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THE LINEAR SYSTEMS LIE ALGEBRA, THE 
SEGAL-SHALE-WEIL REPRESENTATION 

AND ALL KALMAN-BUCY FILTERS 

l\1ICHIEL HAZEWINKEL 

(Center for Math. and Comp. Sci., The Ni:therlands) 

1. INTRODUCTION 

Let /s9 be the Lie algebra of all differential operators in n variables with polynomial coeffi­
cients of total degree in variables and derivatives~ 2. Thus e.g. ls1 is the Lie algebra with 

basis " 

a 82 a 
x2 , :x -, -, :x, -, 1 

Bx 8x2 Bx 
(1.1) 

(The product is of course the commutator product). The symbol ls for this Lie algebra stands 
for "linear systems". The reason for this ~ppellation derives from the following. Consider a 
linear stochastic system 

(1.2) 

Then lfil unnormalized version. of the densitY. of the conditional expectation of the state x, given 
i:be«p!lst observations y, , 0 ~ s ~ t, , sat~fi~ a. (stochastic) evolution equa~ion . 

dp(:x,t) = Lp(x,t)dt + L 1p(x,t)dy1, + · . .,. + Lpp(x,t)dyp1· (1.3) 

with L,Lu···,L,E lsa. And for varying systems (1.2) these operators generate all of lsn. 

The Kalman-Bucy filter fort,= E[x,ly,,O ~s ~ t] is a system of the form 

(1.4) 

where z is short for (P,t) and a,(J1 , .. ·,f3p are vectorfields on (P, t)-space. Let V(BN) 
denote the Lie algebra of vectorfields on B,N. Then the first main point of this paper is that 
all Kalman-Bucy filters combine to define a "universal Kalman-Bucy filter" in the shape of an 
anti-homomorphism of Lie algebras 

(1.5) 

(and it is even possible to use this to propagate nongaussian initial densities). Her.e "antiN 
means that 

~[D,D'] == [~(D'),~(D)] rather than ~[D,D'] = [~(D), ~(D')]. 

This also establishes that the Kalman filter does indeed define an antihomomorphism 0 £ Lie algebras 
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from the Lie algebra generated by L , Li. · · · , L p in ( 1. 3) (the so-called estimation Lie 
algebra) to a suitable Lie algebra of vectorfields, as it should according to a philosophy (almost 
a theorem now) first proposed by Brockett and Clark [ 1 ] . 

The structure of lsn is simple. It is an extension of the real symplectic Lie algebra Sp,, 
by the Heisenberg Lie algebra hn. Let Sp,, be the symplectic Lie group. Then there is a famous 
and somewhat mysterious representation of Sp,, (or more precisely its 2-fold covering Sp,,) 
which turns up in many distinct areas of mathematics, e.g. number theory and quantum me­
chanics. It is called the Segal-Shale-Weil representation or sometimes the oscillator representation· 
The second main point of this paper is that this Segal-Shale-Weil representation and the "filter 
anti-representation~' (1.5) above are intimately related. This extends and strengthens the links 
between filtering theory and quantum mechanics which had been noted before [ 11], cf. also 
various contributions in [ 5]. 

It seems likely that the fact that all Kalman-Bucy filters fit together nicely will be useful 
both for theory and applications. In fact it is definitely of importance in a class of nonlinear 
filtering problems coming from identification and tracking [ 4, 10] where the estimation Lie 
algebra is a lways a subalgebra of a current algebra lsn@R where R is a ring of polynomials. 
Further applications of the "universal filter~' (1.5) and/or its relations with the· Segal-Shale­
W e-il representation seem likely. 

2. THE LINEAR SYSTEMS LIE ALGEBRA ls,, 

2.1. Definition of ls,,. Let nEN. If a is a multi-indexa=(a1, ···,an),a;E£YU 
{ 0}, then I a J denotes a1 + + a,, and we write 

BP BP1 fJ.Pn 
Bp = -- = --·· ·--

8x" Bx~1 Bx~" • 

With these notations ls,, is by definition the Lie algebra of all differential operators of total 
degree .s;; 2, i. e. all differential operators 2 c ,., 11x"'Op with c a.p = 0 unless I a I + IP' J < 2. 
These operators are considered to act on some suitable space of (real .or complex valued) smooth 
functions on R", say the Schwartz space S(Rn) of rapidly decreasing smooth functions on R". 
The product (Lie bracket) of D1'D2 is then of coarse given by the commutator 

It is an elementary observation that ls,, is closed under this commutator product. 

