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INTRODUCTION 

This paper deals with the problem of recursively estimating a 
d-dimensional parameter that occurs in the intensity process of a 
counting process. Off-line estimation procedures, such as maximum 
likelihood estimation, have been analyzed in a number of papers, for 
instance those written by Lin'kov [8], Kutoyants [5], Sagalovsky 
[11], Konecny [4] or Ogata [9]. They proved that under certain 
conditions that differ from paper to paper the maximum likelihood 
estimator has desirable properties, such as consistency, asymptotic 
normality and efficiency. For recursive estimators these properties 
remain to be investigated. We will establish these in a rather specific 
situation namely that where the intensity process ). has the form 
II.,= (JT </>,, where 1> is some other observed process with values in 
!Rd and 0 E !Rd the parameter. Two algorithms are presented that 
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generate recursive estimates and their asymptotic behaviour is 
analyzed. Both the issues of almost sure convergence and the 
asymptotic distribution of the estimators are treated. The first one is 
attacked by means of a stochastic Lyapunov technique while for the 
second one we use central limit theorems for martingales. Some 
examples illustrates the theory. 

1. NOTATION AND CONVENTIONS 

We assume that all the stochastic processes that will appear in 
the sequel are defined on some fixed complete probability space 
(0, Ji', P). We also assume that all these processes are adapted to a 
complete right continuous filtration { §"1} 1., 0 generated by the obser­
vations. With respect to this filtration a counting process 
n:n x [O, oo)-+1\1 0 is a submartingale that enjoys the Doob-Meyer 
decomposition 

n=A+m (1.1) 

where A is a predictable increasing process and ma local martingale [1]. 
We assume that A is an absolutely continuous process of the form 

(1.2) 

where 8EIR~ and <j>:Ox[O,co)--+IR~ is some other observed process 
which is assumed to be predictable. The non random parameter () is 
unknown and is to be estimated on the basis of the observations nr 

and </>1• We will denote by e0 the "true" parameter value. We will 
often use instead of ( 1.1 ), ( 1.2) the differential notation 

(1.3) 

2. THE ALGORITHMS 

2.1 Least squares algorithm 

For this algorithm the estimators Ur, t ~O of e are given by the 
following two equations. 
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d(Jt=R 1<Pt(dn1-<f{Btdt), 80 
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(2.1) 

(2.2) 

Here R0 is taken to be a symmetric positive definite matrix. Observe 
that (2.2) guarantees that Rt stays symmetric and positive definite for 
all t. If we would take R0 1 =0 (which is not positive), then 

(2.3) 

satisfies (2.1), (2.2) with B0 =0. It is easily seen that ()t given by (2.3) 
minimizes 

t t 

J(</YJ'0)2ds-2J <PJ'Odns 
0 0 

as a function of a, which accounts for the name of the algorithm 
[11]. In [13] it has been proved that IJ1 as given above converges 
with probability one to a0 . We quote the precise result. 

THEOREM 2.1 Let { (Jt} be given by (2.1), (2.2) and let 

t 

~1 1 =<g<fy 1 , lf't=J1f; 5 ds+tr(R() 1 ) 
0 

Assume that the following three conditions are satisfied 

i) 

ii) 

iii) 

Then 

i) 

ii) 

as- lim lf't =co 
t-+:X! 

00 

J 'Pt 2 !/tt<P 1 dt<oo a.s. 
0 

t 

as- lim q;t- i J <Ps<P'[ ds= C > 0 
t--1> 00 0 

as-limfJt=00 

t 

as-lim lf't-l Ji<PJ'(B5 -00 )) 2 ds=0 
(-!o(/;j 0 
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The algorithm (2.1 ), (2.2) is invariant under non-singular linear 
transformations in the following sense. Let SE ~dxd be a non-singular 
matrix. Write 17=S8, ry1=Se1, ~1 =s-r <j> 1 and T,=SR,sr. Then (2.1), 
(2.2) transform into 

which is exactly the least squares algorithm that corresponds to 
dn1==a11 dt + dm,, but this is nothing else then ( 1.3) because c·11=r!>T8. 

We apply Theorem 2.1 to some examples. 

Example2.l Let <f>:[0,00)-->IR;,</>1 =[1,l+sint]. Then l..fl,=~t-
2cost-hin2t+tr(R01). Clearly assumptions 2.li and 2.1.ii are 
satisfied and 

1. lTI -1 r ,./, ,./, T d = }' ~ J +Sill S d t 2 t [1 l . J 
lm T 1 J '+'s'+'s S lm 3 1 S 

1 ... 00 o r->oo to l+sins2+2sins-2cos2s 

=.1[2 2] 
5 2 3 

Example 2.2 [see 13]: let 

Then l¥1 =(3+2X,)t, where 

From [13] we know that lim1 ... ociX,= -82/(8 1 +82 )a.s. Assumptions 
2.1.i, ii are easily seen to be satisfied and 
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Example 2.3 Let X be a Markov process which takes its values 
in {O, 1 }. Assume that the holding times in 0 and 1 are exponentially 
distributed with means µ 0 and µ 1 respectively. Assume that n1 has 
intensity &1 X,_ +&0 (1-X1_) which is left continuous, thus predic­
table. So <f> 1=[X1_l-X1_y. Now 'P,=t+tr(R01). Again assump­
tions 2.1, ii are easy to verify and 

2.2 Approximate maximum likelihood estimation 

Before stating the estimation algorithm, we prefer to formulate a 
preliminary version of it and provide a heuristic derivation. 

