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1. InTrRODUCTION

Let Is, be the Lie algebra of all differential operators in 7 variables with polynomial coeffi-
cients of total degree in variables and derivatives << 2, Thus e.g. /s is the Lie algebra with

basis

- 2 )
2, .2 0 ’_6_, 1 (1.1)

3x’5—x‘i,x Ox

(The product is of course the commutator product). The symbol Is for this Lie algebra stands
for “linear systems”. The reason for this appellation derives from the following. Consider a

linear stochastic system
dx, = Ax,dt + Bdw,, dy, = Cx,+ dv,. (1.2)

Then an unnormalized version. of the density of the conditional expectation of the state x, given
the' past observations y,, 0 <\s <, satisfies a (stochastic) evolution equation

dp(x51) = Lp(x,t)dt + Lip(x,2)dyy, + + -« + Lyp(x,2)dy,y (1.3)

with L,L,,--+,L,€ls,, And for varying systems (1.2) these operators generate all of Is,,
The Kalman-Bucy filter for £, = E[x,|y.,0 <s<C¢] is a system of the form

dz = a(z)dr + g (Ddy,, + -+ + 8,(=)dy; (1.4)

where z is short for (P,2) and @, gy, -,8, are vectorfields on (P, £)-space. Let V(R")
denote the Lic algebra of vectorfields on RV, Then the first main point of this paper is that
all Kalman-Bucy filters combine to define a “universal Kalman-Bucy filter” in the shape of an
anti-homomorphism of Lie algebras

£:lsa—>V(RY), N= -;—n(n +1)+=n (1.5)

(and it is even possible to use this to propagate nongaussian initial densities). Here “anti”
means that

£[D>D"] = [£(D"),£(D)] rather than x[D,D’'] = [«(D), x(D")].

This also establishes that the Kalman filter does indeed define an antihomomorphism of Lie algebras
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from the Lie algebra generated by L, Ly, -+-, L, in (1.3) (the so-called estimation Lie
algebra) to a suitable Lie algebra of vectorfields, as it should according to a philosophy (almost
a theorem now) first proposed by Brockett and Clark [17.

The structure of Is, is simple. It is an extension of the real symplectic Lie algebra Sp,
by the Heisenberg Lie algebra %,. Let Sp, be the symplectic Lie group. Then there is a famous
and somewhat mysterious representation of Sp, (or more precisely its 2-fold covering Sp,)
which turns up in many distinct areas of mathematics, e.g. number theory and quantum me-
chanics. It is called the Segal-Shale-Weil representation or sometimes the oscillator representation:
The second main point of this paper is that this Segal-Shale-Weil representation and the “filter
anti-representation” (1.5) above are intimately related. This extends and strengthens the links
between filtering theory and quantum mechanics which had been noted before [11], cf. also
various contributions in [5].

It seems likely that the fact that all Kalman-Bucy filters fit together nicely will be useful
both for theory and applications. In fact it is definitely of importance in a class of nonlinear
filtering problems coming from identification and tracking [4, 10] where the estimation Lie
algebra is a lways a subalgebra of a current algebra Is, QR where R is a ring of polynomials.

Further applications of the “universal filter” (1.5) and/or its relations with the® Segal-Shale-
Weil representation seem likely.

2. Tur Linear Systems Lie Aircesra Is,

2.1. Definition of Is,, Let n€ N, If & is a multi-index & = (045 - -+ ,0,), ;€ NU
{0}, then || denotes & + --- + &, and we write v :

o° = o4 v 8%
i axf Bxfr 0xfs’
With these notations Is, is by definition the Lie algebra of all differential operators of total
degree << 2, i.e. all differential operators Xc,,px*0; with c,,p = 0 unless |a| + [g] <2,
These operators are considered to act on some suitable space of (real or complex valued) smooth
functions on R”, say the Schwartz space S(R™) of rapidly decreasing smooth functions on R”,
The product (Lie bracket) of D;,D; is then of course given by the commutator

[D1> Da1(¢) = Di(D:$) — Da(D1d), &€ SRD.

It is an elementary observation that s, is closed under this commutator product.

_x“=x:‘:1---x:n, 63=

1 shall call Is, the linear systems Lie algebra. The reason for this name will become clear
later (in section 4 below).

