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Some Aspects of the Peakedness Concept
in Teletraffic Theory')

By Erik A. van Doorn?)

Abstract: In teletraffic engineering one commonly uses as a second order characterization
of traffic its peakedness factor, which is defined as the variance-to-mean ratio for the trunk
occupancy distribution resulting when the traffic is offered to an infinite trunk group.
Assuming renewal input streams and exponentially distributed holding times, Pearce and
others have given representations and bounds for the peakedness factors of primary and
secondary traffic streams. Besides giving a survey of pertinent results, we generalize
some of them, and obtain some new results in this vein.

1. Introduction

The customary basic model in teletraffic theory is that of a finite or infinite trunk
group to which a renewal stream of calls with exponentially distributed holding times
is offered. Considering that most traffic streams in a network will result from super-
position of other streams (so that they are not in general renewal), it is of some
interest to relax the renewal assumption and to investigate whether a more general
setting yields to analysis. Therefore, we start out to formally define ¢raffic as a stoch-
astic marked point process, i.e., a sequence {(t;, hi): —oo < ¢ < oo}, where the points
¢; correspond to arrivals of calls and the marks k; are the holding times associated with
these calls. Throughout this paper we will assume that only one call can arrive at a
particular point in time. Further, the marked point process is always supposed to be
stationary and metrically transitive. A formal definition of a marked point process and
the associated concepts may be found in, e.g., [14], [15], [17] and [27].

Traffic engineers tend to be interested in the stationary distribution of the number
of busy trunks in an infinite or finite trunk group which is induced by a particular
traffic stream. Indeed, traffic is often defined by the distribution it induces on an
infinite trunk group. This is justified when the point process of arriving calls is a
renewal process, and the associated holding times constitute a sequence of independent
and exponentially distributed random variables with known, common mean, since
then there is a one-to-one correspondence between the interarrival time distribution
and the trunk occupancy distribution on the infinite group, as was shown by Wallin
(private communication) and Warmuth [37). In more general contexts, however, the
offered traffic is probably not completely determined by the trunk occupancy distri-
bution on the infinite trunk group. Anyhow, from a practical point of view even this
distribution is unmanageable, so that interest centres on a few of its moments,
usually the first two. Rather than mean and variance, one uses mean and variance-to-
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mean ratio of the number of busy trunks on an infinite group as traffic characteristics.
Indeed, these quantities are meant when one speaks of the mean and peakedness
(fuctor), vespectively, of a particular traffic stream. .

Note that carried traffic, i.e., that part of a traffic stream which consists of the
calls (points in time) which are effectively served on a finite trunk group, and the
associated holding times, induces the same distribution on an infinite trunk group
as the original traffic stream on the finite carrier group. Thus mean and peakedness
factor of carried traffic are equal to (and will be identified with) mean and variance-to-
mean ratio, respectively, of the trunk occupancy distribution on the finite carrier
group. We remark, however, that in the context of carried traffic some authors use
another definition of peakedness (see the last paragraph of Section 3).

There are indications that a two-moment characterization of traffic is adequate in
practice, provided the holding times are independent of the interarrival times ([39],
cf. also [24]). But when the independence assumption is no longer valid (as is generally
the case with carried traffic), it is doubtful whether mean and peakedness are suffi-
ciently accurate in describing a traffic stream. However, we shall not be concerned with
this problem in this paper, where we restrict ourselves to a theoretical analysis of mean
and peakedness.

The important theoretical questions of whether a traffic stream as defined above
induces a unique, stationary distribution of busy trunks on a finite or infinite trunk
group was answered in the affirmative by Franken and Kerstan [16] and Franken [12],
at least in the cases that we will consider (see [3], [14]—[18] and [27] for related and
more generalresults). The above reservation refers to the fact that we assume throughout
that holding times are mutually independent random variables with an exponential
distribution of mean 1/u. Further, we shall only consider free traffic and secondary
forms thereof (carried traffic and overflow traffic), where free traffic is defined to be
traffic where the holding times are independent of the point process of arriving calls.
(See [9], [18] for a more general context.)

The organization of this paper is as follows. In Section 2 we discuss a representation
formula for the peakedness factor of free traffic and some of its consequences. In
Sections 3 and 4 the peakedness factors of carried traffic and overflow traffic, re-
spectively, will be studied and related to the peakedness factor of the associated (free)
offered traffic. Section 5 contains some folklore results on the peakedness factor of
renewal traffic, ie., traffic where the point process of arriving calls constitutes a re-
newal process.

