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ABSTRACT 

For a stationary ergodic process it is proved that the dependence coefficient 

associated with absolute regularity has a limit connected with a periodicity 

concept. Similar results can then be obtained for stronger dependence coeffi­

cients. The periodicity concept is studied separately and it is seen that the 

double tail a-field can be trivial while the period is 2. The paper imbeds renewal 

theory in ergodic theory. The total variation metric is used. 

I. Introduction 

We study some "total variation" properties for a stationary sequence similar 

to 0-2 theorems for Markov chains. 

Random variables are measurable mappings on a normalized measure space, 

the probability space. They induce a measure on their range, called their 

distribution. Let g:= (gn)nEz be a sequence of random variables (a process) with 

values in a common measurable space. Write Tg for the process with 

n EZ. 

In most of our results below ..ye may assume that g is the coordinate process, i.e. 

the identity on sequence space, where T corresponds naturally to the shift 

transformation (see also the end of section 2). If Tg is distributed as g we say that 

g is stationary. Denote g+:=(gn)n;,;1 and g_:=(gn)n,,;o. We say that tail 

(g+):= n"o-((T"g)+) is trivial if it contains only sets with probability 0 or 1. We 

investigate here a periodicity concept for processes. Furthermore we discuss an 

asymptotic independence condition for processes, called absolute regularity, first 

studied by Volkonskii and Rozanov (24] who attributed it to Komogorov, and 

later introduced during the study of Bernoulli shifts under the name weak 
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Bernoulli by Friedman and Ornstein [9]. The latter name is often used for 

countably valued processes. It can be defined as follows. The total variation 
11 v II = II v 113' of a signed measure 11 defined on a u-field ~ is given by 

II vii= sup I v(F)i + j v(Fc)I. 
FE.'ll' 

Note that if ~ is replaced by a sub u-field of ~ then the total variation 

decreases. This causes the monotonicity in total variation expressions below. 

Let Px denote the distribution of a random variable (vector) X. If X and Y 
are random variables on the same probability space, define their dependence 

It vanishes if X and Y are independent. Define as a measure of asymptotic 

independence of the past and the far future 

(3 .. := (3(,_,(T"O+), n ~o. 

We say' is absolutely regular if Jim.-~ (3. = 0. For ergodic stationary processes g 
it will be shown that if f3n < 1 for some n, then 

(1.1) (3. i 1 -1/p as n~oo 

for an integer p ~ 1 and we shall see that then g is in fact a "periodic" version of 

an absolutely regular process. 

For a stationary ergodic process g the notion "periodicity" seems sufficiently 

nice to be studied also in isolation from absolute regularity. Note that the set of 

integers k for which 

(1.2) as n ~oo 

has the form p Z or consists of {O} only. We shall say that the process' has period 
p in the first case and has infinite period otherwise. If p is finite, then it will be 

seen that tail (g+) is atomic but that its number r of atoms may be less than p. 
This phenomenon occurs for the well known skew product example (4.10). 

However in the absolutely regular situation (1.1) these numbers coincide again 

as is known in Markov chain theory where it is connected with the notion 

"cyclic moving subclass". For stationary ergodic sequences one has 

absolutely regular :;. p = 1 :;. tail ('+)trivial. 

For stationary Markov chains these notions coincide but by the examples at the 

end of section 4 this is not true in general. 
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In section 2 we discuss the "total variation" limit theorems. They are based on 
the simple fact that ergodic probability measures either coincide or are mutually 
disjoint. A result in Bradley [5] suggested the use we make of this property. In 
section 3 we study periodicity and indicate questions that arise when one 
formulates the notion periodicity for transformations instead of processes. This 
may even be more natural. Section 4 discusses examples. Section 5 considers 
absolute regularity for discrete time. At the end of the section we show how limit 
theorems for non-stationary processes could be obtained from them. Finally in 
section 6 we discuss a generalization to continuous time where no periodicity 
occurs. 

