
Information Processing Letters 21(1985)147-152
North-Holland

5 September 1985

AN nu1s LOWER BOUND ON THE TIME TO SIMULA TE ONE QUEUE OR 1WO
PUSHDOWN STORES BY ONE TAPE

Paul M.B. VITANYI
Depanment of Computer Science, Centre for Mathematics and Computer Science (C. W.J.), Kruis/aan 413, 1098 SJ Amsterdam,
The N ether/ands

Communicated by K. Mehlhom
Received 8 November 1984

To simulate two pushdown stores. or one queue, on-line by a one-head tape unit requires O(nl.618) time.

Keywords: Multitape Turing machines, pushdown stores, queues, time complexity, lower bounds, on-line simulation by
single-head tape units, Kolmogorov complexity

1980 Mathematics Subject Classification: 68C40, 68C25, 68C05, 94B60, 10--00

1982 C.R. Categories: F.1.1, F.1.3, F.2.3

l. Introduction

It is generally the case that additional access
pointers in storage enhance computing power. In
real-time, (k + I)-tape Turing machines are more
powerful than k-tape Turing machines [l]. Analo­
gous results hold with all heads placed on the same
tape [10,13]. Recently it was shown that k-tape
Turing machines require nonlinear time to simu­
late (k + 1)-tape Turing machines on-line [9]. More
in particular, it was shown that the on-line simula­
tion of two pushdown stores by one tape requires
Q(n log11 2 n) time. 1 In [12] it was shown that the
simulation of a queue by a real-time one-tape
Turing machine is impossible. In [14] it appeared
that to simulate a pushdown store by an oblivious

1 We use the mnemonic 'order of magnitude' notations as
follows:
f(n) E O(g(n)) if there are positive constants c and n 0 such
that Jf(n) I~ cg(n) for all n;;. n 0 ;

f(n) E O(g(n)) if there arc positive constants c and n0 such
that f(n);;. cg(n) for all n ;;. n 0 •

one-head tape unit on-line requires O(nvn) time.
Here, we combine some ideas from [14] with
Kolmogorov complexity (4,10] arguments and an
adversary demon to demonstrate an O(nl.618) lower
bound on the simulation time for one queue, or
two pushdown stores, by a (nonoblivious) one-tape
Turing machine. This considerably narrows the
gap with the best known upper bound, viz., each
multitape machine can be simulated on-line by a
one-head tape unit in square time [3]. Square time
is also the best known upper bound for the simula­
tion of one queue or two pushdown stores by a
one-head tape unit. In [15] it is shown that square
time is optimal for the simulation of one push­
down store or one queue by an oblivious one-head
tape unit.

Mutually independent work of Maass [7], Li (6),
and the present author [16] has in the meantime
shown (the greatest common intersection of the
results in these .three papers) that square time is
optimal for the on-line simulation of two tapes by
one tape.

0020-0190/85/$3.30 fb 1985, Elsevier Science Publishers B.V. (North-Holland) 147

Volume 21, Number 3 INFORMATION PROCESSING LEITERS 5 September 1985

Turing machines and simulation

We regard machines as transducers, that is, as
abstract storage devices connected with input- and
output terminals. Thus, we consider the machine
as hidden in a black box, and the presented simu­
lation results concern the inputjoutput behaviour
of black boxes and are independent of input/out­
put conventions whether we want to recognize or
to compute. By a k-tape Turing machine we mean
an abstract storage device, consisting of a finite
control connected with k single-head linear storage
tapes, and an input- and an output terminal. A
one-tape Turing machine is the same as a one-head
tape unit.· The transducers effect a transduction
from input strings to output strings by producing
the ith output just before polling the (i + l)st
input command. A machine A simulates a ma­
chine B on-line in time T(n) if, for all n > 0, the
input/output behaviour of B, during the first n
steps, is exactly mimicked by A within the first
T(n) steps. That is, for each input sequence
i1,i 2 ,. .. , ik,. .. , polled from the input terminal,
the output sequences written to the output termi­
nal are the same for A and B, and if t 1 ~ t 2 ~ • • ·

~ t k :i:;; • • • are the steps at which B polls or writes
a symbol, from or to the terminals, then there are
corresponding steps t'1 ~ t'2 ~ • • • ~ t'k ~ · · · at
which A polls or writes the same symbols and
t~ :i:;; T(t;) for all i ;;d. In the sequel we write
simulation for on-line simulation. (Simulation in
time T(n) = n is called real-ti1'1')e simulation; simu­
lation· in time T(n) E O(n) is called linear time
simulation.)