2.2. The Heisenberg Lie algebra h,. Let h, be the subspace of Is, épanned by the
operators of total degree <1, i.e. the operators xy, =5 x,5 015 -+ -5 0,51 (with an obvious
notation). The products in 4, are of course the Heisenberg commutation relations

[6,‘, xi] = 0ji» [xh x,'] = [aia 6,‘] = [xi: 1]1= [ai: 1]=0 (2,3)
where 8;; is the Kronecker §, The Lie algebra 4, is called the Heisenberg Lie algebra.
2.4. The symplectic Lie algebra sp,. Let J be the 2n X 2z matrix

-0 D
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where I stands for the #Xn unit matrix. The Lie algebra sp, consists of all 2z X 27 matrices
M which satisfy MJ + JMT = 0 (where M7 is the transpose of M). The product on sp, is
the commutator matrix product [M,M'] = MM' — M'M, ,

2.5. Structure of ls,. It is an easy observation that 4,Cls, is an ideal, i.e. [D, D'] €
h, for all D€ ls,,D' € h,, The quotient Lie algebra Is,/h, is isomorphic to sp,, This can
e. g. be seen as follows. Let E,,; denote the matrix with a 1 at spot (457) and 0 everywhere
else. Then the homomorphism of vectorspaces defined by ~

x;xi > Ejpyj + Ejatis iy]=1,--5m,
ol ==l -
x; —— > E;i — Entjimtis i) =1,+5n,
xj .
8 I
_)En-l-i,i_En-H"i’ i3] =1, -5n,
Ox;0x;
‘ ﬁn—*oa

is a surjective homomorphism of Lie algebras as is easily checked and induces an isomorphism
Isg/hy =2 sp,. Thus we have an exact sequence

(2.6)

A lift of = (i. e. a homomorphism of Lie algebras ¢: sp, —> ls, such that moo=id) is given

1 Eq : i
0—>b, >is, —>sp,—>0,

62
by 0(Ejm+i + Ejasi) = zi%j> 0(Enyisi — Ensivi) = — ———5 0(Ejj — Epijrosi) =
ax,-ax,-
x,~5§~ + %—6,-,-. This defines an action of sp, on 4, and also on 4,/Z = R?(as an abelian
x;

Lie algebra) where Z is the one dimensional centre of 4, and Is,, Identifying R** with
ha/Z by means of e;—>x;5 e,4;—>—8;5 i =1, -+, n, this action becomes the usual
action of sp, as a Lie algebra of 27 X 27 matrices on R?*,

3. Tue Frcrer AntI-REPRESENTATION OF Is,

3.1. Description of the anti-representation. If M is a smooth manifold, F (M) denotes the
smooth functions on M and V(M) denotes the Lie algebra of vectorfields on M (considered
as the Lie algebra of derivations F(M) — F(M)). If M = R" then in the coordinates (x, ,

0
Ox

» where the f;(x) are smooth
i

-+ +5x,) every vectorfield on R” can be written as Z f:(x)
‘ B

functions.
Now consider RV with N = —;—n(n_ +D+n+1 with coordinates Pj; = P;;,i,j = 1,

cecemim;yi =1, <<+, n. Consider the hememorphism of real vectorspaces

£:ls,— V(RY) ’ (3.2)
defined by the formulas ' ' ‘ ‘
8
—->. 3 | | (3.3)
3 | < ) |
x> m; — + E P;, ——,
3 8c. =4 * Om, G
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ol ol
_————, (35)
Ox; Om;

xjxj —> (m;mj + P;;) —56— + Z (m;Pj; + m;P;;) -5%-

t

-+ Z PlSPlt e + Z IZPIX _'—‘—

52t opP,,
8 6} (6}
. > gy s —_ =2 — .. -
X B, m; om; 7i 8¢ Z Pzt P, >
& e -, 32 8
—->—1if i15£7, -2 .
bx:0%; 6P T 8 T p,

3.6)
3.7)
(3.8

3.9. Theorem. Tbhe vectorspace homomorphism k:ls,—>V (RY) defined by the formulae
(3.3)—(3.8) is an injective anti-homomorphism of Lie algebras (i.e. it satisfies k[ D, D']=

[E(D’):”(D)] for all D,D" € lS,,)_

The proof of this theorem is a straightforward but perhaps somewhat tedious calculation.

