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Multigrid Solution of Monotone Second-Order 
Discretizations of Hyperbolic Conservation Laws 

By Stefan Spekreijse 

Ab!>tract. This paper is concerned with two subjects: the construction of second-order accurate 

monotone upwind schemes for hyperbolic conservation laws and the multigrid solution of the 

resulting discrete steady-state equations. By the use of an appropriate definition of monoton­

icity, it is shown that there is no conflict between second-order accuracv and monotonicity 

(neither in one nor in more dimensions). 

It is shown that a symmetric block Gauss-Seidel underrclaxation (each block is associated 

with 4 cells) has satisfactory smoothing rates. The success of this relaxation is due to the fact 

that. by coupling the unknowns in such blocks, the nine-point >.tcncil of a second-order 20 

upwind discretization changes into a five-point block stencil. 

1. Introduction. To obtain solutions of first-order finite-volume upwind schemes 

for the 20 steady Euler equations. nested nonlinear multigrid (FMG-F AS) iteration 

has proved to be a very efficient solution process . [ 6], [7]. Encouraged by this 

successful application of nonlinear multigrid. it is natural to ask whether it is 

possible to use nonlinear multigrid for the efficient solution of second-order 

finite-volume monotone upwind schemes as well. 

To answer this question, we have to discuss the following subjects: how to 

construct a second-order montone upwind scheme and how to choose the nonlinear 

multigrid components such as the relaxation method, the restriction and prolonga­

tion operators, and the coarse grid operators. 
Because of the complexity of the Euler equations (a hyperbolic system of con­

servation laws), we start analyzing these subjects for the less complicated scalar 

hyperbolic conservation laws. Scalar hyperbolic conservation laws are interesting by 

themselves and, without the complexity of hyperbolic systems. the analysis is more 

complete and more transparent. The results of the scalar analysis can be generalized. 

in a straightforward manner, to systems of hyperbolic conservation laws such as the 

Euler equations. We will report on this in a separate paper. 

In Section 2 we describe the construction of second-order monotone upwind 

schemes. By using a definition of monotonicity based on positivity of coefficients, it 

is shown that there is no contradiction between monotonicity and second-order 

accuracy (neither in one nor in more dimensions). We emphasize that the concept of 

monotone schemes used in this paper is not equivalent with the definition of 
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monotone schemes by Harten, Hyman, and Lax [4]. It can easily be seen that the 
constructed schemes are TVD (Total Variation Diminishing) [5] in one dimension 
but not in two or more dimensions. This agrees with the result of Goodman and 
LeVeque which states that TVD schemes in 2-dimensions are at most first-order 
accurate [3]. Much attention is payed to the construction of a limiter. Because of its 
smoothness, the van Albada limiter [12] appears to be the most attractive one. 

In Section 3 we show what nonlinear multigrid method we apply. In the multigrid 
method, a good relaxation process is of crucial importance. A block Gauss-Seidel 
underrelaxation (with w = 0.5) appears to be a satisfactory smoothing operator. 

In Section 4 numerical results are shown. Excellent steady solutions are obtained 
for linear problems with contact discontinuities and for nonlinear problems with 
shocks. As in the first-order case, multigrid appears to be an efficient solution 
process. 

In the last section some conclusions are listed. 

2. The Construction of a Second-Order Monotone Upwind Scheme. Consider the 
following nonlinear scalar hyperbolic conservation law 

(2.1) 
a a a 
otu + axf(u) + oyg(u) = 0. 

Suppose that the flux functions /(u) and g(u) can be split in positive and negative 
parts, i.e., 

(2.2) 

where 

(2.3) 

f(u) = r(u) + r(u), 

:Ur(u) ~ o, 

:Ug+(u) ~ 0, 

d -
duf ( u) ~ 0 'tf u E IR, 

:ug-(u)~O 'tfuEIR. 

To discretize (2.1), we apply the finite-volume technique. Thus, the discrete values of 
u are associated with cell centers and are regarded as approximations of the mean 
value of u in each cell. To avoid technical details, we discretize (2.1) on an 
equidistant grid with mesh size h. Furthermore, the space discretization is based on 
the Projection-Evolution approach [14], [15]. Because we are only interested in 
steady-state solutions of (2.1), the simplest time discretization is used, i.e., "forward 
Euler". (Later, the time dependency in the discretized form of (2.1) is dropped, and 
multigrid is used to solve the nonlinear time-independent system of discretized 
equations directly.) Hence, (2.1) is discretized by 

