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l. Introduction 

It is generally the case that additional access 
pointers in storage enhance computing power. In 
real-time, (k + I)-tape Turing machines are more 
powerful than k-tape Turing machines [l]. Analo­
gous results hold with all heads placed on the same 
tape [10,13]. Recently it was shown that k-tape 
Turing machines require nonlinear time to simu­
late (k + 1)-tape Turing machines on-line [9]. More 
in particular, it was shown that the on-line simula­
tion of two pushdown stores by one tape requires 
Q(n log11 2 n) time. 1 In [12] it was shown that the 
simulation of a queue by a real-time one-tape 
Turing machine is impossible. In [14] it appeared 
that to simulate a pushdown store by an oblivious 

1 We use the mnemonic 'order of magnitude' notations as 
follows: 
f(n) E O(g(n)) if there are positive constants c and n 0 such 
that Jf(n) I~ cg(n) for all n;;. n 0 ; 

f(n) E O(g(n)) if there arc positive constants c and n0 such 
that f(n);;. cg(n) for all n ;;. n 0 • 

one-head tape unit on-line requires O(nvn) time. 
Here, we combine some ideas from [14] with 
Kolmogorov complexity (4,10] arguments and an 
adversary demon to demonstrate an O(nl.618 ) lower 
bound on the simulation time for one queue, or 
two pushdown stores, by a (nonoblivious) one-tape 
Turing machine. This considerably narrows the 
gap with the best known upper bound, viz., each 
multitape machine can be simulated on-line by a 
one-head tape unit in square time [3]. Square time 
is also the best known upper bound for the simula­
tion of one queue or two pushdown stores by a 
one-head tape unit. In [15] it is shown that square 
time is optimal for the simulation of one push­
down store or one queue by an oblivious one-head 
tape unit. 

Mutually independent work of Maass [7], Li (6), 
and the present author [16] has in the meantime 
shown (the greatest common intersection of the 
results in these .three papers) that square time is 
optimal for the on-line simulation of two tapes by 
one tape. 
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Turing machines and simulation 

We regard machines as transducers, that is, as 
abstract storage devices connected with input- and 
output terminals. Thus, we consider the machine 
as hidden in a black box, and the presented simu­
lation results concern the inputjoutput behaviour 
of black boxes and are independent of input/out­
put conventions whether we want to recognize or 
to compute. By a k-tape Turing machine we mean 
an abstract storage device, consisting of a finite 
control connected with k single-head linear storage 
tapes, and an input- and an output terminal. A 
one-tape Turing machine is the same as a one-head 
tape unit.· The transducers effect a transduction 
from input strings to output strings by producing 
the ith output just before polling the (i + l)st 
input command. A machine A simulates a ma­
chine B on-line in time T(n) if, for all n > 0, the 
input/output behaviour of B, during the first n 
steps, is exactly mimicked by A within the first 
T(n) steps. That is, for each input sequence 
i1,i 2 ,. .. , ik,. .. , polled from the input terminal, 
the output sequences written to the output termi­
nal are the same for A and B, and if t 1 ~ t 2 ~ • • · 

~ t k :i:;; • • • are the steps at which B polls or writes 
a symbol, from or to the terminals, then there are 
corresponding steps t'1 ~ t'2 ~ • • • ~ t'k ~ · · · at 
which A polls or writes the same symbols and 
t~ :i:;; T(t;) for all i ;;d. In the sequel we write 
simulation for on-line simulation. (Simulation in 
time T(n) = n is called real-ti1'1')e simulation; simu­
lation· in time T(n) E O(n) is called linear time 
simulation.) 

2. Kolmogorov complexity 

The ideas on descriptional complexity below 
were developed independently by Kolmogorov [4] 
and Chaitin [2]. We closely follow the discussion 
in [10). Consider the problem of describing a string 
x over O's and I's. Any computable function f 
from strings over O's and l's to such strings, to­
gether with a string y such that 'f(y) = x, is such a 
description. A descriptional complexity K r of x, 
relative to f and y, is defined as 

Kr(x IY) = min{ Id !Id E {0,l}*&f(dy) = x}. 
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For the universal computable partial function f0 

we have that, for all f with appropriate constant Cr, 
for all strings x,y, Kr0(x IY) ~ Kr(x IY) + Cr· So, the 
canonical relative descriptional complexity K(x, y) 
can be set equal to K r (x I y). Define the (iescrip-