As an example we have [8;,x;] =1 and
0 o) 0 o)
s —_— + P‘ —_— —————] T e
[m, B¢ Z ¥ om, Om; Oc

which fits. As another example if 7 %7 we have

- 52
[ o ,x,'x;:I x,—6—+x,—6—+1

Ox;0x; Ox; Ox;
Now
o 5]
+ P ]
[ap,, Cmim; + Pij) oc |
(5} o 6] 16}
[6Pii D Z (m;P,-, + miPiz) _—t] = mj —6';; -+ m; am; >
P.P; ] ) Pu—2-
[aP,, Z " op., Z aP,, Z ¥ op,;’
5] o ] 0 _0_
P;P; = P;; + Pj; ——.
[6P,, Z il iz P, ii P, 1 oP,;
So indeed
s ...QL)}_.:.._Q___ .6 _ .0 _Sp 0
[:Is(x,x,),ls <3xiax,~ Oc i Om; i Om; i OP;,
0 0 s}
— P, —P P,
Z *op, " op; " opP;
o

The remaining identities are checked similarly.

3.10. Remark.
s} ) 8 B e L, &

R e ¥ > Xy XX T XXy

Ox; Ox;

Ox; Ox; Ox;0x; dx;8x;i
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x;~> xj51 — 1 defines an anti-automorphism of /s,, Thus changing the sign in formulas (3.5)
and (3.7) defines a representation of Is, in V(RY),

4. DMZ Equartions anp Karman Frtess

4.1. The Duncan-Mortenson-Zakai equation and the estimation Lie algedra. Consider a
general nonlinear stochastic system (in lIto form)

dr, = f(x,)dt + G(x)dw,, dy, = k(x,) d¢t + dv,y, x,€R", (4.2)

where f, G,4 are suitable vector and matrix valued functions and @, and », are independent unit
covariance Wiener processes also independent of the initial random vector x,. Given sufficiently
nice {5, G, 4, an unnormalized version p(x, 2) of the probability density p(x,z) of the state
x; given the past observations y,,0 <<s <C¢, satisfies the (forced) diffusion equation (Fisk-
Stratonovié form)

do = Lods + 2 hipdy,s (+3)
j=1
where 4; is the j-th component of 4 and L is the second order differential operator
1 & 8 1
Lo =—> —Z ((GCMjid) — > == (fid) — — > o, 44
v Gbn ((GENu#) = 3 o, (fib) = Z b (4.4)

Here f; is the 7-th component of f and (GGT);; the (7,7)-entry of the matrix product GGT,
Equation (4.3) is called the Duncan-Mortensen-Zakai equation. Cf. e.g. [3] for a derivation.
The Lie algebra of differential operators (on S(R”) say) generated by L and ky, ks -« - 54,
is called the estimation Lie algebra.

4.5. Ezxact filters and Liealgebra anti-homomorphisms. Now let
dg, = a(gt)d‘ -+ {31(§r)d}’xr e ﬁp(gx)d)’pu 2, = ‘Y(x,) (4'6)

be a stochastic system (in Fisk-Stratonovié form) driven by y, which calculates the conditional
expectation

& =Elx, ]y, 05 <14] (4.7)

of the state given the past observations. I.e. (4.6) is a filter for £,. Then as Brockett and
Clark observed [1] we have two ways of calculating £,, one via (4.3) and one via (4.6).
Minimal realization theory then suggests that there will be a corresponding homomorphism of
Lie algebras from the estimation Lie algebra L of the system to the Lie algebra of vectorfields
generated by the vectorfields @,@:,--+,8, in (4.6) given by 4 = a.h, —> g, i = 1,--,p,
This is called the Brockett-Clark homomorphism principle. In [1] this was verified to be indeed
the case for the case of the Kalman filter of one of the simplest possible linear systems, namely
dx, = dw,,dy, = x,dt + dv,,

As a marter of fact a filter like (4.6) for 2, (or for some other statistic) should give
rise to an anti-homomorphism from the Lie algebra of differential operators to the Lie algebra
of vectorfields generated by the vectorfields in the filter. The reason is that Ap and Ajp in
(4.3) must be interpreted as vectorfields on S(R*) and the mapping which assigns to a linear
operator the corresponding linear vectorfield is an injective anti-homomorphism of Lie algebras.

