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1. Introduction. 

A space is a pair (P, L) consisting of a nonempty set P, whose members are called points, and 
a collection L of subsets of P of size at least two, whose members are called lines. A subspace X 
of a space (P, L) is a subset X of P with the property that each line (in L) having at least two 
points of X is completely contained in X. The kind of spaces that we are interested in are 
obtained from a building (cf. Tits [39]) B (say) of type M (say) over an index set I (say) in the 
following way: Fix a type i (i.e., an element of I). Let P be the set of objects in the building of 
type i, and let L consist of all subsets of P of the form P n Res (F) (the shadow of F on P ) 
for some flag F of B of cotype i. Such a space will be called the shadow space of B over i. 
Other names for shadow spaces appearing in the literature are Lie incidence system (cf. Shult 
[36]) and Lie incidence structure (cf. Cooperstein [26]). In these notes, we shall often write Mn 
for M in order to indicate that we have taken I= fl,2, ... , n }. Instead of 'shadow space of a 
building of type Mn over i' we shall often write shadow space of type Mn,i . The idea of a sha
dow space can be found in Tits [39]. His notion of shadow space differs from ouxs in that it 
keeps track of other shadows as well. 

In the spherical Coxeter diagrams that we shall need, the labelling of the nodes will be as indi
cated in Figure 1. If, for example, (P,L) is the shadow space of type An,l• there is a building of 
type An associated with a skew field K whose shadow space over 1 coincides with (P, L ), so that 
the latter is nothing but (the set of points and the set of lines of) the projective space of rank 
(i.e., projective dinlension) n over K (cf. Tits [40]). Conversely, if (P ,L) is a projective space of 
rank n, the obvious geometry related to (P ,L) is the one in which for each i (I~i ~n) the 
objects of type i are the subspaces of rank i - I (incidence being symmetrized containment). It is 
a building of type An and (P, L) is (isomorphic to) the shadow space of this building over I, 
whence of type An l· 

Our aim stems from classical synthetic geometry: to axiomatically describe these spaces in such 
a way that, on the basis of simple properties (axioms), the geometry can be fully analyzed and 
recognized. The first result of this kind is: 

1.1. Theorem(Veblen & Young). 

Let (P ,L) be a space in which every two (distinct) point:s are on a unique line. Suppose that, for 
each foursome of lines, if (at least) five out of the six pairs of lines intersect in clistinct point:s, all 
pairs meet nontrivially. Then (P, L ) is a (generalized) projective space. 
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In Shult [36], an excellent description of the goals of synthetic Lie geometry and a survey of 
recent progress in the field can be found. The reader will notice some overlap between Shult's sur
vey and the present notes. 

Let (P, L) be a shadow space of B over i. The associated full shadow space is the space 
endowed with, for each j EI, the collection of subsets P n Res (F) (the shadow of F on P ) where 
F ranges over all flags of type j. Thus, for type An,h the full shadow space is the projective 
space together with, for each i (1 ~i ~n ), the collection of subspaces of rank i -1. The natural 
question as to whether the shadow space does determine the building will be answered by use of 
these full spaces as a link between shadow spaces and buildings. A similar pattern can be found 
in the proof of the characterization theorems we shall describe: starting from a space, subspaces 
of various kinds mimicking the shadows of the full shadow space are collected in order to con
struct a geometry with diagram M. Then by the basic Proposition 9 in Tits [ 40] (see also 
Brouwer-Cohen [5]), the geometry in question can be identified as a building. As a matter of 
fact, sometimes information weaker than the full shadow space is available. In such cases, due to 
a slight generalization of Tits' result on truncated geometries (cf. Ronan [32] and Brouwer-Cohen 
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(6]). it is still possible to identify the space with a of ll. shadow space a group of auto-
morphisms (with certain well-described properties). 

Before ending the introduction, I would like to emphasize that the analogue of the coordinati
zation theorem of projective spaces for (other) buildings, established Tits and Veldkamp (cf. 
Tits [39]), and the subsequent classification of geometries with spherical Coxeter diagram satisfy
ing the 'intersection property' (cf. Tits [ 40]), are basic prerequisites to the theorems of the sequel: 
without them the results prescntt.>d here would have little meaning. 

2. Some properties of shadow spaces. 

In order to be able to choose natural axioms for shadow 8paces we need a list of at least some 
of their characteristic properties. 

First, some generalities on spaces. A subset X of P is called complete or singular if each pair 
of points from X is collinear. The singular rank of a subspace X of ( P, L ) is the ma..xirnal length 
of a chain of nonernpty complete subspaces contained in X, where the length of a chain is one 
less than its cardinality. Thus, the singular rank of the empty space, a point, a line is -1, 0, 1, 
respectively. Also, the singular rank of a projective space is just its rank. (All subspaces are 
singular!) A subset of P is called degenerate if it contains a point collinear with all of its points. 
The space (P, L) itself is called degenerate if P is degenerate. The collinearity graph of a space 
(P, L) is the graph (P, J_) with vertex set P in which x J_y holds if and only if x and y are col
linear points of P. Notions such as connectedness, adjacency, diameter, distance, path, when 
applied to (P,L ), are meant to refer to (P,J_). The distance is denoted by d. A subset X of P 
is called geodesically closed if, for all x ,y EX, each point on a path of minimal length from x to 
y is also contained in X. If X is a subset of P, we denote by X ..l. the set of all points in P col
linear with every member of X. Often, ix ~J. is replaced by x.J... 