I shall call ls,, the linear systems Lie algebra. The reason for this name will become dear 

later (in section 4 below). 

· 2.2. The Heisenberg Lie algebra h,,. Let h,, be the subspace of lsn spanned by the 
operators of total degree .s;; 1 , i.e. the operators X1' " ' • , Xn; 81, • • " , 8,,;, 1 (with an obvious 
notation). The products in h,, are of course the Heisenberg commutation relations 

where Bii is the Kronecker tJ. The Lie algebra h,, is called the Heisenberg Lie algebra. 

2.4. The symplectic Lie algebra sp,,. Let J be the 2n X 2n matrix 

J =( . 0 
-I 

~)··-· 

(2.3) 
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where I stands for the n X n unit matrix. The Lie algebra spn consists of all 2n X 2n matrices 

M which satisfy M J + J MT = 0 (where MT is the transpose of M). The product on spn is 

the commutator matrix product ( M , M'] = MM' - M 'M. 

2.5. Structure of ls,.. It is an easy observation that hnClsn is an ideal, i.e. [D, D'] E 

h~ for all DE ls,,,D' Eh,,. The quotient Lie algebra ls,,f hn is isomorphic to spn. This can 

e. g. be seen as follows. Let E 1,; denote the matrix with a 1 at spot (i,j) and 0 everywhere 

else. Then the homomorphism of vectorspaces defined by 

x;x;- E;,n+i + E;.n+i' i, j = 1, · · ·, n, 

Xj_!!_-E;,;- En+i.n+i' i, j = 1, ... , n, 
6xi 

az 
----En+i.i - E .. +;.;, i, j = 1, · · ·, n, 
8x;Bx; 

hn - 0, 

is a surjective homomorphism of Lie algebras as 1s easily checked and induces an isomorphism 

ls. ~ sp ... Thus we have an exact sequence 

0 - h0 ~ls,.:!,,. spn - 0. (2.6) 

A lift of zr (i. e. a homomorphism of Lie algebras O"; spn - zsn such that noO"=id) is given 
()2 

by lf(E;.n+i + E;.n+i) = x;x;, a'(E.+i.i - En+;,;)= - a a ., a(E;,; - En+i·•+1) = 
Xj Xj 

a 1 
x · - + - o·· This defines an ai:tion of sp,. on hn and also on hnf Z ~ R2"(as an abelian 
z Bx; 2 11 • 

Lie algebra) where Z is the one dimensional centre of h,, and lsn. Identifying R.2" with 

h.,/ Z by means of ei - Xi, e,,+;- -8;, i = 1, · • ·, n, this action becomes the usual 

action of sp., as a Lie algebra of 2n X 2n matrices on R.2n. 

3. THE FILTER ANTI-REPRESENTATION OF ls,, 

3.1. Description of the anti-representation. If M is a smooth manifold, F (M) denotes the 

smooth functions on M and V (M) denotes the Lie algebra of vectorfields on M (considered 

as the Lie algebra of derivations F(M)-'>- F(M)). If M = R." then in the coordinates(x1' 

• · · ,x.) every vectorfield on R" "Can be written as~ f;(x) _!!_, where the fi(x) are smooth 
; Bx; 

functions. 

Now consider RN with N = ~ n(n + 1) + n + 1 w.ith coordinate$ P;; =P;j,i,j = 1, 

· · · ,n;m;,i = 1, · · ·, n. Co~sider the hcmcmorphism of real vector~paces 

defined by the formulas 
1>;ls,, - V(E/") (3.2) 

(3.3)' 

(3.4) 
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a a -----, 
oxi om; 

XiXi - (m;mi + P;i) _§__ + 2= (m;Pi, + m;P;,) ~ 
Be t om, 

+ ~ Pi,Pit ~ + 2= P;i?it ~' 
s,t BP,, , BP,, 

x· _§__ - -m· _9_ - o .. _Q_ - P·· _2__ - ""'P· _9_ z ~ , 11 8 u L...J tt , 
UXj om; c 8Pii t aPit 

a2 a .£ . . a2 B ------! t'=l=J, ---2--
ox;ox; BP;; ox7 BPii. 