(2.4) 

u/:/ 1 = ut1 + ~t [ { r ( u;-=-112.1) - r ( u;-:;.112.1)} 

+ { r ( ui~'i12.1) - r ( u;~'i12.1)}] 
+ ~t [ { g+( U;~/-1;J - g+( U;~/+1;2)} 

+ { g-( U;7/~ 1/2) - g-( U;7/1-1;2)}], 
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where 

u-n - U" + 1 -1·(R" )(U" U" ) i+l/2,j - 1,j 2'1' i,j i,j - i-1.J • 

(2.5) 

u+" U" + 1 ·"(. l )(u" U" ) ;-1;2,J = i,J 2'1' R''. ;.1 - 1+1.1 , 
l ,J I 

u-n - U" + 1 ·1·(S" )(U" U" ) i,j+l/2 - i,j 2'1' i,j i,j - i,j-1 ' 

and 

(2.6) 
U" .- U" R" . = 1+!,J I,) 

l,j un - un ' 
I ,J l -- 1..1 

U" - U" S". = ,,1 +1 ,,J 
l,J un - un ' 

1.J 1,J -· 1 

and i/;: IR ~ IR is a continuous function called the limiter. The value U/: is a 
numerical approximation of the mean value of u in cell (i, j) at time t = nM, so 

(2.7) 

The values U;~''i 12 . 1 , U;~''i;2.J are approximations of 

lf()+l/2)h ((· 1) ) h . U I+ 2 h, 1/, nAf d1/, 
(J-l/2)h 

located at the left and right side of the cell wall (i + 1/2, j). See Figure 2.1. 

The limiter if= if(R) is introduced in the discretization in order to construct a 

monotone, spatially second-order scheme. The limiter is a function of the consecu­

tive gradients, a common practice in this field [2], [11], [13]. Notice that in (2.5) 

1/.1 = 0 corresponds to the first-order upwind scheme while if = 1 yields the fully 
one-sided second-order upwind scheme. We define a monotone scheme as follows. 

u,_1 +1 

u,~-Vi 

u,,1 -1 

FIGURE 2.1 
Location of the several variables in the space discretization. 
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Definition. Consider a discretization of (2.1) given by 

(2.8) 

where 

(2.9) 

u 11 + 1 - U" +A" (U" - U") + B" (U" - un) i,j - i,j i+l/2,j i+l,j i,J i,j+l/2 i,j+l 1,J 

+C/~1;2.1(U/'-1.1 - U/1) + Df'.1-112(U(1--1 - U/',), 

A7+1;2.1 =A(···, U/'--1.1• fl;'J, ll;~1.1• · · · ), 
B;~1 + 1/2 = B ( .. · Jl;'.}-1ll;'.j, ll;~J+ l • · · ·), 

C/'--112.1 = c( · · · · ll;"-1.1· U/j, ll;~1.1· · · · ), 
D" - D( U" U" U" ) i,j-1/2 - ... , i,j-1• i,1' i,j+l•"• . 

Scheme (2.8) is called monotone if 

(2.lOa) A7+1;2,J;;.; 0, Bf'.1+1;2;;.; 0, C/'--1;2.1 ~ 0, Df'.1--112 ~ 0, 

and if 

(2.lOb) 1 -A?+1;2.1 - B;~1+1;2 - C/~1;2.; - Df'.J-112 ~ 0. 

This definition of monotonicity is especially useful for the steady-state problem, as is 
shown by the following theorem. 

THEOREM 2.1. If scheme (2.8) is monotone, then a steady-state solution of (2.8) is 

monotone, i.e., 

min( fl;_ 1,1, ll;+ 1,1, U;,1_1, U;,1+ 1 ) ~ U;,1 ~ max( fl; __ 1 • .1, U, t 1,f' U;.J- 1 • U;), 

where { U;,1} denotes a steady-state solution of (2.8). 

Proof. From (2.8) we see that 

U . = A;+ l/2,Jll;+1.1 + B;,J+ l/2ll;,J+ 1 + C;-1;2.1U,- 1.J + D,,J -1;2U,,J -1 

'·1 A;+1;2.1 + B;.1+112 + C;-112.1 + D;.1-112 

which, owing to the positivity of the coefficients, proves the theorem immediately. 0 
We wish to show under what conditions scheme (2.4) is monotone. It can easily be 

seen that scheme (2.4) can be written as (2.8) by taking 

(2.11) 

D.1 r ( U;: 112.1) - r ( U;+_ 112.1) 
A7+1/2,j = - h. u+n u+n 

i+l/2,j- i-1/2,j 

D.1 r(U;~'l12)- r(u;-_~12) 
C/~1;2.1 = + - . 

h u-nl/2 . - u-_"1;2 . 
I+ ,.J I ,1 

u+n u+n 
i+l/2.j- i-1/2,/ 

U;~1.; - U/'1 

U;~';12.1 - U;-_';12.1 

U/'1 - U/~ 1.i 

U +n u+n 
i,j+ 1/2 - i,j .. 1/2 

Vi~/+ I - U/'1 
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To obtain positivity of the coefficients A;'+ 1; 2,1, Bf:1" 112 , etc., it is sufficient (by the 