2.1. Theorem(Brouwer-Cohen). 

Suppose B is a building of type M =(mj,k}J,k EI over I. Let i El, and let (P,L) be the shadow 
space of B over i. The folkiwing statements lwld for (P, L ): 

i) Each pair of distinct points is on at most one line. Either there is a unique j E 1 with 
Tn;J =3 and there is a connected component of the restriction of Af w i k El I ln;,k =2 or 3 ~ 
isomorphic to Am for some m containing j as an end node, or ix ,y ~LL is the unique line 
containing x ,y for every pair x ,y of collinear points. 

ii) Every shadow X is a geodesically dosed subspace. As a space, X is the shadow space over i 
of a buil.ding isomorphic to Res(F) where F is a fiag of B which is maximal with respect to 
the property that its shadow on P coincides with X. 

iii ) For each shadow X and point x the subset 

'IT.r(X):= i yEX ld(x,y)=mind(x,z)} 
zEX 

of P is a subspace. Hence, x J. and X J. are subspaces. 

iv) If x,y EP satisfy d(x,y)=2, then either ix,y }J. is a subspace isomorphic to a projective 
space (if M is spherical, necessarily of rank 0) or ·ix,y }J. U ix ,y} is contained in a shadow 
subspace of type Bm,I (or Dm,J for some m >l, 

v ) The shadow of an apartment of B (i.e., the set of points bewnging to an apartment) induces a 
subgraph of ( P, ..L) which is isomorphic to the shadow space of the thin building of type M 
over i. 
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About the proof. The proof is based on the following lemma about Coxeter groups. The reader 
is referred to Bourbaki [ 4) for the definitions of Coxeter system (p.11) and (J, J )-reduced element 
(p.37), where J cR. If w E W, we shall denote by Rw the set of all elements in R occurring in a 
shortest expression of w as a product of elements from R (cf. p.19 in [4]). 

2.2. Lemma. 

Let ( W, R ) be a Coxeter system of type M. Fix r ER. Set J = R - i r f and 
Jk = i s EJ I m,., 8 =k f, fork EN. Then the following hold. 

i) If W=<J>r<J>, then M=An for some n, and r is an end node of M_ 

ii) r<J>rn<J>=<J2> andr<J>r<J>n<J>r<J>=<J2>J3r<J>. 

iii) Let K be a subset of J. If w0, w1, ... ,wk E <J> satisfy w =w0rw 1r · · · rwk E<K U ir f> 
and d ( <J >,w <J >) = k (in the shadow space of the thin building over r ), then 
Worw1r ... rwj E <K u i r r> <J > for each j (Q,,;;;;.j ~k ). 

iv) Let wEW be (J,J)-reduced and d(w<J>,<J>)=2. Set T=RrwrnwRrwrw- 1 Then 
<J>r<J>nw<J>r<J>=<T>r<J>. ]'v!oreover, either Tc;::J2 or 
rwr EJ4UJ3<J2>J3. 

The proof of the lemma will be published elsewhere. 
As for the theorem, the following verification of the first statement may illustrate the kind of 

arguments involved in the proof. We shall identify R, r (of the lemma) with I, i. 
Let x ,y EP be distinct. We adopt the chamber system point of view: x ,y are distinct J-cells 
and there are chambers a Ex, b Ey contained in the same r-cell F, say. Then P nRes(F) is a 
line on x and y. Now, let F' be another r-cell meeting x and y in chambers a', b', say, respec
tively. For any two chambers c, c', denote by typ(c,c') the element of the Coxeter group 
W=W(M), corresponding to the type of a minimal gallery joining c to c', cf. Tits [40). Since 
appending b' to a minimal gallery from a to a' yields a minimal gallery from a to b ', we have 
typ(a,b')=typ(a,a')r. Similarly, using a gallery passing through b, we obtain 
typ (a,b')=rtyp (b,b'). As typ (a,a'),typ(b,b') E <J >, it follows from Part ii) of the lemma that 
typ(a,a')=typ(b,b')E <J2>. Now suppose that z belongs to P nRes(F). Then there is a 
chamber cEz nF, so typ(c,b')=rtyp(b,b')=typ(b,b')r. By Tits [40], there must be a minimal 
gallery from c to b' whose one but last chamber, c', say, satisfies typ(c,c')=typ(b,b')E<J> 
and typ(c',b')=r. Hence, c'Ez nF', so that z EP nRes(F'). Since the roles of F and F' can 
be interchanged in the previous argument, P nRes (F) and P nRes (F') coincide, proving that 
there is a unique line on x and y. 