97 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

3.9. Theorem. The vectorspace homomorphism JC:lsn-V(RN) defined by the formulae 
(3.3)-(3.8) is an injective anti-homomorphism of Lie algebras (i.e. it satisfies !i:[D, D']= 
[K(D'),K(D)] for all D,D' E ls,,). 

The proof of this theorem is a straightforward but perhaps somewhat tedious calculation. 
As an example we have [B;,xi] = 1 and 

[ m; ~a + ~ P;, ~a ' _ _Q_] 
uc 1 um, Bmi 

B 
Be 

which fits. As another example if i '=I= j we have 

[ 82 x ·x ·] = x _§__ + x. _§__ + 1 
ox;Bx; ' t I t Bxj 1 Bx1 • 

Now 

[_9_ (m·m· + P··) _§__] = _Q_, 
~p .. ' 1 1 11 Be Oc u tl 

= ~ P;,-B- + ~ P;,-a-, 
, aPi, , aP,; 

[ a --, 
BP·· 11 

a a =P··-+P··-
11 aP·· ,, aP .• 

11 tt 

So indeed 

The remaining identities are checked similarly. 

3. 10. Remark. 
a a B B -- ~ --, x; - - -x; -, XjXj - XjXj, 

Bx; Bx; Bxi Bx1 

az 
~---, 

Bx;Bx; 



:x 1 -~Xj,l 

and ddin~ 

4.l. Tlit· 

dt + G dt + 
where j, G , h are suitahk vecCtor and m11trix v11lued functions and 

covariance \Viener proce$S::S also of the initial random 

nice f, G , h , an unnormalized version , : ) of :he 

x 1 the past observations y,, I) s ~c:; 1, s~tisfies the 

Stratonc\ ic 

J :;.· 1 

:1;:, E 

Consider 

of the state 

(Fisk-

where h1 is the Ji imd L is the second order differential operator 

I --2 
(4.4) 

Here f; is the i-th component of I and the (i,j)-entry of the matrix product GG 7 , 

( 4.3) is c:alled the Dtmcan-::Vfortensien-Zahi equation. Cf. e.g. ( 3] for a derivation. 
The Lie of differential operators say) by L and /1 1 , Ii~, · · · 
is called the estimation Lie algebra. 

4.5. Exact and 

dg, = a(;,)at + (4.6) 

be a stochastic system (in Fisk-Stratonovic form) driven by Y: which calculates the conditional 

ll:,=E[x,jy,, O~s~tJ (4.7) 

of the state given the past observations. I. e. ( 4.6) is a filter for x,. Then as Brockett and 
Clark observed [l] we have two ways of calculating x0 one via (4.3) and one via (4.6). 
Minimal reslization theory then suggests that there will be a corresponding homomorphism of 
Lie algebras from the estimation Lie algebra L of the system to the Lie algebra of vectorfields 
generated by the vectorfields a,p,.··· in (4.6) given by A-+a,h1 -+fl;, i = l,···,p. 
This is called the Brockett-Clark homomorphism principle. In [ 1] this was verified to be indeed 
the case for the case of the Kalman filter of one of the simplest possible linear systems, namely 

dx, = ,dy, = x1dt + iiv,, 

As a matter of fact a filter like ( 4.6) for x, (or for wme other statistic) should give 
rise to an anti-homomorphism from the Lie algebra of differential operators to the Lie algebra 
of vectorfields generated the vectorfields in the filter. The reason is that Ap and h1p in 
(4.3) must be interpreted as vectorfields on S(R") and the mapping which assigns to a linear 
operator the corresponding linear ve>ctorfield is an injective anti-homomorphism of Lie algebras. 

4.8. The Kalman-Bucy filter. Now consider an n-dim.ensional linear system with m inputs 

and p outputs 
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(I:) dx, = Ax,itt + Bdw,, dyt = Cx,dt + dv,, 

The Kalman-Bucy filter for i, is given by the equations 

dx, = Ax,dt + P,C 1 (dy, - Cx,dt), 

dP, = (AP, + P,A 1 + B B1 - P,C1 CP,)dt. 

