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Summary. Speed of convergence is studied for a Marcinkiewicz-Zygmund 
strong law for partial sums of bounded dependent random variables under 
conditions on their mixing rate. Though o:-mixing is also considered, the 
most interesting result concerns absolutely regular sequences. The results 
are applied to renewal theory to show that some of the estimates obtained 
by other authors on coupling are best possible. Another application shar­
pens a result for averaging a function along a random walk. 

1. Introduction 

Suppose Sn are the partial sums of i.i.d. random variables with distribution 
F. Baum and Katz (1965) showed that if ap~ l, cc>} 

L n"P- 2 P(1Snl~en")<oo for e>O (1.1) 
•$;1 

if and only if F has finite p1h moment and moreover in case cc~ 1 has vanishing 
mean. 

We consider s.=711 + ... +11., n~l, the partial sums of random variables 
bounded by 1 with vanishing mean. We want to prove (1.1) under a sharp 
condition on the mixing rate. Let g;;;- =<1(1"/;, i~n) and ffe,;+ =<1(1'/;o i~n). Define 
forn~O 

o:.=sup sup IP(AB)-P(A)P(B)I, 
k iE; 1 A.e!Fi<, BeS:,.++ k 

Pn=supE sup IP(A l~!k)-P(A)j. 
kiE;l A.e?J; 

(1.2) 

(1.3) 

The process (l'l;)i~l is called strong mixing if o:.10 and absolutely regular (or 
weak Bernoulli) i(P,,lO. Because rY.,,~Pn the latter concept is stronger. 

Our results deal mainly with absolutely regular processes. This leaves open 
a wide range of applications because e.g. an aperiodic, positive recurrent 
Markov chain is absolutely regular. Berbee (1984) studies f3n, n-1> co, for sta­
tionary processes. 
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The main result, given below is a convergence theorem for dependent 
random variables. It is interesting because it is a sharp result. The reader win 
notice that it is a rate of convergence result for the ergodic theorem. The 
theorem is valid also for non-stationary sequences. 

Theorem 1.1. Suppose (1"/J; <! 1 is a sequence of random variables bounded by 1 
with vanishing mean. Let}<ix~l and cxp~l. If for p~l 

(1.4) 

then 
L na.p- 2 P(max \Sk\~en")< oo for e>O. 
n~1 k;:i;ll 

(1.5) 

To judge the mixing rate (1.4) in this theorem we consider in Sect. 6 a 
special class of processes that is still rich enough to discriminate effectively 
between mixing rates. We consider a stationary renewal process on the positive 
integers, aperiodic with finite mean. Let Sn be the number of renewals in 
{l, ... ,n} and take Sn:=Sn-ES". Then (r/i) is a stationary sequence of random 
variables bounded by 1 with vanishing mean. We show for this class of 
processes that (1.4) and (1.5) are equivalent. Let F be the distribution of the 
increments of the renewal process. We also show that (1.4) is equivalent to the 
finiteness of the ptb. moment of F in case p > 1. It will appear that these results 
are closely related to the theorem in Baum and Katz (1965), quoted above. 

For stationary, strong mixing sequences Lai (1977) obtained earlier results 
related to Theorem 1.1. The main interest of that paper is to prove under 
certain conditions the equivalence between (1.5) and finiteness of the pth mo­
ment of 1"/;· If the results of Lai (1977) are applied to our case with bounded 
random variables, then to get (1.5) stronger conditions are imposed on the 
mixing rate ex,, than we impose on Pn· 

Property (1.5) describes speed of convergence in the strong law. It implies 
in case exp> 1 

(1.6) 

by Lemma 4 in Lai (1977). Because the probabilities above are non-increasing 
inn we may infer 

The proof of Theorem 1.1 bears some resemblance to ideas used by Baum 
and Katz (1965). In that paper the increments of Sn are truncated at height n" 
and then the Markov inequality is applied to get (1.1). We do not truncate but 
replace S" by sums of independent random variables of size o(n"). At this point 
we use the absolute regularity to estimate the error. Lemma 2.1 is used for this 
purpose. Then we apply the Markov inequality and finally we use bounds for 
E(S,.}2"' to obtain (1.5). These bounds are derived in Sect. 3 and are valid for 
strong mixing sequences. They are closely related to similar bounds in 
Yokoyama (1980). 