Let us briefly discuss the proof of the remaining parts of the theorem. The second half of Part 
i) is a consequence of Part ii) of the lemma. ( Observe that, in the second equality of ii), the left 
hand side is the union of all cosets pertaining to l J.. ..!. - l, where l = i <J > ,r <J > r. while the 
right hand side provides an explicit description of this set.) The spherical case is due to Cooper
stein [25). The first statement in ii) follows from Part iii) of the lemma, where the geodesical 
closure of the shadow of a flag of type R - (K u i r r) on P = W / <J > is formulated. The 
second statement in ii), as well as Parts iii) and v ), are well-known properties of buildings and 
easily derived by use of the chamber system point of view. Statement iv) depends on Part iv) of 
the lemma, where, for the points WJ, w WJ at mutual distance 2 in the shadow space of the thin 
building, a description of the points collinear with both <J > and w <J > in P is given. As a 
matter of fact, by use of induction on the length of w (with respect to R ), the following more 
precise information on <T>r<J> can be obtained: 
Set so=r. Either T= 0 or there are sv · · · ,sq,s,t EJ, u E <Rw >,and x EN, x ;;;.2, such that 
ma,b =2 for all a ETo:=T nRu and b E is0, • • · ,sq,s r, and such that w, MIR •. -R., and 
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<T>r<J> are as given in one of the rows of the following table. Moreover, u is 
(Rw - Ru, Rw - Ru )-reduced, and if u = 1, then .x >2. 

w 

SoSl···SqSSq ... So 
SoS1···SqStsq ... So 

<T>r<J>=<T-T0>r<J> 

<s1,S2,···•Sq,S >r<J> 
<si.s2, ... ,sq ,s, t >r <J> 

The first two lines represent the cases where ~x ,y ~-L.L is a polar space (possibly of rank 0), in the 
last case the subset is a complete subspace. 

3. Reconstruction of the building from a space. 

Due to Property (0) in Tits [ 40], the full shadow space uniquely detennines the set of objects . 
of the building. Thus, in order to reconstruct the building from the shadow space, it suffices to 
reconstruct the full shadow space and incidence between shadow subspaces. 

3J.. Theorem. 

Let B be a building of spherical t:ype M over I, and let i EI. Suppose (P, L) is the sluuiow 
space of B over i. Then, up to not necessarily type-preserving automorphisms of B preservirJ,g i, 
the building B of type M can be uniquely reconstructed from (P,L ). In other words, if B' is 
another building of t:ype M whose shmiow space over i coincides with (P, L ), then there is an 
automorphism a from B to B' with a(t:yp- 1(i))=t:yp'- 1(i), where t:yp and t:yp' denote the t:ype 
maps of the respective buildings (cf. Tits [40]). 

3.2. Remarks. 

i ) A space can be the shadow space of two buildings of different type. Classical examples are 
spaces of type Dn,l• B 4:i,, D 4:i,, which are also shadow spaces of type Bn,l• F4,l• and F4,1' 
respectively (cf. Tits [39], Sections 7.12 and 10.14). 

ii ) The theorem is probably true for many buildings of nonspherical type as well. 

Sketch of proof. The problem is to recover the full shadow space from (P, L ). Incidence 
between shadow subspaces is then a matter of having the right intersection. 
If the rank of the building is at most two, there is nothing to prove. Subspaces isomorphic to 
shadow spaces of type Am,l for some m, can be obtained as complete subspaces (and vice versa). 
Shadow subspaces of type Bm,l or Dn,l are maximal nondegenerate geodesically closed subspaces 
of diameter 2 (and vice versa). These two observations lead to sufficiently subspaces if the type 
in question is An,l (n ;;;.1),Bn,1 (n ;;;.2),Dn,l (n ;;;.4),F4,l• or En,1 (n =6,7,8). If the type is Anj 

( 2j+l:;Cn;;;.3), Bn,n (n;;;.3), or Dn,n (n;;;.5), for each type, the shadows are the geodesical clo
sures of two points at given distance (the type of the shadow only depending on the distance). If 
the type is Bn,n-h one can recover the collinearity graph of Bn,l• by letting the point set consist 
of all maximal complete subspaces of rank n -1 and letting two such spaces be collinear whenever 
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they have a point in common. By what we have seen before, there is a unique building of type 
Bn (up to isomorphism) associated with this space. This must be the unique building a.s.c;ociated 
with (P, L) as well. Similar reduction arguments apply to many other cases. We shall treat the 
hardest case, which occurs when the type is F 4,2• Let (P, L) be a shadow space of this type. Con
sider the following relations on P, where x,y EP: 

a) d(x,y)=2 and ~x,y t.L has size at least two. 

b) d (x ,y) = 3 and every line on y contains a point z such that x, z are in relation a). 

Denote by # the union of J. and these two relations, and, given two points x ,y EP in relation 
a) or b ), denote by p (x ,y) the set of all points in relation # to both x and y. Then p (x ,y) is a 
subspace. Let P 1 be the collection of all subspaces p (x ,y) obtained in this way, and define J.1 on 
P 1 by p.l.1q for p,q EP1 if and only if p nq contains a point of P. Then (P1, J. 1) is the col
linearity graph of the shadow space of a uniquely determined building B (say) of type F 4 over 1, 
and (P, L) can be regarded as the set of lines and the set of pencils (a pencil being the collection 
of all lines contained in a given complete subspace of rank 2 and containing a given point of that 
subspace), so (P ,L) must be the shadow space of B over 2 (up to isomorphism). 
We shall finish by discussing one remaining difficulty: the case where isomorphic shadow sub
spaces of distinct types occur. By way of example, let us consider type E 6,4• (The types A 2m +l,m 

(m;;;;., 1) and Dn,n _ 2 (n ~4) can be dealt with by similar observations.) The two kinds of maximal 
complete subspaces of rank 4 (corresponding to types 2 and 5, respectively) can be distinguished 
as the parts of the bipartite graph whose vertex set consists of all complete subspaces and in 
which two vertices are adjacent whenever their intersection has rank 2. It will be transparent 
how the non-type-preserving automorphisms may arise: they interchange the types of the two 
parts. 

