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The analysis of queueing models which can be characterized as a random walk in 

the first quadrant of the plane often leads to the problem of solving a functional 

equation for a bivariate generating function. Recently, a method has been developed 

by which a rather general class of such functional equations related to stationary 

distributions can be solved with the aid of the theory of boundary value problems, 

see I 1] ,[ 3] ,[ 4] ,[ S] ,[ 6] ,[ 7] ,[ 10]. In the present study we shall show that the same 

method can be applied in the analysis of the time dependent behaviour of this class 

of queueing models. For this discussion a relatively simple model with two types of 

customers, Poissonian arrival streams, paired services and a general service time 

distribution will be considered. The generating function of the joint queue length 

distribution at the nth departure instant will be determined. This function forms 

the starting point for the analysis of the asymptotic behaviour of the process as 

n->-

Key words: queueing system, two-dimensional state space, time dependent behaviour, 
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1. Introduction, the model 

In [ 3] the stationary M/G/1 queueing system with alternating service has been 

studied. The functional equation for the generating function of the joint queue 

length distribution at departure epochs has been reduced to two Riemann-Hilbert 

boundary value problems. In the present study it will be shown that this technique 

of solving functional equations by formulating Riemann-Hilbert problems, or by formu­

lating a related Hilbert problem (see [9] for this terminology) can also be applied 

in the time dependent analysis of queueing models with a two-dimensional state space. 

To show this we shall consider a queueing system with two types of customers and 

paired services, of which the functional equation for the generating function of the 

joint distribution of the number of type 1 and of type 2 customers left behind in the 

system at the nth departure instant has the same structure as the functional equation 

analysed in [ 3] , but is of a simpler form. 

This model is as follows. Two types of customers arrive independently at a single 

service facility. For type j customers the interarrival times are independent random 

variables with a common negative exponential distribution with mean a. (j=l,2). An 
J 

arriving customer who finds the system empty is immediately taken into service; oth-

erwise he joins queue I or 2 depending on his type. As soon as a service has been 

completed, a new service is started if any customer is present. In general a couple 

of two customers of different type is simultaneously served. If after the completion 

of a service only customers of one type are present, a customer of this type is in­

dividually served. In each queue customers are served in order of their arrival. 

Successive service times are independent random variables with a common distribution 

function B(t), for paired services as well as for individual services. 

Denote by x.(n), n=0,1,2, .. , j = 1,2, the number of type j customers left behind 
-J 

in the system at the nth service completion instant. It is assumed that the process 

starts for n = 0 with an empty system (this assumption is not essential, see [ I]). 

It is readily seen that the process {(e 1(n),e2(n)),n=0,1, .. } is an irreducible, ape­

riodic, discrete time Markov chain with state space {0,1,2, .• } x {0,1,2, .• }. In the 

sequel this Markov chain will be analysed. For this we introduce the generating func­

tion: for lrl < 1, IP 1 1..; I, IP2 1..; I, 

(I) 
n e1<n) e2(n) 

L r E{pl P2 I ~I (O) = 0, e2(0) = O}. 
n=O 

Further we define 

(2) 
1 a/a., j = 1,2; := +-· c. := 

C< al Cl ' J J 2 

(3) f3 ( s) J -st dB(t), Re s ;;;. O; := e 
0 



(4) f\ :=J tkdB(t). k=l,2, •• ; 
0 

(5) a := f3 1/<X. 

2. The functional equation 
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From the definition of the queueing process it follows that for j = 1, 2, the se­

ries {x.(n) ,n=O,I, •. } satisfies the relations 
-3 

(6) x.(n) = [x.(n-1) - I]++ ~.(n), 
-J -J -J 

n= 1,2, .. ; x. (0) = O; 
-J 

here s_.(n), n= 1,2, .• , stands for the number of type j customers who arrive during 
J 

the nth service. The generating function of the distribution of (~ 1 (n) .~ 2 Cn)) is 

given by: for IP1 I .;; l, IP21 .;; I, 

(7) n=l,2,. •• 

From the relations (6) the following functional equation for the generating function 

~(r;p 1 ,p 2) is deduced by straightforward calculations: for lrl <I, IP11 <I, 

IP2I < J' 

Because the generating function ~(r;p 1 ,p 2 ) is uniquely determined by the relations 

(6), this functional equation must have at least one solution with the properties of 

a generating function. 