Strong mixing is easier to formulate but technically less nice because the 
coupling argument of Sect. 2 is not available (in the same way). Therefore we 
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only discuss averaging, i.e. (1.6) with a=l. We could also get results for a< 1 
but they may not be sharp and we do not present these. 

Theorem 1.2 Suppose (11 1);?:. 1 is a sequence of random variables bounded by 1 
with vanishing mean. If for- p = 1 

L nP-2cxn<oo (1.7) 
n~l 

1 
then the strong law-S.-+O holds a.s. and if p> 1 then (1.7) implies moreover 

n 

L nP- 2 P (sup~ I Ski> s) <co. (1.8) 
n~l k~n k 

Averaging as is done in (1.8) is a much easier procedure than comparison 
with n" with !<et< 1. The proof of the last theorem is therefore much simpler 
because we do not use the trick of replacing s. by sums of independent 
random variables of o(n) (the analogue of truncation). Etemadi (1981) gave an 
elementary proof of the strong law (so for averaging) that does not need 
Kolmogorov's inequality. 

2. A Dependence Coefficient 

The total variation of a signed measure v is defined as 

!lvll =supv(A)-v(A') 

where the supremum is taken over all measurable sets A. 
Suppose X and Y are real random variables (or vectors). Define their 

dependence as 

This coefficient vanishes if and only if X and Y are independent. We can 
rewrite 

where PxtY is the conditional distribution of X given Y. Hence if Y' is Y.. 
measurable 

{3(X, Y')~fJ(X, Y) (2.1) 

(see e.g. Schwarz (1980)). Also (1.3) is equivalent to 

In case (17J is stationary and is extended to be defined for all iEZ the 
supremum is increasing by (2.1) as k--+ oo with limit 

(2.2) 

We use the following technical lemma. 
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Lemma2.1. Let X 1 , •.. ,Xn be real random variables on the same probability 
space. Define for 1 ~ i <it 

The probability space can be extended with random variables Xi distributed as X; 
such that X 1 , •.• ,X n are independent and 

P(Xi =!= Xi for some 1) ~ p<1> + ... + p<n- 1'. 

Proof Write X=(Xv···,Xn) and write X=(X1, •• .,Xn) for the random vector 
to be constructed. The distributions of these random variables are known. It is 
well-known (see e.g. Schwarz 1980) that one can construct X as in the state­
ment of the lemma such that 

To get (2.2) we have to estimate the right hand side. 
If X, Y and Y are random variables, with Y and Y having values in the 

same space, then 

1\Px.r-Px.rll ~ l\Px,r-Px xPy\\ + llPx xPy-Px x Prll 
=2{3(X, Y)+ j\Py-Prll 

as one easily observes. Applying this rule successively one obtains 

}l/Px1, ... ,Xn -Px1 X ··· X PxJ 
~{3(1)+ llPXJ, ... ,Xn -Px1 X .•• xPxJ 
~ ... ~{3c1>+ ... +p<n-1>. D 

To obtain Theorem 1.2 we want to apply Lemma 2.1 with 

k1;+1 

X;= L '1i• i=l, ... ,mn, 
i=k1;+ 1 

where k;+i -k,=Mn for all i. So we apply the lemma on block sums with 
indices in different blocks separated by distance of at least Mn. We also want 
that mnMn is about n. To apply the lemma succesfully we need that m,.{3M" is 
sufficiently small. This is guaranteed by the following lemma 

Lemma 2.2 Suppose that L nP- 2 {3 n < oo for some given p ~ 1. Let i <ix~ 1. 

