

2. For j = 0, ∥µ̂j,n − µj∥
2

multiplied by (T + 1)/σ 2
0,n is the sum of two squared normals, hence a non-central χ2 distributed

random variable with two degrees of freedom and non-centrality parameter (T + 1)c0,n/σ 2
0,n such

that c0,n = ∥µ0,n − µ0∥
2. �

Proof of Theorem 3. Recall that we assumed that Γ is a C1 function so that ∥Γ (θ)∥ and ∥Γ ′(θ)∥ are
bounded, say by γ0 and γ1. Furthermore,

νj,n − νj =
1
π

 π

−π


hj,n(θ) − hj(θ)


dθ

for hj(θ) = Γ (θ) sin(jθ) and hj,n(θ) = Γ (θl) sin(jθl) if |θ − θl| < π/n. By the mean value theorem,

∥hj,n(θ) − hj(θ)∥ ≤
πHj

n
on each interval |θ −θl| < π/nwhereHj = maxθ ∥h′

j(θ)∥. Hence ∥νj,n−νj∥ ≤ 2πHj/n. Consequently,

J
j=1

∥νj,n − νj∥
2

≤

J
j=1

4π2H2
j

n2
≤

J
j=1

4π2(γ 2
1 + j2γ 2

0 )

n2
.

Thus, if J3/n2
→ 0, then

J
j=1 ∥νj,n − νj∥

2
→ 0. A similar argument for the ∥µj,n − µj∥ implies that

2c0,n +
J

j=1 cj,n → 0 provided J3/n2
→ 0 as n and J tend to infinity.

As for the variance term, note that sincewe assume (3) with k = 1, the covariance function is twice
continuously differentiable (Rogers and Williams, 1994, p. 63). Therefore the second order derivative
of ρ(θ) cos(jθ) is bounded by j2R for some R > 0. Furthermore,

J
j=1

σ 2
j,n ≤

J
j=1

|σ 2
j,n − σ 2

j | +

J
j=1

σ 2
j .

The Riemann middle sum error on |σ 2
j,n − σ 2

j | is bounded by Cj2/n2 for some C > 0, so that

J
j=1

σ 2
j,n ≤

J
j=1

Cj2

n2
+

J
j=1

σ 2
j .

The second term goes to zero as J3/n2 tends to zero. Since the series


j σ
2
j converges and 1/(T+1) →

0 as T → ∞, the proof is complete. �
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