2. Kolmogorov complexity

The ideas on descriptional complexity below
were developed independently by Kolmogorov [4]
and Chaitin [2]. We closely follow the discussion
in [10). Consider the problem of describing a string
x over O's and I's. Any computable function f
from strings over O's and l's to such strings, to­
gether with a string y such that 'f(y) = x, is such a
description. A descriptional complexity K r of x,
relative to f and y, is defined as

Kr(x IY) = min{ Id !Id E {0,l}*&f(dy) = x}.

148

For the universal computable partial function f0

we have that, for all f with appropriate constant Cr,
for all strings x,y, Kr0(x IY) ~ Kr(x IY) + Cr· So, the
canonical relative descriptional complexity K(x, y)
can be set equal to K r (x I y). Define the (iescrip-

" tional complexity of x as K(x) = K(x It:) (t: denotes
the empty string). Since there are 2° binary strings
of length n, but only 2° -1 possible shorter de­
scriptions d, it follows that K(x);;;.: Ix I for some
binary string x of each length. We call such strings
incompressible. It also follows that K(x IY) ;;<:Ix I for
some binary string x of each length. As an illustra­
tion, a string x = uvw can be specified ·by v, Ix I,
lul and the bits of uw. Thus,

K(x) :i:;; K(v) + O{log Ix I)+ luw I,

so that with K(x) ;;<: Ix I we obtain

K(v);;;.: Iv 1- O(log Ix I).

3. Improved lower bound on the time to simulate
multitape Turing machines by one-head tape units

Without loss of generality we assume that all
tape units below have semi-infinite tapes. That is,
the squares of the tapes can be enumerated from
left to right by the natural numbers. The Oth
square is called the start square. Assume further,
also without loss of generality, that the tape units
write only O's and l's in the storage squares which
introduces an extra constant delay. The theorem
below improves the known lower bounds (before
the recent results in [7,6,16]). In the proof we make
extensive use of crossing sequences. For a one-head
tape unit we assume that, when it makes a move, it
first overprints the symbol scanned and changes
state, then moves the head. Thus, for any pair of
adjacent tape squares, we can list the sequence of
states in which the unit, crosses from one to
another. The first crossing must always be from
left to right; after that, crossings alternate in direc­
tion. The sequence of states so related to an inter­
square boundlly, or square, is called a crossing
sequence. Early use of the concept is found in [11].

Theorem I. A one-head tape unit for simulating one
queue on-line requires O(n1·618) time.

Volume 21, Number 3 INFORMATION PROCESSING LETTERS 5 September 1985

Proof. Consider a queue Q which can store O's and
I's polled from the input terminal by appending
them to the tail of the currently stored string. We
can retrieve the contents of Q, one bit at a time,
by writing the current front bit to the output
terminal. A queue is a first-in-first-out storage
device. Let M be an actual one-head tape unit
simulating a virtual queue Q in time T(n). Intui­
tively, we have detached Q from its input terminal
and output terminal and have replaced it by M
which is programmed to behave as if it were Q.
Thus, below we can distinguish between M as the
embodiment of Q, containing a binary string as
polled through the input terminal insofar as the
front bits have not yet been retrieved through the
output terminal, and the actual encoding of Q's
contents on M's storage tape. It is known that
T(n)E O(n2). Without loss of generality, M has a
semi-infinite tape and writes only O's and I's. We
will argue that M loses a lot of time to either reach
or transport earlier stored data, while simulating
the virtual queue Q. Consider a sufficiently long
incompressible string x E {O, 1 }* of length n. Be­
low we use the operational behaviour of M, while
simulating Q, to obtain a description of x. To store
a substring of x of length at least m, M needs to
use m - O(log n) - cM work tape squares, with cM
a fixed constant depending only on M, by the
incompressiblity of x. Divide the tape in four
segments [O, n/6), [n/6, 2n/6), [2n/6, 3n/6) and
[3n/6, oo) (see Fig. 1). An adversary demon sup­
plies the sequence of input commands to the input
terminal. The adversary demon chooses input
commands (for the simulated queue Q) by observ­
ing the current actual state of the simulator M. It
issues input commands for storing and retrieving
the consecutive bits of x in and from the simulated
queue Q, as follows:
• If M's storage head resides on [O, 2n/6) when

the input terminal is polled, then the next bit of
x is input and appended to the tail of the
simulated queue Q.