2. Statement of the limit theorems 

The result below shows for a process g with period p what happens if kg pZ 

in (1.2). Related earlier results in Berbee (2), p. 127, were only satisfying for 
countably valued mixing processes. However the "window-frame method" used 
there has some interest from a philosophical point of view. 

THEOREM 2.1. Suppose g is an ergodic stationary sequence. For any integer k 

(2.1) lim II P t.<T"<i+ - P,; .<T" .. <l+ II= 0 or 2. 
n-oo 

So either the measures in (2.1) are mutually singular for all n or else they are 

asymptotically the same. 
Ornstein and Sucheston [18] used the term 0-2 theorem in a study of Markov 

operators on a u-finite measure space. There are clearly relations here (see also 
the application following the proof of Proposition 4.1 ), but in general the result 

above seems different. 
In section 3 we study also the tail of g and for p = 1 we may conclude from 

these results that g is mixing, i.e. 

Jim P(g EA, T"g E B) = P(g EA )P(g E B). 
n-oo 

We assume here that the sets above are in the u-field generated by all 

g" -variables. The example below shows that from a certain point of view this 

generalizes renewal theory. 

EXAMPLE 2.1. Suppose .g is a stationary ergodic 0-1 valued process such that, 

given {g0 = 1}, the set {n: g" = 1} has the form 

· · · < s_, <So= 0 < S1 < · · · 
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and we assume that (conditionally) the increments of (Sn) form an i.i.d. sequence 
with distribution F. If F{k} > 0 one checks easily that the measures in (2.1) for 
n = 0 are not mutually singular. Hence if g.c.d.{k: F{k} > O} = 1 then ~ has 
period p = l, and because g is mixing we have the discrete renewal theorem 

lim P(gn = 11go=1) = P(go = 1). 
n-x 

A stationary sequence as above can be constructed as in [21 ], ergodicity 
following from Kolmogorov's 0-1 law for i.i.d. sequences. 

Let us now discuss absolute regularity. For g mixing Bradley [5] obtained the 
aperiodic version of the theorem below, strengthening a result in Volkonskii and 
Rozanov [24]. Ledrappier [15] gave a criterion for absolute regularity that is 
discussed in Note 5.1. 

Define the double tail o--field of g as ~x: = n no-(~; : Ii I~ n ). 

THEOREM 2.2. Suppose g is stationary ergodic. If f3n < 1 for some n, then g has 
finite period p and (1.1) holds. Moreover 

(i) the double tail er-field of g is partitioned by U0,,.;<p{T;g EE} into atoms that 
are TP -invariant, 

(ii) the process g conditioned by the event { rg EE} is absolutely regular. 

NOTE. Given {Tg EE} the process { defined by 

n EZ, 

is stationary. This need not be true for f 

It will be clear that the result above generalizes the notion "cyclic moving 
subclass" of Markov chain theory (see e.g. [6]), but as we mentioned already, this 
generalization does not carry over to the notion periodicity. 

Bradley [4] remarks that the theorem above carries over easily to several 
stronger dependence coefficients by using his earlier results on these coefficients 
for mixing g in combination with the decomposition of our theorem (see also its 
proof). Following the notation of [12] we get that if g is ergodic stationary then 
unless for all n, <fin = 1 (or e.g. I(n) = oo) we will have 

lim </in= 1-.!. (1im I(n) = logp) 
n-oo p n-~ 

where p is the period of g. However for the weaker dependence coefficient a" it 
holds that limn_oo a" may be any value in [O, n by t'he example of theorem 6 of (3]. 

Before continuing we discuss some conventions. We study a stationary process 
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( ~n) with values in a measurable space (f, f!/), so its distribution is defined on the 

product space (f, :!If, and we can usually assume, without losing generality, _that 

an) is the coordinate process on this sequence space, given by 

~n (x) = Xn, 

We also write x = (x_, x+) as above to denote the position of the first coordinate. 