As a first investigation we take p2 =I in equation (8). This leads to: for 

JrJ <I, Jpl I <I, 

(9) 

This is a well-known equation from the theory of the M/G/1 queueing system, cf. [ 2], 

p.240. Hence, for lrJ <I, 

(10) Hr;O, I) 
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here p1 = µ 1 (r) is the unique solution inside the unit circle of the equation 

( I I) p I - r s( =~I ) = 0 • 

An analogous result can be obtained by taking p 1 =I in equation (8). But for obtain­

ing the complete solution of this equation more powerful techniques are required. 

3. Analysis 

Throughout this section, r is fixed and real, 0 < r <I. 
Equation (8) relates the bivariate function ~(r;p 1 ,p 2 ) to two univariate functions 

~(r;p 1 ,0), ~(r;O,p 2), and a constant ~(r;O,O). A central role in the analysis is 

played by the kernel 

because if for a pair (p 1 ,p2), Jp 1 J.;;;; I, Jp 2 J.;;; I, this kernel vanishes, then the 

righthand side of equation (8) must also vanish. The existence of such pairs (p 1,p2) 

can be shown with Rouche's theorem, cf. [I], p.49. This provides us with a relation 

between the functions ~(r;p 1 ,0) and ~(r;O,p2), which can be written in the following 

form: 

( 13) 
4>(r;O,p2) 

+ -~---
1-p2 

( 14) if 

Note that the cases p 1 =I and Pz =I have already been discussed in section 2. 

From the above functional relation the functions ~(r;p 1 ,0) and ~(r;O,p2 ) have to be 

determined. For this purpose we shall first introduce a parameter o in order to de­

scribe the zeros (p 1,p 2) of the kernel (12) as functions of this parameter, cf. [3]. 

Hence, let 

(l S) 

Substitution of (IS) in equation (14) leads to the equation 

(16) 0. 
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This equation defines a two-valued function w(r;o) of o which is given by 

(17) w(r;o) 

LEMMA I. In the domain Re o < I the function w(r;o) is a two-valued ana7..ytfo function 

with exact7..y two branah points, say o1 (r) and o2 (r), whiah are the roots in the do­

main Re o < 1 of the equation 

~Because s(.) is the Laplace-Stieltjes transform of a positive random variable, 

the function S((l-o)/a) is regular for Re 6 <I and bounded in absolute value by one 

for Re o.;;;; 1. Hence, the function w(r;a) is analytic in Re o < 1, except at points 

where the discriminant, cf. ( 18), of equation (I 6) vanishes. Because c 1 + c 2 = 1, cf. 

(2), we have for Re o =I as well as for lol .... ~,Re o < 1, the inequalities 

With Rouche's theorem it follows that equation (18) has exactly two zeros in the do­

main Re a < 1 • 0 

By considering equation (18) for real a on (-~,1] it is seen that the two roots of 

this equation in Re o < 1 are real (since r has been chosen to be real, positive), 

and that they can be chosen such that 

(20) -1 < o1 (r) < 0 < o2 (r) < 1. 

Now we can say that equation (13) holds if, cf. (IS), 

(21) 1 
p 1 = -2 - w(r;o), 

cl 
- [2o -w(r; o)], 
2c2 

for one of the two branches of the function w(r;o), cf. (17), and for o such that 

IP 11.;;;; I and jp2 1.,.;;; 1. If p 1 and Pz are given by (21), then for every o, Re o.,.;;; 1, 

and for each branch of the function w(r;o) the following inequality follows from 

equation (16): 

(22) lr s(1:0)1 < 1. 

Hence, because either IP 11 <I or lp 2 j < 1 for every o, Re o.;;;; 1, and for each branch 

of the analytic function w(r;o) if p 1and p2 are given by (21), the relation (13) to-
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gether with (21) can be continued analytically to the domain Re 6 <I (principle of 

permanence). 