4.8. The Kalman-Bucy filter. Now consider an n-dimeunsional linear system with m inputs
and p outputs
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(2) dr, = Ax,dt + Bdw,, dy, = Cx,dt + dv,. - (49
The Kalman-Bucy filter for #, is given by the equations
d%, = A%,dt + P,C7(dy, — C#,dz), (4.10)
dP, = (AP, + P, A" + BBT — P,CTCP,)d:, (4.11)

Write m, for #; and P, = (P;;). Then the part of the right hand side of (4.10)
involving dy;, and contributing to dm;, is equal to

2. Piicxidyis.
7

[t follows that if we write (4.10), (4.11) in the form (4.6) then the vectorfields g, =--,

8, are equal to
ﬂk = Z Prsckr

e

k=1,---,p. (4.12)

Similarly the e vectorfield of (4.10)—-(4.11) is equal to

— z; 4]
o= aiiml - z Pjicrjcem, —— om

isf isfsrss

+ Z erri Z P,,a,, -+ Z zrblr

ri<j zl i< i rai<f apzl
0
P,.cscPyi ‘ 4.13
’§<’ sr- st 1’ 6P’ ( )

4.14. Estimation Lie algebra and Kalman-Bucy filter. Consider again the linear system
(4.9). The operators which occur in the DMZ equation for this system are

hi= Z Cirkes (4.15)

1
L=— birblf—— - Z zrxr"'_ - Z CriCri%iXj — Z Giie (4'16)
2 irjor Ox ax] rsi i isfor i

Let L(Z) be the estimation Lie algebra of the linear system (4.9). This is obviously,
cf. (4.16), a sub-Lie algebra of Is,, and for varying X the various L(Z) generate all of s,
Whence the name “linear systems Lie algebra”™ for Is,,

As in section 3 above let N = —;— n(n+ 1) 4+ 2+ 1, Consider the projection RN —

RV which maps (m,P,c) to (m,P), Under this projection the vectorfields occurring in the
right hand sides of (3.3)—(3.8) map to vectorfields on RV™*, The vectorfields arising in

this way are the same ones except that the 2~ terms are removed. Let
¢

£ ls, —~V(BR"™) (4.17)
be the resulting anti-homomorphism of Lie algebras.

4.18. Theorem. Tbke restriction of &' 10 L(Z) maps the operator L of (4.16) 10 the
vectorfield o of (4.13) and the operators h; of (4.15) 1o the vectorfields §; of (4.12). In
other words the restriction of K to L(Z)Cls, is the Kalman-Bucy filter for the system (3),

The proof of theorem 4.18 is an entirely straightforward verification, lightly complicated
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by the fact that P;; = P;; must be taken into sccount which is not automatically done by the
notation used. Thus the coefficient of in L in (4.16) is equal to Z by by, if 1]

2;0x;

and —,1; 3B, if { =], and under &' which takes

FA

& 8 o

— N ~>26

Ox;0x; opP,; Ox] op;;

k]

this gives the fifth term of o in (4.13). Similarly the coefficient of x,~§~ in(4.16) is —a;,,

xg

The morphism &' takes

2,2, 8 _p. 8 Xp 8
Bx, 8m,- BP, I_,—‘ BP;’:

and these terms account for the first, third and fourth terms in (4.13). Finally the coefficient

Led

r

of x;x; in (4.16) is— > cpcyi if i 5§ and ——-—-1-—$—‘cf,~ if 1 ==4, The morphism &’ takes
i 1 rj > < P

x;x; into

8 8 8
P+ mP.) -2 + p.p;, -9 + p.p,. -2 .
Z (mPjy + m; sl) Bm, tz.‘: il P, Z sk s opP,
and this accounts for the second and sixth terms in (4.13). Similarly (and rather easier) one
checks that &” takes the 4, of(4.15)into the §; of (4.12). This proves that &' indeed restricts
to the Kalman-Bucy filter on L(JX),

4.19. Remarks. Another way to state theorem 4.18 is to say that all possible Kalman-
Bucy filters combine to define an anti-representation of Is, which is faithful modulo the one-
dimensional centre. The lifted anti-representation & is faithful on Is, itself and permits us to
propagate also nongaussian initial densities. Cf. also section 6 below.