For measures µ' and µ" on the same measurable space we define 

(2.4) µ,' /\ µ," := µ' - (µ' - µ"f = µ" - (µ"- µ'f 

and if µ' and µ," are probability measures they have mass q: = IIµ' A µ"II in 

common, such that 

(2.5) !IIµ'-µ"//= 1- q. 

If f' (f") denotes the density of µ 1 (µ")with respect to e.g. µ = !{µ 1 +µ")then we 

may also write 

µ 1 Aµ"= min(f', f")µ. 

3. Periodicity 

We prove Theorem 2.1 but first show the following "contraction" lemma, a 

somewhat technical but simple consequence of the ergodic theorem. 

LEMMA 3.1. Let T be a transformation on a measurable space and suppose P 

and Qare probability measures on this space, not necessarily T-invariant. Assume 

f!Ji", n ~ 1, forms a decreasing sequence of a--fields on this space, with a 

T-invariant intersection f!li~. If P and Q have mass in common on :Ji~ and T is 

ergodic measure preserving for both P and Q on f!li~, then 

(3.1) Jim 11 P - o 119'. = o. 
n-"' 

PROOF. Letµ:= !(P + Q ). Denote by f (and g) the density of P (and Q) with 

respect to µ. By the martingale convergence theorem 

II p - Q 119'. = f I£,..(/ I g/in) - £,.. (g I g/in) Idµ 

~ J I E,.. (f I f!Ji,,)- E,.. (g I :Ji~)/ dµ =II p - Q 111'..· 

So if P and Q coincide on f!li~ we have (3.1). Otherwise, by ergodicity, P and Q 

are mutually singular on :Ji,, C f!Ji" and the terms in (3.1) all equal 2. 0 
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PROOF OF THEOREM 2.1. We may assume g is the coordinate process. Define 

on the sequence space 

P:= P<--<+ and Q:= P<-.cT•o. 

and let 3i. be generated by (g;, Ji I;:;; n ). Note that by stationarity (and 

monotonicity) the assertion of the lemma would imply the theorem. Only some 

care is needed in verifying the properties of Q in the lemma because Q may not 

be T-invariant. Define 

Sx:=(x-,(Tx)+) for sequences x. 

Note also that 

SkTx = (( ... , X-1, Xo), (xk+i, Xk+2, ... )), 

TSkx = (( ... , X-1, xk), (xk+i. Xk+2, ... )) 

coincide except possibly at the Oth coordinate. Hence for A E '?faoo in the double 

tail (]'-field 

(3.2) 

Because P is T-invariant, {3.2) implies that on 3ioo also Q = ps·k is T-invariant. 

Moreover if A E '§i= is T-invariant then also by this property s-k A is T­

invariant, so ergodicity of T under P on '§i~ implies ergodicity under Q. Thus the 

lemma implies the theorem. Ill 

THEOREM 3.2. Let g be stationary ergodic with finite period p. The double tail 

a-field of g is partitioned into at most p atoms of the form 

{Tg EE}, o~ i < r, 

where r divides p. Moreover this tail field coincides with the P -invariant O'-field. 

It follows that the double tail <T-field of g is trivial if p = 1. 

PROOF. We use the notation of the proof above and let EE:¥, with positive 

probability. Because (1.2) holds with k = p we have 

(3.3) P(A n E) = P(A n s-pE) 

for A f-measurable, because also EE '?fa., C n,,u(f ,(T"g).). By stationarity 

A in (3.3) may also be any finite dimensional set (here we use (3.2) again). By 

stationarity we also have from (1.2) 

Jim II PcT"<J-h - Pcr•+•n -<•II= 0. 
n--i:;:o 
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Writing 

s_x:= ((Tx)-, X+) 

we get for A finite dimensional 

P(A n E) = P(A n s·:?E). 

Combining this with (3.3) and using that s-:ps-pE = Y-PE we obtain 

P(A n E) = P(A n Y-PE). 

295 

Let A =A, approximate E. We get P(E) = P(E n Y-PE) so E is a.s. yr_ 
invariant. Hence 

O~i<p 

is a.s. T-invariant and by ergodicity has probability L Therefore P(E) ~lip and 

it follows that :Ji= is atomic under P. 

