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Summary: In this naper the asymptotic theory of stochastic exit for dynamical 

systems with random perturbations is related to the aPalysis of life time of 

a physical system. In case of feedback the control is such that the exnected 

exit time is maximized. 

I. Introduction 

The life time analysis of nhysical systems is mostly seen as a ~ure 

statistical nroblem. In this paper we take a different approach and analyse 

the dynamics of a stochasticly perturbed system. 

In section 2 we characterize the type of noise that may act upon a 

system and show, by the example of a nonlinear spring, the bounds in state 

space that have to be satisfied in order to have a proper functioning physi­

cal system. 

In section 3 an asymptotic solution of the Fokker-Planck equation is 

presented, while in section 4 it is shown in which way this solution indi­

cates the most likely type of failure of the system. Moreover, it is demon­

strated how observed lifetimes for systems under strain (exneriments) can be 

used to predict life times under regular conditions. 

In section 5 we consider a linear control system and construct the feed­

back that maximizes the exit time. 

Finally, in section 6 stochastic difference equations are formulated, 

which are used in the Monte Carlo simulation of stochastic dynamical systems. 

2. Dynamical systems perturbed by noise 

We consider a system given by n state variables depending continuously 



235 

upon time and satisfying a system of counled nonlinear differential equations 

of the type 

(2. I) 
dx 
dt f(x), x(t) = (x 1 (t),. • .,xn (t)). 

Let for this system the origin x = 0 be a stable equilibrium point. Then we 

consider a bounded subdomain n of state space. This domain n contains the 

origin and no trajectories leave n for increasing t. 

Example I.I. A nonlinear snring satisfying 

(2.2) 
dz 

g(z, dt), p,(0,0) 0 

can be transformed into (2.1): 

(2. 3) 

(2.3b) 

Next we analyse the effect of small additive noise terms to the system 

(2. I). Thus, we will investigate a system of counled stochastic differential 

equations of the tyne 

(2. 4) dX. 
l 

m 

f. (X) dt + E l 
l j=l 

a .. (X) R • ( t) d t , 
lJ .l 

i J , ••• ,n 

with 0 < E << I. The noise terms R.(t), satisfying E{R.(t)} 
J J 

terized by the autocorrelation function 

T 

. I f = llm 2T 
T-><><> -T 

(2. 5) G(T) R(t)R(t+1)d1 

or the spectral function 

(2.6) S(w) f e-iwT G(T)d1, 

see Gardiner [I]. 

Q, are charac-

For G(T) = o(T) with o(T) the Dirac delta function, we have a so-called 
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white noise process: S(w) = I and all frequencies have equal intensity. In 

that case (2.4) is written as 

( 2. 7) dX. 
l. 

m 

f. (X) d t + E L G •• (X) d\J. ' i 
i j= I l.J J 

where dW. is the Wiener increment. 
J 

I,.~., n, 

Another possibility is to consider the noise as the output of a damned 

linear system forced by white noise. For one component this is a so-called 

Ornstein-Uhlbeck process: 

(2.8) dR -ciRdt + 13dW. 

It is easily verified that 

(2.9) G(T) 
62 

22· 
a +S 

Since in the spectral function the higher frequencies have lower intensities 

the process is called "red noise". It is noted that for a = R the red noise 

forces the dynamical system (2.4) with the same intensity as in the white 

noise case. Moreover, for a = S ~ 00 R tends to the white noise process. 

Example 2.2. We consider the nonlinear spring as part of the suspension of a 

car which is in a constant forward motion over a somewhat bumpy road, see 

fig. la. Let the spectral function of the random component of the force 

acting upon the sprinR be as depicted in fig. lb. Then we may take the random 

force as a red noise process. By using R x3/s we write (2.3) as 

(2. I Oa) dx 1 x2dt, 

(2.IOb) dx 2 
-I 

{H g(x1,x2)+x3!dt, 

(2. IOc) dx3 -cix3dt + EcidH, 

which is a system of the type (2. 7). 

From point of view of life time analysis of the spring we 
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wish to have an estimate for the frequency by which the spring leaves the 

normal operation range. This range is determined by the requirements of 

bounded displacement and bounded acceleration: 

( 2. I I a) 

(2. I I b) 

r 
z + z 

rest 
s 

1 
w-

(a) The nhysical system (b) Snectral function of random 
force upon spring 

Fig. I. Influence of road upon spring 

3. The Fokker-Planck equation 

For the •tochastic state variables Xi(c) satisfvinR 

m 
(3. I a) dX. f.(X)dt + € l a .. clW., 

l l j=I lJ J 

(3. I b) x. (0) 
l 

= 0, I, a •• ,n 

the probability density p(x,t) of being at x at time t satisfies the ~okker-

Planck equation 

n 
:J 2n 

n 
( 3. 2) 

rip 2 l I f.(x)n, p(x,O) 6(x) 
:it e: a .. ax. ax. ax:-lJ l 

i, j=I l J i=I l 

with m 

2 
T 

a .. 0 ik 0 kj' lJ k=l 
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It is noted that we took oij independent of X, which is not an essential re­

striction for the method of analysis. It simplifies some of the comnutations. 