The preliminary algorithm is 

(2.4) 

(2.5) 

We will give three approaches that suggest, at least heuristically, the 
form of this preliminary algorithm. The first one is based on an 
"implicit-function theorem" type argument (2.2.1). The second ap­
proach is based on an associated filtering problem (2.2.2) while the 
last one uses an asymptotic expression of the likelihood functional 
(2.2.3). Before presenting the three approaches we give the formula of 
the likelihood functional which is the Radon-Nikodym derive dP1/dQ1, 

where P1 is the measure on the trajectory space of counting processes 
defined on [O, t] that is induced by (2.3) and Q1 the measure on the 
same space induced by a standard Poisson process. In order to 
express the dependence of dP,/dQ 1 on e we write Li(())= dP1/dQ1• 

Then the following expression holds [1, p.171] 

Li(&)=expDlog </>'{ 8dn5-t (</>[8-1) ds] (2.6) 
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2.2.1 The maximum likelihood estimator ~1 by definition maximizes 
(2.6). 

Equivalently, e1 minimizes 

I I 

J 1(0) = J cp'[Ods- Jlog <f>I'O dn •. (2.7) 
0 0 

If differentiation with respect to e under the integral sign is allowed 
we look for zero's of 

I I <f>s 
li(O) = V8 J 1(8) = J <P.ds-J ..i..redn •. 

0 0 'f's 

(2.8) 

If J 1( 0) = J( t, 8) happens to be a smooth function of both 0 and t, it 
follows from the implicit function theorem that ~1 satisfies the 
equation 

A similar expression in the present situation where li( 0) is not 
smooth, but has jumps, is 

(2.9) 

where a, is the forward partial differential operator with respect to t. 
Since we have 

and 

(2.10) 
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The next problem is to find an evolution equation for Q. Recall that 
one of the objectives is that the algorithm gives us strongly 
consistent estimators. Therefore we should have for large t{J1 ~e0 • 
Hence for large t 

Q-1,...,st <t>.<1>; d -st<t>.<t>'!d st <t>.<1>; d 
1 "' (.+.T() )2 n,- .+.T() s+ (.+.T() )2 m,. 

0 '¥s 0 0 '¥s 0 0 '¥s 0 
(2.11) 

The last term of the right hand side of (2.11) is a zero mean 
martingale. We get a new approximation of Q1- 1 by deleting it: 

Finally we replace 00 by {J. and we arrive at 

(2.5) 

Observe from (2.5) that Q1 is continuous. Consequently (2.10) is 
indeed (2.4). 

2.2.2 Another way of amvmg at (2.4), (2.5) is the following. 
Consider the following filtering problem. We have an observation 
equation 

Here </> is a ffe":-predictable random process where §": = 
a{n.,O~s~t} and e is an unobserved random parameter, that is 
a(8) rf:.$i": for all t. It is known [1] that the optimal (in mean 
squared error sense) estimator of e given the observations §": is 
~1 : =E[Oiffe":J, and that it satisfies the following equation 

Here P1 is the conditional covariance matrix E[(O-B1)(0-{J1)rig;:J 
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and satisfies 

In this setting the innovations process nr-Jh <f{lJ5 ds is a martingale 
with zero mean. We can approximate this equation by setting the 
martingale term zero. Denoting the approximation of Pr by Q1 we 
find as a truncated second order filter 

(2.12) 

(2.13) 

It can be argued that the effect of the prior distribution of () decays 
with time. Hence we will eventually get estimators 81 of () that are 
hardly depending on the prior distribution. Consequently the 8/s for 
large t will not change much if we would take () as a deterministic 
parameter. This suggests the use of the same formulas (2.12), (2.13) 
for our original estimation problem. 

2.3.3 A third way to obtain the recursive scheme (2.4), (2.5) is to 
make use of an asymptotic expression of the logarithm of the 
likelihood functional. This expression that reveals the so-called local 
asymptotic normality property (LAN), is a key result in proving 
consistency and asymptotic normality of the (off-line) maximum 
likelihood estimator [5, 6, 8]. Of course the same properties are 
desired for our recursive estimator. We will explit the LAN property 
for the case where </> is a deterministic function. Similar consider­
ations can be found in [2]. Denote by P6 the probability measure on 
the space of counting process trajectories induced by a counting 
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process with intensity rjJ'{ e. Define 
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Let u E [Rd and denote by Z1(u) the restriction of dP Bo+ Q irzu/ dP Bo to the 
space of trajectories defined on [O, t]. Under certain conditions (the 
precise form of those are not important at this point) we have the 
following result [5, 6] 

1 Z() yQ-lf2Jt </Js d 1 T Og t U =U t ,t,TO m5 -zU u+pt 
0 'I's O 

(2.14) 

where p is a stochastic process that converges to zero in probability 
for t-'> ro and 

converges in law to a gaussian (0, I) random variable. 
If we set p1 =0, then the value of u that maximizes (2.14) is 

A -Q-112st _!Ld 
Ut- t ,!,Te ms. 

O'f's 0 

Hence an approximate maximum likelihood estimator of 00 is 

Or 

lf - St r/J. 
u1=Q1 "'re dns. 

0 'I's 0 

(2.15) 

Observe that Qt- 112 Ctft- 80 ) converges in law to a gaussian (0, I) 
random variable. 