As a corollary of theorem 4.18 we of course obtain that L —«, 4; — 8, (with L, «,
his B; respectively given by (4.16), (4.13), (4.15), (4.12)) does indeed define an anti-
homomorphism of Lie algebras,as it should.

4.20. Identificarion as & nonlinear filtering problem. Consider a linear system
dx = Axdt + Bdw, dy = Cxdt + dv,, (4.21)
in which 4,B,C are unknown. The problem is to find the best estimates of both x, and the
matrices 4,B,C given y,,0 <s<Cr, By adding to (4.21) the state equations
dd =0, dB =0, dC =0 (4.22)
(so that 4, B, C are viewed as random variables (constant in time)), we obtain a nonlinear

system and the nonlinear filtering problem of finding the conditional expectation of the extended
state (x5 4,B,C) is the identification of linear system problem (or at least one version of it).

One potentially interesting statistic is the conditional expectation of the random variable
%,1(4,B,C), The family of all Kalman filters (4.10)—(4.11) (for varying (A4,B,C))
ccmputes this. According to the Brockett-Clark anti-homomorphism principle, there should be a
corresponding anti-homomorphism of Lie algebras. This is the morphism &' when the image is
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viewed as vectorfields on R¥N"! X R**72*#7 with no 56-; gag or 5% terms. Thus the Brockett-
Ve

Clark principle also holds in this case.

4.23. Example. For special linear systems L —> &,4; — §; may accidentally also define a
homomorphism of Lie algebras. This happens e. g. for all one-dimensional systems and all systems
(4.9) for which the A matrix is zero. In general this is not the case as the following example

()= (5 o (e
()= D (i),

5. Tue SeGAL-SHALE-WEIL REPRESENTATION

shows

This section simply lists some well-known facts on the basis of [ 7] with a few elaborations.

5.1. The symplectic group. Let J be as in 2.4 above. Then the symplectic group Sp,
consists of all real 2n X 2n matrices M such that MJM7 =], The Lie algebra of Sp, is
the Lie algebra sp, which we encountered in section 2 above.

A certain representation of Sp, or more precisely of its two-fold covering Sp, on L2(R™)
which is called the Segal-Shale-Weil representation is of considerable importance in several areas
of mathematics, notably number theory [14] and quantum mechanics [12, 13] As we shall see
it is also closely related to all Kalman-Bucy filters. : :

5.2. Definition of the Segal-Shale-Weil representasion. One well-known way to obtain this
representation is via the Stone-Von Neumann uniqueness theorem. Let H, denote the Heisenberg
group, H, = R* X R* X §, where §' is the circle, with the multiplication (x,y,2)(x', 9,
2) = (x+ x5y + 9 5= 22"), The Lie algebra of H, is 4, (which we also encoun-
tered in section 2 above). This Lie algebra can also be described as 4, = R* X R* X R
and then the Lie bracket defines a bilinear form R*”XR* — R which is given by the matrix
J. Thus Sp, can be seen as a group of automorphisms of 4, and H, which moreover is the
identity on the centre S*CH,,

One version of the Stone-Von Neumann theorem says that up to unitary equivalence there
is a unique irreducible representation of H, whose character on S* is the identity. Now let p
be the standard (Schrédinger) representation of H, in L?*(R”) which is given by

(x,O,O)%Mx,fo(x")I% L,in(x,xr)i(x,),

(0,y,0) > T,,Tyf(x") = G =95

(0,0,2) = 8,,8,.f(x") = zf(x).
Now let g€ Sp, and consider Sp, as a group. of automorphisms.of H,, Then 4 — p(g(4))
is also an irreducible representation of H, with the same central character. By the uniqueness
theorem there is' an intertwinning opeérator w(g) such that w0(2)o(B)w(g)" 1= p( g(4)). These
w(g) are unique up to 2 scalar factor. It remains to see whether these scalar factors can be
fixed up to yield a representation of Sp, on. LX(R")- (instead of -on. P(L*(R"))). This can
almost be done and the result is the Segal-Shale-Weil representation of the two-fold covering
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Sp, of Sp, in L*(R").
5.3. More or less explicit description of the Segal-Shale-Weil (epresextation. Let . »
A B ‘
M= ( )E Spss (5.4)
CcC D

where 4,B,C, D are n X n matrices. Then the 4, B, C,D satisfy AB” = BAT, CDT=
DCT,ADT — BCT = I, Important special elements in Sp, are