4. Polar spaces. 

Let (P, L) be a space. If (P, L) is a shadow space, a special instance of Theorem 2.1 reads 

If x EP and l EL then x.L nl = 0, a singleton, or l. 

If we demand that, for each x and l, this set is nonempty, we obtain the already classical 
Buekenhout-Shult Axiom: 

If x EP and l EL then x.L nz = a singleton or l. 

A space in which this axiom holds is called a polar space. The rank of a polar space (P, L) is by 
definition (1 + the singular rank of P). 

4.1. Theorem(Buekenhout-Shult). 

A non.degenerate polar space of finite rank n is a shadow space of type Bn ,1• 

For a proof, see Buekenhout-Shult [15], where the requirement that lines have length at least 
three may be dropped. 

The Buekenhout-Shult axiom forces the diameter of the space in question to be at most two 
provided its rank is at least two. (A polar space of rank one has no lines!) In view of a recent 
result of Johnson & Shult [30], however, the axiom can be weakened in such a way that no res
triction on the diameter is apparent: 
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4.2. Theorem(Johnson-Shult). 

Let (P, L) be a connected space such that, for each x E P, the set x .L is a subspace which is a 
polar space of finite rank at least 3. Then (P, L) is a polar space of finite rank. 

Here, we encounter local recognizability. Suppose (P, L) is a space with the property that x .L 

is a subspace whose isomorphism type T (say) does not depend on x E P. Then, (P, L) is called 
locally recognizable if it is the unique space (up to isomorphism) with the property that x.L 
belongs to T for all of its points x. Putting the above two theorems together, we see that sha
dow spaces of thick buildings of type Bn or Dn (n ;;;.3) over 1 have this property. Clearly, gen
eralized quadrangles, generalized hexagons and so forth are not locally recognizable. 

5. Parapolar spaces. 

Using polar spaces as building blocks, Cooperstein [26] devised an axiom enabling him to 
recover all geodesically closed shadow subspaces which are polar spaces. Starting point is a par
ticular instance of Theorem 2.1. A space (P, L ) is called a parapolar k-space if it satisfies the 
following three axioms. 

i) For each l EL, the (collinearity) graph on z.L is not complete. 

ii ) For each x E P, the subset x .L is a subspace of P. 

iii) If x,yEP with d(x,y)=2, then ~x,y~.L is either a singleton or a polar space of rank 
k-1;;;.2. 

A space is called a parapolar space if it satisfies the first two axioms and the third without the 
requirement that the rank be k -1. (It is still required that the rank be at least two.) This 
definition differs from the one given in Cohen-Cooperstein [24] in that the assumptions on line 
length and connectedness are dropped. Other variations of parapolar spaces can be found in 
Buekenhout [9] and Hanssens [29] under the name 'polarized space'. 

All shadow spaces of 'spherical' type =r!== An ,i. Bn ,n -1' F 4.2 are parapolar spaces. (This is a conse
quence of Theorem 2.1.) 

5.1. Theorem(Cooperstein). 

Let (P, L) be a parapolar space. Then, every quadrangle (i.e., four points of P on which the 
induced collinearity graph is a quadrangle) is contained in a unique geodesically cl.osed subspace 
S isomorphic to a non.degenerate polar space. Moreover, complete subspaces of (P, L) are projec
tive spaces. If (P, L) is a parapolar k-space, the rank of S (as a polar space) is k. 

For a proof, see Buekenhout [9] or Cohen [20], where the subspaces S of the theorem are called 
hyperlines and symplecta, respectively. Here, we shall adhere to the latter name. 

In order to recognize shadow spaces, we need to fix one more parameter. For instance: 

(F)J For each symplecton S and each point x EP-S, the rank of x.Lns is a member of J. 

Observe that, due to the geodesical closure of S and Theorem 2.1, the set x.J.. nS is a complete 
and hence projective space so that its singular rank coincides with its (projective) rank. Though 
Axiom (F)J can be rephrased in terms of points and lines, we have chosen the present formula
tion in order to emphasize its uniform nature. 
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5.2. Theorem(Cohen-Cooperstein, Brouwer-Cohen). 

Let (P,L) be a connectedparapolar k-space (k ~3) of finite singular rank all of wlwse lines have 
at least three points and in which <Fi-1.o,k-i» lwUls. If the size of 1x ,y }J. is at least two for 
all points x ,y at nwtual distance two, then one of the following situations occurs. 

i ) (P, L) is a nondegenera'te polar space of rank k (i.e., a shadow space of type Bk ,J. 
ii) k =3 and (P ,L) is a shadow space of type Anj for some j ,n EN with 1:;;;.j..;;, #(n + l)<oo. 

iii ) k = 3 and (P, L ) is the quotient of a shadow space of type A 2m + l.m (for some m with 
3E>:m<oo) by an invohaory auwnwrphism with the property that no point of the shadow 
space is TTICl[Jped ro a point at distance <4. The building B associated with the shadow 
space is defined over an infinite (commutative) field and the automorphism defines a non
type-preserving aut,orrwrphism of B. 

iv ) k = 4 and (P, L ) is the quotient of a sh<ulow space of type Dn ,n for some n with 4...;;;; n < oo by 
a group of autorrwrphisms such that the identity is the only element mapping a point of the 
shadow space onto a point at distance E;;;4. If this group is nontrivial, the associated building 
is defined over an infinite field. 

v) k =5 and (P, L) is a shadow space of type E 6,1• 

vi) k =6 and (P, L) is a shadow space of type E 7,1• 

Conversely, the spaces in i ) ... vi ) satisfy the hypotheses if all of their lines have at least three 
points. 