" tional complexity of x as K(x) = K(x It:) ( t: denotes 
the empty string). Since there are 2° binary strings 
of length n, but only 2° -1 possible shorter de­
scriptions d, it follows that K(x);;;.: Ix I for some 
binary string x of each length. We call such strings 
incompressible. It also follows that K(x IY) ;;<:Ix I for 
some binary string x of each length. As an illustra­
tion, a string x = uvw can be specified ·by v, Ix I, 
lul and the bits of uw. Thus, 

K(x) :i:;; K(v) + O{log Ix I)+ luw I, 

so that with K(x) ;;<: Ix I we obtain 

K(v);;;.: Iv 1- O(log Ix I). 

3. Improved lower bound on the time to simulate 
multitape Turing machines by one-head tape units 

Without loss of generality we assume that all 
tape units below have semi-infinite tapes. That is, 
the squares of the tapes can be enumerated from 
left to right by the natural numbers. The Oth 
square is called the start square. Assume further, 
also without loss of generality, that the tape units 
write only O's and l's in the storage squares which 
introduces an extra constant delay. The theorem 
below improves the known lower bounds (before 
the recent results in [7,6,16]). In the proof we make 
extensive use of crossing sequences. For a one-head 
tape unit we assume that, when it makes a move, it 
first overprints the symbol scanned and changes 
state, then moves the head. Thus, for any pair of 
adjacent tape squares, we can list the sequence of 
states in which the unit, crosses from one to 
another. The first crossing must always be from 
left to right; after that, crossings alternate in direc­
tion. The sequence of states so related to an inter­
square boundlly, or square, is called a crossing 
sequence. Early use of the concept is found in [11]. 

Theorem I. A one-head tape unit for simulating one 
queue on-line requires O(n1·618 ) time. 
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Proof. Consider a queue Q which can store O's and 
I's polled from the input terminal by appending 
them to the tail of the currently stored string. We 
can retrieve the contents of Q, one bit at a time, 
by writing the current front bit to the output 
terminal. A queue is a first-in-first-out storage 
device. Let M be an actual one-head tape unit 
simulating a virtual queue Q in time T(n). Intui­
tively, we have detached Q from its input terminal 
and output terminal and have replaced it by M 
which is programmed to behave as if it were Q. 
Thus, below we can distinguish between M as the 
embodiment of Q, containing a binary string as 
polled through the input terminal insofar as the 
front bits have not yet been retrieved through the 
output terminal, and the actual encoding of Q's 
contents on M's storage tape. It is known that 
T(n)E O(n2 ). Without loss of generality, M has a 
semi-infinite tape and writes only O's and I's. We 
will argue that M loses a lot of time to either reach 
or transport earlier stored data, while simulating 
the virtual queue Q. Consider a sufficiently long 
incompressible string x E {O, 1 }* of length n. Be­
low we use the operational behaviour of M, while 
simulating Q, to obtain a description of x. To store 
a substring of x of length at least m, M needs to 
use m - O(log n) - cM work tape squares, with cM 
a fixed constant depending only on M, by the 
incompressiblity of x. Divide the tape in four 
segments [O, n/6), [n/6, 2n/6), [2n/6, 3n/6) and 
[3n/6, oo) (see Fig. 1). An adversary demon sup­
plies the sequence of input commands to the input 
terminal. The adversary demon chooses input 
commands (for the simulated queue Q) by observ­
ing the current actual state of the simulator M. It 
issues input commands for storing and retrieving 
the consecutive bits of x in and from the simulated 
queue Q, as follows: 
• If M's storage head resides on [O, 2n/6) when 

the input terminal is polled, then the next bit of 
x is input and appended to the tail of the 
simulated queue Q. 

• If M's head resides on [2n/6, oo) when the 

0 n/6 2n/6 3n /6 

Fig. 1. Division of M's tape in consecutive segments. 

input terminal is polled, and the simulated queue 
Q is nonempty, then the input command is 
"retrieve the current front bit of the simulated 
queue Q". If M's head resides on [2n/6, oo) 
when the input terminal is polled, and the 
simulated queue Q is empty, then the next bit of 
x is input and appended to the tail of the virtual 
queue Q. 

• Having used all of x, the demon retrieves by the 
subsequent consecutive input commands, one 
bit at a time, the entire current contents of the 
simulated queue Q. 