Assume E E :Ji= as above was chosen to be an atom. Let r be the smallest i 

with E n y-•E ~ 0 a.s. Necessarily because T is measure preserving and E is an 

atom, one even has E = T-'E a.s. So, also because T is measure preserving, the 

sequence E, r- 1 E, T- 2 E, ... repeats itself with period rand by the definition of r 

the sets y-jE and y-jE are a.s. disjoint iff i - j does not divide rand these sets 

coincide otherwise. So r divides p because E = y-pE a.s. and the a.s.-invariant 

set Uo-, , y-•E partitions :Ji,. 0 

NOTE. It will be clear that also the TP - and T' -invariant a-fields coincide. 

COROLLARY 3.3. If g is stationary ergodic with finite period p, then tail(~,) and 

tail(f ) coincide a.s. with the double tail <T-field, and so with the yr -invariant 

<r-field. 

PROOF. By the approximation argument in Doob [6}, pp. 458-9, each 

TP -invariant event coincides a.s. with an event in tail (t'+), which of course is 

contained in the double tail CT-field. By Theorem 3.2 this a.s.-inclusion is an 

a.s.-equality. This proves the assertion for tail (~+ ), which clearly is partitioned 

into atoms by Uo,,;;<, y-'E, but now with E+ E tail(g+). The same argument 

applies to tail(f) also. D 

Vanishing of coefficients in (1.2) imposes a strong property on the process. If 

e g P = P then /: is a Bernoulli process in case g is ergodic because 
• • I; .<• < .(T/OJ. '> 

for n = 1, 2, .... 
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This follows because the left-hand side is the same for n = 1, n = 2, ... and its 

limit can be identified as the right-hand side by the ergodic theorem. 
The results are discussed here from a probabilistic ("process") point of view, 

but there are important connections with an ergodic ("transformation") point of 

view. 
Let T be an ergodic, measure preserving transformation with finite entropy on 

the unit interval, provided with a probability measure. Below we assume that 2/> 
is a generating partition with finite entropy. Then 

g.(w):=i if T"w E Pi> n E Z, 

determines a stationary process g == fj>, say with period p = p>I'. One would like 

to consider pT: = infJ> pJ>. Possibly nicer from the point of view of ergodic theory 
is pT, obtained as pT, but with (1.2) in the definition of p replaced by the weaker 
requirement 

where g{:= (~;, ... , gi) and for the d-notation [22) is followed. Investigation of PT 
is far from simple. One is interested in the invariant 

8~+1: = itjHll p ~-.<T"n+ - p ~-.cr•+•~>J 

and particularly in when 8 is attained. Here g should read gJ>. This is related to 

isomorphism problems. See also the skew product example below. 
Assume T is a K -automorphism. Roblin and Sinai [20) proved that then both 

left and right tail O'-fields of g>1> are trivial. Ornstein and Weiss [19) showed that 
one could always refine a finite ~ to a finite g}, such that the double tail O'-field of 
e is a.s. the entire O'-field, and then certainly p!!l = oo. The requirement that PT 
is finite implies that there exists a partition ~ for which ~if' has trivial double tail 
u-field. Possibly one cannot find such ~ for certain K-automorphisms T. 

4. Examples of periodicity 

The first example shows that past and future can be curiously entertwined 
while p = l. The second example suggests that periodicity may be a nice way to 
say more about skew products. 

Throughout this section S:= (S.) will be a random walk with independent, 
identically distributed increments ( T/•) determined by 

(4.1) So:=O; S.-S.-1=11., n EZ. 
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EXAMPLE 4.1 (random walk). Suppose the increments of S have distribution 

(4.2) P(T/nEI)= r l+lxla dx, O<a<l. 

Then (Sn )n "o and (S_,, )n,.o are independent and by symmetry equally distributed. 