Mean Value Theorem) that 

(2.12) 

u.+n . - u+n ? 
1+1/2,; 1-l/-.j > 0 

U" .-U" ""' 1+1,; 1,j 

u+n ? - u+n 
1,;+l/- 1,;-1/2 > 0 

un+l - u.n. "" . 
1,j 1,.f 

u n - u-11 
I" 1/2,j I - 1/2,.f > 0 
un - U" . "" ' 

l,j I l ,.f 

u-n - u-n 
i,jl-1/2 l,j-1/2 > 0 

un - un ,,.., . 
I,/ I ,J - l 

Furthermore, inequality (2.lOb) is fulfilled by taking llt sufficiently small, while 

assuming uniform boundedness of the derivatives of j+(u), r<u), g+(u) and 

g-(u), and taking care that the left-hand sides of the inequalities in (2.12) are also 

uniformly bounded. 
By substitution of (2.5) in (2.12) it is easily seen that (2.12) is fulfilled if 

(2.13) 

Furthermore, the uniform boundedness of the left-hand side of the inequalities in 

(2.12) is obtained by requiring 

(2.14) 

So, (2.1) is a monotone scheme if the limiter if= Y,(R) satisfies the property that 

(2.15) 
1 

-2:s;;Y,(R)-if;(S)·5:s;;2M VR,SEIR. 

This inequality is satisfied if 

(2.16a) 

and 

1/;(R) 
(2.16b) -M:s;;-R-:s;;2+a VRE!R. 

The monotonicity region given by (2.16) is depicted in Figure 2.2. We assume 

a E [ - 2, O]. 

FIGURE 2.2 
Monotonicity region. 
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We have thus found the following theorem. 

THEOREM 2.2. If the limiter if; = if;(R) has the properties that there exist constants 
ME (0, oo), a E [-2,0] such that a~ if;(R) ~ M, -M ~ if;(R)/R ~ 2 +a for all 
R E IR, then (2.4) is a monotone scheme. 

One of the direct consequences of Theorem 2.2 is that if;(O) = 0. Notice that 
if; = 0, which corresponds to the first-order upwind scheme, results in a monotone 
scheme, as we should expect. 

Now, we wish to investigate under which condition scheme (2.4) is second-order 
accurate with respect to the space discretization. Define 

(2.17) 

with similar formulas for {f;.] ± 112 and U;,} ± 112 . Notice that the D-values correspond 
to if;( R) = 1, the fully one-sided upwind case, which gives a second-order accurate 
space discretization. 

LEMMA 2.1. If the limiter if; = if; ( R) is constructed such that 

(2.18a) 

and 

(2.18b) 

where U;~ 112,1 , U;~ 112,J etc. are given by (2.17), then (2.4) is second-order accurate 
with respect to the space discretization. 

Proof. This lemma is a direct consequence of the formulas (2.30) and (2.31) 
derived in (10]. D 

From (2.17) we see that 

(2.19) 

Furthermore, by assuming that ou/ox is bounded away from 0, we see that 

U+ 1 . - U. . U+ 1 . - 2U. + U 1 . R . = I ,j I ,j = 1 + I ,j l ,j I - ,; = 1 + 0 ( h) . 
l,j U;,j - U;-1,j ll;,j - U;-1,j 

(2.20) 

Hence, using (2.20), we can write 

(2.21) 
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where we assume that if;(R) is twice continuously differentiable in a neighborhood 

of R = 1. So, if if;(l) = 1, we immediately see from (2.19)--(2.21) that (2.18b) holds. 
Furthermore, if if;(l) = 1, then also 

u- = rr +.!_di/I (l). ( u;+1.1 - 2u, _ _, + u,_ 1_1 ) 

1+112.1 1+1;2.J 2 dR U _ U 
'·.! 1-l.1 

(2.22) · ( V,,1 - V,_ 1,J + O(h 3 ) 

- - 1 di/; 
= ui+112.J + 2 dR (1)(U;+1.j - 2U;_j + v,_1) + O(h 3). 

From (2.22) it is easily seen that also (2.18a) holds. Therefore we may conclude that 

if (l) = 1 is a sufficient condition to obtain a second-order space discretization. 

THEOREM 2.3. If </i(l) = 1and1f <Ii E C2 in a neighborhood of 1, then scheme (2.4) 

is second-order accurate with respect to the space discreti::ation. 

COROLLARY 2.1. Scheme (2.4) is linear if i/;(R) =a+ bR, a, b E ~- From 

Theorems 2.2 and 2.3 it is easily seen that no linear schemes exist that combine the 

property of second-order accuracy and monotonicity. 

Examples of limiters combining the property of second-order accuracy and 

monotonicity are: 

Example 1. The van Leer limiter [11], [13], [14] 

(2.23) R + IRI 
if.ivL(R) = IRI + 1. 

By taking M = 2 and a = 0 it is easily seen that this limiter satisfies the monotonic­

ity restriction (2.16). Because i/; VL (1) = 1, second-order accuracy is obtained. 

Example 2. The van Albada limiter [12] 

(2.24) 
R 2 + R 

i/JvA(R) = R2 + 1. 