About the proof. For x EP, consider the space x J. / x whose points are the lines containing x 
and whose lines are the pencils of lines from L (cf. Section 3). It is a parapolar (k -1)-space of 
diameter ..;2. 
The polaI spaces appearing in i ) are the parapolar spaces which are locally polar spaces (compare 
Theorem 4.2). Thus, we can reduce to the case where for at least one point x EP (and hence all 
points of P, cf. Lemma 2 in [23]) the space x .L / x is a para polar (k -1 )-space of diameter ..;2 
which is not a polar space. The symplecta and complete subspaces provide 'candidate shadow 
subspaces' for the full shadow space under construction. 
For k = 3, they can be used to define a new parapolar k -space with strictly smaller singular rank. 
By induction on the singular rank this leads to the cases ii) and iii). The latter case occurs if the 
collection of maximal complete subspaces cannot be separated into two parts by the same pro
cedure as described in Section 3 for type E 6,4• See Cohen [22] for details. 
For k ~4, the space x.J.. / x can be characterized by induction on k. Observe that axiom 
(F){ -1,0, k -l f leads to (F){ -l,k -2f for x .L / x, so that the latter must be a shadow space of type 
An.2 for some n. There are enough 'candidate shadows' available to recognize the space as a quo
tient of a shadow space of type Dn,n• whence case iv). For details, see Brouwer-Cohen [6]. 
Finally, for k ~5, all 'candidate shadow subspaces' are available and, by the same induction on k 
as before, the full shadow space corresponding to case v ) or vi ) is easily recognized, see Cohen
Cooperstein [23] 

Certain spaces in the above theorem occur locally (i.e., as x .L / x for some point x ) in other 
shadow spaces of buildings of spherical type. Thanks to this phenomenon, we can use the above 
result to derive: 

" ' 
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5.3. Theorem(Cohen-Cooperstein). 

Let (P, L) be a connected parapol.ar k-space (k ;;=4) of finite singul.ar rank all of whose lines have 
at kast three points and in which (F)\-l,l,k-lf is satisfied. Then one of the following holds: 

i ) (P, L ) is a nondegenerate pol.ar space of rank k. 

ii) k =4 and (P,L) is a shadow space of type D 5,s or E6,4• 

iii) k =5 and (P, L) is a shadow space of type Es,1 or E 7,7• 

iv ) k = 7 and (P, L ) is a shadow space of type E 8,1. 

Conversely, the spaces in i ), ... , iv) satisfy the hypotheses if all of their lines have at least three 
points. 

About the proof. If x EP, the space x .1. / x is a para polar (k -1 )-space satisfying 
(F)\-l,O,k _21, so appears in the conclusion of the preceding theorem. Also, since x.1. ns cannot 
be a singleton, the diameter of x ..l. / x is at most three. It is easily seen that the isomorphism 
type of x ..L / x does not depend on the point x. Again, (P, L) is a polar space if and only if 
x J. / x is a polar space. 
Suppose k = 4. Then x J. / x is isomorphic to a shadow space of type A 4,2 or A 5,3• The first case 
can be settled as in the previous theorem. There are two difficulties to overcome in finding the 
full shadow space associated with (P, L) if x ..L / x is of type A 5,3• First of all, we must find two 
kinds of maximal complete subspaces, namely the subspaces appearing as shadows of flags of type 
2 and 5, respectively. We have seen before how this can be achieved. Second, the subspaces 
which are shadows of flags of type 1 and 6, respectively, are subspaces isomorphic to shadow 
spaces of type D 5,5, and hence not yet available from Theorem 5.1. They are defined as the sub
sets 

LJ 1Y.z ~..!. 
yEX,zEX-yj_ 

for x running over all points and X over all subspaces of x ..L containing x with the property that 
X / x (defined analogously to x ..l. / x ) is a subspace of x J. / x isomorphic to a shadow space of 
type A 4,2. 

A similar problem arises when k =5, for E 7,7. Here, again, subspaces of type E 6,1 can be recon
structed by use of local shadows of type D 5,5• In the last case, k =7, no such problem arises. 

A fairly immediate consequence of the above theorem is 

5.4. Corollary( Cohen-Cooperstein [24]). The shadow spaces of type Dn,n (n ~7),E 6,1' 

E6,4,E1,i.E1,1. and Ea,1 are locally recognizable. 

6. Dual polar spaces. 

Polar spaces have been introduced as spaces in which one of the three possible numbers for the 
rank of x ..L n l, where x E P and l EL, never occurred. In this section, the possibility that this 
intersection is all of l is ruled out whenever x does not belong to l. In other words, lines will be 
maximal complete subspaces. A space (P,L) in which, for each x EP and l EL with d(x ,l)~j , 
the set 'll'x (l) is a singleton is called a near 2d - gon of depth j if it has diameter d. 