First we observe that, given x, the demon must 
have used all of x within issuing a 2n-length se­
quence of input commands according to the above 
strategy. Second, for some a~ 2 yet to be choo­
sen, let T(n) ~en" for large enough n. Then, by the 
adversary demon's strategy, the simulator M has 
to store a prefix u of x with n/4;;.:. lu I;;.:. (n/6c)11°' 
while its storage head does not leave the tape 
segment (0, n/6). Note that K(u) ;;.:.1u I - O(log n). 
Informally, there are two exhaustive cases of what 
can happen to the simulator M, faithfully imitat­
ing Q, under the adversary input strategy outlined. 
Both cases lead to the claimed lower bound. Case 
l: All of u is retrieved by input commands polled 
with M's storage head on the tapesegment 
[2n/6, oo) before all of x has been used by the 
adversary demon (that is, within 2n input com­
mands). Intuitively therefore, the tapesegment 
[n/6, 2n/6) in between the locations where M's 
storage head resides while polling the bits of u and 
the locations of M's storage head while polling the 
commands to retrieve the bits of u, needs to be 
traversed Q( I u I) times. This necessitates long 
crossing sequences for each square of M's tapeseg­
ment [n/6, 2n/6). Case 2: In the first 2n input 
commands at least Ix I - ju I bits of x are polled 
while M's head resides on the tapesegment 
[O, 2n/6) and not retrieved again. Therefore, they 
need to be kept stored. The available storage space 
on [O, 2n/6) gets so jammed that part of the 
encoding of the simulated queue Q's contents on 
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this segment of M's tape has to be exported to 
squares outside this tapesegment. This necessitates 
long crossing sequences for each square of M's 
tapesegment [2n/6, 3n/6). In both cases we argue 
that if T(n) $ !J(nl.6111 ), then we could describe an 
incompressible string in significantly less bits than 
its length, since it can be reconstructed from a 
short description of M's behaviour in simulating 
Q, thus obtaining a contradiction. For convenience 
in the proof below, we equip M with an extra 
register in which it stores the last bit it has written 
to the output terminal. 

Case 1. The initially stored prefix u is retrieved 
one symbol .at a time, before the demon has used 
all of x (i.e., within 2n inputcommands), by com­
mands polled while M's head is on [2n/6, oo). 

In our description of x = uv we given the u in 
terms of M's operation and v literally as suffix. 
• A description of this discussion in 0(1) bits. 
• A description of M in 0(1) bits. 
• The value of n in O(log n) bits. 

The location of a square of [n/6, 2n/6) m 
O(log n) bits. 

• The crossing sequence at that square. 
• v in n - I u I literal bits. 
For a square in [n/6, 2n/6), the crossing sequence 
associated with that square contains, for each 
crossing, the time of crossing in O(log n) bits and 
the state of M in 0(1) bits. 

To recover u, exhaustively test every binary 
string of length Ix I. using the adversary demon's 
strategy, for consistency with the description above. 
By definition, x is consistent with the description. 
Suppose, by way of contradiction, that some other 
candidate x' * x were consistent with it. Sox'= u'v 
and therefore u' * u. The sequence of bits, of the 
ju I-length prefix of the string entered through the 
input terminal, can be extracted from M's special 
register at the instants just before M polls the 
command to retrieve a next bit. The retrieve com­
mands are all polled on the tapesegmen t [2n/6, oo ). 
The description determines the sequence of in­
stantaneous descriptions of this tapesegment, and 
the state of M's finite control when the storage 
head resides on this tapesegment. Consequently, 
the retrieved string is uniquely fixed by the de­
scription above, and if u' ..P u, then either u' is 
retrieved while u was stored, or vice versa. con-
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tradicting simulation of the queue Q by M. 
Let the minimal number of crossings in a cross­

ing sequence on [n/6, 2n/6) be m. Then the de­
scription of x takes 

0(1) + O(log n) + O(m log n) + n - ju I 

bits. Consequently, 

ju I~ (n/6c) 11"' & ju I E O(m log n). 