LEMMA 2. The functions ~(r;w(r;o)/2c 1 ,o) and ~(r;O, 26-w(r;o) /2c2) each possess a 

continuation as a two-vaZ.ued anaZ.ytic function into the domain Re o < 1, with no 

other branch points than 61 (r) and o2(r). 

PROOF. The assertion will be proved for the first function, for the second one the 

proof is similar. 

By lemma I and the properties of the generating function ~(r;p 1 ,p2) the function 

~(r;w(r;o)/2c 1 ,0) is regular for those cS and branches of w(r;o) for which lw(r;o)I < 
< 2c1• Into a subregion of Re cS < 1 where lwCr; o) I ;;;;.. 2c 1 for one of the branches of 

w(r;o) the function ~(r;w(r;o)/2c 1 ,0) can be continued analytically by means of rela­

tion (13) together with (21). since by (22) then 120 - w(r; o) I < 2c2 holds. From le1D111a 

1 it is further clear that the only branch points, which the function 

~(r;w(r;o)/2c 1 ,0) can have in the domain Re cS <I, are o1(r) and 62(r). 0 

Next, relation (13) together with (21) will be considered for o on the real in-

terval between the branch points o1 (r) and o2(r), cf. (20). For o E [o 1(r),o 2(r)] the 

discriminant of equation (16) is non-positive, so that, cf. (17), for 6 on this in­

terval the two branches of the function w(r;o) are complex conjungate and lie on the 

contour 

6 trmw o. 

-0., 

Rew 
-+ 

Figure 1 

The contour L(r) 

in the case that 

c1=c2=L a= 1.6, 
-2 

S(s) = O+!a 1s) , 

for different 

values of r 
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The interior of the contour L(r) will be denoted by L+(r), its exterior by L-(r). 

LEMMA 3. POP w E L(r), 

(24) 

w(r;w/2c 1,o) w(r;O,w/2c 2) 
-------- + 

I - w/2c 1 - w/2c 2 
<J>(r;O,O) + 

PROOF. From (17) and (23) it is clear that for every w E L(r) there exists a 8 on the 

interval [o 1(r),o2(r)], namely o=Re w, such that w = w(r;8) for one of the branches 

of the function w(r;8). Moreover, then 26-w(r;o) =;:;.Hence, equation (24) follows 

from (13) together with (21) by taking 8 E [ o1 (r) ,o 2(r)], which is allowed by lemma 

2. D 

Equation (24) will be the basis for the formulation of a boundary value problem, 

which will be discussed in section 4. This section will be concluded with the proof 
+ 

that the functions 4'(r;w/2c 1 ,0) and <l>(r;O,w/2c 2) are regular for w E L (r). 

For simplicity the discussion will be confined to the case c2 ~ ! ~ c 1, cf. (2). This 

is of course no restriction. 

First we consider the question whether the point 2c lies inside, on or outside 
2 

the contour L(r). Since this contour crosses the real axis only at w = o 1 (r) and at 

w = 62Cr), cf. lennna 1, we have 2c 2 E L(r) if and only if 2c 2 = 62 (r), cf. (20). Hence, 

we insert 6=2c2 in equation (18), which leads to the equation (using c 1 +c 2 =1): 

( 25) c = 
2 

c-2c ) (I-c 2) r S -a1 . 
This equation inspires us to define the function 

(26) R(s) s 
[s(1-a2s)( Re s .,;;; I := J::s 2 • 

LEMMA 4. If a.;;;; 2 then R(c 2) < 1 for c 2 < 4 a:nd R(l) = 1. If a> 2 then there exists 

a constant c(a), 0 < c(a) < L such that R(c ) < 4 for c < c(a) and R(c ) ;;;,, 1 +'or 2 2 2 J' 

PROOF. Rewrite equation (25) as 

(27) s 
1-s 

r s(1-}s ), Re s .,;;; 4. 