Of course tit is useless as an estimator of 80 , since it depends on 
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00 • We just use it at an intermediate step in obtaining our algorithm 
(2.4), (2.5). A simple calculation shows that ll1 and Q1 satisfy 

(2.16) 

(2.17) 

As before since one is looking for U/s that are close to B0 (and thus 
close to 1J1) we replace 00 and /J1 in (2.16), (2.17) by rJ1 and write Q1 

instead of Q0 thus arriving again at (2.4), (2.5). 
Having finished the explanation of the form of the preliminary 

version of our algorithm, we will now present it in its final form. The 
change that has been made is just for technical convenience and 
makes the proof work. The reasons for the change will be apparent 
from the proof of Theorem 3.2. We give a little discussion that tells 
us that this change is not dramatic. Suppose that {}1 given by (2.4), 
(2.5) converges almost surely to 00 • Then eventually {}1 will be in any 
neighbourhood of B0 • Hence if e E !Rd+ is such that all its components 
are smaller than the corresponding components of 00 we have 
<Pi rJ1 ><Pie eventually. This is exactly the property that we need in 
the analysis. However (2.4), (2.5) do not guarantee us, that this 
inequality holds. Obviously the modification (2.18)--{2.21) below has 
the desired property. Define the indicator process / 1 as follows 

(2.18) 

where e E IR~ is such that 0 < e; < B0 ;, i = 1, ... , d. We are now in the 
position to state our Approximate Maximum Likelihood (AML) 
algorithm. 

(2.19) 

(2.20) 

(2.21) 
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Here x0 is taken such that (}0 =x0 , and Q0 is a symmetric positive 
definite matrix. 

Apparently one should be able to establish lower bounds for the 
components 80 in order to compute 0, according to (2.18)-(2.21). In 
practical situations there are often physical considerations that 
enable us to do so. As for the least squares algorithm we can also 
prove invariance of (2.18)-(2.21) under non singular linear transform­
ations. Contrary to (2.4), (2.5) we even have invarianc~· of (2.18)­
(2.21) under time transformations. Let T = f (t) be a (possibly ran­
dom) time transformation with inverse t = g( T). Assume that g has a 
derivative g' almost everywhere and g'~O. Write j/1=y9 (tJ for the 
time transformed process y. Then we have 

(2.22) 

The algorithm corresponding to (2.22) is 

(2.23) 

(2.24) 

(2.25) 

which is indeed the same as the time transformed version of (2.18)­
(2.21 ). 

3. CONSISTENCY OF THE AML ALGORITHM 

In the proof of Theorem 3.2 below, where strong consistency of et 
coming from (2.18)-(2.21) is proved we use the following lemma, 
which is a simplified version of a more general result in [12]. 

LEMMA 3.1 Let x, a, b be nonnegative stochastic processes: a and b 
increasing with a0 = 0 and m a local martingale. Assume that the 
fallowing relation holds for all t: x 1 =a, - bt + m,. 
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Assume 

i) :Jc E IR+ :~at;Sc, Vt~O. 

ii) as-lim1 __. 00 at< oo. 

Then 

i) as - lim1__. ro Xi exists and is finite 

ii) as-limi__. 00 b1< oo. 

The principal result of this section is 

THEOREM 3.2 Let 80 E IR~ and let e E IR~ be such that e0 - e E IR~. Let 
<Di= f ~ <f>s ds and assume 

i) 

ii) 

Then 

i) 

ii) 

<ti{e0 -+oo a.s. (t-+oo) 

1. . f i St <P.<PI d c o 
lffilll m.Te ,t.,T8 S= > . 
t-->ro W O 0 'f's 0 

t-> ro 

Before proving the theorem we notice that conditions 3.2.i, 3.2.ii 
are equivalent with (1=(1,. . ., l)T) 

i') <D{l-+oo a.s. 

ii') 1 .. f i St<f>.4>Id o 
lffilll <l>Tl A.TJ S> . 

t 0 'f's 

The equivalence of i) and i') can easily be seen by noting that 
~<I>'{1~8l<Pt=i1<I>{1, where ~=min{80;,i=l, .. .,d}, B=max{eo;, 
i = 1,. . ., d}. The equivalence of i)) and ii') follows similarly. 

Proof of Theorem 3.2.i Let x1 = x1 - e0 . Then 
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Applying the stochastic calculus rule to x/ Qt- 1 xt we obtain 
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(3. l) 

(3.2) 

where we have summarized th~ martingale term of (3.1) as dmlt. 
Define 

(Q -1) It<P[<P.a rt= tr 0 + ---:l:T s. 
0 'f's £ 

Then 

> (Q-1) Itrt>Irt>.a (Q-1l rt= tr Q + ,t,. T 8~ S = tr t • 
0 'I's s 

Define 

then 

We are able to apply Lemma 3.1 as soon as we have verified 
assumption ii) which leads us to the calculation of 

o< C(J' -1 <PTQ14>1 .-1.ro dt<t roJ -1 t (Q-1)Qt<f>i<f>TQt <PT~o dt 
= rt ("'re~)2 '1'1 o = r rt r t .-1.T{J .-1.re 0 'f't t 0 'f't l 'f't t 
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Having verified assumption 3.lii we conclude that a.s. lim u1 exists 
and is finite a.s. We also get from the same lemma and Eq. (3.3) that 

1. ODS -1<PT<Pt d a.s. 1m r1 ~u1 t<oo. 
t-+<XJ 0 'l't B 

(3.4) 