Moreover such a random walk is transient, i.e. any bounded set contains only 

finitely many Sn and (Sn) is "oscillating" making occasionally large jumps 

between left and right half axis (see [8], p. 204 ). As in [2] or [25] one can arrange 

(Sn )nEz into an ascending sequence of random variables specified by 

···<Sa-_,< S,"' = 0 <Sa-,<··· 

and its increments ~": = Sa" - S""-" n E Z, form a stationary ergodic sequence. 

On the interval (0, 1) the measures 

(4.3) P(S, E · , S1 > 0) and P(S2 E ·, S2 > S, > 0) 

have positive mass a in common. Similarly the measures 

P(S, E ·, S1 > 0, (T/-, (Tri)+) E ·) 

and 

also have mass a in common, because the vector of the form (ij-, i)+) that is 

added to both of the expressions in (4.3) is independent of the other random 

variables of these expressions. Let (S") denote in each of these cases the random 

walk with increments ( ij" ). These Cauchy random walks are transient and miss 

(0, 1) with probability 'Y > 0. Then it follows that the distributions of 

have mass at least a-y > 0 in common and so ~has period p = 1 by Theorem 2.1. 

EXAMPLE 4.2 (skew product). Let S described by (4.1) be a random walk on 

the integers such that 

(4.4) g.c.d. 2 = 1, where 2:= {i E Z: P(T/o = i) > O}. 

Assume p is a stationary ergodic sequence of real random variables such that p 

and T/ are independent and also PP is non-atomic. The last assumption implies 

that p has no "recurring" patterns in the sense that 

(4.5) P(p=rp)=O fork~ 0. 
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The shift T~ associated with the process 

(4.6) 

will be studied here. It is a factor of a skew product that is defined here as the 
shift T< but with (pk) replaced by ( Tk p ). In case S" visits all integers a.s. the 
t-sequence determines the p-sequence a.s. and one observes that both these 
T<-shifts are isomorphic. From a general theorem in Kakutani [13] ergodicity of 
t is known by (4.4). We shall also use the following inequality. 

PROPOSITION 4.1. Under the conditions above we have 

(4.7) II P; .(T'°sl• - P ~ ... (T" '\1+ II~ II Psn+I - p s.,., H II, 

and equality holds if the random walk is recurrent. 

The invariant o of section 3 may be useful in the recurrent case. 

PROOF. Let us first note that for random variables X' and X" on a common 
probability space with the same space of values, we have the "coupling" 
property 

(4.8) llPx· 11 Px .. 11~ P(X' = X"). 

By Schwarz [22] equality can be attained on a suitable probability space for any 
pair of marginal distributions. There and in the later result of [2] coupling 
arguments as below can be found. 

By the Markov property, the right-hand side in (4.7) equals 

II p 5-.(T"S)+ - p S-,(Tn+kS)+ 11. 

Denote this as 11 Px· - Px .. 11 and let q be the mass that these probability measures 
have in common. Similarly as mentioned above we can construct a probability 
space such that equality holds in (4.8), i.e. with probability q 

(4.9) S~ = S~ and (T"S')+ = (T"+kS")+. 

We may suppose additionally that there is given a process p' = p" independent of 
these random walks and distributed as p. By (4.9) we have, with the obvious 
notation, with probability at least q 

e = ~~ and (T"fl+ = (T"+kf')+ 

which implies (4.7) by (4.8) for the ~-processes and (2.5). 
To prove the second assertion we let 11 Px· - Px .. 11 denote now the left-hand side 
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of (4.7). Suppose these measures have mass q' in common. We can construct a 
probability space with processes f and f' marginally distributed as g, such that 
the event A for which 

t!- = C and (T"O+ = (T"+kf')+ 

has probability q'. To do this one first constructs the random variables above as 
before and then extends the probability space to get all of f and f', with the 
right marginals. On A there holds 

Ps:,=Ps;·,, S~=S~, n ~O. 