By taking M = 2 and a = - t it is easily seen that this limiter combines monoton­

icity with second-order accuracy. Another advantage of this limiter is that i/JvA E 

C 00 (~). This is an important property when we apply Newton's method (local 

linearization) in a relaxation procedure for the solution of the steady-state discrete 

equations. 
For a review of other limiters, see [11]. But notice that a limiter 1>( r) of [11] is 

related to if;(R) by R = l/r, ij;(R) = Rcp(r). A limiter q,(r) of [11] is only 

algebraically identical with i/;(R) if ij;(R)/R = if;(l/R). For our numerical experi­

ments in Section 4 we have chosen van Albada's limiter because of its smoothness. 

Remark 2.1. It has been observed [9], [14] that second-order. accuracy can be 

achieved by assuming a linear distribution in each cell, rather than the uniform 

distribution associated with first-order schemes. In a cell, a linear distribution in the 

x-direction is achieved if 
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similarly in they-direction. Using (2.17), this means 

or, equivalently, 

o/(-1 ) = f(R;_;). 
R. R. 

1,j 1,j 

Thus, if a limiter satisfies 

(2.25) 

we can speak of linear distributions in each cell. It can be verified that both if; VL and 
if; VA possess this property. This is no coincidence: They were designed that way. 
Notice that if a limiter iii = iii( R) satisfies (2.25), then the monotonicity conditions 
(2.16) are equivalent to 

(2.26) a:s;,tf;(R):s;,M, -M:s;,tf;(R):s;,2+a \fRE~. 

Formula (2.25) implies iii (0) = 0, hence a E [ - 2, OJ. By taking M = 2, (2.26) 
becomes 

which means 

ij;max - ilimin ~ 2, 

where 

if; max = max ( if; ( R ) ) , 
REIR 

if! min = min ( if; ( R )) . 
RE!hl 

Hence, we have found the following result. 

THEOREM 2.4. If a limiter if; = if; ( R) has the proper(v if; (1 / R) = if; ( R )/ R, then 
scheme (2.4) is monotone if if; max - if; min < 2. 

Remark 2.2. We will use Newton's method (local linearization) in the relaxation. 
Therefore, we have to linearize the limiter. It can easily be verified that 

with 

implies 

(2.27a) 

1 
U;+ 112 = U,-2.ili(R;)(U;- U;_ 1) 

R= U,+1- U, 
I U,- u,_l 

au;+ 112 = a( R;) au;_ 1, 

au,+1;2 = /3(R;)au,, 

au,+ 112 = Y ( R;) au,+ 1, 



where 

(2.27b) 
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1 1 di/; 
a( R) = - -t ( R) + - R-( R) 

2 2 dR ' 

/3 ( R) = 1 + ~ t ( R) - ~ ( 1 + R) ~~ ( R), 

1 di/; 
I' ( R) = 2 dR ( R). 

So we see that the derivative of U, 1112 with respect to U,_ 1, Vi or U,+ 1 only depends 

on R;! 

Remark 2.3. To avoid any confusion, we wish to emphasize that in this article the 

monotonicity is obtained by multiplying the backward differences with if ( R ). i.e., 

1 
ui~1;2.1 = ui.1 + 2t(R;.;)(U,.1 - u,_1). 

(2.28) 

V/-1;2.1 = U,,J + ~t ( R~.J )( Ui.J - U;+1.J 

Another possibility, often encountered in the literature, is 

(2.29) 

_ 1 ( )(U;+1.1 -U,,1 U;_;-U,·1.;). 
U;+ 1/2.; = U;,; + 21> R1.J 2 + . 2 

1 ( 1 )(u .-u. u.-u ) u+ .· = u . + -rl. - .. · 1-l,j I,) I,) 1+l,j 
1--1;2,, I,) 2 't' RI,/ 2 + 2 . 

It can be verified that both descriptions are equivalent if 

(2.30) ( R + 1) t(R) = <t>(R) · - 2- . 

The preceding results show clearly that. from a theoretical point of view, description 

(2.28) is preferable to description (2.29). 

3. Multigrid Solution. In this paper, as noted before, we are primarily interested in 

monotone second-order accurate steady-state solutions of (2.1). Therefore. we omit 

the superscript n in (2.4 )·-(2.6). and we wish to solve 

(3 .1) 

( L 11 u) i.1 := h [ { J' ( uj+ 1;2.;) - f' ( u1 112.1)} 

+{F(u,\112.1)-J(u,+ 1/2.J)} 

+ { g+( u1~;+ 1/2) - g+ ( u1.1 1/2)} 

+ {g (u;1+1;2) - g (U:/-1/2)}) 

= (r11 L.1 
directly. Here r11 = 0 and h denotes the meshsize of the finest grid. Note that in (3.1) 

we multiply with the meshsize h instead of dividing by h. as was done in (2.4). By 

doing this, (L 11 u);,J receives the physical meaning of "net flux" into cell (i.)). This 

is a more appropriate quantity when dealing with nonuniform grids. 
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For the multigrid solution of (3.1) and the multigrid terminology used, we refer to 
[1 ]. A nonlinear (FAS) multigrid solution of (3.1) is obtained by applying, iteratively, 
FAS-cycles. One FAS-cycle for the solution of (3.1) consists of the following steps: 

(0) Start with an approximate solution uh. 
(1) Improve u;, by application of p (pre-) relaxation iterations to (L;,uh) = rh. 