Then there exists Mn=o(n«)n:~ch that if mn= [.;;J 
L na.p- 2 mnf3Mn < 00. (2.3) 
11~1 

Proof Observe that for each j~ 1 

jP L nP- 2f3n-+O as k-+oo. 
nii;k 



Strong Law for Bounded MIXlng Sequen~'CS 259 

Choose a sequence I= k1 < k2 < ... such that 

(2.4) 

Define 

n• 
Because M.~-:- if n~ki' we have M.=o(n"). Observe that (2.3) is bounded by 

J 

(2.5) 

To prove that this expression is finite observe first that for m,j ii;;: I 

{ [ I ] } ~- .!. 'IF n: Jn• =m ~((m +I )j)a -t(m- l)j)• 

~ ..... ) l .!.-1 .!. .!..1 
~j· J - xa dx~c,J•rn• 

.. -1 0( 

for some constant c •. If lJ n"] =m then (mj); ~n~4(mj)~. Hence (2.5) is for a 

suitable constant c~ bounded by 

by (2.4). 0 

3. Moment Bounds 

ln this section we assume that ('li)i., 1 is a sequence of random variables 
bounded by 1 'hith vanishing mean such that for p~ 1 

where (ex..) is defined by ( 1.2). For l ;;? p < 2 we use the estimate 

Lemma3.1. 
11- l 

E(S.,) 2 ~4n L ixk, n~l. 
1-0 

(3.1) 

(3.2) 
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Proof By lbragimov and Linnik. (1971), Tb. 17.2.l 

After summing over 1 ~i,j~n we easily obtain the inequality. O 

For p~2 we need bounds on higher moments of S,,. Yokoyama (1980) 
discusses this subject for stationary sequences. For bounded sequences he 
proves 

E \Snl2(p-1l = O(np-1), p>2. (3.3) 

We need bounds for E(SJ2 "', for integer m ~ 1. To be able to obtain Theorem 
1.1 we need a bound that is more precise then (3.3) in the way it depends on 
the mixing coefficients, like in (3.2). 

Lemma 3.2. If p ~ 2 then for each integer m ~ 1 there is a finite constant c 
depending on the mixing coefficients (1.2) and m such that 

(3.4) 

Note that if 2m-;£p then the second term at the right is O(n) by (3.1). For 
larger m~l this term is O(n2"'-P+ 1) by (3.1). So for large m, and in fact m~p-1, 
the second term is more important than the first term. Thus we obtain 

Corollary 3.3. If p ~ 2 then 

E(S.)2"'=0(n2"'-v+ 1) if m~p-1, 
=O(n"') if l -;£m~p-1, 

and the same estimates hold for E(Si+.-S/"', uniformly inj. 

Proof of Lemma 3.2. As in the corresponding part of Yokoyama (1980) our 
proof is similar to Sen (1974). 

We denote by L the summation over all l~i1 ~ ... ~ii~n. Let 
n,j 

Note that 

bk(n,J)= L IE(11k+1 'h+it ... 1Jk+i)I, 
n, j 

b(n,j) =sup bin,J). 
k;);O 

E(Sn)2m~(2m)! L IE(1'/1t · .. '11 2,,)I 
n,2m 

• 
=(2m)! L bi 1 _ 1(n-i1 +1,2m-1) 

it= 1 

~ (2m) ! nb(n, 2m -1). 

Define ri=ii-ii-l (with i0 =0) and let L(hJ l ~h~j, be the components of L 
for which rh=max {r1, ... ,rj}. n,j n,j 
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Our aim is to find a bound on b. By Ibragimov (1962), Lemma 1.2 

n-1 

nb(n,l)=nsupl:JE(11k+i'1k+;.)l~4n L o:k 
k E; 0 "· 1 k- 0 

(3.6) 

We want to prove by induction on j?;.2 that there are finite constants c and c' 
depending on j and the mixing coefficients (1.2) such that 

where 

( 
n-l 

nb(n,j-l)~cmax ni*,n )2 (k+1)i- 2 ix,J~c1 n1·• 
k=-0 

j* = max ([fl,j- p) 
j**=max ([fl,j-p+l )· 

(3.7) 

If this is proved then the assertion of the lemma follows by applying the first 
inequality of (3.7) with j = 2m in (3.5). 

Let us note first that the second inequality of (3.7) is obvious, following in 
the same way as in the proof of Corollary 3.3, i.e. by applying (3.1). So we are 
only concerned with the first inequality in the induction proof. 