99 

(4.9) 

( 4.10) 

( 4.11) 

Write m 1 for £i and P, = (Pii). Then the part of the right hand side of (4.10) 
involving dyk, and contributing to dm;, is equal to 

~ piiCkidYke. 
i 

It follows that if we write (4.10), (4.11) in the form (4.6) then the vectorfields {i1' ···, 
{ip are equal to 

- " a fik - L.J P,,ck,--;------' 
r,r um, 

k=l, ···,p. (4.12) 

Similarly the a vectorfield of ( 4 .10 )-( 4 .11) is equal to 

( 4.13) 

4.14. Estimation Lie algebra and Kalman-Bucy filter. Consider again the linear system 

( 4.9 ). The operators which occur in the DMZ equation for this system are 

( 4.15) 

L = _!_ ~ b;rbir 82 - ~ airXr + -_!_ ~ c,;c,;x;x; - ~ a;;. ( 4.16) 
2 i,j,r 0Xj0Xj ,,; UXj 2 i,j,r i 

Let L(l.') be the estimation Lie algebra of the linear system (4.9). This is obviously, 

Cf. (4.16), a sub-Lie algebra of lsn, and for varying I: the various L(l.') generate all of ls, 

Whence the name "linear systems Lie algebra,' for lsn. 

As in section 3 above let N = .l n(n + 1) + n + 1. 
2 

Consider the projection RN -i-

RN-1 which maps (m,P,c) to (m,P). 

right hand sides of (3.3)-(3.8) map 

this way are the same ones 

Under this projection the vectorfields occurring in the 

to vectorfields on RN-1• The vectorfields arising in 

a except that the - terms are removed. Let oc 
tr,': ls,, -i. V(,EN-1) (4.17) 

be the resulting anti-homomorphism of Lie algebras. 

4.18. Theorem. The restriction of 1r,' to L(2) maps the operator L of (4.16) to the 

vectorfield a of (4.13) and the operators hi of (4.15) to the vectorfields fli of (4.12). In 

other words the restriction of 1r,' to L(2)Clsn is the Kalman-Bucy filter for the system (2). 

The proof of theorem 4.18 is an entirely straightforward verification, lightly complicated 
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the fa et that 

1 :ind 
2 

this 

to 

the fifth term of a in ( ·U 

The mc1rpJtus1n ;:! u1ke;> 

and these terms llccount for the third and fourth terms in .13 . the coefficient 

of XiXi in i ~ j and if i - i. The 

x;x i into 

+ 

and this accounts for the second 

checks th:u /i;, 0 takes the k, 
and sixth terms in (4.13). Similarly (and rather easier) one 

5 )into the fii of ) . Tllis proves that A:' indet.'tl restricts 
to the filter on L(I). 

4J9. Remarks. Another way to state theorem 4.18 is to say rhat all possible Kalman-
filters combine to define an anti-representation of l;. which is faithful modulo the one­

dimensional cent.re. The lifted anti-representation ir is faithful on lsn itself and permits us to 

pro1~g11te also nongaussian initial densities. Cf. also section 6 below. 

4.20. 

of theorem 4.18 we of course obtain that L - a, h;-;.. fJz (with L, a., 
by (4.16), (4.13), (4.15), (4.12)) does indeed define an anti­

algebras,as it should. 

de1i.tit.1ca.1!1on as a nonlinear filtering problem. Consider a linear system 

dx == Axdt + Bdu., dy == Cxat + dv,, (4.21) 

in which A ,B, C are unknown. The problem is to find the best estimates of both Xt and the 
matrices A ,B ,C given y,,O ~ 1 ~ t. By adding to (4.21) the state equations 

JA =- 0, dB = O, dC == 0 (4.22) 

that A, B , C are viewed as random v11riable-s (constant in time)), we obtain a nonlinear 
system and the nonlinear filtering problem of finding the conditional expectation of the extended 
state (x, A ,B ,C) is the identification of linear system problem (or at least one version of it). 