(2) Compute the defect dh = rh - Lhuh. 
(3) Find an approximation u2;, of uh on the next coarser grid; u2h := it'u1i, 

where ih2h is a restriction operator. 
(4) Compute r2" = L21iuz1i + Il"hdh, where Jlh is (another) restriction operator 

and L 2 ;, is the coarse-grid operator (an approximation of Lh on the next coarser 
grid). 

(5) Approximate the solution of 

L2hu2h = r2h 

by application of cr FAS-cycles, starting with the initial estimate u2 ;, = flhuh. The 
result is called u2h. 

(6) Correct the current solution by 

uh:= uh+ 1;1i(u2h - u2h), 

where Ii'h is a prolongation operator. 
(7) Improve uh by application of q (post-) relaxation iterations to Lhu,, = rh. 

The steps (2)-(6) in this process are called "coarse-grid correction". In order to 
complete the description of the FAS-cycle, we have to discuss 

(0) the relation between the fine and coarse grid; 
{1) the choice of the operators L 211 , I~h' ff;\ and l1i2h; 

(2) the relaxation method; 
(3) the FAS-strategy, i.e., the numbers p, q, a (a = 1 characterizes a V-cycle, 

a = 2 a W-cycle ). 
We now discuss these topics. 
(0) Fine-grid construction. A finer grid is constructed from a coarser one by 

subdivision of a coarse-grid cell in 4 smaller cells as shown in Figure 3.1. 
(1) Choice of the operators. The restriction operator i f;h is defined by 

(u211L.1 = (ilhu;,L__; 
(3.2) 

'.= H(u1i)2;.21 +(uhh-1,21 +(u1ih.2J-1 +(u1i)2;-1,21-d· 

(2i -1,2)) (2i, 2)) h 

(i,j) 2h 

y 
(2i -1,2) -1) (2i, 2j -1) h 

2h h h 

x 

FIGURE 3.1 
The subdivision of a coarse-grid cell in four fine-grid cells. 
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The restriction operator Ir is defined by 

(3.3) (r2h) ;,J = ( Jfhrh);,J = (rhh.21 + (rhhi-1.21 + (rhb.21-1 + (rhb-1.21-1· 

The prolongation operator Ifh is defined by 

(I;hu2hb.2/= (Jfhu2h)2;-1,2/= (Ithu2h)2;.21-1 

:= (Ifhu2h)2;-.1.21-1:= (u2h);,1· 
(3.4) 

The coarse-grid operator L 2h is defined by a Galerkin approximation 

(3.5) L 2h = 1rLhJth-

Then the following theorem can be proven. 

THEOREM 3.1. If the restriction and prolongation operators I1~h and 1;h are defined 
by (3.3) and (3.4), and if the coarse-grid operator L 2h is defined by the Galerkin 
approximation (3.5), then the coarse-grid operator corresponds to the monotone first­
order discretization (if; = 0) of the continuous problem on the coarser grid. In other 
words, 

(3_6) (L2huL.1 =2h[{r(u;)-j+(u;-1)} +{F(ui+1)-r(u;)} 

+ { g + ( u i) - g + ( u i .1 - l ) } + { g- ( u i .1 + l) - g - ( u i) } ] . 

This is independent of the limiter used in (3.1)!. 

Proof. The proof of this theorem is left as an exercise to the reader. We only wish 
to remark that for a (fine-) grid distribution {uh}; .J with the property 

(uhb.21 = (uh)2;-1,21 = (uhb.21-1 = (uhh-1.21-1 'V(i, J) 

there holds 

(uh);"~-1;2.1 = (uh);~J+l/2 = (uh)i~1;2.1 = (uh);~1-112 = (uh);. 1 'V(i. J), 

where (uh)l+ 1; 2.1, (uh);1+112 , (uh);_ 112.1 and (uh)t1_112 are calculated according to 
(2.5), (2.6) (omitting the superscript n ). This result is due to the fact that the limiter 
ii-= 1/-(R) is uniformly bounded and 1/-(0) = 0. D 

This theorem has an important practical consequence. We already know that 
nonlinear multigrid is a good solution method for the first-order upwind scheme [6], 
[7]. Therefore we may expect to have no problems in the solution procedure on the 
coarser grids. 