Now 

1 St <PI <P. 1 1 St T 1) 
r1 ~-:: ,i,Tl ds+tr(Q0 )~d- <P. 1ds+tr(Q0 . 

Bo 'I's eo 

where we used in the last inequality that <PT cp 1 ~(cp'{1) 2/d. Hence 
from assumption 3.2i. r1-oo a.s. Suppose now that on a set 0 1 cQ 

of positive probability we have limu1 ;:;;<5 for some 6>0. Then there 
is r such that t~r implies u1 ;;:;;!<5. But then 

which contradicts (3.4). Hence a.s. lim1-+ 00 u1 = 0. Since u is the sum of 
two positive process we have in particular 

(3.5) 

Define now il1 =sup{O;.,se[O,t],i=l, .. .,d} and write A.min(A)= 
min u(A) for the minimal eigenvalue of a matrix A. Then 

Hence 



RECURSIVE PARAMETER ESTIMATION 291 

which tends to zero by (3.5). Consequently from assumption 3.2ii 

(3.6) 

Now it is easy to prove that lft is bounded. For suppose not, then 
there is &;t such that limsup Dit= oo. But then also limsup xit= oo and 
we get immediately from (3.6) that this cannot happen. Hence (Jt~K 
for some K > 0. But then from 

we see that xt-+O and so eventually 

Then It-+ 1 and consequently 

ii) Ut=xtlt+(l-It)(e-00 ). Let -r be such that t~'t' implies / 1= 1 
then for t~'t' U1=xt. Hence 

S, (<PIU.)2 d -s' (<PIU.)2 a +S, (</Jix.)2a 
r- s- T s r- s 

o <P. e. o <P. e. , <P. e. 
From the fact that u1-+0 we have 

_!_SI (<PI U.)2 d 0 
T S-+ . 

rt t <P. e. 

But then it is easy to deduce from the fact that ~1 -+00 a.s. that we 
also have 

1 I ( </J'{ U.)2 
- S <Pre ds-+0 a.s. 
r, r s o 
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and 

1 '(</>I'Bs)2) e:r- J <PT e ds~o a.s. Q.E.D. 
0 ©s 0 s 0 

Before giving a few examples to which this theorem can be applied 
let us remark that a necessary condition for assumption 3.2ii' is 

1 t 

liminf mT 1 J <Pis ds > 0. 
t->-oo '!I 0 

Clearly this condition is not sufficient. rp, = 1 is a counterexample. 

Example 3.1 Let </>: [O, oo )~IR~, </J, = [1, 1 +sin tY. The following 
result will be used. For a> Vi~ 0. 

211 1 2n 
J b . dx= 1:2!3' 
0 a+ sm x v a2 _ b2 

hence 

1 t 1 
lim - J . dx 
1-00 to a+bsmx Ja2-b2 · 

Then 

l. 1 r <Ps1>; d . 
Im -T- J -T- s = hm ----

t-co <I>, 1 o </>s l 1-00 2t-cos t+ 1 

1 [1 1 +sin x J dx 
x! l+sinx 1+2sinx+sin2 x 2+sinx 

1[tfi 1-tJ3J 
= 2 1-tJ3 tJ3 ' 

which is positive definite. 
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Introduce 

Then 

1 1 c/J.c/JI 1 1 [i 1+(-it· J as 
<1>{1 ! c/Jil ds t(2+X1) ! 1+(-1)"' 2+2(-1)"• 2+(-1)•• 

t t [2-(1)"' 1 +( - lt' J 
=t(2+X1) ~ 1+(-1)"' 2+2(-1)•• ds 

After some calculations [13] we find that 

1. x ei 
a.s.- lm 1=--e e. 

t-> 00 1 + 2 

So 

Example 3.3 Let X be a Markov process that takes its values in 
{O, 1 }. Assume that the holding times in 0 and 1 are exponentially 
distributed with means µ0 and µ 1 respectively. Assume that n1 has 
the intensity 81 X 1 _ +e0 (1-X 1 _), which corresponds to cp 1=[X1 _, 

l-X1 _]1' and e=(8 1e0 f. Then 

lim - 1- J c/J.c/JI ds= lim ! j [X, O J ds--1-[µ 1 O J 
t->oo <1>{1 o c/J'fl t->oo to 0 1-X. - µ1 + µo 0 µo . 

4. SOME CENTRAL LIMIT THEOREMS 

This Section provides the background for analyzing the asymptotic 

STOCH.-D 
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distribution of the b;s generated by the least squares or asymptotic 
maximum likelihood algorithm. That analysis will be carried out in 
Section 5. The tools we will use in Section 5 are certain central limit 
theorems for martingales. Two types of results are available in this 
direction. On the one hand we have central limit theorems for 
sequences of martingales or stochastic integrals that are obtained for 
instance by Rebolledo [10]. On the other hand there are results for 
the asymptotic distribution of a stochastic integral with respect to a 
local martingale measure as t goes to infinity that can be found in 
e.g. Lin'kov [7]. It will be shown in the sequel that the latter type is 
contained in the first. 

4.1 

We start by presenting Rebolledo's results and follow his notation 
herein. Since we are only interested in martingales associated with 
point processes, we do not quote his results in full generality but 
only for quasi left continuous locally square integrable martingales. 