For j = 2 the first inequality of (3.7) follows from (3.6). Suppose now that 
(3. 7) holds for all j ~ m with m ~ 2 arbitrary. It suffices to prove the first 
inequality of (3.7) for j=m + 1. Note 

m 

nbk(n, m) = L [n L<hJ IE(11k+ i 11k+i 1 ••• '1H1JJ]. 
h==l n,m 

We consider the term between [.] separately. The total number of these terms 
is m and so does not depend on n. Again using Ibragimov and Linnik (1971), 
Th. 17.2.1 the term is bounded by 

"·"' 

11,m 

Note that (3.9) is bounded by 

n-1 

n 2: (rh+1r- 14oc:(rh) 
r,~o 

in accordance with the induction assertion. 

(3.8) 

(3.9) 

We still have to consider (3.8). It vanishes for h = 1, m. For other values of h 
it is bounded by 

n 

n 2: bk(i,h-1)b1+k_ 1(n-i+1,m-h) 
i=l 
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with i = ih. By the induction assumption (3.8) is bounded by 

n 
'\' ·h•*-1( ·+ l)(m-h+l)**-1 nc f...., z n-1 
1~1 

where c depends on m and (1.2). Because 2~h~m-l all powers are non­
negative and so (3.8) is bounded by 

If we show 

n·c·n·nh .. -1 nlm-h+ ii••-1 

=c·nh .. +(m-h+I)**. 

h**+(m-h+ l)**~(m+l)* for 2~h~m-l (3.10) 

then it follows that (3.8) is bounded by cn(m+l)* and we completed the proof of 
the induction step. 

To prove (3.10) it suffices by symmetry to consider only values h~t{m+l). 
Let us say that an integer j "?;; 2 is in the area of constant increase of (. )** if j 

-p+l~[fl, so for sufficiently largej. In this area(.)** increases with unit 

speed and outside this area (. )** increases at most with unit speed. Suppose 
first that m - h + 1 is in the area of constant increase. Replacing h by 2 in the 
left hand side of(3.10), and so replacing m-h+l by m-1 would certainly not 
decrease this expression. Because 

2**+(m-1)** = 1 +max ([~~ 1], m-p) =(m+ l)* 

this proves (3.10). In case m -h + 1 is not in the area of constant increase, also 
h~J(m+l)~m-h+l is not in this area. In that case the left side of (3.10) 
equals 

rnJ + [~-~~] ~ [m; 1_] ~(m+ 1)*. 

Thus (3.10) holds for all h. O 

4. Proof of Theorem 1.1 

Proof We split up Sk in blocks to which we can apply Lemma 2.1. Define m" 
and Mn as in Lemma 2.2. Write for k ~ n 

s.=c I I tJJ 
1 ?;j~mn, jodd (}- l)Mn<i-aiMn, i o:iik 

+c I I 11J 
1-aj::;!mn,jeven (j-1)M"<i;;!jMn,i:&.k 

+c I 1'/;J. 
mnMn<i~n.i~k 
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Denote by Sk1>, Sk21 and S~31 the first, second and third term of the sum above. 
Observe 

max [Sk[~max IS~11 l+max IS~2Jt+n-m,.M,.. (4.1) 
k~n k~n k~n 

The last term is at most Mn and for p= 1, 2 

max ISi"JI ~ max IS)'~~.I +Mn. 
k;i!n l~j~mn 

(4.2) 

By Lemma2.2 M,.=o(na). Choose N so large that M,.~iena for n?;,N. Hence 
by (4.1) and (4.2) 

P(maxlSkl~ena)~ L P(maxJS1i1LJ~ien") for n~N. (4.3) 
k&n P= 1, 2 j~mn 

Consider, e.g., p= 1. Let (Ji= 2: Yfi and observe 
U-lJMn<i~jM,. 

We want to replace ai, j odd, by independent random variables (ii, j odd. 
Observe that by (2.1) 

{J(ai, (ak: k> j, k odd)) 

~/3((11;: i~jM,), (1'/,: iii'~U+ l)M,.))=/JM,.· 

Hence by Lemma 2.1, there are independent random variables ~i' l ~j~m,., 
j odd, distributed as ai such that 

P(iif4=ai for some j)~m,./3Mn· 

So with probability at least 1 - m,. /3M. 