2. Free traffic

We start off with some notation. Consider a free traffic stream as defined in the
previoussection and suppose that it is offered to an infinite trunk group. The stationary
distribution of the number of busy trunks at an arbitrary moment will be denoted
by {p(n)}. We are also interested in the trunk occupancy distribution just prior to the
arrival of a call, which will be denoted by {p’(n)}. Finally, p*(n) stands for the prob-
ability of n busy trunks just after the departure (end) of a call. The factorial moments
of these distributions will be denoted by My, My, and My, respectively, i.e.,
]L[(o) = 1 and

Mz =j§c7'(?' =D —=k+pG, k=12 ..,

etc. The first (factorial) moments will be denoted by M, M’ and M*, instead of
My, M@y and M), respectively.
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We shall now give the relations that exist between the above distributions. First,
it is well known (see [13], [14] or [5, Section 5.2]) that

p'(n) = p*n), n=20,1,... (1)
Further, we have the important relation
Ap'n) = n + D)y pn -+ 1), n=01,.. (2)

(see [13], [14]), where A is the traffic intensity, which is defined as the intensity of the
point process of arriving calls A, say, times the mean holding time 1/u. From (2) one
readily deduces the relation that exists between the factorial moments M, and My,
viz.,
AM(’IC) = M(k*l'-l) > k= 0: ]-a et (3)
a result which was first given by Franken and Kerstan [16]. Note that formula (3)
with £ = 0 (4 = M) is implied by Little’s formula.
The peakedness factor z of free traffic is defined as the variance-to-mean ratio of the
distribution {p(n)}, i.e.,
2= VIM, (4)
where
V=Mgy+M— M. (5)

By (3) we have M) = AM' (and M = A), so that the next theorem emerges.

Theorem 1. For the mean M and peakedness factor z of free traffic with intensity 4

one has M = A and
=14+ M M. ‘ (6)

This theorem was first observed by Desclouz [7] and later by Pearce and Potter [31]
for renewal traffic. Heffes and Holtzman [20] proved its validity for a traffic stream
whose point process is that of carried traffic of renewal offered traffic, but whose
original holding times are replaced by new ones, which are then independent of the
point process of calls (freed carried traffic).

Note that the dichotomy z > 1 (peaked traffic) vs. z <1 (smooth traffic) has an
interesting interpretation in the form M’ > M vs. M' <M.

A traffic stream will be called regular when the point process of arriving calls is
a renewal process with constant interarrival times. The quantities pertaining to
regular traffic will be pre-indexed by the letter R. We now cite an important result in
[16], to the effect that for any traffic stream

Muy(4) = 2Mw(d), (7)
where we have indicated dependence on the traffic intensity 4. In particular one has

M'(4) = pM'(4), (8)
so that (6) yields

2(4) =z r2(4) . 9)

This result is in accordance with the usual interpretation of peakedness as a measure
of variability of the input stream. To obtain an explicit lower bound for z(4) we must
calculate pz(A4). The result of this caleulation is given, e.g., in formula (41) of Section 5.
Subsequent substitution in (9) yields the following theorem.

Theorem 2. The peakedness factor z(A4) of free traffic with intensity A satisfies
2(4) z p(d) = {1 —exp(=1/4)}7* — 4.0 , (10)
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The inequality in this theorem is essentially a relation between variances, in which
form it was stated already by IFranken and Kerstan [16]. The validity of the theorem
when one restricts oneself to renewal traffic was observed by Kuczura [25]. (See also
[1], [18], [22] and [29]).

It is easily seen that pz(4) is a decreasing function with the values pz(0) = 1 and
r2(00) = +. Hence we have the next corollary.

Corollary. The peakedness factor z of any stream of free truffic sutisfies
2> 4.0 (11)

The latter inequality has an interesting interpretation. Namely, let M denote the
expected number of busy trunks on the infinite trunk group immediately before an
event (either arrival or departure). Then, since each arrival corresponds to a departure
and vica versa,

M =1 (M + (M* +1)}.

(Of course, M is also equal to the number of busy trunks immediately after an event.)
From (1) we see that M’ = M*. Hence

M=M +1L. - (12)
We now obtain )
M>M, (13)

since, by (6) and (11), M’ + 5 =z -+ M — + > M. Thus the expected number of
busy trunks at an arbitrary moment is always smaller than at a moment where the
system changes state. (Here “at’ can have the interpretation “just prior to” as well as
““just after’; in what follows, however, we shall always mean the former in the case of
ambiguity.)