Suppose we have on (O,F,P) a sequence of right continuous 
complete filtrations IF"={~n. Let .Jt 2•10c(IF") be the set of locally 
square integrable !F"-adapted martingales starting in zero. We will 
consider sequences {M"} where for each nM"e.Jt 2·1oc(IF") and is 
assumed to be quasi left continuous. Define o-'[M"]:O x [O, oo)--+!R 
by 

Denote by a.[M"] its dual predictable projection. 
We say that {M"} satisfies the strong asymptotic rarefaction of 

jumps property of the second kind (SARJ 2) if 

(4.1) 

The sequence {M"} is said to satisfy the Lindeberg condition if 

(4.2) 

In connection with Sections 4.2, 4.3 we introduce the following 
definition. We say that the sequence {M"} satisfies the Lyapunov 
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condition if there exists a b>O such that for all n Mne.,,1t 2 H,1oc(IFn) 
and if 

EL ILlM=l 2 H~O. (4.3) 
s;'.iit 

In [10] it has been shown that the Lindeberg condition implies 
SARJ 2. Also the following implication holds. 

PROPOSITION 4.1 If the sequence {Mn} satiefies Lyapunov's condition 
then it also satiefies Lindeberg's condition. 

Proof A corresponding result is known in Central limit theory 
for sequences of random variables. The proof that we will give is 
similar to the proof in the random variable case. 

Let us introduce the jump times '~ defined by 

Then 
00 

EL IAM:l 2 I(,rn:1>e)=E L IAM~.1 2 111.0.~,l>e)f'l{tk;:r!t) 
s;:r!t k= 1 k • 

which is by application of Holder's inequality (P = 1 + ~· q = 1 + ~) 

less than 

00 

k~l [£1LlM~;;l2 H J{ri:;:r;tJJ 2/(2 +ill[£J{i.6.M~1I >e} J{rf;;:;!t}]''f(2 +o) 

which is by application of Chebychev's inequality (see below) less 
than 

00 '°' [EIAM" 12+1! I • ]21(2+.ii[EIAM" 12+.1 I • J"l<2H)8 -.i Li r• (tk;'.i!t} t• {rk;:r!I} 
k= 1 k k 
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In the proof we used the following form of Chebychev's inequality. 

Notice that an even stronger condition than Lyapunov's is 

where en E IR and en LO. 
Now we formulate Rebolledo's main result. 

THEOREM 4.2 Let M be a continuous martingale and assume that 
A=(M) is a deterministic function. Let Mne..lt 2 •10c(P), 'Vn such that 

i) {Mn} satisfies SARJ 2 

ii) [Mn] 1.!.A1 a.s. n-+oo, 'Vt~O. 

Then Mn weakly converges to M. Notation Mn~M. 

4.2 

In this section we summarize Lin'kov's result [7]. As usual we have 
a complete right continuous filtration { Si'1} on (Q, ff, P) Let µ be a 
local martingale measure on [O, oo) x Z, where (Z, .2") is a Blackwell 
space. .2" is a er-algebra on z. Assume that µ is such that 
µ({t},E)e{O,l} for all Ee.2" and suppose that the characteristic 
(µ)=v ofµ is continuous. Notice that µ+v is an integer valued 
random measure. Denote by L2[0, T] the set of Si'1 adapted pro­
cesses f = f(w, t,x) which are measurable as a function of (w, t, x) 
such that there exists a sequence of simple functions Un} such that, 

T 

P- lim J J if(t,x)- J.(t,x)i2v(dt,dx)=0. 
n-+ co 0 Z 

For such f the following stochastic integral is well-defined: 

t '1= J J f(s,x)µ(ds,dx), 
oz 

te [O, T] 
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In [7] one can find the following. 
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PROPOSITION 4.3 Assume that f E D2 [O, T], VT;;;; 0 and 3 function 
g:[O, 00)--1-[0, oo) such that g(t)-+oo, as t-+oo with 

T 

i) P- lim g(T)- 2 JJf 2(t,x)v(dt,dx)=1 
T-+oo OZ 

T 

ii) lim g(T)- 2 H E J J If (t,x)l2+1iv(dt, dx) =0 for some b > 0. 
T-+oo 0 Z 

Then (T is asymptotically normal with parameters (O,g(T) 2 ) for 
T-+oo. 

4.3 

In this section we will show how Lin'kov's result can be deduced 
from Rebolledo's (Theorem 4.2) which provides thus an alternative 
proof for the one that can be found in [7]. 

Proof of Proposition 4.3 We have to show that for all sequences 
b. with b.--1-00 the random variable (b has a distribution which is 
asymptotically normal with parameter"(O,g(b.) 2 ). Define a.=g(b.) 2 • 

Without loss of generality we can assume that g is strictly increasing. 
Hence its inverse his well defined. Let te[O, 1] and define 

1 h(,;a;;ii 

M~= C J J f(s,x)µ(ds,dx). 
....; a. o z 

(4.4) 

Let !ii'~= !ii' h(Ja.1), then Mn is IF"-adapted. We will now show that M" 
as defined in (4.4) satisfies the Lyapunov condition (4.3). 

1 
AM~= CJ f(h(ja;t),x)µ({h(N)},dx). 

'\/a. z 

Because µ({h(Ja:'i)}) is in fact a dirac measure for each w on Z, 
concentrated on some point z=z(a.t,w)[3], we have 



298 P. SPREIJ 

Hence 

Since µ is a local martingale measure 

h( ,;a,;) 

~a;; 1 -o/Z E f f If (s, x) 12 +ov(ds, dx) 
0 z 

h(.;a;;) 

=(g(h(F.)))-<2 +o> E f f if(s,x)l 2 +ov(ds,dx)-+O 
0 z 

by assumption 4.3ii. So a forteriori the sequence {Mn} satisfies the 
SARI 2 condition by Proposition 4.1 and the remark preceeding it. 