On the line Re s = ! as well as for Is I ... "'• Re s < ! , the inequality 
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(28) 11:sl > r;;;;., rJs(1-o:2s)1, 

holds for every r, 0 < r <I. Hence, by Rouche's theorem equation (27) has for every 

r, 0 < r < I, exactly one root s ~ s0 (r) in the region Re s .,;; l. From the properties 

of the Laplace-Stieltjes transform 13(.) it is clear that this root s0 (r) must be real 

and that 0 < s 0 (r) < j. Further, s0 (r) is the inverse of the function R(s) for 

0 < r <I. This implies that the function R(s) increases strictly from zero to one 

on the interval 0 < s < s 0 (1), and that R(s);;;, I for s0 (1).,;; s.,;; j. Whether s0 (I) < j 

or s0 (J) = ! depends on the derivative of R(s) at s = j. From (26) we obtain 

(29) R'W 4(1-ja). 

Hence, s0 (1) = l for a< 2, and s0 (I) < l for a> 2. For a= 2 we find by considering 

higher derivatives of the function R(s) at s = j that s0 (1) = j. By taking c(a) =s0(I) 

for a > 2 the proof has been completed. D 

LEMMA 5. For 0 < r <min{l,R(c2)} we have 2c 2 EL (r). If R(c 2) <I then 2c2 E L(r) 
+ fo:r> r = R(c 2), a:nd 2c 2 E L (r) fo:r> R(c 2) < r < I. 

~From (25), (26), and the remark above these formulas we have 

(30) 2c2 E L(r) 

From equation (18) it is clear that o2(r) is a continuous function of r for O<r<I, 

and that o2(r) + 0 as r + 0, so that 2c2 E L-(r) for r + 0. Further, it is seen from 

(18) that o2(r) as function of r, 0 < r <I, has an inverse, so that it must be a 

strictly increasing function of r, 0 < r <I. With (30) this is sufficient to prove 

the assertion. D 

LEMMA 6. The fu:nations ~(r;w/2c 1 ,0) a:nd ~(r;O,w/2c2 ) a:r>e :r>egula:r> in the domain L+(r) 

a:nd aontinuous up to the bou:nda:ry L(r). 

PROOF. Because ~(r;p 1 ,p 2 ) is a bivariate generating function of a probability dis­

tribution in p1 and in p2 , the functions ~(r;p,O) and ~(r;O,p) are regular for !PI <I 

and continuous for \p\ ..;; I. Further, it follows from the monotonicity of the function 

S(.) and from the fact that Rew..;; o2(r) for w E L(r), cf. (23) and lemma I, that for 

w E L(r), cf. (23), (18), (20), and therefore also for w E L + (r), 

Hence, the assertions for the function ~(r;w/2c 1 ,0) are obvious since we have chosen 

c 1 ;;;. !, and o2(r) <I by (20). Also, the assertions for the function ~(r,O,w/2c 2 ) 

have been proved by the above in the case 2c 2 > o2(r), i.e. for 0 < r <min{l,R(c 2)}, 
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cf. lemma 5. 

Finally, suppose R(c2) <I, cf. lemma 4, and R(c 2) .;;;; r <I. In this case we use the 

analytic continuation of the function ~(r;O, [2.S-w(r;o)] /2c2) discussed in lemma 2. 

By letting o tend to o2(r) in equation (13) together with (21) it is seen that 

~(r;O,o 2 (r)/2c 2) is finite. Because the function ~(r;O,w/2c2 ) has a power series ex­

pansion at w=O with positive coefficients, cf. (I), it follows that this function is 

regular in the disk JwJ < o2(r) and continuous for JwJ .;;;; o2 (r). With (31) this proves 

the assertions for ~(r;O,w/2c2 ) in the present case. D 

4. Formulation as a Hilbert boundary value problem 

Throughout this section r is fixed and reat, 0 < r < I, and c 2 .;;;; ~ .;;;; c 1 • 

As in [3] equation (24) can be reduced to two Riemann-Hilbert problems on the 

contour L(r). However, in the following we shall give a slightly different approach 

by formulating a single Hilbert problem, cf. [9], §§34-37. This method is somewhat 

simpler, and above it has the advantage that it is still applicable in the analysis 

of a generalization of the present model in which the duration of individual services 

has not the same distribution as that of paired services, see [I], §IV.2. 