By recurrence of S: and S ~ on Z we have p ~ = p % for all k E Z on A. Also 

n 6: 1, 

and, again by recurrence, writing Z = s:+k+1 - S~+1 

for all k E Z on A. 

By (4.6) we should have Z = 0 on A and so 

q 1 ~ P(Z = 0) ~II P Sn+k+I II P s,.,ll 
by (4.8) for the S-variables. This proves the converse of (4.7). The study in [14] of 
(4.10) makes a deep use of a "recurrent pattern" argument as above. 0 

From the 0-2 law of theorem 71(d) in [17] or, in case equality holds, from 
Theorem 2.1 it follows that the right-hand side of (4.7) converges for n ~ oo iff 

there is some n, i for which 

P(Sn = i), P(Sn+k = i) > 0 

or also iff k divides 

p':=g.c.d.{i-j: i,jE.Jl}. 

So by Proposition 4.1 the period p of~ is at most p' and equals p' if the random 

walk is recurrent. 
To study the double tail er-field of ~ it is sufficient by Theorem 3.2 to 

investigate much weaker properties of the shift T •. This shift is a factor of the 
skew product referred to above. Let TP be the shift on p-sequence space. 
Following the argument in Adler and Shields [1] it can be concluded easily from 
Kakutani [13] that the skew product is weakly mixing under P, iff the family 
{ T~ x T~hjeY is ergodic under PP x PP or equivalently if this holds for 
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{ y~· x id, id x T~'}, and for this it is necessary and sufficient that T~· is ergodic 

under P". Hence by Theorem 3.2 the process g has trivial (double) tail u-field if 

the P-invariant u-field of p is trivial. This improves Meilijson [16] somewhat 

and indicates the use of periodicity. 

Let us now discuss some specific examples. The literature on skew products 

considers only transformations but the choice of the process g that is meant 

below will be clear in each case. Examples with p = 1 and p deterministic were 

discussed by Shields [23], who discusses a process that is not absolutely regular 

(weak Bernoulli) and by Feldman [7]. The case where 11 and p are Bernoulli 

processes with 

(4.10) P ('Tio = ± 1) = P (po = ± 1) = i 

was studied by Kalikow [14] and has p = 2 whereas g has a trivial double tail 

u-field. The transformations associated with the last two examples are not 

Bernoulli shifts. 

5. Absolute regularity 

Let us note first that an absolutely regular process g has period l because 

~II P ~-.(T"i;l+ - P ~-.(T"+ 1 0+ II~ f3n + f3n+l t 0 as n -----? oo. 

PROOF OF THEOREM 2.2. Suppose f3n < 1 for some n ~ 1. Then g has finite 

period. To see this note that for i = n the measure µ,,: = P e--.<r'el+ by (2.5) has 

mass a:= 1 - {3" in common with µ: = Pe_ x P{+, and also µ, for i > n has at least 

mass a in common with µ, (by stationarity of g+ ). Because µ, is finite not all µ, 

can be mutually disjoint and so g has finite period. 

We will assume that g is a coordinate process. At the end of section 3 we 

have seen that tail(g+) and tail(g_) are partitioned into r atoms of the form 

{(TO+ EE+} and {(T'g). EK} respectively, 0 ~ i < r, that coincide a.s. for each 

i and are T' -invariant. We write these sets also as {g± E y-•E,J. Let 

P'( · ):= P( · f Y-'(K x E+)). 

The measures P~: = P~± are concentrated on y-;E". Using (2.5) and the 

decomposition P = (1/r)2:0,.,<,P' we have 

where %m.n: = <J'((Tmg)_, (rO+). The measure P; is concentrated on 
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r' (E- x E+) and P'- x P: on y-iE_ x rkE+, so they can have mass in common 
only if i = j = k. Thus one observes 

(5.1) 

For some n we have /3. < 1 and some term, say the ith, in the sum above is 
positive. Because {3. is non-increasing we may assume r divides n. Let us now 
compare for this i 

(5.2) P' and P~ x P~. 