We proceed to investigate the process (Mn). A simple calculation 
gives 

1 h(;a;;tj 

(M")i=- J f IJ(s,x)i2v(ds,dx) 
an 0 z 

1 h(Jilni) 

=t J:;;i f f jf(s,x)j2v(ds,dx)-+t 
(g(h( ant))) 2 O z 

in probability by assumption 4.3i. 
We are now in the position to apply Theorem 4.2 and we 

conclude that (M")-=:, W, where W is a standard brownian motion. 
In particular 

!t' 
M'i-+N(O, 1) 

or 

1 h (,;a,;) !t' 
C J J f(s,x)µ(ds,dx)-+N(O, 1) 

.ya. o z 

which gives us the desired result by definition of an. 
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Along the same lines as the proof of Proposition 4.3 we can show 
a stronger result which is formulated in the same way as Theorem 
4.2. 

PROPOSITION 4.4 Let µ and f as in Section 4.2. Assume that there 
exists a function g:[O, oo)-+[0, oo) with g(t)-+oo as t-+oo such that 

T 

i) P- lim g(T)- 2 f J IJ(s, x)J2 v(ds,dx) = 1 
T-+oo 0 Z 

T 

ii) P- lim g(T)- 2 J JJf(s,x)j 2 IuJf(s,x)µ({sJ,dx)l>•g(T))v(ds,dx)=O 
T-+oo 0 Z z 

Ve>O. 

Then 

1 T !i' 
g(T) r ! f(s, x)µ(ds, dx)-+N(O, 1) as T-+ oo. 

A special case occurs when the measure µ is the difference of a 
counting process n and its absolutely continuous compensator 
f~A..ds. Then we can take Z={l} and Proposition 4.4 reads 

PROPOSITION 4.5 If there exists a function g:[O, oo)-+[O, oo) with 
g(t)-+oo as t-+oo such that 

T 

i) P- Jim g(T)- 2 f J; A.,ds= 1 
T-+oo 0 

T 

ii) P- lim g(T)- 2 J J; lufsl>•g(TlJA.•ds=O, Ve>O. 
T-+oo 0 

Then 

1 T !i' 
g(T) r f,(dn,-A..ds)-+N(O, 1). 

Remark Assumption 4.5ii is certainly satisfied if g(t)- 1 sup{lf.I: 
s E [O, t]} ~ c(t), where c(tH 0 for t-+ oo. 
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5. ASYMPTOTIC DISTRIBUTIONS OF RECURSIVE 
ESTIMATORS 

5.1 Least squares algorithm 

In this Section we will show that the algorithm (2.1), (2.2) provides 
us with estimators &1 that are asymptotically normally distributed if 
we impose some additional requirements on the process </J. It 
immediately follows from (2.1), (2.2) that 

(5.1) 

and 

Introduce the vector valued martingale 

(5.3) 

then 

Clearly the distributions of {}1 and U1 are governed by the one of M 1• 

For the latter we have the following result. 

THEOREM 5.1 Let M be as defined in (5.3). Assume that there exists a 
function µ:[O, co)~[O, oo) with µ(t)~oo as t~oo such that 

i) P-lim1_"'µ(t)- 1 (M)1 =D, where DEIRdxd is a positive non 
random matrix 

ii) P-lim,_ro µ(t)- 1 s~ <PI ef>.11<1>I'4>,>•µ(t))<PI8ods=O, Ve>O. 

Then 
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Proof i) Let A.e!Rd and define M:=.A.TD- 112 M1= f~A.TD- 1 '2 Q>,dm •. 
Then 

Hence 

in probability. Hence condition i in Proposition 4.5 is satisfied with 
g(t)2=A.TA.µ(t). In order to establish SARJ 2 (condition 4.5ii) we 
compute 

which tends to zero in probability according to assumption ii since 
we can replace e by e2A.TA.(A.TD- 1.Ar1. Now we have proved 

ii) According to the Cramer-Wold device 

V A.e !Rd:(A.T A.µ(t))- 112 M:!N(O,1) 

if and only if 

Since 

µ(t)-112 v-112 Mt= (D-112 µ(t)-112 (M)t'2)(M) 1-112 Mr 
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and 

in probability, we have finished the proof. 

Remark Stronger conditions than 5. lii are the corresponding 
Lindeberg or Lyapunov conditions 

t 

\:/c.> O:µ(t)- 1 E J </>[ c/Jsl(</>°{ </>,>eµ(t))c/J[ Bo ds--tO 
0 

t 

315 > O:µ(t)-1 -o/2 E J ll<Psll3+o ds--tO, 
0 

where 11 ·II denotes the (Euclidean) norm on !Rd. 

COROLLARY 5.2 Under the conditions of Theorem 5.1 we have 

Proof (M)1- 112R; 1 (0,-B0 ) = (M)i- 112 [R01 (00 -80 ) +Mt]. The 
fact that (M)r- 112 R01 (00 -80 )---tO in probability (this follows from 
5.1.i) gives us the desired result. 

Remark (M)1 depends on the unknown parameter B0 . As usual 
we can estimate (M)r by substituting et, which is strongly consistent, 
for 80 . 

The examples given below are continuations of examples 2.1-2.3. 