One potentiaUy interesting statistic is the conditional expectation of the random variable 
xs (A,B,C). The family of all Kalman filters (4.10)-(4.11) (for varying (A~B,C)) 
ccmputes this. According to the Brockett-Clark anti-homomorphism principle, there should be a 
corresponding anti-homomorphism of Lie algebras. This is the morphism 1r.' when the image is 
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viewed as vectorfields on RN-i X R"'+np+nm with no _!}___ ,_!}___ or _!}___ terms. Thus the Brockett-
BA as ac 

Clark principle also holds in this case. 

4.23. Example. For special linear systems L - a,h; - {J; may accidentally also define a 
homomorphism of Lie algebras. This happens e. g. for all one-dimensional systems and all systems 
(4.9) for which the A matrix is zero. In general this is not the case as the following example 
shows 

5. THE SEGAL-SHALE-WEIL REPRESENTATION 

This section simply lists some well-known facts on the basis of L 7] with a few elaborations. 
5.1. The symplt:ctic group. Let J be as in 2.4 above. Then the symplectic group Spn 

consists of all real 2n X 2n matrices M such that M J MT = J. The Lie algebra of Spn is 
the Lie algebra sp,, which we encountered in section 2 above. 

A certain representation of Sp,, or more precisely of its two-fold covering Sp,, on L 2(R") 
which is called the Segal-Shale-Weil representation is of considerable importance in several .areas 
of mathematics, notably number. th~ory [14] and quantum mechanics [12,13]. As we shall see 
it is also closely related to all Kalman-Bucy filters. 

5.2. Definition of the Segal-Shale-Weil representation. One well-known way to obtain this 
representation is via the Stone-Von Neumann uniqueness theorem. Let H,, denote the Heisenberg 
group, H,, =R" X R" X s1 , where S1 is the circle, with the multiplication (x,y,z)(x',y', 
z') = (x + x' ,y + y' ,e-z,.;(,.,Y'>zz'). The Lie algebra of H,, is h,, (which we also encQun­
tered in section 2 above). This Lie algebra can also be described as h,, = R" X R" X R 
and then the Lie bracket defines a bilinear form R2" X R2" --+ R which is given by the matrix 
J. Thus Sp,, can be seen as a group of automorphisms of h,, and H,. which moreover is the 
identity on the centre S1CH,.. 

One version of the Stone-Von Neumann theorem says that up to unitary equivalence there 
is a unique irreducible representation of H,, whose character on S1 is the identity. Now let p 

be the standard (Schrodinger) representation of H,. in U(R") which is given by 

(x,O,O) - M:e,M.,f(;') = r: 2"';<"•"'>f(x'), 

(O,·y,0).-+ T,,Tyf(x') ·: f(x' - y), 

'(O,O,z)-S,,,S"f(x') . zf(x'). 

,., 

Now let g E Spn and consider Spn as a group. of a~tomorphisms .. of H,.. Then h--+ p(g(h)) 
is also an irreducibl.e representation of H,. with the .same central character. By the uniquc;-ness 
theorem ·there is' an intertwiiinlng operator co(g) such that w(g)p(h)w(g)~1 .. · · p(g(h) ).. These 
w(g) are unique up to a scalar factor. It remains to see whether these scalar factors 'can be 
fixed up to yield a repr~·entati;on pf Sp,, on_ L.2(Rn)J4istead of ·o~ .. P(L2(R"))). This can 
almost be done and the cesult is the Segal-Sli:ale-Weil representation of the two-fold covering 
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of Sp,, in L2(R"). 

5.3. More or less explicit description of the Segal-Shale-Weil represefitation. Let 

M = (; ; ) E Spn, (5.4) 

where A,B,C,D are n X n matrices. Then the A, B, C,D satisfy AB 7 = BA7 , CD7 = 

DCT' A DT - B er = l. Imp-0rtant special elements in Spn are 

(_; ~ ), ( ~ (A~1)7), ( ~ ~),N symmetric (5.5) 

and it is not especially difficult to show that these generate all of Sp,,. Thus m principle to 

describe the Segal-Shale-\.Veil representation it suffices to describe the unitary operators corres­

p-0nding to these matrices. These are as follows 

(_; I)- Fourier transform F: L2(E.")--+ L 2(R"), 
0 - - (5.6) 

(5.7) 

~) --+ (f (x) --+ e"'iN(xlf (x))' (5.8) 

where N(x) is the quadratic form defined by the symmetric matrix N. 