(2) The relaxation method. As noted before, it is our purpose to apply the methods 
developed in this paper to systems of hyperbolic conservation laws, e.g., the Euler 
equations. Now, it is well known that symmetric point Gauss-Seidel relaxation is a 
good relaxation method in the nonlinear multigrid solution procedure for the 
first-order system of the steady Euler equations in 2D, but not for the second-order 
discrete system [6], [8]. Even for the simple scalar model problems discussed in 
Section 4, point relaxation methods did not work well. An explanation is that, for 
second-order discretizations of steady hyperbolic problems, a Gauss-Seidel point 
relaxation in the upstream direction causes amplification of the error (which does 
not happen for first-order discretizations). This is the reason why we shall investigate 
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a block Gauss-Seidel relaxation, rather than a point relaxation. We shall require that 
no amplification of the error should occur when the block Gauss-Seidel relaxation 
has the upstream direction. 

How do we choose the blocks? Notice that by (3.1), nine variables u,,J, U;+i,p 

u;+ 2.J, u;,J+I' ui,J+Z' ui-l,J' u;_ 2_1, u;_1 _ 1, and u;,1_2 are coupled. Therefore, we 
have a nine-point stencil. On the other hand, if we combine u2;,2J, u 2;--i.2J' u2;,21 _ 1, 

and u2;-i,2;-i to an unknown vector U;,J as 

(3.7) T 
I/; ,j := ( U2i,2;' U2;-- l,lj' U2; ,2j- l • U21--- l ,2j-- l) ' 

and if we replace system (3.1) by an equivalent system with unknowns { U;, 1 }, then 
we see that each equation in this new system corresponds to a five-point block 
stencil, i.e., U;, 1 is only coupled to ll;+i,J' U;,J+ 1, U;--t,J• and U;,1 _ 1. For this reason, 
we consider the cells (2i, 2j), (2i - 1, 2j), (2i, 2j - 1), and (2i - 1, 2) - 1) as one 
block. Thus, in our block Gauss-Seidel relaxation, the blocks of unknowns are 
scanned in succession and for each block the corresponding equations are solved 
simultaneously. We use Newton's method to solve these four nonlinear equations in 
each block. 

In the following example we use local mode analysis to investigate whether our 
block Gauss-Seidel relaxation amplifies the error when the blocks are scanned in the 
upstream direction. 

Example. Consider the lD problem 

au au 
(3.8) at+ a ax = 0, a> 0. 

With the second-order discretizations as described in Section 2, the system of 
discrete steady-state equations becomes 

(3.9) 
(Lhu); = a[u; + tif;(R;)(u, - U;_ 1) 

-{u;_ 1 +H(R;. 1)(u;.i-u, 2 )}] =0. 

Without a limiter (if; = l) we obtain 

(3.10) (Lhu); = a[3u; - 4u;_ 1 + U; .. 2 ] = 0, 

where a = a/2. This system is now equivalent to 

( 3 .11) ( L hU); = a { ( ~ ~ 4 ) ll; + ( ~ 4 n U;. 1} = 0, 

where U; = (u 2;, u2;_ 1) 7. 

If we apply to this new system point Gauss-Seidel relaxation (which corresponds 
to block Gauss-Seidel relaxation for system (3.9)) in the downstream direction, it is 
immediately clear that an exact solution is obtained in a single iteration sweep. 

Gauss-Seidel relaxation in the upstream direction gives 

(3.12) a{(~ ~4 )U;"+t+(~4 ~)U;~ 1 }=0, 
where n is the iteration index. Suppose U/,/ = Aei8k, U;'+t = G({})U;', where 0 E 

[ - 7T, 'IT] and A is an arbitrary vector with 2 components and G ( (}) a 2 x 2 matrix. 
From (3.12) it is seen that 

( 3 .13) (~ -4)c(e) +( 1 
3 -4 

0) -i8 = 0 1 e , 
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and the eigenvalues of G(B) are f..1G(B) = e-iB and ;\20 (8) = -&e- 18. Hence the 

spectral radius of G( (}) is equal to 1 for all (} E [ - 71', 'IT], and the smoothing factor 
µc, defined by 

(3.14) 

is also equal to 1. The smoothing factor µG can be improved by underrelaxation. 
This means that (3.11) is replaced by 

(3.15) 
a{(~ ~4 )v/+ 1 +(~4 ~)u;~ 1 }=o, 
un+i := un + w(U"+ 1 _ U-".) 

l l l l ' 

where w E [O, l]. Again, assume that Uk'= Ae 18k and U//+ 1 = Gw(B)U//; then 

(3.16) GjB) = (1 - w)I + wG(O), 

and the eigenvalues of Gw({}) are ;\1;L(8) = 1 - w + w/...1;}(8). The optimal (smallest) 
smoothing factor µcw is obtained by w = 0.5; then 

. 1 
/lcw = 1-i + 11 I = {5. "" 0.71. 

From this example we see that w = 1 and w = 0.5 are optimal choices for the block 
Gauss-Seidel underrelaxation method in the downstream and upstream direction, 
respectively. Since we wish to use a problem-independent relaxation method, a fixed 
w is used for all problems and all directions. In the context of the multigrid method 
where a single symmetric block Gauss-Seidel underrelaxation was used both in the 
pre- and the post-relaxation, it is shown by numerical experiments that in general 
w = 0.5 is a better choice than w = 1.0. 