• If M's head resides on [2n/6, oo) when the

0 n/6 2n/6 3n /6

Fig. 1. Division of M's tape in consecutive segments.

input terminal is polled, and the simulated queue
Q is nonempty, then the input command is
"retrieve the current front bit of the simulated
queue Q". If M's head resides on [2n/6, oo)
when the input terminal is polled, and the
simulated queue Q is empty, then the next bit of
x is input and appended to the tail of the virtual
queue Q.

• Having used all of x, the demon retrieves by the
subsequent consecutive input commands, one
bit at a time, the entire current contents of the
simulated queue Q.

First we observe that, given x, the demon must
have used all of x within issuing a 2n-length se­
quence of input commands according to the above
strategy. Second, for some a~ 2 yet to be choo­
sen, let T(n) ~en" for large enough n. Then, by the
adversary demon's strategy, the simulator M has
to store a prefix u of x with n/4;;.:. lu I;;.:. (n/6c)11°'
while its storage head does not leave the tape
segment (0, n/6). Note that K(u) ;;.:.1u I - O(log n).
Informally, there are two exhaustive cases of what
can happen to the simulator M, faithfully imitat­
ing Q, under the adversary input strategy outlined.
Both cases lead to the claimed lower bound. Case
l: All of u is retrieved by input commands polled
with M's storage head on the tapesegment
[2n/6, oo) before all of x has been used by the
adversary demon (that is, within 2n input com­
mands). Intuitively therefore, the tapesegment
[n/6, 2n/6) in between the locations where M's
storage head resides while polling the bits of u and
the locations of M's storage head while polling the
commands to retrieve the bits of u, needs to be
traversed Q(I u I) times. This necessitates long
crossing sequences for each square of M's tapeseg­
ment [n/6, 2n/6). Case 2: In the first 2n input
commands at least Ix I - ju I bits of x are polled
while M's head resides on the tapesegment
[O, 2n/6) and not retrieved again. Therefore, they
need to be kept stored. The available storage space
on [O, 2n/6) gets so jammed that part of the
encoding of the simulated queue Q's contents on

149

Volume 21, Number 3 INFORMATION PROCESSING LETTERS 5September1985

this segment of M's tape has to be exported to
squares outside this tapesegment. This necessitates
long crossing sequences for each square of M's
tapesegment [2n/6, 3n/6). In both cases we argue
that if T(n) $!J(nl.6111), then we could describe an
incompressible string in significantly less bits than
its length, since it can be reconstructed from a
short description of M's behaviour in simulating
Q, thus obtaining a contradiction. For convenience
in the proof below, we equip M with an extra
register in which it stores the last bit it has written
to the output terminal.

Case 1. The initially stored prefix u is retrieved
one symbol .at a time, before the demon has used
all of x (i.e., within 2n inputcommands), by com­
mands polled while M's head is on [2n/6, oo).

In our description of x = uv we given the u in
terms of M's operation and v literally as suffix.
• A description of this discussion in 0(1) bits.
• A description of M in 0(1) bits.
• The value of n in O(log n) bits.

The location of a square of [n/6, 2n/6) m
O(log n) bits.

• The crossing sequence at that square.
• v in n - I u I literal bits.
For a square in [n/6, 2n/6), the crossing sequence
associated with that square contains, for each
crossing, the time of crossing in O(log n) bits and
the state of M in 0(1) bits.