5.9. The Lie algebra represeritation defined by the Segal-Shale-Weil representation. First 
consider a symmetric matrix N = (nn). Then 

O )!(x)).[ = (1tiN(x))(f (x)). 
I t=~ 

Next let B be an n X n matrix, A = e'8 • Then 

d, (e' 8 
Q ) r ( -;;;; 0 (e-IB)T (f) t=<l = + ~ Tr(B) + ~ (BTx), a~;) (f). 

Finally consider the one-parameter subgroup 

of Spn whose tangent vector at 

St= ( a 
-I 

(. I. cost 
St= 

-I sint 
I sint) 

I cost 

t = 0 is ] (and which also passes through 

I
0 

)(I co0s~rt 0 )(I I sin t
0

cos ') 

lcost I 

(; -~)(~ l~t) 

1). Writing 

it is not difficult to 
result is 

write down (Stf(x) and to calculate the derivative at t == O. 

Tri(xf + · · · + x!) ,...._ j_ (-. 82 + ... + -2:_) 
4:ir 8xi ox! • 

The 
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It readily follows that the Lie algebra of operators arising from the Segal-Shale-Weil repre­
sentation is the one with basis 

. i a2 a 1 
'lttXkXi, - , Xk -- + - OJ(' 

47t BxkBxi Bx; 2 1' 

which is of course isomorphic to spn, for example to the incarnation of spn as the subalgebra 

a{spn)Clsn via the isomorphism induced by the coordinate change Xi(- c.J Tti)xk. 

6. KALMAN-BUCY FILTERS AND THE SEGAL-SHALE-WEIL REPRESENTATION 

6.1. Outline of the connection. Given that the Kalman-Bucy filters combine to give an anti­
representation of spnClsn with spn realized as a Lie algebra of differential operators and that 
the differentiated version of the Segal-Shale-Weil representation is also a representation of this 
same Lie algebra of differential operators, it would be odd if they were not rather closely related. 
Indeed, as the attentive reader will have seen coming, the filter anti-representation is essentially 
a real and local version of the Segal-Shale-Weil representation. 

The connection is essentially given by assigning to a pair (P,m),m E Rn, Pa symmetric 
p)sitive definite matrix, the corresponding normal density 

_1 ___ e--tp-l(x-m), 

V(211YJPI 
(6.2) 

where IP J is the absolute value of the determinant of P and p-1 (y) is the quadratic form defined 
by p-1• These functions form a total system in L 2(R") meaning that the finite linear combi­
nations are dense, so that to define a representation of say Spn of L 2(R") it suffices to know 
what the representation does on these special functions. For the Segal-Shale-Weil representation 
one uses more generally n X n matrices Q whose real part is positive definite. And in fact it 
seems that Weil originally constructed his representation essentially in this way (cf. his comments, 
also referenced under [ 14 J, on the pa per in question). 

To spell things out in more detail and to avoid equations in p-1 (and calculating trouble) 
it 1s useful to use the Fourier transform. 

6.3. Some Fourier transform facts. Let F denote the Fourier transform. Then we need 

the following more or less well-known facts 

F = ~ = 2rcixkF, Fxk = - -1-~ F, 
Bxk 2rci Bxk 

where e.g. F xk stands for the composition of the operator "multiplication with x/' with the 

operator F, The second fact we need is the formula 

p-1 (.; (2:)n I p I e-ip-1(.r-m)+c) = ec+(z,.;m,:<)-2'111P(x). (6.5) 

Finally it is useful te note that the set of all functions of the form 

p(x)e-Q(xl, (6.6) 

where p(x) is a (complex) polynomial and Q a (complex) polynomial· of degree 2 whose 
real homogeneous part of degree 2 is positive definite, is stable under the Fourier transform, 
multiplication with polynomials and partial differentiation with respect to xk. 
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6.7. Obtaining the filter anti-representation. Consider a function of the type ec+<iorim, ... ~. 