A 'near 2d - gon of depth d' is also called a near 2d - gon. Dual pol.ar spaces, i.e., shadow 
spaces of type Bn,n> are near 2n-gons. A near 2d - gon of depth 2 is very close to being a parapo
lar 2-space: defining property i) fails as lines are maximal complete subspaces, and it is the only 
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one to fail. In this light, the following beautiful result can be seen as a complement to Theorem 
5.1. 

6.1. Theorem(Shult-Y anushka, Brouwer-Wilbrink). 

Let (P ,L) be a near 2d . gon of depth j (for some j ;;.2) in which lines have at l.east three points 
and each pair of points at distance two has at least two common neighbors. Then each pair of 
points at mutual distance j can be embedded in a unique geodesically dosed subspace isomorphic 
to a near 2j . gon. 

About the proof. See Shult-Yanushka [37] for the case where j =2 and Brouwer-Wilbrink (7] 
for the remaining cases. 

Applying the above lemma with j =2, we obtain subspaces isomorphic to generalized quadran
gles. They form the rank 2 counterpart of the symplecta in Theorem 5.1, and are called quads. 

6.2. Theorem(Cameron, Shult, Brouwer-Cohen). 

Suppose (P, L ) is a near 2d - gon of depth 3 such that lines have size at least three and each 
pair of points at mutual distance 2 is contained in a quadrangk. If, for each point x and each 
quad S with d (x, S) ~2, the set 'IT x (S) is a singkton, then, for each x E P, the space of the lines 
and quads on x is a projective space. If, moreover, this space has finite rank (for some x EP ), 
then (P, L) is the quotient of a dual polar space by a group of automorphisms whose nontrivial 
ekments map each point to a point at distance ;;.s. 

In the finite case, the building does not admit nontrivial groups of automorphisms with the 
specified property, so (P,L) is a shadow space itself (cf. Brouwer-Cohen [6]). The existence of a 
near 6-gon on 759 points with automorphism group M 24 , due to Shult-Y anushka [37], shows that 
the condition on 'IT.x (S) is not superfluous. Obviously, local characterizations are out of the ques
tion. 

7. Metasymplectic spaces. 

This section is devoted to shadow spaces of type F 4,i. also called metasymplectic spaces. The 
following characterizations are available. 

7.1. Theorem. 

Let (P,L) be a connected parapolar k-space (k ;;;.3) satisfying (F)z-iOr· If every pentagon con
tains a point x such that x J_ ll I, where l is the line spanned by the two points of the pentagon 
noncollinear with x, is nonempty, then (P, L) is either a polar space of rank k or k = 3 and 
(P, L) is a metasymplectic space. 

About the proof. The parapolar space condition yields the existence of symplecta, thus leading 
to sufficiently many 'candidate shadows' for the full shadow space. However, it is not immediate 
that the geometry whose objects of type 1,2,3,4 are the points, lines, planes, and symplecta, 
respectively, has diagram F 4• In particular, it has to be shown that the residue of a point is a 
dual polar space of rank 3. For details, see Cohen [20], [21]. Due to Axiom (Flz-~ 01 , the space 
x.l. / x has diameter at most 3. The statement about pentagons can be used to apply Theorem 
6.2 and derive that x .l. / x is a dual polar space of rank at most 3. 
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In view of the parapolar space axiom iii ) and the pentagon axiom, the result is far from a local 
characterization. There are indications that one might encounter difficulties in trying to prove 
local recognizability. For instance, the shadow space of the thin building of type F 4 over 1 is a 
graph which is locally a cube (points are vertices, lines are edges). By a result due to Buset [17] 
and (independently) Brouwer there are precisely two graphs which are locally a cube, the 'non
metasymplectic' one being the complement of the 3 by 5 grid. The local recognizability of 
metasymplectic spaces with lines of size at least 3 has neither been proved nor disproved. The 
only result in this direction (known to me) reads as follows. 

7.2. Theorem(Cohen-Cooperstein [24]). 

Let (P, L ) be a finite connected space such that for each point x the subset x ..L is a subspace iso
rrwrphic to the subspace x 1..L of a shadow space of a thick building of type F 4 over 1 in which x 1 

is a point. If, for each path x,y,z,u in P with d(x,z)=d(u,y)=2 such that the size of 
ix,y,z,u r..1. is at I.east two, every line of ix,y,z r..1. meets ix,y,z,u r..1. nontrivially, then (P,L) 
is a metasympl.ectic space. 

About the proof. The extra condition at the end of the theorem guarantees the possibility of 
comparing shadows in x ..L / x with shadows in y ..L / y for collinear points x and y in P. If x, z 
are points of P at mutual distance 2, then ix, z ~ ..L induces a subspace Y of the dual polar space 
x..L / x which either has no lines or has the property that for each pointy E Y there is a quad Q 
with y..1. n Y = y ..1. n Q. Now, by use of a theorem of Cameron-Kantor [19], the possibility that 
such a subspace Y is a generalized hexagon can be excluded (by deriving from the existence a 
structure for (P, L) very much resembling the complement of the 3 by 5 grid encountered in the 
thin analogue, and showing that this is absurd by means of a counting argument). This leads to 
the conclusion that ix,z r..L is either a singleton or a subspace isomorphic to a generalized qua
drangle. But then (P, L) is a para polar 3-space and we can finish as in the previous theorem. 