S(lJ - "°' a-jM .. - L, k 
1 ;i!k~j.kodd 

2: a-2k-1• 
1 ~k ~f!(j+l)] 

where the last sum consists of independent random variables. Hence 

for any d ~ 1 by the Markov inequality. A similar estimate holds for p = 2. So 
by Lemma 2.2 and ( 4.3) it is sufficient to show 
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(4.4) 

for m~~mn while ifk consists of independent random variables distributed as 
the sums a k. We take here d to be integer such that 

d=l if l~p<2 

pa-1 
d'?;;p 2°'_ 1 otherwise. 

The expectation in (4.4) may be written as 

For given (i1, ••. , i 2d) write, using independence 

E - - -E_k' E k, a;, ... 0';24 - 0)1 . •• ai,. 

Here k1 ~ k2 G ... G k, are the i-multiplicities, satisfying k1 + ... + k, = 2d, and 
j 1 , ••. ,j, are indices between 1 and m~. Write 

µ<k> = max Ea~. 
n:: l J 

The total number of (i1, ... , i2d) above with given multiplicity configuration 
k1 '?: ... '?;; k, is bounded by 

where ck is a constant depending on the multiplicity configuration k1 '?: ... '?: k, 
but not on n. To prove (4.4) it is sufficient to show for each of the finitely 
many multiplicity configurations k1 G ... ~ k, that 

(m y µ(k1l .•. µ<k,) 
,.., n•p-2 n < 00. 
I... n2ad 
n~l 

(4.5) 

Because Eaj=O we only have to consider the case where all ki'?:2. In case 
1~p<2 this leaves only one configuration to consider, because d = 1. 

Case 1. r=l and so the entire configuration consists of k1 =2d. We use the 
moment bounds of Sect. 3. first consider 

where ot:k is defined by (1.2). Because m"M"~n and because for sufficiently large 
n we have Mn~ n" the sum above is finite if 
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= L L n"p-I-2ad(k+l)2d-21Xk<ro. 
k~l n>k~ 

Because 2d > p this sum is finite if 

265 

with c a finite constant. Because ix~"5:/3n this holds by our assumption (1.4). If 
1 :;; p < 2 this proves ( 4.5) by Lemma 3.1 because d = l. Hence the theorem is 
proved for 1 -;£ p < 2. We can assume now that p ?;_ 2. To prove ( 4.5) for r = 1, it 
is sufficient by Lemma 3.2 to show that also 

m Ma+(d-pJ+ 
" n•p-2 n n <co. 
L, n 2<Xd 
n~l 

Because mnM.;£n and Mn=o(n") it is sufficient to show 

n·n"(d-1 +(d-pl+ J 
" nap-2 
L, n2•d 

Because p?;,2 we have d?;_p and so f3= -ix-1. Hence fJ< -1 and (4.5) follows 
for r= 1. 

Case 2. r ?;_ 2 and k1 ?;_2p. If k1 is even then by Corollary 3.3 

µ<kil = O(M!' - P+ 1). 

If k1 is odd then also by this corollary 

Elff-lk'<M µ<k1-o=M -O(Mk1-1-p+1) 
J = n n n 

=O(M~1-p+1). 

For all other k;?;_2 by this corollary 

µ(k,J ;£M!'-2 µ<2i = M~'-z·O(Mn) 

=O(M!'-- 1), 

because p ?;_ 2. To prove (4.5) it is sufficient to show 

(4.6) 

Because mnMn~n and we can use Mn~na. for large nit is sufficient to prove 

n'n•(k1 + ... +kr-(P·-2)- 2rJ 

I n•p-2 2•d 
n 
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Because 2d = k1 + ... + k, 

µ= ap-2-r(2a.-1)-o:(p-2) 

~ -2a.<-1 

because r~2 and also o:>~. Thus (4.5) holds in Case 2. 

Case3. r~2 and all ki<2p. Again using (4.6) as above we obtain now that it is 
sufficient to show L nP < oo with 

n~1 

fJ = ap- 2-r(2a.- l). 