(m and P real). Imagine that m and P vary with time and try to see what this invo\ 

an evolution equation of the type 

__§___ ( ec+(2,.;m,.r>-2or 2P(rl) =!' L ec+(2 .. ;m,r>-2"'PCr) 

8t. 

where L is a differential operator from l r no As is easy to see this yields a system of o~ 

differential equations for mk and P,, provided that L is in lsn. This idea is also due ~. 

ckett, These first order differential equations which have polynomial right hand sides 

least locally uniquely solvable. 

a2 
As one of the most complicated examples for n = 2 consider E ls,,. ~ 

Bx1Bx2 

exp(-) for the e-power in (6.8) we find 

_§_exp ( - ) = exp ( - ) ( c + 2nim1x1+2nim2x2 - 2n2(P11x~ + 2P12x1x2 + P22xD) ,,. 
Bt 

-~exp ( - ) = exp (1) [ -4n2m1m2 - 8-dim2x1P11 - 8--n?im 2x2P12 
8x1Bx2 

- 8-n?imx1x2P22 + l 6n4x1P11x2P22 + l 6n4x~P12P22 - 8-dim1x1P12 

+ l6:n:4:dP11P12 + 16:ir4x~x2Pf2 - 4:11:2P12]. 

Comparing these two expressions yields the differential equations 

c = -4:ir2m1m2 - 4:ir2P12' 

2:irim1 = - 8-dim2P11 - 8n3imiP12, 
2:irim2 = - 8-dim2P12 - 8-n?im1Pm 

-2n2P11 = 16:ir4P11P12, 

-2n2P22 = 16n4P12Pm 

-:-4n2P12 = l6n4P11P22 + 16n4PTu. 

Writing down the associated vectorfield and using (6.4) and (6.5) the result is that th• 

evolution of an unnormalized normal probability density ecN(m, P) with mean m and < 

ii.nee P ·in an evolution equation 

¥.·given by 

__§___ (c, m, P) = rx(~,m, P), 
Bt 

where rx is the vectorfield ' . ; 

(m1m2 + Pu) ~ + (m2P11 + 1Ji'P12)_£_ +· (m2P12 + m1P22)~ · 
Be ,8m1 Bm2 

: ' 

+ 2PuP12 __£__ + 2P12P22 ~ + (PuP2, + PTu) __£__' 
f:!JP11 BP22 ·· .r.. BPu' · 

. ;.~ .... <. r!: : 

.. · ,\ 

" ... 

" ( 
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6.12. Obtaining the Segal-Shale-Weil representation. To obtain the Segal-Shale-Weil repre­
sentation one can proceed in almost precisely the same way. Now of course one admits complex 
m and P (with the real part of P positive definite) and one uses 

a a2 
i , ixixk instead of x;xk, ---

Bxiaxk. 8x/)x1,· 

6.13. Finite escape time. The class of functions e<+<z,,;m,x>-z"'P(.r) is stable under Fourier 

transform, multiplication with eiQ(x), Q a real quadratic form and under x ~Ax, A invertible, 
i.e. they are stable under the transformations corresponding to the sptcial elements (5.5) of 
Spn. As these elements generate Spn it follows that there will be no finite escape time pheno­
mena for the equations of the Segal-Shale-Weil case analogous to ( 6 .10). 

In the real case, i. e. the Kalman-Bucy filter case this can not be guaranteed. Indeed finite 

escape time does occur (cf. also [9]) and it is easy to see why. In this case ( ~ ~) acts 

on f(x) by multiplication with eNCxl and depending on f(x) this may or may not result in a 
function eNCx)f ( x) which is not Fourier transformable. 

Writing elements of Spn as products of the special elements (5.5) gives more or less explicit 
solutions of Riccati equations for elements not too far from the identity and this also gives a 
good deal of information about in what directions (of spn or ls,,) finite escape time phenomena 
do not occur. Of course the one parameter subgroups of LSn (the Lie group of ls,,) involve 
many more directions than those defined by "classically" studied Riccati equations. For complex 
linear systems the "S Pn representation directions" are such that no finite escape time occurs either 
backwards or forwards. I do not know if this has system theoretic implications. 
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