8. Some remaining points of interest and lines of progress. 

8.1. Simplify and unify the present set of axioms. 

In his thesis, Hanssens [29] has combined several of the aforementioned results and character
ized almost all shadow spaces of buildings of spherical type. Here we state only one of his 
theorems. It uses an axiom of Buekenhout [9] concerning intersections of symplecta. 

8.1.1. Theorem(Hanssens). 

Let (P, L) be a connected parapolar k-space (k ~3) of finite singular rank all of whose lines have 
at kast three points and in which x..L / x is connected for each x E.P. If the ranks of every pair 
of maximal complete subspaces differ by at rrwst 1 and no two symplecta meet in a complete sub
space of rank k -2, then (P ,L) is a shadow space of type A4,2,Bn.1,D5,5,E6,1'E1,1,Ea,v or F4,I· 

Thus, a shadow space for each building of spherical type and rank at least three occurs in the 
conclusion, except for the types An (n ~5). The latter types would appear if the requirement 
about the difference between ranks of maximal complete subspaces were dropped. By the way, if 
we discard this condition fork <5, the theorem remains true provided all spaces occurring in the 
conclusion of Theorem 5.2 are added to the conclusion of the present theorem. As for k =2, 
Theorem 6.2 fits into the present context if the condition on 'IT x (S) is replaced by the equivalent 
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condition that the intersection of no two quads is a singleton. 
We have seen that Part iv) of Theorem 2.1 motivates the choice of parapolar spaces as a start

ing point for characterizations of shadow spaces. Certain special cases of Part iii) of this theorem 
have been used above. A parapolar space in which iii) holds, for X running over complete sub
spaces and/ or symplecta, might be an appropriate setting for uniform characterization theorems 

of shadow spaces of spherical type. 

8.2. Weakening the hypotheses. 

The above theorems could be further examined with regard to possible relaxations of conditions 
on line length, nondegeneracy , finiteness of singular rank, etc. We mention a few results in this 

direction. 

8.2.1. Polar spaces. 

The polar spaces with arbitrary line size (the weak buildings of type Bn,1 ) are completely 
classified by Buekenhout-Sprague [16], and degenerate polar spaces are dealt with in Johnson
Shult [30], but little structure theory is available if the rank is not assumed to be finite. 

As we have seen in Theorem 2.1, nondegenerate polar spaces are determined by their collinear
ity graph. In this context, it may be worth mentioning that a large portion of the structure 
theory for these collinearity graphs in Buekenhout-Shult [15] carries over to a more general class 
of graphs (P, .L) satisfying the single axiom: 

For every maximal complete subgraph C and every pair x ,y of vertices, the inclusion 
x.J..nC \;;;; y.LnC implies x.Lnc = y.Lnc oryEP.J... 

This observation, due to Hall & Wilbrink, generalizes earlier work by Zara [ 42], who already 
knew that the graph on 275 vertices associated with the McLaughlin group, whose maximal com
plete subgraphs have size 5, is a sporadic example. 

8.2.2. Parapolar spaces. 

In Theorem 5.2, there are (at least) four additional examples satisfying all conditions (with 
k =3) except for the line length: 

number of intersection associated vertex reference 
points array group stabilizer 

36 (15,8;1,6) Q5(2) Ss [22] 
176 (40,27;1,8) PSU5(2) PSU4(2)·3 [3] 
378 (45,32,12,1;1,6,32,45)' 3·P05(3) !.15(3) [3] 

22880 (280,243,144,10;1,8,90,280) Sz 3·PSU4(3)·2 [33] 

In fact, any graph which is locally a generalized quadrangle of order (s ,t) and in which 
1x,y r.l..l., for two points x,y at mutual distance two induces a complete bipartite graph on 
2(t+l) points, is a parapolar 3-space satisfying (F)1_1, 0, 21 all of whose lines have size two. Here, 
the line length (two) of the space is not to be confused with the line length (s + 1) of the general
ized quadrangle x .L / x for a point x. (In fact, s + 2 is the size of a maximal complete subspace.) 
It is as yet an open problem whether the above four are the only examples apart from those in 
conclusions i ), ii) and iii) of the theorem. (As for iii), the shadow space of the thin building of 
type A2m+1 over m admits the same kind of quotients as the infinite buildings.) This question is 
part of the general problem of classifying all graphs which are locally generalized quadrangles for
mulated in Buekenhout-Hubaut [13). 
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There is also an example of a parapolar 4-space on 117 points satisfying all conditions of Theorem 
5.2 except the one on the line size, which is locally the above graph on 36 vertices, see Hall-Shult 
(28]. 

8.2.3. Dual polar spaces. 

In view of Brouwer-Wilbrink [7] and Brouwer-Cohen [6], every finite near 8 - gon with the pro
perty that each pair of points at mutual distance two is contained in a thick quad (i.e., a shadow 
space of a thick building of type B 2 over 1) is a dual polar space if it satisfies certain regularity 
conditions. In other words, under these circumstances one can dispense with the condition on 
wx(S) in Theorem 6.2. Apart from M 24, there is another sporadic finite simple group, namely HJ, 
associated with a near 2d - gon; d =4, there are 315 points and no quads. 