Example5.l <f;(t)=[l,1-fsintY,80 =(B 1 ,l'l2). Take µ(t)=t. Then 
we can calculate 

which is a positive definite matrix. So assumption 5.1.i is satisfied. 
To establish that assumption 5.1.ii holds it is sufficient to remark 
that <PI <P.2= 5. Hence for t > 5/s we have 
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Another calculation shows that we have asymptotically 
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Example5.2 <f>1 =[1,1+(-1)"'-J,80 =(8 1 ,(:l2 ). Take µ(t)=t. Then 
a simple calculation yields: 

which is positive definite. As in Example 5.1 </>I ef>s is bounded, so 
again assumption 5.1.ii trivially holds. Combined with an expression 
for R1 we can calculate that 

Example 5.3 <f>1 =[X1 _ l-X1 _]. Again take µ(t)=t. Then 

Since <PT 4> 1 = 1, again assumption 5.1.ii is trivially satisfied. Asymp­
totically we have 

5.2 Asymptotic normality of the AM L algorithm 

The purpose of this section is to show that the &/s generated by 
(2.18)-(2.21) have a limiting distribution which is approximately 
normal. After some definitions we state a useful lemma. 

Define the following matrix valued stochastic processes 

t ,,/, T 

Q--1=Q-1+J~d t O ,,1,T ,,1, S 
0 '+'s '+'O 

(5.4) 
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v. Jt <Ps<PI ,i,re d 
i=o(cp"[(J

8
)2'+'s OS 

(5.5) 

LEMMA 5.3 Let (J1, Q1 as defined by (2.18)-{2.21)) and let the assump­
tions of Theorem 3.2 be in force. Then 

i) as - lim ()}f2 Qt-1 Q)12 =I (5.6) 
t-+"" 

ii) as- lim Q}f2 r;Qf12 =I. (5.7) 
t-+C1;) 

Proof i) Let 6 > 0 and fix w, taken from the set with probability 
one where lJ1(w)-+e0 . Then there is r=r(w) such that Vf?;.r we have 
l&ir- eo;I ~ 8 for all components i. 

Consequently (l-6)</J'{'80 ~c/>Ttf1 ~(l+6)</;[e0 for t?::.r. In the 
ordering of positive matrices we then have 

1 t,J,,J,T 1 t,l,,J,T 
_ J-'l's_'l'_s < Q-1-Q-1 <- J _'l's_'+'_s d 
1+8 ,!,Te= 1 ' =i-8 ,!,Te s 

t 'I's 0 t 'I's O 

or 

_1_(Q--1_Q--1)sQ-1-Q-1 5 _1_(Q- -1 _Q- -1) 
1+6 t t - t t -1-8 t t 

which yields 

_l_(I -Q-112Q--1 Q1f2) < Qlf2(Q-1-Q- -1)Q112 
1+8 t f t = t t t t 

<-l-(I-Q-112Q--1Q-112) 
=i-8 t t t • 

Now take limits for t-+oo and use that Q1-+0 to get 

- 1-I sliminfQ 1'2 Q- 1 Q1'2 slim sup Q1'2Q- 1 Q1i2 s-1-J. (5.8) 1+8 - t-+C1CJ I t t - t-+co t t t -1-6 

Since (5.8) holds for all 6>0 the proof of (5.6) is complete. 
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ii) The proof of (5.7) is analogous. 
The following vector valued martingale is important. Define 

Notice that we have (M)t= V1• 
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(5.9) 

THEOREM 5.4 Assume that there exists a function µ: [O, oo) such that 

P- lim µ(t)- 1 ffl<l>1= 1 (5.10 
t-+<XJ 

Then 

Qf12 M1_;N(O,I). 

Proof Let C be as in assumption 3.2.ii, 

C 1. 1 Jt<fJ.<P'{d l' 1 Q--1 
=as- im ()T"" ,.i,.T() s=as- 1m ()T"" 1 

t-+oo O"'t O'l's O t-+oo O"'t 

Then we also have 

1. 1 Jt <P.<f>'{ d c 
p - lm -( ) ,./,. T() S = · 

t-+oo µ t 0 'I's O 
(5.11) 

Define 

t A_TC-1/2,./,. 
M l=1Tc-112M=J "'"d t II. t ,./,. T() m., 

0 'I's s-

then 

by (5.10), (5.11). Hence assumption 4.5.i is satisfied. 
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As in the proof of Lemma 5.3, let -r(ill) be such that t~-r(w) implies 

Consider 

Let us split the integral in two pieces, one with integration bounds 0 
and t /\ -r and the second with bounds t /\ T and t. Then clearly 
(A_T .lcµ(t))- 1 times the former integral tends to zero almost surely. 
Hence we continue our investigation of the second integral which is 
after multiplication with (,17 .lcµ(t))- 1 less than 

(5.13) 

Now let t be such that 

Then 

Consequently for large t the indicator appearing in the integral in 
(5.13) will be zero. As a result (5.12) converges to zero almost surely 
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and a forteriori m probability, which gives us assumption 4.5.ii. 
Conclusion 

As in the proof of Theorem 5.1 the Cramer-Wold device gives us 

(µ(t)C)- 112 M/!~ N(O, I) 

if and only if 

which has just been proved. 
Finally 

Qf12 Mt= µ(t) 112 c112 µ(t)-112 c-112 Mt. 

We know from (5.11) that µ(t) 112 Q 112c112-+I in probability, which 
completes the proof. 

COROLLARY 5.5 Under the assumptions of Theorem 5.4 

i) Qt- 112 ilt~N(O,l) 
ii) Q1- 112 il1 ~N(O, I). 

Proof i) By writing out the stochastic differential equation for 
Qt- 1 x1 one can show that the following relation holds 

( 5.14) 

And consequently 

Qt- 112 0t= l,Q1- 112 M 1+ltQ1- 112 Q0 (Xo-11o) + Qt- 112 (1-11)(1>- Ito). 