As a final remark in this section we mention the fact that peakedness of free traffic
with fixed intensity can be made arbitrarily large. An example is provided by renewal
traffic with an interarrival distribution which has a mass p at x, > 0 and a mass

1 — patay > x,, where p = (z; — 1/3)/(z; — ;). The well-known formula (35) for the
" peakedness factor z of renewal traffic readily yields that z exceeds any bound by
choosing #, sufficiently small and =z, sufficiently large. (Incidentally, this is the ex-
ample used by Benes [2] (see also [30]) to show that when traffic with fixed intensity
is offered to a finite group of fixed size, the blocking probability can be arbitrarily
close to unity.) If, however, the traffic is renewal and both mean and variance of the
interarrival time are fixed, then an upper bound for z can be given [22]. .

3. Carried traffic

Consider a marked point process representing a stream of free traffic with traffic
intensity A = A/u, which we will designate as offered traffic. When offered to a finite
trunk group of size N, this stream is split in two parts: carried traffic and overflow
traffic. Thissection will be concerned with the former. A subindex “‘ca” will distinguish
quantities pertaining to carried traffic from those belonging to the offered traffic.
We recall that an analysis of the trunk occupancy distribution on an infinite trunk
group offered this carried traffic amounts to a study of the trunk occupancy distri-
bution on the trunk group of size N to which the original free traffic is offered. This
latter distribution (at an arbitrary moment) will be denoted by {pe(n)}. The distri-
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bution at an arrival moment (of the offcred stream) is denoted by {p.(n)}. The two
distributions are rclated as
Apn) = (1 -+ 1) pealn + 1), w=20,1,..., N -1
) N-1 (14)
ApaN) = 4 = 3 (4 1) palu + 1)

n=

([12]—[14]; see [32] for more general results). 1t is easy now to deduce from (14) that
the factorial moments for these distributions are related as ,

N

Alu;va(k) = -Z”‘ca(k+1) + WTW (A - Mca) 3 k= O: 1: LRI N -1 )
(15)
where the notation should be clear. The last equality of (14) can be written as
Mo = A — B), (16)

where
B = IJ'ca(N) = M::a(N)/N! s

i.e., B is the blocking probability or call congestion. Formulas (15) and (16) imply that
My = A(My, — N B), so that the peakedness factor zes = Vea/ Mep = (Meaey+ Mea —
— MZ2,)[ M., of carried traffic is given by

Zea =1— Mca + (Méa - N—B)/(l — B) . (17)

Clearly, M., the expected number of busy trunks in the finite group at an arrival
moment, equals B times &, the number of busy trunks on the finite group at an over-
flow moment, plus 1 — B times the expected number of busy trunks at a moment
where a call is accepted on that group. It follows that the latter quantity M, say,
is given by

M@ = (M, — NB)/(1 — B). (18)
Substitution of (18) in (17) gives us the analogue of (6) for carried traffic
ta =14+ MG — M. (19)

Note that (19) is not implied by Theorem 1, since carried traffic is not in general free
traffic. Formula (19) was observed by Descloux [7] for renewal offered traffic. Descloux
also considered a model where a finite waiting room is available for calls that arrive
when the trunk group is full. His formula (26) is not correct, but it may be shown that
(19) is valid for this model too, even if the offered traffic is non-renewal. Again M
should be interpreted as the expected number of busy trunks in the group at a moment
where a call is accepted on the group (this includes moments at which a call is shifted
from a waiting position to a trunk, i.e., moments at which a call finishes while the
waiting room is not empty.)

To obtain more explicit results on the peakedness factor of carried traffic we must
impose an additional condition on the offered traffic.

Lemma 1. If the offered traffic is renewal ihen
My = (11— B M. (20)

Proof. Let M, denote the expected number of busy trunks on an infinite overflow
group ab an arrival moment (of the offered stream). We must show that Mo/ M, =
= BJ/(1 — B), since M’ = M, + My It is not difficult to see that, because of the
renewal character of the input stream and the exponentially distributed holding
times, the ratio of the expected number of busy trunks on the overflow group and
on the finite group just prior to an arrival will be equal to that ratio just after an

7 EIK, Bd. 22, H.2-3
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arvival. 1t follows that this ratio must be B/(1 — B), since an arriving call will occupy
a trunk on the overflow group with probability B and on the finite group with prob-
ability 1 — B. [ . _ '

The relation (17) combined with (16) and the above lemma immediately yields i?he
following theorem, which has not been published before, alt,houglr_l an alternative
proof can readily be given by using results that are available in the literature.