(_; g)’ (1: (A(i‘)T>’ (é Zj),N symmetric (5.5)

and it is not especially difficult to show that these generate all of Sp,, Thus in principle to
describe the Segal-Shale-Weil representation it suffices to describe the unitary operators corres-
ponding to these matrices. These are as follows

( 0 I)—* Fourier transform F;L*(R") — L*(R™), (5.6)
-1 0o/ |
4 0 N ,,
(5 umyr) ™ ) = L ipCams), 5.7)
I N .
(, )= — e, 69

where N(x) is the quadratic form defined by the symmetric matrix N,

5.9. The Lic algebra representation defined by the Scgal-Shale-Weil represenation. First
consider a symmetric matrix N = (#;;), Then

—dd_[((;v _(;)K")) .= @NGE)( (),

Next let B be an n X » matrix, 4 = ¢, Then

e

- (c: vcc—ow)r) 2

Finally consider the one-parameter subgroup

Icost Isin:
s,=< ‘ )
—Isinz Jcost

of Sp, whose tangent vector at ¢ = 0 is J (and which also passes through J),
S,=( 0 I)(Ic:os'ft 0 )(I Isin: cosi)
—I 0/\ o Tcost/\ I 0
0 —IN/T Itgs '
I
it is not difficult to write down (8=
result is

= (+ % Tr(B) + 2 (BTx), aax,- ) M.

Writihg

and to calculate the derivative at 7 = 0. The

. : 2 ’ 2
m(af+ o 22 ——’—(-__a + ... 0 )
i ) el _’+ o)
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It readily follows that the Lie algebra of operators arising from the Segal-Shale-Weil repre-
sentation is the one with basis

. o? 15} 1

MIXpXjy — =y Xp —— F — 51

K 4m Ox;0x; >R Ox; 2

which is of course isomorphic to sp,, for example to the incarnation of sp, as the’ subalgebra

o(sps)Cls, via the isomorphism induced by the coordinate change xj —> ' ;;')xk,

6. Karman-Bucy Firters AND THE SeGAL-Suarr-Wer REPRESENTATION

6.1. OQutline of the conmection. Given that the Kalman-Bucy filters combine to give an anti-
representation of sp,Cls, with sp, realized as a Lie algebra of differential operators and that
the differentiated version of the Segal-Shale-Weil representation is also a representation of this
same Lie algebra of differential operators, it would be odd if they were not rather closely related.
Indeed, as the attentive reader will have seen coming, the filter anti-representation is essentially
a real and local version of the Segal-Shale-Weil representation.

The connection is essentially given by assigning to a pair (P,m),m € R”, P a symmetric
positive definite matrix, the corresponding normal density

N S e~ PTG (6.2)

v (22)"|P]
where|P|is the absolute value of the determinant of P and P™*(y) is the quadratic form defined
by P™*, These functions form a total system in L2(R"®) meaning that the finite linear combi-
nations are dense, so that to define a representation of say Sp, of LX(R") it suffices to know
what the representation does on these special functions. For the Segal-Shale-Weil representation
one uses more generally # X n matrices O whose real part is positive definite. And in fact it
seems that Weil originally constructed his representation essentially in this way (cf. his comments,
also referenced under [14], on the paper in question).

To spell things out in more detail and to avoid equations in P™* (and calculating trouble)
it is useful to use the Fourier transform.