As in [3] equation (24) is transformed into a relation on the unit circle by intro­

ducing a conformal mapping. 

LEMMA 7. There exists a confomat mapping g(r;z) of the unit disk J zl < I onto the 

domain L+(r). This conformal mapping is uniquety determined by the aonditions 

(32) g(r;O) = O, g'(r;O) >o. 

The conformal mapping g(r;z) is continuous for Jzl.;;;; I and estabtishes a one-to-one 

correspondence between this region and L+(r) U L(r). Further it satifies the relation 

(33) g(r;z) = g(r;z), 

PROOF. Because L+(r) is a simply connected domain, cf. (23), the existence of the 

conformal mapping g (r; z) follows from Riemann's mapping theorem, cf. [ 8] , vol. III, 

§2, theorem 1.2. The uniquene_ss theorem for conformal mapping, cf. [ 8], vol. III, §2, 

theorem 1.3, implies the uniqueness of g(r;z) given the conditions (32). The asser­

tions for lzl =I follow from the boundary correspondence theorem, cf. [ 8], vol. III, 

§8, theorem 2.24. Finally, relation (33) is a consequence of the property that the 

real axis is an axis of symmetry of the contour L(r), cf. (23), and of the choice 

made in (32). D 

In the sequel the unit circte wiU be denoted by c. 

THEOREM I. If 2c 2 E L-(r), then fort EC, 



(34) 

I 
<l>(r;-2 -g(r;t) ,0) 

cl 
g (r; t) 
-~ 

and the functions 
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I I 
<t>(r;0,-2 -g(r;-)) 

c 2 t 

- <t>(r;O,O) + g(r; 1/t) 
I - ""-'-='--'--'-

2 c2 

(35) 
<l>(r;g(r;t) /2c 1 ,0) 

I ( t) / 2 - <l>(r;O,O), 
- g r; c 1 

and 
<l>(r;O,g(r;t)/2c2) 

1 -g(r;t)/2c2 

are regular for It I < I. 
This defines a Hilbert boundary value problem on the unit circle. 

PROOF. The boundary condition (34) follows from lemma 3 by inserting w=g(r;t), tEC, 

cf. lemma 7, and by noting that (33) implies: 

(36) t E C. 

Lemma 6 , the regularity of the conformal mapping g(r;z) for lzl < 1, and the assump­

tion 2c2 E L-(r) imply the regularity for \t\ < 1 of the functions in (35). 

According to the definitions in [9], §37, a Hilbert boundary value problem is defined 

by the relation (34) for the regular functions in (35) if the known function at the 

righthand side of (34) satisfies a Holder condition on C, cf. [ 9], §3. Such a Holder 
a 

condition depends on the boundedness of dZ g(r;z) in the region lzl < 1, which can 

be proved by using smoothness properties of the contour L(r). For the details of this 

proof the reader is referred to [ 1] , lemma II. 6. 2. 

The conformal mapping g(r;z) has an inverse for lzl.;;:; I, cf. lemma 7. This inverse 

will be denoted by g0 (r;w), w E L+(r) U L(r). 

THEOREM 2. If 2c 2 E L-(r), i.e. 0 < r < min{I,R(c 2)}, then the generating function 
+ + 

<l>(r;p 1,p2) is given by: for 2c 1p1 EL (r), 2c2p2 EL (r), 

(37) 

I I t+go(r;Zclpl)dt 

- 21Ti ~ {I-g(r;t)/2c 1 Ht-g(r; l/t)/2c2} t- g0 (r;2c 1p1) 2t -

D 
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~ The Hilbert boundary value problem formulated in theorem I is of a simple 

form, cf, [9], §37. It is easily solved by applying the operator 

(38) _l_f 
2rri C 

dt 
t=Z· 

on both sides of equation (34), for lzJ <I and for !zl >I. By noting that, cf. (32), 