Theorem 3. When rencwal traffic with intensity A and pcaykcdvzc's? factor z is offered
to @ group of N trunks, then the peakedness factor ze of the traffic carried by that group is
given by

Zew =2+ AB — NB/(1 — B), (21)
where B is the blocking probability experienced by the offered traffic. [

Remark. In view of (16) formula (21) may be formulated alternatively as

~ea < E (A — M) (N — Alca)/ﬁlun . (211)

The result (21) is well-known for offered Poisson traffic [39, p. 498]; for an offered
stream which is overflow traffic of Poisson traffic, the validity of (21) was observed by
Heffes (cf. [19, p. 819]).

Examples may be constructed showing that Theorem 3 is not generally valid for
offered non-renewal traffic (cf. [18], [38]). The hitch is in the proof of Lemma 1 where
we have used the independence of the trunk occupancy at an arrival moment and the
time until the next arrival.

Corollary. The peakedness factors ze, and z of trafficcarried on a finite group amd the
associated offered renewal traffic satisfy

Ze < 2 (22)

2 < B4+ (1~ B)z. (23)

Proof. We clearly have N > M., and N > M. With (16) and (21), the former
inequality leads to (22), while, using (20), (21) and Theorem 1, the latter inequality
gives (23). (J

The inequality (22) contradicts a claim by Pearce [29] that for renewal offered
traffic 2z, may be larger than z.

An interesting intuitive derivation of (23) is the following. Suppose a traffic stream
with peakedness factor z is thinned randomly by rejecting each call with probability p.

;t is easy to verify (cf. [26, Section 3.2.4]) that the thinned stream will have peakedness
actor

and

zm=p+(l—p)z. (24:)
Thus formula (23) expresses that the peakedness factor of a rencwal stream which is
thinned by rejecting overflow calls is smaller than when the stream is thinned randomly
(with reject probability B), which is exactly what we would expect.

The question arises whether the extremal property of regular traffic given in (7)
carries over to quantities related to a finite group. One would suspect, for instance,
that the blocking experienced by calls from regular traffic offered to a trunk group
of size N should be smaller than the blocking experienced by calls from any other
type of free traffic with the same intensity. This was shown to be true for renewal
offered traffic by Benes [2] (see [33]and [34, Section 7.5]for more general inequalities).
However, for the more general class of free traffic as defined in this paper, the con-

jecture has only been validated for N = 1 by Franken [12] and for N = 2 by Fleisch-
mann [10].
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Inequalities involving the peakedness factor of carried regular traffic are not
known with the exception of the case N = 1. By (16) aud (19) one then has z,, = 2.,(4)
=1 — 4(1 — B), so that, in view of Franken’s result, z.,(4) = rZca(4)-

In closing this section we remark that Heffes and Holtzman [20] define peakedness
of carried traffic as (in our terminology) the peakedness factor of freed carried traffic,
i.e., carried traffic where the calls are provided with new independent holding times
of the same exponential distribution as the old ones. Indeed, one can argue that this
definition of peakedness serves better the purpose of describing the variability of the
input stream of calls than the usual definition. We will not digress at this point,
however, and just give a conjecture involving the peakedness factor Z, of freed
carried traffic and the peakedness factors z., and z of the associated traffics, to the
effect that in a renewal context zg < 2 < 2.

4. Overflow traffic

As in the previous section we consider a stream of free traffic with traffic intensity
A = Au, and suppose that it is offered to a group of N trunks. Those calls which are
not carried on the finite group and their associated holding times constitute the over-
flow traffic. Clearly, overflow traffic of free traffic is free traffic, so that we can invoke
Theorem 1 to conclude that .

Zoy = 1 + ng — My, (25)

where a subindex “ov’’ refers to the infinite overflow group and a superindex “ov” to
the fact that the pertinent mean is defined at overflow moments.

Remark. The existence and uniqueness of a stationary trunk occupancy dis-
tribution (at an arbitrary moment) on the infinite overflow group follows readily from
the results mentioned in the introduction. Consequently (see, e.g., [14], [158], [27]),
there is also a unique stationary distribution at overflow moments.