( 5.15) 

Since / 1-+ 1 a.s. and Qfl2 -+0 a.s. as t-+ oo we see from (5.15) that the 
asymptotic distribution of Qt- 112 ()t will be same as that of Qt112 M" 
From Lemma 5.3 we know that we can replace Qt by Q1 and the 
conclusion follows from Theorem 5.4. 
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ii) This is an immediate consequence of i). 

The examples below are Examples 3.1-3.3 continued. 

Example 5.4 q'J(t)=[l,l+sintY, Take µ(t)=t. Then one finally 

gets after some tedious calculations: Approximately 

with 

Example 5.5 q'i1= [1, 1 + ( -1)"'-]. One gets 

and the asymptotic distribution 

Example 5.6 q'i1=[X1_, l-X1_]. Here 

and asymptotically 

We see that in this case the asymptotic variance of li is the same as 
• t 

m Example 5.3. 
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6. SOME REMARKS 

6.1 Other possible limit distributions 

309 

The basic assumption in getting a limiting distribution for rJ1 or 01 

which is gaussian in 5.1.i or (5.10) depending on the algorithm. This 
assumption more or less tells us that the covariation process of the 
martingale M becomes deterministic as t grows. If this assumption 
is dropped one can still derive results for the asymptotic distribution 
of 01• The idea then is to perform some random time transformation 
r = f(t) after which the transformed version of (M) becomes deter­
ministic. For the transformed algorithm (which looks the same in 
the AML case (2.22), (2.23)) we can then infer asymptotic normality 
as r tends to infinity. In the AML case a useful transformation is 
r = <l>T 00 • This idea has also been carried out in [11] for the off-line 
maximum likelihood estimation problem. 

6.2 Asymptotic efficiency 

From the Examples 5.1-5.6 it becomes clear that the asymptotic 
distributions of nt, generated by (2.1), (2.2) or (2.18)-(2.21) will differ 
in general. Thus they cannot both give us efficient estimators. In 
general we have the following Cramer-Rao inequality. An unbiased 
estimator of () based on the observations in [O, t] has a covariance 
matrix which is at least 

where the likelihood ratio L 1(0) is as in (2.6). Calculation of (6.1) 
gives us 

(6.2) 

This means that (}1 is an asymptotically efficient estimator if we have 

(6.3) 
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Clearly by comparing Corollary 5.2 and (6.3) we see that the LS 
estimator of 8 will not be asymptotically efficient in general except 
for some specific choices of cp (see Examples 5.3, 5.6). On the other 
hand the AML estimator given by (2.18)-(2.21) is a good candidate 
for being an asymptotically efficient estimator by Corollary 5.5.ii. We 
will indeed have this property as soon as Cr(80 )Q1- 1 -+/ in proba­
bility. However assumption (5.10) in Theorem 5.4 does not seem to 
be sufficient for guaranteeing this. But if we impose as an additional 
requirement that µ(t)- 1 Cr(80)- 1-+C then indeed from (5.11). 

C1( BoH21- 1 =Ci(80 )µ(t)µ(t)- 1 Qr- 1 !+c- 1 C =I. 

In fact under the assumption (5.10) requiring µ(t)- 1 Cr(80 ) to con­
verge to C is nothing else than demanding the collection 
{C,(80 )Qr- 1 } 12'o to be uniformly integrable. 

Let us summarize the discussion of the preceeding paragraph in 

PROPOSITION 6.1 Assume that there exists a junction µ: [O, oo )-+ [O, oo) 
such that 

P-lim µ(t)- 1 <t>T80 = 1 
t-> C(J 

lim µ(t)- 1 Cr(80)- 1 = C 

where C is as in Assumption 3.2.ii. Then the AM L estimator {Jt 
generated by (2.18)-(2.21) is asymptotically efficient. 

One easily checks that one can take in the preceeding examples 
Jl(t)=t. 

6.3 Relation with Hellinger process 

The Hellinger process is a conventient tool to describe the relation 
between two probability measures on the whole trajectory space of a 
certain stochastic process. In the counting process case there is an 
explicit expression available in terms of the compensator of the 
counting process For the model (1.3) the Hellinger process of order 
t is 
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The following theorem can be found in [3, p. 253] and tells us 
whether or not we can distinguish between 8 and B0 • 

THEOREM 6.2 Let P 8 , P 80 be two measures on the whole counting 
process trajectory space such that under P 9(P 80) nt admits the intensity 
process <PiB(<PiB0 ). Then P9 and P80 are mutually singular if and only 
if limi- 00 h( 8, 80 )i = oo with probability one. 

Since 

is a bounded function of s E[O, oo) if all components of B0 are 
positive the statement limi-+oo h(B, 80 ) 1= oo is equivalent with 

1. Jt(efJI(B-Bo))2 d -
Iffi A..T() S-00 

0 '+'s 0 
(6.5) 

by 

which says that 

I. . r St 4>.<PI d Imm ,1...re s = oo. 
O '+'s o 

This is clearly implied by our indentifiability condition in Theorem 
3.2. One might hope that the converse would also be true. This is 
not the case, despite the specific form ( 1.3) of the intensity process. 
In a more general situation this has been already noticed in [11]. 
There the notion of 80 -distinctness has been introduced which 
appears to contain the identifiability criterion of Theorem 3.2. At 
this point it is not clear whether we can relax our identifiability 
condition to (6.5) or that it is the price we have to pay to get 
recursive estimators. 
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