(39) 
<l>(r;O,g(r;l/z)/2c2) 

lim --------­z-><x> l-g(r;l/z)/2c2 
<l>(r;O,O), 

the operation (38) on equation (34) leads with the residu theorem to: for lz\ <I, 

(40) 
<l>(r;g(r;z)/2c 1 ,O) 1 1 dt 

l-g(r;z)/2c 1 = 21Ti{ {1-g(r;t)/2c1}{1-g(r;l/t)/2c2} t-z; 

and similarly to: for I z I > I, 

(41) 
<l>(r;O,g(r; 1/z)/2c2) 1 1 dt 

<l>(r;O,O) - I - g(r; 1/z)/2c2 = 21Ti { {1-g(r;t)/2c 1Hl-g(r;1/t)/2c) t-z' 

By taking z=O in (40) we obtain the unknown constant in (41): 

(42) =_I_ f I dt 
<l>(r;O,O) 21Ti C {l-g(r;t)/2c1}{!-g(r;l/t)/2c2} t:· 

Next, by substituting z=g0 (r;2c 1p1) in (40) and l/z=g0 (r;2c2p2) in (41) together 

with (42), expressions for the functions ~(r;p 1 ,o) and ~(r;O,p2 ) are obtained for 

2c 1p1 E L+(r) and 2c2p2 E L+(r) respectively. Finally, by substituting these express­

ions for ~(r;p 1 ,0) and for $(r;O,p2) and (42) for ~(r;O,O) in the functional equation 

(8) the relation (37) is obtained after some simple rearrangements. 0 

REMARK I. As it has been noted in section 2, the functional equation (8) must have 

at least one solution which is a generating function of a joint probability distribu­

tion in p1 and p2, and which is a generating function of a series with coefficients 

bounded in absolute value by one in r. With our analysis it has been proved that 

equation (8) possesses at most one solution with these properties, for 0 < r < 

<min{l,R(c2)1, This implies that the righthand side of (37) represents the gener­

ating function defined in (I) for 2c1p 1 E L+(r), 2c2p2 E L+(r), 0 < r < min{l,R(c2)}. 

Moreover, the expression (37) determines the power series expansion of the function 

Hr;p1 ,p2) at r = 0, p1 =0,\ p2 = 0. Hence, by analytic continuation the function 

; (r;p1 ,p2) has been uniquely determined in theorem 2 for \ r I < I , \ p 1 I ,,,.;; I, I p2 \ .,.;; I. 
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REMARK 2. Explicit formulas for the function \l>(r;p 1,p2) for 2c 1p 1 E L-(r) and/or 

2c 2p2 E L-(r), 0 < r <min{l,R(c2)}, can be obtained by using the analytic continu­

ation of the function g0 (r;w) into L-(r), and by applying the Plemelj formulas, cf. 

[9], §17, to the integrals in (37), see [l ], theorem II.7.2. 

The main interest of the solution of the time dependent distribution of the Mar­

kov chain {(~ 1 (n),~2 (n)),n=0,1, •. } is that it forms the basis for the asymptotic 

analysis of this Markov chain as n ~ oo, For this purpose it is important to derive 

explicit expressions for the function ~(r;p 1 ,p2 ) for r in a neighbourhood of one, 

because e.g. (see [2], p.18 and appendix I): 

(43) lim Pr{~1 (n)=0, ~2 (n) = O} = lim (1-r) ~(r;O,O). 
n->= r+I 

However, from lemma 4 and 5 it is seen that theorem 2 does not provide us with such 

an expression for all values of the parameters a and c2. Therefore we shall derive 

below an expression for ~(r;p 1 ,p 2 ) in the case R(c2) <I, cf. lemma 4, for R(c 2) < 

< r <I, i.e. for 2c2 E L+ (r), cf. lemma 5. Hence, suppose 2c 2 E L+ (r). Then theorem 

is still valid, except that the second function in (35) possesses a single pole in 

the region jtj .;;;; I due to a zero of the denominator at the point 

With this observation the following result is obtained: 