By Little’s formula, or, alternatively, by (16) and the fact that A =M = Mey + Moy,
we have

My = 4B, (26)
B being the call congestion experienced by the offered traffic, so that
Zoy =14+ MY — AB. (1)

Again we cannot get much further unless we impose the additional condition of
renewal input. Doing this, we can cite a result of Pearce [29] stating that

N=1=zy=1~— B+ Bz, . (28)
with equality subsisting only if the offered traffic is regular. This result can be generali-
zed as follows.

Theorem 4. Let renewal traffic with peakedness factor z be offered to a finite trunk
group of size N. In terms of z and the blocking probability B experienced by the offered
traffic, the peakedness factor zy of the overflow traffic satisfies

w21 — B+ Bz, (29)
with equality subsisting only if N = 1 and the offered traffic is regulur.

Proof. Let the trunks in the finite group be numbered 1, 2, ... , NV and suppose that

an accepted call is carried on the lowest numbered free trunk. Let z(¢) denote the
peakedness factor of the traffic which is offered to trunk ¢ + 1, so that in particular

7!‘
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2(0) = z and 2(N) = 2. Finally let B; denote the blocking probability experienced

4

on trunk 7 by the traffic offered to this trunk, so that, clearly,

B = BB, ... By. (30
By (28) and the well-known result of Pulm [28]that overflow traffic is renewal when
the offered traffic is renewal, we then have

2() 21— B; + Bz(t — 1), 1=1,2,...,N. (31)

Consequently,

N
Zov =2(N) =1 —(l—z(O)).]_'IlB,‘z 1— B+ Bz.

The remaining part is evident. []

Intuitively, the peakedness factor of a traffic stream which is thinned by rejecting
the calls that are carried on a finite group will be greater than when the stream is
thinned randomly (with reject probability 1 — B). In view of (24), this is precisely
what (29) expresses.

Theorem 4 is readily seen to imply Pearce’s [29] result for renewal traffic

Zoy > min(l, z) . (32)

In this context we note that z,, may be smaller than z as shown by Peurce [29]; also,
Zov may be smaller than 1 (see [23] and [31]).

We finally remark that the examples in [18] and [38] referred to in the previous
section, can be used to show that (28) (and hence (29)) is not generally valid for non-
renewal traffic. '

b. Additional results on renewal traific

In this section we will collect some results for the peakedness factor of renewal
traffic, most of which are folklore. As usual we assume the offered traffic to be free
and stationary (the latter amounts to considering equilibrium renewal processes in the
terminology of Cox [6]) and holding times to be mutually independent, exponentially
distributed random variables with a common mean 1/u. Let F(t), with F(0+) = 0,
be the distribution function of the interarrival times and let

@(s) =fe’“ dF (), Res =0,
6 .
be its Laplace-Stieltjes transform. The intensity of the arrival stream is now given by A
where
A= [tdF(t) = —¢'(0). (33)
0
Regarding the trunk occupancy distribution on an infinite trunk group, offered this
enewal traffic, we clearly have M = 4 = Afu. As for M’, let u be the length of an

aterarrival interval and let n* (n~) denote the number of busy trunks just after it
1as started (just before it ends). Then, with ¥ denoting expectation,

M = E{n} = Bu{By {Bp-{n~ | 0", w} 1}
= Bu{lp{n* e | u}} = B {nt) Ey{e—ru} .
Thus M’ = p(u) E{n*}. Since E{n*} = 1 ++ M’, it follows that
M =)l — ¢u) . (34)
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Consequently, (6) yields

1 A
p)  u
which is a well-known result. One can obtain (34) also from Cohen [4] or Takdes [35.
Theorem 5]. {&lternatively, one can use [35, Theorem 6] and the definition of z to
obtain (35) dlreqtly, considering that the condition which Takdes imposes on F (of
being not & lattice distribution) is dictated only by his considering limiting distri-

butions instead of stationary distributions. It may be shown (cf. [21]) that (35) remains
valid if one allows F(0+) > 0.

Two types of renewal traffic deserve special mention because of theéir frequent
occurrence in teletraffic theory.