6.3. Some Fourier transform facts. Let F denote the Fourier transform. Then we need
the following more or less well-known facts

5 : 1 8
- , Fay=— —
omy el Fn i O

b

where e.g. Fax; stands for the composition of the operator “multiplication with z;” with the
operator F, The second fact we need‘is the formula
F—-l( ‘ 1 e—%P"'l(x—m)-l-c) — et+(27cim,x)—2x’l’(x). (6.5)
/ (2=)"| P| v
Finally it is useful te note that the set of all functions of the form

p(x)e9®, | (6.6)

where p(x) is 2 (complex) polynomial and Q a (complex) polynomiali of degree 2 whose
real homogeneous part of degree 2 is positive definite, is stable under the Fourier transform,
multiplication with polynomials and partial differentiation with respect to xg, ‘
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6.7. Obtaining the filter anti-representation. Consider a function of the type ec*@=ima

(m and P real). Imagine that m and P vary with time and try to see what this invoy
an evolution equation of the type

6 ct+Qnim,x)—2n?P(x) c+Qnim,x)=2n2P(x)
(e = Le

6z

where L is a differential operator from /5,, As is easy to see this yields a system of a,
differential equations for m; and P, provided that L is in [s,, This idea is also due y
ckett. These first order differential equations which have polynomial right hand sides

least locally uniquely solvable.

As one of the most complicated examples for n = 2 consider

€lsy, W

x10x,
exp(—) for the e-power in (6.8) we find

—g—exp(——) — exp(—)(¢ + Zairiya,+ 2mirinye, — 272(Puxd + 2Pz, + Bprd))
z

exp(—) = exp (1) [— 4n*mym, — 8xPimyx Py — 8nim,x,Pyy
61‘16,‘{2

- Sﬂsimxlszm + 167t4x1P11x2P32 + 167!4x§P13P23 - 87:3im1x1P13
-+ 16714x§P11P11 -+ 1677.'41'1)\5‘3Pfg - 47!2P1_z] .

Comparing these two expressions yields the differential equations

¢ = ""4713271'21”13 -_ 417:2P12,
271:1.?;21 = —BﬁPim;Pu - 87r3im;P12,
2151‘"’23 = ——87t3im3P12 - 8713im1P339

—217-'2P11 1671:' PnPn,
""27){21333 = 167!‘?12P23,
_47E2P13 = 161I4P11ng -+ 16JK4P2 .

Writing down the associated vectorfield and using (6.4) and (6.5) the result is that th

evolution of an unnormalized normal probability dcns1ty e‘N (m, P) with mean m and «
ance P in an evolution equation

% ¢’‘N(m ,P) = x,x36°N(m , P)
is- given by _ o ‘
Eat—(c, m,'P)=a('c‘.‘,m,;P), o N

where ¢ is the vectorfield

(m1m2 + Pu) ‘é@;“ + (mzpu + m1P12) ___5_ + (mzpn -+ mIPZZ)‘ 9

C Om, m;

+2PuP12 6+2P13P33g +(P11P3?+Pg)

1u P’ ‘

whlch is of course thc speclal case n = 2 of formula QZ 6)
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6.12. Obraining the Segal-Shale-Weil representation. To obtain the Segal-Shale-Weil repre-
sentation one can proceed in almost precisely the same way. Now of course one admits complex
m and P (with the real part of P positive definite) and one uses

62

Bx,-axk, ixjx; instead of xjxy, B 10y

6.13. Finite escape time. The class of functions e°F@=m®=22"P(x) ig gtable under Fourier
transform, multiplication with 2%, O a real quadratic form and under x — A4x, 4 invertible,
i.e. they are stable under the transformations corresponding to the special elements (5.5) of
Spn. As these elements generate Sp, it follows that there will be no finite escape time pheno-
mena for the equations of the Segal-Shale-Weil case analogous to (6.10).

In the real case, i.e. the Kalman-Bucy filter case this can not be guaranteed. Indeed finite

I N
escape time does occur (cf. also [9]) and it is easy to see why. In this case< > acts

on f(x) by multiplication with e¥** and depending on f(x) this may or may not result in a
function eV“f(x) which is not Fourier transformable.

Writing elements of Sp, as products of the special elements (5.5) gives more or less explicit
solutions of Riccati equations for elements not too far from the identity and this also gives a
good deal of information about in what directions (of sp, or Is,) finite escape time phenomena
do not occur. Of course the one parameter subgroups of LS, (the Lie group of Is,) involve
many more directions than those defined by “classically” studied Riccati equations. For complex
linear systems the “Sp, representation directions™ are such that no finite escape time occurs either
backwards or forwards. I do not know if this has system theoretic implications.
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