(3) The FAS-strategy. We take p = q = 1. Due to the fact that the coarse-grid 
equations are first-order accurate (cf. Theorem 3.1), each coarse-grid equation 
(if = 0) corresponds to a five-point stencil. Therefore, we use a simple symmetric 
point Gauss-Seidel relaxation on the coarse grids, and so we can afford to apply 
W-cycle FAS-iterations (i.e., a = 2). 

4. Numerical Results. For the numerical experiments m this section we have 
applied the multigrid method described in Section 3. 

In case of linear problems, the first-order scheme (if = 0) is linear but, due to the 
nonlinear van Albada limiter, the second-order scheme is nonlinear. On the coarse 
grids we always deal with first-order schemes (cf. Theorem 3.1). Hence, for linear 
problems, the coarse-grid equations are linear. It is easily seen that in case of the 
following linear examples (Examples 1 and 2) a single post- and pre-relaxation 
(which are symmetric point Gauss-Seidel relaxations in different directions) is 
sufficient to solve the first-order system of discrete equations on the coarser grid 
exactly. Hence, in those linear cases, the coarse-grid correction is calculated exactly, 
and just one coarser grid is needed in the multigrid process. In those cases a W-cycle 
is superfluous; a V-cycle is sufficient. 

After each FAS-iteration, on the finest grid, the Li-norm of the residuals has been 
calculated, i.e., 

llLhuh - rhllL 1 = L l(Lhu;:);,J -(rh),,J 
(i. j) 
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where Lh and rh are defined by (3.1), n is the FAS-iteration index, u;: is the current 
approximation of the steady-state solution of the second-order scheme and the pairs 
(i, j) are the cell indices of the finest grid. After n FAS-iterations we can calculate 
the approximate convergence factor Pn according to 

The initial iterate u2 is obtained by the full multigrid method [1], [6]. For each 
multigrid process, the convergence factor p = limn...., 00 Pn is approximated from the 
finite set { Pn}. 

Example 1. On the square [O, 1] x [O, 1] we consider the linear convection problem 

au au au 
- +a-+ b- =0 at ax ay ' 

where a= cosc[>, b = sinrp, cf> E (0, 7r/2). Hence, 

f(u) = r(u) =au, 

g(u) = g+(u) = bu, 

r(u) = 0, 
g-(u) = 0. 

The boundary conditions (steady-state problem) are 

{ u(O,y): 1, 
u(x,O) - 0, 

0 <y < 1, 
O<x<l. 

The exact solution of the steady-state problem is trivially 

uex(x,y)=l ifbx-ay<O, 

uex(x,y) = 0 if bx - ay > 0. 

Thus, the exact solution contains a contact discontinuity. 
The observed convergence factors of the multigrid solution process have been 

calculated for several angles <f> and for several meshsizes. The results are summarized 
in Table 4.1. 

TABLE 4.1 

The approximate convergence factors of the multi grid process for 
several angles <f> and for several equidistant meshes with size h. 

~ 15° 30° 45° 60° 75° 

1/8 0.11 0.13 0.13 0.13 0.11 

1/16 0.17 0.25 0.27 0.25 0.17 

1/32 0.29 0.38 0.39 0.38 0.29 
1/64 0.41 0.44 0.47 0.43 0.42 
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FIGURE la FIGURE lb 

FIGURE le FIGURE ld 

FIGURE 1 
Contour plots of the numerical solution of the first- and second-order scheme, <f> = 15 °. 

Figures la and 1 b are solutions on a 32 X 32 mesh and Figures le and Id are solu­

tions on a 64 X 64 mesh. Figures la and 1c are obtained with the first-order scheme 

and Figures lb and ld with the second-order scheme. 

From Table 4.1 we conclude that the convergence factors are satisfactory and only 

weakly dependent of <f>. More meshes are needed to estimate the limit values of the 

convergence factors when hi 0. We have applied the same multigrid strategy for the 

fully one-sided second-order upwind scheme (if = 1 ). The convergence factors were 

almost the same as in Table 4.1 (no significant difference). In Figures 1, 2, and 3 we 

show some numerical solutions. These figures correspond to <J> = 15 °, 30° and 45 °, 
respectively. 

Example 2. On the rectangle [ - 1, 1] X [O, 1] we consider the linear convection 

problem 
au au au 
at + y ax - x ay = O. 

Hence, this problem can be written in the form (2.1), (2.2) with 

r ( x' y' u) = yu, 

+( ) { -xu g x, y, u = 0 
if x < 0, 
if x > 0, 

r(x,y,u)=O, 

g-(x, y,u) = { 0 
. -xu 

if x < 0, 
if x > 0. 
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FIGURE 2a FIGURE 2b 

FIGURE 2c FIGURE 2d 

FIGURE 2 
As Figure 1 but <P = 30°. 