To recover u, exhaustively test every binary
string of length Ix I. using the adversary demon's
strategy, for consistency with the description above.
By definition, x is consistent with the description.
Suppose, by way of contradiction, that some other
candidate x' * x were consistent with it. Sox'= u'v
and therefore u' * u. The sequence of bits, of the
ju I-length prefix of the string entered through the
input terminal, can be extracted from M's special
register at the instants just before M polls the
command to retrieve a next bit. The retrieve com­
mands are all polled on the tapesegmen t [2n/6, oo).
The description determines the sequence of in­
stantaneous descriptions of this tapesegment, and
the state of M's finite control when the storage
head resides on this tapesegment. Consequently,
the retrieved string is uniquely fixed by the de­
scription above, and if u' ..P u, then either u' is
retrieved while u was stored, or vice versa. con-

150

tradicting simulation of the queue Q by M.
Let the minimal number of crossings in a cross­

ing sequence on [n/6, 2n/6) be m. Then the de­
scription of x takes

0(1) + O(log n) + O(m log n) + n - ju I

bits. Consequently,

ju I~ (n/6c) 11"' & ju I E O(m log n).

Thus, m E 0(n11"'/log n) and summing the cross­
ing sequences of [n/6, 2n/6) yields

T(2n) E g (~~:1 :"').
Since, by assumption, T(n) E O(n"), we obtain a~
(1 + /5)/2 and therefore

T(n) E !l(nl.618). (1)

Case 2. Suppose that not all of u has been
retrieved before the demon has used all of x. This
implies that M has polled less than I u I "retrieve
current front bit of the simulated queue Q" input
commands with its head residing on [2n/6, oo).
Therefore, M must have polled Ix I input com­
mands "append next bit of x to the tail of the
simulated queue Q" with its head on [O, 2n/6). In
our description of x = uv below we give u literally
as a prefix and v in terms of M's operation in
simulating Q under the demon's strategy.
• u in I u I Ii teral bits.
• A description of this discussion in 0(1) bits.
• A description of M in 0(1) bits.
• The value of n in O(log n) bits.

The location of a square of [2n/6, 3n/6) in
O(log n) bits. Let this be square p.

• The final tape contents of the segment [O, p) in
at most n/2 bits.

• The crossing sequence at square p.
For a' square of [2n/6, 3n/6), the crossing se·
quence associated with that square consists of the
times of crossing together with the states of M.

To recover v, exhaustively test uv' for every
binary string v' of length Iv j, for consistency with
the description above. By definition, v is con·
sistent. Assume, by way of contradiction, that
some other word v' =F v is consistent with the de­
scription. The description determines M's final

Volume 21, Number 3 INFORMATION PROCESSING LETTERS 5 September 1985

instantaneous. description when the adversary
demon has used all of x. The prefix u of x is given
explicitly. From this final instantaneous descrip­
tion of M we can, by polling at most x consecutive
"retrieve front bit of simulated queue Q" com­
mands, retrieve the suffix of u (insofar not yet
retrieved) followed by a unique Iv I-length string.
Consequently, M would erroneously retrieve the
same word in the first Ix I unstq.re commands for
both x = uv and x = uv' under the strategy of the
adversary demon. This contradicts that M simu­
lates Q.

Let the shortest crossing sequence on [2n/6,
3n/6) consist of m crossings. Then the above
description of x takes at most

ju I+ 0(1) + O{log n) + n/2 + O(m log n)

bits. Since x is incompressible, it follows that
m E O(n/log n), and summing the crossing se­
quences of [2n/6, 3n/6] yields

T(2n) E o(lo~2 n), (2)

which, together with inequality (1) m Case 1,
proves the theorem. D

Since four one-head tape units can simulate a
queue in real-time [5], the lower bound on the time
to simulate many storage tape units by one is set
to O(ni.618). The lower bound also holds for the
simulation of two pushdown stores.

Theorem 2. A one-head tape unit for simulating two
pushdown stores on-line requires O(nl.618) time.

Proofsketch. The proof is essentially the same as
the proof of Theorem 1. Let M be an actual
one-head tape unit simulating two virtual push­
down stores P1 and P2 in time T(n). Without loss
of generality, M has a semi-infinite tape and writes
only O's and l's. Consider a sufficiently long in­
compressible string x e {0,1}* of length n. Divide
the tape of M in four segments as done previously
(see Fig. 1). An adversary demon supplies the
sequence of input commands.
• Initially, while the simulator M's storage head

has not yet ranged outside the tapesegment

(0, 2n/6), the polled input commands push the
next bit of x on the simulated pushdown store
P1• The simulator M's storage head must range
outside (0, 2n/6) by the incompressibility of x.
Ever after it has first done so, the input com­
mands polled with M's storage head residing on
[O, 2n/6) push the next bit of x on the other
simulated pushdown store P2 •