Now 2d = k1 + ... + k < 2 p · r so r > ~. By our choice of d it follows that indeed 
r p 

~ < -1. This completes the proof of Theorem 1.1. D 

In the case of unbounded random variables (17,,) we could also use this 
proving technique but it is not clear how to get a nice split-up with random 
variables of o(n'}. This makes it not probable that our results would be precise 
and we do not discuss this here further. 

Absolute regularity was needed in the application of Lemma 2.1, for a split­
up in random variables of size o(n~). In case a.= 1 we can however get the 
corresponding results for ()(-mixing. Using the Markov inequality and the 
lemmas of Sect. 3 gives (1.1) for all p ~ 1. If ix= 1 and p > 2 we can also get 

L n'P(max\Sk\!?;;nae)<ro, e>O, (4.7) 
n$;1 k;an 

for all r < rxp- 2 by using the Markov inequality, Corollary 3.3 and Serfling 
(1970), Theorem B. Generally for ~<oc;;;;l and p>2 the last method gives (4.7) 
only for all 

r <(2a- l)(p-1)-l. {4.8) 

An application of Lai (1977), Theorem 2 for stationary bounded (1'/;) gives for 
!<a~l and p>2 that (4.7) holds for 

r< a(p-1)-2. (4.9) 

It is interesting to see that (4.8) is sometimes better and sometimes worse than 
(4.9). As we might have expected the upper bounds in (4.8) and (4.9) are both 
dominated by rx.p-2. We also mention here that Hipp (1979) has stronger 
bounds than ours but his results for the a-mixing case are in conflict with 
Theorem 6.1. For 4>-mixing his results were studied later by Peligrad (1985). 

5. Strong Mixing and Averaging: a= l 

Proof of Theorem 1.2. Apply Lemma3.l (3.2) with mG,p and the Markov 
inequality to get after a simple calculation that 

L yk(p-ll P(\SyklG.eyk)< ro for any e>O 
k~1 
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and y> 1 arbitrary. Because for J'k~j<-yk+ 1 holds ISi-S,."I ~(y- l)l'k it follows 
that 

L ·/<v-r>p ( sup ~ISj\~e')<oo for any e'>y-1>0. (5.1) 
k!l;l yk:Jij<yk+I j 

For p= 1 this implies the strong law by Borel-CanteHi. For p> 1 note that (1.8) 
is dominated by 

( 1 ) L L nv-zp sup -:ISi\>e 
k~l yk-1:;;,,<l" j?;;yk-l J - -

~c L 1"<p-l> L P ( sup ~IS)> e). 
k~l m~k-1 ym~j<ym+IJ 

Exchange summation and observe that for suitable choice of y we obtain from 
(5.1) that the last expression is finite. D 

6. Sharpness and Renewal Theory for Independent Random Variables 

We show that both theo.t:ems of Sect. 1 are sharp for renewal sequences. Let F 
be an aperiodic probability distribution on IN"= { 1, 2 ... } and let X 1' X 2 , ... 

have distribution F. Assume 

P(X0 = i)=!_ P(X1 > i), i~O, 
µ 

whereµ is the mean of F and let X 0 , X1, X 2 , .•. be independent. Then 

fln=l if n=X 0 +X1+ ... +Xk for some k 

= 0 otherwise 

defines a "renewal" sequence (lfn)n~o· It is stationary and its distribution is 

uniquely determined by F. Let 1'/n=~n-!_, nEZ. We study the strong law (1.5) 
for 11n· Note µ 

We write P* (.) for P (. JX 0 = 0). Using the notations of Sect. 1 also, we have 

Theorem 6.1. The following assertions are equivalent for p > 1 : 

(i) F has finite ih moment 

(ii) L rzP-l /3n < 00 
n!;;l 

(iii) L rzP - 2 rxn < oo 
n~l 

(6.1) 

(iv) L n"P- 2 P*(ISnl~nae)<oo for any given ix, p withf<ix~l and exp> I 
n~l 

(v) L nap- 2 P(max \Skl~n"e)<oo for all a.,p with-i<cx:~l and a.p> 1. 
n~ 1 k;;!!n 



268 H. Berbee 

L T' K L T 
Proof. (i) => (ii) => (iii)=> (iv) for ex= 1 and p > 1 => (i) => (ii) => (v) =(iv). Here 
Lis Lindvall (1979) which we explain below; (ii)= (iii) is trivial because IJ.n~f3n; 
T' is Theorem 1.2; K is Baum and Katz (1965); T is Theorem 1,1 and (v)=(iv) 
is trivial because 

P(ISnl ~en")~ P*(IS,,I ~en)P(X 0 =0). 