The boundary conditions (steady-state problem) are 

The exact solution is 

u(x,O) = 0 
u(x,0) = 1 

u(x,O) = 0 
u(-1,y)=O 
u(x,1)=1 

if x < -0.65, 

if -0.65 < x < -0.35, 

if -0.35 < x < 0, 

0 < y < 1, 

O<x<l. 

u,Jx, y) = 1 if 0.35 < /x 2 + y 2 < 0.65, 

ueA x, y) = 0 otherwise. 

Computations have been carried out on a 32 X 16 mesh (h = 1/16) and on a 
64 X 32 mesh ( h = 1/32). The observed convergence rates for the multigrid process 
were 0.29 and 0.44, respectively. In Figure 4 we show the numerical solution on the 
64 x 32 mesh. 
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FIGURE 3a FIGURE 3b 

FIGURE 3c FIGURE 3d 

FIGURE 3 

As Figure 1 but</> = 45°. 

Example 3. On the square [O, l] x [O, l] we consider the nonlinear problem 

a a a aiu + axf(u) + ayg(u) = 0, 

where 

g(u)=u. 

Hence, 

where u+= max(u,O), u-= min(u,0). 

The steady-state equation is 

i.e., the inviscid Burgers' equation. Two different sets of boundary conditions have 

been considered. 
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FIGURE 4a 

FIGURE 4b 
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FIGURE 4 

• - I 

I 

FIGURE 4c 

Numerical solutions for Example 2. 

A contour plot of the first-order solution is shown in Figure 4a, the second-order 
solution in 4b. In Figure 4c the solutions at the boundary y = 0 are shown for the 
first- and second-order scheme. 

Problem 3a. With the boundary conditions 

{
u(O,y) = 1, 0<y<1, 

u(l,y) = -1, 0<y<1, 

u(x,O)=l-2x, O<x<l, 

the solution is (see Figure a) 

Uex(x,y) = 1 

Uex(x,y)=-l 

if ( x, y) in region A , 

if ( x, y) in region B, 

1 - 2x 
uex(x, Y) = 1 _ ly if (x, y) in region C. 

y 

1.0 

A B 

0.5 

0.5 1.0 

FIGURE a 

The regions A and Bare separated by a shock, originating at (x, y) = (O.S, O.S). 

x 

Computations have been carried out on a 32 x 32 and a 64 x 64 grid. The 
observed convergence factors for the multigrid process were 0.49 and 0.46, respec­
tively. In Figure S we show contour plots of the numerical solutions on the 64 X 64 
grid. Figure Sa shows the first-order, and Figure Sb the second-order solution. 
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FIGURE 5a FIGURE 5b 

FIGURE 5 

Contour plots of the first- and second-order solutions of the inviscid Burgers ' 

equation (considered as a boundary value problem) with a shock. 

Problem 3b. With the boundary conditions 

{
u(O, y) = 1.5, 

u(l,y) = -0.5, 

u(x,O) = 1.5 - 2x, 

the solution is (see Figure b) 

0 <y < 1, 

0 < y < 1, 

0 < x < 1, 

Uex{x, Y) = 1.5 

Uex{x,y) = -0.5 

if ( x, y) in region A , 

if (x, y) in region B, 

1.5 - 2x 
Uex{x, y) = 1 _ 2y if in region C. 

y 

0.75 1.0 

FIGURE b 

Regions A and B are separated by an oblique shock, originating at (x, y) = 

(0.75, 0.50). 
Again, computations have been carried out on a 32 x 32 and a 64 x 64 mesh. The 

observed convergence factors were 0.35 and 0.45, respectively. In Figure 6 we show 
the contour plots of the numerical solutions on the 64 x 64 grid. Figure 6a shows 
the first-order, and Figure 6b the second-order solution. 
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FIGURE 6a FIGURE 6b 

FIGURE 6 

As Figure 5 but with an oblique shock. 

5. Conclusions. In this paper, it is shown that the multigrid method can be an 
efficient solution procedure to obtain steady-state solutions of second-order accu­
rate, monotone upwind schemes for hyperbolic conservation laws, also when the 
solution contains an (oblique) contact discontinuity or shock. The key to success for 
the multigrid method is the efficient relaxation (smoothing) procedure. It has been 
shown that a symmetric block Gauss-Seidel underrelaxation (each block is associ­
ated with 4 cells) is an efficient smoothing operator. Furthermore, the coarse-grid 
operators have been obtained by a Galerkin approximation which has the important 
practical consequence that coarse-grid operators are first-order accurate. Hence, 
simple relaxation methods, such as point Gauss-Seidel relaxation, are efficient on the 
coarser grids. 

By the use of a definition of monotonicity, based on positivity of coefficients, it is 
shown that there is no conflict between second-order accuracy and monotonicity 
(neither in one nor in more dimensions). The limiter, applied in the second-order 
scheme to preserve monotonicity is the smooth limiter of van Albada. 

The ideas described in this paper can be generalized to systems of hyperbolic 
conservation laws as, e.g., the Euler equations. A report on this application is in 
preparation. 
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