The process t":= (~nr+;)o,,,<, is stationary and has trivial right and left tail under 
P'. As in Bradley [5] the measures (5.2) on n" g;_"·" are ergodic, measure 
preserving under T' and by Lemma 3.1 

(5.3) lim II P 1 - P~ X P~ll ..... -•. n = 0. 
n-oo 

Because T is measure preserving under P this holds for any i and we may 
replace g;_"·" by fffeo.2n· From (5.1) it follows now that 

1 1 - {3. t -
r 

as n---'» oo. 

We saw that g is absolutely regular under P' and so its period is 1. Thus the 
period p of ~ divides r. Because r ~ p we have r = p. 0 

NOTE 5.1. From the argument leading to (5.1) and (5.3) it follows that under 
(1.1) on .'.ffeoo:= nnu((Y-"g)_,(T"g)+) there holds 

(5.4) 

with f = 0 outside U 0., 1<p Y-'E- x r-'E+ and f = p on this set. So if the measures 
in (5.4) are equivalent on sequence space, provided with any u-field containing 
:Ji,, then clearly p =I and the process g is absolutely regular. Ledrappier [15] 
obtained a similar result for finite valued processes and gives several examples. 

NOTE 5.2. If one is only interested in Theorem 2.2, then one could also show 
that tail (g+) has an atom using [5], lemma 1. Then some of the considerations 
using aperiodicity would become superfluous. 

Results as above can also be used to study processes that are not stationary. 
Suppose { = <t" ) • ., 1 is any process such that 

(5.5) 
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where ~ = ( ~" )" .,, 1 is stationary and has trivial tail. Then 

(5.6) 

This follows by using the martingale argument as in Lemma 3.1. The reader will 

note that (5.5) can be relaxed to the requirement that the mass of the ?{-singular 

component of P<r"f>• vanishes asymptotically. 

6. Absence of periodicity for continuous time 

We discuss a way in which Theorem 2.2 can be extended to continuous time 

such that no periodicity occurs. We require a light measurability condition. 
The process(~,) will have its sample paths in the space rR provided with a shift 

invariant a-field 9. Here r is any set. If x E rR is a sample path and I an interval 

denote by X1 the restriction of x to I. Let g;1 be the a-field consisting of all 

D E 9 such that if two sample paths x and y coincide on I then y E D if x E D. 
We assume D is generated by all % for finite intervals I, and also that for DE 9 

f(t, x):= lo (T,x) 

is jointly measurable in t and x. 

Assume ~:=a,) is stationary' i.e. its distribution on (fR, g;) is shift invariant. It 
has the continuity property 

(6.1) lim P({gED}l>{T,gED})=O. 
r-o 

To see this note that by stationarity the probability above coincides for each s 
with 

J lf(s, x)- f(s + t, x)I P(~ E dx). 

Average over s E [O, h] and apply Fubini. The assertion (6.1) follows by using 

that because f ( · , x) is measurable for all x 

i r h 

h Jc, lf(s,x)-f(s+t,x)ids~o as r~o. 

f3,:={3(f,(T.0+), t~O. 

Under the measurability conditions above we have 

THEOREM 6.1. If ~ is stationary ergodic then limHoo {3, = 0 or 1. 
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PROOF. Let e for any h > 0 be the discrete time process 

t~:= t(nh,(n+l)hJ, n EZ. 

We may define tail(t+):=tail(t~) because tail(t:) is the same for all h >0. 

Assume (3, < 1 for some t > 0. Because {3, is non-increasing we may assume h 

divides t. By Theorem 2.2, e has finite period and for any atom {g E E} in 

taiI(g+) either the atom { T1'g EE} coincides or is disjoint with {g EE} a.s. So the 

function 

f(h) = P({g EE}/;;. {Thg EE}) 

has values 0 or 2P(g EE). By (6.1) this function is continuous and because 

f(O) = 0 it vanishes. So {t EE} is a.s. invariant and by ergodicity has probability 

1. So e is absolutely regular with period 1 and hence f3, i 0. O 
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