Thus, m E 0(n11"'/log n) and summing the cross­
ing sequences of [n/6, 2n/6) yields 

T(2n) E g ( ~~:1 :"'). 
Since, by assumption, T(n) E O(n"), we obtain a~ 
(1 + /5 )/2 and therefore 

T(n) E !l(nl.618 ). (1) 

Case 2. Suppose that not all of u has been 
retrieved before the demon has used all of x. This 
implies that M has polled less than I u I "retrieve 
current front bit of the simulated queue Q" input 
commands with its head residing on [2n/6, oo). 
Therefore, M must have polled Ix I input com­
mands "append next bit of x to the tail of the 
simulated queue Q" with its head on [O, 2n/6). In 
our description of x = uv below we give u literally 
as a prefix and v in terms of M's operation in 
simulating Q under the demon's strategy. 
• u in I u I Ii teral bits. 
• A description of this discussion in 0(1) bits. 
• A description of M in 0(1) bits. 
• The value of n in O(log n) bits. 

The location of a square of [2n/6, 3n/6) in 
O(log n) bits. Let this be square p. 

• The final tape contents of the segment [O, p) in 
at most n/2 bits. 

• The crossing sequence at square p. 
For a' square of [2n/6, 3n/6), the crossing se· 
quence associated with that square consists of the 
times of crossing together with the states of M. 

To recover v, exhaustively test uv' for every 
binary string v' of length Iv j, for consistency with 
the description above. By definition, v is con· 
sistent. Assume, by way of contradiction, that 
some other word v' =F v is consistent with the de­
scription. The description determines M's final 
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instantaneous. description when the adversary 
demon has used all of x. The prefix u of x is given 
explicitly. From this final instantaneous descrip­
tion of M we can, by polling at most x consecutive 
"retrieve front bit of simulated queue Q" com­
mands, retrieve the suffix of u (insofar not yet 
retrieved) followed by a unique Iv I-length string. 
Consequently, M would erroneously retrieve the 
same word in the first Ix I unstq.re commands for 
both x = uv and x = uv' under the strategy of the 
adversary demon. This contradicts that M simu­
lates Q. 

Let the shortest crossing sequence on [2n/6, 
3n/6) consist of m crossings. Then the above 
description of x takes at most 

ju I+ 0(1) + O{log n) + n/2 + O(m log n) 

bits. Since x is incompressible, it follows that 
m E O(n/log n), and summing the crossing se­
quences of [2n/6, 3n/6] yields 

T(2n) E o( lo~2 n), (2) 

which, together with inequality (1) m Case 1, 
proves the theorem. D 

Since four one-head tape units can simulate a 
queue in real-time [5], the lower bound on the time 
to simulate many storage tape units by one is set 
to O(ni.618 ). The lower bound also holds for the 
simulation of two pushdown stores. 

Theorem 2. A one-head tape unit for simulating two 
pushdown stores on-line requires O(nl.618 ) time. 

Proofsketch. The proof is essentially the same as 
the proof of Theorem 1. Let M be an actual 
one-head tape unit simulating two virtual push­
down stores P1 and P2 in time T(n). Without loss 
of generality, M has a semi-infinite tape and writes 
only O's and l's. Consider a sufficiently long in­
compressible string x e {0,1}* of length n. Divide 
the tape of M in four segments as done previously 
(see Fig. 1). An adversary demon supplies the 
sequence of input commands. 
• Initially, while the simulator M's storage head 

has not yet ranged outside the tapesegment 

(0, 2n/6), the polled input commands push the 
next bit of x on the simulated pushdown store 
P1• The simulator M's storage head must range 
outside (0, 2n/6) by the incompressibility of x. 
Ever after it has first done so, the input com­
mands polled with M's storage head residing on 
[O, 2n/6) push the next bit of x on the other 
simulated pushdown store P2 • 

• If M's storage head resides on [2n/6, oo) at poll 
time and the simulated pushdown store P1 is 
nonempty, then the polled input command pops 
the top of the simulated pushdown store P1• If 
M's head resides on [2n/6, oo) at poll time and 
the simulated pushdown store P1 is empty, then 
the polled input command pushes the next bit 
of x on the simulated pushdown store P2• 

• Having used all of x, the demon pops consecu­
tively all of the remaining contents of the simu­
lated pushdown stores P1 and P2• 

It is immediately clear that given x the demon 
must have used all of x within a 2n-length se­
quence of input commands. Choose T(n) and u as 
in the previous proof. The same reasoning in Cases 
1 and 2 is mutatis mutandis applicable. O 

Corrollary. The result implies trivially than an obli­
vious one-head tape unit for simulating one push­
down store on-line requires O(nl.618 ) time. 
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