8.2.4. Metasymplectic spaces. 

In Tits [40] (cf. p.216), the problem of determining all metasymplectic spaces associated with 
weak buildings is mentioned. As of today, this relatively easy (?) problem has not been worked 
out. In Theorem 7.1, finiteness of singular rank is not assumed. It is obscure (to me) what the 
implications are of relaxing the condition that l J. J. is not a complete subspace. 
In the same vein as the problem of Buekenhout-Hubaut, there is the problem of classifying all 

graphs which are locally dual polar spaces. Graphs related to the sporadic groups F 1 (the Mon
ster) and Fi 24 (Fischer's group) exist which are locally dual polar spaces of rank 3, cf. 
Buekenhout-Fischer [12] and Ronan-Stroth [35]. (This can be read off from the relevant 
diagrams.) 

8.3. Embedding problems. 

The classification of buildings of type En and Dn (n ~3) of Tits and Veldkamp (see [39)) 
heavily employs embeddings of the associated polar space (P, L) in a projective space (P 0, L 0) 

(i.e., a pair of injective mappings P-"Po and L-'>Lo such that for every line in the image all of 
its points belong to the image of P). In fact, Tits and Veldkamp considered a somewhat more 
restrictive notion of embedding. Buekenhout-Lerevre [14] and Dienst [27] (see also [31]) showed 
that the only generalized quadrangles embeddable in projective space are the 'classical' embedd
able ones. Putting all this together, we know for each polar space of rank at least two into which 
projective spaces (of rank at least three) it can be embedded. It turns out that, in a sense, there 
is always a universal embedding. Now, the analogous problem, with the 'projective spaces' and 
'polar spaces' replaced by other shadow spaces, has been given little attention so far. The reader 
is referred to A. Wells [41] for the most recent result in this context. Since the shadow spaces of 
spherical type are known and heavily related to groups, it makes sense to study the problem of 
embeddings by means of representation theory of the groups involved. In Ronan-Smith [34], 
such an approach can be found. 

8.4. Local recognition. 

The conditions in Theorem 8.1.l imposed on the maximal complete subspaces and symplecta 
are local in nature (since the intersections of symplecta are already determined by local data). In 
view of this and foregoing theorems, the question arises which parapolar spaces are locally con
nected (or even locally the shadow of a building) but not covered by a shadow space (i.e., a quo
tient of a shadow space by a judiciously chosen group of automorphisms mapping each point to a 
point at distance at least four). More generally, one might ask for each shadow space (P,L ): 
What is the minimal number k such that each space (Pi.L 1) is covered by (P,L) if it has the 
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property that, for each Yi EPi. the set i X1 EP1 I d(X1,Y1)~k r is a subspace isomorphic to 
ix EP I d(x ,y)~k r for some y EP? Some partial answers, in particular for k = 1,2, have been 
given above. It seems that if the diameter of x ..L / x is two or three, k ·will be small as well. 
Other local recognitions appear in Hall-Shult [28]. 

8.5. Analogues of affine space. 

The classical affine space can be obtained by removing a hyperplane from a projective space. 
There is a natural extension to other shadow spaces: A proper subspace of a space is called a 
hyperplane if each line meets it nontrivially. For projective spaces, this definition of hyperplane 
coincides with the usual one. A hyperplane without lines in a generalized quadrangle is usually 
called an ovoid. Taking for P the set of all vectors of a given vector space V and for L the set of 
all affine lines l in V such that Q (x - y)::::: 0 for all x ,y El, where Q is a quadratic form on V (or 
one of the obvious analogues), we obtain an 'affine polar space' (P, L) in the intuitive sense. It is 
also an example in the formal sense that it can be obtained as the space whose point set is the 
complement A of a hyperplane in a polar space, and whose lines are the sets l nA, for l running 
over all lines of the polar space for which l nA has size at least two. 
Nice axiomatizations of affine space (almost in terms of diagram geometry, cf. Buekenhout [8]) 
have been given. What extensions to other shadow spaces do exist? For polar spaces, this problem 
is under study and a solution seems within reach. 

8.6. Application to group theory. 

The only application of the above theory to the classification of finite simple groups (known to 
me) can be found in Aschbacher [1], where it is also mentioned that it is possible to do without. 
Nevertheless, at p.463, one can find reference to another possible application. In fact, it would be 
rather natural to try and replace part of the classification of Chevalley groups as groups gen
erated by root subgroups (see, e.g., Timmesfeld [38]) by geometric arguments such as those occur
ring in the proof of Theorem 5.3. 

8. 7. Shadow spaces of buildings of affine type. 

In view of Theorem 2.1, it is tempting to extend parapolar space theory to the case where 
ix ,y r..L for x ,y EP is either a projective space or a nondegenerate polar space. As yet, little has 
been done in this direction. I finish with the first (?) characterization of shadow spaces of build
ings of affine type. The proof, by the way, is easily derived by the methods described above. 
Denote by r the node of extension in the Coxeter diagram E 9 = E 8• 

8.7.1. Theorem. 

A shadow space of type E9,r is 'almost' wcally recognizable up to quotients in the following 
sense: A parapolar 8-space in which for each point x the set x ..L is a subspace isonwrphic to the 
subspace y ..L of a shadow space of type E 9,r (containing the pointy) is isomorphic to the quotient 

of a shadow space of type E9,r by a group of automorphisms whose nontriuial e!Rments map each 
point to a point at distance at least five. 
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