So from both (v), (iv) we have 

L n"P- 2 P*(ISnl~en")< oo. 

To get (i) from (iv) one uses K and the following considerations 

{S.~en"} = {S.~µ -in+ en"'} 

= {X 0 + ... + X[IL- 'n+<naJ ~ n} 

by (6.1). So also by using that P*(X0 =0)=1, we have 

oo > L n•P- 2 P*(\S.l~en") 

= L n•P- 2 [P*(X1 + ... +X[µ-'n+en"J~n) 
n <:; 1 

+P*(X1 + ... +X[µ-'n-en•J>n)] 

~C, I n"P- 2 P*(IX1 + ... +Xn-µnl~yn"), 
n~l 

where y=y(eHO as i;lO. This implies by K that (i) holds. 

Let us now explain (i) ~(ii). The stationary process (if.)n?:O can be extended 
to a stationary process (fi,,)::'::-ro and it is well known that this process has an 
imbedded Markov structure in the sense that z.=inf{k~n: ifk=l} is a Mar­
kov sequence and so (fin).~ 0 is independent of (i7.)n?:o given X0 =Z0 • 

As in Lindvall (1979) -one constructs also a second renewal sequence (if~) 
coupled with (if,,) such that if~=ii. for n~Twhere Tisa random time. We say 
that X0 is distributed as X 0 and also that ij and X0 is independent. By our 
remark in the paragraph above we may even get that fj and (X~, (17~)n 50) are 
independent, while 17. and fj:' have the same distribution. -

Now note that by (2.2) and by well-known coupling inequalities 

n=-21 \IP-.. _,, -P-.. - II J.' 11- •'7n+ PT- •11n+ 

;;=;_P(if~+ =f=f/ +)~P(T~n). 

Here fin+ =(iik)k?:n and similarly '1~+ =(ij~)k?:n· Use of Lindvall (1979), Proposi-
tion 1 gives the assertion (i) = (ii). -

The result (ii) ==> (i) is known in case p ~ 2 by Davies and Grubel (1983) 
where a similar stronger result is given for p ~ 2. In this and in the related 
paper Devies and Grubel (1981) these authors use analytic techniques for 
function algebras. A nice aspect of such results is that they form a converse to 
the Pitman-Lindvall results (see Lindvall 1977). 

Also a very interesting aspect of these results is that speed of convergence 
in the ergodic theorem is coupled to the mixing rate of a stationary sequence 
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i.e. (ii) or (iii)<=> (iv) or (v). Note that here 11,, is a functional of the Markov 
chain 

Y,.=n-max U: Yfi= 1 for j<n}. 

The functional has the property that the event {'lo= l} disconnects past and 
future in the sense that (Y,,)n:;;o and (YJ,,;;:;o are independent given this event. 
The question arises how much (iii)<=> (v) can be generalized for subclasses of 
the set of strongly mixing sequences. 

7. Averaging a Function Along a Random Walk 

Consider a random walk (T,,).2' 0 started at the origin with strictly positive 
increments, having an aperiodfu distribution F. Let F have fmite mean µ. 
Suppose there is given a bounded function f on the integers. 

Theorem7.1. If F has finite pth moment, ~<a:~l, a.p> 1, then 

L: N~P- 2 P fsup ~I I f(TJ-!_ L: f(k)l~s} < oo. 
NE;O \:s:;N k=l J1. O~k<nµ 

Proof Section 2 of Bingham and Goldie (1981) shows that this is implied by 
Theorem 6.1 (iv) and (i). O 

Meilijson (1973) and Stam (1968) discuss related results. Investigation of 
distributions F with mass on the negative axis would go too far here, but 
Bingham and Goldie (1982) contain a useful idea for this case. 
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