For t ~ ~ a stationary distribution p(x) exists with 

,., r~ ') n 
(3. 3) M sp ! € - l a. 3-p - - . f. (x)n o. ij (lx. ax. '· '.:ix. 1 

i, j =I 1 .1 i=I 1 

'faking a WKB-Ansatz, we assume that asymntotically 

0 

(3.4) 
-O(x)/c~ 

p(x) "'w(x)e · , ()(0) 0. 

Substitution in (3.3) yields 

n 
3Q ClQ 

n 
aQ (3. 5) 

(" 

+ \ f. (x) 0, ) a .. £ £ I £ i, J =I lJ l 
l J i=I l 

which is the eikonal equation known from geometrical optics. Its solution is 

positive definite for !xl > 0. For small values of Ix! we take 

(3.6) 

with p 

( 3. 7) 

where 

(3. 8) 

n 
n ( x) "' ! ) 

i, ]=I 

H-1 satisfying 

FH + HFT + A 

A=ia .. ), 
lJ nxn 

P .. x. x. 
lJ l J 

o, 

F { "f. I , 
;Jx~ 0 Jnxn" 

J x= 

To compute () for larger values of x we have to integrate along rays in state 

snace starting at a small sohere in the origin where (3.6)-(3.8) hold. The 

ray method is based upon the observation that we may write (3.5) as 

n n 
(3. 9) H(x,p) I a .. Pi pJ. + L fi(x)pi 

i,j=l lJ i=I 

and that along a ray 

o, P· l 

3Q 
~ 

l 
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dx. 
3H (3. I Oa) l 

cl;- dp:- , 
l 

dp. 
aH 

(3. I Ob) 1 

cl;- -~ , 
l 

dO n 
(3. !Oc) d~ l a .. p. p.' 

i=I lJ 1 J 

see Ludwig f4] and r.rasman and Lankelma f2]. 

4. Expected exit time and life time 

In this section we construct an asymptotic estimate for the exnected 

time of residence in the domain n. 

( 4. I) 

Let ()(x) take its minimal value in an at x and let 

K min ()(x) 
:rn 

Q(~), 

then x r an is the most likely point oF exit and for E + O the distribution 

of exit points tends to li(x-~), see Annendix A. Thus, in case of failure of 

a system, we may conclude in this way about the most likely type of failure. 

The expected time, needed to reach the boundary, is asymptotically 

( 4. 2) T O<r:<<l, 

where a is determined by w(x), which follows from hiRher order l~B-approxima-

tion, see Appendix B. The exit time is asymptotically the same for all points 

of Q bounded away from an. This is understood from the fact that the drift 

towards the equilibrium is of a larger order of magnitude than the diffusion. 

More details about the nroblem of stochastic exit are found in Schuss rsJ. 

Thus, we have found that 

(4.3) lnT K/E 2 + 0(1). 

This formula can be used to find expected exit times for very small s values 

from experiments with the n. hysical system for lar",er s sav E without " ' · exp.' 
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any analytical knowledge of its dynamics. Finding an average exit time Texp. 

we obtain 

2 
E 

(4.4) lnT exp. " = - 2- -<-nT 
£ exp. 

Carrying out experiments at two £-values one may also eliminate a in in (4.2) 

and obtain a more accurate value of T(c). The average frequency of leaving 

-I 
the domain of regular operation, T(E) , is a measure for the life time of 

the physical system. The present approach suggests that for life times a 

formula similar to (4.4) holds. 

Example 4,1. For a bi-stable system the expected time of residence Ti in the 

domain of attraction of the two stable equilibria can be computed. Let us 

consider the motion of a point with unit mass at a surface V(x), see fip,.2, 

(4.Sa) 

(4.Sb) 

(i) 
Let Qi be the domain of attraction of x , i = I,2 (for the deterministic 

system). Necessarily the minimum value of Q at 3Q(i) is attained at the un­

stable equilibrium x(O). He have now 

(4.6a) lnT. K. /£2 + 0 (I), 
l 1 

(4.6b) K. = min Q(x) Q (x (O». 
l 

an(i) 

From the theory it is deduced that the senaratrix is most likely crossed at 

the saddle point x(O). It is also most likely that the system is then almost 

at rest. It will take a time 

(4. 7) 

to leave a neighborhood of x(O) Starting at x = x(O) the probability of 

arriving near x(l) or x(Z) is fifty-fifty. Consequently, the bi-stable 
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system may as well be modeled by a three states Markov chain with transition 

matrix 

( 4. 8) M 

and with residence times in those states as given above. 

v 

x-
X(O) 

Fig.2. A bi-stable system 

5. Linear control systems 

Krtolica f3] investigates the linear control system 

(5. I a) dX FXdt + u(Y)dt + rn.,dv, 

('>. 1 b) dY O<c<<I, 

where 

The vector type white noise processes are 

dV dW = (d\.J , ••• ,dH ) . 
1 q 

Moreover, the pair (F,C) is assumed to be observable and (F,oV) is control-

lab le. 
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We take the linear control law 

(5.2) udt -RdY 

and construct the matrix R that maximizes the expected residence time in 

1l c fin with the origin contained in n. 