1. Hypo-exponential traffic is defined by the relation
F=UFKE «E,+*..xE,

where * denotes convolution and E;, i = 1, 2, ... , k, an exponential distribution with
mean 1/4;, such that

, (35)

éc;ll/zf = 1/2. (36)

Thus an interarrival time may be thought of as consisting of & independent, expo-
nentially distributed phases. Clearly, we have

9(s) = IT (e/(hs + 5)) 37)

i=1

whence the peakedness factor is given by
TI(L 4 A5/w) A (38)

TIA A — O

Considering that u(x) = z/(x — ¢) is decreasing in x and

k k ok :
1L+ Aifp) = _[Il(lf/u) +3 WI}, (Aifp) 5 (39)

we can use (39) in both numerator and denominator of (38) to conclude that z < 1,
with equality subsisting only if k = 1 (exponential traffic, more commonly called
Poisson traffic). )

If the k phases have equal means (1)~ we speak of Erlang traffic. For k — oo the
interarrival time distribution of Erlang traffic tends to a degénerate distribution rE()
which concentrates all mass at 1/ and corresponds to regular traffic. For this parti-
cular case we have

2

rp(s) = exp(—sfd), (40)
whence
rz = {1 — exp(—p/A)}™ — A, (41)
a well-known result that we have used in Section 2.
2. Hyper-exponential traffic has an interarrival distribution of the form
2
F = Z aiE’f 5
t=1
where E;, i = 1, 2, ..., k, is an exponential distribution with mean 1/4; and
(l«x> 0, 21 a; = 1., Ziai/)q——: 1/3. (42)
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Evidently, the Laplace-Stieltjes transform of F is

wls) = aJ»/ (4 + 8) (43)

Lvl

so that the peakedness factor of hyperexponential traffic is given by
2= {(Zuif (L + Mefu) ™ — A (44)

Considering that u(x) = x/(1 + z) is strictly concave, the mean of {u(u/A:)}; weighted
by the a;’s is smaller than the value of u in the point Xiau/; = pfA. That is, for

k> 1,
(W)X 4 pfd) > Ziaduf2) /(L + pfdi) -
Hence z = 1, with equality subsisting only if k¥ = 1 (Poisson traffic).

In conclusion we mention that Palm [28] (see also [36], and for more general results
[8]) has shown that traffic which is overflowing from a finite number N of trunks
offered Poisson traffic is hyper-exponential with £ = N + 1, whence this type of
traffic is peaked. The latter result, which was proven rlgorous]y for the first time in
[11], follows of course directly from Pearce’s inequality (32).
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Kurzfassung

In Teletraffic-Untersuchungen ist es iiblich, den ankommenden Forderungenstrom
durch eine Charakteristik 2. Ordnung — den Belastungskoeffizienten z — zu beschreiben.
Dieser ist als Quotient der Varianz und dem Mittelwert der Belastungsverteilung definiert,
die dieser Forderungenstrom auf dem unendlichen Biindel erzeugen wiirde. Fiir rekurrente
Eingangsstrome und exponentielle Bedienungszeiten hahen Pearce und andere Autoren
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Formeln und Schranken fiir die Belastungskoeffizienten der verschiedenen Forderungen-
stréme in Uberlaufsystemen angegeben. In der Arbeit werden einige dieser Resultate
verallgemeinert und durch neue Ergebnisse ergéinzt.

Pesiome

B reopun tenerpadPuKa A ONUCAHUA XAPAKTEPICTIKYE BTOPOro NMOPAAKA BXONAIIEr0
NOTOKA HCIOJNb3yeTcA HKOdDOUUUEHT pacCeAHHA x =2z — 1. z onNpeneiserca Kak
OTHOLIEHME JUCIEPCAM K MATEMATHUECKOMY OMUIAHMIO pacipefejieHHs HArpysKH,
HKOTOpAs CO3[aeT 3TOT NOTOK Ha GeCKOHeYHOM myuxe. (A PEKYPPEHTHBIX BXONALINX
IOTOKOB W TIPW SKCIOHEHIMANLHOM pAachnpefeleHnn BpeMeHu obcuyskusanus ITupe
M Jpyrde aBTOPH HOKA3aidu (OPMYNBl M TPAHUNGI A KOIPEUIMEHTOB pPaccestHus
PA3HKX MOTOKOB B CHCTeMAX C IOTEPAMH. B cTaThe HEKOTOpPHE W3 BTHUX De3yJIbTATOB
06061aloTCH M OTIONHAIOTCS HOBBIMIL.
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