• If M's storage head resides on [2n/6, oo) at poll
time and the simulated pushdown store P1 is
nonempty, then the polled input command pops
the top of the simulated pushdown store P1• If
M's head resides on [2n/6, oo) at poll time and
the simulated pushdown store P1 is empty, then
the polled input command pushes the next bit
of x on the simulated pushdown store P2•

• Having used all of x, the demon pops consecu­
tively all of the remaining contents of the simu­
lated pushdown stores P1 and P2•

It is immediately clear that given x the demon
must have used all of x within a 2n-length se­
quence of input commands. Choose T(n) and u as
in the previous proof. The same reasoning in Cases
1 and 2 is mutatis mutandis applicable. O

Corrollary. The result implies trivially than an obli­
vious one-head tape unit for simulating one push­
down store on-line requires O(nl.618) time.

References

[1) S.O. Aanderaa., On k-tape versus (k +1)-tape real-time
computation, in: R.M. Karp. ed •• SJAM-AMS Proc. Vol. 7
(Complexity of Computation) (AMS, Providence. RI. 1974)
75-96.

[2] G.J. Chaitin. Algorithmic information theory. IBM J. Res.
Develop. 21 (1977) 350-359.

[3] J.E. Hopcroft and J.D. Ullman, Formal Languages and
Their Relations to Automata (Addison-Wesley. Reading.
MA, 1969).

[4) A.N. Kolmogorov, Three approaches to the quantitative
definition of information, Problems in Information Trans­
mission 1 (1) (1965) 1-7.

[5] B.L. Leong and J.I. Seiferas. New real-time simulations of
multihead tape units, J. Assoc. Comput. Mach. 28(1981)
166-181.

(6) M(ing) Li. On one tape versus two stacks. Unpublished
manuscript, Computer Science Dept.. Cornell Univ .• 1984.

(7] W. Maass. Quadratic lower bounds for deterministic and
nondetenninistic one-tape Turing machines. 16th ACM
Symp. on Theory of Computing (1984) 401-408.

151

Volume 21, Number 3 INFORMATION PROCESSING LETTERS 5 September 1985

[8] W.J. Paul. On heads versus tapes, 22nd IEEE Symp. on
Foundations of Computer Science (1981) 68-73; also in:
Theoret. Comput. Sci. 28 (1,2) (1984) 1-12.

(9] W.J. Paul. On-line simulation of k + l tapes by k tapes
requires nonlinear time, 23rd IEEE Symp. on Foundations
of Computer Science (1982) 53-56; also in : Inform. and
Control 53 (1982) 1-8.

(10) W.J. Paul, J. Seiferas and J. Simon, An information-theo­
retic approach to time bounds for on-line computation,
12th ACM Symp. on Theory of Computing (1980)
357-367; also in: J. Comput. System. Sci. 23 (1981)
108-126.

(11] M.O. Rabin, Real-time computation, Israel J. Math. 1
(1963) 203-211.

[12] M.K. Valiev, Certain estimates of the time of computa­
tions on Turing machines with an input. Cybemetica 6
(1972) 734-741; translated from: Kibernetica 6 (1970)
309-317.

152

(13] P.M.B. Vitanyi, On the power of real-time Turing ma­
chines under varying specifications, 7th Intemat. Coll. on
Automata, Languages and Programming, Lecture Notes in
Computer Science 85 (Springer, Berlin, 1980) 658-671.

{14] P.M.B. Vitanyi, On the simulation of many storage heads
by one, IOth Intemat. Coll. on Automata, Languages and
Programming, Lecture Notes in Computer Science 154
(Springer, Berlin, 1983) 687-694; also in: Theoret. Com­
put. Sci. 34 (1,2) (1984) 157-168.

(15] P.M.B. Vitilnyi, Square time is optimal for simulation of
one pushdown store or one queue by an oblivious one-head
tape unit, Inform. Process. Lett. 21 (2) (1985) 87-91.

[16] P.M.B. Vitanyi, One queue or two pushdown stores take
square time on a one-head tape unit, Tech. Rept. CS­
R8~. Computer Science Dept., Centre for Mathematics
and Computer Science (C.W.l.), Amsterdam, 1984.