For (5.1)-(5.2) we write 

( 5. 3) dX 

or, replacing dVi and ~/j by n Wiener increments dUk, 

(5.4) 

with 

(5.5) 

dX 

2 
a 

(F-RC)Xdt + sadU 

For the system (5.4) the stationary Fokker-Planck equation is solved, as in 

section 3. Since the system is linear the function Q(x) of the WKB-apnroxima-

tion is of the form 

(5.6) Q(x) 
T -I 

x H x 

with H satisfying 

(5. 7a) T T 
(F-RC)H+H(F-RC) +RG1l +GV o, 

(5. 7b) 

We have to choose R such that the minimum value of Q at Cl>l is maximized: 

(5. 8) K max min Q(x). 
R 3'2 

We may interchange the minimization and maximization, as the boundary an is 

independent of R. From results by lfonham r6J on Riccati equations, it is 
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deduced that Q(x) is at its maximum at an for 

(5. 9) R 

with P satisfying the Riccati equation 

(5. I 0) 

6. Stochastic difference equations 

Dynamical systems with small random nerturbation can be simulated with 

the Monte Carlo method. To perform the simulation, the Wiener increment dW 

has to be replaced by a pseudo random generator G(t). Euler's method can then 

be applied giving the following system of stochastic difference equations 

(6. I) xi (t+h) X.(t)+hf.(X)+c/h G.(t), i 
l. 1 l. 

l ' ... ,n. 

The time step h gives an error in X of order O(h). He define the stochastic 

variable 

(6.2) 6X. = X.(t+h)-X.(t). 
l. l. l. 

This variable has first and second moments 

(6.3a) E{6X.(t)} hf.(x)+E/h E{G.(t)} = hf.(x), 
l. l. l. 1 

(6.3b) 

Consequently, in unit time the expectation of 6Xi equals the local vector 

field f(x) while its variance equals £ 2. The average exit time over a large 

number of runs is approximated for £ small by the asymptotic expected exit 

time, which we computed in section 4. 
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We consider the singularly perturbed Dirichlet problem 

n n 
;ju I I 

f. (x) 0 in (,\I a) L u ' a. + I. I. lj l 3x. i,j=I i=I l 

(Al b) u = h (x) at 

~·ith all trajcct1Jries of the deterministic system (:?. 1) entering ~--~ for in-

creasing t on their way to the stable equilibrium x = 0. 

Let for the system (3. la) q(~,x) be the probability density of leaving 

. at x '- ;,;-,, if started at x ' r:. Then we have that 

(A2) q(x,x)h(x)dS u(x). 

From singular perturbation theory it is known that the asymptotic solution 

of (Al) has the form 

•) 

(A3) u"" \h(x)-C}e-p/E- + c, 

where is the distance of x to ri and C an unknown constant. This constant 

is determined by the divergence theorem using the asymptotic solution p(x) 

of the stationary Fokker-Planck equation, see (3. 3)-(3. 10): 

(A4) r 2 du a pL,u-uM,pdV = i jc (p -- u .....E.) + puf(x) 0 \ 1dS, , , J 3n 3 n 
311 

where ·. is the outward normal at an and 3·/3n the co-normal derivative 

(A5) 

From (A4) we derive, using (A3), 

(A6) c 
fagpf(x)·~h(x)dS 

f ac;Pf (x) •\'dS 

which, because of (3.4), is asymptotically equivalent with 

(A7) c 
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where x is the point at an with minimal Q. 

Appendix B 

The expected time T(x;s) needed to reach an, if starting at x E n, 

satisfies 

(B 1) L T 
E 

-1 in n, T 
0 at "'' 

with the elliptic operator Ls given in (Ala). Applying the divergence 

theorem, as we did in (A4), we obtain 

(B2) I I 2 1T pL.T-TM pdV = jE (p .:___T 
C. E an 

apl cin + pTf•vdS. 

II 311 

The formal asyn1pt.otic solution of (BJ) has the form 

(B3) 
-p/E2 

T "" -Ce + C, 

where p is the distance of x to 3(i. and C an unknown constant. Substitution 

of (3.4) and (B.3) in (B2) yields 

(B4) c 

The volume integral has its largest contribution from an <:-neighborhood of 

the origin, while the integral over (JQ has its minimal value at~ E an, so that 

(B5) c "" 
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