THEOREM 3. If 2c2 E L+(r), i.e. R(c 2) < r <I, then the generating fwiction 
+ + 

~(r;p 1 ,p2 ) is given by: for 2c 1p 1 EL (r), 2c2p 2 EL (r), 

(45) 

2c2 1 I - g0 (r;2c 1 p1) g0 (r;2c2p2) ] 

g'(r;z0 (r)) 1-µ 1 (r) {1-z0 (r)g0 (r;2c 1p 1)}{z0 (r)-g0 (r;2c2p 2)} ; 

here 
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a 
g'(r;z0(r)) :=Oz g(r;z)lz=z (r)" 

0 

PROOF. By applying - as in theorem 2 - the operator (38) on both sides of equation 

(34), and by taking into account the pole at z0(r), cf. (44), the residue theorem 

leads to: for [z[ <I, 

(47) 
4>(r;g(r;z)/2c1,0) 

I - g(r;z)/2c 1 

I I dt 
= 2ni { {I-g(r;t)/2c1}{1-g(r;l/t)/2c2} t=Z• 

and for I z I > I , 

(48) 4>( 0 O) 2c2 4>(r;O, I) 
r; ' + z0 (r)g' (r;z0 (r)) z0 (r)z- I 

4>(r;O,g(r;l/z)/2c2) 

I - g(r; 1 /z) /2c2 

l l dt 
= 2ni { {t-g(r;t)/2c1 }{I-g(r; l/t)/2c2} t=Z• 

here g' (r;z0(r)) is given by (46). The constant ~(r;0,1) has been determined in (10). 

By taking z = 0 in (47) the last unknown constant is obtained: 

(49) 4>(r;O,O) 

+_I_ f I dt 
2ni C {t-g(r;t)/2c1}{1-g(r;l/t)/2c2} t • 

In a similar way as in the proof of theorem 2 the relations (47), (48) and (49) lead 

to the expression (45). 0 

REMARK 3. An expression for the function ~(r;p 1 ,p2) in the case 2c2 E L(r), i.e. 

r = R(c2) < I, can be derived from (37) or (45) by using the continuity of this func­

tion, see [I], theorem II.7.5. 

5. Concluding remarks 

The results of theorem 2 and 3 form the starting point for the analysis of the 

asymptotic behaviour of the Markov chain {(~ 1 (n),~2 (n)),n=O,I, •. } • Especially in 

the case c 1 = c2 = ~ this analysis requires an extensive use of theorems on the bound­

ary behaviour of conformal mappings and their derivatives. Here we merely state the 

main results of this asymptotic analysis, which has been carried through in [I], 

§II.8. It turns out that the Markov chain {(~ 1 (n),~2 (n)),n=O,I, •• } is transient if 
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max{c 1,c2}a >I, that it consists of null states if max{c 1,c2}a=I, and that it is 

recurrent if max{c 1 ,c2}a <I. In the last case the Markov chain possesses a station­

ary distribution, and the stationary probability ~O of the empty state (0,0) is given 

by (here c2 .;;;;; ! .;;;;; c 1), cf. (43): 

(SO) 4>0 := lim (1-r) <l>(r;O,O) 
r+I lim zo(r) g' (r;zo(r))" 

r+I 

For c1a < I the limit in the denominator in (SO) is finite and non-vanishing, and it 

can be numerically evaluated, cf. [3], §6. 

The technique of solving functional equations by formulating a Hilbert boundary 

value problem can also be applied in the analysis of the continuous time parameter 

queueing process. For the present model this leads to a stationary distribution which 

differs from that of the imbedded discrete time parameter process, see (1], §III.8. 

If the present queueing model is generalized by allowing a service time distribu­

tion B.(t) for individual services of type j customers (j = 1,2), which may differ 
J 

from the service time distribution for paired services, the boundary condition as in 

(34) becomes more intricate, but it still defines a Hilbert boundary value problem 

which can be solved with the general method given in [9], §§34-37; see [!], §IV.2. 
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